M. Anahid and S. Ghosh, Homogenized constitutive and fatigue nucleation models from crystal plasticity fe simulations of ti alloys, part 2: Macroscopic probabilistic crack nucleation model, International Journal of Plasticity, vol.48, pp.111-124, 2013.

L. Anand, M. E. Gurtin, and B. D. Reddy, The stored energy of cold work, thermal annealing, and other thermodynamic issues in single crystal plasticity at small length scales, Int. J. Plast, vol.64, pp.1-25, 2015.

O. Benafan, R. Noebe, S. Padula, A. Garg, B. Clausen et al., Temperature dependent deformation of the B2 austenite phase of a NiTi shape memory alloy, International Journal of Plasticity, vol.51, pp.103-121, 2013.

M. Benke and V. Mertinger, In situ optical microscope study of the thermally induced displacive transformations in cualni-based shape-memory alloys, Journal of Materials Engineering and Performance, vol.23, issue.7, pp.2333-2338, 2014.

A. Benzerga, Y. Bréchet, A. Needleman, and E. Van-der-giessen, The stored energy of cold work: Predictions from discrete dislocation plasticity, Acta Mater, vol.53, issue.18, pp.4765-4779, 2005.

M. Berry and E. Garcia, Bio-inspired shape memory alloy actuated hexapod robot, Active and Passive Smart Structures and Integrated Systems, vol.6928, p.69281, 2008.

L. C. Brinson, I. Schmidt, and R. Lammering, Stress-induced transformation behavior of a polycrystalline niti shape memory alloy: micro and macromechanical investigations via in situ optical microscopy, J. Mech. Phys. Solids, vol.52, issue.7, pp.1549-1571, 2004.

W. J. Buehler, J. Gilfrich, W. , and R. , Effect of low-temperature phase changes on the mechanical properties of alloys near composition tini, Journal of applied physics, vol.34, issue.5, pp.1475-1477, 1963.

V. Bundhoo, E. Haslam, B. Birch, and E. J. Park, A shape memory alloy-based tendon-driven actuation system for biomimetic artificial fingers, part i: design and evaluation, Robotica, vol.27, issue.1, pp.131-146, 2009.

C. Calhoun, R. Wheeler, T. Baxevanis, and D. Lagoudas, Actuation fatigue life prediction of shape memory alloys under the constant-stress loading condition, Scripta Materialia, vol.95, pp.58-61, 2015.

M. Carlo and S. Metin, A biomimetic climbing robot based on the gecko, Journal of Bionic Engineering, vol.3, issue.3, pp.115-125, 2006.

D. Chatziathanasiou, Y. Chemisky, G. Chatzigeorgiou, and F. Meraghni, Modeling of coupled phase transformation and reorientation in shape memory alloys under non-proportional thermomechanical loading, Int. J. Plast, vol.82, pp.192-224, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01360902

B. Chen, J. Jiang, and F. P. Dunne, Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation?, International Journal of Plasticity, 2017.

K. Cho, E. Hawkes, C. Quinn, and R. J. Wood, Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish, IEEE International Conference on, pp.706-711, 2008.

P. Chowdhury and H. Sehitoglu, A revisit to atomistic rationale for slip in shape memory alloys, Progress in Materials Science, vol.85, pp.1-42, 2017.

A. Chrysochoos, O. Maisonneuve, G. Martin, H. Caumon, C. et al., Plastic and dissipated work and stored energy, Nucl. Eng. Des, vol.114, issue.3, pp.323-333, 1989.

C. Cisse, W. Zaki, and T. B. Zineb, A review of constitutive models and modeling techniques for shape memory alloys, International Journal of Plasticity, vol.76, pp.244-284, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01415862

V. D. Cocco, F. Iacoviello, S. Natali, V. Volpe, and F. Maiolino, Fatigue crack propagation micromechanisms in a cu-zn-al alloy with pseudoelastic effect, Procedia Materials Science, vol.3, pp.363-368, 2014.

A. Condó, F. Lovey, J. Olbricht, C. Somsen, Y. et al., Microstructural aspects related to pseudoelastic cycling in ultra fine grained ni-ti, Proceedings of the 7th European Symposium on Martensitic Transformations, pp.138-141, 2006.

A. Cuniberti and R. Romero, Differential scanning calorimetry study of deformed cuznal martensite, Scripta Mater, vol.51, pp.315-320, 2004.

S. Daly, G. Ravichandran, and K. Bhattacharya, Stress-induced martensitic phase transformation in thin sheets of nitinol, Acta Materialia, vol.55, issue.10, pp.3593-3600, 2007.

R. Delville, B. Malard, J. Pilch, P. Sittner, and D. Schryvers, Transmission electron microscopy investigation of dislocation slip during superelastic cycling of ni-ti wires, International Journal of Plasticity, vol.27, issue.2, pp.282-297, 2011.

R. Desroches and M. Delemont, Seismic retrofit of simply supported bridges using shape memory alloys, Engineering Structures, vol.24, issue.3, pp.325-332, 2002.

C. Dunand-châtellet and Z. Moumni, Experimental analysis of the fatigue of shape memory alloys through power-law statistics, Int. J. Fatigue, vol.36, issue.1, pp.163-170, 2012.

F. Dunne, A. Wilkinson, A. , and R. , Experimental and computational studies of low cycle fatigue crack nucleation in a polycrystal, International Journal of Plasticity, vol.23, issue.2, pp.273-295, 2007.

G. Eggeler, E. Hornbogen, . Yawny, . Heckmann, and M. Wagner, Structural and functional fatigue of NiTi shape memory alloys, Mater. Sci. Eng. A, vol.378, issue.1-2, pp.24-33, 2004.

D. Entemeyer, E. Patoor, A. Eberhardt, and M. Berveiller, Strain rate sensitivity in superelasticity, Int. J. Plast, vol.16, pp.1269-1288, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02173938

P. Feng and Q. Sun, Experimental investigation on macroscopic domain formation and evolution in polycrystalline niti microtubing under mechanical force, Journal of the Mechanics and Physics of Solids, vol.54, issue.8, pp.1568-1603, 2006.

A. M. Figueiredo, P. Modenesi, and V. Buono, Low-cycle fatigue life of superelastic niti wires, International Journal of Fatigue, vol.31, issue.4, pp.751-758, 2009.

M. Frotscher, P. Nörtershäuser, C. Somsen, K. Neuking, R. Böckmann et al., Microstructure and structural fatigue of ultra-fine grained niti-stents, International Symposium on Bulk Nanostructured Materials: from Fundamentals to Innovation, vol.503, pp.96-98, 2007.

K. Gall and H. Maier, Cyclic deformation mechanisms in precipitated niti shape memory alloys, Acta Materialia, vol.50, issue.18, pp.4643-4657, 2002.

F. Gandhi and D. Wolons, Characterization of the pseudoelastic damping behavior of shape memory alloy wires using complex modulus, Smart Mater. Struct, vol.8, issue.1, pp.49-56, 1999.

A. Gloanec, G. Bilotta, G. , and M. , Deformation mechanisms in a tini shape memory alloy during cyclic loading, Materials Science and Engineering: A, vol.564, pp.351-358, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00770655

C. Grabe and O. Bruhns, On the viscous and strain rate dependent behavior of polycrystalline NiTi, Int. J. Solids Struct, vol.45, issue.7-8, pp.1876-1895, 2008.

X. Gu, W. Zhang, W. Zaki, and Z. Moumni, An extended thermomechanically coupled 3d rate-dependent model for pseudoelastic smas under cyclic loading, Smart Materials and Structures, vol.26, issue.9, p.95047, 2017.

S. Gupta, A. R. Pelton, J. D. Weaver, X. Gong, and S. Nagaraja, High compressive pre-strains reduce the bending fatigue life of nitinol wire, Journal of the Mechanical Behavior of Biomedical Materials, vol.44, pp.96-108, 2015.

J. F. Hallai and S. Kyriakides, Underlying material response for lüders-like instabilities, International Journal of Plasticity, vol.47, pp.1-12, 2013.

R. Hamilton, H. Sehitoglu, C. Efstathiou, H. Maier, Y. Chumlyakov et al., Transformation of co-ni-al single crystals in tension, Scripta Mater, vol.53, issue.1, pp.131-136, 2005.

D. J. Hartl, D. C. Lagoudas, F. T. Calkins, and J. H. Mabe, Use of a ni60ti shape memory alloy for active jet engine chevron application: I. thermomechanical characterization, Smart Materials and Structures, vol.19, issue.1, p.15020, 2010.

D. J. Hartl, J. T. Mooney, D. C. Lagoudas, F. T. Calkins, and J. H. Mabe, Use of a ni60ti shape memory alloy for active jet engine chevron application: Ii. experimentally validated numerical analysis, Smart Materials and Structures, vol.19, issue.1, p.15021, 2010.

Y. He and Q. Sun, Rate-dependent domain spacing in a stretched niti strip, International Journal of Solids and Structures, vol.47, issue.20, pp.2775-2783, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01241582

Y. J. He and Q. P. Sun, Frequency-dependent temperature evolution in NiTi shape memory alloy under cyclic loading, Smart Mater. Struct, vol.19, issue.11, p.115014, 2010.

Y. J. He and Q. P. Sun, On non-monotonic rate dependence of stress hysteresis of superelastic shape memory alloy bars, Int. J. Solids Struct, vol.48, pp.1688-1695, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01241597

J. Hodowany, G. Ravichandran, R. Rosakis, and P. , Partition of plastic work into heat and stored energy in metals, Exp. Mech, vol.40, issue.2, pp.113-123, 2000.

E. Hornbogen, Review thermo-mechanical fatigue of shape memory alloys, J. Mater. Sci, vol.39, issue.2, pp.385-399, 2004.

M. A. Iadicola and J. A. Shaw, The effect of uniaxial cyclic deformation on the evolution of phase transformation fronts in pseudoelastic niti wire, Journal of Intelligent Material Systems and Structures, vol.13, issue.2-3, pp.143-155, 2002.

M. A. Iadicola and J. A. Shaw, Rate and thermal sensitivities of unstable transformation behavior in a shape memory alloy, International Journal of Plasticity, vol.20, issue.4, pp.577-605, 2004.

J. M. Jani, M. Leary, A. Subic, and M. A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials & Design, pp.1078-1113, 1980.

M. Kamlah and P. Haupt, On the Macroscopic Description of Stored Energy and Self Heating During Plastic Deformation, Int. J. Plast, vol.13, issue.10, pp.893-911, 1997.

Q. Kan and G. Kang, Constitutive model for uniaxial transformation ratchetting of super-elastic niti shape memory alloy at room temperature, Int. J. Plast, vol.26, issue.3, pp.441-465, 2010.

Q. Kan, G. Kang, W. Yan, Y. Dong, Y. et al., An energy-based fatigue failure model for super-elastic niti alloys under pure mechanical cyclic loading, Third International Conference on Smart Materials and Nanotechnology in Engineering, vol.8409, p.84090, 2012.

Q. Kan, C. Yu, G. Kang, J. Li, Y. et al., Mechanics of Materials Experimental observations on rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy, Mech. Mater, vol.97, pp.48-58, 2016.

G. Kang, Q. Kan, L. Qian, and Y. Liu, Ratchetting deformation of super-elastic and shape-memory niti alloys, Mechanics of Materials, vol.41, issue.2, pp.139-153, 2009.

H. Kato and K. Sasaki, Transformation-induced plasticity as the origin of serrated flow in an niti shape memory alloy, Int. J. Plast, vol.50, pp.37-48, 2013.

M. M. Kheirikhah, S. Rabiee, and M. E. Edalat, A review of shape memory alloy actuators in robotics, RoboCup 2010: Robot Soccer World Cup XIV, pp.206-217, 2011.

M. Koster, W. Lee, M. Schwarzenberger, and C. Leinenbach, Cyclic deformation and structural fatigue behavior of an fe-mn-si shape memory alloy, Materials Science and Engineering: A, vol.637, pp.29-39, 2015.

J. Kundin, E. Pogorelov, and H. Emmerich, Numerical investigation of the interaction between the martensitic transformation front and the plastic strain in austenite, Journal of the Mechanics and Physics of Solids, vol.76, pp.65-83, 2015.

D. Lagoudas, D. Hartl, Y. Chemisky, L. Machado, P. et al., Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys, International Journal of Plasticity, pp.155-183, 2012.

D. C. Lagoudas, Shape memory alloys: modeling and engineering applications, 2008.

D. C. Lagoudas, D. A. Miller, L. Rong, and P. K. Kumar, Thermomechanical fatigue of shape memory alloys, Smart Materials and Structures, vol.18, issue.8, p.85021, 2009.

Z. Laster, A. Macbean, P. Ayliffe, and L. Newlands, Fixation of a frontozygomatic fracture with a shape-memory staple. The British journal of oral & maxillofacial surgery, vol.39, p.324, 2001.

V. A. Lubarda, On the recoverable and dissipative parts of higher order stresses in strain gradient plasticity, Int. J. Plast, vol.78, pp.26-43, 2016.

C. Maletta, E. Sgambitterra, F. Furgiuele, R. Casati, and A. Tuissi, Fatigue of pseudoelastic niti within the stress-induced transformation regime: a modified coffin-manson approach, Smart Materials and Structures, vol.21, issue.11, p.112001, 2012.

C. Maletta, E. Sgambitterra, F. Furgiuele, R. Casati, and A. Tuissi, Fatigue properties of a pseudoelastic niti alloy: Strain ratcheting and hysteresis under cyclic tensile loading, International Journal of Fatigue, vol.66, pp.78-85, 2014.

R. Matsui, H. Tobushi, Y. Furuichi, and H. Horikawa, Tensile Deformation and Rotating-Bending Fatigue Properties of a Highelastic Thin Wire, a Superelastic Thin Wire, and a Superelastic Thin Tube of NiTi Alloys, J. Eng. Mater. Technol, vol.126, issue.4, p.384, 2004.

A. Mckelvey and R. Ritchie, Fatigue-crack propagation in nitinol, a shape-memory and superelastic endovascular stent material, Journal of biomedical materials research, vol.47, issue.3, pp.301-308, 1999.

A. L. Mckelvey and R. O. Ritchie, Fatigue-crack growth behavior in the superelastic and shape-memory alloy nitinol, Metallurgical and Materials Transactions A, vol.32, issue.3, pp.731-743, 2001.

S. Miyazaki, T. Imai, Y. Igo, and K. Otsuka, Effect of cyclic deformation on the pseudoelasticity characteristics of ti-ni alloys, Metallurgical Transactions A, vol.17, issue.1, pp.115-120, 1986.

N. Morgan, Medical shape memory alloy applications-the market and its products, European Symposium on Martensitic Transformation and Shape-Memory, vol.378, issue.1, pp.16-23, 2004.

C. Morin, Z. Moumni, and W. Zaki, A constitutive model for shape memory alloys accounting for thermomechanical coupling, International Journal of Plasticity, vol.27, issue.5, pp.748-767, 2011.

C. Morin, Z. Moumni, and W. Zaki, Thermomechanical coupling in shape memory alloys under cyclic loadings: Experimental analysis and constitutive modeling, Special Issue In Honor of Nobutada Ohno, vol.27, pp.1959-1980, 2011.

Z. Moumni, A. Van-herpen, R. , and P. , Fatigue analysis of shape memory alloys: energy approach, Smart Mater. Struct, vol.14, issue.5, pp.287-292, 2005.

Z. Moumni, W. Zaki, and Q. S. Nguyen, Theoretical and numerical modeling of solid-solid phase change: Application to the description of the thermomechanical behavior of shape memory alloys, Int. J. Plast, vol.24, issue.4, pp.614-645, 2008.

Z. Mróz and W. Oliferuk, Energy balance and identification of hardening moduli in plastic deformation processes, Int. J. Plast, vol.18, issue.3, pp.379-397, 2002.

C. Müller and O. Bruhns, A thermodynamic finite-strain model for pseudoelastic shape memory alloys, International Journal of Plasticity, vol.22, issue.9, pp.1658-1682, 2006.

N. Nayan, D. Roy, V. Buravalla, R. , and U. , Unnotched fatigue behavior of an austenitic ni-ti shape memory alloy, Materials Science and Engineering: A, vol.497, issue.1, pp.333-340, 2008.

M. Nishida, K. Tanaka, W. , and H. O. , Development and control of a micro biped walking robot using shape memory alloys, Proceedings 2006 IEEE International Conference on Robotics and Automation, pp.1604-1609, 2006.

D. M. Norfleet, P. M. Sarosi, S. Manchiraju, M. F. Wagner, and M. D. Uchic, Transformation-induced plasticity during pseudoelastic deformation in Ni-Ti microcrystals, Acta Mater, vol.57, issue.12, pp.3549-3561, 2009.

K. Otsuka and T. Kakeshita, Science and technology of shape-memory alloys: New developments, MRS Bulletin, vol.27, issue.2, pp.91-100, 2002.

K. Otsuka and C. M. Wayman, Shape memory materials, 1999.

H. M. Paranjape, P. P. Paul, H. Sharma, P. Kenesei, J. Park et al., Influences of granular constraints and surface effects on the heterogeneity of elastic, superelastic, and plastic responses of polycrystalline shape memory alloys, Journal of the Mechanics and Physics of Solids, vol.102, pp.46-66, 2017.

E. Patoor, D. Lagoudas, P. Entchev, L. Brinson, and X. Gao, Shape memory alloys, Part I: General properties and modeling of single crystals, Mech. Mater, vol.38, pp.391-429, 2006.

E. Patoor, D. C. Lagoudas, P. B. Entchev, L. C. Brinson, and X. Gao, Shape memory alloys, part i: General properties and modeling of single crystals, Mechanics of Materials, vol.38, issue.5, pp.391-429, 2006.

A. R. Pelton, Nitinol fatigue: A review of microstructures and mechanisms, Journal of Materials Engineering and Performance, vol.20, issue.4, pp.613-617, 2011.

E. Pieczyska, S. Gadaj, W. K. Nowacki, K. Hoshio, Y. Makino et al., Characteristics of energy storage and dissipation in TiNi shape memory alloy, Sci. Technol. Adv. Mater, vol.6, pp.889-894, 2005.

E. Pieczyska, H. Tobushi, and K. Kulasinski, Development of transformation bands in tini sma for various stress and strain rates studied by a fast and sensitive infrared camera, Smart Materials and Structures, vol.22, issue.3, p.35007, 2013.

E. A. Pieczyska, S. P. Gadaj, W. K. Nowacki, and H. Tobushi, Phase-transformation fronts evolution for stress-and strain-controlled tension tests in tini shape memory alloy, Experimental Mechanics, vol.46, issue.4, pp.531-542, 2006.

E. A. Pieczyska, H. Tobushi, K. Kulasinski, and K. Takeda, Impact of Strain Rate on Thermomechanical Coupling Effects in TiNi SMA Subjected to Compression, Mater. Trans, vol.53, issue.11, pp.1905-1909, 2012.

M. C. Piedboeuf, R. Gauvin, T. , and M. , Daping behavior of shape memory alloys: strain amplitude, frequency and temperature effects, J. Sound Vib, vol.214, issue.5, pp.885-901, 1998.

E. Polatidis, N. Zotov, E. Bischoff, and E. Mittemeijer, The effect of cyclic tensile loading on the stress-induced transformation mechanism in superelastic niti alloys: an in-situ x-ray diffraction study, Scripta Materialia, vol.100, pp.59-62, 2015.

P. A. Poletti, C. D. Becker, L. Prina, P. Ruijs, H. Bounameaux et al., Long-term results of the simon nitinol inferior vena cava filter, European Radiology, vol.8, issue.2, pp.289-294, 1998.

W. Predki, M. Klönne, and A. Knopik, Cyclic torsional loading of pseudoelastic niti shape memory alloys: Damping and fatigue failure, Materials Science and Engineering: A, vol.417, issue.1, pp.182-189, 2006.

M. Rahim, J. Frenzel, M. Frotscher, J. Pfetzing-micklich, R. Steegmüller et al., Impurity levels and fatigue lives of pseudoelastic niti shape memory alloys, Acta Materialia, issue.10, pp.3667-3686, 2013.

B. Reedlunn, C. B. Churchill, E. E. Nelson, J. A. Shaw, and S. H. Daly, Tension, compression, and bending of superelastic shape memory alloy tubes, Journal of the Mechanics and Physics of Solids, vol.63, pp.506-537, 2014.

P. Rosakis, A. J. Rosakis, R. , and G. , A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals, J. Mech. Phys. Solids, vol.48, pp.581-607, 2000.

A. Runciman, D. Xu, A. R. Pelton, R. , and R. O. , An equivalent strain/coffin-manson approach to multiaxial fatigue and life prediction in superelastic nitinol medical devices, Biomaterials, vol.32, issue.22, pp.4987-4993, 2011.

A. Rusinek and J. Klepaczko, Experiments on heat generated during plastic deformation and stored energy for TRIP steels, Mater. Des, vol.30, issue.1, pp.35-48, 2009.

S. Saadat, J. Salichs, M. Noori, Z. Hou, H. Davoodi et al., An overview of vibration and seismic applications of niti shape memory alloy, Smart Materials and Structures, vol.11, issue.2, p.218, 2002.

A. Saleeb, S. Padula, and A. Kumar, A multi-axial, multimechanism based constitutive model for the comprehensive representation of the evolutionary response of SMAs under general thermomechanical loading conditions, International Journal of Plasticity, vol.27, issue.5, pp.655-687, 2011.

B. Sanders, R. Crowe, G. , and E. , Defense advanced research projects agency-smart materials and structures demonstration program overview, Journal of Intelligent Material Systems and Structures, vol.15, issue.4, pp.227-233, 2004.

M. D. Sangid, H. J. Maier, and H. Sehitoglu, The role of grain boundaries on fatigue crack initiation-an energy approach, International Journal of Plasticity, vol.27, issue.5, pp.801-821, 2011.

C. Schmidt, K. Neuking, and G. Eggeler, Functional fatigue of shape memory polymers, Advanced Engineering Materials, vol.10, issue.10, pp.922-927, 2008.

P. Sedlak, M. Frost, B. Benesova, T. B. Zineb, and P. ?ittner, Thermomechanical model for niti-based shape memory alloys including r-phase and material anisotropy under multi-axial loadings, Int. J. Plast, vol.39, pp.132-151, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01769340

P. Sedmák, J. Pilch, L. Heller, J. Kope?ek, J. Wright et al., Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load, Science, vol.353, issue.6299, pp.559-562, 2016.

P. Sedmák, P. ?ittner, J. Pilch, C. , and C. , Instability of cyclic superelastic deformation of niti investigated by synchrotron x-ray diffraction, Acta Mater, vol.94, pp.257-270, 2015.

J. Shaw and S. Kyriakides, Initiation and propagation of localized deformation in elasto-plastic strips under uniaxial tension, International Journal of Plasticity, vol.13, issue.10, pp.837-871, 1997.

J. Shaw and S. Kyriakides, On the nucleation and propagation of phase transformation fronts in a niti alloy, Acta Materialia, vol.45, issue.2, pp.683-700, 1997.

J. A. Shaw, Simulations of localized thermo-mechanical behavior in a NiTi shape memory alloy, International Journal of Plasticity, vol.16, issue.5, pp.541-562, 2000.

J. A. Shaw and S. Kyriakides, Thermomechanical Aspects of NiTi, J. Mech. Phys. Solids, vol.43, issue.8, pp.1243-1281, 1995.

J. Simo and J. Ju, Strain-and stress-based continuum damage models-i. formulation, International Journal of Solids and Structures, vol.23, issue.7, pp.821-840, 1987.

T. Simon, A. Kröger, C. Somsen, A. Dlouhy, and G. Eggeler, On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys, Acta Mater, vol.58, pp.1850-1860, 2010.

N. Siredey, . Hautcoeur, and . Eberhardt, Lifetime of superelastic Cu-Al-Be single crystal wires under bending fatigue, Mater. Sci. Eng. A, vol.396, issue.1-2, pp.296-301, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00119523

P. Sittner, Y. Liu, and V. Novak, On the origin of lüders-like deformation of niti shape memory alloys, Journal of the Mechanics and Physics of Solids, vol.53, issue.8, pp.1719-1746, 2005.

A. Sofla, S. Meguid, K. Tan, Y. , and W. , Shape morphing of aircraft wing: Status and challenges, Materials & Design, vol.31, issue.3, pp.1284-1292, 2010.

D. Song, G. Kang, Q. Kan, C. Yu, and C. Zhang, Damage-based life prediction model for uniaxial lowcycle stress fatigue of super-elastic niti shape memory alloy microtubes, Smart Mater. Struct, vol.24, issue.8, p.85007, 2015.

D. Song, G. Kang, Q. Kan, C. Yu, and C. Zhang, Experimental observations on uniaxial whole-life transformation ratchetting and low-cycle stress fatigue of super-elastic niti shape memory alloy micro-tubes, Smart Mater. Struct, vol.24, issue.7, p.75004, 2015.

D. Song, G. Kang, Q. Kan, C. Yu, and C. Zhang, Non-proportional multiaxial whole-life transformation ratchetting and fatigue failure of super-elastic niti shape memory alloy micro-tubes, Int. J. Fatigue, vol.80, pp.372-380, 2015.

D. Song, G. Kang, C. Yu, Q. Kan, and C. Zhang, Non-proportional multiaxial fatigue of super-elastic niti shape memory alloy micro-tubes: Damage evolution law and life-prediction model, Int. J. Mech. Sci, vol.131, pp.325-333, 2017.

H. Soul, A. Isalgue, A. Yawny, V. Torra, and F. C. Lovey, Pseudoelastic fatigue of NiTi wires : frequency and size effects on damping capacity, Smart Mater. Struct, p.85006, 2010.

K. Tanaka, S. Kobayashi, and Y. Sato, Thermomechanics of transformation pseudoelasticity and shape memory effect in alloys, International Journal of Plasticity, vol.2, issue.1, pp.59-72, 1986.

T. Tao, Y. Liang, and M. Taya, Bio-inspired actuating system for swimming using shape memory alloy composites, International Journal of Automation and Computing, vol.3, issue.4, pp.366-373, 2006.

H. Tobushi, T. Hachisuka, T. Hashimoto, and S. Yamada, Cyclic deformation and fatigue of a tini shape-memory alloy wire subjected to rotating bending, Journal of engineering materials and technology, vol.120, issue.1, pp.64-70, 1998.

H. Tobushi, Y. Shimeno, T. Hachisuka, and K. Tanaka, Influence of strain rate on superelastic properties of TiNi shape memory alloy, Mech. Mater, vol.30, issue.2, pp.141-150, 1998.

H. Tobushi, N. Takafumi, Y. Shimeno, T. , and H. , Low-Cycle Fatigue of TiNi Shape Memory Alloy and Formulation of Fatigue Life, J. Eng. Mater. Technol. ASME, vol.122, issue.2, pp.186-191, 2000.

M. Tokuda, M. Ye, M. Takakura, and P. Sittner, Thermomechanical behavior of shape memory alloy under complex loading conditions, Int. J. Plast, vol.15, issue.2, pp.223-239, 1999.

J. Van-humbeeck, Cycling effects, fatigue and degradation of shape memory alloys, Le Journal de Physique IV, vol.1, issue.C4, pp.4-189, 1991.
URL : https://hal.archives-ouvertes.fr/jpa-00250577

M. Wagner, T. Sawaguchi, G. Kausträter, D. Höffken, and G. Eggeler, Structural fatigue of pseudoelastic NiTi shape memory wires, Mater. Sci. Eng. A, vol.378, issue.1-2, pp.105-109, 2004.

M. F. Wagner, N. Nayan, R. , and U. , Healing of fatigue damage in niti shape memory alloys, Journal of Physics D: Applied Physics, vol.41, issue.18, p.185408, 2008.

V. Wan, D. Maclachlan, and F. Dunne, A stored energy criterion for fatigue crack nucleation in polycrystals, Int. J. Fatigue, vol.68, pp.90-102, 2014.

J. Wang, Z. Moumni, and W. Zhang, A thermomechanically coupled finite-strain constitutive model for cyclic pseudoelasticity of polycrystalline shape memory alloys, Int. J. Plast, 2017.

Z. Wang, G. Hang, Y. Wang, J. Li, and W. Du, Embedded sma wire actuated biomimetic fin: a module for biomimetic underwater propulsion, Smart Materials and Structures, vol.17, issue.2, p.25039, 2008.

J. Warren and D. Wei, A microscopic stored energy approach to generalize fatigue life stress ratios, Int. J. Fatigue, vol.32, issue.11, pp.1853-1861, 2010.

S. G. Wax, G. M. Fischer, and R. R. Sands, The past, present, and future of darpa's investment strategy in smart materials, JOM, vol.55, issue.12, pp.17-23, 2003.

X. Xie, Q. Kan, G. Kang, J. Li, B. Qiu et al., Observation on the transformation domains of super-elastic niti shape memory alloy and their evolutions during cyclic loading, Smart Materials and Structures, vol.25, issue.4, p.45003, 2016.

X. Xie, Q. Kan, G. Kang, F. Lu, C. et al., Observation on rate-dependent cyclic transformation domain of super-elastic NiTi shape memory alloy, Mater. Sci. Eng. A, vol.671, pp.32-47, 2016.

A. Yawny, M. Sade, and G. Eggeler, Pseudoelastic cycling of ultra-fine-grained niti shape-memory wires, Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, vol.96, pp.608-618, 2005.

H. Yin, Y. He, Z. Moumni, and Q. Sun, Effects of grain size on tensile fatigue life of nanostructured niti shape memory alloy, Int. J. Fatigue, vol.88, pp.166-177, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01332124

H. Yin, Y. He, and Q. Sun, Effect of deformation frequency on temperature and stress oscillations in cyclic phase transition of NiTi shape memory alloy, Journal of the Mechanics and Physics of Solids, vol.67, pp.100-128, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01241642

H. Yin, Y. Yan, Y. Huo, and Q. Sun, Rate dependent damping of single crystal CuAlNi shape memory alloy, Materials Letters, vol.109, pp.287-290, 2013.

C. Yu, G. Kang, and Q. Kan, A physical mechanism based constitutive model for temperature-dependent transformation ratchetting of NiTi shape memory alloy: One-dimensional model, Mech. Mater, vol.78, pp.1-10, 2014.

C. Yu, G. Kang, and Q. Kan, A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic niti shape memory alloy single crystals, J. Mech. Phys. Solids, vol.82, pp.97-136, 2015.

C. Yu, G. Kang, Q. Kan, and Y. Zhu, Rate-dependent cyclic deformation of super-elastic niti shape memory alloy: Thermo-mechanical coupled and physical mechanism-based constitutive model, Int. J. Plast, vol.72, pp.60-90, 2015.

W. Zaki and Z. Moumni, A 3D model of the cyclic thermomechanical behavior of shape memory alloys, J. Mech. Phys. Solids, vol.55, issue.11, pp.2427-2454, 2007.

W. Zaki and Z. Moumni, A three-dimensional model of the thermomechanical behavior of shape memory alloys, Journal of the Mechanics and Physics of Solids, vol.55, issue.11, pp.2455-2490, 2007.

S. Zhang and Y. He, Fatigue resistance of branching phase-transformation fronts in pseudoelastic niti polycrystalline strips, International Journal of Solids and Structures, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01661684

X. Zhang, P. Feng, Y. He, T. Yu, and Q. Sun, Experimental study on rate dependence of macroscopic domain and stress hysteresis in niti shape memory alloy strips, International Journal of Mechanical Sciences, vol.52, issue.12, pp.1660-1670, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01241589

Y. Zhang, Y. You, Z. Moumni, G. Anlas, J. Zhu et al., Experimental and theoretical investigation of the frequency effect on low cycle fatigue of shape memory alloys, Int. J. Plast, vol.90, pp.1-30, 2017.

Y. Zhang, J. Zhu, Z. Moumni, and W. Zhang, Energy-based fatigue model for shape memory alloys including thermomechanical coupling, Smart Mater. Struct, vol.25, issue.3, p.35042, 2016.

L. Zheng, Y. He, and Z. Moumni, Effects of lüders-like bands on niti fatigue behaviors, International Journal of Solids and Structures, vol.83, pp.28-44, 2016.

L. Zheng, Y. He, and Z. Moumni, Lüders-like band front motion and fatigue life of pseudoelastic polycrystalline niti shape memory alloy, Scripta Mater, vol.123, pp.46-50, 2016.

L. Zheng, Y. He, and Z. Moumni, Investigation on fatigue behaviors of niti polycrystalline strips under stress-controlled tension via in-situ macro-band observation, International Journal of Plasticity, vol.90, pp.116-145, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01661683

S. Zhu and Y. Zhang, A thermomechanical constitutive model for superelastic SMA wire with strain-rate dependence, Smart Mater. Struct, vol.16, issue.5, pp.1696-1707, 2007.