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Résumé

Cette thèse s'intéresse au problème de la recherche de motif dans les permuta-
tions, qui a pour objectif de savoir si un motif apparaît dans un texte, en prenant
en compte que le motif et le texte sont des permutations. C'est-à-dire s'il existe
des éléments du texte tel que ces éléments sont triés de la même manière et
apparaissent dans le même ordre que les éléments du motif. Ce problème est
NP complet. Cette thèse expose des cas particuliers de ce problème qui sont
résoluble en temps polynomial.

Pour cela nous étudions le problème en donnant des contraintes sur le texte
et/ou le motif. En particulier, le cas où le texte et/ou le motif sont des per-
mutations qui ne contiennent pas les motifs 2413 et 3142 (appelés permutations
separables) et le cas où le texte et/ou le motif sont des permutations qui ne
contiennent pas les motifs 213 et 231 sont considérés. Des problèmes dérivés de
la recherche de motif et le problème de la recherche de motif bivinculaire sont
aussi étudiés.



Abstract

This thesis focuses on permutation pattern matching problem, which asks
whether a pattern occurs in a text where both the pattern and text are permu-
tations. In other words, we seek to determine whether there exist elements of
the text such that they are sorted and appear in the same order as the elements
of the pattern. The problem is NP-complete. This thesis examines particular
cases of the problem that are polynomial-time solvable.

For this purpose, we study the problem by giving constraints on the permu-
tations text and/or pattern. In particular, the cases in which the text and/or
pattern are permutations in which the patterns 2413 and 3142 do not occur
(also known as separable permutations) and in which the text and/or pattern
are permutations in which the patterns 213 and 231 do not occur (also known as
wedge permutations) are also considered. Some problems related to the pattern
matching and the permutation pattern matching with bivincular pattern are
also studied.



Chapter 1

Introduction

A permutation σ is said to occur in another permutation π (or π contains σ),
denoted σ � π, if there exists a subsequence of elements of π that has the same
relative order as σ; otherwise, π is said to avoid the permutation σ. For example,
a permutation contains the permutation 123 (resp. 321) if it has an increasing
(resp. a decreasing) subsequence of size 3. Similarly, 213 occurs in 6152347, al-
though 231 does not occur in 6152347. In the last decade, the study of patterns
in permutations has become a very active area of research [37] and a conference
(Permutation Patterns) focuses on patterns in permutations. We consider
here the so-called permutation pattern matching (noted PPM), which is also
sometimes referred to as the pattern involvement problem: Given two permuta-
tions σ of size k and π of size n, the problem is to decide whether σ � π (the
problem is attributed to Wilf in [18]). The PPM is known to be NP-hard [18];
however, it is polynomial-time solvable by brute-force enumeration if σ has a
bounded size. Improvements to this algorithm were presented in [1] and [4],
the latter describing a O(n0.47k+o(k))-time algorithm. Bruner and Lackner [22]
gave a �xed-parameter algorithm solving the PPM problem with an exponential
worst-case runtime of O(1.52nnk). This is an improvement upon the O(k

(
n
k

)
)

runtime required by brute-force search without imposing restrictions on σ and
π, in which one has to enumerate all of the

(
n
k

)
di�erent subsequences of size k

in π and test if one of them has the same relative order as σ. Guillemot and
Marx [32] showed that the PPM problem is solvable in 2O(k2 log k)n, and hence is
�xed-parameter tractable with respect to the size k of the pattern σ (standard
parameterisation). However, Mach proved that the permutation involvement
problem under the standard parameterisation does not have a polynomial size
kernel (assuming NP 6⊆ coNP/ poly [41]). A few particular cases of the PPM
problem have been attacked successfully. The case of increasing patterns is
solvable in O(n log log k)-time [26], improving the previous 30-year bound of
O(n log k). Furthermore, the patterns 132, 213, 231 and 312 can all be han-
dled in linear-time by stack sorting algorithms. Any pattern of size 4 can be
detected in O(n log n) time [4]. Algorithmic issues related to 321-avoiding pat-
terns matching for permutations have been investigated in [33], [3] and more
recently in [35].

This thesis studies speci�c cases of the PPM problem. We focus especially
on the cases in which the text and/or pattern are separable permutations. We
expose di�erent solution for both cases and propose solutions of our own. Re-
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lated subjects to PPM are also solved, such as the union and consensus of two
permutations. Moreover, we look at the PPM when considering bivincular pat-
tern, which we believe, is the most valuable contribution as this is the �rst time
that these patterns are studied. We delve deeper in the separable permutation
as we also study a subclass of separable permutations, namely the wedge per-
mutations. In particular, the case in which both the pattern and the text are
wedge permutations, only the text is a wedge permutation and the pattern is
a bivincular for the PPM problem are considered. We present polynomial so-
lutions for these cases. An algorithm for the longest wedge permutation is also
given.

This thesis has two main motivations. Our �rst motivation is to get closer to
the PPM's application, especially for bioinformatic, which focuses on sequences
of genetic material such as DNA, RNA, or protein sequences. In particular for
the DNA sequence, its transmission is studied. However, this transmission may
result in the modi�cation of the sequence: some parts can be added, removed
or swapped. As such, it is a problem to decide whether two sequences are
related. More generally, deciding whether a trait (which is a characteristic of
an individual), given as a sequence, is present in a DNA sequence is a problem.
Nonetheless, not all modi�cations occur, as some are lethal to the descendant
and cannot thus be observed. As such, there is a logic in a sequence and it can
thus split into blocs. Moreover, we know that some blocs are conserved in order
for the trait to be present. So for a trait to be present in a sequence, it must
contains blocs such that they appear in the same order as the blocs of trait.
The PPM is found when labelling each bloc by a number. Additionally, the
blocs cannot be ordered arbitrarily. There may be some dependencies between
blocs (depending on the trait), such as, some blocs cannot be in the same trait
and some blocs need to be next to each other. We represent this dependencies
with the avoiding classes and the bivincular patterns. Our second motivation is
to grasp a better understanding over some objects. Obviously, the �rst objects
are separable permutations and wedge permutations, in which we explore their
structures. This can be used in random generation and combinatorics. The
second object is the bivincular patterns, which is tool not yet well-known. The
study of bivincular patterns is the continuity of the study of permutation pattern
as bivincular pattern generalise permutation pattern.

The thesis is organised as follows. The second chapter outlines the justi�ca-
tion for this thesis. The third chapter de�nes the principal notions needed for
the study. The fourth chapter presents the results known for the PPM problem
and some variants of the problem at the time of writing. The next chapter o�ers
results related to problems based on the PPM. Chapter �ve is devoted to the
study of the PPM over separable permutations, whereas chapter six focus on
the wedge permutations. Finally, the conclusion proposes research leads that
we consider relevant.
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Chapter 2

Context of the Thesis

2.1 Non-deterministic Polynomial Problem

A computational complexity theoretician classi�es the problem by how hard
solving it is and measures the di�culty of the problem by scaling the "size of
the problem" to the resources needed to solve it. Such theoreticians consider
two types of resources: the number of steps needed to go from the information
given in the problem to the solution and the space consumption, which is how
much information is needed to �nd the solution. The number of steps is tied
to the time spent solving the problem, so by convention, the number of steps
is refereed as the time consumption. A prime piece of information lies at the
end of the theoretician's work: whether we can �nd a practical method to solve
the problem. All the tools and knowledge related to computational complexity
theory that we need for this thesis are presented below.

2.1.1 The Notion of Problem

In computer science, a problem is a question or task over a class of object.
An example of a problem over subsets of integers is to �nd the maximal value
contained in the set. A problem paired with an object of the class is an instance
of a problem. A possible instance of the above problem is �nding the maximal
value contained in the set {3, 4, 8, 2}. The scaling is undertaken with the size
of the object, with what we call size depending on the object. In the above
example, the input's size would be the number of integers, so 4. A problem is
said to be solvable if an algorithm can �nd the solution of any instances of that
problem.

2.1.2 Reduction: Transforming one Problem into Another

A reduction is the act of transforming any instance of a �rst problem to an
instance of another problem. Informally, this corresponds to representing a
problem in a di�erent way. The original and obtained instances must have the
same solution. To understand a reduction, imagine that we want to throw a
six-sided die, but do not have one. Luckily, we have six di�erent cards. We
can draw randomly one of the six cards to simulate a throw of a six-sided die.
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The problem of throwing a die can thus be reduced to the problem of drawing
a card. Reduction is used for two purposes, as described below.

Solving a Problem with a Reduction

The �rst role of reduction is to solve a problem, as in the above examples. The
principle is that if we have an original problem that is not yet solvable, we can
use a second problem that is solvable to solve the �rst one. If we know how
to reduce any instances of the original problem into an instance of the second
problem, then an algorithm to solve the original problem is to transform any
instance of the original problem into an instance of the second problem and
to solve the created instance. A simple example is a reduction of the problem
of sorting a set of words in the shortlex index (which corresponds to sorting
words by the number of letters and then sorting in lexical order) to the problem
of sorting a set of integers; the reduction associates a word w1w2 . . . wn to the
number Σ1≤n p(wi) ∗ si where p(wi) is the position of the letter wi in the
alphabet, and s is the number of letters in the alphabet.

Classifying a Problem

The second purpose of reduction is to classify a problem. Indeed, if a problem
can be reduced to a second one, then the second problem needs at least as many
resources to be solved as the original (according to, the above strategy, and under
the condition that the reduction costs less than or is proportionally the same as
the cost of computing the second problem's solution). As an informal example,
we can simulate a unique throw of a die by drawing in twelve di�erent cards,
by associating one side of a die to two di�erent cards. This result in drawing in
twelve di�erent cards being at least as di�cult as throwing a die once.

2.1.3 The Classes of Problems

As example above shows, we can simulate a unique throw of a die by drawing
twelve di�erent cards. However, we cannot simulate a drawing from twelve
di�erent cards with a unique throw of a die. This example shows that some
problems are harder than others. This gives the intuition that we can classify
problems, by what a problem can be reduced to. There is 2 di�erent main
classes that we are interested in.

The Class of Polynomial Problems

The class of polynomial problems is the class of problem that can be solved,
and the time consumption is polynomial by the size of the input.

The Class of NP-Complete Problems.

The class of NP (non-deterministic polynomial-time) problem is the class of
problem where we can check, in polynomial time, if an answer is a solution of
a problem. A problem M is an NP-Hard problem if there exists an NP-Hard
problemN and ifN can be reduced toM. A problem is NP-Complete if it is NP
and NP-Hard. Under the assumption that P 6= NP , the class of NP-Complete
problems can be understood as the class of problems that can be solved at
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best in exponential time by the size of the input. Basically, when a problem
is NP-complete, no algorithm can be used in practice. The following example
illustrates this point. Imagine that we have a problem and an algorithm that
solves that problem in 2n, where n represents the size of the input. If the size
of the input is 60, this instance will be roughly solved in 1.1018 steps. Today's
computers (a one Ghz CPU) can make 1000000000 steps per second, which
means that this problem will be solved in 1.109 seconds, or 277777 hours, or
11574 days, or 31 years. Not anyone can a�ord to wait 31 years to have a
question answered.

2.1.4 When a Problem is NP-Complete

Solutions exist whenever we need to solve an instance of an NP-Complete prob-
lem.

In practice, not every instance can appear and we use this to our advantage.
An extreme case to consider is whether there is a �nite number of instances; in
that case, one can consider computing every instance (if temporally possible)
and keeping the solutions somewhere. Another case to consider, is whether the
instances have constraints; in that case, the constraints may allow to compute
a solution faster than a general instance. This case can be illustrated with
the problem of sorting a sequence of numbers. This problem is known to be
solvable in O(n log n) time and constant space memory, where n is the size of
the sequence for any sequence. However this problem is solved by the counting
sort algorithm, which solves this problem in O(mn) time wherem is the maximal
value and n is the size of the sequence but in O(m) space. So, if we we give the
constraint for the maximal element to be lower than log n, the latter algorithm
is the best algorithm.

Another possibility is the class of Fixed Parameter Tractable (noted FPT)
problems. The class of FPT problems is a subclass of the NP-complete problems.
A problem is FPT if its input can be split into two parts and can be solved in
exponential time by the size of the �rst part of the input while polynomial
time by the size of the second part of the input. When a problem is FPT,
one can hope for a practical algorithm; indeed, if the �rst part of the input is
known to be always very small then even if the algorithm is exponential, the
algorithm would still be runnable in human time. There exist others classes
of NP-Complete problems other than the class of FPT problems. A notable
hierarchy of class is the W -hierarchy (formed by the classes W [1], W [2], . . .).
These classes are used to represent how hard it is to check whether an answer
is a solution to a problem.

2.1.5 The Relation With This Thesis

The main problem studied in this thesis is NP-Complete. The goal of this
section was to examine the intuition that using brute force to solve an instance
of the problem may not be the best solution. We refer the reader to [21] We
adopted the �rst point of the above paragraph, adding constraints to the input
to de�ne classes and �nd a polynomial algorithm to solve the problem for this
class.
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Chapter 3

De�nitions

This chapter provides general de�nitions needed for this thesis.

3.1 Permutations

3.1.1 De�nitions for Permutation

De�nition 1. A permutation of size n is a linear order of a ordered set of size
n.

Most of the time, the set used in De�nition 1 is {1, 2, . . . , n}, the set of
the n �rst integers. We write a permutation as a word, the linear order of the
permutation is encoded in that word: pick a letter in that word, any letter on
its left is smaller than the picked letter and any letter on its right is larger than
the picked letter. To work with permutation, we use notation borrowed from
words: Given an element e, we refer by its index (usually represented by the
letters i, j, `) its position in the word. Moreover, given an i, π[i] denotes the
element with index i. For example, given that π = 52143, π[5] = 3 and the
element 5 has 1 for its index.

3.1.2 The Representation of a Permutation.

Associating a permutation with a �gure that we call a plot is helpful for under-
standing some algorithms. A plot represents a permutation by associating every
element to a point of coordinate (i, π[i]). The plot reveals the linear orders: the
set's linear order is the elements read from bottom to top and the permutation's
linear order is the elements read from left to right. See Figure 3.1 for the plot
of the permutation π = 52143.

3.1.3 Comparing the Elements of a Permutation

Value and Position of an Element

We need to consider both the set's linear order and permutation's linear order.
When we talk about an element, we refer to its relative position in the set's linear
order as its value, and its relative position in the permutation's linear order as
its position. We usually use i, j and ` to represent an element's position and
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Figure 3.1 � The plot of the permutation π = 52143.

π[i] to indicate the element's value at position i. For example, π[3] = 1 implies
that the element of value 1 has position 3, and equivalently that the element at
position 3 has value 1.

Comparing Two Elements by Value

When an element e1 is smaller (resp. larger) than an element e2 by value (in
the set's linear order), we say that e1 is below (resp. above) e2. Moreover, the
element with the largest value is called the topmost element and the element
with the smallest value is referred to as the bottommost element. For example,
in the permutation π = 52143, 2 is below 4, the top most element is 5 and the
bottommost element is 1. We can �nd the natural linear order of the set by
reading the element from bottom to top, which explains why we say that an
element is above or below another element.

Comparing Two Elements by their Positions

When an element e1 is smaller (resp. larger) than an element e2 by position (in
the permutation's linear order), we say that e1 is on the left (resp. right) of e2.
Besides, the element with the largest position is called the rightmost element
and the element with the smallest position is called the leftmost element. For
example, in the permutation π = 52143, 5 is on the left of 2, the leftmost element
is 5 and the rightmost element is 3. We can �nd the linear order given by the
permutation by reading the element from left to right, which explains why we
say that an element is on the left or on the right of another element.

3.1.4 A Subsequence of a Permutation

It is useful to consider only part of a permutation. To do so, we are allowed to
remove elements of that permutation. For instance, in the permutation 52143,
one may want to consider only the elements with a value above 1; intuitively,
the subsequence permutation is 5243. Formally speaking, a subsequence of a
permutation π is any permutation that can be obtained from π by deleting some
elements without changing the linear order of the remaining elements. Note that
when subsequences of a permutation are being discussed, "of a permutation" is
omitted.
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(a) The elements of π{: 4}
are inside the dashed rect-
angle.

(b) The elements of π{2 :
4} are inside the dashed
rectangles.

Figure 3.2 � Omitting the element of π = 52143 by values.

Omitting Elements by Values with Bounds

When we want to delete elements by their values, we write π{inf : sup} to
indicate that we are considering only the elements with values between inf and
sup. We write π{inf :} if we are considering elements with values above to inf
(this is equivalent to writing π{inf : n} if π has n elements) and π{: sup} if we
are considering elements below sup (this is equivalent to writing π{1 : sup}).
For example, in the permutation π = 52143, π{: 3} = 213, π{2 :} = 543 and
π{2 : 4} = 243. The disregarding of elements by their values can be understood
by drawing two horizontal lines and omitting the elements between the two lines.
See Figure 3.2 for an example.

Omitting Elements by Position with Bounds.

When we want to omit part of a permutation by the position of elements,
we write π[i, j] to indicate that we are considering the elements that are on
the right of the element π[i] and on the left of the element π[j]. In the same
fashion, we write π[i :] when we are considering the elements that are on the
right of the element π[i], (which is a short cut for π[i : n]) and π[: j] when we
are considering the elements that are on the left of the element π[j], (which is a
short cut for π[1 : j]). For example, in the permutation π = 52143, π[3 :] = 143,
π[: 4] = 5214 and π[2 : 4] = 214. The disregard of elements by their positions can
be understood by drawing two verticals lines and considering only the elements
between the two lines. See Figure 3.3 for an example.

Rectangle of a Permutation

Generally speaking, whenever we consider a subsequence of elements of a permu-
tation by selecting the elements by bounding them by value and/or by position,
the subsequence is called a rectangle. The name comes from the plot of a per-
mutation as, a simple way to see all the elements of a rectangle is to draw a
rectangle with each edge de�ned with the bounds; every element that is in the
rectangle is part of the subsequence. To stay constant with the general de�ni-
tion of a rectangle, we describe a rectangle as two points (A,B), where A is the
bottom left corner and B is the top right corner. For instance, the rectangle
((2, 2), (4, 4)) of the permutation 52143 is 24. See Figure 3.4 for an example.
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(a) The elements of π[2 :
4] are inside the dashed
rectangle.

(b) The elements of π[2 :]
are inside the dashed rect-
angle.

Figure 3.3 � Omitting element of π = 52143 by positions.

Figure 3.4 � The rectangle ((2, 2), (4, 4)) of the permutation 52143.

We will be led to comparing two rectangles in this thesis, however not all pairs
of rectangles are comparable: two rectangles are comparable if and only if they
are not empty, the �rst rectangle's top right corner is to the left of and below
the bottom left corner of the second rectangle, or its bottom right corner is on
the left of and above the top left corner of the second rectangle. In the plot,
two rectangles are comparable if and only if there do not exist any horizontal or
vertical splices that contain both rectangles. Based on those constraints, when
two rectangles are compared, one is always completely above/below the other
and one is always completely on the right/left of the other.

Remark 2. This thesis does not use the notation to bound the elements by
value. Only the notation to bound the elements by position and the notation of
a rectangle are used.

3.1.5 Elements of a Subsequence

In relation to subsequences of a permutation and comparing elements, the fol-
lowing de�nitions of element are needed for this thesis.

De�nition 3. We call the left-to-right maximum (noted LRMax) of a permu-
tation π at index i, the maximal element in the permutation π[: i].

De�nition 4. We call the left-to-right minimum (noted LRMin) of a permuta-
tion π at index i, the minimal element in the permutation π[: i].

De�nition 5. We call the right-to-left maximum (noted RLMax) of a permu-
tation π at index i, the maximal element in the permutation π[i :].
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Figure 3.5 � The permutation 391867452 and its reverse 254768193.

De�nition 6. We call the right-to-left minimum (noted RLMin) of a permuta-
tion π at index i, the minimal element in the permutation π[i :].

3.2 Operations on Permutation

3.2.1 Transforming a Permutation

The following operations are not used directly in this thesis, but they allow to
generalise result proved for one class of permutation to others classes. These
operations create bijection between classes of permutations; as such, an algo-
rithm that treats only one class of permutations can be used if we know how to
transform a permutation of another class into a permutation of this class.

The Reverse of a Permutation

De�nition 7. The reverse of a permutation π, is the permutation τ , where the
set's linear order is the same as π but the permutation's linear order is reversed.

Reversing a permutation corresponds to reading the permutation from right
to left. In a plot, this corresponds to a re�ection on the y-axis. For example,
the reverse of the permutation 391867452 is 254768193. See Figure 3.5.

The Complement of a Permutation

De�nition 8. The complement of a permutation π, is the permutation τ where
the linear order of the permutation is the same as π but the linear order of the
set is reversed.

Moreover, when the elements are the �rst n integers, we rename the elements
such that the elements are still read in their natural linear order, for compre-
hension purposes. In a plot, this corresponds to a re�ection on the x-axis. A
simple algorithm that computes the complement of permutation of size n, is
putting at position i the element n− i+ 1. For example, the complement of the
permutation 391867452 is 719243658. See Figure 3.6.
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Figure 3.6 � The permutation 391867452 and its complement 719243658.
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5 1 3 4 2

3 9 1 8 6 7 4 5 2

Figure 3.7 � A mapping from the permutation σ = 51342 to the permutation
π = 391867452.

5 1 3 4 2

3 9 1 8 6 7 4 5 2

Figure 3.8 � An increasing mapping from the permutation σ = 51342 to the
permutation π = 391867452.

3.2.2 Mapping

De�nition 9. Given a permutation σ of size k and a permutation π of size n,
a mapping φ from σ to π is an injective function de�ne as φ : {1, 2, . . . , k} →
{1, 2, . . . , n}.

A mapping from a permutation σ to a permutation π is an usual mapping:
Each element of σ is associated with an element of π, and no element of π has
two di�erent inverse images. We map the elements with their positions in σ to
the position of elements in π, as positions reveal an element's value. See Figure
3.7 for an example of mapping.

Remark 10. The mapped elements form a permutation: The elements have
their natural linear order and reading the mapping from left to right yields a
total linear order.

De�nition 11. Given a permutation σ of size k and a permutation π of size
n, an increasing mapping is a mapping φ from σ to π such that if i < j then
φ(i) < φ(j).

For our purposes, we only need to consider increasing mapping. In other
words, if two elements are increasing by position then the positions of their
images by the mapping are also increasing. As we map elements by their po-
sitions, we only require the mapping to be increasing. In the Figure 3.7 this
corresponds to not having crossing lines. See Figure 3.8 for an example of an
increasing mapping.

We write increasing mapping as a word, where the ith letter is the image
of i by the mapping in π : φ = π[φ(1)]π[φ(2)] . . . π[φ(k)]. We do not loose any
information by doing so, as the inverse of a letter is found in the position of that
letter. For example, the mapping of Figure3.8 is written as 91645. An increasing
mapping can be accomplished in two ways: If the permutation is written as a
word, making an increasing mapping consists of selecting as many elements in
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3 9 1 8 6 7 4 5 2

Figure 3.9 � Two ways to represent the mapping 916745 in 391867452: The �rst
one is to select the points and the second is to bold the selected elements in the
permutation.

π as there are elements in σ. In other words, we want a subsequence of π of the
same size as σ. For this reason, we represent a mapping by a subsequence. If we
have the plot of π, an increasing mapping consists of selecting as many points
in the plot of π as there are elements in σ. See Figure 3.9 for an example.

3.2.3 Reduction of a Permutation

The set of a permutation is not always the set {1, 2, . . . , n}. For example, the
permutation given by the images of a mapping and the permutation given by
a rectangle are permutations over a set which is not the �rst integers. We can
also imagine a permutation over any set, as long as we have a linear order over
this set. We called those permutations "non-canonical".

The �rst case of non-canonical permutations described above turns out to be
a problem: When reading the permutation from left to right, we cannot guess
the relative order (in the linear order by value) of an element until we read all
of the elements. For example, in the permutation 91645, we cannot know that
6 is the second largest element from having read 916.

It should also be noted that we only need the linear order between the value
of the elements. So the actual values of the elements do not matter as long as
this linear order is preserved.

It is in our best interest to work with a canonical permutation, that is a
permutation of size n with domain {1, 2, . . . , n}. As we do many operations on
a permutation, it is better to spend some time computing a permutation that
is easy to handle and understand rather than using a "hard" permutation and
spending time to make operations on it. We call the operation that goes from
a non-canonical permutation to an canonical permutation a reduction.

De�nition 12. Given a permutation π on set {e1, e2, . . . , en} such that e1 <
e2 < . . . < en the reduction of π, noted as reduction(π), is the permutation in
which we replace every element ei by i.

For example, 91645 has for natural linear order 1 <y 4 <y 5 <y 6 <y 9 so

13



Figure 3.10 � The permutation 91645 and the lines to remove on the left and
its reduction on the right.

1 becomes 1, 4 becomes 2, 5 becomes 3, 6 becomes 4 and 9 becomes 5. This
yields us the permutation 51423 and thus, reduction(91645) = 51423.

In a plot of a permutation this corresponds to removing every empty line of
the �gure. See Figure 3.10 for the reduction of 91645.

3.2.4 Direct Sums and Skew Sums

De�nition 13. Given a permutation π1 of size n1 and a permutation π2 of size
n2, the direct sum of π1 and π2 is de�ned by:

π1⊕π2 = reduction(π1[1]π1[2] . . . π1[n1](π2[1]+n1)(π2[2]+n1) . . . (π2[n2]+n1)).

The direct sum of two permutations is found by taking the left permutation's
elements and adding the right permutation's elements such that the latter are
to the right of and above the former. In other words, we take the elements of
the left permutation and then add the elements of the right permutation shifted
by the size of the left permutation. For example, 312 ⊕ 3214 = 321(3 + 3)(2 +
3)(1 + 3)(4 + 3) = 3126547.

From the plots of the permutations, this corresponds to taking the points
of the right permutation and putting them to the right and above the left
permutation. See Figure 3.11 for the direct sum of 312 and 3214.

De�nition 14. Given a permutation π1 of size n1 and a permutation π2 of size
n2, the skew sum of π1 and π2 is de�ned by:

π1 	 π2 = (π1[1] + n2)(π1[2] + n2) . . . (π1[n1] + n2)π2[1]π2[2] . . . π2[n2].

The skew sum of two permutations is formed by taking the right permu-
tation's elements and adding the left permutation's elements such that lat-
ter are to the left of and above the former. In other words, take the ele-
ments of the right permutation and then add on the left the elements of the
left permutation shifted by the size of the right permutation. For example,
312	 3214 = (3 + 4)(1 + 4)(2 + 4)3214 = 7563214.

From the plots of the permutations, this corresponds to taking the points of
the left permutation and putting them to the left and above the right permu-
tation. See Figure 3.12 for the skew sum of 312 and 3214.
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⊕ =

Figure 3.11 � The direct sum of permutations 312 and 3214: 312 ⊕ 3214 =
3126547.

⊕ =

Figure 3.12 � The skew sum of permutations 312 and 3214: 312 	 3214 =
3126547.
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Figure 3.13 � Two occurrences of 54321 in 391867452

3.3 The Notions of Occurrence and Avoidance

3.3.1 Order isomorphism

Two de�nitions of order isomorphism are presented �rst, as they are needed
to the de�nition of an occurrence. Intuitively, two permutations are order iso-
morphic if their linear orders are equivalent. As the natural linear order of the
elements remains unchanged, this corresponds to asking for the second linear
orders to be equivalent.

De�nition 15. Given two permutations σ and π, σ and π are order isomorphic
if for all i, j, i 6= j, 1 ≤ i, j ≤ n, σ[i] < σ[j] if and only if π[i] < π[j].

From the plot of two permutations, one can guess if those two permutations
are order isomorphic if and only if the points of the elements of the �rst permu-
tation are in the same disposition as the points of the elements of the second
permutation without regard to the distance between the points.

De�nition 16. Given two permutations σ and π, σ and π are order isomorphic
if reduction(σ) = reduction(π).

3.3.2 An Occurrence

The notion of an occurrence is central for the PPM problem as it is needed to
de�ne the problem.

De�nition 17. An occurrence of σ in π is a subsequence s of π such that
reduction(s) = reduction(σ).

If π contains an occurrence of σ, then we say that σ occurs in π, which is
denoted usually as σ ≺ π; otherwise, we say that π avoids σ. For example, 98752
and 98743 are occurrences of 54321 in 391867452, so 54321 occurs in 391867452,
however, 391867452 avoids 1234, as there is no increasing subsequence of size 4.
See Figure 3.13 for the plot of the example.
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3.4 Set of Pattern Avoidance

3.4.1 De�nition

The notion of avoidance allows us to de�ne a class of permutations C : Given a
set S of permutations, the class C corresponds to all permutations that do not
contain any permutation in S. This class is denoted by Av(S) or S-avoiding;
only the latter is used in this thesis. For the �rst notation, the convention is to
remove the brackets of the set. For the second notation, when the set S contains
a unique permutation, we do not put parentheses.

Remark 18. This thesis only considers cases in which S is �nite.

3.4.2 The Utilities of Classes of Permutation

The usefulness of permutations classes seems to be limited. It appears that
some sets of permutations de�ned by their structures can be seen as sets of
permutations by avoidance. This has generate interest in the �eld of combina-
torics, especially in enumerating a certain classes and �nding a transformations
of a permutation into other objects. For example, the 321-avoiding set is known
to be a set of permutations that can be partitioned into two increasing subse-
quences.

3.4.3 Comparing Avoiding Sets

Some classes of permutations are more impactful for our purposes than some
others. Indeed, knowing that a problem is NP-complete when considering per-
mutations of a given class and that this class is included in another one implies
that the problem is also NP-complete when considering permutations of the
second class. For this purpose we need to be able to compare avoiding sets
of permutations. Comparing avoiding sets can be easy: Avoiding classi�cation
forms a downset. The set of all avoiding sets is partially ordered for the in-
clusion. Based on what is more important, one can decide whether two sets
are comparable and in this case which one is included in the other. To decide
whether S1-avoiding is included in S2-avoiding, one has to decide whether every
permutation of S1 occurs in at least one permutation in S2. Indeed, if a per-
mutation π1 avoids a permutation π2, and π2 occurs in π3, then π1 avoids π3.
This is because any occurrence of π3 would contain an occurrence of π2, which
implies that π1 would contain an occurrence of π2. The downside is that one
has to decide whether a permutation occurs in another permutation, which is
our main problem. This approach only allows us to compare a few sets, but it
is the most direct option and is su�cient for our purposes.

Another possible approach is to use the structure of the two sets. For ex-
ample, the set of 213-avoiding permutations is the set of permutations that are
sortable by a unique stack (See [38]) and the set of (2413, 3142)-avoiding permu-
tations is the set of permutations that are sortable by an arbitrary number of
stack (See [12]). By de�nition, the set of 213-avoiding permutations is included
in the set of (2413, 3142)-avoiding permutations.
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3.5 The Permutation Pattern Matching Problem

This section presents the main problems studied in this thesis.

3.5.1 The Permutation Pattern Matching Problem

We de�ne the PPM problem as the following decision problem:

Problem 19. Given a permutation σ of size k and a permutation π of size n,
k ≤ n, the PPM problem asks whether σ occurs in π.

By analogy to pattern matching for words, we call σ the pattern and π the
text.

3.5.2 The Permutation Bivincular Pattern Matching Prob-

lem

A more general problem than the PPM problem adds constraints to the occur-
rence. In this thesis, we study a generalisation known as permutation bivincular
pattern (noted BVP ) matching.

A BVP σ̃ is a pattern permutation where we add constraints on the occur-
rence. As such a BVP σ̃ of size k can be visualized as a "regular" permutation
of size k and a set of constraints. With this visualization in mind, given a BVP
σ̃, we let σ denote the "regular" permutation. Intuitively, for a sequence to
be an occurrence of σ̃, it must be an occurrence for σ and respect the given
constraints.

De�nition 20. An occurrence of σ̃ in π is a subsequence s of π such that
reduction(s) = reduction(σ) and the constraints of σ̃ are respected.

We di�erentiate two types of constraints. The �rst type is constraint on the
values of an occurrence. We can ask an element to be consecutive to another
one, to be the bottommost element or the topmost element.

Example 21. Given the pattern 213 with the condition that the elements cor-
responding to 2 and 3 are consecutive, 729 is not an occurrence because 7 and 9
are not consecutive but 728 is an occurrence.

Example 22. Given the pattern 213 with the condition that the element corre-
sponding to 1 is the bottommost element, 729 is not an occurrence because 2 is
not the bottommost element but 718 is an occurrence.

It should be noted that some constraints are not "compatible" with some
patterns, in the sense that no sequence can be an occurrence for this BVP
. For example, given the pattern 213 with the condition that the element 1
is the topmost element will never hold an occurrence because if the element
representing 1 is the topmost element, no element can represent the 2 or 3.

The second type of constraint is on the position (in the text) of the element
of an occurrence. We can ask an element to be next to another one in the text,
to be the leftmost element or the rightmost element.

Example 23. Given the pattern 213 with the condition that the elements corre-
sponding to 2 and 1 are next to each other in the text and given the text 43251,
425 is not an occurrence because 4 and 2 are not next to each other (in the text)
but 435 is an occurrence.
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Example 24. Given the pattern 213 with the condition that the element corre-
sponding to 2 is the leftmost element and in the text and given the text 43251,
325 is not an occurrence because 3 is not the leftmost element in the test but
425 is an occurrence.

The same remark about the "compatibility" of a pattern and constraints
also holds with the constraints on position.

We give here the notation of BVP , this notation is useful because we can
create a BVP from a "regular" pattern by adding constraints such that the
constraints and the pattern are always compatible. We denote a BVP σ̃ of
size k in a two-line notation: the top row is 12 . . . k and the bottom row is
a permutation σ1σ2 . . . σk. We have the following conditions for the top and
bottom rows of σ (De�nition 1.4.1 in [37]):

• If the bottom line of σ̃ contains σiσi+1 . . . σj then the elements corre-

sponding to σiσi+1 . . . σj in an occurrence of σ̃ in π must be adjacent,
whereas there is no adjacency condition for non-underlined consecutive
elements. Moreover if the bottom row of σ̃ begins with xσ1 then any oc-
currence of σ̃ in a permutation π must begin with the leftmost element of
π, and if the bottom row of σ̃ ends with σky then any occurrence of σ̃ in
a permutation π must end with the rightmost element of π.

• If the top line of σ̃ contains i i+ 1 . . . j then the elements corresponding
to i, i + 1, . . . , j in an occurrence of σ̃ in π must be adjacent in values,
whereas there is no value adjacency restriction for non-overlined elements.
Moreover, if the top row of σ̃ begins with p1 then any occurrence of σ̃ in
a permutation π must contain the smallest element of π, and if top row of
σ̃ ends with kq then any occurrence of σ̃ in a permutation π must contain
the largest element of π.

For example, let σ̃ = 123
x213y . If πiπjπ` is an occurrence of σ in π ∈ Sn, then

πiπjπ` = (x + 1)x(x + 2) for some 1 ≤ x ≤ n − 2, i = 1 and ` = n. For
example 316524 contains one occurrence of σ̃ (the subsequence 324), whereas
42351 contains an occurrence of pattern σ but not the BVP σ̃.

We represent BVP (as well as occurrences of BVP in permutations) by plots.
Such plots consist of sets of points at coordinates (i, σ[i]) drawn in the plane
together with forbidden regions that represent adjacency constraints. A verti-
cal forbidden region between two points denotes the fact that the occurrences
of these two points must be consecutive in positions. It can also represents
the condition on the leftmost and rightmost element, in which case we draw a
forbidden area between the leftmost element and the "left border" of the plot
and the rightmost element and the "right border" of the plot, respectively. In
a similar approach, a horizontal forbidden region between two points denotes
the fact that the occurrences of these two points must be consecutive in values.
It can also represents the condition on the bottommost and topmost element,
in which case we draw a forbidden area between the bottommost element and
the "bottom border" of the plot and the topmost element and the "top border"
of the plot, respectively. Given a permutation π and a BVP σ̃, the rationale
for introducing these augmented plots stems from the fact that π contains an
occurrence of a BVP σ̃ if there exists a set of points in the plot of π that is
order-isomorphic to σ and if the forbidden areas does not contain any points
(see Figure 3.14).
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(a) The BVP σ̃ = 1234q
x2143 .

(b) An occurrence of σ̃ in
3216745.

(c) An occurrence of σ in 3216745 but not
σ̃ because the points (1, 3) and (5, 7) are in
the forbidden areas.

Figure 3.14

Problem 25. Given a BVP permutation σ of size k and a permutation π of
size n, the PPM problem asks whether σ occurs in π.
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Chapter 4

The Permutation Pattern

Matching Problem Paradigm

4.1 General Case of the Problem

The �rst result for the PPM problem concerns the enumeration of sequences
of integers that can be partitioned into two decreasing subsequences, which
are the 123-avoiding permutations.s This result can be found in [8], which was
written in 1915 by MacMahon. The problem of �nding the longest increasing (or
decreasing) subsequence, which can be used to determine whether an increasing
permutation 12 . . . n occurs in a permutation, was �rst studied in 1961 in [52]
in a Schensted's article.

The seed of PPM is found in the notion of avoidance presented in [38], where
Knuth show that stack-sortable permutations can be de�ned as permutations
that avoid 213. This new way of characterisation provided a powerful tool to
the combinatorics �eld. The combinatorics used the notion of avoidance to
enumerate permutations and create new generating functions. This also led to
the creation of new bijections between permutations of a certain class and other
objects, some of which, are useful in the current study. In this thesis we are only
interested in the algorithmic part of the PPM problem. A more combinatorial
overview of PPM can be found in [55] written by Vatter whereas, a more general
overview can be obtained from Kitaev's book [37].

The �rst "o�cial" appearance of PPM occurred at the 1992 SIAM Discrete
Mathematics meeting, where Wilf asked the community whether there exists an
algorithm that solve the PPM problem in a non-exponential time. Bosen, Buss
and Lubiw presented an answer in 1993 in [18], where they provided proof that
the problem is NP-complete by reducing the boolean satis�ability problem to
PPM. However, the problem is solvable by a brute force algorithm in polynomial
time if the size of the pattern is �xed. This algorithm was studied by Albert
et al. in [4], in which they provide a O(nk) running time algorithm where n is
the size of the text and k is the size of the pattern. The best result up to this
date is attributed to Ahal and Rabinovich in [1] where they give an algorithm
running in O(n0.47k+o(k)).

To solve the PPM problem, the algorithm using brute force checks all sub-
sequences of size k in π, which results in a O(

(
n
k

)
k)-time algorithm. This is
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because there are
(
n
k

)
di�erent subsequences. Moreover, we can check in lin-

ear time in k whether a subsequence is an occurrence of σ. This algorithm
was improved by Bruner and Lackner in [23], which present an algorithm run-
ning in O(1.52nnk). One of the more important results is one found in [32] by
Marx and Guillemot, who show that PPM is FPT by the size of σ by giving
an n.2O(k2 log k)-time algorithm. In the same veins as the last result PPM is
FPT by the number of alternating runs in π (see [23]), especially an algorithm
running in O(1.79run(π)nk)-time exists.

All of the results at the time of writing are as follows:

• PPM is FPT by the size of σ, especially one can decide whether σ occurs
in π running in n.2O(k2 log k) (See [32]).

• PPM is FPT by the number of runs in π, especially one can decide whether
σ occurs in π in O(1.79run(π).n.k) (See [23]).

• One can decide whether σ occurs in π in O(n0.47k+o(k)) time for σ with a
size smaller than k (See [1]).

• One can decide whether σ occurs in π in O(1.52nnk) time (See [23]).

4.2 Adding Constraints to the Permutation Pat-

tern Matching Problem

The general case of the PPM problem is NP-complete, but all hope is not
lost. Some special cases can be solved polynomially. A strategy is to limit
the possible inputs. Because in the PPM problem, the only inputs are the
permutation π and σ, we di�erentiate 3 class of constraints: if we constraint
σ, if we constraint π and σ or if we constraint π. The restrictions usually
consist of permutations that belong to certain classes or in a restriction on
the size of the permutations. Another strategy consists of adding restrictions
to an occurrences of σ; whereas these restrictions are added by considering a
more general de�nition of a permutation pattern as a BVP or mesh pattern, we
prefer to interpret them as a restriction on the output occurrence and not as a
generalisation.

4.3 The Permutation Pattern Matching Problem

with Speci�c Classes of Permutations

4.3.1 Separable Permutations

One of the most prominent classes of permutations studied in permutation is
the class of (2413, 3142)-avoiding permutations, which are also called separable
permutations. The �rst paper on PPM [18], which proved that the problem
is NP-complete, presented a positive result for the special case in which σ is
a separable permutation. The authors presented an O(kn6) time algorithm by
exploiting the tree structure of a separable permutation. Ibarra latter improved
this algorithm in [34] to a O(kn4)-time and O(kn3)-size algorithm. In this
thesis we improve this algorithm to O(n3 log k)-space algorithm by a simple
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observation. Due to the tree structure of separable permutations, the PPM
problem on separable permutations can be reduced to a tree inclusion problem.
Many results exist for the tree inclusion problem and special cases like a tree
with few leaves or tree with small depth are studied. The best algorithm is by
Bille and Gørtz [17] who gave a O(nT ) space and

O

min


lT ′ nT
lT ′ lT log log nT + nT
nT nT ′
lognT

+ nT log nT




time algorithm, where T denotes the tree of π, T ′ denotes the tree of σ nT
(resp. nT ′) denotes the number of nodes of T (resp. T ′) and lT (resp. lT ′)
denotes the number of leaves of T (resp. T ′). Whereas these algorithms are
specialised for trees and somehow di�cult to implement, we o�er, in this thesis
(in Chapter 6), a simpler approach to the PPM problem when σ and π are
separable. It should be noted that this algorithm can be used to solve the PPM
problem whenever the pattern avoids a pattern of size 3, except for the pattern
321 and 123. Indeed, all other patterns of size 3 are a sub-class of separable
permutations.

4.3.2 Increasing Permutations

Another class of PPM problems was solved early, even before it o�cially existed.
The increasing permutations can be characterised as the 21-avoiding permuta-
tions and for a given size k there is a unique (canonised) increasing permutation,
namely the permutation 12 . . . k. As noted previously, the problem of �nding
the longest increasing subsequence can be used to test whether the permutation
σ = 12 . . . k occurs in π: compute the size of the longest increasing subsequence
in π, obviously if this size is equal to or larger than k then σ occurs in π. See [15]
for the best algorithm to date for computing the longest increasing subsequence
in a permutation.

4.3.3 321-Avoiding Permutations

The �rst result related to the 321-avoiding permutation (or by symmetry the
123-avoiding permutations) is provided by Guillemot and Vialette in [33] where

they give an algorithm running inO(kn4
√
k+12) time for computing this problem.

It is worth mentioning that the authors show that, the PPM problem with 321-
avoiding coloured permutations is NP-complete, in the coloured version of PPM
problem, each element is associated with a colour. The problem seeks to �nd
an occurrence such that the ith element of the occurrence and σ have the same
colour. Another positive result is recorded in the same paper: An algorithm that
solves the PPM problem in O(k2n6) time when both σ and π are 321-avoiding.
This result was improved in 2015 by Albert et al. in [3] which o�ers an O(nm)-
time algorithm. The argument presented is that the set of increasing matchings
that match an element of the �rst (resp. second) increasing subsequence of σ
to an element of the �rst (resp. second) increasing subsequence of π forms a
lattice. Then they use two properties of a lattice: The set is partially ordered
and a unique minimal and maximal element exists. To �nd an occurrence, the
algorithm creates an increasing sequence of matching, starting from the minimal
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matching. The algorithm also assures that we choose a good matching, such
that, if we are at the maximal matching and we did not �nd an occurrence
then no occurrence exists. Finally, Jelínek and Kyn£l in [35] prove that PPM
problem is NP-complete when the pattern avoids 321 and when the text avoids
4321. They also attain a positive result by showing that any PPM problem
can be solved in polynomial time if the pattern is in the proper subclass of
321-avoiding permutation.

4.3.4 Skew-Merged Permutations

In [3], Albert et al. also present an algorithm to decide whether σ occurs in
π when both σ and π are Skew-merged permutations. Skew-merged permuta-
tions are the (3412, 2143)-avoiding permutations. These permutations can be
understood as the permutations that can be partitioned into one increasing sub-
sequence and one decreasing subsequence. Jelínek and Kyn£l in [35] also provide
a positive result over a proper subclass of skew-merged permutations, especially
the (3412, 2143, 3142)-avoiding permutations. They prove that the PPM prob-
lem can be solved polynomially when the pattern is in a proper subclass of this
class. It should be noted that this is the �rst positive PPM result for a class
that is not a subclass of separable permutations.

4.3.5 The Case of Fixed Permutations

Finally, whenever a pattern's size is �xed, we can decide the PPM problem
polynomially. We can improve this result even further for all permutations with
four elements. Indeed, we obtain an O(n1.88)-time algorithm by applying the
general algorithm. Albert et al. in [4] provide an algorithm to solve this problem
in O(n log n) time. They improve this even further for the special cases of 4312,
which can be solved in linear time.

4.3.6 Wedge Permutations

In this thesis (in Chapter 7) we focus on wedge permutations, that are the
permutations that can be split into a increasing and a decreasing subsequence
such that the elements of the decreasing sequence are above the elements of
the increasing sequence. We study cases in which σ is a wedge permutation
and σ and π are wedge permutations. We show that when only σ is a wedge
permutation, we can decide whether a permutation σ of size k occurs in a
permutation π of size n in O(max(kn2, n2 log log n))-time and O(n3)-space. We
can also determine whether σ occurs in π in linear time when σ and π are wedge
permutations.

4.4 Generalisation of Patterns

4.4.1 Complexity with Mesh or Bivincular Patterns

The PPM problem when considering permutation as pattern are a special case of
the PPM problem when considering BVP . This can be generalized even more by
considering mesh pattern. Mesh pattern generalises Bivincular pattern, whereas
in bivincular pattern the forbidden areas are a entire columns or line of the plot,
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Figure 4.1 � The plots of the boxed mesh pattern 2143 and 2341.

forbidden areas in mesh pattern correspond to one square of the plot. For this
reason, the PPM with BVP and mesh patterns is NP-complete. It should be
noted that the problem is not FPT but is W[1]-hard (See [22] section 5 for the
proof). In other words, we cannot hope for FPT algorithms.

4.4.2 Consecutive Pattern

Some positive results come with stronger constraints on the pattern. Consider
the consecutive pattern, which is a special case of BVP where all the elements are
underlined. In other words, we are looking for sequence (that is, a subsequence
in which all elements are contiguous) in π that is isomorphic to σ. This problem
can be solved in linear time, as shown by Kubica et.al. in [40].

4.4.3 Boxed Mesh Pattern

Another strong constraint is when we want to decide whether an occurrence
exists and is contained in a rectangle and the inside of the rectangle contains only
the occurrence's elements (see Figure 4.1 for an example). These patterns are
the so-called boxed mesh patterns and were examined in [11] by Avgustinovich,
Kitaev and Valyuzhenich.

The problem of detecting a boxed mesh permutation was successfully studied
and an algorithm running in O(n3)-time is shown in [22].

4.5 State of the Art

This section summarize the results of the PPM problem when considering cer-
tain classes for the text and/or the pattern in the tables 4.2, 4.3 and 4.4 and of
the PPM problem when considering di�erent type of pattern are summarize in
the table 4.5.

4.6 Point of View of this Thesis

This thesis adopted the usual strategy of adding constraints to the input and
examine what happens when constraints are added to the occurrences, especially
when BVP are considered. This proved to be successful, as we found polynomial
algorithms for some classes; the downside was an increasing time and space
consumption compared to their counterpart with permutation pattern. We will
show, in what follows, that
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Condition on σ Complexity1 Reference
Permutation of size 4 O(n log n)-time [6]

21-avoiding O(n log log n)-time [15]

321-avoiding O(kn4
√
k+12)-time [33]

Proper subclass of

Polynomial algorithm [35]
321-avoiding

Proper subclass of
(2143, 3412, 3142)-avoiding

4312 Linear algorithm [42]

Separable permutations
O(kn4)-time

Section 6.2
O(log kn3)-space

Wedge permutations
O(max(kn2, n2 log log n))-time

Section 7.3
O(n3)-space

1 n and k refer to the size of the text and the pattern, respectively.

Figure 4.2 � Results for the PPM problem when considering class for the pattern.

• One can decide in O(kn4) time and O(kn3) space whether a wedge BVP
occurs in π, see Section 6.6.

• One can decide in O(kn6) time whether a separable BVP occurs in π, see
Section 7.4.
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Figure 4.3 � Results for the PPM problem when considering the same class for
the pattern and the text.
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Figure 4.4 � Result for the PPM problem when considering di�erent classes for
the text and the pattern.

Type of pattern Complexity Reference
BVP W [1]-Hard

[22]
Boxed mesh pattern O(n3)-time1

Consecutive pattern Linear algorithm [40]
1 n refers to the size of the text.

Figure 4.5 � Results for the PPM problem when considering di�erent type of
pattern.
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Chapter 5

Related problems

As in the pattern matching for words, some other problems naturally arise in
relation to PPM problem. This chapter presents a non-exhaustive list of related
problems.

5.1 Longest Subsequence

The longest subsequence (noted LS) problem seeks to �nd the LS in a permu-
tation belonging to a given set. The LS problem is a special case of the longest
common subsequence (noted LCS) problem, which is explained in this thesis.
The LS problem has mainly been studied to solve the LCS.

Problem 26. Given a class of permutations S, a permutation π and an integer
m, the LS problem asks whether there exists an occurrence of a permutation σ
in π of size m such that σ ∈ S.

5.1.1 Longest Increasing Subsequence

A similar problem exists in a sequence of integers, namely the longest increasing
subsequence (noted LIS) problem. Equivalently the longest decreasing subse-
quence (noted LDS) problem exists. The LIS problem seeks to �nd in a sequence
of integers the LIS. There exists many methods to compute a LIS of a sequence,
to cite just a few:

• A method use the representation of a sequence of integers called Young
tableau (See [29]). In a Young tableau, a sequence is represented in a
two-dimensional array, the size of the LIS is the size of the �rst row (See
[52]). It should be noted that the size of the LDS is the size of the �rst
column.

• An algorithm use tractable strategy: For each su�x of the sequence the
size of LIS is computed using the following relation: A LIS of a su�x cor-
responds to a LIS of the current su�x without its �rst letter concatenated
to the �rst letter (if possible). This algorithm run in O(n2) where n is the
size of the sequence.
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• The best algorithm runs in O(n log n). Its principle uses patience sorting,
the idea being to construct a sequence of decreasing subsequences. To
do so one has to read the sequence of integers from left to right. For
each number read, puts it at the end of the latest created decreasing
subsequence if the subsequence is still decreasing; otherwise create a new
subsequence. Once the sequence of decreasing subsequences is created, one
can �nd an LIS by picking one element of each decreasing subsequence.
To this end, each integer must know which element is on its left (in the
original sequence), below it and on the decreasing previous subsequence
(See [7]).

Remark 27. One can easily adapt these algorithms to �nd the LDS.

In terms of permutations, the LIS can be understood as the longest 21-
avoiding subsequence. Moreover, the (canonised) permutations have one advan-
tage over a sequence of integers: We know every element and are sure that each
one appears only once. Bespamyatnikh and Segal use this knowledge in [15],
where they provide an algorithm to compute the LIS of the longest 21-avoiding
subsequence in O(n log log n), where n is the size of the permutation. Moreover,
in addition to having LIS, we have the LIS for each contiguous subpermutation.

5.1.2 Longest Alternating Subsequence

The class of permutations is also thoroughly studied in relation to the LAS. An
alternating permutation is a permutation that features elements in an alternat-
ing order: Every contiguous element is of a di�erent order than the previous
and next pairs (if any). A (folkloric) simple algorithm is to construct two alter-
nating subsequences by adding the �rst element of the permutation and every
element that is a peak (an element π[i] such that π[i − 1] < π[i] > π[i + 1]) or
a valley (an element π[i] such that π[i − 1] > π[i] < π[i + 1]) in an alternating
manner, starting with peak. The second alternating subsequence follows the
same scheme: The �rst element of the permutation and every elements that is
a peak or a valley is added in an alternating manner, starting with a valley.
The longest alternating subsequence is the LS between the two subsequences
created.

Remark 28. Alternating permutations are sometimes called zigzag or up/down
permutations.

5.1.3 State of the Art

The results about longest subsequence are summarize in the table 5.1

5.2 Longest Common Subsequence

The LCS problem is the general case of LS. Instead of looking for the LS in
one permutation, we look for the LS that occurs in each permutation of a set of
permutations. The LCS problem is studied over words and one result is useful
to us. As such, we start by introducing the problem of LCS for words, where a
word is a sequence on a �nite set. This problem is sometimes referred to as the
consensus problem.
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Type of subsequence Complexity1 Reference
Increasing subsequence O(n log log n) [15]
Alternating subsequence O(n)
Wedge Permutation O(n log log n) Section 7.5

1 n refers to the size of the permutation.

Figure 5.1 � Results about computing the longest subsequence of any permuta-
tion.

5.2.1 Longest Common Subsequence for Words

Problem 29. Given a set S of words, the LCS problem seeks to �nd the LS
common to all words in S.

The LCS is known to be NP-complete (See [43]) when the size of the set
is not bounded, even when the words are binary words. A polynomial time
algorithm exists when the size of the set is �xed, running in O(nk) where k is
the size of the set and n is the size of the longest word in the set (See [43]).
This algorithm is still impracticable even when the set is small, as the size of
the words plays an important role in the time consumption and the words are
commonly large. For this reason, much part of the research is focused on the
special case of a set of two words.

The problem is presented as follows: given a word v of size m and a word
w of size n, compute the LCS of v and w. A well-known algorithm solves this
problem in O(nm) using a dynamic programming strategy: Each instance of
the problem can be solved by solving simpler subproblems (usually instances
that are smaller in size) that are themselves solvable with simpler subproblems
and so on until the instances can be solved trivially. As, a subproblem can
appear multiple times, to avoid recomputing the same instance more than once,
we memorise the solution of each subproblem and retrieve it when the same
subproblem recurs.

A LCS is computed as follows:

• If the �rst letter of the LCS is the �rst letter of w and v, the �rst letter is
concatenated with the LCS of the words w[1 :] and v[1 :].

• If the �rst letter of the LCS is the �rst letter of w but not of v, the LCS
of the words w and v[1 :] is computed.

• If the �rst letter of the LCS is the �rst letter of v but not w, the LCS of
the words v and w[1 :] is computed.

• If the �rst letter of the LCS is the �rst letter of w and v,the LCS compute
the LCS of the words w[1 :] and v[1 :] is computed.

We only need two indexes to indicate where we are in the words w and v. As,
all subproblems are computed at most once and in constant time, the algorithm
runs in O(nm).

5.2.2 Longest Common Subsequence for Permutations.

Problem 30. Given a set S of permutations, the LCS seeks to �nd the longest
pattern common to all permutations in S.
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As with strings, the problem of a set having only two permutations has been
a focus of research. However, this condition is not su�cient for computing the
LCS in polynomial time; other approaches are needed. A possible strategy for
solving the problem polynomially is to restrict the set S to be in a certain class.
It should be noted that by restraining S to be in a class C, the LCS is also an
element of C.

Problem 31. Given C, a class of permutations, given a set of permutation
S ⊂ C, the LCS problem seeks to �nd the LCS of all permutations in S.

5.2.3 Restricting the Set to the Set of Permutations that

are in Bijection with Binary Words

The problem 31 is solvable whenever C is a class of permutations of size n that
are in bijection with binary words of size n. Such classes of permutations exist;
they include the wedge permutations (as see above), the unimodal permutations
(which are the permutations that can be split in one increasing and one decreas-
ing permutation) and the ri�e shu�e permutations (which are the permutation
that can be partitioned into two increasing subsequence, one above the other).
To compute the LCS over such permutations, the permutations are transformed
into binary words. The LCS is then computed over the two binary words, with
the positions used in the LCS being tracked. The LCS for the permutations is
the subsequence with the elements at same position as the LCS on the binary
words. As shown in Section 5.2.1 the algorithm for �nding the LCS on words
runs in O(mn), but the bijection from permutation to word depends on the
class so the whole algorithm runs in max(O(mn), BC) time, where BC is the
complexity of the bijection.

5.2.4 Restricting the Set to the Permutations Separable

Permutations

A result also exists whenever at least one permutation is a separable permuta-
tion, as shown later in this thesis (See section 6.5).

5.2.5 Computing the Longest Wedge Subsequence

Instead of computing any LCS, another strategy for reducing the complexity
is, to compute LCS that belongs to a certain class. As demonstrated later in
this thesis (see Section 7.5), whenever we want to �nd a LCS that is a wedge
permutation, there exists a O(n3m3)-time algorithm where n and m are the size
of the permutations.

5.2.6 State of the Art

The results about the LCS of two permutations are summarize in table 5.2.

5.3 Superpattern

De�nition 32. Given a set S of permutations, a superpattern of S is a permu-
tation that contains all of the permutations in S.

32



Problem Complexity1 Reference
Computing the LCS of two permutations

max(O(mn), BC)

2

which are in a class in bijection
with binary word

Computing the LCS that is
O(n3m3)-time Section 7.5

a wedge permutation of two permutations
1 n and m refer to the size of the two permutations.
2 BC is the complexity of the bijection.

Figure 5.2 � Results about computing the longest common subsequence of two
permutations.

Example 33. The permutation 4123 contains both the permutations 123 and
312: 4123 is a superpattern of {123, 312}.

We can specify the de�nition when S corresponds to all of the permutations
of a given size.

De�nition 34. A k-superpattern is a permutation that contains all permuta-
tions of size k.

Example 35. The permutation 25314 is a 3-superpattern.

5.3.1 Lower and Upper Bounds for the size of the Minimal

Superpattern for all Permutations of the same Size

The problem of �nding a k-superpattern is trivial, as one can �nd a k-superpattern
by a direct sum with all of the permutations of size k (which results in a permu-
tation of size kk!). The problem becomes more interesting in its minimisation:
Given a size k, compute a k-superpattern with minimal size with respect to
other k-superpatterns. This problem can be transformed into a decision prob-
lem in which the minimisation factor is replaced by the size of the superpattern
and we can play with this value to �nd the minimal size required.

Problem 36. Given two integers k and n, the k-superpattern minimisation
asks whether a k-superpattern of size n exists.

Example 37. The permutation 25314 is a smallest 3-superpattern. Indeed, the
occurrence of the permutation 123 and 321 can only share the element repre-
senting the 2, so we need two more elements to represent the 1 and 3 of 123 and
two more to represent the 3 and 1 of 321.

The problem was �rst introduced by Arratia in 1999 in [10]. This article
presents a k-superpattern of size k2 by exhibiting the grid permutation, also
known as k-grid permutation (note that the notion of "grid classes of permu-
tation" exists and both notion are di�erent, See [2]). The grid permutation is
constructed by iterating over all of the positions (starting at 1) moving to the
next position by a step of k and putting the elements in increasing order. More
formally, this corresponds to the permutation in which elements at position i
have values rk+ 1 + q where r and q are the remainder and the quotient of the
euclidean division of i− 1 by k. See Figure 5.3 for an illustration.
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Figure 5.3 � The 3-grid permutation.

Figure 5.4 � The 3-grid permutation and the occurrence of 132.

It is easy to see that the k-grid permutation contains all permutations of size
k. To �nd an occurrence of a given permutation σ, the grid permutation is split
into k x k squares of the same size. Observing that each square contains one
point, we de�ne each square by its coordinates on the plan, such that the square
in the bottom left corner is square (0, 0), the one above it is (0, 1), the one on
its right is (1, 0) and so on. From this construction, there exists an occurrence
of σ such that each element (i, σ[i]) is represented by the point in the square at
coordinate (i, σ[i]). See Figure 5.4 for the occurrence of the permutation 132 in
the 3-grid permutation.

In the same paper, Arratia also provided the lower bound of (k/e)2 for
the size of a k-superpattern by an enumerative argument on the number of
permutations of size k.

A more re�ned result concerning the minimal size of k-superpattern was later
provided by Eriksson et al. who showed in 2007 in [28] that a k-superpattern
of size 2k2/3 exists; moreover, if k tends to in�nity, then a k-superpattern of
size k2/4 exists. They also demonstrated that there exists a permutation that
contains every permutation of size k or its inverse of size k2/2. In 2009, Miller
stated in [45] that a k-superpattern of size (k + 1)k/2 exists.

The general problem of superpatterns (in permutation) that is, when the set
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Figure 5.5 � The superpattern of the set of ri�e shu�e permutations of size 5:
this permutations contains any ri�e shu�e permutation of size 5.

S can be anything has to our knowledge not been studied. Nevertheless, some
results can be found when some constraints are added to the set, these results
are presented in the following section.

5.3.2 Superpattern for Ri�e-Shu�e Permutations

We have examples of re�ned results whenever constraints are put on the set.
In 201 3, Wismath and Wol� exhibited in [14] a superpattern of size 2k for the
ri�e-shu�e permutations of size k. The �rst result was obtained by remarking
that any ri�e-shu�e permutation can be partitioned into two increasing subse-
quences such that the elements of increasing subsequence are below the element
of the other subsequence. This leads to the construction of a permutation by
pair of elements: Each time we add an element that can be part of the below
increasing subsequence and an element that can be part of the above increasing
subsequence. This gives us the permutation 1(k)2(k + 1)3(k + 2) . . . k(2k). See
Figure 5.5 for an example.

It should be noted that the elements of a ri�e-su�e permutation can be
partitioned into two sets, thus, one can transform a ri�e-shu�e permutation
into a binary words; �nding a superpattern for a ri�e-shu�e permutation of
size k is the same as �nding a binary word that contains every binary words of
size k. This formulation makes it clear that the word formed of 01 repeated k
times contains all binary words of size k. This result can be extended to every
class that is in bijection with binary words.

5.3.3 Superpattern for 321-Avoiding Permutations

In [14], Wismath et al. also present a superpattern for the 321-avoiding permu-
tations of size O(k3/2).

5.3.4 Superpattern for 213-Avoiding Permutations

In 2014, in [13] Wismath et al. also prove that there exists a superpattern of
size k2/4−Θ(k) for all of the permutations avoiding 213 of size k and provide
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a superpattern for some proper subclasses of the 213-avoiding permutation.

5.3.5 State of the Art

The results on the superpattern problem are summarize in the tables 5.6 and
5.7.

5.4 Shu�e

The (ri�e) shu�e of a deck of cards involves starting with a sorted deck, cutting
it into two parts and then reforming the deck by randomly selecting a card from
the bottom of one of the two parts and putting this card on top of the newly
formed deck. The mathematical de�nition only takes from the last step of the
(ri�e) shu�e. We provide the general de�nition of a shu�e and extend it to
the permutation. We �rst explain one notation. Given a letter a and a set of
words S we refer to aS as the set in which we concatenate the letter a to every
word in S.

De�nition 38. Given two words v and w, the shu�e of v and w, (noted v�w)
is the set v[0](v[1 :]�w)∪w[0](v�w[1 :]). This correspond to the set of words
that we can obtain from merging the words u and w, by choosing letters randomly
from u or w.

Example 39. aa� bb = {aabb, abab, abba, baab, baba, bbaa}

5.4.1 Word Shu�es

Shu�e in relation to words was �rst introduced by Eilenberg and Mac Lane in
[27]. Later on, Prodinger and Urbanek in [47] studied a special case of shu�e
called the perfect shu�e (denoted � in the article), which corresponds to the
unique word created by picking letters from two words in an alternating manner.
In their article, the authors present some properties of a perfect shu�e. They
�rst introduce the notion of square word (although they do not name it).

De�nition 40. A square word w is a word such that there exists a word v such
that w ∈ v� v.

Some notable results surrounding the shu�e in words are that it can be
decided, in polynomial time whether a word u is in the shu�e of v and w (see
[44] and [53]), and that the problem of deciding whether a word w such that
a word u is the shu�e of word w with itself exists . The latter result is more
interesting to us given its similarities to permutation. The problem turns out
to be NP-complete (see [24] and [50]).

For an overview of the problem, see [48] and [49].

5.4.2 Shu�e for Permutations

We extend the notion of shu�e for words to that of shu�e for permutations.
This operation was introduced as the supershu�e by Vargas in [54], and denoted
by �. In this thesis, we use the notation suggested by Giraudo and Vialette, as
these authors present the only result that we are aware of (See [30]).
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Figure 5.6 � Results for the k-superpattern for set of permutations of size k.
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Figure 5.7 � Results for the k-superpattern when restricting the set of permu-
tations.
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12 • 21

1221 1221 2121 2112 2112

Figure 5.8 � The shu�e of 12 and 21 as a word, the elements are overlined and
underlined to indicate which permutation the element comes from, and each leaf
represent a set of permutations.

De�nition 41. Given σ and π, the shu�e of π and σ, (noted σ • π), is the
set of permutations obtained by applying the shu�e to σ and π as words, where
each word represents a set of permutations. The set represented is the set of
every di�erent permutation obtained by the following rule: Relabel each letter
by increasing integers by replacing either the lowest element of σ or π not yet
replaced until all elements are replaced.

An example is given in Figures 5.8 and 5.9.
The de�nition of shu�e gives rise the following decision problem:

Problem 42. Given the permutations σ1, σ2 and π, the recognising shu�e for
permutation problem asks whether π ∈ σ1 • σ2.

The recognising shu�e problem is sometimes referred as the unshu�ing
problem. Although the de�nition of shu�e for permutations is complicated,
the recognizing shu�e for permutation problem can be formulated in another
way to remove the use of shu�e for permutations.

Problem 43. Given the permutations σ1, σ2 and π, the recognising shu�e for
permutation problem asks whether there exists an occurrence of σ1 and σ2 in π
that do not share any elements and use every element of π.

While no result exists concerning the recognising shu�e problem, a result
to the related problem of recognising a square shu�e can be found.

Problem 44. Given the permutations σ and π, the recognising square shu�e
for permutation problem asks whether π ∈ σ • σ.

This problem is of interest, as it is strongly related to another problem that
naturally arises in the context of

PPM

. This problem is deciding whether the PPM problem for parameter n − k is
FPT. (recalling that the PPM problem is FPT for parameter k [32]).

In [30], Giraudo and Vialette showed that the recognising square shu�e for
permutations is NP-complete. It is worth mentioning that they put in relation
the recognising shu�e for binary words as similar to the recognising shu�e for
permutation over the wedge permutation ({231, 213}-avoidance permutation);
as such, any results for either problem can be applied to the other. It should be
noted that [9] claims that recognising shu�e for binary words is NP-complete
but without proof. Thanks to this relation, we can apply the algorithm to detect
whether u is in the shu�e of v and w, to decide whether a wedge permutation
π is in the shu�e of two wedge permutations σ1 and σ2.
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Figure 5.9 � The set of permutations obtained by the development of 2121.
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Result Reference
Deciding whether a permutation

[30]
is a square shu�e for permutation is NP-complete

Deciding whether a separable permutation

Section 6.4
π of size n is in the shu�e

of two separable permutations σ1 of size k and σ2 of size l
can be done in O(nk3l2) time and O(nk2l2) space

Figure 5.10 � Results on deciding whether a permutation is a shu�e of two
permutations.

5.4.3 Recognising the Shu�e of two Separable Permuta-

tions

We will see later, in this thesis (in Section 6.4), that an algorithm to decide
whether a separable permutation π is in the shu�e of two separable permuta-
tions σ1 and σ2 also exists.

5.4.4 State of the Art

The results on deciding whether a permutation is a shu�e of two permutations
are summarize in the table 5.10.
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Chapter 6

Separable Permutations

This chapter is devoted to separable permutations, which is one of the �rst
avoiding class studied. It appears in [18] which is the �rst paper that provides
results on PPM.

This class is also a generalisation of the �rst avoiding class studied: the
213-avoiding permutations. A 213-avoiding permutation can be characterised
by the fact that it can be sorted by a unique stack. Moreover, it appears that
a separable permutation can be sorted by an arbitrary number of stacks (See
[12]). We introduce the following de�nition of a separable permutation.

De�nition 45. The set of separable permutations is the set of (2413, 3142)-
avoiding permutations.

We start by presenting the structure of a separable permutation needed for
this chapter. In Section 6.2, we revisit the polynomial-time algorithm of Ibarra
[34] for the PPM problem and propose a simpler dynamic programming ap-
proach. In Section 6.3 we focus on the case in which both the pattern and
the target permutation are separable. Section 6.4 is concerned with presenting
an algorithm to test whether a separable permutation is the disjoint union of
two given (necessarily separable) permutations. In Section 6.5, we revisit the
classical problem of computing a longest common separable pattern as intro-
duced by Rossin and Bouvel [51] and propose a slightly faster �yet still not
practicable� algorithm. Finally, in Section 6.6, we show that the PPM problem
is polynomial-time solvable for bivincular separable patterns. To the best of our
knowledge, this is the �rst time the PPM problem is proven to be tractable for
a generalisation of separable patterns. All the results in this chapter can also
be found in [46].

6.1 The Structure of Separable Permutations

6.1.1 Substitution Decomposition

We present in this section the substitution decomposition. Any permutation is
decomposable using the operation of substitutions. Especially, decomposition
of a separable permutations has a remarkable structure. We begin by giving a
de�nition of the operation of substitution.
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De�nition 46. Given a permutation π of size n and n permutations π1, π2,
. . ., πn, the substitution of π1, π2, . . ., πn in π, noted π[π1, π2, . . ., πn], is the
permutation that can be split into n di�erent rectangles R1, . . ., Rn such that:

• Each element π[i] is associated with the rectangle Ri.

• Every pair of rectangles is comparable, that is, one is on the left of and
below the other one.

• For every rectangles Ri and Rj, Ri 6= Rj, Ri is on the left of Rj if and
only if i < j.

• For every rectangles Ri and Rj, Ri 6= Rj, Ri is below Rj if and only if
π[i] < π[j].

• For every rectangle Ri, the elements contained in Ri are an occurrence of
πi.

For example 132 [123, 4321, 12] is the permutation 123987645. It should
noted that a unique decomposition (called the canonical decomposition) for any
permutation exists when considering substitution in simple permutations, which
are permutation that contains no (contiguous) sequence such that the values of
the sequence form an interval (See [5] for more details on substitutions). When
considering the canonical substitution decomposition, a separable permutation
can be de�ne as follows.

De�nition 47. A separable permutation is an increasing permutation or a de-
creasing permutation or it is the canonical substitution of π1, π2, . . . and πn in
π, where π is either the increasing or decreasing permutation and π1, π2, . . .
and πn are separable permutations.

It should be noted that direct an skew sum are special cases of substitution.
Indeed π1⊕π2 is equivalent to 12[π1, π2] and π1	π2 is equivalent to 21[π1, π2].
In the following, we focus in decomposition in direct and skew sum.

6.1.2 Separable Permutations Seen as a Direct or Skew

Sum

Simple Decomposition in Sum

Proposition 48. A separable permutation is either the trivial permutation of
size 1 or obtained by a direct or skew sum of two separable permutations.

Proof. We prove this claim by induction on the size of the permutation. A
separable permutation π of size n can start by the topmost or bottommost
element. In such cases, π can be written as 1	 π[2 :] or 1⊕ π[2 :], respectively.

If π does not start with the topmost or bottommost element, by hypothesis
π[2 :] = π[2 : i] ⊕ π[i + 1 :] or π[2 :] = π[2 : i] 	 π[i + 1 :]. We focus on the
case in which π[2 :] = π[2 : i] ⊕ π[i + 1 :] and prove that π is decomposed into
a direct sum of two separable permutations which is the other case in which
π[2 :] = π[2 : i]	 π[i+ 1 :] can be dealt by following the same idea or using an
argument based on the complement of a permutation.
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We start by discussing the value of the leftmost element if π[1] is below (resp.
above) any element of π[i + 1 :], then π = π[: i] ⊕ π[i + 1 :], where π[: i] and
π[i+ 1 :] are separable permutations which is the claim.

If it is not true, we show that there exists an index j such that every element
of π[: j] is below π[1] and every element of π[j + 1 :] is above π[1]. This
supports our claim, as π would be written as π = π[: j] ⊕ π[j + 1 :]. Suppose
that such j does not exist; in other words, at least one element (namely π[i3])
is above π[1] and between two elements π[i2] and π[i4] which are below π[1].
This can be expressed as follows: 1 < i2 < i3 < i4, π[i2] < π[1] < π[i3] and
π[i4] < π[1] < π[i3]. Moreover, any element to the left of π[i] is a candidate
for i2. Indeed, any element to the left of π[i] is below π[1]. As π[i2] is to
the left of π[i] and π[i4] is to the left of π[i] we have that π[i2] < π[i4]. As
such, 1 < i2 < i3 < i4 and π[i2] < π[i4] < π[1] < π[i3], which implies that
π[i1]π[i2]π[i3]π[i4] is an occurrence of 2413 which is not possible.

This is the main structure that we use for the separable permutation. This
result yields a strong recursive de�nition of separable permutations that allows
us to use an algorithm that treats the two parts separately. A separable permu-
tation can be seen as two rectangles, one to the right and below/above the other.
More than one decomposition may exists for the same separable permutation.
For example, the permutation 214365 can be decomposed into 21 ⊕ 4365 and
2143⊕ 21.

De�nition 49. Given a separable permutation, the sign of the decomposition
refers to whether the permutation is decomposed into direct or skew sum.

Largest Decomposition in Sum

The direct and skew sums are associative operations, which implies that π1 ⊕
(π2 ⊕ π3) can be written as π1 ⊕ π2 ⊕ π3. The consequence of this for separable
permutations is that one separable permutation may have more than one decom-
position (as said above). Moreover, some brackets are useless. To avoid theses
situations, we consider a special decomposition that contain no useless bracket,
that is when the operator inside an operand (if any) is the same as the operator of
this operand. This has for consequence that the decomposition become unique.
Moreover, this decomposition can be identi�ed (from all the decompositions) as
the one with the most operands, thus the name of largest decomposition. For
example, the permutation 214365 is decomposed into 21⊕ 21⊕ 21.

Remark 50. Given π and its largest decomposition π1⊕ . . .⊕ πi⊕ . . .⊕ π`, all
sub-permutations π1, π2, . . . , π` are decomposed into a skew sum. Indeed, if that
were not the case, a pair of bracket would be useless.

Computing the Decomposition of a Separable Permutation

Computing the simple decomposition. This can be realised using the
following algorithm. The �rst step is to decide whether the permutation is de-
composed into a direct or a skew sum. To do so, the leftmost element and
rightmost elements are compared. If the leftmost element is smaller than the
rightmost, the permutation is decomposed into a direct sum; if not, it is decom-
posed into a skew sum. The next step depends on the decomposition. If the

44



permutation is decomposed into a direct sum, an index (they may be more than
one) is sought such that the LRMax is bigger to the RLMin. The permutation
is then split at the index, creating the left and the right part. Otherwise, an
index (they may be more than one) is sought such that the LRMin is smaller
than the RLMax, The permutation is then split at the index, creating the left
and the right part. This can be archived by computing the LRMax and RLMin
for each index and comparing the value.

Algorithm 1:

Data: A separable permutation π
Result: A decomposition of π
LRMaxima = Compute all of the LRMax of π for each index ;
RLMinima = Compute all of the RLMin of π for each index ;
if the permutation is decomposed into a direct sum then

for each index i in π do
if LRMaxima[i] > RLMinima[i] then

return that π = π[: i− 1]⊕ π[i :];

else
continue ;

else
for each index i in π do

if LRMinima[i] < RLMaxima[i] then
return that π = π[: i− 1]	 π[i :];

else
continue ;

It should be noted that the permutation is decomposed into a direct sum if
and only if the leftmost element is below the rightmost element. This algorithm
is based on the fact that if the permutation is decomposed into a direct sum,
than the maximum element of the permutation on the left is smaller than the
minimum of the permutation on the right (noting that the left rectangle is below
the right rectangle).

Another algorithm computes an entire decomposition. We �rst introduce
the notion of a break, which happens when two adjacent elements are not con-
tiguous. For example, in the permutation 123654978, the break are 36, 49 and
97.

The algorithm creates a decomposition (treated as a word) while reading the
permutation from left to right stopping at each break. One di�culty is when a
break happens to decide whether what we are about to read is part of the same
rectangle or a new rectangle. For example, in the permutation 321654987, 49
is a break, 321654 is a complete rectangle and 987 is a new rectangle. But in
the permutation 654987321, 49 is a break, but 987 is in the same rectangle as
654. The idea is to create a new rectangle at each break, but at the next break,
we have to check whether what we are currently reading is part of the previous
rectangle; this is done by checking whether the current and previous rectangles
form a contiguous set of elements (which is a characteristic of a rectangle). If the
current rectangle is not part of the previous one, we need to keep it in a stack,
and continue the procedure. If it is, we create a new rectangle (by merging the

45



previous and current one), so we also need to check whether the new rectangle
is part of the previous one.

Algorithm 2:

Data: A separable permutation π
Result: A decomposition of π as a word
Rc = π[1] ;
stack = ∅ ;
for each index i of π starting with 2 do

if Rc ∪ {π[i]} is a contiguous set then
Rc.append(π[i]) ;

else
while the last rectangle in the stack and Rc form a contiguous set
do
pop Rp from the stack ;
if Rc and Rp form a contiguous set then

if the elements of Rp are above the elements of Rp then
Rc = (Rp ⊕Rc) ;

else
Rc = (Rp 	Rc) ;

push Rc in the stack ;

It should be noted that this algorithm returns a word representing a decom-
position, in which each rectangle is encoded within a pair of parentheses.

Computing the largest decomposition from a simple decomposition
This algorithm is quite natural: Whenever we have π1 ⊕ (π2 ⊕ π3), we want
to write π1 ⊕ π2 ⊕ π3. This correspond to remove any useless parenthesis.
Remember that the parenthesis are useless the operator of the operand (where
the parenthesis are from) is the same as the operator associated to this operand.
More formally, the algorithm considers the decomposition as a word (as given
in the previous algorithm). It should be noted that the word is composed of
3 parts: a pre�x, then the sign (of the decomposition) and �nally a su�x.
The pre�x and su�x start with an opening parenthesis and end with a closing
parenthesis and they are well-balanced for parentheses, that is the word contain
the number of opening parenthesis as closing parenthesis and every pre�x of
the word contain at least more opening parenthesis than closing parenthesis.
Moreover they are decompositions of separable permutations. We �rst need to
obtain the sign of the decomposition. To do so, we need to know when the
pre�x end, this can be done by computing the �rst well-balanced word (for
parentheses) of the decomposition, the next letter of the word computed is the
sign of the decomposition. Note that we obtain the 3 parts describe above: the
word computed is the pre�x, we have the sign and what is right to sign is the
su�x. A decision needs to be made as to whether to remove the parentheses of
the pre�x and the su�x. We remove parentheses if and only if the sign of the
pre�x (or the su�x), is the same as the sign of the decomposition.
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6.1.3 Binary Trees

This section present the representation of separable permutation as a tree. A
tree consists of nodes (which are usually labelled to contain informations). A
nodes is related to another one by the relation of being a child or parent, such
that every nodes have one parent except for a speci�c node called the root and
each node is a child or a parent to at least another node. Moreover the relations
cannot create a circle, that is there exists no sequence of nodes such that each
pair of nodes are related (with the same relation for all pairs) and the last node
is related to the �rst node.

We represent a tree by drawing every node in a top-down representation,
starting with the root. We represent the child relation with a edge between the
two related nodes. It should be noted that edges can be understood as the child
relation when reading the tree from top to bottom, or as the parent relation
when reading the tree from bottom to top. See Figure 6.1 for an example of
tree.

We say that a node C is a descendant of a node P if and only if there exists
a sequence of node, such that P is the �rst element and C is the last element,
and each node is the child of the node to its left. We can also say that P is an
ancestor of C. Moreover we say that a node is a leaf if and only if it has no
child. We refer the reader to [39] Chapter 2 Section 3 for more informations on
tree.

We consider a special case of tree. Binary trees add the condition that each
node has two children or is a leaf. A de�nition of a separating tree was given
by Bose, Buss, and Lubiw in [18]: a rooted binary tree in which the elements
of the permutation appear (in permutation order) at the leaves of the tree, and
in which the descendants of each tree node form a contiguous subset of these
elements. Each interior node of the tree is either a positive node in which all
descendants of the left child are smaller than all descendants of the right node,
or a negative node in which all descendants of the left node are greater than all
descendants of the right node. See Figure 6.1 for an illustration. Each subtree
of a separating tree may be interpreted as itself representing a smaller separable
permutation, whose element values are determined by the shape and sign pattern
of the subtree. Constructing a separating tree of a separable permutation is in
linear time and space [18].

Remark 51. The labels on the leaves do not matter, as only the structure of
the tree matters. However, for the sake of comprehension, the leaves are labelled
to their corresponding element in the permutation.

6.1.4 A Separable Permutations Seen as a Tree

As the binary tree decomposition appears to be not well suited for our needs,
we must use the notion of compact separating tree. Instead of considering only
a binary tree, we consider a tree in which each node has the largest number of
children possible. Informally, in a compact separating tree we strive for every
node to have as many children as possible. Such a tree can be formally de�ne
by modifying the following de�nition: a rooted tree in which the elements of
the permutation appear (in permutation order) at the leaves of the tree, in
which the descendants of each tree node form a contiguous subset of these
elements. Each interior node of the tree is either a positive node in which all
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Figure 6.1 � A separating tree Tπ for the permutation π = 342561 together with
the corresponding sequences for each node.

descendants of a child are smaller than all descendants of another child to its
right, or a negative node in which all descendants of a child are greater than all
descendants of another child to its right. See Figure 6.1 for an example. We
denote a separating tree representing π by Tπ. Moreover, for every node v of
Tσ, we let σ(v) stand for the sequence of elements of σ stored at the leaves of
the subtree rooted at v.

Remark 52. In such a tree, two nodes (one being the child of the other) never
share the same sign. Indeed, if two nodes are father and child, then the father
can adopt the children of this particular child, which violates the de�nition.

Remark 53. In such a tree, two nodes (one being the child of the other) never
share the same sign. Indeed, if two nodes are father and child, then the father
can adopt the children of this particular child, which violates the de�nition.

6.1.5 Computing the Tree of a Separable Permutation

Computing the compact separating tree from a separating tree A
simple linear time post-processing can be used to produce the decomposition
tree from a binary separating tree: As long as the separating tree contains a
positive node whose father is also a positive or a negative node whose father
is also negative, we simply suppress that node, and let all of its children be
adopted by their grandfather in proper order.

6.1.6 Relations Between the Decomposition in Direct and

Skew Sums and the Separable Tree

The decomposition in direct/skew sums exhibits a recursive structure. As a
result, we can represent a separable permutation by a binary tree. The tree
representing the separable permutations with a unique element is the tree a
with a unique node. Any other separable permutations are represented by a
binary tree. The root encodes what operation (direct or skew sum) the permu-
tation is decomposed into, with the tree's left and right children representing
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Figure 6.2 � A separating tree and the compact separating tree of the permu-
tation π = 453126987.

. . .

. . .

π1

πi

π`

+

T̃π1
. . . T̃πi

. . . T̃π`

Figure 6.3 � On the left a rough plot of the permutation π = π1⊕. . .⊕πi⊕. . .⊕π`
and on the right its corresponding compact separating tree.

the operation's left and right permutation, respectively. This corresponds to
the de�nition of a separable tree. The relation between the decomposition and
the separating tree can be summarised as follows:

π = e π = π1 ⊕ π2 π = π1 	 π2

e

−

Tπ1
Tπ2

+

Tπ1
Tπ2

The same idea applies to the compact separating tree. Each node encodes
which operation the permutation is decomposed into, and each child of this node
represents a "subpermutation", in proper order, which means that the �rst child
represent the �rst "subpermutation", the second child the second "subpermu-
tation" and so on. More formally, if π has for the largest decomposition into
direct sum π = π1 ⊕ . . .⊕ π`, then the (unique) compact separating tree of π is
the tree with a positive root and with the compact separating tree of π1 as �rst
child, the compact separating tree of πi as i

th child, and the compact separating
tree of π` as `

th child. The same is true if π is decomposed into a skew sum.
See Figure 6.3 for an example. It should be noted that when π is decomposed
into direct (resp. skew) sums it forms a stair up (resp. down) of rectangles.
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6.2 Detecting a Separable Pattern

This section is devoted to examining of PPM problem whenever we add the
condition that the pattern is a separable permutation. Our contribution is that
we reduced the space consumption of the best algorithm so far to O(n3logk)
from O(kn3), where k is the size of the pattern and n is the size of the text.

Problem 54. Given a separable permutation σ of size k and a permutation π
of size n, we wish to determine whether σ occurs in π.

In what follows, we present a polynomial time algorithm, in time and space,
to solve this problem. The next subsections break the algorithm down. We
�rst introduce the basic idea of the algorithm. Thereafter we show how Ibarra
strengthened this idea. Finally, we demonstrate how we improved the algorithm
of Ibarra.

6.2.1 Simple Algorithm

A simple algorithm arises from the decomposition of a separable permutations
into direct/skew sums. The following property is the main idea of this algorithm.

Property 55. Given a permutation such that σ = σl ⊕ σr (resp. σ = σl 	 σr),
if we are given an occurrence ol of σl in a permutation text π and an occurrence
or of σr in a permutation text π, such that every element of ol is at the left and
below (resp. left and above) of the elements or, then the subsequence formed by
the concatenation of ol and or is an occurrence of σ in π.

Proof. We focus on the case in which σ = σl ⊕ σr. Suppose that the concate-
nation is not an occurrence, which means that at least two elements are not
"well" ordered. By hypothesis, these two elements cannot both be in ol (as ol
is a "correct occurrence") or or (as or is a "correct occurrence"); as such, one
element is in ol and the second is in or. Remark that the correct order is that
the two elements are increasing, as one represent an element in σl, the other
an element in σr, and by the de�nition of a direct sum, every element in σl
is below σr. This means that the two problematic elements are in decreasing
order. However, as by hypothesis every element in ol is above every element
of or this is a contradiction., The case in which σ = σl 	 σr follows the same
idea.

An algorithm that follows this property computes occurrences for the left
and for the right operands such that the two rectangles of the occurrences are
comparable and in order, which depends on whether the permutation is decom-
posed into direct or skew sum. This implies a recursive algorithm: For every
way to split the text into a left and right parts, we �rst decide whether the text's
left part has an occurrence of the pattern's left part and whether the text's right
part has an occurrence of the pattern's right part. This is done recursively, with
each recursive call receiving a text and a pattern of a size smaller than the orig-
inal problem. At some point, we have a trivial problem (which corresponds to
the case in which σ = 1). The algorithm still needs to assure that the occur-
rences are comparable and in order. This is done while splitting the text: We
always split the pattern into its left and right parts, but we split the text into
two part such that the rectangle of the left part is at the left and below (right
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and above depending of the sign) the rectangle of the right part. This gives us
the following algorithm.

Algorithm 3:

Data: A permutation π
Data: A separable permutation σ
Result: Whether σ occurs in π
if π is empty then

return False ;

if σ = σl ⊕ σr then
for every pair of rectangles (rl, rr) of π such that rl is left and below
rr do
if σl occurs in rl AND σr occurs in rr then

return True ;

else if σ = σl 	 σr then
for every pair of rectangles (rl, rr) of π such that rl is left and above
rr do
if σl occurs in rl AND σr occurs in rr then

return True ;

else if σ = 1 then
return True ;

return False ;

The following remarks improve the current state of the algorithm or pro-
vide more insight for understanding the di�erence with the algorithm of Ibarra
(Algorithm s3) :

Remark 56. For practical reasons and to understand the improvement of Ibarra's
algorithm, we need to delve deeper into the representation of the input. In par-
ticular, the algorithm does not receive a subsequence of π, but π and a rectangle.

Remark 57. One instance may be called multiple times. To avoid computing
the same instance, the algorithm uses a dynamic programming strategy: Each
time that it computes an instance, it remembers the value computed. When-
ever it needs an instance, it �rst checks whether this instance has been already
computed.

Remark 58. Since σ is a separable permutation, we can assume that we are
given a separating tree Tσ for σ, or we construct it in linear time and space.
Having a separating tree allows to decide whether σ = σl ⊕ σr or σ = σl 	 σr in
constant time.

Remark 59. To iterate over all of the pair rectangles (rl, rr) such that rl is
left and below rr, we only need for the top right corner of rl to be to the left
and below the bottom left corner of rr. A similar remark applies to the pair
of rectangles (rl, rr) such that rl is left and above rr: We only need the bottom
right corner of rl to be left and above the top left corner of rr.

Remark 60. We actually do not need to iterate over all of the pairs of rect-
angles that are compatible. Indeed, if a smaller rectangle rs is contained in a
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larger rectangle rg and that rs contains an occurrence of a pattern, then rg also
contains an occurrence of that pattern. This implies that the algorithm loses
computational time by testing rs and rg. To be optimal, it should only test
rg. More practically, for the case in which σ = σl ⊕ σr, this has the following
consequence:

1. If the pair of rectangles are not next to each other then we can �nd a
rectangle containing the left rectangle (resp. right rectangle) such that this
rectangle and the right rectangle (resp. and the left rectangle) are pairs of
rectangle that are compatible. This means that the �rst pair of rectangle
is not optimal. In other words, we always want a pair of rectangle that
are next to each other. More formally, if the top right corner of the left
rectangle is (x, y) then the bottom left corner of the right rectangle need to
be (x+ 1, y + 1).

2. Given that we receive the rectangle ((i, lb), (j,ub)) (See Remark 56), the
left rectangle is always contained in (or equal to) the rectangle composed
with bottom left corner (i, lb) and with the same top right corner as the
left rectangle. This means that if the left rectangle is not equal to the
rectangle latterly described, then the pair of rectangle is not optimal. In
other words, we always want a left rectangle that has the same bottom left
corner as the rectangle received. More formally, the bottom left corner of
the left rectangle is (i, lb). In the same fashion, the top right corner of the
right rectangle is (j,ub).

Thank to these remarks, the iteration of pairs of rectangles is done over the
following set: {((i, lb), (`, π[`])), ((`+ 1, π[`] + 1), (j,ub)) | i ≤ ` ≤ j}

To understand the time and space complexity of this algorithm, it is impor-
tant to note the following elements:

1. The set of all possible instances of this algorithm can be enumerated. This
gives us a bound on the number of times that the algorithm is used and
thus a time complexity for the algorithm. The algorithm takes as input
a permutation π with a rectangle (See Remark 56) and a permutation σ.
The number of di�erent rectangles is O(n4) as any indexes ((∗, ∗), (∗, ∗)
can have a value between 1 and n. For σ, the algorithm only receives a
subpermutation of σ. The problem lies in enumerating all the di�erent
subpermutations σ. The subpermutations of σ are a left or right part of a
decomposition or σ. We use the analogy between a subpermutation and
a node of a tree to count the number of subpermutations. This number
is related to the number of nodes of a binary tree. Remember that any
subpermutation of a decomposition in a direct/skew sum of a separable
permutation can be associated with a node on a separable tree. So there
are at much subpermutation that there are nodes. In addition, each ele-
ment is associated with a leaf, which means that there are k leaves. As
such, the tree theory tells us that if a binary tree has k leaves then the tree
has at most k+ k− 1 nodes. The maximal number of subpermutations of
σ is thus O(k). So the algorithm has O(kn4) di�erent instances.

2. Each instance iterates over every pair of rectangle. Based on the Re-
mark 60, the iteration consists of an iteration of an index between the

52



values i and j. As i and j represent the index of π, the minimal value of i
is 1 and the maximal value of j is n, in the worst case the index goes from
1 to n. Moreover, any other operations are done in constant time, which
means, that an instance is computed in O(n) time in the worst case.

As we must remember any instance computed (See Remark 57), we need O(kn4)
space. Moreover, as O(kn4) di�erent instances of the problem exist and each
instance takes at most O(n) time to compute, the algorithm runs in O(kn5)
time.

6.2.2 Algorithm of Ibarra

This subsection is devoted to presenting the work of Ibarra in [34].

Proposition 61. There exists an algorithm that decides whether σ occurs in π
in O(kn4) time and O(n3k) space.

The idea of the algorithm of Ibarra follows the same idea presented in the
previous subsection. However, it uses another trick to reduce the number of
di�erent instances to compute, reducing the number of di�erent instances from
O(kn4) to O(kn3), which obliviously results in the complexity given in the latter
proposition.

In the case where σ = σl ⊕ σr, while splitting the rectangle of π into Rr
and Rl, if a Rr is given σr, Rl need to be the largest possible to increases the
chance of containing an occurrence of σl. Indeed if Rl is as large as possible,
it contains all other rectangles; as such instead of checking whether each of
these rectangles contains an occurrence of σl, it is faster to check whether the
largest one contains an occurrence. Moreover, given an occurrence of σr, the
occurrence's minimal element can be used as a bottom edge of a rectangle that
contain this occurrence and it is the largest top edge possible for this occurrence.
Choosing the largest top edge for the right rectangle, allows the left rectangle
to be the largest possible. As such, given that σ = σl ⊕ σr, we �rst split the
rectangle vertically. we then focus on computing all of the occurrences of σr
contained in the right rectangle. In all of these occurrences, we choose the one
with the largest minimal element (for the reason explained above). This element
can now be used as a bottom edge for the right rectangle.

To use a recursive algorithm (as before), we need the bottom edge's value,
which can be done using the return value. The return value needs to encode
the largest bottom edge's value. We use the following convention to determine
whether an occurrence exists: If the value returned is 0, then no occurrence
exists. if not, an occurrence exists and the value returned is the value of the
largest bottom edge.
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Algorithm 4:

Function PPM_Ibarra
Data: A permutation π
Data: A left edge left_edge
Data: A top edge top_edge
Data: A right edge right_edge
Data: A separable permutation σ
Result: 0 if no occurrence exists, the value of the higher bottom edge

otherwise
if π is empty then

return 0 ;

if σ = σl ⊕ σr then
for each ` in [i, j] do

higher_bottom_edge =
PPM_Ibarra(π, `+ 1, top_edge, right_edge, σr) ;
if higher_bottom_edge is 0 then

return 0 ;

else
return
PPM_Ibarra(π, left_edge, higher_bottom_edge, `, σl) ;

else if σ = σl 	 σr then
for each ` in [i, j] do

higher_bottom_edge =
PPM_Ibarra(π, left_edge, top_edge, `, σl) ;
if higher_bottom_edge is 0 then

return 0 ;

else
return PPM_Ibarra(π, `+
1, higher_bottom_edge, reight_edge, σr) ;

else if σ = 1 then
return the higher value of π[left_edge : right_edge] ;

return 0 ;

6.2.3 Improved Version of Ibarra

In this section, we show that we can improve the algorithm of Ibarra to reduce
the space consumption.

Proposition 62. The memory consumption of the algorithm of Ibarra can be
reduced to O(n3 log k).

Proof. It should �rst be observed that to compute all of the instances in which
the pattern is the subpermutation σ (i.e. PPM_Ibarra(π, ∗, ∗, ∗, σ) ), we
only need all of the instances in which the pattern is the left operand of σ
in the decomposition, (that is, PPM_Ibarra(π, ∗, ∗, ∗, σl)) and all of the in-
stances in which the pattern is the right operand of σ (that is, PPM_Ibarra(π,
∗, ∗, ∗, σr)). As such, some entries in the dynamic programming array become
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useless, which means that we can "forget" them and release some space. It
should be noted that, we use the notation of a node to represent σ, as it is bet-
ter suited for the explanation. The policy for achieving the memory spearing is
as follows:

• All problems for a same node v are solved together, and their solutions
are maintained in the memory until the problems for the parent of v have
also been solved. At that point, the memory used for node v is released.

• We use a modi�ed depth-�rst search (noted as DFS) on Tσ: For every
node v with two children, we �rst process its largest child (in terms of the
number of nodes in the subtree rooted at that child), then the other child,
and �nally v itself.

We claim that the above procedure yields a O(n3 log k) space algorithm and
initially expand our DFS algorithm to what is known as the White-Gray-Black
DFS [25]. First, we mark all vertices white. When we call dfs(u), we mark u
to be gray. Finally, when DFS(u) returns, we mark u to be black. Provided
by this colour scheme, at each step of the modi�ed DFS, we may partition Tσ
into a white-gray subtree (all nodes are either white or gray) and a forest of
maximal black subtrees (all nodes are black and the parent of the root, if it
exists, is either white or gray). Our space complexity claim is now reduces to
proving that, at any time of the algorithm, the forest contains at most O(log k)
maximal black subtrees. Let hσ be the height of Tσ, and consider any partition
of Tσ into a white-gray subtree and an non-empty forest T b of maximal black
subtrees. The following property easily follows from the (standard) DFS colour
scheme.

Claim 63. For every 1 ≤ i ≤ hσ, there exists at most two maximal black
subtrees in T b whose roots are at height i in Tσ. Furthermore, if there are two
maximal black subtrees in T b whose roots are at height i in Tσ (they must have
the same parent), then T b contains no maximal black subtree whose root is at
height j > i in Tσ.

According to Claim 63, and aiming at maximising |T b|, we may focus on the
case in which T b contains one maximal black subtree whose root is at height
i, 1 ≤ i < hσ, in Tσ (if T b contains one maximal black subtree whose root is
at height 0 in Tσ then |T b| = 1), and T b contains two maximal black subtrees
whose roots are at height hσ in Tσ (these two maximal black subtrees reduce to
size-1 subtrees). The claimed space complexity for the dynamic programming
algorithm (i.e., |T b| = log(k)) now follows from the fact that we are using a
modi�ed DFS algorithm where we branch the largest subtree �rst after having
marked a vertex gray. Indeed, the maximal black subtree whose root is at height
1 in Tσ contains at least half of the nodes of Tσ. The same argument applies
for subsequent maximal black subtrees in the forest T b.

6.3 Both π and σ are Separable Permutations

In this section, we focus on the case in which both the text and the pattern are
separable permutations. Although our algorithm does not have better complex-
ity in terms of time and space than the best algorithm so far, we contribute by
providing an algorithm more speci�c to the separable permutations.
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Figure 6.4 � The e�ect of removing a node from a tree.

Problem 64. Given a separable permutation σ of size k and a separable per-
mutations π of size n, we wish to determine whether σ occurs in π.

In what follows, we will show that there exist a polynomial time algorithm,
in time and space, to solve the Problem 64.

6.3.1 Best algorithm so far

We can strive for more e�cient solutions when both π and σ are separable
permutations since, we can construct in linear time the two separating trees
Tπ and Tσ. However, It turns out that the binary separating trees are not well
suited to handle this task. We instead need compact separating trees. We adopt
the convention that a compact separating tree of a separating tree Tπ is denoted
T̃π.

To introduce the best algorithm so far, we need a de�nition of the tree
inclusion. The problem is de�ned as follows: Given two ordered and labelled
trees T and T ′, can T be obtain from T ′ by deleting nodes? (Deleting a node v
corresponds to removing all edges incident to v and, if v has a parent u, replacing
the edge from u to v by edges from u to the children of v. In other words, the
father of the node deleted adopt the children of the node deleted, with respect
to the original order of the children. See Figure 6.4.) This problem has recently
been recognised as an important query primitive in XML databases. This is
the rationale for considering compact separating trees stems from the following
property. This problem is interesting to us because it can be used to solve the
PPM when both the text and the pattern are separable permutations.

To do so we need two modi�cations:

1. We need to change the de�nition of the deletion: When we delete a node,
we have the following rule for the adoption. The father of the deleted node
adopts one child of the deleted node; moreover, if it adopts a node (remark
that the father of the deleted node and the child of the deleted node share
the same sign), then the father adopts all the children of this node. See
Figure 6.5 for the di�erent outcomes of a deletion. Intuitively, a subtree
of a tree represents a subpermutation of the permutation represented by
the tree, and the former de�nition of deletion can create a tree which do
not represent a subpermutation. See Figure 6.6 an example.

2. All the leaves of the compact separable trees have to be labelled 1. It
should be noted that this does not modify the corresponding separable
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Figure 6.5 � The possible e�ects of removing a node. Note that the leaves are
label with letters for the sake of comprehension.
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Figure 6.6 � The e�ect of a "normal" removing a negative node with a positive
father, the permutation encoded in the left tree is 1324, whereas the permutation
encoded in the right is 1234.

permutation, as the leaf's labels are included for the sake of readability
(see Remark 51).

Remark 65. The de�nition of deletion can be seen easily in a plot of a permu-
tation. A rectangle should be �rst selected (which corresponds to choosing the
node to delete). Another rectangle within this rectangle should then be selected
and other rectangles removed.

Property 66. Deleting a node from a compact separable tree constructs an-
other compact separable tree. Moreover, the permutation represented by the new
compact separable tree is a subpermutation of the original permutation.

Proof. First note that any child of a deleted node can be seen as a root of a
compact separable tree. As such, adopting all children of a child a of deleted
node implies that the children are already decomposed into the largest nodes
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possible, which means that the deletion creates a compact separable tree. Now
remark that deleting a node corresponds, in the permutation, to removing some
elements represented by this node. As such, clearly yields a subpermutation.

Property 67. Let π and σ be two separable permutations. Then, σ occurs in
π if and only if the compact separating tree T̃σ is included into the compact
separating tree T̃π.

Proof. This is a direct consequence of the previous property.

Kilpeläinen and Manilla [36] presented the �rst polynomial time algorithm
using quadratic time and space for the tree inclusion problem. Since then,
several improved results have been obtained for special cases in which T and T ′

have a small number of leaves or small depth. However, in the worst case, these
algorithms still use quadratic time and space. The best algorithm is provided
by Bille and Gørtz [16] who presented an O(nT ) space and

O

min


lT ′ nT
lT ′ lT log lognT + nT
nT nT ′
lognT

+ nT log nT




time algorithm, where T (resp. T ′) is the tree representing π (resp. σ ), nT
(resp. nT ′) denotes the number of node of T (resp. T ′) and lT (resp. lT ′)
denotes the number of leaves of T (resp. T ′).

However, all e�cient solutions developed so far for the tree inclusion problem
result in very complicated and hard-to-implement algorithms. For example, the
main idea of the algorithm presented in [16] is to construct a data structure
on T supporting a small number of procedures, called the set procedures, on
subsets of nodes of T .

6.3.2 Our Solution

We propose here a di�erent solution that is less e�ective in time and space than
the above algorithm.

Proposition 68. An O(n2k) time and O(nk) space algorithm to �nd an oc-
currence of a separable pattern of size k in a separable permutation of size n
exists.

We need to consider four cases in the algorithm, depending on the decompo-
sitions of σ and π. For these cases, we begin with a brute force algorithm that
tries all possible subsequences, and reduce the number of subsequences to test.

The next paragraph deals with the case where σ and π are decomposed with
the same sum.

Property 69. Given the largest decomposition π = π1⊕. . .⊕π`π and the largest
decomposition σ1 ⊕ . . .⊕ σ`σ , no occurrence of σi can be split into two or more
rectangles of π.

Proof. If the occurrence of σi can be split into two or more rectangles of π then
σi can be decomposed into a direct sum, which is not possible as σi is part of
the largest decomposition of the direct sum.
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From this property, we know that, in an occurrence of σ in π, any rectangle
πi contains no, one or more than one rectangle of σ. Given an occurrence, taking
all of the rectangles of π that contain at least one rectangle of σ, forms a sub-
sequence of rectangles πP1 , . . . , πPm of π1, . . . , π`π . For each of those rectangles,
we associate the set of rectangles that this rectangle contains in the occurrence,
and form a sequence of pair (πi, Pi) in which the permutation represented by
the set Pi occurs in πi. It should be noted that the Pi forms an ordered parti-
tioning of the rectangles of σ. Finding such a sequence is enough to prove that
an occurrence of σ exists in π.

Lemma 70. Given the largest decomposition π = π1⊕ . . .⊕π`π and the largest
decomposition σ = σ1 ⊕ . . . ⊕ σ`σ , if there exists a sequence (πi, Pi) such that
the permutation represented by the set Pi occurs in πi and all the Pi forms an
ordered partitioning of the rectangles of σ, then σ occurs in π.

Proof. If such a sequence does not yield an occurrence, there exist at least two
elements σ[i] and σ[j] such that their matchings do not have the same order as
σ[i] and σ[j]. Without a loss of generality, we can suppose that i < j. Suppose
that σ[i] and σ[j] are contained in one rectangle/two rectangles that is/are
contained in Pi, by de�nition of the sequence the permutations represented
by Pi occur in πi which means that every elements are well-ordered, so this
cannot happen. We are left with the case in which σ[i] and σ[j] are contained
in rectangles that are contained in Pi and Pj . As the elements are contained in
di�erent sets, it can be deduced that they are in di�erent rectangles. Moreover,
as σ is decomposed into a direct sum, Pi is on the left and below Pj ; as such,
σ[i] < σ[j]. The hypothesis indicates that the matchings of σ[i] and σ[j] do not
have the same order, but their matchings are contained in πi and πj . Moreover,
πi is on the left and below πj as π is decomposed into a direct sum. Their
matching thus cannot have a di�erent order, which shows that the hypothesis
does not hold. Such sequences therefore contain an occurrence.

Algorithm 5 presents the pseudo-code of an algorithm that constructs such
a sequence, which can be used to decide whether σ occurs in π.
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Algorithm 5:

Data: The sequence of rectangles π1, . . . , π`π of the largest
decomposition of π.

Data: The sequence of rectangles σ1, . . . , σ`σ of the largest
decomposition of σ.

Result: A sequence as describe above.
start with an empty ordered partition and an empty subsequence ;
Initialise s with s = σ1, . . . , σ`σ ;
for every rectangle R in π1, . . . , π`π do

p = the largest sequence of rectangles of s starting from the �rst
rectangle such that this sequence occurs in R ;
if p is not empty then

add p to the ordered partition ;
add R to the subsequence ;
remove p from the s ;

if s is empty then
return the solution

else
return that no solution exists

It should be noted that during the loop, the current rectangle is decomposed
into a skew sum. We consider three cases: p is empty, p contains one rectangle
Rσ or p contains several rectangles S. In the second case, both R and Rσ are
decomposed into skew sum, which means that we must decide whether a largest
decomposition in skew sum occurs in another largest decomposition in skew sum,
which is solved by the current algorithm, so this case is solved by a recursive
call. In the third case, S represents largest decomposition in direct sum, which
means that we must decide whether the largest decomposition in direct sum (S)
occurs in a largest decomposition in skew sum (the current rectangle). We show
how to solve this later.

As seen above, the algorithm computes a sequence. As such, if it yields a
solution, then σ occurs in π. To show that our algorithm �nds a solution if
and only if σ occurs in π, we still need to prove that no solution exists if the
algorithm does not �nd a sequence. We prove the contraposition below.

Suppose that a sequence (πi, Pi) solution exists and that our algorithm does
not compute a solution. We prove that this assertion is not possible. Suppose
the �rst di�erence between a sequence solution and the sequence computed by
the algorithm appears for the rectangle πi, that is that the set Pi is not the
same as in the solution. The set can be di�erent in three ways: The computed
set is empty, the computed set is contained in Pi or the computed set contains
Pi. The �rst case is not possible because it implies that nothing occurs in
πi; however, by hypothesis at least Pi occurs in πi (because of the sequence
solution). The second case implies that the algorithm does not compute the
largest set of rectangles, which is also not possible. If the third case occurs, we
can create a new solution that is closer to the sequence computed: As the set
Pi′ computed by the algorithm contains the set Pi, we replace the pair (πi, Pi)
with the pair (πi, Pi′) in the sequence of solution, to create a new sequence
(that is also a solution). As Pi′ contains more rectangles than Pi, in the next
sets Pj , we remove the rectangles that appear in Pi′ but not in Pi. We thus
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obtain a sequence with either no di�erence between the sequence computed by
the algorithm or where the di�erence starts after the pair corresponding to pi.
By iterating this process, we can create a solution that does not di�er from the
sequence computed by the algorithm; the algorithm thus computes a solution,
which is a contradiction.

The next paragraph deals with the case where σ and π are decomposed with
di�erent sums. We focus on the case in which π is decomposed into a skew sum
and σ is decomposed in direct sum.

Proposition 71. Given the largest decomposition π = π1 	 . . . 	 π`π and the
largest decomposition σ1⊕ . . .⊕σ`σ = σ, σ occurs in π if and only if there exists
πi such that σ occurs in πi.

This proposition claims that σ can only occur in a rectangle of π. This can
easily be explained visually; σ forms a "stair up", if it is contained in more than
one rectangle of π, as the rectangles of π form a "stair down", the "stair up" of
σ would be cut.

Proof. For the backward implication, remark that πi occurs in π, and σ occurs
in πi, as such, σ occurs in π. For the forward implication, suppose that the
leftmost element of σ is matched to an element of πα and that the rightmost
element of σ is a matched to an element of πβ . The leftmost element of σ is
below the rightmost element of σ, as σ is formed by an increasing sequence of
rectangles; however every element of πα is above every element of πβ , as π is
formed by a decreasing sequence of rectangles. Such an occurrence is thus not
possible.

This proposition leads directly to the following algorithm for deciding whether
σ occurs in π.

Algorithm 6:

Data: The sequence of rectangles π = π1, . . . , π`π of the largest
decomposition of π

Data: σ
Result: Whether σ occurs in π
for every rectangle in π1, . . . , π`π do

if σ occurs in the current rectangle then
return that σ occurs π ;

return that σ does not occur in π ;

It should be noted that, that Algorithm 5 and 6 call each other.
We modify this algorithm for the purpose of computing the p required for

the �rst algorithm: Instead of computing whether σ occurs in π, the algorithm
computes the rightmost rectangle such that the σ1, . . . , σi occurs in π. If this
rectangle is σ`σ then we can conclude that σ occurs in π.
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Algorithm 7:

Data: The sequence of rectangles π = π1, . . . , π`π of the largest
decomposition of π

Data: The sequence of rectangles σ1, . . . , σ`σ of the largest
decomposition of σ

Result: The rightmost σi such that σ1, . . . , σi occurs in π
initialising r with nothing ;
for every rectangle in π1, . . . , π`π do

tmp = The rightmost σi such that σ1, . . . , σi occurs in the current
rectangle ;
if tmp is at the right of r then

r = tmp ;

return r ;

We also need to modify Algorithm 5 to compute tmp: Instead of returning
the solution or that no solution exists, the algorithm returns the last rectangle
added in p.

We have described two algorithms that can be used to compute every case
possible; as a result we have an algorithm for deciding whether σ occurs in
π. We still need to prove the complexity claim. To do so, we introduce a
closed set of entries for the algorithms, and, use dynamic programming to ensure
that each algorithm is only called at most once for each element of the closed
set. This gives us a bound to the number of times that each algorithm is
called. The �rst algorithm is called to compute tmp for the third algorithm or
to decide whether σ occurs in π. In both cases, it only requires two rectangles:
σi and πj . The third algorithm is called to compute p for the �rst algorithm
or to decide whether σ occurs in π. The second case requires two rectangles
σ and π; however the �rst case requires a πi and a sequence of rectangles,
especially s = σi, . . . , σ`σ . Nonetheless, the last rectangle of the sequence is
always the rightmost rectangle of the decomposition. We use a well-suited
structure to represent the rectangles so that we can represent the sequence
with only one rectangle. A compact separable tree �lls the requirement. Indeed,
remember that, in the tree representation, a node represents a rectangle and the
decomposition of a rectangle is represented by the children of the node. This
means that the node representing σi, . . . , σ`σ has the same father. Thus from
the node representing σi, the node representing σ`σ is its rightmost brother. To
summarise, each algorithm only needs to take one node from the compact tree
of σ and one node from the compact tree of π. As the tree of π has O(n) nodes
and the tree of σ has O(k) nodes, O(nk) entries are possible for the algorithms.
Finally, each algorithm is computed in O(n) times, as they only involve doing
an iteration over the rectangles of π. The algorithm thus runs in O(kn2) time
and O(kn) space.

6.4 Deciding the Union of a Separable Permuta-

tion

This subsection is devoted to shu�ing permutations. Given three permutations
(namely π, σ and τ), the problem is to decide whether π is the disjoint union
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of two patterns that are order-isomorphic to σ and τ , respectively, in notation
π ∈ σ � τ . For example 937654812 is the disjoint union of two patterns that
are order-isomorphic to 2431 and 53241, as can be seen in the highlighted form
937654812.

Proposition 72. Given three separable permutations π of size n, σ of size k
and τ of size `, there exists an O(nk3`2) time and O(nk2`2) space algorithm
for deciding whether π is the disjoint union of two patterns that are order-
isomorphic to σ and τ , respectively.

Proposition 72 become more interesting if we observe that the complexity
of the problem is still open if we do not restrict the input permutations to be
separable [31].

First, if π is a separable permutation and π ∈ σ � τ , then σ and τ are
also separable. As such, we consider the non-trivial case in which σ and τ are
separable.

Given that π is a separable permutation we denote by π`π the rightmost
rectangle of the permutation's largest decomposition (especially π = π1 ⊕ . . .⊕
π`π ). Moreover, we let π(i, j) be πi ⊕ . . .⊕ πj .

Proof. Consider the following family of subproblems: Given a separable per-
mutation π and a sequence of its largest decomposition π(iπ, jπ), a separable
permutation σ and a sequence of its largest decomposition σ(iσ, jσ) and a sep-
arable permutation τ and a sequence of its largest decomposition τ(iτ , jτ ), we
want to check whether π(iπ, jπ) is the shu�e of σ(iσ, jσ) and τ(iτ , jτ ). We
notate this as follows:

S(π(iπ, jπ), σ(iσ, jσ), τ(iτ , jτ )) =

{
True if π(iπ, jπ) ∈ σ(iσ, jσ)� τ(iτ , jτ )

False otherwise.

By de�nition π ∈ σ� τ if and only if S(π(1, `π), σ(1, `σ), τ(1, `τ )) is true.
Base.

The base cases are when either σ = 1 or τ = 1. Then, if π is also a leaf then
the problem is true; otherwise the problem is false, as elements will be left
unmatched in π.

• If π and σ are the trivial permutation of size 1 and τ has no element then
S(π(1, 1), σ(1, 1), ∅) = True.

• If π and τ are the trivial permutation of size 1 and σ has no element then
S(π(1, 1), ∅, τ(1, 1)) = True.

• Otherwise the problem is False.

Reduction.
Two instances of the problem can represent the same problem. Especially when
one of the arguments represents an unique node, we replace this node by all of
its children. This happens only when i∗ = j∗, where ∗ ∈ {π, σ, τ}.

• If iπ = jπ then

S(π(iπ, iπ), σ(iσ, jσ), τ(iτ , jτ )) = S(πiπ (1, `πiπ ), σ(iσ, jσ), τ(iτ , jτ ))
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• If iσ = jσ then

S(π(iπ, jπ), σ(iσ, iσ), τ(iτ , jτ )) = S(π(iπ, jπ), σiσ (1, `σiσ ), τ(iτ , jτ ))

• If iτ = jτ then

S(π(iπ, jπ), σ(iσ, jσ), τ(iτ , iτ )) = S(π(iπ, jπ), σ(iσ, jσ), τiτ (1, `τiτ ))

Recurrence
The idea of the recursion is to split σ(iσ, jσ) and τ(iτ , jτ ), in every possible
way in π(iπ, jπ). Each splitting yields two di�erent instances of the problem.
We di�erentiate two classes of instances: The �rst class can be characterised
by the fact either σ or τ is empty. This is the best case, as it corresponds to
deciding whether σ (or τ , depending on which one is empty) is an occurrence of
π; we let the other class contain all instances that do not belong to the �rst one.
In all cases, both instances are smaller in size, especially the size of the text
permutation is reduced and the size of the �rst or second pattern is reduced.
The recursion uses Property 71 and Lemma 70 to make a "smart" splitting.

• In cases in which π(iπ, jπ) represents a direct sum decomposition, σ(iσ, jσ)
represents a direct sum decomposition and τ(iτ , jτ ) represents a skew sum
decomposition. Note that according to Property 71, if τ(iτ , jτ )) occurs in
π(iπ, jπ) then it occurs in a unique rectangle, in particular, we can consider
the �rst rectangle of π(iπ, jπ) for the occurrence of τ(iτ , jτ ) and handle
the case accordingly. As such, πiπ can contain

� an occurrence of τ(iτ , jτ )) and some part of an occurrence of σ(iσ, jσ),

� an occurrence of τ(iτ , jτ )) and no occurrence of σ(iσ, jσ) or

� nothing of τ(iτ , jτ )) and some part of an occurrence of σ(iσ, jσ).

The case in whichs πiπ contains nothing cannot occur, as we want every
element of π to be used in an occurrence. In those three cases, what is
left of σ and τ has to occur in π(iπ + 1, jπ), which yields us the following
solution:

S(π(iπ, jπ), σ(iσ, jσ), τ(iτ , jτ ))

=⋃
j′σ<jσ

(S(π(iπ, iπ), σ(iσ, j
′
σ), τ(iτ , jτ )) ∧ S(π(iπ + 1, jπ), σ(j′σ + 1, jσ), ∅))

OR

(S(π(iπ, iπ), ∅, τ(iτ , jτ )) ∧ S(π(iπ + 1, jπ), σ(iσ, jσ), ∅))

OR⋃
j′σ<jσ

(S(π(iπ, iπ), σ(iσ, j
′
σ), ∅) ∧ S(π(iπ + 1, jπ), σ(j′σ + 1, jσ), τ(iτ , jτ )))
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• In cases in which π(iπ, jπ) represents a direct sum decomposition, both
σ(iσ, jσ) and τ(iτ , jτ ) represent a skew sum decomposition. Based on
Property 71, σ(iσ, jσ) occurs in a unique child of π(iπ, jπ) and τ(iτ , jτ )
occurs in a unique child of π(iπ, jπ). Moreover, as every element must be
used in an occurrence, π(iπ, jπ) cannot have more than two rectangles. In
other words, if π(iπ, jπ) has more than two rectangles, then this instance
is false. In addition, if π(iπ, jπ) has two rectangles σ(iσ, jσ) occurs πiπ ,
and τ(iτ , jτ ) occurs πjπ , or σ(iσ, jσ) occurs πjπ and τ(iτ , jτ ) occurs πiπ :

S(π(iπ, jπ), σ(iσ, jσ), τ(iτ , jτ ))

=

S(π(iπ, iπ), σ(iσ, jσ), ∅) ∧ S(π(jπ, jπ), ∅, τ(iτ , jτ ))

OR

S(π(iπ, iπ), ∅, τ(iτ , jτ )) ∧ S(π(jπ, jπ), σ(iσ, jσ), ∅)

• If π(iπ, jπ), σ(iσ, jσ) and τ(iτ , jτ ) represent direct sum decompositions
then according to Lemma 70, πiπ contains

� some part of the occurrence of τ(iτ , iτ ) and some part of the occur-
rence of σ(iσ, jσ),

� some part of the occurrence of τ(iτ , iτ ) and no element of an occur-
rence of σ(iσ, jσ),

� no element of an occurrence of τ(iτ , iτ ) and some part of the occur-
rence of σ(iσ, jσ),

� the occurrence of τ(iτ , iτ ) and some part of the occurrence of σ(iσ, jσ),

� the occurrence of τ(iτ , iτ ) and no element of an occurrence of σ(iσ, jσ),

� some part of the occurrence of τ(iτ , iτ ) and the occurrence of σ(iσ, jσ)
or

� no element of an occurrence of τ(iτ , iτ ) and the occurrence of σ(iσ, jσ).

In all of these cases, what is left occurs in π(iπ + 1, jπ).

S(π(iπ, jπ), σ(iσ, jσ), τ(iτ , jτ ))

=⋃
j′σ<jσ
j′τ<jτ

S(π(iπ, iπ), σ(iσ, j
′
σ), τ(iτ , j

′
τ ))∧S(π(iπ+1, jπ), σ(j′σ+1, jσ), τ(j′τ+1, jτ ))

OR⋃
j′σ<jσ

S(π(iπ, iπ), σ(iσ, j
′
σ), ∅) ∧ S(π(iπ + 1, jπ), σ(j′σ + 1, jσ), τ(iτ , jτ ))

OR
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⋃
j′τ<jτ

S(π(iπ, iπ), ∅, τ(iτ , j
′
τ )) ∧ S(π(iπ + 1, jπ), σ(iσ, jσ), τ(j′τ + 1, jτ ))

OR⋃
j′τ<jτ

S(π(iπ, iπ), σ(iσ, jσ), τ(iτ , j
′
τ )) ∧ S(π(iπ + 1, jπ), ∅, τ(j′τ + 1, jτ ))

OR

S(π(iπ, iπ), σ(iσ, jσ), ∅) ∧ S(π(iπ + 1, jπ), ∅, τ(iτ , jτ ))

OR⋃
j′σ<jσ

S(π(iπ, iπ), σ(iσ, j
′
σ), τ(iτ , jτ )) ∧ S(π(iπ + 1, jπ), σ(j′σ + 1, jσ), ∅)

OR

S(π(iπ, iπ), ∅, τ(iτ , jτ )) ∧ S(π(iπ + 1, jπ), σ(iσ, jσ), ∅)

• All others cases can be a�liate with one of the above cases, such that it
can be solved by applying the idea of that case.

We are left with proving the complexity claim. As before we use a dynamic
programming strategy so that we only need to compute each instance of the
problem once. As such, we only need to identify the number of di�erent entries
possible for the problem to determine its complexity. In this paragraph, let `
be the size of τ . Without a loss of generality, we can suppose that ` < k. At
�rst, it seems that the problem has n2k2d`2 cases: For every permutation, we
associate two rectangles of its decomposition.

However, one of the three pairs has redundant information. As, the size of
π(iπ, jπ) must be equal to the size of σ(iσ, jσ) plus the size of τ(iτ , jτ ), given
σ(iσ, jσ), τ(iτ , jτ ), π and iπ, we can deduce jπ. It should be noted that jπ
may not exist, as the size of σ(iσ, jσ) plus the size of τ(iτ , jτ ) may not exactly
equal the size of a π(iπ, jπ); however, in such a case, we can immediately say
that π is not a shu�e. We thus have O(nk2`2) di�erent cases to compute. This
strategy implies that for every permutation, we have to compute the size of
every π(iπ, jπ) possible, which can be pre-computed in O(n2) time and takes
O(n2) space in the memory.

The worst case for this algorithm is when π contains elements of occurrences
for both σ and τ . In this case, we must iterate every j′σ, iσ ≤ j′σ ≤ jσ and every
j′τ , iτ ≤ j′τ ≤ jτ possible. However, we can deduce j′σ from π(iπ, iπ), τ(iτ , j

′
τ ),

σ and iσ (as above). As a result we only need to iterate every j′τ , iτ ≤ j′τ ≤ jτ
possible. Finally, each recursive problem is solved in constant time by dynamic
programming. Computing one case thus takes at most O(`) time, which gives
us an O(nk2`3) time and O(nk2`2) space algorithm.
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6.5 Finding a Maximum Size Separable Subper-

mutation

The longest common pattern problem for permutations is �nding the largest
permutation that occurs in each input permutation, which is intended to be
the natural counterpart to the classical LCS problem. Rossin and Bouvel [51]
provide an O(n8) time algorithm for computing the largest common separable
pattern that occurs in two permutations of size (at most) n, one of these two
permutations being separable. This problem was further generalised in [19],
which demonstrates that the problem of computing the largest separable pattern
that occurs in k permutations of size (at most) n is solvable in O(n6k+1) time
and O(n4k+1) space. It should be noted that the latter problem isNP-complete
for unbounded k, even if all input permutations are actually separable. The
following proposition improves upon the algorithm of Rossin and Bouvel [51].

Proposition 73. Given a permutation of size n and a separable permutation
of size k, the largest common separable pattern that occurs in the two input
permutations can be computed in O(kn6) time and O(n4 log k) space.

Proof. For clarity of exposition, we begin by considering the problem of com-
puting the largest separable pattern that occurs in a single permutation π. We
consider the following family of subproblems: For every two i, j ∈ [n] with i ≤ j
and every lower and upper bound lb,ub ∈ [1, 2, . . . , n] with lb ≤ ub, we have
the subproblem Pi,j,lb,ub, where the semantic is as follows:

Pi,j,lb,ub = max{|s| : s is a subsequence of π[i, j], reduction(s) is separable, and

every element in s is in the interval [lb,up]}.

We show that this family of problems is closed under induction.

• Base: We have two cases.

� If i = j, then

Pi,i,lb,ub =

{
1 if lb ≤ π[i] ≤ ub,

0 otherwise.

� If lb = up, then

Pi,j,b,b =

{
1 if there exists ι ∈ [i, j] such that π[ι] = b,

0 otherwise.

• Step: Here i < j, lb < ub, and we must decide whether the optimum
Pi,i,lb,ub is achieved with a positive or negative root node. Thus

Pi,j,lb,ub = max
{
P+
i,j,lb,ub, P

−
i,j,lb,ub

}
,

where

� (Hypothesis of a positive node)

P+
i,j,lb,ub = max{Pi,ι−1,lb,b−1+Pι,j,b,ub : i < ι ≤ j and lb < b ≤ ub}.
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� (Hypothesis of a negative node)

P−i,j,lb,ub = max{Pi,ι−1,b−1,ub+Pι,j,lb,b : i < ι ≤ j and lb < b ≤ ub}.

This implies an O(n6) time and O(n4) space algorithm for �nding the largest
separable pattern that occurs in a permutation of size n.

The next step is to consider the problem of �nding a longest separable pat-
tern that occurs in two given permutations (that may not be separable them-
selves) [51]. Let π be a permutation of size n. For every i, j ∈ [n] with i ≤ j and
every ub, lb ∈ [n] with lb] ≤ up, we let π[i, j, lb, up] stand for the subsequence
obtained from π[i, j] by trimming away all elements above lb or below up. Then,
let π1 and π2 be two permutations of Sn. We consider the following family of
subproblems: For every i1, j1, lb1,ub1 ∈ [n] with i1 ≤ j1 and lb1 ≤ ub1, and
every i2, j2, lb2,ub2 ∈ [n] with i2 ≤ j2 and lb2 ≤ ub2, we have the subproblem
Pi1,j1,lb1,ub1,i2,j2,lb2,ub2

whith the following semantic:

Pi1,j1,lb1,ub1,i2,j2,lb2,ub2
= max{|s| : s is a pattern occurring in both

π1[i1, j1, lb1,ub1] and in π2[i2, j2, lb2,ub2]}

It is easy to see that this family of subproblems is closed under induction and
yields an O(n12) time and O(n8) space algorithm for �nding the size of largest
separable pattern that occurs in two permutations of size (at most) n. This is a
slight improvement compared to [19], which proposes an O(n13) time and O(n9)
space algorithm.

The outlined approach can be extended to a polynomial time algorithm for
a �xed number of input permutations (as shown in [19]). However, in practice
the complexity of this solution is already prohibitive for just two sequences.
Therefore, rather than further extending this approach, we focus on underlin-
ing how it encompasses other natural problems. Indeed, following Bouvel and
Rossin [51], we consider the problem of computing a longest separable pattern
that occurs in two input permutations of size at most n, one of these two per-
mutation being separable. For this precise problem, Bouvel and Rossin provide
an O(n8) algorithm. We consider the following family of subproblems: Given
σ a separable permutation and Tσ its separating tree. For every node v of Tσ,
every two i, j ∈ [n] with i ≤ j, and every lower and upper bounds lb,ub ∈ [n]
with lb ≤ up, we have the subproblem Pv,i,j,lb,ub, with the following semantic:

Pv,i,j,lb,ub = max{|s| :s is a common subsequence of v and π[i, j]

with all values in the interval [lb, ub].

We show that this family of problems is closed under induction.

• Bases: We have three base cases:

� If i = j] then

Pv,i,i,lb,ub =

{
1 if lb ≤ π[i] ≤ ub,

0 otherwise.

� If lb = ub] then

Pv,i,j,b,b =

{
1 if there exists ι ∈ [i, j] such that π[ι] = b,

0 otherwise.
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� If v is a leaf then

Pv,i,j,lb,ub =

{
1 if there exists ι ∈ [i, j] such that lb ≤ π[ι] ≤ ub,

0 otherwise.

• Step: Here i < j, lb < ub, and we let vL and vR stand for the left and
right children of v, respectively.

� If v is a positive node then

Pv,i,j,lb,ub = max
i<ι≤j

max
lb<b≤ub

PvL,i,ι−1,lb,b−1 + PvR,ι,j,b,ub.

� If v is a negative node then

Pv,i,j,lb,ub = max
i<ι≤j

max
lb<b≤ub

PvL,i,ι−1,b−1,ub + PvR,ι,j,lb,b.

The above description implies an O(kn6) time O(kn4) space algorithm for
computing the largest common separable pattern that occurs in two permuta-
tions of size (at most) n, one of these two permutations being separable, with
thus improves on Rossin and Bouvel [51]. The memory can be reduced to
O(n4 log k) using the approach detailed Section 6.2.3.

6.6 Vincular and Bivincular Separable Patterns

This subsection is devoted to vincular pattern and BVP. We prove that detecting
a vincular or bivincular separable pattern in a permutation is polynomial time
solvable. To the best of our knowledge, this is the �rst time the PPM problem
is proven to be tractable for a generalisation of separable patterns. Since a
vincular pattern is a BVP, we focus on BVP.

The algorithm of Section 6.2 cannot be used to �nd an occurrence of a BVP
as we do not have any control over the position and the value of matching
elements.

Proposition 74. Given a permutation π of size n and a bivincular separable
pattern σ of size k, there exists an O(kn6) time and O(kn4) space algorithm to
decide whether σ occurs in π.

Given a BVP with a separable permutation σ̃, and a subsequence σ′, we
de�ne the bivincular permutation σ̃′ as the bivincular permutation with the
element of σ′, with the top line of σ̃ where we remove the elements not in σ′

and with bottom line the elements of the node wherem andm+1 are underlined
if and only if m and m + 1 are element of σ′ and m and m + 1 are underlined
in σ̃. Moreover,

• if σ[i] is the bottommost element of σ′ and σ[i− 1]σ[i] or xσ[i] then we
add the bottom left corner,

• if σ[i] is the topmost element of σ′ and σ[i]σ[i+ 1] or σ[i]y then we add
the bottom right corner,

• if σ[i] is the leftmost element of σ′ and σ[i− 1]σ[i] or pσ[i] then we add
the top left corner, and
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• if σ[i] is the leftmost element of σ′ and σ[i− 1]σ[i] or σ[i]q then we add
the top right corner.

In particular (remember that σ(v) represents the subsequence embedded in the
node v) we represent by σ̃(v) the BVP formed by the subsequence σ(v).

The idea of the algorithm is to use the separable tree of σ to �nd an oc-
currence. To �nd an occurrence of σ̃, we need to �nd an occurrence for the
(permutation embedded in) its left child and the (permutation embedded in) its
right child such that those two occurrences are "compatible" with each other.
That is, the occurrences must be contained in rectangles such that the rectangle
of the occurrence of the left child is to the left of the rectangle of the occur-
rence of the right child. In addition, one has to be above the other, depending
whether σ is decomposed in a direct or skew sum. This is su�cient for �nding
an occurrence of σ, but not of σ̃. Indeed, the constraints on values and positions
are not respected.

Moreover, given that σ̃ = σ̃α ⊕ σ̃β , if the topmost, bottommost, leftmost,
and rightmost elements of σ̃α (resp. σ̃β) are respectively on the top, bottom,
left, and right edges of the rectangle of the occurrence of σ̃α (resp. σ̃β) and if
the two rectangles are consecutive on the x-coordinate (with the �rst minimal
rectangle ending at x and the second minimal rectangle starting at x+ 1), then
the matchings of the rightmost element of σ̃α and the matching of the leftmost
element of σ̃β are consecutive in index. In the same fashion, if the rectangles
are consecutive on the y-coordinate (with the �rst minimal rectangle ending at
y and the second minimal rectangle starting at y+ 1), then the matching of the
topmost element of σ̃α and the matching of the bottommost element of σ̃β are
consecutive in value.

The above remark allows us address the constraint value between the bot-
tommost element of σ̃β and the topmost element of σ̃α and the constraint posi-
tion between the leftmost element of σ̃β and the rightmost element of σ̃α.

Moreover, an occurrence of σ̃α (resp. σ̃β) takes care of all constraints on the
value and position of the elements in σα (resp.σβ), except for its topmost and
rightmost (resp. bottommost and leftmost) elements. The only constraints left
are thus on those elements, but we can resolve them by positioning the rectangle
correctly.

If u is a leaf such that σ[i] = σ(u), then we write σ(u+1) to represent σ[i+1]
and σ(u− 1) to represent σ[i− 1].

The pattern matching problem with bivincular permutation σ̃ can be solved
by the following family of subproblems: Given Tσ the compact separating tree
of σ. For every node v of Tσ, every two i, j ∈ [n] with i ≤ j, every lower
and upper bound lb,ub ∈ [n] with lb ≤ ub, that form a rectangle with left
bottom corner (i, lb) and right top corner (j,ub), we wish to decide whether the
rectangle contains an occurrence of σ̃(v). This gives us the following notation:

PMBv,i,j,lb,ub =


True if there exists an occurrence of the BVP

σ̃(v) in π where all elements are contained

in the rectangle ((i, lb), (j,ub)).

False otherwise

By abuse of language, we say that σ̃(v) occurs in ((i, lb), (j,ub)). This problem
can be solved by the following induction:
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Base: If v is a leaf, then :

PMBv,i,j,lb,ub =



True If ∃ι ∈ [i, j] and π[ι] ∈ [lb, ub]

and if σ(v)(σ(v) + 1), then π[ι] = ub

and if σ(v)
q
, then π[ι] = ub = n

and if (σ(v)− 1)σ(v), then π[ι] = lb

and if pσ(v), then π[ι] = lb = 1

and if σ(v)σ(v + 1), then ι = j

and if σ(v)y, then ι = j = n

and if σ(v − 1)σ(v), then ι = i

and if xσ(v), then ι = i = 1

False otherwise

A leaf occurs in ((i, lb), (j,ub)) if and only if the rectangle is not empty, which is
what the �rst condition tests. The next four conditions assure that the matched
element is on an edge of ((i, lb), (j,ub)). For example, if σ(v)σ(v + 1) then the
matched element must be on the right edge, and intuitively σ(v + 1) will be on
the left edge of the "next" rectangle.

Step. Here i < j and lb < ub and we let vL and vR stand for the left and
right children of v respectively.

Suppose that σ(v) occurs in ((i, lb), (j,ub)), and that v is a positive node.
As such, σ(v) = σ(vL)⊕σ(vR); in other words, σ(v) forms a stair up of two rect-
angles as must the occurrence of σ(v). An occurrence of σ(v) is thus composed
of a left rectangle that contains the occurrence of σ(vL) and a right rectangle
that contains the occurrence of σ(vR).

To �nd whether σ(v) occurs in ((i, lb), (j,ub)), we just have to �nd whether
such occurrence of σ(vL) and σ(vR) exist. We can do so by trying every pair of
such rectangles. However, to reduce the number of pairs to test and control the
position and value of the elements of the occurrence, we require that the left
rectangle share the same bottom and left edges as the rectangle ((i, lb), (j,ub)).
That is the left rectangle is ((i, lb), (∗, ∗)), the right rectangle shares the same
top edge and the same right edge as rectangle ((i, lb), (j,ub)) It others words,
the right rectangle is ((∗, ∗), (j,ub)) and the left rectangle is consecutive in x and
y coordinates to the right rectangle. We hence try to �nd occurrences of σ(vL)
and σ(vR) in every pair of rectangles ((i, ι−1), (lb, b−1) and ((ι, j), (b,ub)) (see
Figure 6.7). In notation, this give us the following:

PMBv,i,j,lb,ub =
∨

ι∈(i,j]
b∈(lb,ub]

PMBvL,i,ι−1,lb,b−1 ∧PMBvR,ι,j,b,ub

The case in which v is a negative node can be deduced following the same
idea:

PMBv,i,j,lb,ub =
∨

ι∈(i,j]
b∈(lb,ub]

PMBvL,i,ι−1,b−1,ub ∧PMBvR,ι,j,lb,b

If no conditions on positions or values exist, this algorithm solves the pattern
matching problem: If σ = σα⊕σβ , then every element of σα is left of and below
every element of σβ . Moreover, if occurrences of σα and σβ exist such that
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i ι j
lb

b

ub

Figure 6.7 � The rectangle given in input is split into a pair of rectangles such
that the left rectangle is below and at the left of the right rectangle. Moreover
they are next to each other to be optimal.

σ(v)

σ(v′)

i ι j
lb

b

ub

Figure 6.8 � The topmost element of the left rectangle σ(v) and the bottommost
element of the right rectangle σ(v′) are consecutive in value if and only if σ(v)
is matched to b− 1 and σ(v′) is matched to b.

the elements of the occurrence of σα are left of and below the elements of the
occurrence of σβ , then there exists an occurrence of σ in π. More formally, we
have to check every case possible to determine whether the elements really occur
on the edges.

For the constraints on positions and values, intuitively, whenever we have
σ(v)σ(v′) and w as the deepest ancestors of v and v′, σ(v) is matched to the
right edge of the left rectangle and σ(v′) is matched to the left edge of the
right rectangle so that σ(v) and σ(v′) are consecutive in index. Likewise, if
(σ(v))σ(v′), σ(v) is matched to the top edge of the left rectangle and σ(v′) is

matched to the bottom edge of the right rectangle so that σ(v) and σ(v′) are
consecutive in value. See Figure 6.9).

Position Constraints. Three types of position constraints are added by BVP
.

• If xσ[1], then the leftmost element of σ must be matched to the leftmost
element of π (σ[1] occurs in π[1] in an occurrence of σ in π). Remark that
the leaf v such that σ(v) = σ[1] is the leftmost ancestor of rσ. Note that
the rectangle of a left child shares the same left edge as the rectangle of
its father (by induction); plus, this is solved in the base case, which asks
for the matched element to be on its left edge. Finally note that the main
problem has x = 1 for its left edge.

• The condition σ[nσ]y follows the same idea as the condition xσ[1].
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σ(v)

σ(v′)

i ι j
lb

b

ub

Figure 6.9 � The matching element of σ(v) and σ(v′) are consecutive in position
if and only if σ(v) is matched to π[ι− 1] and σ(v′) is matched to π[ι].

Figure 6.10 � If v occurs in the dotted rectangle then u occurs in the bold
rectangle.

• If σ(v)σ(v′) (and thus σ(v + 1) = σ(v′) and σ(v) = σ(v′ − 1) ), then the

index of the occurrences of σ(v) and σ(v′) must be consecutive. In other
words, if σ(v) occurs in π[j] then σ(v′) must occur in π[j + 1]. Let w be
the �rst common ancestor of v and v′ and wL be the left child of w and wR
be the right child of w. First note that v is the rightmost ancestor of wL.
As such, the rectangle of v shares the same right edge as the rectangle
of wL, plus v

′ is the leftmost ancestor wR and thus the rectangle of v′

shares the same left edge as the rectangle of wR. Moreover, these cases
are solved as base cases, which ask for the element matching v to be on its
right edge, and for the element matching v′ to be on its left edge. Finally,
remark that the pair of rectangles of two brothers is consecutive in the
x-coordinate (by induction).

Before we delve into the value constraints, it is important to highlight a
property.

Property 75. Given a node v and a leaf u, such that σ(u) is the maximal
(resp. minimal) element of σ(v), if v occurs in ((i, lb), (j,ub)), then there exists
i ≤ ι ≤ ι′ ≤ j, lb ≤ b ≤ ub and u occurs in ((ι, b), (ι′,ub)) (resp. ((ι, lb), (ι′, b))).

In other words, if v occurs in a rectangle R and u is the leaf with the maximal
element of σ(v), then there exists an occurrence of u included in a rectangle that
shares the same top edge as R (see Figure 6.10). Especially if PMBv,i,j,lb,ub is
true then PMBu,ι,ι′,b,ub is true.

Proof. We focus on supporting the assertion in the case in which σ(u) is the
maximal element of σ(v); the other case can be dealt by following the same idea
or using a complement's argument. Suppose that the assertion is false. If the
rectangle of u cannot have the same top edge as the rectangle of v a rectangle
in between exists; in other words, there exists a value larger than σ(u) which is
not possible.
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Value Constraints. Three types of value constraints are added by BVP .

• If pσ(v) (and thus σ(v) = 1), then the minimal value of σ must occur in
the minimal value of π. According to Property 75, the rectangle of σ(v)
has the same bottom edge as the rectangle of σ(rσ). This is also solved
in the base case, which asks the matching element to be on the bottom
edge. Finally, the rectangle of rσ has y = 1 as its bottom edge.

• The σ(v)
q
follows the same idea as pσ(v).

• If σ(v)σ(v′) (and thus σ(v′) = σ(v) + 1), then the occurrences of σ(v)
and σ(v′) must be consecutive. In other words, if σ(v) occurs in π[j] then
σ(v′) must occur in π[j] + 1. Let w be the �rst common ancestor of v
and v′. wL be the left child of w and wR be the right child of w. if w
is positive, then v is a child of wL and v′ is a child of wR. First σ(v)
is the maximal element of σ(wL); otherwise, σ(v) and σ(v′) would not
be consecutive. According to Property 75, the rectangle of σ(v) has the
same top edge as the rectangle of σ(wL). In addition, σ(v′) is the minimal
element of σ(wR); otherwise, σ(v) and σ(v′) would not be consecutive.
Property 75 therefore dictates that the rectangle of σ(v) has the same
bottom edge as the rectangle of σ(wR). Moreover, this is solved in the
base case and the base case asks the element matching σ(v) to be on its top
edge and the element matching σ(v′) to be on its bottom edge. Finally,the
pair of rectangles of two brothers is consecutive in the y-coordinate (by
induction). We can prove the case in which if w is negative by following
the same idea or a complement's argument.

As such, at the end of the algorithm we can decide whether σ̃ occurs in π.
Finally, the algorithm has kn4 di�erent cases, and each case tries every pair of
rectangles in constant time (by dynamic programming), which means that each
case takes O(n2) time to solve. This gives us a O(kn6) time and O(kn4) space
algorithm.
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Chapter 7

Wedge Permutations

This chapter focuses on wedge permutations, which are a sub-class of the sepa-
rable permutations. Wedge permutations have more constraints on their struc-
tures than separable permutations, which allows us to reduce the computational
time and space of some problem solutions. A formal de�nition of a wedge per-
mutations is provided below.

De�nition 76. The set of wedge permutations is the set of (213, 231)-avoiding
permutations.

This chapter is organised as follows. We �rst describe the structure of a
wedge permutation. Section 7.2 is then presents an online linear-time algorithm
in the case that both permutations are wedge permutations, whereas Section 7.3
focuses on the case in which only the pattern is a wedge permutation. In Sec-
tion 7.4, we o�er a polynomial-time algorithm for a bivincular wedge permu-
tation pattern. Section 7.5 then considers the problem of �nding the longest
wedge permutation pattern in permutations.

7.1 Structure of a Wedge Permutation

7.1.1 General Structure.

Property 77. The �rst element of any wedge permutations must be either the
bottommost or the topmost element.

Proof. Any other initial element would serve as a `2' in either a 231 or 213 with
1 and n as the `1' and `3' respectively.

Property 78. π is a wedge permutation of size n if and only if for 1 ≤ i ≤ n,
π[i] is an RLMax or RLMin element.

Proof. It should be noted that every sub-permutation π[i :] is a wedge permuta-
tion. As a wedge permutation and given property 77, π[i] is either the topmost
or the bottommost element of π[i :], which is similar to saying that π[i] is an
RLMax or RLMin element.

Property 79. The sub-permutation formed with all of the RLMax elements of
a wedge permutation is a decreasing subsequence. In the same fashion, the set
of RLMin elements is an increasing subsequence.
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Figure 7.1 � The wedge permutation 123984765. Every point that is on a north-
west to south-east line represents a descent element and every point that is on
a south-west to north-east line represents an ascent element.

Proof. Indeed, each element that is to the left of and above the next RLMax
element is by de�nition an RLMax element. See Figure 7.1.

Property 80. Any RLMax element is below any RLMin element in a wedge
permutation.

Proof. Suppose that this is not the case. By de�nition, any RLMax element
is the topmost element of all the elements to its right. As such, any RLMin
element above an RLMax element must be on its left. However, the de�ni-
tion of an RLMin element dictates that no element comes below, so we have a
contradiction.

Remark 81. We can draw a horizontal line (passing thought the rightmost ele-
ment) on a wedge permutation such that the upper half contains only a decreasing
subsequence and the lower half contains only an increasing subsequence. This
shapes the permutation as a >, which is why it is called a wedge permutation.
See Figure 7.1.

7.1.2 Bijection with Binary Words

As a consequence of Property 78, a wedge permutation can be partitioned into
three sets: the set of RLMax elements, the set of RLMin elements and the
rightmost element, which can be both a RLMax element and a RLMin element.
The partition gives a bijection B between the set of wedge permutations of
size n with elements 1, . . . , n and the set of binary words of size n − 1. The
word w which corresponds to π is the word in which each letter at position
i represents whether π[i] is a RLMax or RLMin element. We also extend this
transformation to the subsequence of wedge permutations. Given a subsequence
s, the binary word B(s) is the word in which the letter at position i represents
whether s[i] is a RLMax or RLMin element. For any permutation, �guring out
whether an element is a RLMax or RLMin element requires one to read the
whole permutation from left to right, starting from the element's position.

Property 82. Let π be a wedge permutation and 1 ≤ i < n. Then,

1. π[i] is a RLMin element if and only if π[i] < π[i+ 1] and

2. π[i] is a RLMax element if and only if π[i] > π[i+ 1].
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Proof. We focus on proving the case of an RLMin element, as the case of a
RLMax element follows the same idea. The forward implication is trivial, as
the element is an RLMin element and it is the bottommost element of all the
elements to its right. In particular, an RLMin element is below the next element;
as such, if π[i] is an RLMin, then π[i] < π[i+ 1]. For the backward implication,
if π[i] is not an RLMin element, then there exists an element π[j] such that
π[i] > π[j] and i < j. In other words, we have that π[j] < π[i] < π[i + 1], and
i < i+ 1 < j which is equivalent to saying that π[i]π[i+ 1]π[j] is an occurrence
of 231, which is impossible, as π is a wedge permutation.

7.1.3 Decomposition of a Wedge Permutations into Fac-

tors

We need to consider a speci�c decomposition of σ into factors. We split the per-
mutation into maximal sequences of consecutive RLMin and RLMax elements,
which are respectively called an RLMin factor and an RLMax factor. This
corresponds to splitting the permutation between every pair of RLMin-RLMax
and RLMax-RLMin elements (see Figure 7.1). For the special case of a wedge
permutation, this also corresponds to splitting the permutation into maximal
sequences of elements consecutive in value. We label the factors from right to
left. It should be noted that the rightmost element can be both an RLMin and
RLMax element. We follow the convention that it is the same type as the ele-
ment before it for the factorisation, so that the �rst factor (that is the rightmost
factor) always contains at least two elements. For example, σ = 123984765 is
split as 123 − 98 − 4 − 765. Hence, σ = factor(4) factor(3) factor(2) factor(1)
with factor(4) = 123, factor(3) = 98, factor(2) = 4 and factor(1) = 765. See
Figure 7.1.

7.2 Both π and σ are Wedge Permutations

This section presents a fast algorithm for deciding if σ occurs in π in the case
that both π and σ are wedge permutations.

Proposition 83. Let π and σ be two wedge permutations. It can be decided
whether π has an occurrence of σ in linear time.

We �rst need the following lemma.

Lemma 84. Let π and σ be two wedge permutations. Given a bijection B from
the wedge permutations of size n to the binary word of size n − 1. Then, π
contains an occurrence of σ if and only if there exists a subsequence t of π such
that B(t) = B(σ).

Proof. The forward direction is obvious. We prove the backward direction by
induction on the size of σ: If B(t) = B(σ), then t is an occurrence of σ. The
base case is a pattern of size 2. Suppose that σ = 12 and thus B(σ) = RLMin.
Let t = πi1πi2 , i1 < i2, be a subsequence of π such that B(t) = RLMin; this
reduces to saying that πi1 < πi2 , and hence that t is an occurrence of σ = 12 in
π. A similar argument shows that the lemma holds for σ = 21. Next, assume
that the lemma is true for all patterns up to size k ≥ 2. Let σ be a wedge
permutation of size k+ 1 and let t be a subsequence of π of size k+ 1 such that
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B(t) = B(σ). As B(t)[2 :] = B(σ)[2 :] according to the induction hypothesis,
it follows that t[2 :] is an occurrence of σ[2 :]. Moreover, as B(t)[1] = B(σ)[1],
t[1] and σ[1] are both either the bottommost or the topmost elements of their
respective sequences. Therefore, t is an occurrence of σ in π.

A greedy algorithm decides whether σ occurs in π. One needs to read both
permutations from left to right stopping at the second to last element. If both
elements are RLMax or RLMin, the element of π is added to the solution,
and it goes to the next elements in both permutation; it otherwise goes to the
next element in the text permutation. As soon as the iteration stops because
σ contains no elements, there exists an occurrence; otherwise, no occurrence
exists.

Moreover, according to Property 82, we do not need to compute the words
B(σ) and B(π) before running the greedy algorithm. Deciding whether an ele-
ment is RLMax or RLMin can be done locally. The computation can be done
while the algorithm is being run, which thus yields an on-line algorithm.

Data: A wedge permutation π
Data: A wedge permutation σ
Result: An occurrence of σ in π, if any.
S = ∅ ;
i = 1 ;
j = 1 ;
while i is smaller than the size of π AND j is smaller than the size of σ
do
if π[i] and σ[j] are both RLMax element then

add σ[j] to S ;
i = i+ 1 j = j + 1

else if π[i] and σ[j] are both RLMin element then
add σ[j] to S ;
i = i+ 1 j = j + 1

else
i = i+ 1

if j is larger than the size of σ then
add the rightmost element of σ to S ;
return S ;

else
return that no solution exists ;

7.3 Only σ is a Wedge Permutation

This section focusses on the permutation pattern matching problem in cases
in which only the pattern σ is a wedge permutation. We �rst highlight some
properties of the decomposition in factors of a wedge permutation.

Property 85. In a wedge permutation, a factor is either an increasing or a
decreasing sequence of contiguous elements.

Proof. A factor is a sequence of RLMin or RLMax elements. It should be
recalled that any sub-sequence of RLMin or RLMax forms an increasing or
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decreasing subsequence (see Property 79), especially for a factor. For the con-
tiguous part, we focus on RLMin elements, as the same idea can applied to
RLMax elements. Suppose that two consecutive RLMin elements π[i] and
π[i + 1] are not contiguous. In that case, there exists an element π[j] such
that π[i] < π[j] < π[i + 1]. As π[i + 1] is an RLMin element there is no ele-
ments to its right below which are below it, π[j] is thus to the left of π[i + 1].
Moreover, as π[j] 6= π[i], π[j] is left of π[i]. In other words, j < i < i + 1 and
π[i] < π[i+ 1] < π[j], which means that π[j]π[i]π[i+ 1] is an occurrence of 231,
which is not possible, as π is a wedge permutation.

Property 86. A rectangle of π contains an occurrence of an RLMin (resp.
RLMax) factor if and only if it contains an increasing (resp. decreasing) sub-
sequence that is of the same size as or larger than the size of the factor.

Proof. This is a direct consequence of Property 85

We provide a property of wedge permutations that allows us to decide
whether a rectangle contains an occurrence of a wedge permutation.

Lemma 87. There exists an occurrence of a wedge permutation starting with a
leftmost RLMin (resp. RLMax) factor if and only if there are two occurrences
o1 and o2, such that o1 is to the left of and below (resp. to the left of and above)
o2, o1 contains an occurrence of the leftmost factor, o2 contains an occurrence
of the rest and o = o1o2 is an occurrence of the wedge permutation.

Proof. If this not true, there exists at least two elements o[i] and o[j] such that
o[i] and o[j] are not in the same order as the elements they represent. Without a
loss of generality, we can always assume that i < j. As o1 and o2 are occurrences,
o[i] and o[j] cannot be both in o1 or o2, this means that o[i] is in o1 and that o[j]
is in o2. As o[i] represents an element of the leftmost factor, (which is RLMin),
o[i] must be below any elements that are on its right. By hypothesis, as o[i]
and o[j] are not well ordered, o[i] > o[j] however this is impossible because by
hypothesis every element of o1 is below every element of o2.

Remark 88. Lemma 87 is based on the fact that a wedge permutation is a sepa-
rable permutation, which means that, any wedge permutation can be decomposed
into a direct/skew sum. In particular, for each wedge permutation π there exists
a decomposition π1 ⊕ π2 or π1 	 π2 in which π1 is the leftmost factor and π2 is
the rest of the permutation. For example, for the permutation 123984765, which
is split into factors as 123− 98− 4− 765, scan be written as 123⊕ 984765.

7.3.1 A Simple Algorithm

We show how to compute permutation pattern matching using Lemma 87. The
algorithm given in the proof is not the best we can do with respect to time and
space complexity, but it helps to clarify the better version described in the proof
of Proposition 98.

Lemma 89. Let σ be a wedge permutation of size k and π a permutation of
size n. It can be decided in polynomial time and space whether π contains an
occurrence of σ.

79



Proof. We solve the problem of deciding whether a rectangle ((j, lb), (j′, ub))
contains an occurrence of factor(i) . . . factor(i′). More formally,

PMπ
σ(i, ((j, lb), (j′, ub))) =


True if and only if ((j, lb), (j′, ub)) contains

an occurrence of factor(i) . . . factor(1)

False Otherwise

Based on Lemma 87, we know that this corresponds to computing an occur-
rence of factor(i) in a rectangle Rl and an occurrence of factor(i−1) . . . factor(1)
in a rectangle R2 such that R1 is to the left of and below R2 if factor(i) is an
RLMin factor; and R1 is to the left of and above R2 if factor(i) is an RLMax
factor. The strategy for doing so is to try every pair of rectangles that follows
this condition and determine whether they contain the occurrences. It should
be noted that, for the rectangle R1, we need to compute an occurrence for a
unique factor, which we know how to solve as a result of Property 86. For the
second R2, we have the same problem with a di�erent instance. As the new
instance has a smaller size than the original one, each instance becomes easier
until we have to compute a trivial instance.

Algorithm 8:

Data: A permutation π and a rectangle ((j, lb), (j′,ub)
Data: A wedge permutations σ and its decomposition into factors

σ` . . . σ1
Data: An index i
Result: Whether σ occurs in the rectangle.
if i is equal to 1 then

if the rectangle ((j, lb), (j′,ub) contains an occurrence of σ1 then
return True ;

else
return False ;

else
if σi is a RLMax factor then

for every pair of rectangles (rl, rr) of in ((j, lb), (j′,ub) such that
rl is left and below rr do
if σi occurs in rl AND σi−1 . . . σ1 occurs in rr then

return True ;

else
return False ;

else
for every pair of rectangles (rl, rr) of in ((j, lb), (j′,ub) such that
rl is left and above rr do
if σi occurs in rl AND σi−1 . . . σ1 occurs in rr then

return True ;

else
return False ;

80



Algorithm 8 is not complete, as we do not know how to compute whether
a rectangle contains an occurrence of a factor. The following algorithm solves
this issue.

Algorithm 9:

Data: A permutation π and a rectangle ((j, lb), (j′,ub)
Data: A Factors σi
Result: Whether σi occurs in the rectangle.
if σi is an RLMax factor then

if the rectangle ((j, lb), (j′,ub) contains a decreasing sequence of size
equal or larger than the size of σi then
return True ;

else
return False ;

if σi is a RLMin factor then
if the rectangle ((j, lb), (j′,ub) contains an increasing sequence of
size equal or larger than the size of σi then
return True ;

else
return False ;

To decide whether a rectangle contains an increasing or decreasing sub-
sequence of su�cient size, Algorithm 9 can compute the LIS or LDS of this
rectangle. This can be done in polynomial time in number of elements of the
rectangle, this number is bounded by the size of the text. Algorithm 9 thus run
in polynomial time in the size of the text. Algorithm 8 have a rectangle as an
input and iterate over every way of splitting this rectangle into two rectangles
which are comparable. The number of splitting is polynomial bounded by the
rectangle in input which is bounded by the size of the the text. Algorithm 8
thus run in polynomial time in the size of the text.

The following remarks reduce the complexity of Algorithm 8.

Remark 90. Remark 60 also applies here.

Remark 91. Deciding whether a rectangle contains a factor corresponds to
�nding its longest increasing or decreasing subsequence and comparing this sub-
sequence's size with the factor's size. The best algorithm so far for computing
the longest increasing/decreasing is provided by Bespamyatnikh and Segal in
[15]. It runs in O(n log log n) where n is the size of the permutation we want to
compute.

Remark 92. Computing every solution of the longest increasing/decreasing
subsequence before running the main algorithm o�ers two advantages:

1. We may want to �nd an occurrence in a rectangle more than one time,
and computing the answer once is enough.

2. The algorithm in [15] is well suited for our case as it computes not only
the longest increasing/decreasing subsequence between j and j′ but also for
every k and k′ such that j < k < k′ < j′.
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Remark 93. The algorithm in [15] runs in O(n log log n). However, as we add
an upper bound and a lower bound to compute every di�erent instance, in our
algorithm the whole computation is done in O(n3loglogn) time.

Remark 94. Given that the pattern starts with an RLMin (resp. RLMax)
element, if the occurrence starts at the left edge of the rectangle (i.e.. π[j] is
part of the occurrence), then as the leftmost element of the pattern is an RLMin
(resp RLMax) value, and every element of the occurrence is above (resp. below)
it, π[j] can be used as a lower (resp. upper) bound and thus as the bottom (resp.
top) edge of the rectangle. In the algorithm, instead of �nding any occurrence
we �nd an occurrence that start at the left edge. This has two consequences on
the algorithm:

1. We can remove one argument corresponding to the bottom or top edge, as
it only depends on π[i]. We remove the top edge if σi is an RLMin factor
and the bottom edge if σi is an RLMax factor. To do so, the algorithm
takes the left and right edge of the rectangle and a bound. The bound
represents the top edge of the rectangle if σi is an RLMin factor and the
bottom edge, otherwise.

2. The de�nition of the problem also changes. Instead of looking for any
occurrence on the rectangle, we want an occurrence that starts at the left
edge of the rectangle. It should be noted that the occurrence must start at
the left edge of the rectangle. We need to modify this part re�ect in account
the latter change (this corresponds to changing Algorithm 9). Thankfully,
the algorithm in [15] takes this into account by It actually computing the
longest increasing/decreasing subsequence starting at element π[i]. As a
result, we do not need to modify our algorithm. Moreover, as in accordance
with Remark 93 we only have one bound, the whole computation is thus
done in O(n2 log log n) time.

7.3.2 Improving the Simple Algorithm

We extend our research to reduce the number of pairs of rectangles that we
have to test. The idea is that when deciding whether a rectangle contains an
occurrence of a pattern, to split the rectangle, the algorithm �rst "cuts" it
vertically, to produce two rectangles (with the �rst to the left of the second
one). The algorithm then decides whether the second rectangle contains an
occurrence of the "right part of the pattern". From all of the occurrences that
the algorithm �nds, it is in our best interest to select the one that is contained in
the smallest rectangles possible; this ensures that the �rst rectangle is larger and
thus contains more elements, so it has a better chance to contain an occurrence
of the left part of the pattern. It should be noted that given that the leftmost
factor of the pattern is an RLMin (resp. RLMax) factor, the left, right, and
top (resp. bottom) edges of the second rectangle are �xed. Indeed, it should be
recalled that in the algorithm, the second rectangle shares its top (resp. bottom)
right corner with the original rectangle which provide the right and top (resp.
bottom) edges; moreover the algorithm has already "cut" the original rectangle
vertically, which gives the left edge. The "smallest rectangle" can thus only be
obtained using the bottom (resp. top) edge, which should be the topmost (resp.
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Figure 7.2 � The wedge permutation 123984765. Every line represents a factor,
every circled point represents the leftmost element of each factor, and LMEp
represent the indexes of those elements.

bottommost) possible. The next property indicates which element are topmost
and bottommost, with ensuing lemma formalising what is said above.

However we �rst introduce the notation LMEp(s), which stands for the left-
most element position: Suppose that s is a subsequence of S, which means
that LMEp(s) is the position of the leftmost element of s in S. For every
factor, LMEp(factor(j)) thus stands for the position in σ of the leftmost ele-
ment of factor(j), for example, LMEp(factor(4)) = 1, LMEp(factor(3)) = 4,
LMEp(factor(2)) = 6, and LMEp(factor(1)) = 7. See Figure 7.2 for a represen-
tation of every LMEp of each factor.

We also provide the following property to know the position of the topmost
and leftmost elements on a wedge permutation.

Property 95. Given a wedge permutation σ if factor(i) is an RLMin (resp.
RLMax) factor the topmost (resp. bottommost) element of factor(i) . . . factor(1)
is the leftmost element of factor(i− 1).

Simply put, the bottommost element is on the second factor from the left if
the �rst factor from the left is an RLMax factor; otherwise, the topmost element
is on the second factor from the left. See Figure 7.3.

Proof. This lemma states that, given a wedge permutation, if the permutation
starts with an RLMin (resp. RLMax) element then the topmost (resp. bottom-
most) element of this permutation is the �rst RLMax (resp. RLMin) element
(see Figure 7.3). This is easy to see from the shape of a wedge permutation.
Formally, the RLMin elements are below the RLMax elements. The topmost
element must thus be the �rst RLMax element, which is the leftmost element
of factor(i− 1).

We also de�ne Sπσ(i, j) as the set of all subsequences s of π[j :] that start at
π[j] and are occurrences of factor(i) . . . factor(1).

Lemma 96. Let σ be a wedge permutation and factor(i) be an RLMin (resp.
RLMax) factor σ. Let π be a permutation and s a subsequence of π such that
s ∈ Sπσ(i, j), and s minimises (resp. maximises) the matching of the leftmost
element of factor(i− 1). Let s′ be a subsequence of π such that s′ ∈ Sπσ(i, j) and
let t = t′s′ be a subsequence of π that extends s′ on the right. Assume that t
is an occurrence of factor(i + 1) . . . factor(1) such that the leftmost element of
factor(i) is matched to π[j]. The subsequence t′s is then also an occurrence of
factor(i + 1) . . . factor(1) such that the leftmost element of factor(i) is matched
to π[j].
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factor(i− 1)

factor(i)

factor(i+ 1)

topmost element

bottommost element

Su�x starting at factor(i)

Figure 7.3 � The topmost element of the su�x starting at factor(i) is the left-
most element of factor(i − 1) (represented by the gray dot). PMπ

σ(i, j) is the
smallest value of the matching of the topmost element (the gray dot) in all the
occurrences of the su�x starting at LMEp(factor(i)) in π[j :].

Informally, this lemma states that we can replace the rectangle of an occur-
rence in Sπσ(i, j) by another rectangle of an occurrence in Sπσ(i, j) such that the
second rectangle shares the same edges as the �rst one, except for the top edge,
which is lower. In particular, the second rectangle can be chosen as the one with
the lowest top edge of all rectangles that share the right, bottoms and left edges.
More formally, given any occurrence of factor(i + 1) factor(i) . . . factor(1), in
which factor(i) is an RLMin (resp. RLMax) factor, we can replace the part
of the occurrence where factor(i) . . . factor(1) occurs, by any occurrence that
minimises (resp. maximises) the leftmost element of factor(i − 1). Indeed, the
leftmost element of factor(i− 1) is the topmost (resp. bottommost) element of
factor(i) . . . factor(1) (see Figure 7.3).

Proof. Let us consider the case in which factor(i) is an RLMin factor. By
de�nition s is an occurrence of σ[LMEp(factor(i)) :]. First of all, remark that t′

is an occurrence of factor(i+ 1). To prove that t′s is an occurrence of factor(i+
1) . . . factor(1), we thus need to prove that the elements of t′ are above the
elements of s. Since t′s′ is an occurrence of factor(i + 1) . . . factor(1) it follows
that the elements of t′ are above the elements of s′. Moreover, the topmost
element of s is below (or equal to) the topmost element of s′; as such, the
elements of s are below the elements of t′. We use a symmetric argument if
factor(i) is an RLMax factor.

Lemma 97. Let σ be a wedge permutation, factor(i) be an RLMin (resp.
RLMax) factor and s be a subsequence of π such that s ∈ Sπσ(i, j) and it min-
imises (resp. maximises) the matching of the leftmost element of factor(i− 1).
The following statements are equivalent:

• There exists an occurrence of σ in π in which the leftmost element of
factor(i) is matched to π[j], and

• There exists an occurrence t of factor(`) . . . factor(i+ 1) in π[: j − 1] such
that ts is an occurrence of σ in π with the leftmost element of factor(i)
matched to π[j].

Proof. The backward direction is trivial, and the forward direction follows from
Lemma 96.
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This lemma goes a step further from the previous one, as it states that if
there is no occurrence of σ in π in which the leftmost element of factor(i) is
matched to π[j] and such that the leftmost element of factor(i−1) is minimised
(resp. maximised), then no occurrence exists at all.

Proposition 98. Let σ be a wedge permutation of size k and π be a permutation
of size n. It can decided in O(max(kn2, n2 log(log(n))) time and O(n3) space if
π contains an occurrence of σ.

Proof. This algorithm is similar to the previous one, as it takes a rectangle and
decides whether it contains an occurrence of σ. However, instead of returning
true or false, assuming that factor(i) is an RLMin (resp. RLMax) factor the
algorithm returns the optimal value of the top (resp. bottom) edge of a rectangle
that contain the pattern (or a special value that indicates that no occurrence
exists). In the recursion, the computed value of the right rectangle is thus used
as the top (resp. bottom) edge of the left rectangle.

We �rst introduce a set of values needed to solve the problems. Let LISπ(j, j′

bound) (resp. LDSπ(j, j′, bound)) be the longest increasing (resp. decreas-
ing) subsequence in π[j : j′] starting at π[j], with every element of this subse-
quence being smaller (resp. larger) than or equal to bound. LISπ and LDSπ
can be computed in O(n2 log(log(n))) time (see [15]). LISπ(j, j′, bound) (resp.
LDSπ(j, j′, bound)) allows us to decide the existence of an occurrence starting at
π[j] of any LRMin (resp. LRMax) factor in the rectangle ((j,π[j]), (j′, bound))
(resp. ((j, bound) ,(j′, π[j])).

Given an RLMin (resp. RLMax) factor, namely factor(i), of σ and a position
j in π, we want the value of the top (resp. bottom) edge of any rectangle
with bottom left (resp. top left) corner (j, π[j]) containing an occurrence of
factor(i) . . . factor(1) starting at π[j] and minimises (resp. maximises) its top
(resp. bottom) edge or a value, which indicates that no occurrence exists in this
rectangle. This can be expressed more formally as follows:

• If factor(i) is an RLMin factor, then

PMπ
σ(i, j) =

The top edge of any rectangle with bottom left corner (j, π[j])

with right edge n containing an occurrence of

factor(i) . . . factor(1) starting at π[j] which minimises the top edge.

Or ∞ if no occurrence exists.

• If factor(i) is an RLMax factor, then

PMπ
σ(i, j) =

The bottom edge of any rectangle with top left corner (j, π[j])

with right edge n containing an occurrence of

factor(i) . . . factor(1) starting at π[j] which maximises its bottom edge.

Or 0 if no occurrence exists.
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By de�nition, there exists an occurrence of σ in π if and only if there exists
a j ∈ {1, . . . , n} such that PMπ

σ(`, j) 6= 0 and PMπ
σ(`, j) 6=∞ with ` the number

of factors in σ.
We show how to compute, these values recursively.

• If the permutation is reduced to an RLMin (resp. RLMax) factor, then one
has to compute the top (resp. bottom) edge of a rectangle that contains
an increasing or decreasing subsequence that is the same size or larger
than the size of the unique factor starting at π[j]. This case occurs when
i = 1:

� If factor(i) is an RLMin factor, then

PMπ
σ(1, j) = min {π[j′] | |factor(1)| ≤ LISπ(j, j′, π[j′])}j′≥j ∪ {∞}.

� If factor(i) is an RLMax factor, then

PMπ
σ(1, j) = max {π[j′] | |factor(1)| ≤ LDSπ(j, j′, π[j′])}j′≥j ∪ {0}.

• Otherwise, if factor(i) is an RLMin (resp. RLMax) factor, we split the
rectangle into two rectangles R1 and R2 such that R1 is left of and below
(resp. left of and above) R2. R1 contains an occurrence of factor(i)
starting at j, and R2 contains an occurrence of factor(i− 1) . . . factor(1)
starting at j′ > j. As mentioned before, we only need to test the pair of
rectangles in which the rectangle R2 has for its left edge j′ and has the
highest bottom (resp. lowest top) edge that contains an occurrence. For
R2, we thus want a rectangle starting at j′, which contains an occurrence
of factor(i−1) . . . factor(i′) starting at j′ with maximise the bottom (resp.
minimise the top) edge. Moreover, we also wish to know the value of the
bottom (resp. top) edge to use it as a bound for R1 so that R1 is below
R2. In other words we want PMπ

σ(i − 1, j′). As before, R1 has to be as
large as possible. Moreover, to ensure that R1 is to the left of and below
(resp. to the left and above) R2, R1 must have (j′− 1,PMπ

σ(i− 1, j′)− 1)
as its top right corner (resp. (j′−1,PMπ

σ(i−1, j′)+1) as its bottom right
corner ). Finally, in all of the "correct" pairs of rectangles, we need the
value of the top (resp. bottom) edge of a rectangle that minimises the top
edge (resp. maximises the bottom edge) containing the pair of rectangles.
It should be noted that the top (resp. bottom) edge has a value of π[j′]
(the matching of LMEp(factor(i − 1))). Formally, this can be expressed
as follows:

• If factor(i) is an RLMin factor, then

PMπ
σ(i, j) =

min{∞}∪{π[j′] | b = PMπ
σ(i−1, j′) is not 0 and |factor(i)| ≤ LISπ(j, j′−

1, b− 1)}j′<j

• If factor(i) is an RLMax factor, then

PMπ
σ(i, j) =

max{0}∪{π[j′] | b = PMπ
σ(i−1, j′) is not ∞ and |factor(i)| ≤ LDSπ(j, j′−

1, b+ 1)}j′<j
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The number of factors is bound by k. All instances of LISπ and LDSπ
can be computed in O(n2 log(log(n)) time, which takes O(n3) space (see [15]).
There are n base cases that can be computed in O(n) time, which means
that; computing all base cases takes O(n2) time. There are kn di�erent in-
stances of PM, each taking O(n) time to compute; as such, computing every
instance of PM takes O(kn2) time. Computing all of the values therefore takes
O(max(kn2, n2 log(log(n))) time. As each value takes O(1) space, the problem
takes O(kn2) space, but LISπ and LDSπ take O(n3) space.

7.4 Bivincular Wedge Permutation Patterns

This section is devoted to the pattern matching problem with bivincular wedge
permutation patterns. It should be recalled that a BVP generalises a permuta-
tion pattern by being able to force elements in an occurrence to be consecutive
in values or/and positions. Intuitively, we cannot use the previous algorithm,
as the restrictions on position and value are not managed.

Given a bivincular permutation pattern σ̃, we let σ̃[i :] refer to the bivincular
permutation pattern, which has for its top line the top line of σ̃ in which we
remove the elements before i. Moreover, σ̃[i :] has for bottom line the elements
of σ[i :] in which m and m + 1 are underlined if and only if m and m + 1 are

in σ[i :], and m and m + 1 are underlined in σ̃. For example, given σ̃ = 1234q
x2143 ,

σ = 2143 and σ̃[2 :] = 234q
143 .

Below, we describe other structure properties of wedge permutations needed
to solve the problem.

Lemma 99. Let σ be a wedge permutation.

• If σ[i] is an RLMin element and not the rightmost element, then σ[i] + 1
is to the right of σ[i].

• If σ[i] is an RLMax element and not the rightmost element, then σ[i]− 1
is to the right of σ[i].

Proof. For the �rst point, by contradiction, σ[i] + 1 would serve as a `2', σ[i]
would serve as a `1' and σ[i + 1] would serve as a `3' in an occurrence of 213.
For the second point, by contradiction, σ[i]− 1 would serve as a `2', σ[i] would
serve as a `3' and σ[i+ 1] would serve as a `1' in an occurrence of 231.

Lemma 100. Let σ be a wedge permutation.

• If m and m + 1 are both RLMin elements, then any element between m
and m+ 1 (if any) is an RLMax element.

• If m and m − 1 are both RLmax elements, then any element between m
and m− 1 (if any) is an RLMin element.

Proof. For the �rst point, by contradiction, let σ[α] = m and σ[β] = m + 1
and suppose that there exists α < γ < β, such that σ[γ] is an RLMin element.
As we know that RLMin elements are strictly increasing. σ[α] < σ[γ] < σ[β],
which contradicts the fact that σ[β] = σ[α] + 1.
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Proposition 101. Let σ̃ be a bivincular wedge permutation pattern of size k
and π be a permutation of size n. It can be decided in O(kn4) time and O(kn3)
space if π contains an occurrence of σ̃.

Proof. Consider the following problem: Given a lower bound lb, an upper bound
ub, a position i of σ and a position j of π, we want to know if there is an
occurrence of σ̃[i :] in π[j :] with every element of the occurrence in [lb,ub] and
starting at π[j]. In other words, we wish to determine if the rectangle with the
bottom left corner (j, lb) and the top right corner (n, ub) contains an occurrence
of σ̃[i :] starting at π[j]. More formally stated,

PMσ̃
π(lb,ub, i, j) =

true if π[j :] has an occurrence of the BVP σ̃[i :]

with every element of the occurrence in [lb,ub]

and starting at π[j]

and if σ[i](σ[i] + 1) or σ[i]q appear in σ̃ then π[j] = ub

and if (σ[i]− 1)σ[i] or pσ[i] appear in σ̃ then π[j] = lb

false otherwise

Clearly if xσ[1] does not appear in σ̃ then π contains an occurrence of σ̃ if
and only if

⋃
0<j PMσ̃

π(1, n, 1, j) is true. If xσ[1] appears in σ then π contains
an occurrence of the bivincular wedge permutation pattern σ̃ if and only if
PMσ̃

π(1, n, 1, 1) is true.
We show how to compute those values recursively. Informally, given that

σ[i] is an RLMin element, �nding an occurrence of σ̃[i :] in π[j :] requires us to
�nd a rectangle R in π such that R contains an occurrence of σ̃[i + 1 :] and R
is to the right and above π[j]. Moreover

• If σ[i]σ[i+ 1], then we require that π[j] and R be next to each other
horizontally and that the occurrence in R starts at the left edge of R. In
other words, R has j + 1 for its left edge.

• If σ[i](σ[i] + 1) then we require that π[j] and R be next to each other
vertically and that the minimal element in the occurrence is on the bottom
edge of R. In other words, R has for its bottom edge π[j] + 1.

Note that the parameters lb, ub and j correspond to the occurrence of σ̃[i+ 1 :]
and are respectively, the bottom, the top and the left edges of the rectangle R.
The case in which σ[i] is an RLMax element can be dealt with symmetrically.
More formally stated:
BASE:

PMσ̃
π(lb,ub, k, j) =



true if π[j] ∈ [lb,ub]

and if σ[k]y appears in σ̃ then j = n

and if xσ[k] appears in σ̃ then j = 1

and if σ[k]
q
appears in σ̃ then π[j] = ub = n

and if pσ[k] appears in σ̃ then π[j] = lb = 1

and if (σ[k]− 1)σ[k] appears in σ̃ then π[j] = lb

and if (σ[k]σ[k] + 1) appears in σ̃ then π[j] = ub

false otherwise
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The base case �nds an occurrence of the rightmost element of the pattern.
If the rightmost element does not have any restriction on positions and values,
then PMσ̃

π(lb,ub, k, j) is true if and only if σ[k] is matched to π[j]. This is true if
π[j] ∈ [lb,ub]. If σ[k]y appears in σ̃ then σ[k] must be matched to the rightmost
element of π; thus j must be n. If xσ[k] appears in σ̃ then σ[k] must be matched

to the leftmost element; thus j must be 1. If σ[k]
q
appears in σ̃ then σ[k] must be

matched to the topmost element, which is n. If pσ[k] appears in σ̃ then σ[k] must
be matched to the bottommost element, which is 1. If (σ[k]− 1)σ[k] appears
in σ̃, then the matching elements of σ[k] and σ[k] − 1 must be consecutive in
value, by recursion the value of the element matching σ[k]−1 plus 1 is recorded
in lb. σ[k] must thus be matched to lb. If (σ[k]σ[k] + 1) appears in σ̃, then the
element matching σ[k] and σ[k] + 1 must be consecutive in value, by recursion
the value of the element matching σ[k] + 1 minus 1 is recorded in ub. σ[k] must
thus be matched to ub.
STEP:

We consider three cases for the problem PMσ̃
π(lb,ub, i, j):

• If π[j] /∈ [lb,ub], then:

PMσ̃
π(lb,ub, i, j) = false

which is immediate from the de�nition.

• If π[j] ∈ [lb,ub] and σ[i] is an RLMin element, then:

PMσ̃
π(lb,ub, i, j) =

∨
`>j PMσ̃

π(π[j] + 1,ub, i+ 1, `) if σ[i] is not underlined

and σ[i] is not overlined∨
`>j PMσ̃

π(π[j] + 1,ub, i+ 1, `) if σ[i] is not underlined

and (σ[i]− 1)σ[i] or pσ[i]

appears in σ̃

and π[j] = lb

PMσ̃
π(π[j] + 1,ub, i+ 1, j + 1) if σ[i]σ[i+ 1]

appears in σ̃

and σ[i] is not overlined

PMσ̃
π(π[j] + 1,ub, i+ 1, j + 1) if σ[i]σ[i+ 1]

and (σ[i]− 1)σ[i] or pσ[i]

appear in σ̃

and π[j] = lb

false otherwise

It should be noted that σ[i] can be matched to π[j] because π[j] ∈ [lb,ub].
As such, if π[j + 1 :] has an occurrence of σ̃[i+ 1 :] with every element of
the occurrence in [π[j] + 1,ub], if the condition on position between σ[i]
and if σ[i+1] (if any) is respected and the condition on value between σ[i]
and σ[i]+1 (if any) is respected, then π[j :] has an occurrence of σ̃[i :]. To
decide the latter condition, by recursion, it is su�cient to know if there
exists `, j < ` such that PMσ̃

π(π[j] + 1,ub, i + 1, `) is true. The �rst case
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corresponds to an occurrence without restrictions on position and on value.
It is enough to know if there exists ` > j such that PMσ̃

π(π[j]+1,ub, i+1, `)
is true. The second case asks for the matching of σ[i] − 1 and σ[i] to be
consecutive in value, but the matching of σ[i] − 1 is lb−1; as such, we
want π[j] = lb. As the third case asks for the matching of σ[i] and σ[i+1]
to be consecutive in positions, the matching of σ[i + 1] must be π[j + 1].
The fourth case is a union of the second and third cases.

• If π[j] ∈ [lb,ub] and σ[i] is an RLMax element, then:

PMσ̃
π(lb,ub, i, j) =

∨
`>j PMσ̃

π(lb, π[j]− 1, i+ 1, `) if σ[i] is not underlined

and σ[i] is not overlined∨
`>j PMσ̃

π(lb, π[j]− 1, i+ 1, `) if σ[i] is not underlined

and σ[i](σ[i] + 1) or σ[i]
q

appear in σ̃

and π[j] = ub

PMσ̃
π(lb, π[j]− 1, i+ 1, j + 1) if σ[i]σ[i+ 1]

appears in σ̃

and σ[i] is not overlined

PMσ̃
π(lb, π[j]− 1, i+ 1, j + 1) if σ[i]σ[i+ 1]

and σ[i](σ[i] + 1) or σ[i]
q

appear in σ̃

and π[j] = ub

false otherwise

The same remark as in the previous case holds.

Some constraints do not appear when we compute PMσ̃
π(∗, ∗, i, ∗). In partic-

ular, in the case in which σ[i] is an RLMin, the conditions of σ[i− 1]σ[i] or/and

σ[i](σ[i] + 1) are not considered in the recursion. Moreover, σ[i− 1]σ[i] is not

considered because it is up to PMσ̃
π(∗, ∗, i − 1, ∗) to ensure that the elements

corresponding to elements at position i − 1 and i in an occurrence are next
to each other in position. In addition σ[i](σ[i] + 1) is not considered because
σ[i] + 1 is to the right of σ[i] (see Lemma 99) and addressed during the calls
of PMσ̃

π(∗, ∗, i′, ∗) for some i′ > i. When σ[i] is an RLMax σ[i− 1]σ[i] does not

appear in the conditions for the exact same reason, and (σ[i]− 1)σ[i] because
σ[i]− 1 is to the right of σ[i].

The procedure clearly returns true if π contains an occurrence of σ̃ if con-
straints on position or value exist. We next discuss how the position and value
constraints are taken into account so that the algorithm returns true if and only
if π has an occurrence of σ̃.

Position Constraints. Three types of position constraints can be added by
the underlined elements.
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• If xσ[1] appears in σ̃, then the leftmost element of σ must be matched to
the leftmost element of π (σ[1] is matched to π[1] in an occurrence of σ̃ in
π). This constraint is satis�ed by requiring that the occurrence starts at
the leftmost element of π: if PMσ̃

π(1, n, 1, 1) is true.

• If σ[k]y appears in σ̃, then the rightmost element σ must be matched to
the rightmost element of π (σ[k] is matched to π[n] in a occurrence of σ̃
in π). This constraint is checked in the base case.

• If σ[i]σ[i+ 1] appears in σ̃, then the positions of the element matching
σ[i] and σ[i+ 1] must be consecutive. In other words, if σ[i] is matched to
π[j] then σ[i+ 1] must be matched to π[j+ 1]. We ensure this restriction,
by recursion, by requiring that the matching of σ[i+ 1 :] starts at position
j + 1.

Value Constraints. Three types of value constraints can be added by the
overlined elements.

• If pσ[i] appears in σ̃ (and thus σ[i] = 1) then the bottommost element of
σ must be matched to the bottommost element of π.

� If σ[i] is an RLMin element, then:

∗ Every problem PMσ̃
π(lb, ∗, i, ∗) is true only if σ[i] is matched to

the element with a value lb (by recursion). Tt is thus enough to
require that lb = 1.

∗ The recursive calls for σ[1], . . ., σ[i− 1] do not change the lower
bound, as σ[i] is the leftmost RLMin element. Indeed the el-
ement 1 is the leftmost RLMin for any permutation. Finally,
the recursive calls for RLMax elements do not change the lower
bound.

∗ The �rst call of the problem has lb = 1 for parameter.

As a result, PMσ̃
π(∗, ∗, i, ∗) returns true only if σ[i] is matched to 1.

� If σ[i] is an RLMax element, then i = k (σ[i] is the rightmost ele-
ment). Every PMσ̃

π(∗, ∗, i ,∗) is thus a base case and true only if σ[i]
is matched to lb. Moreover, recursive calls for RLMax elements do
not change the lower bound. As such, PMσ̃

π(∗, ∗, i, ∗) returns true
only if σ[i] is matched to lb = 1.

• If σ[i]
q
appears in σ̃ (and thus σ[i] = k), then the topmost element of σ

must be matched to the topmost element of π.

� If σ[i] is an RLMax element, then:

∗ Every problem PMσ̃
π(∗,ub, i, ∗) is true only if σ[i] is matched to

the element with value ub (by recursion). It is thus su�cient to
require that ub = n.

∗ The recursive calls for σ[1], . . ., σ[i − 1] do not change the up-
per bound, as σ[i] is the leftmost RLMax element. Indeed the
element k is the leftmost RLMax for any permutation. Finally,
the recursive calls for RLMin elements do not change the upper
bound.
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∗ The �rst call of the problem has ub = n for parameter.

As such, PMσ̃
π(∗, ∗, i, ∗) returns true only if σ[i] is matched to n.

� If σ[i] is an RLMin element, then i = k (σ[i] is the rightmost element).
Every PMσ̃

π(∗, ∗, i , ∗) is thus a base case and true if σ[i] is matched
to ub. Moreover, recursive calls for RLMin elements do not change
the upper bound. As a result, PMσ̃

π(∗, ∗, i, ∗) returns true only if σ[i]
is matched to ub = n.

• If σ[i]σ[i′] appears in σ̃, (which implies that σ[i′] = σ[i] + 1) and i < i′

(the case in which i > i′ can be dealt following the same idea), then σ[i]
is matched to π[j] and σ[i′] is matched to π[j] + 1.

� In the case where σ[i] is an RLMax element is impossible, since σ[i′]
is to the right of and above σ[i],

� in the σ[i] is an RLMin element, and σ[i′] is an RLMax element, then
remark that

∗ i′ = k; indeed, if σ[i′] is not the rightmost element, there would
exist an element between σ[i] and σ[i′]. Every recursive call
PMσ̃

π(lb, ∗, i′, ∗) is thus solved as a base case. As such,
PMσ̃

π(lb, ∗, i′, ∗) is true only if σ[i′] is matched to the element lb.

∗ The recursive calls for σ[i + 1], . . ., σ[i′ − 1] do not change the
lower bound. Indeed, σ[i] is the rightmost RLMin. As a result
σ[i + 1], σ[i + 2], . . ., σ[i′ − 1] are RLMax elements. Moreover,
recursive calls for an RLMax do not change the lower bound.

∗ PMσ̃
π(lb, ∗, i, ∗) sets the lb to π[j] + 1 and matches σ[i] to π[j].

As such, σ[i] is matched to π[j], and σ[i′] is matched to π[j] + 1.

� If σ[i] is an RLMin element and σ[i′] is a RLMin, element then:

∗ Every recursive call PMσ̃
π(lb, ∗, i′, ∗) is true only if σ[i′] is matched

to the element with the value lb.

∗ The recursive calls for σ[i + 1], . . ., σ[i′ − 1] do not change the
lower bound. Indeed, based on Lemma 100, σ[i+1], . . ., σ[i′−1]
are RLMax elements. Finally, the recursive calls for RLMax
elements do not change the lower bound.

∗ PMσ̃
π(∗, ∗, i, ∗) sets lb to π[j] + 1 and matches σ[i] to π[j].

As such σ[i] is matched to π[j] and σ[i′] is matched to π[j] + 1.

There are n3 base cases that can be computed in constant time and kn3

di�erent cases. Each case takes up to O(n) time to compute, which means that
computing all cases takes O(kn4) time. As each case takes O(1) space, we need
O(kn3) space.

7.5 Computing the Longest Wedge Permutation

Pattern

This section focuses on a problem related to the PPM problem, continuing the
work undertaken in [20] and in [46].
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Given a set of permutations, the longest permutation that occurs in each
permutation of the set. This problem is known to be NP-Hard for an arbitrary
size of the set even when all of its permutations are separable (see [20]). We
demonstrate how to compute the longest wedge permutation occurring in a set,
although we do not hope that the problem is solvable in polynomial time if the
size of the set is not �xed. Indeed, the size of the set appears in the exponent
in the complexity of the algorithm. We thus focus on cases in which sets have
only one or two permutations.

For convenience, we say that a subsequence is a wedge subsequence if and
only if the permutation it represents is a wedge permutation.

We start with the easiest case in which only one input permutation is at
play. We need the sets of RLMax and RLMin elements:
A(π) = {i|π[i] is an RLMin element} ∪ {n} and
D(π) = {i|π[i] is an RLMax element} ∪ {n}.

Proposition 102. If si is the LIS with the last element at position f in π and
sd is the LDS with the last element at position f in π then si ∪ sd is a longest
wedge subsequence with the last element at position f in π.

Proof. Let us �rst prove that we have a wedge subsequence. Indeed, si is an
increasing subsequence with values below or equal to π[f ], and sd is a decreasing
subsequence with values above or equal to π[f ]; as such, si ∪ sd is a wedge sub-
sequence. Let us prove that this is a longest one. Let s be a wedge subsequence
with its rightmost element at position f in π such that |s| > |si ∪ sd|. It should
�rst be noted that A(s) is also an increasing subsequence with its rightmost ele-
ment at position f in π and that D(s) is also a decreasing subsequence with its
rightmost element at position f in π. As |s| > |si ∪ sd|, then either |A(s)| > |si|
or |D(s)| > |sd|, which contradicts with the de�nitions of si and sd.

Proposition 103. Let π be a permutation. The longest wedge subsequence that
can occur in π can be computed in O(n log(log(n))) time and O(n) space.

Proof. Proposition 102 leads to an algorithm in which one computes the LIS
and LDS ending at every possible position and then �nds the maximum sum of
the LIS and LDS. LIS and LDS can be computed in O(n log(log(n))) time and
O(n) space (see [15]); the maximums can then be found done in linear time.

We next consider a case in which the input is composed of two permutations.

Proposition 104. Given two permutations π1 of size n1 and π2 of size n2, the
longest common wedge subsequence can be computed in O(n31n

3
2) time and space.

Proof. Consider the following problem that computes the longest wedge subse-
quence common to π1 and π2: Given two permutations π1 and π2, we de�ne
LCSπ1,lb1,ub1,π2,lb2,ub2,i1,i2

= max {|s| | s occurs π1[i1 :] with every element of the occurrence in [lb1,ub1],
and s occurs π2[i2 :] with every element of the occurrence in [lb2,ub2], and s is

a wedge subsequence }

93



We show how to solve this problem by dynamic programming.
BASE:

LCSπ1,lb1,ub1,π2,lb2,ub2,n1,n2
=


1 if lb1 ≤ π1[n1] ≤ ub1 7

and lb2 ≤ π2[n2] ≤ ub2

0 otherwise

STEP:

LCSπ1,lb1,ub1,π2,lb2,ub2,i1,i2 = max



LCSπ1,lb1,ub1,π2,lb2,ub2,i1,i2+1

LCSπ1,lb1,ub1,π2,lb2,ub2,i1+1,i2

Mπ2,lb2,ub2

π1,lb1,ub1
(i1, i2)

with

Mπ2,lb2,ub2

π1,lb1,ub1
(i1, i2) =

1 + LCSπ1,π1[i1]+1,ub1,π2,π2[i2]+1,ub2,i1+1,i2+1 π1[i1] < lb1

and π2[i2] < lb2

1 + LCSπ1,lb1,π1[i1]−1,π2,lb2,π2[i2]−1,i1+1,i2+1 π1[i1] > ub1

and π2[i2] > ub2

0 otherwise

The solution to this problem relies on the fact that the longest wedge sub-
sequence is found by considering the problem with π1[i1 :] and π2[i2 + 1 :] or
π1[i1 + 1 :] and π2[i2 :] or by matching π1[i1] and π2[i2] and adding to the solu-
tion the LCS for π1[i1 + 1 :] and π2[i2 + 1 :] which is compatible, meaning that,
if we consider the current elements to correspond to an RLMin (resp. RLMax)
element in the longest wedge subsequence, then we consider only the solution
with elements above (below) π1[i1] for the occurrence in π1[i1 + 1 :] and π2[i2]
for the occurrence in π2[i2 + 1 :].

These relations lead to an O(|π1|3|π2|3) time and O(|π1|3|π2|3) space algo-
rithm. Indeed, |π1|3|π2|3 possible cases exists for the problem, each of which is
solved in constant time.
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Chapter 8

Conclusion

In this thesis we presented polynomial algorithm for the problems of PPM when
constraints are added on text and/or the pattern. We also explored the PPM
problem with BVP which is the �rst positive result on theses pattern. We end
this thesis by proposing some interesting questions in relation to PPM.

This thesis uses the classi�cation of permutations by avoiding classes. How-
ever, other class types exist, especially, the class of grid permutations (See [2]).
The grid class is given by a matrix M of −1, 0 or 1. Informally, in a plot
of a permutation, there exists a grid with the same dimensions as the matrix.
Intuitively, each brick of this grid is associated with the value in the matrix at
the same position as the grid. As such, if the value in the matrix is 1, then the
brick contains an increasing sequence, if the value is 0, then the brick contains
no element and if the value is −1, then the brick contains a decreasing sequence.
See Figure8.1 for an example.

It should be noted that [2] demonstrates that any grid class can be de�ne as
an avoiding class. For example any wedge permutations is in the grid class (but
not the only grid class) with matrix

(−1
1

)
because every wedge permutation can

be split horizontally such that the top part contains a decreasing subsequence
and the bottom part contains an increasing subsequence. Another example is
that a skew-merged permutation is in the grid class permutation with matrix(−1 1

1 −1
)
. Some interesting points about the grid permutation are as follows:

• A more relevant example of an avoiding class that can be de�ne as a class
of grid classes is that any separable permutation is in a grid class with a
matrix of which each row and column have at most one element di�erent
from 0. This de�nition of separable permutation exhibits a class of matrix.
A question that naturally arises is whether a class of matrices exists such
that the PPM is solvable in polynomial time for the corresponding class
of grid permutations. As a lead, we believe that whenever a pattern belong

to the grid class with the matrix belonging in the class
(
1 ... 1

)
and

( 1
...
1

)
of matrices, then PPM can be solved polynomially if the matrices have a
�xed size. Another class of matrices of �xed size, that we believe can be
solved polynomially, is de�ned as follow: for each element of the matrix
di�erent from 0, if its row contains another element di�erent from 0 then
its column is full of 0 and if its column contains another element di�erent
from 0 then its row is full of 0. The basics of an algorithm would be to
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Figure 8.1 � The permutation 149238756 is in the grid class permutations with
matrix

(
0 −1
1 1

)
.

use an algorithm solving the case above and to combine it with a splitting
strategy.

• The following question has been formulated in converse to the above lead:
Does there exists a class of matrices such that the PPM over the as-
sociated grid classes is NP-complete? An example of such result is in
the 321-avoiding permutations. Indeed, every 321-avoiding permutation
is known to be split-table into two increasing subsequences, which means
that every 321-avoiding permutations can be understood as a permuta-
tion in the grid class with matrices �lled with 0 except for two diagonals
south-west north-east which are �lled with 1.

• Our �rst intuition is that PPM can always be solved polynomially when
the pattern is in a grid class of a given matrix. Indeed, an algorithm could
try every possible grid in the text, and test whether each brick contains an
increasing or a decreasing subsequence of su�cient size, and try the com-
patibility between each brick. This would result in a polynomial algorithm
in the size of the matrix, but does it yield a correct algorithm?

• Another interesting question is whether the PPM problem can be solved
by a FTP algorithm by a value relevant to the size of the matrix of a
grid class permutations. The algorithm of Marx and Guillemot [32] is
exponential by the size of the pattern. In practice, the pattern can have
up to 10000 elements, but can be in grid class with a small matrix.
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