P. J. Chirik and K. Wieghardt, Science, vol.327, pp.794-795, 2010.

C. K. Jorgensen, Coord. Chem. Rev, vol.1, pp.164-178, 1966.

H. B. Gray, R. Williams, I. Bernal, and E. Billig, J. Am. Chem. Soc, vol.84, pp.3596-3597, 1962.

L. S. Hegedus, Transition Metals in the Synthesis of Complex Organic Molecules, 1994.

P. Chaudhuri, C. N. Verani, E. Bill, E. Bothe, T. Weyhermüller et al., J. Am. Chem. Soc, vol.123, pp.2213-2223, 2001.

). A. Mederos, S. Dom??nguezdom??nguez, R. Herna?ndezherna?ndez-molina, J. N. Sanchiz, F. Brito-;-b et al., J. Chin. Chem. Soc, vol.193, pp.10997-11005, 1994.

V. Lyaskovskyy and B. De-bruin, , vol.2, pp.270-279, 2012.

I. M. Lorkovic, R. R. Duff, and M. S. Wrighton, J. Am. Chem. Soc, vol.117, pp.3617-3618, 1995.

M. W. Bouwkamp, A. C. Bowman, E. Lobkovsky, and P. J. Chirik, J. Am. Chem. Soc, vol.128, pp.13340-13341, 2006.

). S. Bart, K. Chlopek, E. Bill, M. W. Bouwkamp, E. Lobkovsky et al., J. Am. Chem. Soc, vol.128, pp.2936-2947, 2000.

). J. Whittaker-;-b)-l.-que and W. B. Tolman, Arch. Biochem. Biophys, vol.103, pp.227-239, 2003.

K. Wang and E. I. Stiefel, Science, p.106, 2001.

E. R. King, E. T. Hennessy, and T. A. Betley, J. Am. Chem. Soc, vol.133, pp.4917-4923, 2011.

W. Kaim and B. Schwederski, Coord. Chem. Rev, vol.254, pp.1580-1588, 2010.

H. Nohl, W. Jordan, and R. J. Youngman, Advances in Free Radical Biology & Medicine, vol.2, pp.211-279, 1986.

J. C. Kendrew, G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff et al., Nature, vol.181, pp.662-666, 1958.

). L. Pauling, C. D. Coryell-;-b)-j, J. F. Bennett, D. J. Gibson, M. H. Ingram et al., 1, 309; c), Proc. Natl. Acad. Sci. U.S.A, vol.22, pp.210-216, 1936.

J. Robinson, J. P. Am, R. R. Collman, C. A. Gagne, W. T. Reed et al., Proc. Natl. Acad. Sci. U.S.A, vol.97, pp.83-84, 1964.

H. Chen, M. Ikeda-saito, and S. Shaik, J. Am. Chem. Soc, vol.130, pp.14778-14790, 2008.

K. He, H. Nukada, T. Urakami, and M. P. Murphy, Biochem. Pharmcol, vol.65, pp.67-74, 2003.

E. R. Redfearn, J. ;. Burgos, V. Tocilescu, K. Zickermann, U. Zwicker et al., Biochim. Biophys. Acta (BBA)-Bioenergetics, vol.209, pp.1883-1890, 1966.

P. R. Pokkuluri, P. D. Laible, Y. L. Deng, T. N. Wong, D. K. Hanson et al., Photosynth. Res, vol.41, pp.11606-11616, 1995.

C. G. Pierpont, Coord. Chem. Rev, vol.216, pp.99-125, 2001.

M. Y. Pau, M. I. Davis, A. M. Orville, J. D. Lipscomb, and E. I. Solomon, J. Am. Chem. Soc, vol.129, pp.1944-1958, 2007.

D. C. Mauzerall, Clin. Dermatol, vol.16, pp.195-201, 1998.

C. M. Wilmot, ;. C. Li, L. Zhang, C. Zhang, H. Hirao et al., Angew. Chem. Int. Ed, vol.316, pp.2941-2959, 2007.

C. T. Lyons, T. D. Stack-;-p, and . Cozzi, Eur. J. Inorg. Chem, vol.257, pp.193-205, 2004.

P. Pfeiffer, E. Breith, E. Lübbe, and T. Tsumaki, Justus Liebigs Ann. Chem, vol.503, pp.84-130, 1933.

H. Makio, N. Kashiwa, and T. Fujita, Adv. Synth. Catal, vol.344, pp.477-493, 2002.

M. Bandini, P. G. Cozzi, S. Morganti, and A. Umani-ronchi, Tetrahedron Lett, vol.40, 1999.

A. Chatterjee, T. H. Bennur, and N. N. Joshi, J. Org. Chem, vol.68, pp.5668-5671, 2003.

J. Legros and C. Bolm, Angew. Chem. Int. Ed, vol.43, pp.4225-4228, 2004.

S. K. Edulji and S. T. Nguyen, Organometallics, vol.22, pp.3374-3381, 2003.

T. Uchida, R. Irie, and T. Katsuki, Tetrahedron, vol.56, pp.3501-3509, 2000.

J. A. Miller, W. Jin, and S. T. Nguyen, Angew. Chem. Int. Ed, vol.41, pp.2953-2956, 2002.

C. L. Bailey and R. S. Drago, Coord. Chem. Rev, vol.79, pp.321-332, 1987.

S. Gambarotta, F. Arena, C. Floriani, and A. Gaetani-manfredotti, J. Chem. Soc., Chem. Comm, pp.835-837, 1982.

D. A. Atwood and M. J. Harvey, Chem. Rev, vol.101, pp.37-52, 2001.

C. P. Radano, G. L. Baker, and M. R. Smith, J. Am. Chem. Soc, vol.122, pp.1552-1553, 2000.

T. Ooi, Y. Itagaki, T. Miura, and K. Maruoka, Tetrahedron Lett, vol.40, pp.2137-2138, 1999.

E. G. Samsel, K. Srinivasan, and J. K. Kochi, J. Am. Chem. Soc, vol.107, pp.7606-7617, 1985.

). W. Zhang, J. L. Loebach, S. R. Wilson, E. N. Jacobsen-;-r.-irie, K. Noda et al., J. Am. Chem. Soc, vol.112, pp.7345-7348, 1990.

W. Zhang and E. N. Jacobsen, J. Org. Chem, vol.56, pp.2296-2298, 1991.

N. H. Lee, A. R. Muci, and E. N. Jacobsen, Tetrahedron Lett, vol.32, pp.5055-5058, 1991.

K. Kobayashi, J. Tanaka, S. Miwa, and . Katsumura, Tetrahedron: Asymmetry, vol.15, pp.185-188, 2004.

C. H. Sugisaki, P. J. Carroll, and C. R. Correia, Tetrahedron Lett, vol.39, pp.3413-3416, 1998.

F. Aloui and B. B. Hassine, Tetrahedron Lett, vol.50, pp.4321-4323, 2009.

H. A. Jahn and E. Teller, Proc. R. Soc. London, Se. A1937, p.220

S. Will, J. Lex, E. Vogel, H. Schmickler, J. Gisselbrecht et al., Angew. Chem. Int. Ed, vol.36, pp.357-361, 1997.

). A. Alemayehu, E. Gonzalez, L. K. Hansen, and A. Ghosh, Inorg. Chem, vol.48, pp.7794-7799, 2009.

). K. Thomas, J. Conradie, L. K. Hansen, and A. Ghosh, Eur. J. Inorg. Chem, vol.45, pp.1203-1214, 2011.

M. Bröring, F. Brégier, E. Tejero, C. Hell, M. C. Holthausen-;-b)-a.-alemayehu et al., Angew. Chem. Int. Ed, vol.46, pp.10316-10329, 2007.

C. M. Lemon, M. Huynh, A. G. Maher, B. L. Anderson, E. D. Bloch et al., Angew. Chem. Int. Edit, vol.55, pp.2176-2180, 2016.

P. Verma, J. Weir, L. Mirica, and T. D. Stack, Inorg. Chem, vol.50, pp.9816-9825, 2011.

O. Kahn, R. Prins, J. Reedijk, and J. S. Thompson, Inorg. Chem, vol.26, pp.2589-2594, 1987.

L. L. Diaddario, W. R. Robinson, and D. W. Margerum, Inorg. Chem, vol.22, pp.1021-1025, 1983.

J. Hanss and H. Krüger, Angew. Chem. Int. Ed, vol.35, pp.2827-2830, 1996.

B. Cervera, J. L. Sanz, M. J. Ibanez, G. Vila, F. Lloret et al., J. Chem. Soc, pp.781-790, 1998.

O. Rotthaus, F. Thomas, O. Jarjayes, C. Philouze, E. Saint-aman et al., Chem. Eur. J, vol.12, pp.6953-6962, 2006.

T. J. Collins, T. R. Nichols, E. S. Uffelman-;-c, P. Weeks, R. R. Turner et al., J. Am. Chem. Soc, vol.113, pp.931-940, 1991.

). X. Ottenwaelder, A. Aukauloo, Y. Journaux, R. Carrasco, J. Cano et al., , pp.2516-2526, 2005.

). O. Kanderal, H. Kozlowski, A. Dobosz, J. Swiatek-kozlowska, F. Meyer et al., , pp.1428-1437, 2005.

B. Zheng, F. Tang, J. Luo, J. W. Schultz, N. P. Rath et al., J. Am. Chem. Soc, vol.136, pp.6499-6504, 2014.

Y. Shimazaki, F. Tani, K. Fukui, Y. Naruta, and O. Yamauchi, J. Am. Chem. Soc, vol.125, pp.10512-10513, 2003.

C. Freire and B. De-castro, J. Chem. Soc, pp.1491-1498, 1998.

O. Rotthaus, O. Jarjayes, F. Thomas, C. Philouze, C. Perez-del-valle et al.,

. Pierre, Chem. Eur. J, vol.12, pp.2293-2302, 2006.

Z. B. Ögel, D. Brayford, and M. J. Mcpherson, Mycol. Res, vol.98, pp.474-480, 1994.

N. Ito, S. E. Phillips, K. D. Yadav, and P. F. Knowles, J. Mol. Biol, vol.238, pp.704-814, 1994.

S. E. Ito, C. Phillips, Z. B. Stevens, M. J. Ogel, J. N. Mcpherson et al., Nature, vol.350, pp.87-90, 1991.

). J. Whittaker-;-b, ). F. Wendt, M. Rolff, W. Thimm, C. Näther et al., Z. Anorg. Allg. Chem, vol.60, pp.2502-2509, 2002.

D. Rokhsana, D. M. Dooley, and R. K. Szilagyi, J. Am. Chem. Soc, vol.128, pp.15550-15551, 2006.

). R. Pratt, T. D. Stack, J. Am, ). F. Michel, F. Thomas et al., J. Biol. Inorg. Chem, vol.125, pp.8217-8227, 1997.

Y. D. Wang, J. L. Dubois, B. Hedman, K. O. Hodgson, and T. D. Stack, Science, vol.279, pp.537-540, 1998.

T. Storr, P. Verma, R. C. Pratt, E. C. Wasinger, Y. Shimazaki et al., J. Am. Chem. Soc, vol.130, pp.15448-15459, 2008.

). H. Maeda, Y. Ishikawa, T. Matsuda, A. Osuka, H. Furuta et al., J. Chem. Soc., Chem. Comm, vol.125, pp.905-906, 1990.

F. Thomas, Eur. J. Inorg. Chem, pp.2379-2404, 2007.

F. Thomas, O. Jarjayes, C. Duboc, C. Philouze, E. Saint-aman et al., Dalton Trans, pp.2662-2669, 2004.

K. Asami, A. Takashina, M. Kobayashi, S. Iwatsuki, T. Yajima et al., , vol.43, pp.2283-2293, 2014.

). R. Thauer, G. Diekert, P. Schönheit-;-b, ). Y. Kung, and C. L. Drennan, Curr. Opin. Chem. Biol, vol.5, pp.276-283, 1980.

L. Chiang, A. Kochem, O. Jarjayes, T. J. Dunn, H. Vézin et al., Chem. Eur. J, vol.18, pp.14117-14127, 2012.

T. Storr, E. C. Wasinger, R. C. Pratt, and T. D. Stack, Angew. Chem. Int. Edit, vol.46, pp.5198-5201, 2007.

Z. Xiao, B. O. Patrick, and D. Dolphin, Inorg. Chem, vol.42, pp.8125-8127, 2003.

L. Chiang, K. Herasymchuk, F. Thomas, and T. Storr, Inorg. Chem, vol.54, pp.5970-5980, 2015.

T. P. Cao, S. Labouille, A. Auffrant, Y. Jean, X. F. Le-goff et al., , vol.40, pp.10029-10037, 2011.

E. M. Broderick, P. S. Thuy-boun, N. Guo, C. S. Vogel, J. T. Miller et al., Inorg. Chem, vol.50, pp.2870-2877, 2011.

T. P. Cao, A. Buchard, X. F. Le-goff, A. Auffrant, C. K. Williams et al., Angew. Chem. Int. Ed, vol.51, pp.9226-9230, 2012.

H. Staudinger and J. Meyer, Helv. Chim. Acta, vol.2, pp.635-646, 1919.

A. V. Kirsanov, Isv Akad Nauk SSSR 1950, p.426

L. Horner and H. Oedinger, Justus Liebigs Ann. Chem, vol.1959, issue.1, pp.142-162

H. Bock and M. Schnöller, Angew. Chem. Int. Ed, vol.7, pp.636-636, 1968.

W. Q. Tian and Y. A. Wang, J. Org. Chem, vol.69, pp.4299-4308, 2004.

P. J. Alonso, A. B. Arauzo, M. A. Garcia-monforte, A. Martin, B. Menjon et al., Chem. Eur. J, vol.15, pp.11020-11030, 2009.

H. Zimmer and G. Singh, J. Org. Chem, vol.28, pp.483-486, 1963.

). A. Buchard, Chimie de coordination des iminophosphoranes et nouveaux systèmes catalytiques, Ecole polytechnique, 2009; b) T.-P.-A. Cao, Coordination chemistry and catalysis with mixed ligands associating iminophosphorane to thiolate or phenolate, Ecole Polytechnique, 2012; c) T. Cheisson, Synthèse et réactivité de complexes à ligand iminphosphorane, 2015.

A. Steiner and D. Stalke, Angew. Chem. Int. Ed, vol.34, pp.1752-1755, 1995.

I. Kaljurand, T. Rodima, I. Leito, I. A. Koppel, and R. Schwesinger, J. Org. Chem, vol.65, pp.6202-6208, 2000.

). R. Pearson-;-b)-r, . G. Pearson-;-r, and . Pearson, J. Am. Chem. Soc, vol.85, p.643, 1963.

M. Orio, O. Jarjayes, H. Kanso, C. Philouze, F. Neese et al., Angew. Chem. Int. Edit, vol.49, pp.4989-4992, 2010.

R. H. Platel, L. M. Hodgson, and C. K. Williams, Polym. Rev, vol.48, pp.11-63, 2008.

T. P. Cao, G. Nocton, L. Ricard, X. F. Le-goff, and A. Auffrant, Angew. Chem. Int. Ed, vol.53, pp.1368-1372, 2014.

T. P. Cao, G. Nocton, L. Ricard, X. F. Le-goff, and A. Auffrant, Angew. Chem. Int. Ed, vol.53, pp.1368-1372, 2014.

Y. D. Wang, J. L. Dubois, B. Hedman, K. O. Hodgson, and T. D. Stack, Science, vol.279, pp.537-540, 1998.

T. Storr, P. Verma, R. C. Pratt, E. C. Wasinger, Y. Shimazaki et al., J. Am. Chem. Soc, vol.130, pp.5970-5980, 2008.

M. Orio, O. Jarjayes, H. Kanso, C. Philouze, F. Neese et al., Angew. Chem. Int. Edit, vol.49, pp.4989-4992, 2010.

P. Chaudhuri, C. N. Verani, E. Bill, E. Bothe, T. Weyhermüller et al., J. Am. Chem. Soc, vol.123, pp.2213-2223, 2001.

C. Bakewell, T. P. Cao, N. Long, X. F. Le-goff, A. Auffrant et al., J. Am. Chem. Soc, vol.134, pp.20577-20580, 2012.

F. Thomas, O. Jarjayes, C. Duboc, C. Philouze, E. Saint-aman et al., Dalton Trans, pp.2662-2669, 2004.

L. Dyers, S. Y. Que, D. Vanderveer, and X. R. Bu, Inorg. Chim. Acta, vol.359, pp.197-203, 2006.

C. M. Lemon, M. Huynh, A. G. Maher, B. L. Anderson, E. D. Bloch et al., Angew. Chem. Int. Edit, vol.55, pp.2176-2180, 2016.

O. Rotthaus, F. Thomas, O. Jarjayes, C. Philouze, E. Saint-aman et al., Chem. Eur. J, vol.12, pp.6953-6962, 2006.

B. L. Guennic, T. Floyd, B. R. Galan, J. Autschbach, and J. B. Keister, Inorg. Chem, vol.48, pp.5504-5511, 2009.

P. Bertrand, La spectroscopie de résonance paramagnétique électronique : fondements, EDP sciences, Inorg. Chim. Acta, vol.362, pp.2467-2474, 2009.

F. Thomas and D. Trans, , vol.45, pp.10866-10877, 2016.

O. Rotthaus, O. Jarjayes, F. Thomas, C. Philouze, C. Perez-del-valle et al.,

. Pierre, Chem. Eur. J, vol.12, pp.2293-2302, 2006.

T. Storr, E. C. Wasinger, R. C. Pratt, and T. D. Stack, Angew. Chem. Int. Edit, vol.46, pp.5198-5201, 2007.

Y. Shimazaki, T. D. Stack, and T. Storr, Inorg. Chem, vol.48, pp.8383-8392, 2009.

M. D. Walter, M. Schultz, and R. A. Andersen, New J. Chem, vol.30, pp.238-246, 2006.

J. H. Van-vleck, The Theory of Electric and Magnetic Susceptibilities, 1932.

J. W. Whittaker, Adv. Protein Chem, vol.60, pp.1-49, 2002.

V. References,

O. Rotthaus, O. Jarjayes, F. Thomas, C. Philouze, C. Perez-del-valle et al.,

C. Pierre, ). J. Eur, O. Thomas, C. Jarjayes, C. Duboc et al., Dalton Trans, vol.12, pp.2662-2669, 2004.

). K. Asami, A. Takashina, M. Kobayashi, S. Iwatsuki, T. Yajima et al., , vol.43, pp.2283-2293, 2014.

A. Asami, M. Takashina, S. Kobayashi, T. Iwatsuki, A. Yajima et al., J. Am. Chem. Soc, vol.43, pp.8628-8638, 2014.

O. Rotthaus, O. Jarjayes, C. Philouze, C. P. Valle, F. Thomas et al., Chem. Comm, pp.4462-4464, 2007.

). A. Kochem, O. Jarjayes, B. Baptiste, C. Philouze, H. Vezin et al., Eur. J. Inorg. Chem, vol.18, pp.3479-3487, 2012.

M. B. Robin and P. Day, Advances in Inorganic Chemistry and Radiochemistry, vol.10, pp.247-422, 1968.

D. De-bellefeuille, M. S. Askari, B. Lassalle-kaiser, Y. Journaux, A. Aukauloo et al., Inorg. Chem, vol.51, pp.12796-12804, 2012.

Y. Shimazaki, T. Yajima, T. Shiraiwa, and O. Yamauchi, Inorg. Chim. Acta, vol.362, pp.2467-2474, 2009.

). R. Drago, E. I. Baucom-;-b)-h, R. H. Krueger, and . Holm, Inorg. Chem, vol.11, pp.1098-1099, 1972.

D. De-bellefeuille, M. Orio, A. Barra, A. Aukauloo, Y. Journaux et al., Inorg. Chem, vol.54, pp.9013-9026, 2015.

P. Chaudhuri, C. N. Verani, E. Bill, E. Bothe, T. Weyhermüller et al., J. Am. Chem. Soc, vol.123, pp.2213-2223, 2001.

P. Bertrand, La spectroscopie de résonance paramagnétique électronique : fondements, EDP sciences, 2014.

). B. Liu, T. Yoshida, X. Li, M. St?pie?, H. Shinokubo et al., Angew. Chem. Int. Ed, vol.55, pp.20352-20364, 2012.

J. L. Deutsch and S. M. Poling, J. Chem. Educ, vol.46, pp.167-168, 1969.

T. P. Cao, G. Nocton, L. Ricard, X. F. Le-goff, and A. Auffrant, Angew. Chem. Int. Ed, vol.53, pp.1368-1372, 2014.

). L. Benisvy, R. Kannappan, Y. F. Song, S. Milikisyants, M. Huber et al., Eur. J. Inorg. Chem, vol.12, pp.6953-6962, 2006.

L. Benisvy, R. Kannappan, Y. Song, S. Milikisyants, M. Huber et al., Eur. J. Inorg. Chem, pp.637-642, 2007.

X. Ottenwaelder, R. Ruiz-garcia, G. Blondin, R. Carasco, J. Cano et al., Chem. Comm, pp.504-505, 2004.

D. Herebian, E. Bothe, F. Neese, T. Weyhermüller, and K. Wieghardt, J. Am. Chem. Soc, vol.125, pp.9116-9128, 2003.

Z. Xiao, B. O. Patrick, and D. Dolphin, Inorg. Chem, vol.42, pp.8125-8127, 2003.

L. Chiang, A. Kochem, O. Jarjayes, T. J. Dunn, H. Vézin et al., Chem. Eur. J, vol.18, pp.14117-14127, 2012.

Y. Shimazaki, T. Yajima, F. Tani, S. Karasawa, K. Fukui et al., J. Am. Chem. Soc, vol.129, pp.2559-2568, 2007.

W. Zhang, J. L. Loebach, S. R. Wilson, and E. N. Jacobsen, J. Am. Chem. Soc, vol.112, pp.2801-2803, 1990.

K. Srinivasan, P. Michaud, and J. K. Kochi, J. Am. Chem. Soc, vol.108, pp.2309-2320, 1986.

E. M. Mcgarrigle and D. G. Gilheany, Chem. Rev, vol.105, pp.1563-1602, 2005.

). D. Feichtinger, D. A. Plattner-;-b)-d, D. Plattner, J. Feichtinger, O. El-bahraoui et al., Angew. Chem. Int. Ed, vol.7, pp.1718-1719, 1997.

M. Guo, H. Dong, J. Li, B. Cheng, Y. Huang et al., , 1190.

C. S. Mullins and V. L. Pecoraro, Coord. Chem. Rev, vol.252, pp.416-443, 2008.

Y. Zhang, A. Cryst, ;. M. Yu, R. J. Beyers, J. D. Gorden et al., Inorg. Chem, vol.62, pp.9238-9247, 2006.

Z. Lv, W. Zheng, Z. Chen, Z. Tang, W. Mo et al., , vol.45, pp.11369-11383, 2016.

Z. Chen, L. Yang, C. Choe, Z. Lv, and G. Yin, Chem. Comm, vol.51, pp.1874-1877, 2015.

L. Lecarme, L. Chiang, J. Moutet, N. Leconte, C. Philouze et al., , vol.45, pp.16325-16334, 2016.

U. Neuenschwander and I. Hermans, J. Org. Chem, vol.76, pp.10236-10240, 2011.

). K. Lancaster, M. Roemelt, P. Ettenhuber, Y. Hu, M. W. Ribbe et al., 334, 974; b) G. Ertl, Angew. Chem. Int. Ed, vol.29, pp.1219-1227, 1990.

J. D. Bois, J. Hong, E. M. Carreira, and M. W. Day, J. Am. Chem. Soc, vol.118, pp.915-916, 1996.

A. J. Keane, W. S. Farrell, B. L. Yonke, P. Y. Zavalij, and L. R. Sita, Angew. Chem. Int. Ed, vol.54, pp.10220-10224, 2015.

H. Kropp, A. E. King, M. M. Khusniyarov, F. W. Heinemann, K. M. Lancaster et al., J. Am. Chem. Soc, vol.134, pp.15538-15544, 2012.

T. R. Dugan, E. Bill, K. C. Macleod, G. J. Christian, R. E. Cowley et al., J. Am. Chem. Soc, vol.134, pp.20352-20364, 2012.

). S. Hong, K. D. Sutherlin, J. Park, E. Kwon, M. A. Siegler et al., Nat. Commun, vol.5, 2014.

C. Tseng, G. Hu, . S. Lee-;-m, J. Y. Seo, J. Kim et al., Angew. Chem. Int. Ed, vol.51, pp.4150-4153, 2007.

C. J. Cramer, W. B. Tolman, K. H. Theopold, and A. L. Rheingold, Proc. Natl. Acad. Sci. U.S.A, vol.100, pp.3635-3640, 2003.

J. W. Egan, B. S. Haggerty, A. L. Rheingold, S. C. Sendlinger, and K. H. Theopold, J. Am. Chem. Soc, vol.112, pp.2445-2446, 1990.

, CD2Cl2): no signal; 1 H NMR (CD2Cl2) ? 7.50-8.09 (m, 22H, Hb, Hc, Hd, Hh), 6.56 (br s, 2H, Hf), 2.95 (br s, 4H, Hp), 1.40 (br s, 18H, Hl or Hn), 1.14 (br s, 18H, Hl or Hn), Anal. Calcd

, Addition of AgSbF6, p.81

, CD2Cl2): no signal, H NMR (CD2Cl2) ? 7.77 (m, 22H, Hb, Hc, Hd, Hf or Hh), 5.65 (br s, 2H, Hf or Hh), 4.55 (bs, 8H, Ho), 1.42 (br s, 18H, Hl). Anal. Calcd. for C48H52CuF6N2O4P2Sb: C, 53, vol.1, p.27

, Addition of AgSbF6 (45 mg, 3 × 10 mL) and dried under reduced pressure to yield, p.82

, Brown crystals were obtained via petroleum ether diffusion into a saturated CH2Cl2 solution

, Hf or Hh), 8.46 (d, J = 5.8 Hz, 8H, Hb or Hc), 7.87 (br s, 8H, Hc or Hb) 7.74 (t, 3 JH,H = 6.8 Hz, 4H, Hd), 2.88 (br s, 18H, Hl),-2.84 (br s, 2H, Hb or Hc). Anal, P{ 1 H} NMR (CD2Cl2): no signal; 1 H NMR (CD2Cl2) ? 33.98 (bs, 6H, Ho), 25.99 (bs, 2H

, 52.8mmol) was added dropwise to a solution of 2-bromo-1,3-di-tert-butylphenol (7 g, 24.56 mmol) in diethyl ether (50 mL) at-78 °C under inert conditions. The resulting pale yellow solution was stirred for 1 hour at room temperature, vol.33, p.7

, 56 mmol) was added to the solution at-78 °C and a white precipitate appeared. The suspension was stirred overnight. The mixture was extracted with a solution of NaH2PO4 (50 mL, 0.16 M) and the organic layer was dried over MgSO4. The solid was filtered and the solution

, NMR (CDCl3): ?-21.4 ppm; 1 H NMR (CDCl3) ? 7.29 (d, 3 JP,H = 2.8 Hz, 1H, OH), 7.27 (m, 1H, Hd), 7.10 (t, 3 JP,H = 2.7 Hz, 4 JH,H = 2.5 Hz, Hb), 2.14 (m, 1H, Hg), 1.41 (s, 9H, Hl or Hj), vol.1

, C { 1 H} NMR (CDCl3): ? 157.2 (d, 2 JP,H = 18.4 Hz

C. Hz, 1 (s, Cd), 117.1 (d, 3 JP,H = 5.0 Hz, Cb), vol.125

, Synthesis of (H4 iPr Psalen)Br2

, The isopropyl phosphine (1.869 g, 5.8 mmol) was oxidized with bromine (0.3 mL, 5.8 mmol) at

H. Nmr, 31 P{ 1 H} NMR (CDCl3): ? 65.91 ppm; 1 H NMR (CDCl3) ? 7.64 (s, 2H, Hh), 7.23 (dd, 3 JP,H = 12.3 Hz, 4 JH,H = 2.0, 2H, Hf), 6.49 (br s, 2H, OH), 3.57 (br s, 4H, Ha), 3.25 (m, 4H, Hb), 1.47 (s, 18H, Hn), 1.42 (dd, 3 JP,H = 16.7 Hz, 3 JH,H = 6.8 Hz, 12H, Hc or Hd), The tributylammonium salts were removed by centrifugation. THF (15 mL) was added to the slurry solution making the proligand precipitate. After filtration, the solid was washed with THF (3 x 10 mL) and dried under vacuum to lead (H4 iPr Psalen)Br2 as a white powder (1.997 g, 80%), vol.1

, KH (42mg, 1.04 mmol) was added to a suspension of bis-aminophosphonium, p.2

, After stirring 1 h the reaction was completed, the 31 P{ 1 H} NMR spectrum shows a unique singlet at 49.7 ppm. The solvent was then removed and the residue dissolved in CH2Cl2 (10 mL) and centrifuged. The resulting solution was evaporated and a deep purple precipitate was obtained by addition of diethyl ether. The solid was washed with diethyl ether (3 x 10 mL) and dried under vacuum to yield

4. Hz and H. , Hc or Hd), 1.39 (s, 18H, Hl or Hn), 1.38 ( 3 JP,H = 14.6 Hz, 3 JH,H = 7.2 Hz, 6H, Hc or Hd), 1.21 (s, 18H, Hl or Hn). 13 C { 1 H} NMR (CDCl3): ? 167.9 (s, Cj), = 12.8 Hz ,Cg), 126.6 (s, Ch), 122.5 (d, 3 JP,C = 11.5 Hz, Cf), vol.142

H. ,

H. ,

, KHMDS (369 mg, 1.85 mmol) was added to a suspension of bis-aminophosphonium (H4Psalen iPr )Br2 proligand (400 mg, 0.46 mmol) in THF

, Purple crystals were obtained by evaporation of a chloroform solution. 31 P{ 1 H} NMR (CDCl3): no signal; 1 H NMR (CDCl3) ? 10.81 (br s), 3.89 (br s), 1.88 (br s), 1.63 (br s), 1.15 (br s), Anal. Calcd

H. , , vol.6

, AgSbF6 (36 mg, 0.10 mmol) was added to a solution of, Ni

, After stirring for 1 h, the suspension was filtered and the solvent removed under vacuum. The residue was dissolved in a small amount of THF and precipitated with petroleum ether. The obtained dark brown solid was filtered, washed with petroleum ether (2 x 10 mL) and dried under reduced pressure to afford [Ni(Psalen iPr )] + SbF6(90 mg, 86 %). Dark crystals were obtained by slow diffusion of petroleum ether to a CH2Cl2 solution. 31 P{ 1 H} NMR (CD2Cl2): no signal; 1 H NMR (CD2Cl2) ? 21.24 (s, 2H, Hf or Hh), 14.83 (s, 2H, Hf or Hh), CH2Cl2 (4 mL) under Ar atmosphere. The solution changed immediately from purple to dark brown and a suspension of Ag was formed

, AgSbF6 (54 mg, 0.16 mmol) was added to a solution of, Cu

, After stirring for 1 h, the suspension was filtered and the solution concentrated under vacuum. A deep purple solid was obtained by addition of petroleum ether. The solid was filtered, washed with petroleum ether (2 x 10 mL) and dried under reduced pressure to yield [Cu(Psalen iPr )] + SbF6-(130 mg, 83 %), CH2Cl2 (4 mL) under Ar atmosphere. The solution changed immediately from green to deep purple and a suspension of Ag was formed, vol.7

H. ,

, mg, 0.47 mmol) was added. After stirring at room temperature for 2 h complexation is completed, the 31 P{ 1 H} NMR spectrum shows a broad singlet at 34.7 ppm. After centrifugation, the solution was concentrated and a pale blue solid was obtained by precipitation with petroleum ether. The solid was washed with petroleum ether (3 x 10 mL) and dried under vacuum to yield, KHMDS (380 mg, 1.91 mmol) was added to a solution of bis-aminophosphonium (H4Psalophen)Br2 proligand (500mg, 0.47 mmol) in THF (20 mL) under inert conditions

, 16 (s, 18H, Ho or Hq), 1.00 (s, 18H, Ho or Hq), 2H, ChH), 6.20 (dd, 3 JP,H = 15.6 Hz, 4 JH,H = 2.0 Hz, 2H, CfH), 5.86 (dd, 3 JH,H = 5.9 Hz, 4 JH,H = 3.6 Hz, 2H, CmH), 5.70 (m, 2H, ClH), vol.1

C. Hz, 3 (d, 4 JP,C =2.8 Hz, Cd), 130.2 (d, 1 JP,C = 90.4 Hz, Ce), Anal. Calcd, vol.133, issue.7

, KHMDS (312 mg, 1.56 mmol) was added to a solution of bis-aminophosphonium (H4Psalophen)Br2 proligand (400mg, 0.38 mmol) in THF (20 mL) under inert conditions

, Br2 (150 µL, 2.91 mmol)) was added to a solution of tert

, After stirring for 1 hour at room temperature, the solution was placed again in a cold bath at-78 C and DABCO (163 mg, 1.45 mmol) followed by 4-methyl-o-phenylenediamine (177 mg, 1.45 mmol) pink solid (696 mg, 45 %), CH2Cl2 (25 mL) at-78 °C under inert conditions

1. Hz and N. ). , JP,H = 3.5 Hz, 1H, NH), 7.72 (m, 16H, Hb+Hc), 7.57 (m, 4H, Hd), 7.42 (m, vol.1, p.1

, Hf1 or Hf2) 6.45 (s, Hm + Hl), 6.22 (s, 1H, Ho), 1.83 (s, 3H,-CH3), 1.33 (s, 9H, Hq or Hr), 1.32 (s, 9H, Hq or Hr), 1.16 (s, 9H, Hq or Hr), 1.15 (s, 9H, Hq or Hr), = 15.4 Hz, 4 JH,H = 1.5 Hz, 1H

, 47 mmol) in THF (20 mL) under inert conditions. The deprotonation is completed once two signals at 16.1 and 15.9 ppm are present in the 31 P{ 1 H} NMR. The solution was centrifuged to remove the insoluble salts and then [NiBr2(DME)] (145 mg, 0.47 mmol) was and the residue dissolved in CH2Cl2 (10 mL) and centrifuged. The solution was concentrated and a blue powder was obtained by addition of petroleum ether. The solid was washed with petroleum ether (3 x 10 mL), KHMDS (374 mg, 1.88 mmol) was added to a solution of bis-aminophosphonium H4Psalophen Me proligand (500 mg

, Purple crystals were obtained from a saturated toluene stored in fridge for one week. 31 P{ 1 H} NMR (CDCl3): ? 30.22 (s, 1 P, P1 or P2), 30.04(s, 1 P, P1 or P2)

, 8H, Hc), 7.60 (t, 3 JH,H = 6.0 Hz, 4H, Hd), 7.51 (m, 8H, Hb), vol.84

, Hm or Hl), 5.66 (d, 3 JH,H = 8.1 Hz, 1H, Hm or Hl), 5.54 (s, 1H, Ho), 1.60 (s, 3H,-CH3), 1.23 (s, 9H, Hq or Hr), 1.22 (s, 9H, Hq or Hr), 1.09 (s, 9H, Hq or Hr), 1.07 (s, 9H, Hq or Hr), = 2.3 Hz, 1H, Hf1), 6.26 (dd, 3 JP,H = 15.6 Hz, 4 JH,H = 2.1 Hz, 1H, H f2) 5.77 (dd, 3 JH,H = 8.1 Hz, vol.1

, After stirring during 2 h at room temperature the deprotonation is completed, the 31 P{ 1 H} NMR spectrum shows two signals at 16.1 and 15.9 ppm. The solution was centrifuged to remove the insoluble salts and CuBr2 (84 mg, 0.38 mmol) was added. The solution was stirred at room temperature for 1 h. The total disappearance of the 31 P{ 1 H} NMR signal indicates that the complexation is completed. The solvent was removed under reduced pressure and the residue dissolved in CH2Cl2 (10mL), KHMDS (315 mg, 1.58 mmol) was added to a solution of bis-aminophosphonium (H4Psalophen Me )Br2 proligand (410mg, 0.38 mmol) in THF (25 mL) under inert conditions

H. ,

, AgSbF6 (36 mg, 0.1 mmol) was added to a solution of [Ni(Psalophen Me )] (100 mg, 0.1 mmol) in concentrated. A dark solid was obtained by addition of petroleum ether

, The solid was washed with petroleum ether (2 x 10 mL) and dried under vacuum to lead

, AgSbF6 (32 mg, 0.09 mmol) was added to a solution of, Cu

. Br2, 89 mmol) was added to a solution of tert-butyl phosphine (1.520 g, 3.89 mmol

. Ch2cl2, At-78 °C, DABCO (218 mg, 1.94 mmol) was added to the solution followed by 3,4-diaminobenzotrifluoride (342 mg, 1.94 , 58 %)

, = 7.3 Hz, 8H, Hb1 + Hb2), 7.76-7.65 (m, 6H, Hd1+ Hd2 + Hh), 7.61 (m, 4H, Hc1), 7.55 (m, 4H, Hc2), 6.95 (dd, 3 JP,H = 16.3 Hz, 4 JH,H = 2.0 Hz, 1H, Hf1), vol.6

. Hz, Ci1 or Ci2), vol.141

. Hz, , p.65

. Hz, Cb1 or Cb2), 130.0 (d, 3 JP,C= 13.8 Hz, Cc1 or Cc2), vol.129

, 5 (d, 1 JP,C= 105.21 Hz, Ce), 122.4 (m, Cl or Cm), Cl or Cm), 120.7 (d, 2 JP,C= 104.0 Hz, Ce), 110.6 (d, 1 JP,C= 103.5 Hz, Ca), vol.122

, Green-purple crystals were obtained by evaporation of a CDCl3 solution. 31 P{ 1 H} NMR (CDCl3): ? 31.2 (s, 1 P, P1 or P2), 31.1 (s, 1 P, P1 or P2), KHMDS (286 mg, 1.44 mmol) was added to a solution of bis-aminophosphonium (H4Psalophen CF3 )Br2 proligand (400 mg, 0.36 mmol) in THF (20 with petroleum ether (3 x 10 mL) and dried under vacuum to yield [Ni(Psalophen CF3 )] (258 mg, 71 %), vol.1

J. H. , H. Hz, 1. Hm, and ). , 78 (s, 1H, Ho), 5.75 (d, 3 JH,H = 8.5 Hz, 1H, Hl), 1.26 (s, 9H, Hq or Hs), 1.21 (s, 9H, Hq or Hs), 1.11 (s, 9H, Hq or Hs), 1.08 (s, 9H, Hq or Hs), Anal. Calcd, vol.5

, KHMDS (192 mg, 0.96 mmol) was added to a solution of bis-aminophosphonium (H4Psalophen CF3 )Br2 proligand (370 mg, 0.24 mmol) in THF (20 mL) under inert conditions

, After stirring for 2 h the solution was centrifuged to remove the insoluble salts and CuBr2 (54 mg, 0.24 mmol) was added. The mixture was stirred for 1 h at room temperature and the solvent was evaporated. The residue was dissolved in CH2Cl2 (10 mL), centrifuged and the solution concentrated. Addition of petroleum ether leads the formation of a green precipitate that was washed with petroleum ether and dried under vacuum to yield, p.57

, Dark brown crystals were obtained from a CH2Cl2/pentane solution stored in the fridge

, 15 (br s, aromatic protons), 7.05 (br s, aromatic protons), 1.69 (br s, aliphatic protons), 1.11 (br s, aliphatic protons), P{ 1 H} NMR (CDCl3): no signal; 1 H NMR (CDCl3) 9

, The solid was washed with petroleum ether (2 x 10 mL) and dried under vacuum to yield [Ni(Psalophen CF3 )] + SbF6-(100 mg, 67 CH2Cl2 solution. 31 P{ 1 H} NMR (CD2Cl2): no signal; 1 H NMR (CD2Cl2) ? 11.26 (br s), 8.39 (br s), 7.93 (br s), 7.59 (br s), 6.74 (br s), 2.56 (br s), 0.07 (br s),-19.47 (br s),-34.43 (br s), Anal. Calcd, p.130

, 78 mg, 0.06 mmol) in washed with petroleum ether (3 × 10 mL) and dried under reduced pressure to yield [Cu(Psalophen CF3 )] + SbF6-(51 mg, 58 %). 31 P{ 1 H} NMR (CD2Cl2): no signal; 1 H NMR (CD2Cl2) ? 8.22 (br s), 8.02 (br s), 7.66 (br s), 3.80 (br s, vol.1

. Br2, µL, mmol) was added to a tert-butyl phosphine solution (1.457 g, 3.73 mmol) in CH2Cl2 (30 mL) at-78 °C under inert atmosphere. The cold bath was removed and the reaction was stirred for 2 h at room temperature. DABCO (209 mg, 1.86 mmol) and 1,2-diamino-4

, H4Psalophen OMe2 )Br2 (861 mg, 42%). 31 P{ 1 H} NMR (CDCl3): ? 40.35 ppm; 1 H NMR (CDCl3) ? 8.72 (d, 2 JP,H = 9.6 Hz, 2H, NH), 7.62-7.77 (m, 14H, Hb+Hd+Hh), 7.54 (m, 8H, Hc)

J. H. and H. , 16 (s, 6H, Hn), 1.31 (s, 18H, Hr), 1.13 (s, 18H, Hp), Hz, 2H, Hf), 5.97 (s, 2H, Hl), vol.3

J. P. and C. , Cg or Ci), vol.134

. Hz, , vol.129

C. Hz, 121.6 (d, 1 JP,C = 104.6 Hz, Ca), vol.111

. Hz, 2 (s, Cp or Cr), 30.5 (s, Cp or Cr), vol.34

, KHMDS (316 mg, 1.59 mmol) was added to a solution of bis-aminophosphonium

, The solid was washed with petroleum ether (3 x 10 mL) and dried under vacuum to yield [Ni(Psalophen OMe2 )] (258 mg, 65 the fridge. 31 P{ 1 H} NMR (CDCl3): ? 30.54 ppm, H NMR (CDCl3) ? 7.84 (dd, 3 JP,H = 12.5 Hz, 3 JH,H = 7.6 Hz, 8H, Hb), 7.62 (t, 3 JH,H = 7.0 Hz, 4H, Hd), 7.53 (m, 8H, Hc), vol.1

J. P. and C. Hz, 7 (s, Cf), 108.1 (d, 2 JP,C = 119.5 Hz, Ca), 103.7 (s, Cd), 55.1 (s, Cn), 35.5 (s, Co o Cq), Cb), 133.5 (s, Cg), 132.2 (s, Cd), 128.8 (d, 3 JP,C = 11.7 Hz, Cc), vol.127

, KHMDS (316 mg, 1.59 mmol) was added to a solution of bis-aminophosphonium

, H4Psalophen OMe2 proligand (400 mg, 0.39 mmol) in THF

, 21 (br s), 6.97 (br s), 3.02 (br s), 1.06 (br s), 1.08 (br s). MS (ESI): m/z (%), P{ 1 H} NMR (CDCl3): ? no signal; 1 H NMR (CDCl3) ? 9

, The solid was washed with petroleum ether (2 x 10 mL) and dried under vacuum to yield, AgSbF6 (34 mg, 0.09 mmol) was added to a solution of

, 71 (m), 6.96 (br s), 6.66 (br s), 1.22 (br s), 0.97 (br s). 31 P{ 1 H} NMR (THF-d 8 ): ? no signal; 1 H NMR (THF-d 8 ) ? 111.22 (br s), 65.73 (br s), 29.79 (br s), 12.91 (br s), °C. 31 P{ 1 H} NMR (CD2Cl2): ? no signal; 1 H NMR (CD2Cl2) ? 11.05 (br s), vol.8

, (100 mg, 0.09 mmol) in THF (4 mL) under Ar atmosphere. A suspension of Ag was formed but no color change was observed. The dark green solution was stirred for 1 h and then filtered and concentrated. A dark red solid was obtained by addition of petroleum ether (10 mL). The solid was washed with petroleum ether (2 x 10 mL) and dried under vacuum to yield, Cu

, ? no signal; 1 H NMR (CD2Cl2) ? 12.85 (br s), 11.28 (br s), 9.48 (br s), 6.51 (br s), 1.72 (br s), P{ 1 H} NMR (CD2Cl2), vol.1

, After stirring at room temperature for 1 h the 31 P{ 1 H} NMR showed a sole singlet at 15.4 ppm, confirming that the deprotonation was completed. Insoluble salts formed were removed by centrifugation and Mn(OAc)2 (130 mg, 0.75 mmol) was added. The mixture was heated at 90°C until the disappearance of the ligand signal. The insoluble salts were removed by centrifugation and the solvent was removed to afford, KHMDS (400 mg, 2 mmol) was added into a suspension of bis-aminophosphonium, p.98

, After stirring at room temperature for 1 h the 31 P{ 1 H} NMR showed a sole singlet at 18 ppm, confirming that the deprotonation was completed. Insoluble salts formed were removed by centrifugation and Mn(OAc)2 (37 mg, 0.21 mmol) was added. The mixture was heated at 90°C until the disappearance of the ligand signal. The insoluble salts were removed by centrifugation and the solvent was removed to afford, KHMDS (168 mg, 0.84 mmol) was added into a suspension of bis-aminophosphonium (H4Psalen OMe ), p.74

, After stirring at room temperature for 1 h the 31 P{ 1 H} NMR showed a sole singlet at 31 ppm, confirming that the deprotonation was completed. Salts formed were removed by centrifugation and Mn(OAc)2 (100 mg, 0.58 mmol) was added. The mixture was heated at 90°C until the disappearance of the ligand signal. The insoluble salts were removed by centrifugation and the solvent was evaporated to afford, KHMDS (461.68 mg, 2.32 mmol) was added into a suspension of bis-aminophosphonium (H4Psalen iPr )

+. Pf6, Brown crystals were obtained via pentane diffusion into a saturated THF/diethyl ether solution. MS (ESI): m/z (%): 889.40 (100), vol.80

, This suspension was stirred overnight and then filtered. The solution was concentrated and a dark green solid was obtained by addition of pentane into the solution. The solid was washed with pentane (2 × 5 mL) and dried under reduced pressure to yield [Mn(Psalen tBu )Cl] (150 mg, 95 %), MS (ESI): m/z (%): 889.40 (100)

, Dark green crystals were obtained by slow diffusion of CH2Cl2 and pentane

+. Pf6, , vol.136

, Brown crystals were obtained by slow diffusion of pentane into a saturated THF solution

, MS (ESI): m/z (%): 753.44 (100)