. , Tableau 29 Caractéristiques des échantillons SnO x (11,5-10g)/NTs+pré et SnO x (11,5-10g)/NTs+pré-T.T. issues

. , Tableau 30 Nomenclature des échantillons pour l'optimisation des revêtements sur le CBe

. , Tableau 31 Caractéristiques texturales des échantillons CBe, SnO x (0,7-10g)/CBe, SnO x (11,5-10g)/CBe, SnO x (11,5-3g)/CBe et SnO x, pp.5-6

, SnO x (0,7-10g)/CBe, SnO x (11,5-10g)/CBe, SnO x (11,5-3g)/CBe et SnO x (11,5-1g)/CBe issues des analyses thermogravimétriques, Tableau 32 Caractéristiques des échantillons CBe, p.148

. , CBe-acide et CBe-basique, Tableau 33 Valeurs des L a des échantillons CBe

. , Tableau 34 Nomenclature des échantillons pour l'optimisation des revêtements sur le CBs

. , Tableau 35 Pourcentage atomique des éléments détectés sur les différentes zones du grain par énergie dispersive en rayon X (EDX)

. , 5-10g)/CBs, SnO x (11,5-1g)/CBs et SnO x (11,5-0,6g)/CBs, Tableau 36 Caractéristiques texturales des échantillons CBs, SnO x (0,7-10g)/CBs, SnO x

. , Tableau 37 Nomenclature des échantillons pour l'optimisation des revêtements sur le CA

/. .. Ca, 5-10g)/CA, SnO x (11,5-2g)/CA et SnO x, Tableau 38 Caractéristiques texturales des échantillons CA, SnO x (0,7-10g)/CA, SnO x, pp.5-6

, SnO x (0,7-10g)/CA, SnO x (11,5-10g)/CA, SnO x (11,5-2g)/CA et SnO x (11,5-1g)/CA issues des analyses thermogravimétriques, Tableau 39 Caractéristiques des échantillons CA, p.163

C. Ca-basique and .. .. , Tableau 40 Valeurs des L a des échantillons CA

. , Tableau 41 Nomenclature utilisée pour les électrocatalyseurs synthétisés à base d'aérogel de carbone brut ou revêtu via la méthode polyol

/. .. Ca, Tableau 42 Tailles des cristallites de Pt mesurées via l'équation de Debye Scherrer des échantillons Pt/CA, Pt/SnO x (0,7-10g)/CA, Pt/SnO x (11,5-2g)/CA et Pt/SnO x, pp.5-6

. , Tableau 43 Nomenclature des échantillons pour l'étude sur l'influence de la durée du traitement plasma et du gaz plasmagène sur le dépôt de NPs de Pt sur CA

. , Tableau 44 Températures finales mesurées à l'arrêt des manipulations plasma sur les échantillons traités sous hélium

. , Tableau 45 Nomenclature des échantillons pour l'étude sur l'influence l'intensité de courant fournie sur le dépôt de NPs de Pt sur CA

/. .. Ca, Tableau 46 Nomenclature des échantillons pour l'étude sur le dépôt de NPs de Pt sur le SnO x, pp.5-7

. , Ar-60min-415mA)/SnO x /CA, Pt(Ar-120min-415mA)/SnO x /CA et Pt(Ar-120min-266mA), Tableau 47 Tailles des cristallites du Pt(111) et PtSn(202) mesurées via l'équation de Debye Scherrer des échantillons Pt

. , Ar-60min-415mA)/SnO x /CA, Pt(Ar-120min-415mA)/SnO x /CA et Pt(Ar-120min-266mA), Tableau 48 Pourcentages massiques de l'élément platine mesurés par EDX sur les échantillons Pt

. , Tableau 49 Nomenclature utilisée pour les électrocatalyseurs testés en électrode tournante

/. .. Ca, Tableau 50 Valeurs moyennes des tailles des NPs de Pt initiales et finales (post P1) des échantillons Pt/CA, Pt/SnO x (0,7-10g)/CA, Pt/SnO x, pp.5-6

/. .. Ca, Tableau 51 Valeurs moyennes des tailles des NPs de Pt initiales et finales (post P2) des échantillons Pt/CA, Pt/SnO x (0,7-10g)/CA, Pt/SnO x, pp.5-6

, Références bibliographiques

, « Fuel Cell Technolgies Office Multi-Year Research, Development, and Demonstration-Plan Section 3.4 Fuel Cells Section, 2016.

A. and «. , Production et consommation d'hydrogène aujourd'hui », Mémento de l'hydrogène-Fiche 1.3, févr, 2016.

C. Ea, Le power-to-Gas : l'avenir des énergies renouvelables ? », ARDI, 2016.

A. and «. , Etude portant sur l'hydrogène et la méthanation comme procédé de valorisation de l'électricité excédentaire », ADEME, Synthèse de l'étude, sept, 2014.

K. Kreuzer, « Mise en service de la centrale hybride ENERTRAG, 2011.

D. Arnone, A. Diaz-de-arcaya, C. Gadaleta-caldarola, L. Guenoux, A. Rossi et al., Highcapacity hydrogen-based green-energy storage solutions for grid balancing », INGRID project, févr, 2016.

«. Engie, Gestion des Réseaux par l'injection d'HYdrogène pour Décarboner les énergies », Engie, janv, 2014.

V. Knop, « Moteur à combustion interne », in L'Hydrogène, carburant de l'après-pétrole?, Éditions TECHNIP, 2012.

J. Saint-just and «. L'hydrogène-dans-les-carburants-gazeux-»,-in-l'hydrogène, , 2012.

M. Balat, « Hydrogen in fueled systems and the significance of hydrogen in vehicular transportation, Energy Sources Part B-Econ. Plan. Policy, vol.2, issue.1, pp.49-61, 2007.

A. and «. , , 2016.

M. Balat, « Potential importance of hydrogen as a future solution to environmental and transportation problems », Int. J. Hydrog. Energy, vol.33, pp.4013-4029, 2008.

M. Levent, D. J. Gunn, and M. A. El-bousiffi, « Production of hydrogen-rich gases from steam reforming of methane in an automatic catalytic microreactor », Int. J. Hydrog. Energy, vol.28, issue.9, pp.945-959, 2003.

F. Giroudière and . Le-vaporeformage-de, L'Hydrogène, 2012.

M. Onozaki, K. Watanabe, T. Hashimoto, H. Saegusa, and Y. Katayama, « Hydrogen production by the partial oxidation and steam reforming of tar from hot coke oven gas, Fuel, vol.85, issue.2, pp.143-149, 2006.

H. Jin, Y. Xu, R. Lin, and E. W. Han, « A proposal for a novel multi-functional energy system for the production of hydrogen and power, Int. J. Hydrog. Energy, vol.33, issue.1, pp.9-19, 2008.

A. Damien, Hydrogène par électrolyse de l'eau, 1992.

M. Saxe and P. Alvfors, Advantages of integration with industry for electrolytic hydrogen production », Energy, vol.32, pp.42-50, 2007.

T. Kato, M. Kubota, N. Kobayashi, Y. Suzuoki, and . Effective, , vol.30, pp.2580-2595, 2005.

D. Wang, S. Czernik, D. Montane, M. Mann, and E. E. Chornet, « Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions, Ind. Eng. Chem. Res, vol.36, issue.5, pp.1507-1518, 1997.

A. Demirbas, « Yields of hydrogen-rich gaseous products via pyrolysis from selected biomass samples, Fuel, vol.80, issue.13, pp.1885-1891, 2001.
DOI : 10.1016/s0140-6701(02)86203-8

M. F. Demirbas, « Hydrogen from various biomass species via pyrolysis and steam gasification processes », Energy Sources Part-Recovery Util, Environ. Eff, vol.28, pp.245-252, 2006.
DOI : 10.1080/009083190890003

T. Hanaoka, « Hydrogen production from woody biomass by steam gasification using a CO2 sorbent, Biomass Bioenergy, vol.28, issue.1, pp.63-68, 2005.
DOI : 10.1016/s0167-2991(04)80227-1

L. Cournac, « Les technologies de production de l'hydrogène », in L'Hydrogène, carburant de l'après-pétrole?, Éditions TECHNIP, 2012.

A. and «. , Guide d'information sur les risques et les mesures de sécurité liés à la production décentralisée d'hydrogène, 2015.

L. Zhou, Progress and problems in hydrogen storage methods, Renew. Sustain. Energy Rev, vol.9, issue.4, pp.395-408, 2005.

V. Ananthachar and J. J. Duffy, « Efficiencies of hydrogen storage systems onboard fuel cell vehicles, Sol. Energy, vol.78, issue.5, pp.687-694, 2005.

S. M. Aceves, G. D. Berry, J. Martinez-frias, and E. F. Espinosa-loza, Vehicular storage of hydrogen in insulated pressure vessels, vol.31, pp.2274-2283, 2006.

F. Schuth, B. Bogdanovic, and M. Felderhoff, « Light metal hydrides and complex hydrides for hydrogen storage, Chem. Commun, vol.20, pp.2249-2258, 2004.

B. Sakintuna, F. Lamari-darkrim, and E. M. Hirscher, Metal hydride materials for solid hydrogen storage: A review, vol.32, pp.1121-1140, 2007.

A. and «. , Guide d'information sur la sécurité des véhicules à hydrogène et des stations-service de distribution d'hydrogène, 2015.

A. , «. La-sécurité-hydrogène-en-france, . En-europe, and . Dans-le-monde, normes et réglements, 2016.

A. and «. , hydrogène énergie et les piles à combustible-Feuille de route stratégique, 2011.

R. Mosdale, Piles à combustible appliquées aux véhicules, 2008.

O. Z. Sharaf and M. F. Orhan, An overview of fuel cell technology: Fundamentals and applications, vol.32, pp.810-853, 2014.

A. Chandan, « High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)A review, J. Power Sources, vol.231, pp.264-278, 2013.
DOI : 10.1016/j.jpowsour.2012.11.126

URL : http://repository.uwc.ac.za/xmlui/bitstream/10566/3366/1/Chandan_High-temperature_2013.pdf

T. Priem, «. L'hydrogène-comme, and . Carburant, L'hydrogène, p.95, 2012.

N. Maraninchi, Le programme HyWay rassemble à Grenoble la plus grande flotte de véhicules électriques hydrogène en Europe, 2015.

A. , «. Corée, and . Sud, Les programmes hydrogène et piles à combustible, 2016.

A. and «. , Les programmes hydrogène et piles à combustible au Japon, 2016.

A. and «. , Les programmes hydrogène et piles à combustible aux USA, 2016.

A. and «. Le, Mémento de l'Hydrogène-Fiche 8.2, sept, 2015.

A. and «. L'hydrogène-en-france-en, , 2016.

«. Hype, quand les taxis parisiens roulent à l'hydrogène », Automobile Propre, pp.25-2017

. Disponible,

X. Li and I. Sabir, Review of bipolar plates in PEM fuel cells: Flow-field designs, vol.30, pp.359-371, 2005.

Y. Devrim, H. Devrim, and E. I. Eroglu, « Development of 500 W PEM fuel cell stack for portable power generators, Int. J. Hydrog. Energy, vol.40, pp.7707-7719, 2015.

K. More, R. Borup, and E. K. Reeves, « Identifying Contributing Degradation Phenomena in PEM Fuel Cell Membrane Electride Assemblies Via Electron Microscopy, vol.3, pp.717-733, 2006.

S. Mukerjee and S. Srinivasan, « Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells, J. Electroanal. Chem, vol.357, issue.1, pp.201-224, 1993.

F. Van-schalkwyk, G. Pattrick, J. Olivier, O. Conrad, and E. S. Blair, « Development and Scale Up of Enhanced ORR Pt-based Catalysts for PEMFCs, Fuel Cells, vol.16, issue.4, pp.414-427, 2016.

B. Geboes, « Surface and electrochemical characterisation of a Pt-Cu/C nano-structured electrocatalyst, prepared by galvanic displacement, Appl. Catal. B Environ, vol.150, pp.249-256, 2014.

C. Zhang, S. Y. Hwang, and E. Z. Peng, Size-dependent oxygen reduction property of octahedral PtNi nanoparticle electrocatalysts, J. Mater. Chem. A, vol.2, 2014.

M. J. Workman, « Platinum group metal-free electrocatalysts: Effects of synthesis on structure and performance in proton-exchange membrane fuel cell cathodes, J. Power Sources, vol.348, pp.30-39, 2017.

G. Faubert, R. Côté, J. P. Dodelet, M. Lefèvre, and E. P. Bertrand, « Oxygen reduction catalysts for polymer electrolyte fuel cells from the pyrolysis of FeII acetate adsorbed on 3,4,9,10perylenetetracarboxylic dianhydride, Electrochimica Acta, vol.44, pp.2589-2603, 1999.

C. W. Bezerra, « A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction, Electrochimica Acta, vol.53, pp.4937-4951, 2008.

M. Chisaka, « Zirconium Oxynitride-Catalyzed Oxygen Reduction Reaction at Polymer Electrolyte Fuel Cell Cathodes, ACS Omega, vol.2, issue.2, pp.678-684, 2017.

K. Kinoshita and . Particle, Size Effects for Oxygen Reduction on Highly Dispersed Platinum, J. Electrochem. Soc, vol.137, issue.3, pp.845-848, 1990.

N. Markovic, H. Gasteiger, and P. N. Ross, Kinetics of Oxygen Reduction on Pt(hkl) Electrodes: Implications for the Crystallite Size Effect with Supported Pt Electrocatalysts, vol.144, pp.1591-1597, 1997.

M. Balva, S. Legeai, N. Leclerc, E. Billy, and E. E. Meux, Environmentally Friendly Recycling of Fuel-Cell Membrane Electrode Assemblies by Using Ionic Liquids, vol.10, pp.2922-2935, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01840639

L. Duclos, M. Lupsea, G. Mandil, L. Svecova, P. Thivel et al., « Environmental assessment of proton exchange membrane fuel cell platinum catalyst recycling, J. Clean. Prod, vol.142, pp.2618-2628, 2017.

L. Duclos, L. Svecova, V. Laforest, G. Mandil, and P. Thivel, « Process development and optimization for platinum recovery from PEM fuel cell catalyst, Hydrometallurgy, vol.160, pp.79-89, 2016.
DOI : 10.1016/j.hydromet.2015.12.013

J. Zhao, X. He, J. Tian, C. Wan, and C. Jiang, « Reclaim/recycle of Pt/C catalysts for PEMFC, vol.48, pp.450-453, 2007.
DOI : 10.1016/j.enconman.2006.06.020

C. Handley, N. P. Brandon, R. Van-der, and . Vorst, « Impact of the European Union vehicle waste directive on end-of-life options for polymer electrolyte fuel cells, J. Power Sources, vol.106, issue.1, pp.344-352, 2002.

Y. Verde, G. Alonso, V. Ramos, H. Zhang, A. J. Jacobson et al., « Pt/C obtained from carbon with different treatments and (NH4)2PtCl6 as a Pt precursor, Appl. Catal. Gen, vol.277, issue.1, pp.201-207, 2004.
DOI : 10.1016/j.apcata.2004.09.013

«. Courbes and . Platine,

A. Gamez, D. Richard, P. Gallezot, F. Gloaguen, R. Faure et al., Oxygen reduction on well-defined platinum nanoparticles inside recast ionomer, vol.41, pp.307-314, 1996.
URL : https://hal.archives-ouvertes.fr/hal-00006371

S. Mukerjee, « Particle size and structural effects in platinum electrocatalysis, J. Appl. Electrochem, vol.20, issue.4, pp.537-548, 1990.

R. M. Darling and J. P. Meyers, « Kinetic Model of Platinum Dissolution in PEMFCs, J. Electrochem. Soc, vol.150, issue.11, pp.1523-1527, 2003.

H. A. Gasteiger, S. S. Kocha, B. Sompalli, and F. T. Wagner, « Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs, vol.56, pp.9-35, 2005.

O. Antoine, R. Durand, and . In, Situ Electrochemical Deposition of Pt Nanoparticles on Carbon and Inside Nafion, vol.4, pp.55-58, 2001.
DOI : 10.1149/1.1361233

J. Marie, S. Berthon-fabry, P. Achard, M. Chatenet, A. Pradourat et al., « Highly dispersed platinum on carbon aerogels as supported catalysts for PEM fuel cell-electrodes: comparison of two different synthesis paths, J. Non-Cryst. Solids, vol.350, pp.88-96, 2004.

M. Ouattara-brigaudet, C. Beauger, S. Berthon-fabry, and E. P. Achard, « Carbon Aerogels as Catalyst Supports and First Insights on Their Durability in Proton Exchange Membrane Fuel Cells, Fuel Cells, vol.11, issue.6, pp.726-734, 2011.

S. Lambert, « Synthesis of very highly dispersed platinum catalysts supported on carbon xerogels by the strong electrostatic adsorption method, J. Catal, vol.261, issue.1, pp.23-33, 2009.

N. Job, « Preparation of highly loaded Pt/carbon xerogel catalysts for Proton Exchange Membrane fuel cells by the Strong Electrostatic Adsorption method, Catal. Today, vol.150, issue.2, pp.119-127, 2010.

A. Zubiaur, M. Chatenet, F. Maillard, S. D. Lambert, J. Pirard et al., Using the Multiple SEA Method to Synthesize Pt/Carbon Xerogel Electrocatalysts for PEMFC Applications, Fuel Cells, vol.14, issue.3, pp.343-349, 2014.

S. Brimaud, « Influence of surfactant removal by chemical or thermal methods on structure and electroactivity of Pt/C catalysts prepared by water-in-oil microemulsion, J. Electroanal. Chem, vol.602, issue.2, pp.226-236, 2007.

H. Oh, J. Oh, Y. Hong, and H. Kim, « Investigation of carbon-supported Pt nanocatalyst preparation by the polyol process for fuel cell applications, Electrochimica Acta, vol.52, pp.7278-7285, 2007.

H. Oh, J. Oh, and H. Kim, « Modification of polyol process for synthesis of highly platinum loaded platinum-carbon catalysts for fuel cells, J. Power Sources, vol.183, issue.2, pp.600-603, 2008.

A. M. Lubers, « Proton Exchange Membrane Fuel Cell Flooding Caused by Residual Functional Groups after Platinum Atomic Layer Deposition, Electrochimica Acta, vol.237, pp.192-198, 2017.
DOI : 10.1016/j.electacta.2017.03.188

C. Liu, C. Wang, C. Kei, Y. Hsueh, and T. Perng, Atomic layer deposition of platinum nanoparticles on carbon nanotubes for application in proton-exchange membrane fuel cells, vol.5, pp.1535-1538, 2009.

S. Hirano, J. Kim, and E. S. Srinivasan, « High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes, Electrochimica Acta, vol.42, issue.10, pp.1587-1593, 1997.

M. Laurent-brocq, N. Job, D. Eskenazi, and J. Pireaux, « Pt/C catalyst for PEM fuel cells: Control of Pt nanoparticles characteristics through a novel plasma deposition method, Appl. Catal. B Environ, vol.147, pp.453-463, 2014.

D. Merche, Fuel Cell Electrodes From Organometallic Platinum Precursors: An Easy Atmospheric Plasma Approach, vol.13, pp.91-104, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01303206

D. Candusso, R. Glises, D. Hissel, J. Kauffmann, and M. Péra, Piles à combustible PEMFC et SOFC: Description et gestion du système », Tech. Ing. Génie Énergétique, n o BE8595, 2007.

B. Smitha, S. Sridhar, and A. A. Khan, « Solid polymer electrolyte membranes for fuel cell applications-a review, J. Membr. Sci, vol.259, issue.2, pp.10-26, 2005.

R. Borup, Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation, vol.107, pp.3904-3951, 2007.

K. D. Kreuer, On the development of proton conducting materials for technological applications, Solid State Ion, vol.97, pp.1-15, 1997.

J. J. Sumner, S. E. Creager, J. J. Ma, and D. D. Desmarteau, « Proton conductivity in Nafion® 117 and in a novel bis [(perfluoroalkyl) sulfonyl] imide ionomer membrane, J. Electrochem. Soc, vol.145, issue.1, pp.107-110, 1998.

T. A. Zawodzinski, T. E. Springer, F. Uribe, and E. S. Gottesfeld, Solid State Ion, vol.60, issue.1, pp.199-211, 1993.

K. T. Adjemian, S. J. Lee, S. Srinivasan, J. Benziger, and A. B. Bocarsly, « Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Operation at 80-140°C », J. Electrochem. Soc, vol.149, issue.3, pp.256-261, 2002.

A. Saccà, « Nafion-TiO2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs), J. Power Sources, vol.152, pp.16-21, 2005.

C. Beauger, G. Lainé, A. Burr, A. Taguet, B. Otazaghine et al., « Nafion®-sepiolite composite membranes for improved proton exchange membrane fuel cell performance, J. Membr. Sci, vol.430, pp.167-179, 2013.

C. Beauger, G. Lainé, A. Burr, A. Taguet, and E. B. Otazaghine, « Improvement of Nafion®-sepiolite composite membranes for PEMFC with sulfo-fluorinated sepiolite, J. Membr. Sci, vol.495, pp.392-403, 2015.

C. Zhao, X. Li, Z. Wang, Z. Dou, S. Zhong et al., « Synthesis of the block sulfonated poly(ether ether ketone)s (S-PEEKs) materials for proton exchange membrane, J. Membr. Sci, vol.280, issue.1, pp.643-650, 2006.

S. Sambandam and V. Ramani, « SPEEK/functionalized silica composite membranes for polymer electrolyte fuel cells, J. Power Sources, vol.170, issue.2, pp.259-267, 2007.

H. Erce-?engül, R. G. Erdener, H. Akay, N. Yücel, E. ?. Baç et al., « Effects of sulfonated polyether-etherketone (SPEEK) and composite membranes on the proton exchange membrane fuel cell (PEMFC) performance », Int. J. Hydrog. Energy, vol.34, issue.10, pp.4645-4652, 2009.

H. B. Park, C. H. Lee, J. Y. Sohn, Y. M. Lee, B. D. Freeman et al., « Effect of crosslinked chain length in sulfonated polyimide membranes on water sorption, proton conduction, and methanol permeation properties, J. Membr. Sci, vol.285, issue.1, pp.432-443, 2006.

T. Ryu, « Synthesis and characterization of sulfonated mutiphenyl conjugated polyimide for PEMFC, J. Ind. Eng. Chem, vol.49, pp.99-104, 2017.

P. Staiti, M. Minutoli, and E. S. Hocevar, « Membranes based on phosphotungstic acid and polybenzimidazole for fuel cell application, J. Power Sources, vol.90, issue.2, pp.231-235, 2000.

J. Peron, E. Ruiz, D. J. Jones, and E. J. Rozière, « Solution sulfonation of a novel polybenzimidazole: A proton electrolyte for fuel cell application, J. Membr. Sci, vol.314, issue.1, pp.247-256, 2008.

D. J. Jones and J. Rozière, « Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications, J. Membr. Sci, vol.185, issue.1, pp.41-58, 2001.

A. L. Dicks, « The role of carbon in fuel cells, J. Power Sources, vol.156, issue.2, pp.128-141, 2006.

V. Mehta and J. S. Cooper, « Review and analysis of PEM fuel cell design and manufacturing », J. Power Sources, vol.114, issue.1, pp.32-53, 2003.
DOI : 10.1016/b978-008044696-7/50057-x

J. S. Cooper, « Design analysis of PEMFC bipolar plates considering stack manufacturing and environment impact, J. Power Sources, vol.129, issue.2, pp.152-169, 2004.
DOI : 10.1016/j.jpowsour.2003.11.037

H. Wang, M. A. Sweikart, and J. A. Turner, « Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells, J. Power Sources, vol.115, issue.2, pp.243-251, 2003.
DOI : 10.1016/s0378-7753(03)00023-5

É. Claude, R. Bousquet, G. Platen, and C. Roussel, Conducting plates for fuel cell elements, pp.3-2008

J. C. Amphlett, R. M. Baumert, R. F. Mann, B. A. Peppley, P. R. Roberge et al., « Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell I. Mechanistic Model Development, J. Electrochem. Soc, vol.142, issue.1, pp.1-8, 1995.

K. Broka and P. Ekdunge, Oxygen and hydrogen permeation properties and water uptake of Nafion® 117 membrane and recast film for PEM fuel cell, J. Appl. Electrochem, vol.27, issue.2, pp.117-123, 1997.

O. Antoine, Y. Bultel, and E. R. Durand, « Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion®, J. Electroanal. Chem, vol.499, issue.1, pp.85-94, 2001.
DOI : 10.1016/s0022-0728(00)00492-7

A. Damjanovic and M. A. Genshaw, Bockris, « Distinction between Intermediates Produced in Main and Side Electrodic Reactions », J. Chem. Phys, vol.45, issue.11, pp.4057-4059, 1966.
DOI : 10.1063/1.1727457

A. Damjanovic and V. Brusic, « Electrode kinetics of oxygen reduction on oxide-free platinum electrodes, Electrochimica Acta, vol.12, issue.6, pp.615-628, 1967.
DOI : 10.1016/0013-4686(67)85030-8

H. Wroblowa, Y. Pan, and G. Razumney, « Electroreduction of Oxygen-New Mechanistic Criterion, J. Electroanal. Chem, vol.69, issue.2, pp.195-201, 1976.
DOI : 10.1016/0368-1874(76)85124-6

N. M. Markovi?, T. J. Schmidt, V. Stamenkovi?, and P. N. Ross, Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review, vol.1, pp.105-116, 2001.

T. J. Schmidt, U. A. Paulus, H. A. Gasteiger, and R. J. Behm, « The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions, J. Electroanal. Chem, vol.508, issue.2, pp.41-47, 2001.

M. Inaba, H. Yamada, J. Tokunaga, and E. A. Tasaka, « Effect of agglomeration of Pt/C catalyst on hydrogen peroxide formation, Electrochem. Solid State Lett, vol.7, pp.474-476, 2004.

J. Wu, « A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies, J. Power Sources, vol.184, issue.1, pp.104-119, 2008.
DOI : 10.1016/j.jpowsour.2008.06.006

B. De, V. A. Dam, G. J. Janssen, and . Review, Durability and degradation issues of PEM fuel cell components, Fuel Cells, vol.8, issue.1, pp.3-22, 2008.

S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, and C. Merten, « Carbon support oxidation in PEM fuel cell cathodes, J. Power Sources, vol.176, issue.2, pp.444-451, 2008.
DOI : 10.1016/j.jpowsour.2007.08.053

J. Willsau and J. Heitbaum, « The influence of Pt-activation on the corrosion of carbon in gas diffusion electrodes-A dems study, J. Electroanal. Chem. Interfacial Electrochem, vol.161, issue.1, pp.93-101, 1984.

K. Sasaki, F. Takasaki, Z. Noda, S. Hayashi, Y. Shiratori et al., « Alternative Electrocatalyst Support Materials for Polymer Electrolyte Fuel Cells », Polym. Electrolyte Fuel Cells 10 Pts 1 2, vol.33, pp.473-482, 2010.
DOI : 10.1149/1.3484545

L. Castanheira, « Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: From Model Experiments to Real-Life Operation in Membrane Electrode Assemblies, ACS Catal, vol.4, issue.7, pp.2258-2267, 2014.
DOI : 10.1021/cs500449q

P. Stonehart, « Carbon Substrates for Phosphoric-Acid Fuel-Cell Cathodes, Carbon, vol.22, pp.423-431, 1984.
DOI : 10.1016/0008-6223(84)90015-0

K. Kinoshita and J. Bett, « Potentiodynamic Analysis of Surface Oxides on Carbon-Blacks, Carbon, vol.11, issue.4, pp.403-411, 1973.
DOI : 10.1016/0008-6223(73)90080-8

L. Castanheira, W. O. Silva, F. H. Lima, A. Crisci, L. Dubau et al., Carbon Corrosion in Proton-Exchange Membrane Fuel Cells: Effect of the Carbon Structure, the Degradation Protocol, and the Gas Atmosphere, vol.5, pp.2184-2194, 2015.

L. M. Roen, C. H. Paik, and T. D. Jarvic, « Electrocatalytic corrosion of carbon support in PEMFC cathodes, Electrochem. Solid State Lett, vol.7, issue.1, pp.19-22, 2004.

N. Yousfi-steiner, P. Moçotéguy, D. Candusso, and E. D. Hissel, « A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: Causes, consequences and diagnostic for mitigation, J. Power Sources, vol.194, issue.1, pp.130-145, 2009.
DOI : 10.1016/j.jpowsour.2009.03.060

J. P. Meyers and R. M. Darling, « Model of carbon corrosion in PEM fuel cells, J. Electrochem. Soc, vol.153, issue.8, pp.1432-1442, 2006.

M. Cai, M. S. Ruthkosky, B. Merzougui, S. Swathirajan, M. P. Balogh et al., « Investigation of thermal and electrochemical degradation of fuel cell catalysts, J. Power Sources, vol.160, issue.2, pp.977-986, 2006.

T. Kinumoto, « Durability of perfluorinated ionomer membrane against hydrogen peroxide, J. Power Sources, vol.158, issue.2, pp.1222-1228, 2006.
DOI : 10.1016/j.jpowsour.2005.10.043

D. E. Curtin, R. D. Lousenberg, T. J. Henry, P. C. Tangeman, and M. E. Tisack, Advanced materials for improved PEMFC performance and life, J. Power Sources, vol.131, issue.1, pp.41-48, 2004.
DOI : 10.1016/b978-008044696-7/50053-2

H. Jin, H. Zhang, Y. Ma, T. Xu, H. Zhong et al., « Stable support based on highly graphitic carbon xerogel for proton exchange membrane fuel cells, J. Power Sources, vol.195, pp.6323-6328, 2010.
DOI : 10.1016/j.jpowsour.2010.04.050

X. Zhao, A. Hayashi, Z. Noda, and E. K. Sasaki, « Development of Durable Electrocatalysts for PEFC through Graphitization of Carbon Support Surface, ECS Trans, vol.53, pp.23-29, 2013.

K. Artyushkova, S. Pylypenko, M. Dowlapalli, and P. Atanassov, « Structure-to-property relationships in fuel cell catalyst supports: Correlation of surface chemistry and morphology with oxidation resistance of carbon blacks, J. Power Sources, vol.214, pp.303-313, 2012.

S. D. Knights, K. M. Colbow, J. St-pierre, and D. P. Wilkinson, Aging mechanisms and lifetime of PEFC and DMFC, J. Power Sources, vol.127, issue.2, pp.127-134, 2004.
DOI : 10.1016/j.jpowsour.2003.09.033

B. Wickman, H. Gronbeck, P. Hanarp, and E. B. Kasemo, « Corrosion Induced Degradation of Pt/C Model Electrodes Measured with Electrochemical Quartz Crystal Microbalance, J. Electrochem. Soc, vol.157, issue.4, pp.592-598, 2010.
DOI : 10.1149/1.3309730

S. C. Ball, S. L. Hudson, D. Thompsett, and E. B. Theobald, « An investigation into factors affecting the stability of carbons and carbon supported platinum and platinum/cobalt alloy catalysts during 1.2V potentiostatic hold regimes at a range of temperatures, J. Power Sources, vol.171, issue.1, pp.18-25, 2007.

K. Schlogl, K. J. Mayrhofer, M. Hanzlik, and M. Arenz, « Identical-location TEM investigations of Pt/C electrocatalyst degradation at elevated temperatures, J. Electroanal. Chem, vol.662, issue.2, pp.355-360, 2011.

L. Dubau, L. Castanheira, G. Berthome, and E. F. Maillard, « An identical-location transmission electron microscopy study on the degradation of Pt/C nanoparticles under oxidizing, reducing and neutral atmosphere, Electrochimica Acta, vol.110, pp.273-281, 2013.

P. S. Ruvinskiy, A. Bonnefont, and E. R. Savinova, Further Insight into the Oxygen Reduction Reaction on Pt Nanoparticles Supported on Spatially Structured Catalytic Layers, vol.2, pp.123-133, 2011.
DOI : 10.1007/s12678-011-0046-1

O. Antoine and R. Durand, « RRDE study of oxygen reduction on Pt nanoparticles inside Nafion®: H2O2 production in PEMFC cathode conditions, J. Appl. Electrochem, vol.30, issue.7, pp.839-844, 2000.

E. Endoh, S. Terazono, H. Widjaja, and Y. Takimoto, « Degradation study of MEA for PEMFCs under low humidity conditions, Electrochem. Solid State Lett, vol.7, issue.7, pp.209-211, 2004.
DOI : 10.1149/1.1739314

G. Hubner and E. Roduner, « EPR investigation of HO. radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes, J. Mater. Chem, vol.9, issue.2, pp.409-418, 1999.

C. A. Reiser, « A reverse-current decay mechanism for fuel cells, Electrochem. Solid State Lett, vol.8, issue.6, pp.273-276, 2005.
DOI : 10.1149/1.1896466

H. Tang, Z. Qi, M. Ramani, and J. F. Elter, « PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode », J. Power Sources, vol.158, issue.2, pp.1306-1312, 2006.

C. A. Reiser, D. Yang, and E. R. Saywer, Procedure for starting up a fuel cell system using a fuel purge, pp.6887599-6887601

R. Balliet, C. Reiser, T. Patterson, and E. M. Perry, , pp.6838199-6838201

M. L. Perry, T. Patterson, and C. Reiser, « Systems Strategies to Mitigate Carbon Corrosion in Fuel Cells, ECS Trans, vol.3, issue.1, pp.783-795, 2006.

V. Parry, E. Appert, and J. Joud, « Characterisation of wettability in gas diffusion layer in proton exchange membrane fuel cells, Appl. Surf. Sci, vol.256, issue.8, pp.2474-2478, 2010.

K. H. Radeke, K. O. Backhaus, and E. A. Swiatkowski, « Electrical conductivity of activated carbons », Carbon, vol.29, issue.1, pp.122-123, 1991.

M. Polovina, B. Babi?, B. Kaluderovi?, and E. A. Dekanski, « Surface characterization of oxidized activated carbon cloth, Carbon, vol.35, issue.8, pp.1047-1052, 1997.

R. Dingreville, J. Qu, and M. Cherkaoui, « Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films, J. Mech. Phys. Solids, vol.53, issue.8, pp.1827-1854, 2005.

M. S. Wilson, F. H. Garzon, K. E. Sickafus, and E. S. Gottesfeld, « Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc, vol.140, issue.10, pp.2872-2877, 1993.

Y. Shao-horn, P. J. Ferreira, O. La, D. Morgan, H. Gasteiger et al., Coarsening of Pt nanoparticles in proton exchange membrane fuel cells upon potential cycling, ECS Transactions, vol.1, pp.185-195, 2005.

J. A. Bett, K. Kinoshita, and E. P. Stonehart, « Crystallite growth of platinum dispersed on graphitized carbon black, J. Catal, vol.35, issue.2, pp.307-316, 1974.

Y. Shao, G. Yin, and Y. Gao, Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell, J. Power Sources, vol.171, issue.2, pp.558-566, 2007.

C. He, S. Desai, G. Brown, and E. S. Bollepalli, PEM fuel cell catalysts: Cost, performance, and durability, vol.14, pp.41-44, 2005.

X. Yu and S. Ye, « Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC. Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst, J. Power Sources, vol.172, issue.1, pp.145-154, 2007.

X. Wang, R. Kumar, and D. J. Myers, Effect of Voltage on Platinum Dissolution Relevance to Polymer Electrolyte Fuel Cells, vol.9, pp.225-227, 2006.

P. J. Ferreira, « Instability of Pt ? C Electrocatalysts in Proton Exchange Membrane Fuel Cells A Mechanistic Investigation, J. Electrochem. Soc, vol.152, issue.11, pp.2256-2271, 2005.

M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, 1966.

L. Dubau, J. Durst, F. Maillard, M. Chatenet, J. André et al., Heterogeneities of Aging within a PEMFC MEA, vol.12, pp.188-198, 2012.
DOI : 10.1002/fuce.201100073

P. W. Voorhees, « The theory of Ostwald ripening, J. Stat. Phys, vol.38, issue.2, pp.231-252, 1985.
DOI : 10.1007/bf01017860

URL : http://nucapt.northwestern.edu/refbase/files/Voorhees-JSP-1985.pdf

A. V. Virkar and Y. Zhou, « Mechanism of catalyst degradation in proton exchange membrane fuel cells, J. Electrochem. Soc, vol.154, issue.6, pp.540-547, 2007.
DOI : 10.1149/1.2722563

Y. Shao-horn, W. C. Sheng, S. Chen, P. J. Ferreira, E. F. Holby et al., Instability of Supported Platinum Nanoparticles in Low-Temperature Fuel Cells, vol.46, pp.285-305, 2007.

K. Yasuda, A. Taniguchi, T. Akita, T. Ioroi, and E. Z. Siroma, « Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling, Phys Chem Chem Phys, vol.8, issue.6, pp.746-752, 2006.

T. Akita, « Analytical TEM study of Pt particle deposition in the proton-exchange membrane of a membrane-electrode-assembly, J. Power Sources, vol.159, issue.1, pp.461-467, 2006.

E. Guilminot, « Membrane and active layer degradation upon PEMFC steady-state operation, J. Electrochem. Soc, vol.154, issue.11, pp.1106-1114, 2007.
DOI : 10.1149/1.2775218

J. Xie, D. L. Wood, K. L. More, P. Atanassov, and R. L. Borup, Microstructural Changes of Membrane Electrode Assemblies during PEFC Durability Testing at High Humidity Conditions, vol.152, pp.1011-1020, 2005.
DOI : 10.1149/1.1873492

C. Iojoiu, « Membrane and Active Layer Degradation Following PEMFC Steady-State Operation II. Influence of Pt z + on Membrane Properties, J. Electrochem. Soc, vol.154, issue.11, 2007.
DOI : 10.1149/1.2775282

G. Jerkiewicz, G. Vatankhah, J. Lessard, M. P. Soriaga, and Y. Park, « Surface-oxide growth at platinum electrodes in aqueous H2SO4, Electrochimica Acta, vol.49, issue.9, pp.1451-1459, 2004.
DOI : 10.1016/j.electacta.2003.11.008

R. L. Borup, J. R. Davey, F. H. Garzon, D. L. Wood, and M. A. Inbody, « PEM fuel cell electrocatalyst durability measurements, J. Power Sources, vol.163, issue.1, pp.76-81, 2006.
DOI : 10.1016/j.jpowsour.2006.03.009

R. J. Bellows, E. P. Marucchi-soos, and D. T. Buckley, Analysis of Reaction Kinetics for Carbon Monoxide and Carbon Dioxide on Polycrystalline Platinum Relative to Fuel Cell Operation, Ind. Eng. Chem. Res, vol.35, issue.4, pp.1235-1242, 1996.
DOI : 10.1021/ie950580m

J. Zhang, T. Thampan, and E. R. Datta, « Influence of Anode Flow Rate and Cathode Oxygen Pressure on CO Poisoning of Proton Exchange Membrane Fuel Cells, J. Electrochem. Soc, vol.149, issue.6, p.765, 2002.

S. J. Lee, S. Mukerjee, E. A. Ticianelli, and J. Mcbreen, Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells, vol.44, pp.3283-3293, 1999.

H. A. Gasteiger, N. M. Markovic, and P. N. Ross, H2 and CO Electrooxidation on WellCharacterized Pt, Ru, and Pt-Ru. 1. Rotating Disk Electrode Studies of the Pure Gases Including Temperature Effects, vol.99, pp.8290-8301, 1995.

F. A. Uribe, S. Gottesfeld, and T. A. Zawodzinski, « Effect of Ammonia as Potential Fuel Impurity on Proton Exchange Membrane Fuel Cell Performance, J. Electrochem. Soc, vol.149, issue.3, pp.293-296, 2002.
DOI : 10.1149/1.1447221

K. Hongsirikarn, T. Napapruekchart, X. Mo, and J. G. Goodwin, « Effect of ammonium ion distribution on Nafion® conductivity, J. Power Sources, vol.196, issue.2, pp.644-651, 2011.
DOI : 10.1016/j.jpowsour.2010.07.080

K. Hongsirikarn, J. G. Goodwin, S. Greenway, and E. S. Creager, « Influence of ammonia on the conductivity of Nafion membranes, J. Power Sources, vol.195, issue.1, pp.30-38, 2010.

M. Mathieu and M. Primet, Sulfurization and regeneration of platinum, vol.9, pp.361-370, 1984.
DOI : 10.1016/0166-9834(84)80007-x

I. Urdampilleta, F. Uribe, T. Rockward, E. L. Brosha, B. Pivovar et al., PEMFC Poisoning with H2S: Dependence on Operating Conditions, vol.11, pp.831-842, 2007.
DOI : 10.1149/1.2780996

M. R. , L. Wk, and V. Z. Jw, « Assessing durability of cathodes exposed to common air impurities, J. Power Sources, vol.138, issue.2, pp.216-225, 2004.

K. Kaneko, S. Tsushima, and E. S. Hirai, « Effect of SO2 Concentration and Relative Humidity on Contamination of Cathode and Anode in PEMFC, pp.1279-1287, 2009.

D. Yang, J. Ma, L. Xu, M. Wu, and H. Wang, « The effect of nitrogen oxides in air on the performance of proton exchange membrane fuel cell, Electrochimica Acta, vol.51, pp.4039-4044, 2006.

K. Hongsirikarn, J. G. Goodwin, S. Greenway, and E. S. Creager, « Effect of cations (Na+, Ca2+, Fe3+) on the conductivity of a Nafion membrane, J. Power Sources, vol.195, pp.7213-7220, 2010.

N. Job, M. Chatenet, S. Berthon-fabry, S. Hermans, and E. F. Maillard, « Efficient Pt/carbon electrocatalysts for proton exchange membrane fuel cells: Avoid chloride-based Pt salts! », J. Power Sources, vol.240, pp.294-305, 2013.
DOI : 10.1016/j.jpowsour.2013.03.188

T. M. Arruda, B. Shyam, J. M. Ziegelbauer, S. Mukerjee, and D. E. Ramaker, « Investigation into the Competitive and Site-Specific Nature of Anion Adsorption on Pt Using In Situ X-ray Absorption Spectroscopy, J. Phys. Chem. C, vol.112, pp.18087-18097, 2008.

Q. Li, R. He, J. O. Jensen, and N. J. Bjerrum, « Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C, Chem. Mater, vol.15, pp.4896-4915, 2003.

J. J. Baschuk and X. Li, « Carbon monoxide poisoning of proton exchange membrane fuel cells, Int. J. Energy Res, vol.25, issue.8, pp.695-713, 2001.
DOI : 10.1016/s0140-6701(02)86280-4

Q. Guo and Z. Qi, « Effect of freeze-thaw cycles on the properties and performance of membraneelectrode assemblies, J. Power Sources, vol.160, issue.2, pp.1269-1274, 2006.

J. Zhang, High temperature PEM fuel cells, vol.160, pp.872-891, 2006.
DOI : 10.1016/b978-0-444-53688-4.00010-3

URL : https://hal.archives-ouvertes.fr/hal-00715359

C. Hsu, F. Weng, A. Su, C. Wang, I. S. Hussaini et al., « Transient phenomenon of step switching for current or voltage in PEMFC, Renew. Energy, vol.34, issue.8, 1979.

X. Yan, « The study on transient characteristic of proton exchange membrane fuel cell stack during dynamic loading, J. Power Sources, vol.163, issue.2, pp.966-970, 2007.

P. Pei and H. Chen, « Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review, Appl. Energy, vol.125, pp.60-75, 2014.

Z. Liu, L. Yang, Z. Mao, W. Zhuge, Y. Zhang et al., « Behavior of PEMFC in starvation, J. Power Sources, vol.157, issue.1, pp.166-176, 2006.

I. C. Halalay, S. Swathirajan, B. Merzougui, M. P. Balogh, G. C. Garabedian et al., Anode Materials for Mitigating Hydrogen Starvation Effects in PEM Fuel Cells, vol.158, pp.313-321, 2011.
DOI : 10.1149/1.3530796

Q. Shen, « The voltage characteristics of proton exchange membrane fuel cell (PEMFC) under steady and transient states, J. Power Sources, vol.179, issue.1, pp.292-296, 2008.
DOI : 10.1016/j.jpowsour.2007.12.049

S. Qu, X. Li, M. Hou, Z. Shao, and E. B. Yi, « The effect of air stoichiometry change on the dynamic behavior of a proton exchange membrane fuel cell, J. Power Sources, vol.185, issue.1, pp.302-310, 2008.

J. Donnet and C. Black, Science and Technology, 1993.

L. Fulcheri, N. Probst, G. Flamant, F. Fabry, E. Grivei et al., « Plasma processing: a step towards the production of new grades of carbon black, Carbon, vol.40, issue.2, pp.169-176, 2002.

J. Gonzalez-aguilar, M. Moreno, and E. L. Fulcheri, « Carbon nanostructures production by gas-phase plasma processes at atmospheric pressure, J. Phys. Appl. Phys, vol.40, issue.8, p.2361, 2007.
DOI : 10.1088/0022-3727/40/8/s16

F. Fabry and L. Fulcheri, Synthesis of Carbon Blacks from HDPE plastic by 3-phase AC thermal plasma, présenté à 23rd International Symposium on Plasma Chemistry, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01524628

M. Moreno-couranjou, M. Monthioux, J. Gonzalez-aguilar, and E. L. Fulcheri, « A non-thermal plasma process for the gas phase synthesis of carbon nanoparticles, Carbon, vol.47, issue.10, pp.2310-2321, 2009.

M. Gautier, Étude de la formation de nanoparticules de carbone au cours de la décomposition thermique d'hydrocarbures : application à la coproduction de noir de carbone et d'hydrogène par craquage thermique du méthane par voie plasma, 2016.

M. Moreno, « Synthèse en phase gazeuse de nanoparticules de carbone par plasma hors équilibre, 2006.

R. D. Heidenreich, W. M. Hess, and L. L. Ban, « A test object and criteria for high resolution electron microscopy, J. Appl. Crystallogr, vol.1, issue.1, pp.1-19, 1968.
DOI : 10.1107/s0021889868004930

URL : http://journals.iucr.org/j/issues/1968/01/00/a06334/a06334.pdf

H. P. Boehm, « Some aspects of the surface chemistry of carbon blacks and other carbons, Carbon, vol.32, issue.5, pp.759-769, 1994.

A. G. Pandolfo and A. F. , Hollenkamp, « Carbon properties and their role in supercapacitors, J. Power Sources, vol.157, issue.1, pp.11-27, 2006.
DOI : 10.1016/j.jpowsour.2006.02.065

D. Pantea, H. Darmstadt, S. Kaliaguine, and C. Roy, Electrical conductivity of conductive carbon blacks: influence of surface chemistry and topology, vol.217, pp.181-193, 2003.

M. Uchida, Y. Aoyama, M. Tanabe, N. Yanagihara, N. Eda et al., « Influences of Both Carbon Supports and Heat-Treatment of Supported Catalyst on Electrochemical Oxidation of Methanol, J. Electrochem. Soc, vol.142, issue.8, pp.2572-2576, 1995.

E. Antolini, R. R. Passos, and E. A. Ticianelli, « Effects of the carbon powder characteristics in the cathode gas diffusion layer on the performance of polymer electrolyte fuel cells, J. Power Sources, vol.109, issue.2, pp.477-482, 2002.

F. Maillard, P. A. Simonov, and E. R. Savinova, « Carbon materials as supports for fuel cells electrocatalysts, Carbon Materials for Catalysis, pp.429-480, 2009.
DOI : 10.1002/9780470403709.ch12

N. Krishnankutty and M. A. Vannice, « Effect of Pretreatment on Surface Area, Porosity, and Adsorption Properties of a Carbon Black, Chem. Mater, vol.7, issue.4, pp.754-763, 1995.

J. Liu, Fullerene pipes, vol.280, pp.1253-1256, 1998.
DOI : 10.1126/science.280.5367.1253

K. Tohji, « Purifying single-walled nanotubes, Nature, vol.383, pp.679-679, 1996.

B. P. Tarasov, « Synthesis of carbon nanostructures by arc evaporation of graphite rods with Co-Ni and YNi2 catalysts, Carbon, vol.41, issue.7, pp.1357-1364, 2003.

Y. Ando, X. Zhao, K. Hirahara, K. Suenaga, S. Bandow et al., « Mass production of singlewall carbon nanotubes by the arc plasma jet method, Chem. Phys. Lett, vol.323, pp.580-585, 2000.
DOI : 10.1016/s0009-2614(00)00556-x

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, « Catalytic growth of singlewalled manotubes by laser vaporization, Chem. Phys. Lett, vol.243, issue.2, pp.49-54, 1995.
DOI : 10.1016/0009-2614(95)00825-o

A. Thess, Crystalline ropes of metallic carbon nanotubes, vol.273, pp.483-487, 1996.

D. Laplaze, P. Bernier, W. K. Maser, G. Flamant, T. Guillard et al., « Carbon nanotubes: The solar approach, Carbon, vol.36, pp.685-688, 1998.

C. L. Cheung, A. Kurtz, H. Park, and C. M. Lieber, Diameter-controlled synthesis of carbon nanotubes, J. Phys. Chem. B, vol.106, issue.10, pp.2429-2433, 2002.
DOI : 10.1021/jp0142278

B. Q. Wei, R. Vajtai, and P. M. Ajayan, « Reliability and current carrying capacity of carbon nanotubes, Appl. Phys. Lett, vol.79, issue.8, pp.1172-1174, 2001.

M. Tiberiu, Nanotubes de carbone, Synthèse par procédés plasma, 2005.

P. Nikolaev, « Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chem. Phys. Lett, vol.313, issue.2, pp.91-97, 1999.

W. Ruland, A. K. Schaper, H. Hou, and E. A. Greiner, « Multi-wall carbon nanotubes with uniform chirality: evidence for scroll structures, Carbon, vol.41, issue.3, pp.423-427, 2003.

E. F. Antunes, A. O. Lobo, E. J. Corat, and V. J. Trava-airoldi, « Influence of diameter in the Raman spectra of aligned multi-walled carbon nanotubes, Carbon, vol.45, issue.5, pp.913-921, 2007.

H. Y. Mao, Graphene: Promises, Facts, Opportunities, and Challenges in Nanomedicine, vol.113, pp.3407-3424, 2013.

H. Hiura, T. W. Ebbesen, J. Fujita, K. Tanigaki, and E. T. Takada, Role of sp3 defect structures in graphite and carbon nanotubes, vol.367, pp.148-151, 1994.

T. I. Okpalugo, P. Papakonstantinou, H. Murphy, J. Mclaughlin, and N. M. Brown, High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs, Carbon, vol.43, issue.1, pp.153-161, 2005.

K. A. Wepasnick, B. A. Smith, K. E. Schrote, H. K. Wilson, S. R. Diegelmann et al., Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments, Carbon, vol.49, issue.1, pp.24-36, 2011.

W. Xia, Y. Wang, R. Bergstraesser, S. Kundu, and M. Muhler, « Surface characterization of oxygen-functionalized multi-walled carbon nanotubes by high-resolution X-ray photoelectron spectroscopy and temperature-programmed desorption, Appl. Surf. Sci, vol.254, issue.1, pp.247-250, 2007.

V. Datsyuk, « Chemical oxidation of multiwalled carbon nanotubes, Carbon, vol.46, issue.6, pp.833-840, 2008.

A. Y. Kasumov, Conductivity and atomic structure of isolated multiwalled carbon nanotubes, vol.43, p.89, 1998.

W. Zhang, P. Sherrell, A. I. Minett, J. M. Razal, and E. J. Chen, « Carbon nanotube architectures as catalyst supports for proton exchange membrane fuel cells, Energy Environ. Sci, vol.3, issue.9, pp.1286-1293, 2010.

X. Wang, M. Waje, and Y. Yan, CNT-Based Electrodes with High Efficiency for PEMFCs, vol.8, pp.42-44, 2005.

T. Matsumoto, « Efficient usage of highly dispersed Pt on carbon nanotubes for electrode catalysts of polymer electrolyte fuel cells, Catal. Today, vol.90, issue.3, pp.277-281, 2004.

P. Hernández-fernández, « Functionalization of multi-walled carbon nanotubes and application as supports for electrocatalysts in proton-exchange membrane fuel cell, Appl. Catal. B Environ, vol.99, issue.1, pp.343-352, 2010.

M. A. Molina-garcía and N. V. Rees, « Effect of catalyst carbon supports on the oxygen reduction reaction in alkaline media: a comparative study, RSC Adv, vol.6, pp.94669-94681, 2016.

R. Q. Yu, « Platinum deposition on carbon nanotubes via chemical modification, Chem. Mater, vol.10, issue.3, pp.718-722, 1998.

L. Li, G. Wu, B. Xu, and . Electro, Carbon, vol.44, pp.2973-2983, 2006.

J. Phalippou, L. Kocon, and . Aérogels, Aspects fondamentaux », Tech. Ing. Matér. Fonct, vol.1, p.3609, 2004.

R. Pekala and . Organic, Aerogels from the Polycondensation of Resorcinol with Formaldehyde, J. Mater. Sci, vol.24, issue.9, pp.3221-3227, 1989.
DOI : 10.1007/bf01139044

N. Job, « Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials, Carbon, vol.43, pp.2481-2494, 2005.

C. Lin and J. A. Ritter, « Carbonization and activation of sol-gel derived carbon xerogels, Carbon, vol.38, issue.6, pp.849-861, 2000.
DOI : 10.1016/s0008-6223(99)00189-x

C. Lin and J. A. Ritter, Effect of synthesis pH on the structure of carbon xerogels », Carbon, vol.35, pp.1271-1278, 1997.

S. T. Mayer, J. L. Kaschmitter, and R. W. Pekala, , vol.5420168, pp.30-1995

B. Mathieu, S. Blacher, R. Pirard, J. P. Pirard, B. Sahouli et al., « Freeze-dried resorcinolformaldehyde gels, J. Non-Cryst. Solids, vol.212, issue.2-3, pp.250-261, 1997.

R. Kocklenberg, « Texture control of freeze-dried resorcinol-formaldehyde gels, J. NonCryst. Solids, vol.225, pp.8-13, 1998.

J. Kuhn, R. Brandt, H. Mehling, R. Petricevic, and J. Fricke, « In situ infrared observation of the pyrolysis process of carbon aerogels, J. Non-Cryst. Solids, vol.225, issue.1, pp.58-63, 1998.

H. Tamon, H. Ishizaka, T. Araki, and M. Okazaki, Control of mesoporous structure of organic and carbon aerogels, vol.36, pp.1257-1262, 1998.

H. Tamon, H. Ishizaka, M. Mikami, and M. Okazaki, « Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde, Carbon, vol.35, issue.6, pp.791-796, 1997.

A. Smirnova, « Modification of carbon aerogel supports for PEMFC catalysts, Int. J. Hydrog. Energy, vol.34, pp.8992-8997, 2009.

X. Lu, O. Nilsson, J. Fricke, and R. W. Pekala, Thermal and electrical conductivity of monolithic carbon aerogels, J. Appl. Phys, vol.73, issue.2, pp.581-584, 1993.

J. Marie, « Platinum supported on resorcinol-formaldehyde based carbon aerogels for PEMFC electrodes: Influence of the carbon support on electrocatalytic properties, J. Appl. Electrochem, vol.37, issue.1, pp.147-153, 2007.

M. Ouattara-brigaudet, « Influence of the carbon texture of platinum/carbon aerogel electrocatalysts on their behavior in a proton exchange membrane fuel cell cathode », Int. J. Hydrog. Energy, vol.37, pp.9742-9757

N. Job, S. Berthon-fabry, M. Chatenet, J. Marie, M. Brigaudet et al., « Nanostructured Carbons as Platinum Catalyst Supports for Proton Exchange Membrane Fuel Cell Electrodes, Top. Catal, vol.52, pp.2117-2122, 2009.

A. Smirnova, X. Dong, H. Hara, A. Vasiliev, and E. N. Sammes, « Novel carbon aerogel-supported catalysts for PEM fuel cell application », Int. J. Hydrog. Energy, vol.30, issue.2, pp.149-158, 2005.

P. Y. You and S. K. Kamarudin, « Recent progress of carbonaceous materials in fuel cell applications: An overview, Chem. Eng. J, vol.309, pp.489-502, 2017.

E. Antolini, « Carbon supports for low-temperature fuel cell catalysts, Appl. Catal. B Environ, vol.88, issue.2, pp.1-24, 2009.

P. Trogadas, T. F. Fuller, and P. Strasser, « Carbon as catalyst and support for electrochemical energy conversion, Carbon, vol.75, pp.5-42, 2014.

M. Cao, D. Wu, and E. R. Cao, « Recent Advances in the Stabilization of Platinum Electrocatalysts for Fuel-Cell Reactions, vol.6, pp.26-45, 2014.

X. Zhao, A. Hayashi, Z. Noda, K. Kimijima, I. Yagi et al., « Evaluation of change in nanostructure through the heat treatment of carbon materials and their durability for the start/stop operation of polymer electrolyte fuel cells, Electrochimica Acta, vol.97, pp.33-41, 2013.

S. Berthon-fabry, L. Dubau, Y. Ahmad, K. Guerin, and E. M. Chatenet, « First Insight into Fluorinated Pt/Carbon Aerogels as More Corrosion-Resistant Electrocatalysts for Proton Exchange Membrane Fuel Cell Cathodes, Electrocatalysis, vol.6, issue.6, pp.521-533, 2015.

F. A. Viva, G. A. Olah, and G. K. Prakash, « Characterization of Pt supported on commercial fluorinated carbon as cathode catalysts for Polymer Electrolyte Membrane Fuel Cell », Int. J. Hydrog. Energy, vol.42, pp.15054-15063, 2017.

S. Luski, H. Selig, D. Davidov, and C. Rettori, « Lowering the conductivity of carbon fibers by fluorination, Synth. Met, vol.34, issue.1, pp.725-732, 1989.

E. Antolini and E. R. Gonzalez, Polymer supports for low-temperature fuel cell catalysts, Appl. Catal. Gen, vol.365, issue.1, pp.1-19, 2009.

Z. Qi and P. G. Pickup, « High performance conducting polymer supported oxygen reduction catalysts, Chem. Commun, vol.0, pp.2299-2300, 1998.

Y. Wang, D. P. Wilkinson, and E. J. Zhang, Noncarbon Support Materials for Polymer Electrolyte Membrane Fuel Cell Electrocatalysts, vol.111, pp.7625-7651, 2011.

S. Yin, S. Mu, M. Pan, and Z. Fu, « A highly stable TiB2-supported Pt catalyst for polymer electrolyte membrane fuel cells, J. Power Sources, vol.196, pp.7931-7936, 2011.

S. Yin, S. Mu, H. Lv, N. Cheng, M. Pan et al., « A highly stable catalyst for PEM fuel cell based on durable titanium diboride support and polymer stabilization, vol.93, pp.233-240, 2010.

E. Antolini and E. R. Gonzalez, « Ceramic materials as supports for low-temperature fuel cell catalysts, Solid State Ion, vol.180, pp.746-763, 2009.

M. B. Zellner and J. G. Chen, « Surface science and electrochemical studies of WC and W2C PVD films as potential electrocatalysts, Catal. Today, vol.99, pp.299-307, 2005.

R. Ganesan, D. J. Ham, and J. S. Lee, « Platinized mesoporous tungsten carbide for electrochemical methanol oxidation, Electrochem. Commun, vol.9, issue.10, pp.2576-2579, 2007.

H. Meng and P. K. Shen, « Tungsten carbide nanocrystal promoted Pt/C electrocatalysts for oxygen reduction, J. Phys. Chem. B, vol.109, pp.22705-22709, 2005.

O. Lori, S. Gonen, and E. L. Elbaz, « Highly active, corrosion-resistant cathode for fuel cells, based on platinum and molybdenum carbide, J. Electrochem. Soc, vol.164, issue.7, pp.825-830, 2017.

S. Zhang, H. Zhu, H. Yu, J. Hou, B. Yi et al., « The Oxidation Resistance of Tungsten Carbide as Catalyst Support for Proton Exchange Membrane Fuel Cells, J. Catal, vol.28, issue.2, pp.109-111, 2007.

H. Chhina, S. Campbell, and E. O. Kesler, High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells, J. Power Sources, vol.179, issue.1, pp.50-59, 2008.

D. J. Ham, Y. K. Kim, S. H. Han, and J. S. Lee, « Pt/WC as an anode catalyst for PEMFC: Activity and CO tolerance, Catal. Today, vol.132, issue.1, pp.117-122, 2008.

R. Ganesan and J. S. Lee, « Tungsten carbide microspheres as a noble-metal-economic electrocatalyst for methanol oxidation, Angew. Chem.-Int. Ed, vol.44, pp.6557-6560, 2005.

B. Avasarala, T. Murray, W. Li, and P. Haldar, « Titanium nitride nanoparticles based electrocatalysts for proton exchange membrane fuel cells, J. Mater. Chem, vol.19, issue.13, pp.1803-1805, 2009.

K. E. Fritz, P. A. Beaucage, F. Matsuoka, U. Wiesner, and J. Suntivich, Mesoporous titanium and niobium nitrides as conductive and stable electrocatalyst supports in acid environments, vol.53, pp.7250-7253, 2017.

Y. Xiao, « Titanium cobalt nitride supported platinum catalyst with high activity and stability for oxygen reduction reaction, J. Power Sources, vol.284, pp.296-304, 2015.

H. Lv and S. Mu, « Nano-ceramic support materials for low temperature fuel cell catalysts, Nanoscale, vol.6, issue.10, pp.5063-5074, 2014.

J. A. Kwon, M. Kim, D. Y. Shin, J. Y. Kim, and D. Lim, « First-principles understanding of durable titanium nitride (TiN) electrocatalyst supports, J. Ind. Eng. Chem, vol.49, pp.69-75, 2017.

V. R. Stamenkovic, Improved Oxygen Reduction Activity on Pt3Ni(111) via Increased Surface Site Availability, vol.315, pp.493-497, 2007.

S. Henning, « Pt-Ni aerogels as unsupported electrocatalysts for the oxygen reduction reaction, J. Electrochem. Soc, vol.163, issue.9, pp.998-1003, 2016.

S. Henning, « Unsupported Pt-Ni Aerogels with Enhanced High Current Performance and Durability in Fuel Cell Cathodes, Angew. Chem.-Int. Ed, vol.56, pp.10707-10710, 2017.

S. Henning, « Effect of Acid Washing on the Oxygen Reduction Reaction Activity of Pt-Cu Aerogel Catalysts, Electrochimica Acta, vol.233, pp.210-217, 2017.

M. Oezaslan, F. Hasché, and P. Strasser, PtCu and Pt3Cu Alloy Nanoparticle Electrocatalysts for Oxygen Reduction Reaction in Alkaline and Acidic Media, J. Electrochem. Soc, vol.159, issue.4, pp.444-454

A. Bruix, A. Migani, G. N. Vayssilov, K. M. Neyman, J. Libuda et al., Effects of deposited Pt particles on the reducibility of CeO, vol.2, pp.11384-11392, 2011.

T. Yu, J. Zeng, B. Lim, and Y. Xia, « Aqueous-phase synthesis of Pt/CeO2 hybrid nanostructures and their catalytic properties, Adv. Mater, vol.22, pp.5188-5192, 2010.

Y. Suzuki, A. Ishihara, S. Mitsushima, N. Kamiya, and E. K. Ota, Sulfated-zirconia as a support of Pt catalyst for polymer electrolyte fuel cells, Electrochem. Solid State Lett, vol.10, issue.7, pp.105-107, 2007.

Y. Takabatake, Z. Noda, S. M. Lyth, A. Hayashi, and E. K. Sasaki, « Cycle durability of metal oxide supports for PEFC electrocatalysts », Int. J. Hydrog. Energy, vol.39, issue.10, pp.5074-5082, 2014.

M. Wesselmark, B. Wickman, C. Lagergren, and G. Lindbergh, « Electrochemical performance and stability of thin film electrodes with metal oxides in polymer electrolyte fuel cells, Electrochimica Acta, vol.55, pp.7590-7596, 2010.

H. Chhina, S. Campbell, and E. O. Kesler, « Ex situ evaluation of tungsten oxide as a catalyst support for PEMFCs, J. Electrochem. Soc, vol.154, issue.6, pp.533-539, 2007.

B. Wickman, M. Wesselmark, C. Lagergren, and G. Lindbergh, « Tungsten oxide in polymer electrolyte fuel cell electrodes-A thin-film model electrode study, Electrochimica Acta, vol.56, pp.9496-9503, 2011.

F. Micoud, F. Maillard, A. Bonnefont, N. Job, and M. Chatenet, The role of the support in COads monolayer electrooxidation on Pt nanoparticles: Pt/WOxvs. Pt/C », vol.12, pp.1182-1193, 2010.

A. J. Martín, A. M. Chaparro, and E. L. Daza, Single cell study of electrodeposited cathodic electrodes based on Pt-WO3 for polymer electrolyte fuel cells, J. Power Sources, vol.196, issue.9, pp.4187-4192, 2011.

E. Antolini and E. R. Gonzalez, « Tungsten-based materials for fuel cell applications, Appl. Catal. B Environ, vol.96, pp.245-266, 2010.

X. Cui, « Platinum/Mesoporous WO3 as a Carbon-Free Electrocatalyst with Enhanced Electrochemical Activity for Methanol Oxidation, J. Phys. Chem. B, vol.112, pp.12024-12031, 2008.

H. Kamal and A. A. Akl, Abdel-Hady, « Influence of proton insertion on the conductivity, structural and optical properties of amorphous and crystalline electrochromic WO 3 films, Phys. B Condens. Matter, vol.349, pp.192-205, 2004.

D. Lim, W. Lee, N. L. Macy, and W. H. Smyrl, « Electrochemical durability investigation of Pt/ TiO2 nanotube catalysts for polymer electrolyte membrane fuel cells, Electrochem. SolidState Lett, vol.12, issue.9, pp.123-125, 2009.

S. Huang, P. Ganesan, S. Park, and B. N. Popov, « Development of a titanium dioxide-supported platinum catalyst with ultrahigh stability for polymer electrolyte membrane fuel cell applications, J. Am. Chem. Soc, vol.131, pp.13898-13899, 2009.

D. V. Bavykin, J. M. Friedrich, and F. C. Walsh, Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications, vol.18, pp.2807-2824, 2006.

C. Beauger, L. Testut, S. Berthon-fabry, F. Georgi, and E. L. Guetaz, « Doped TiO2 aerogels as alternative catalyst supports for proton exchange membrane fuel cells: A comparative study of Nb, v and Ta dopants, Microporous Mesoporous Mater, vol.232, pp.109-118, 2016.

Y. Nah, I. Paramasivam, and P. Schmuki, Doped TiO2 and TiO2 nanotubes: Synthesis and applications, vol.11, pp.2698-2713, 2010.

G. M. Neelgund, S. A. Shivashankar, B. K. Chethana, P. P. Sahoo, and K. J. Rao, « Nanocrystalline TiO2 preparation by microwave route and nature of anatase-rutile phase transition in nano TiO2, Bull. Mater. Sci, vol.34, issue.6, pp.1163-1171, 2011.

K. Park and K. Seol, « Nb-TiO2 supported Pt cathode catalyst for polymer electrolyte membrane fuel cells, Electrochem. Commun, vol.9, issue.9, pp.2256-2260, 2007.

D. Kim, E. F. Zeid, and Y. Kim, « Additive treatment effect of TiO2 as supports for Ptbased electrocatalysts on oxygen reduction reaction activity, Electrochimica Acta, vol.55, issue.11, pp.3628-3633, 2010.

. Bartholo, D. Rf, and . Frankl, « Electrical Properties of Some Titanium Oxides, Phys. Rev, vol.187, issue.3, p.828, 1969.

T. Ioroi, Z. Siroma, N. Fujiwara, S. Yamazaki, and E. K. Yasuda, « Sub-stoichiometric titanium oxidesupported platinum electrocatalyst for polymer electrolyte fuel cells, Electrochem. Commun, vol.7, issue.2, pp.183-188, 2005.

T. Ioroi, H. Senoh, S. Yamazaki, Z. Siroma, N. Fujiwara et al., « Stability of corrosionresistant magneli-phase Ti4O7-supported PEMFC catalysts at high potentials, J. Electrochem. Soc, vol.155, issue.4, pp.321-326, 2008.

C. and J. Damaschio, « Sn3O4 single crystal nanobelts grown by carbothermal reduction process, J. Cryst. Growth, vol.312, pp.2881-2886, 2010.

G. Ozouf, « Electrodes à base de dioxyde d'étain, résistantes à la corrosion, pour la réduction de l'oxygène dans les piles à combustible basse température à membrane échangeuse de protons (PEMFC), 2016.

C. Kílíç and A. Zunger, « Origins of coexistence of conductivity and transparency in SnO(2), Phys. Rev. Lett, vol.88, issue.9, p.95501, 2002.

D. Szczuko, J. Werner, S. Oswald, G. Behr, and E. K. Wetzig, « XPS investigations of surface segregation of doping elements in SnO2, Appl. Surf. Sci, vol.179, issue.1, pp.301-306, 2001.

A. Slassi, « Ab initio study on the structural, electronic, optical and electrical properties of Mo-, Nb-and Ta-doped rutile SnO2, Opt. Quantum Electron, vol.48, issue.2, p.160, 2016.

K. Melghit, K. Bouziane, and . Low, Temperature Preparation and Magnetic Properties of V-Doped SnO2 Nanoparticles, J. Am. Ceram. Soc, vol.90, issue.8, pp.2420-2423, 2007.

M. Batzill and U. Diebold, « The surface and materials science of tin oxide, Prog. Surf. Sci, vol.79, issue.2-4, pp.47-154, 2005.

H. Wang and A. L. Rogach, Hierarchical SnO2 Nanostructures: Recent Advances in Design, Synthesis, and Applications, vol.26, pp.123-133, 2014.

T. Matsui, K. Fujiwara, T. Okanishi, R. Kikuchi, T. Takeguchi et al., « Electrochemical oxidation of CO over tin oxide supported platinum catalysts, J. Power Sources, vol.155, issue.2, pp.152-156, 2006.

S. M. Andersen, C. F. Nørgaard, M. J. Larsen, and E. E. Skou, « Tin dioxide as an effective antioxidant for proton exchange membrane fuel cells, J. Power Sources, vol.273, pp.158-161, 2015.

Y. Chen, « Atomic layer deposition assisted Pt-SnO2 hybrid catalysts on nitrogen-doped CNTs with enhanced electrocatalytic activities for low temperature fuel cells », Int. J. Hydrog. Energy, vol.36, pp.11085-11092, 2011.

G. Cognard, Pt Nanoparticles Supported on Niobium-Doped Tin Dioxide: Impact of the Support Morphology on Pt Utilization and Electrocatalytic Activity », Electrocatalysis, vol.8, pp.51-58, 2017.

G. Ozouf and C. Beauger, « Niobium-and antimony-doped tin dioxide aerogels as new catalyst supports for PEM fuel cells, J. Mater. Sci, vol.51, issue.11, pp.5305-5320, 2016.

T. Tsukatsune, « Platinum-Decorated Tin Oxide and Niobium-Doped Tin Oxide PEFC Electrocatalysts: Oxygen Reduction Reaction Activity, J. Electrochem. Soc, vol.161, pp.1208-1213, 2014.

A. Masao, S. Noda, F. Takasaki, K. Ito, and E. K. Sasaki, Carbon-Free Pt Electrocatalysts Supported on SnO2 for Polymer Electrolyte Fuel Cells, vol.12, pp.119-122, 2009.

M. Yin, « Highly active and stable Pt electrocatalysts promoted by antimony-doped SnO2 supports for oxygen reduction reactions, Appl. Catal. B-Environ, vol.144, pp.112-120, 2014.

S. Shahgaldi and J. Hamelin, « The effect of low platinum loading on the efficiency of PEMFC's electrocatalysts supported on TiO2-Nb, and SnO2-Nb: An experimental comparison between active and stable conditions, Energy Convers. Manag, vol.103, pp.681-690, 2015.

K. Kakinuma, M. Uchida, T. Kamino, H. Uchida, and E. M. Watanabe, Synthesis and electrochemical characterization of Pt catalyst supported on Sn0.96Sb0.04O2-delta with a network structure, Electrochimica Acta, vol.56, issue.7, pp.2881-2887, 2011.

K. Kakinuma, « Characterization of Pt catalysts on Nb-doped and Sb-doped SnO2-delta support materials with aggregated structure by rotating disk electrode and fuel cell measurements, Electrochimica Acta, vol.110, pp.316-324, 2013.

Y. Senoo, « Cathodic performance and high potential durability of Ta-SnO2 ? ?-supported Pt catalysts for PEFC cathodes, Electrochem. Commun, vol.51, pp.37-40, 2015.

G. Cognard, « Benefits and limitations of Pt nanoparticles supported on highly porous antimony-doped tin dioxide aerogel as alternative cathode material for proton-exchange membrane fuel cells, Appl. Catal. B Environ, vol.201, pp.381-390, 2017.

G. Cognard, « Insights into the stability of Pt nanoparticles supported on antimony-doped tin oxide in different potential ranges, Electrochimica Acta, vol.245, pp.993-1004, 2017.

E. Fabbri, A. Rabis, R. Kötz, and T. J. Schmidt, Pt nanoparticles supported on Sb-doped SnO2 porous structures: Developments and issues, vol.16, pp.13672-13681, 2014.

K. Kakinuma, I. Kim, Y. Senoo, H. Yano, M. Watanabe et al., Electrochemical oxidation of hydrolyzed poly oxymethylene-dimethyl ether by PtRu catalysts on Nb-doped SnO2? supports for direct oxidation fuel cells, vol.6, pp.22138-22145, 2014.

X. Liu, J. Chen, G. Liu, L. Zhang, H. Zhang et al., « Enhanced long-term durability of proton exchange membrane fuel cell cathode by employing Pt/TiO2/C catalysts, J. Power Sources, vol.195, issue.13, pp.4098-4103, 2010.

L. Timperman, Y. J. Feng, W. Vogel, N. Alonso-vante, and . Substrate, Electrochimica Acta, vol.55, pp.7558-7563, 2010.

B. Gao, C. Peng, G. Z. Chen, and G. Li-puma, « Photo-electro-catalysis enhancement on carbon nanotubes/titanium dioxide (CNTs/TiO2) composite prepared by a novel surfactant wrapping solgel method, Appl. Catal. B Environ, vol.85, issue.2, pp.17-23, 2008.

Z. Li, B. Gao, G. Z. Chen, R. Mokaya, and S. Sotiropoulos, Li Puma, « Carbon nanotube/titanium dioxide (CNT/TiO2) core-shell nanocomposites with tailored shell thickness, CNT content and photocatalytic/photoelectrocatalytic properties, Appl. Catal. B Environ, vol.110, pp.50-57, 2011.

L. Xiong and A. Manthiram, « Synthesis and characterization of methanol tolerant Pt/TiOx/C nanocomposites for oxygen reduction in direct methanol fuel cells, Electrochimica Acta, vol.49, pp.4163-4170, 2004.

Y. Bing, « Effects of synthesis condition on formation of desired crystal structures of dopedTiO2/carbon composite supports for ORR electrocatalysts, Electrochimica Acta, vol.77, pp.225-231

Y. Zhou, W. Liu, X. Hu, Y. Chu, and C. Ma, « Nano-WO3 Composite Materials as Electro-Catalyst for Methanol Oxidation, Acta Phys.-Chim. Sin, vol.29, issue.7, pp.1487-1493, 2013.

B. R. Camacho, C. Morais, and M. A. Valenzuela, Alonso-Vante, « Enhancing oxygen reduction reaction activity and stability of platinum via oxide-carbon composites, Catal. Today, vol.202, pp.36-43, 2013.

D. Puthusseri, T. T. Baby, V. Bhagavathi-parambhath, R. Natarajan, and E. R. Sundara, « Carbon nanostructure grown using bi-metal oxide as electrocatalyst support for proton exchange membrane fuel cell, Int. J. Hydrog. Energy, vol.38, pp.6460-6468, 2013.

K. Sasaki, L. Zhang, and R. R. , Adzic, « Niobium oxide-supported platinum ultra-low amount electrocatalysts for oxygen reduction, Phys. Chem. Chem. Phys, vol.10, issue.1, pp.159-167, 2008.

D. B. Kim, H. Chun, Y. K. Lee, H. Kwon, and H. Lee, Preparation of Pt/NiO-C electrocatalyst and heat-treatment effect on its electrocatalytic performance for methanol oxidation », Int. J. Hydrog. Energy, vol.35, issue.1, pp.313-320, 2010.

B. Ruiz-camacho, H. H. Rodriguez-santoyo, J. M. Medina-flores, E. O. Alvarez-martinez, ;. Platinum et al., )-C composites for methanol oxidation and oxygen reduction, Electrochimica Acta, vol.120, issue.2, pp.344-349, 2014.

V. M. Aroutiounian, « Study of the surface-ruthenated SnO2/MWCNTs nanocomposite thick-film gas sensors, Sens. Actuators B Chem, vol.177, pp.308-315, 2013.

J. Gong and Q. Chen, « Sol-gel prepared single wall carbon nanotube SnO2 thin film for micromachined gas sensor, Nanotechnology Conference and Trade Show-NSTI Nanotech, vol.3, pp.232-235, 2004.

M. Narjinary, P. Rana, A. Sen, and E. M. Pal, Enhanced and selective acetone sensing properties of SnO2-MWCNT nanocomposites: Promising materials for diabetes sensor, Mater. Des, vol.115, pp.158-164, 2017.

S. Hwang and S. Hyun, « Synthesis and characterization of tin oxide/carbon aerogel composite electrodes for electrochemical supercapacitors, J. Power Sources, vol.172, issue.1, pp.451-459, 2007.

L. Zhao and L. Gao, Coating of multi-walled carbon nanotubes with thick layers of tin(IV) oxide », Carbon, vol.42, pp.1858-1861, 2004.

H. Wang, G. Yang, Y. Huang, X. Zhang, Z. Yan et al., « Electrochemical performance of SnO2/modified graphite composite material as anode of lithium ion battery, Mater. Chem. Phys, vol.167, pp.303-308, 2015.

V. Srivastava and K. Jain, « At room temperature graphene/SnO2 is better than MWCNT/SnO2 as NO2 gas sensor, Mater. Lett, vol.169, pp.28-32, 2016.

Y. Q. Guo, R. Q. Tan, Z. Y. Cao, W. J. Song, ;. F. Han et al., « Well-crystallized SnO2 nanocrystals homogeneously and intimately coated on multiwalled carbon nanotubes by a simple surfactantfree hydrothermal method, Advanced Structural Materials, vol.686, pp.474-481, 2011.

C. Du, M. Chen, X. Cao, G. Yin, and P. Shi, « A novel CNT@SnO2 core-sheath nanocomposite as a stabilizing support for catalysts of proton exchange membrane fuel cells, Electrochem. Commun, vol.11, issue.2, pp.496-498, 2009.

J. Mu, « Tin oxide (SnO2) nanoparticles/electrospun carbon nanofibers (CNFs) heterostructures: Controlled fabrication and high capacitive behavior, J. Colloid Interface Sci, vol.356, issue.2, pp.706-712, 2011.

R. Tan, Y. Guo, W. Shen, K. Jiang, T. Xu et al., « Surfactant-free Hydrothermal Synthesis and Sensitivity Characterization of Pd-doped SnO2 Nano Crystals on Multiwalled Carbon Nanotubes, Third International Conference on Smart Materials and Nanotechnology in Engineering, vol.8409, p.84091, 2012.

Y. Jin, K. Min, S. Seo, H. Shim, and D. Kim, Enhanced Li Storage Capacity in 3 nm Diameter SnO2 Nanocrystals Firmly Anchored on Multiwalled Carbon Nanotubes, J. Phys. Chem. C, vol.115, pp.22062-22067, 2011.

X. Zhang, H. Zhu, Z. Guo, Y. Wei, and E. F. Wang, « Design and preparation of CNT@SnO(2) coreshell composites with thin shell and its application for ethanol oxidation, Int. J. Hydrog. Energy, vol.35, pp.8841-8847, 2010.

W. Q. Han and A. Zettl, « Coating single-walled carbon nanotubes with tin oxide, Nano Lett, vol.3, issue.5, pp.681-683, 2003.

R. S. Hsu, D. Higgins, and E. Z. Chen, « Tin-oxide-coated single-walled carbon nanotube bundles supporting platinum electrocatalysts for direct ethanol fuel cells, Nanotechnology, vol.21, p.165705
DOI : 10.1088/0957-4484/21/16/165705

Y. Liu, H. Yang, Y. Yang, Z. Liu, G. Shen et al., « Gas sensing properties of tin dioxide coated onto multi-walled carbon nanotubes, Thin Solid Films, vol.497, issue.2, pp.355-360, 2006.
DOI : 10.1016/j.tsf.2005.11.018

H. Fang, « Synthesis of tin (II or IV) oxide coated multiwall carbon nanotubes with controlled morphology, J. Phys. Chem. C, vol.112, pp.5790-5794, 2008.

J. G. Zhou, « An X-ray Absorption, Photoemission, and Raman Study of the Interaction between SnO2 Nanoparticle and Carbon Nanotube, J. Phys. Chem. C, vol.113, pp.6114-6117, 2009.

Z. Zhang, « A Polypyrrole-Imprinted Electrochemical Sensor Based on NanoSnO2/Multiwalled Carbon Nanotubes Film Modified Carbon Electrode for the Determination of Oleanolic Acid, Electroanalysis, vol.23, issue.10, pp.2446-2455, 2011.

Z. Wang, G. Chen, and E. D. Xia, Coating of multi-walled carbon nanotube with SnO2 films of controlled thickness and its application for Li-ion battery, J. Power Sources, vol.184, issue.2, pp.432-436, 2008.

X. Lu, H. Wang, Z. Wang, Y. Jiang, D. Cao et al., « Room-temperature synthesis of colloidal SnO2 quantum dot solution and ex-situ deposition on carbon nanotubes as anode materials for lithium ion batteries, J. Alloys Compd, vol.680, pp.109-115, 2016.

K. Ke, Y. Yamazaki, and E. K. Waki, « A simple method to controllably coat crystalline SnO2 nanoparticles on multiwalled carbon nanotubes, J. Nanosci. Nanotechnol, vol.9, issue.1, pp.366-370, 2009.
DOI : 10.1166/jnn.2009.j083

J. Jia, H. Wang, S. Ji, H. Yang, X. Li et al., « SnO2-embedded worm-like carbon nanofibers supported Pt nanoparticles for oxygen reduction reaction, Electrochimica Acta, vol.141, pp.13-19, 2014.
DOI : 10.1016/j.electacta.2014.07.020

J. Kim, « Superior long-term cycling stability of SnO 2 nanoparticle/multiwalled carbon nanotube heterostructured electrodes for Li-ion rechargeable batteries, Nanotechnology, vol.23, p.465402, 2012.

Q. Kuang, « Controllable fabrication of SnO2-coated multiwalled carbon nanotubes by chemical vapor deposition, Carbon, vol.44, issue.7, pp.1166-1172, 2006.

S. N. Nesov, P. M. Korusenko, S. N. Povoroznyuk, V. V. Bolotov, E. V. Knyazev et al., « Effect of carbon nanotubes irradiation by argon ions on the formation of SnO2x/MWCNTs composite, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At, vol.410, pp.222-229, 2017.

C. Marichy, « Tin dioxide-carbon heterostructures applied to gas sensing: Structuredependent properties and general sensing mechanism, J. Phys. Chem. C, vol.117, pp.19729-19739, 2013.
DOI : 10.1021/jp406191x

URL : https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1254&context=cbe_pubs

J. Xu, « Antimony doped tin oxide modified carbon nanotubes as catalyst supports for methanol oxidation and oxygen reduction reactions, J. Mater. Chem. A, vol.1, pp.9737-9745, 2013.
DOI : 10.1039/c3ta11238a

M. Brigaudet and . Élaboration, caractérisation et optimisation de couches catalytiques cathodiques de piles à combustible PEM à partir d'aérogels de carbone, 2010.

T. Herricks, J. Chen, and Y. Xia, Polyol Synthesis of Platinum Nanoparticles: Control of Morphology with Sodium Nitrate, vol.4, pp.2367-2371, 2004.

J. Chen, T. Herricks, and Y. Xia, « Polyol Synthesis of Platinum Nanostructures: Control of Morphology through the Manipulation of Reduction Kinetics, Angew. Chem, vol.117, pp.2645-2648, 2005.

M. R. Houchin and L. J. Warren, « Surface titrations and electrokinetic measurements on stannic oxide suspensions, J. Colloid Interface Sci, vol.100, issue.1, pp.278-286, 1984.
DOI : 10.1016/0021-9797(84)90435-1

A. Aziz, S. A. Binti, S. H. Amirnordin, H. A. Rahman, H. Z. Abdullah et al., Effect of Zeta Potential of Stanum Oxide (SnO2) on Electrophoretic Deposition (EPD) on Porous Alumina, vol.795, pp.334-337, 2013.

J. Pireaux, « Method for depositing nanoparticles on substrates, pp.2611948-2611950

A. Caillard, C. Charles, R. Boswell, and E. P. Brault, « Improvement of the sputtered platinum utilization in proton exchange membrane fuel cells using plasma-based carbon nanofibres, J. Phys. Appl. Phys, vol.41, p.185307, 2008.

C. Coutanceau, « High Performance Plasma Sputtered Fuel Cell Electrodes with Ultra Low Catalytic Metal Loadings, ECS Trans, vol.41, issue.1, pp.1151-1159, 2011.
DOI : 10.1149/1.3635648

URL : http://hal.inria.fr/docs/00/64/22/54/PDF/ECSTransactions41_1151_11.pdf

F. Rouquerol, L. Luciani, P. Llewellyn, R. Denoyel, and J. Rouquerol, Texture des matériaux pulvérulents ou poreux, vol.2, pp.1050-1051, 2003.

S. Brunauer, P. H. Emmett, and E. E. Teller, « Adsorption of gases in multimolecular layers, J. Am. Chem. Soc, vol.60, pp.309-319, 1938.
DOI : 10.1021/ja01269a023

E. P. Barrett, L. G. Joyner, and P. P. Halenda, « The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, J. Am. Chem. Soc, vol.73, issue.1, pp.373-380, 1951.

J. C. Groen and L. A. Peffer, Pérez-Ramí rez, « Pore size determination in modified microand mesoporous materials. Pitfalls and limitations in gas adsorption data analysis, Microporous Mesoporous Mater, vol.60, pp.1-17, 2003.

A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and E. U. Pöschl, « Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information, Carbon, vol.43, issue.8, pp.1731-1742, 2005.
DOI : 10.1016/j.carbon.2005.02.018

D. S. Knight and W. B. White, « Characterization of diamond films by Raman spectroscopy, J. Mater. Res, vol.4, issue.2, pp.385-393, 1989.
DOI : 10.1557/jmr.1989.0385

J. Despujols, Spectometrie D'emission des Rayons X. Fluorescence X, 2000.

, ASTM International, « Standard Test Methods for Carbon Black-pH Value, 1995.

J. Sánchez-gonzález, A. Macías-garcía, M. F. Alexandre-franco, and V. Gómez-serrano, « Electrical conductivity of carbon blacks under compression », Carbon, vol.43, issue.4, pp.741-747, 2005.

B. Marinho, M. Ghislandi, E. Tkalya, C. E. Koning, and G. De-with, « Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder, Powder Technol, vol.221, pp.351-358, 2012.

A. Celzard, J. F. Marêché, F. Payot, and G. Furdin, Electrical conductivity of carbonaceous powders, vol.40, pp.2801-2815, 2002.
DOI : 10.1016/s0008-6223(02)00196-3

L. Chevallier, A. Bauer, S. Cavaliere, R. Hui, J. Roziere et al., « Mesoporous Nanostructured Nb-Doped Titanium Dioxide Microsphere Catalyst Supports for PEM Fuel Cell Electrodes, Acs Appl. Mater. Interfaces, vol.4, pp.1752-1759, 2012.
DOI : 10.1021/am300002j

R. Wang, « Nitrogen-doped carbon coated ZrO2 as a support for Pt nanoparticles in the oxygen reduction reaction, Int. J. Hydrog. Energy, vol.38, pp.5783-5788, 2013.

I. Takahashi and S. S. Kocha, « Examination of the activity and durability of PEMFC catalysts in liquid electrolytes, J. Power Sources, vol.195, pp.6312-6322, 2010.

K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, 1988.

S. Trasatti and O. A. Petrii, « Real surface area measurements in electrochemistry, J. Electroanal. Chem, vol.327, issue.1, pp.353-376
DOI : 10.1515/iupac.63.0028

URL : https://www.degruyter.com/printpdf/view/IUPAC/iupac.63.0028

T. Biegler, D. A. Rand, and E. R. Woods,

, Relevance to determination of real platinum area by hydrogen adsorption, J. Electroanal. Chem. Interfacial Electrochem, vol.29, issue.2, pp.269-277, 1971.

N. M. Markovi?, B. N. Grgur, and P. N. Ross, « Temperature-Dependent Hydrogen Electrochemistry on Platinum Low-Index Single-Crystal Surfaces in Acid Solutions, J. Phys. Chem. B, vol.101, pp.5405-5413, 1997.

J. Marie, «. Conception, and E. , , 2007.

A. L. Reddy and S. Ramaprabhu, « Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes, J. Phys. Chem. C, vol.111, pp.7727-7734, 2007.

C. Qu, F. Cheng, H. Su, and Y. Zhao, « Dispergation and modification of multi-walled carbon nanotubes in aqueous solution », Russ, J. Phys. Chem. A, vol.90, issue.11, pp.2230-2236, 2016.

F. Pourfayaz, Y. Mortazavi, A. Khodadadi, S. H. Jafari, S. Boroun et al., « A comparison of effects of plasma and acid functionalizations on structure and electrical property of multi-wall carbon nanotubes, Appl. Surf. Sci, vol.295, pp.66-70, 2014.

D. S. Ahmed, A. J. Haider, and M. R. Mohammad, « Comparesion of Functionalization of multiwalled carbon nanotubes treated by oil olive and nitric acid and their characterization, Terragreen 13 Int. Conf. 2013-Adv, vol.36, pp.1111-1118, 2013.

T. A. Saleh, « The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4 », Appl. Surf. Sci, vol.257, pp.7746-7751, 2011.

L. G. Nair, A. S. Mahapatra, N. Gomathi, K. Joseph, S. Neogi et al., « Radio frequency plasma mediated dry functionalization of multiwall carbon nanotube, Appl. Surf. Sci, vol.340, pp.64-71, 2015.

S. Goyanes, G. R. Rubiolo, A. Salazar, A. Jimeno, M. A. Corcuera et al., « Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscoples and scanning probe microscopy, Diam. Relat. Mater, vol.16, issue.2, pp.412-417, 2007.

S. Biniak, G. Trykowski, M. Walczyk, M. Richert, and . Thermo, Chemical Modification of LowDimensional Carbons: an Infrared Study, J. Appl. Spectrosc, vol.83, issue.4, pp.580-585, 2016.

Q. Wang, S. Wang, and H. Yu, « Rapid synthesis of CNTs@MIL-101(Cr) using multi-walled carbon nanotubes (MWCNTs) as crystal growth accelerator », Chin. J. Chem. Eng, vol.24, issue.10, pp.1481-1486, 2016.

K. Yang and B. Xing, « Desorption of polycyclic aromatic hydrocarbons from carbon nanomaterials in water, Environ. Pollut, vol.145, issue.2, pp.529-537, 2007.

Q. Q. Wang, J. B. Huang, G. R. Li, Z. Lin, B. H. Liu et al., « A facile and scalable method to prepare carbon nanotube-grafted-graphene for high performance Li-S battery, J. Power Sources, vol.339, pp.20-26, 2017.

, « Standard Test Method for Carbon Black-Total and External Surface Area by Nitrogen Adsorption », 2010.

J. Bohra, Adsorption Characteristics of Carbonized Rayon Yarn: Effect of Ontgassing Temperature, Fibre Sci. Technol, vol.20, pp.153-162, 1984.

A. G. Rinzler, « Large-scale purification of single-wall carbon nanotubes: process, product, and characterization, Appl. Phys. A, vol.67, issue.1, pp.29-37, 1998.

P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki et al., Opening carbon nanotubes with oxygen and implications for filling, vol.362, pp.522-525, 1993.

M. Tang, H. Dou, and E. K. Sun, « One-step synthesis of dextran-based stable nanoparticles assisted by self-assembly, Polymer, vol.47, issue.2, pp.728-734, 2006.

S. Rahmam, N. M. Mohamed, and E. S. Sufian, « Characterization of Modified Multiwalled Carbon Nanotubes, MicroNano Sci. Eng, vol.925, pp.369-373, 2014.

S. Sankal and C. Kaynak, Using various techniques to characterize oxidative functionalized and aminosilanized carbon nanotubes for polyamide matrix, J. Reinf. Plast. Compos, vol.32, issue.2, pp.75-86, 2013.

J. M. González-domínguez, « Covalent functionalization of MWCNTs with poly(pphenylene sulphide) oligomers: a route to the efficient integration through a chemical approach, J. Mater. Chem, vol.22, p.21285, 2012.

A. Thamri, H. Baccar, C. Struzzi, C. Bittencourt, A. Abdelghani et al., MHDAFunctionalized Multiwall Carbon Nanotubes for detecting non-aromatic VOCs, Sci. Rep, vol.6, issue.1, 2016.

C. H. Shek, J. K. Lai, T. S. Gu, and G. M. Lin, « Transformation evolution and infrared absorption spectra of amorphous and crystalline NANO-Al2O3 powders, Nanostructured Mater, vol.8, issue.5, pp.605-610, 1997.

Y. He, J. C. Campbell, R. C. Murphy, M. F. Arendt, and J. S. Swinnea, « Electrical and optical characterization of Sb : SnO2 », J. Mater. Res, vol.8, pp.3131-3134, 1993.

R. M. Cigala, F. Crea, C. D. Stefano, G. Lando, D. Milea et al., « The inorganic speciation of tin(II) in aqueous solution, Geochim. Cosmochim. Acta, vol.87, pp.1-20

D. R. Gabe, Mixed oxide films on tin, vol.5, pp.463-478, 1977.

B. N. Stirrup and N. A. Hampson, « Electrochemical reactions of tin in aqueous electrolytic solutions, Surf. Technol, vol.5, issue.6, pp.429-462, 1977.

M. Pugh, L. M. Warner, and D. R. Gabe, « Some passivation studies on tin electrodes in alkaline solutions, Corros. Sci, vol.7, pp.807-820, 1967.

C. I. House and G. H. Kelsall, « Potential-pH diagrams for the Sn/H2O Cl system, Electrochimica Acta, vol.29, issue.10, pp.1459-1464, 1984.

S. D. Kapusta and N. Hackerman, Anodic passivation of tin in slightly alkaline solutions, Electrochimica Acta, vol.25, pp.1625-1639, 1980.

M. ?eruga, M. Metiko?-hukovi?, T. Valla, M. Milun, H. Hoffschultz et al., « Electrochemical and X-ray photoelectron spectroscopy studies of passive film on tin in citrate buffer solution, J. Electroanal. Chem, vol.407, issue.1, pp.83-89, 1996.

E. W. Giesekke, H. S. Gutowsky, P. Kirkov, and H. A. Laitinen, « A proton magnetic resonance and electron diffraction study of the thermal decomposition of tin(IV) hydroxides », Inorg. Chem, vol.6, issue.7, pp.1294-1297, 1967.

G. A. Parks, « The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems », Chem. Rev, vol.65, issue.2, pp.177-198, 1965.

M. Kosmulski, « Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature, Adv. Colloid Interface Sci, vol.152, issue.1, pp.14-25, 2009.

S. Chee and J. Lee, « Synthesis of Sub-Micron 2SnO·(H 2 O) Powders Using Chemical Reduction Process and Thermal Calcination, Korean J. Mater. Res, vol.23, issue.11, pp.631-637, 2013.

T. K?enek, « Enhancement of thermal stability of silver(I) acetylacetonate by platinum(II) acetylacetonate », Thermochim. Acta, vol.554, pp.1-7, 2013.

N. Kamiuchi, T. Matsui, R. Kikuchi, and E. K. Eguchi, « Nanoscopic observation of strong chemical interaction between Pt and tin oxide, J. Phys. Chem. C, vol.111, pp.16470-16476, 2007.

. Vion-dury, Mécanismes de vieillissement des électrocatalyseurs de pile à combustible de type PEMFC, 2011.

G. Cognard, « Electrocatalyseurs à base d'oxydes métalliques poreux pour pile à combustible à membrane échangeuse de protons, 2017.