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Les equations d'Hamilton-Jacobi-Bellman esultent de I'application du principe de la pro-
grammation dynamique aux probemes de contréle optimal. Les probemes de contrble op-
timal consistenta trouver le paranetre ou contréle optimisant levolution d'un syseme dy-
namique contrOke suivant un certain criere. Le criere peut &tre de maximiser ou minimiser
une certaine fonction cependante de la trajectoire du syseme et ¢ nie sur un intervalle de
temps ni ou in ni. On parle alors de probeme de contréle optimala horizon ni ou in ni.
Suivant que la nature de la dynamique du sysemeetude est stochastique ou ceterministe, le
probeme de controle optimal est alors stochastique ou ceterministe. Dans I'approche de la
programmation dynamique, esoudre un probeme de controle optimal recessite de considcerer
une fonction appeke fonction valeur qui esta tout instant t et pour toutetat x, la valeur

du criere optimal assoce au probeme lorsque le syseme parta l'instant t de letat x. Le
principe de la programmation dynamique qui consistea observer que toute sous-trajectoire
d'une trajectoire optimale du syseme estegalement optimale sur l'intervalle de temps eduit
consicee, permet d'obtenir que la fonction valeur du probeme est solution d'une equation
aux ceriees partielles qui est lequation d'Hamilton-Jacobi-Bellman. Cette solution peut ne
pas étre une solution classiqueetant donre que la fonction valeur est en gereral non cerivable.
La notion de solution de viscosit est alors utilie. Il s'agit d'un type de solutions ireguleres
bien adapees aux probemes de contréle optimal. La fonction valeur du probeme est ainsi
calcuke comme solution de viscosie de lequation d'Hamilton-Jacobi-Bellman en utilisant des
nmethodes nuneriques propres auxequations aux cerivees partielles. Cela permet de deduire
ensuite le contréle optimal. Comme nethodes nuneriques utilisees, on a par exemple la
nethode des dierences nies, les nethodes semi-Lagrangiennes, les nethodes probabilistes
et les nethodes max-plus. La convergence des sctemas nuneriques vers la solution de viscosit
d'une equation aux cerivees partielles aee obtenue comme esultat par Barles et Sougani-
dis sous les conditions de consistence, monotonie et stabilie du screma. Le premier type de
methodes utilie dans ce cadre est la nethode des dierences nies. Elle est assez pecise mais
a un temps de calcul exponentiel en la dimension de I'espace de letat du syseme dynamique
consicee. Ainsi, elle est confroneea ce qu'on appelle la makdiction de la dimension qui fait
que pour des espaces de dimension sugerieure ouegalea 4, elle est inutilisable avec les puis-
sances de calcul actuelles. Les nethodes semi-Lagrangiennes ont l'avantage de pouvoir étre
utilisees dans des cas au la nethode des dierences nies peut di cilement s'appliquera cause
d'une monotonie di cilea obtenir (Equations aux cerivees partielles(EDP) du second ordre

al le coe cient du terme de cerivee seconde est une matrice a diagonale non dominante),
mais rencontrent les mémes limitations que la nethode des dierences nies en termes de
temps de calcul. Les nethodes probabilistes permettent de cepasser ces limitations en temps
de calcul car elles peuvent étre appligiees guelquesoit la dimension de letat du syseme dy-
namique. Par contre les sctemas probabilistes rencontes jusqu'ici dans la literature sont
monotones sous des conditions di cilement satisfaisables par lequation d'Hamilton-Jacobi-
Bellman lorsque celle-ci est tes fortement non-lireaire. De plus, les methodes probabilistes
sont lireaires alors qu'un probeme de contrble optimal est par essence non lireaire. Cela
pose probeme quanta la pecision de la solution obtenue par une nethode probabiliste.
Les nmethodes max-plus quanta elles, marchent bien pour les probemes de contréle optimal
ceterministes, leur caractre non lireaire permettant cette fois-ci de gagner en pecision. Mais
pour les probemes de controle optimal stochastiques, leur temps de calcul devient double-
ment exponentiel en la dimension. Ce qui les rend pires que la nethode des dierences nies.



On introduit dans cette trese une nouvelle nethode alliant methode probabiliste et nethode
max-plus pour proter de l'acequation des methodes probabilistes aux espaces de dimen-
sionelew avec le caractre non lireaire des nmethodes max-plus. Cette nmethode est appeke
nethode probabiliste max-plus. Pour pouvoir étre appliqee, elle recessite un sctema prob-
abiliste monotone. Nous avons donc tout d'abord anelioe les sctema probabilistes existants
pour les rendre monotones sous des hypotleses simples. Les probemes auxquels nous nous
ineressons particulerement sont des probemes de contrble stochastiquea horizon ni. En
utilisant les sckemas probabilistes que nous avons introduits, ces probemes sont esolubles
par l'utilisation d'un operateur probabiliste backward pasa pas en partant de I'expression
de la fonction valeura I'horizon. L'astuce utilisee dans la nmethode probabiliste max-plus
consiste alorsa approximer la fonction valeura I'horizon par un supremum si le probeme de
contréle optimal est un probeme de maximization ou un in mum dans le cas contraire, de
fonctions appartenanta un espace fonctionnel de dimension faible. Nous utilisons alors un
treoeme que nous avons introduit dans cette these qui donne la max-plus distributivie de
tout operateur monotone et sous-homogne agissant sur un supremum de fonctions comme
un operateur inegral. Siles coe cients de lequation d'Hamilton-Jacobi-Bellman sont tel que
l'ogerateur probabiliste backward utiliee pour la esoudre conserve pasa pas la forme de la
fonction valeur comme supremum ou in mum de fonctions dans I'espace fonctionnel de faible
dimension consicee, la methode probabiliste max-plus est alors encore plus pecise en ce sens
gu'elle utilise une regression lireaire paranetrique pour ceterminer les fonctions entrant dans

le supremum ou I'in mum de la fonction valeur en recherchant ces fonctions dans l'espace
treoriqgue dans lequel elles sont cenees étre. Un exemple d'application est pesene dans le
cadre du calcul du prix de sur-eplication d'une option dont le cross-gamma peut changer
de signe dans un mockle de corelation incertaine. Le payo de l'option est alors approxine
par un supremum de fonctions quadratiques et la fonction valeur du probeme est deduite
a chaque pas de temps comme un supremum de fonctions quadratiques dont les coe cients
sont ceduits par regression. Les calculs sont faits en dimension 2 et 5 en un temps raisonable.
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0.1 Notations

j ] denotes the Euclidean norm in any spaceR%, (q2 N, g 1). Sometimes, to be more
explicit, we denote it k k. On the space of matricesR" ™, j j denotes the matrix norm
de ned for an elementM of R" ™ by :

o JMr j
Mj= sup ——:
M rzRe" Irj
r60
On the space of functionsf on a given subspaceA of RY, j j denotes the sup norm de ned

by :
jtj = sup jf (x)]
X2A

In this de nition, f (x) can be an element oR™ (m 1) or an element ofR" ™. We will use
sometimes, the following norms for functions de ned on a spac& whenA R RS

ifio= sup jf (t;x)j;
(tx)2A

and for , ,
jfx)  f(siy)j

[f] = . T .
)s(sy) (X yi+jt sjt?)

we dene the normj j by:
ifi = ifjo+[f]:

For two vectors u and v of R", u v denotes the scalar product ofu and v.

For a given real numbera, a* = max(a;0) anda = min(a;0). These notations extend
to real functions where for a real functionw, w* is de ned by w* : x 7! w(x)* and w is
dened by w :x 7! w(x) .

For a given function v having a time variable t and a space variablex, Dyv and D2v
denote respectively the gradient and the Hessian off with respect to the space variablex.
When there is no ambiguity (the function v has only a space variable), we will denote the
gradient and the Hessian respectively byDv and D?v.

For a given spaceA, C(A) denotes the set of continuous functions orA. If A is a space of
two variablest and x (t for time and x for space),C2(A) denotes the space of functions once
continuously di erentiable with respect to t and twice continuously di erentiable with respect
to x and C,(A) denotes the set of continuous functions omA with a polynomial growth in the
variable x. That means that for 2 C,(A), there existsm 2 N and K > 0 such that

JOEx)] K@+ jxjm); 8(tx) 2 A:
If A is a space of only one variablex, this inequality becomes
J(x)] K@+ ijxjm); 8x 2 A:

CK(A) denotes the set of functionsk continuously di erentiable on A and Cg‘(A) denotes
the subset of CX(A) where all the corresponding partial derivatives are of polynomial growth.
Ct',‘(A) denotes the subset of functions of£X(A) having all their partial derivatives up to order
k bounded.
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All these spaces of functions are sometimes denoted respectively 8{A;B) C12(A;B),
Cp(A;B), C¥(A;B), CX(A;B), CX(A;B) in an equivalent manner whereB denotes the space
where live the functions values.

C! (A) denotes the set of function continuously di erentiable at any order k > 0.

USC(A) denotes the set of real upper semicontinuous functions o while LSC(A) de-
notes the set of real lower semicontinuous functions oA. We have the same de nition for
USC(A; RY) and LSC(A; RY) except that in this case, the functions areR%valued functions.

a<b IS an indicator function which is equal to 1 if a < b and 0 otherwise.

S* (n) and S** (n) denote respectively the set of symmetric and nonnegative matrices and
the set of symmetric and positive de nite n  n matrices. S(n) denotes the set of symmetric
n n matrices.

If A 'is a matrix, [A]; denotes the coe cient of A at the i-th row and the j -th column. If
v is a vector, [v]; denotes thei-th coe cient of v.

Sometimes the Kronecker symbol j will be used. Its value is 0 ifi 6 j and 1 otherwise.

| denotes the identity matrix whose dimensions should be infered from the context.
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0.2 Context and motivations

Optimal control theory is a vast domain of applied mathematics where mathematicians are
interested in solving problems like deterministic optimal control problems with nite horizon,
deterministic optimal control problems with in nite horizon, stochastic control problems with
nite horizon, stochastic control problems with in nite horizon and stochastic di erential
games. All these problems consist in nding the value of a variable called a control, such that
a given function is optimized in a given sense on trajectories of a given process depending on
the control. The term stochastic means that these trajectories are random (the optimization
is then done on an expectation) while the term deterministic means that these trajectories
are deterministic. Finite horizon means that the process is studied in a bounded time interval
while ini nite horizon refers to cases where the process is considered in unbounded time. All
these problems are solved in the dynamic programming approach, by computing an optimal
function called the value function which sati es a partial di erential equation (PDE) called
the Hamilon-Jacobi-Bellman equation or in the di erential games problems, the Hamilton-
Jacobi-Bellman-Isaacs equation.

We are interested particularly here in stochastic optimal control problems with nite hori-
zon despite the fact that we present all the type of optimal control problems aforementioned
in Chapter 1. There are a lot of methods that can be used to solve this type of problem. Each
of these methods have a positive and a negative aspect. We can divide them in two groups
. grid-based methods and probabilistic methods. Grid based methods like nite di erence
method and Semi-Lagrangian methods applied to the Hamilton-Jacobi-Bellman equation can
be very accurate but cannot be used numerically for problems with high space dimension
(dimension greater or equal to 4) because the representation of the grid in memory becomes
too large. This problem is known as the curse of dimensionality. Probabilistic methods, on
the other hand, can at least be used in high dimension; but for that, a good probabilistic
interpretation of the stochastic control problem is needed. More recently, a third type of
method called the max-plus method has been introduced. However, it was mainly used for
deterministic control problems where it was also subject to the curse of dimensionality. There
has been a breakthrough in 2007 with the paper [52] of McEneaney where the curse of dimen-
sionality is replaced by a curse of complexity dued to the use of too many functions in the
representation of the value function, which can be solved by using a pruning algorithm. After
that, the method has also been extended to the stochastic case [43, 54]. As for probabilistic
methods, Cheridito, Soner, Touzi and Victoir obtained a probabilistic interpretation of the
Hamilton-Jacobi-Bellman equation in [17] which allowed them to build a probabilistic scheme
for the resolution of the Hamilton-Jacobi-Bellman equation. This probabilistic scheme have
been fully studied in [25] by Fahim, Touzi and Warin.

Nevertheless, the use of the max-plus method in the stochastic case causes an explosion
of the curse of complexity related to this method, making any pruning algorithm very hard
to implement and the probabilistic scheme resulted from the work of Cheridito, Soner, Touzi
and Victoir can only be applied to particular Hamilton-Jacobi-Bellman equation not nonlinear
enough with respect to the second order derivatives to represent all the stochastic optimal
control problems. The work presented here, tries to solved this two questions.

We introduce two new probabilistic schemes. The rst one is monotone under restrictive
boundness conditions on the coe cient of the PDE while the second one is monotone under
less restrictive conditions allowing it to be used with Hamilton-Jacobi-Bellman equation with
unbounded coe cent and unbounded terminal function. We also introduce a new method
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for solving Hamilton-Jacobi-Bellman equations that is a mix of max-plus and probabilistic
methods. We call it a max-plus probabilistic method. With this method, we get rid of
the need of a pruning algorithm related to max-plus method as this pruning algorithm is
incoporated in the method. On the other hand, we gain the accuracy of max-plus methods
as the non linearity of the value function is well represented.

0.3 Contributions

In Chapter 1, after having presented the dierent type of optimal control problems, the
related Hamilton-Jacobi-Bellman equations and the results related to viscosity solutions of
Hamilton-Jacobi-Bellman equations in bounded and unbounded settings with respect to the
coe cients and the terminal function of the PDE, we give an improvement of the result of
Da Lio and Ley [23] (Lemma 1.2.2 and Lemma 1.2.3) allowing us to have the existence on
any time interval [0; T] of the viscosity solution of an Hamilton-Jacobi-Bellman equation with
coe cients and terminal function satisfying growth conditions similar to those of [23].

In Chapter 2, we extend the well known result of convergence of Barles and Sougani-
dis [8] to the case where the viscosity solution lives in the space of unbounded functions
(Theorem 2.1.3). This is done after giving some general results on nite di erence method.

In Chapter 3, we presents all the results related to the new probabilistic schemes we
introduced. After having obtained error estimates of di erent probabilistic approximations
of functions derivatives in the bounded setting, we prove the convergence of each of the two
probabilistic schemes that we introduced here and obtain related error estimates. In a second
part, we present the result we obtained in the unbounded setting with the second probabilistic
scheme that unfortunately did not allow us to obtain the convergence of the scheme. From
our point of view, this can be improved and is let to future work.

In Chapter 4, we present the new max-plus probabilistic method that we introduce. We
give rstly theoretical related results before describing the method algorithm and the related
complexity results.

In Chapter 5, we give the numerical results of the tests we have done which are unfortu-
nately incomplete. Indeed, it took us a lot of time to test the max-plus probabilistic method
with the second probabilistic scheme on a di erent problem than the one presented in this
manuscript, but due to numerical issues, which were not dependent on the method or the
scheme but rather on the type of problem we chose, we did not get relevant results.

We end this manuscript with a conclusion presenting works that we were not able to
complete in the allowed time and that we hope will know a continuation.
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CHAPTER

Optimal control equations and
Viscosity solutions

In this section, we de ne optimal control problems and present the Hamilton-Jacobi-Bellman
and Hamilton-Jacobi-Bellman-lsaacs equations. We then give some results encountered in
the literature about viscosity solutions which are in general the type of solutions considered
for Hamilton-Jacobi-Bellman equations. We also give improvements of results on viscosity
solution obtained by Da Lio and Ley in a setting closed to linear quadratic optimal control

problems.



8 CHAPTER 1. OPTIMAL CONTROL EQUATIONS AND VISCOSITY SOLUTIONS

1.1 Optimal control problems and Hamilton-Jacobi-Bellman equa-
tions

We are interested particularly in this thesis in deterministic or stochastic control problems
with nite or in nite horizon and di erential games problems. We present the general forms

of each of these classes of problems in this section. As we are going to see, when using the
dynamic programming approach, these problems are solved by nding the value function of
the problem which can sometimes be identi ed as the classical solution of a rst-order (for de-
terministic problems) or second-order (for stochastic problems) partial di erential equation
called the Hamilton-Jacobi-Bellman equation or the Hamilton-Jacobi-Bellman-lsaacs equa-
tion for di erential games. We recall here veri cation theorems allowing to make this identi-
cation and which have been extended to the case where the value function is not a classical
solution but a viscosity solution. This last notion will be studied in the next section.

1.1.1 Deterministic optimal control problems with nite horizon

A deterministic optimal control problem with nite horizon consists in optimizing a functional
payo de ned on trajectories of a deterministic control process in bounded time. Lett be the
time variable and x the space variable of such a problem. Letg <t1 be two real numbers
such that t 2 [to;t1]. Let O be an open set ofR" for n 1 such that the trajectories of the
deterministic control process live inO. O may be bounded and in this case, it is supposed
that @Ois a compact manifold of classC?. Let Q := [to;t1) O. Q is the domain of the
problem.

To de ne the problem, we need to de ne properly deterministic control processes starting
from any point (t;x) 2 Q and controlled by another procesau. We will denote these processes
by (x¥™U (s))t s t, as . We consider the following di erential equation.

8
t;x;u
<W=f(s;x“x;“(s)iu(s))? t s b

. (1.1)
. Xt;x;u (t) = X;

where for alls, u(s) 2 U R™ (m 1), U is aclosed set, and :[tg;t;] R" U! R"
is a continuous function.

To ensure the existence and unicity of the processes™ , the following conditions on f
and the processu are generally imposed.

A 1.1.1. Forall > 0, there existsK > 0 such that :

ifxv) fEy;v)i K jx yj (1.2)
for all t 2 [to;t1], X;y 2 R" and v 2 U such thatjvj
A 1.1.2. u() is a bounded Lebesgue measurable function froftit1] to U.

Each procesx"*Y is the state process starting at timet from x and the allowed processes
u are the control processes de ned from time. Let U °(t) be the set of these control processes.

By de nition, the processes (XU (s))s ¢ stop at s = t;. But, in the case whereO is
bounded, it is usually required that the processes X" (s))s ¢ stay in O and stop at any
time when they exit O. So, the processes may stop at a time<t ;.
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Let us denote by XU the stopping time of a processxt™ Y. U s the exit time of the
process 6; XY (s))s from the closure Q of the domain Q.

A running functional payo that we shall denote by L and a nal functional payo that
we shall denote by are considered such that :

if O is bounded, : ([to;t1) @Q[ (ftzg O)! R and

( . _
(tx) = o(t; x) | if (t;x) 2 [to;t1) @O 13)
(x) if(tx)2ftig O;

otherwise forO=R", : ftyg O! R and

(tyx)= (X);x20 (1.4)
with g2 C([tp;t1) @Qand a given function on O.
L 2 C([to;ts] O U)

The overall functional payo to minimize is a function J given by the following expression :

Z tx;u
J(tx;u) = L(s;x"M (s);u(s)ds+ (1 B0 xBe () (1.5)
t
We will consider here a problem of minimization of the overall functional payo. The
general form of the problem is then to nd, for any (t;x) 2 Q, u 2 U 9(t) such that :

J(t;x;u )= inf  J(tx;u): (1.6)
u2U O(t)

One may consider for €;x) 2 Q a smaller set of controls in the previous minimization. The
objective may be to ensure that Y = t; for all (t;x) 2 Q by considering only controls whose
related state processes do not exiO until t1. In such cases, the set of controls considered for
the minimization will also depends onx. A more general form of the deterministic optimal
control problem is then to nd, for any (t;x) 2 Q, u 2 U (t;x) such that :

J(t; x; = inf  J(t;x;u); 1.7
(tx;u)= ot I(tx;0) (L.7)
whereU (t;x) U °(t).
To be able to apply to this problem the dynamic programming principle which will be
stated further, the following condition is generally imposed onU (t; x) :

A1.1.3. Foru2 U (tx),letr2 [t ™UY]andu¥) 2 U (r;x™ (r)). If we de ne a control
t as :
us); t s r

u¥s); r<s ti (1.8)

t(s) =

then &2 U (t; X).
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For what follows, we will consider the problem formulated through the equation (1.6).
In dynamic programming setting, to solve this problem, a function that is called the value
function, is introduced. It is de ned here as follows :

V(t;x) = uziBfO(t) J(t;x;u): (2.9)

The value function respects a principle called theDynamic Programming Principle corre-
sponding to the following identity. For (t;x) 2 Q andr 2 [t;t4] :
" Z o o
V(t;x)= inf L (s;x"Y (s); u(s))ds

u()2uo() ¢ 4 (1.10)

+g( BB By VIEXTY () o

Using this principle, the value function, when smooth enough, is identi ed as the classi-
cal solution of a Partial Di erential Equation (PDE). The boundary condition of this PDE
depends on whetherO is bounded or equal toR".

For O = R", the PDE is :

8

< @IV )+ inf FLEXV)+ F(Exv) DxW(EX)g=0; (6x)2Q;

CW(tx) = ( ty;x);x 2 O

For O bounded, the PDE is :
8

E @@)[N(t;x)+ ivnszfL(t;x;v)+ f(t;x;v) DxW(t;x)g=0 (t;x)2Q

(1.11)

3 W(tix) = ( tix); x20 (1.12)
CW(Ex) (X)) (tx) 2 [te;ts) @O
The following statement is assumed to be true forO bounded.

A 1.1.4. Forevery(s; )2 [to;t1) @Qthere existsv(s; )2 U such that :
f(s;svis ) ()>0
where () is the exterior unit normalat 2 @O

By convention, the equation of PDE (1.12) and (1.11) is rather written as :

@@)[N(t;x) + H(t; x; D xW(t;x))=0; (1.13)

where for (t;x;p) 2 [to;t1) R" R"
H(tx;p)=supf p f(t;x;v) L(txv)g: (1.14)
v2U

It is the Hamilton-Jacobi-Bellman equation for deterministic optimal control problems with
nite horizon and the function H is called the Hamiltonian.

The veri cation theorems allowing to solve the optimal control problem using the PDE (1.12)
or (1.11) are stated as follows in [28] :
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Theorem 1.1.1 ([28, Theorem 1.5.1]). O is supposed to be equal tR". Let W 2 C1(Q) such
that W satis es (1.11). Then :

W(t;x) V(1 x);8(t;x) 2 Q:
Moreover, if there exists (t;x) 2 Q and u 2 U (t) such that :

L(s; XY (s);u (9))+ f(s;x™¥Y (s);u (S)) DxW(s;x"™Y (s))
= H(s;xPY (8); DxW(s;xPY (s)));

for almost all s 2 [t;t1], then u is optimal for initial data (t;x) and W (t;x) = V(t; x).

Theorem 1.1.2 ([28, Theorem 1.5.2]). O is supposed to be bounded. L&tV 2 C(Q) such
that W satis es (1.12). Then :

W(t;x) V(tx);8(t;x) 2 Q:
Moreover, if there exists (t;x) 2 Q and u 2 U °(t) such that :

L(six™4 (8);u (9)+ F (51X (5);u (8)) DuW(sixY (s))

. o (1.15)

= H(s; XY (8); DxW(s; X" (9)));
for aimost all s 2 [t; U Jand W/( B6U ;xtxu (Bxu )= (1 txu -ytxu (XU Y) jn case
tXU <t 4, thenu is optimal for initial data (t;x) and W (t;x) = V(t;X).

These theorems allow one to test the optimality of a given control process.

1.1.2 Deterministic optimal control problems with in nite horizon

A deterministic optimal control problem with in nite horizon consists in optimizing a func-
tional payo de ned on trajectories of a deterministic control process considered on an un-
bounded time interval. The unboundness of the time interval may cause de nition problems
for the deterministic control process and for the overall functional payo which may be in -
nite.

To simplify things and by using the same notations as in the previous subsection, let us
suppose that the running payo L, the function g involved in the de nition of the terminal
payo and the drift function f do not depend on the time variable as in [28]. In this
case, as shown in [28], the dependence of the deterministic optimal problem on the time
variable is not relevant anymore. So we may de ne the state processes and control processes
as starting from time 0. The state processes™ Y de ned in the previous subsection, become
the processex*!Y de ned by :

8 :

< dx* (s) _ X;u . .

. e f(x*(s);u(s)); s O (1.16)
" x%Y(0) = x;

f veri es a condition similar to A 1.1.1 and u is a Lebesgue measurable function de ned on
[0;1 ). The set of controls is then denoted byU © instead of U °(t).

When O = R", there is no stopping time anymore. But, for O bounded, a stopping
time *Y is considered, which is the exit time ofx*Y from O. In what follows, we use the
convention *Y =1 for O = R".
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A discount factor with a constant discount rate is introduced in the de nition of the
overall functional payo which is then equal to the following :
Z X;u
J(x;u) = e SL(x®U(s);u(s))ds+ e " gxX¥Uu( X)) xueq; (1.17)
0

where > 0,L2C(O U), g2 C(@0Q.
The optimal control problem is then de ned on controls u such that :
Z X;u
e SjL(x(s);u(s))jds< 1 ;

to ensure that J(x; u) is well de ned.

Let Uy be this set of controls. Uy is assumed to be non empty for alix 2 O.

As in the previous subsection, we consider here a problem of minimization of the functional
payo . The value function is then de ned by :

V(X) = JQL J(x;u); x2 O:

The Dynamic Programming Principle veri ed by the value function is expressed here by
the following identity. For x 2 O andr O:

Ao Xu

V(x)= inf e SL(x*Y(s);u(s))ds
u()2Ux o
# (1.18)
+e X;u g(XX;U( X;U)) xu< + € r V(X(r)) R
The Hamilton-Jacobi-Bellman equation is in this case, as follows :
W (x)+ H(x;DW (x))=0; x 2 O; (1.19)

where the Hamiltonian H is de ned by
H(x;p)=supf p f(x;v) L(xv)g
v2U

for x;p 2 R".
In [28], the veri cation theorem is given only for O bounded under the following assump-
tion.

A 1.1.5. Forevery 2 @Qthere existsv( ) 2 U such that :
fCivi) ()>0
where () denotes the exterior unit normal at 2 @O

This assumption is similar to A 1.1.4.
The PDE that should verify the value function is :

W (x)+ H(x;DW (x))=0; x 2 O;

(1.20)
W(x) 9g(x); x2@O:

The veri cation theorem is then stated as follows.
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Theorem 1.1.3 ([28, Theorem 1.7.1]). Let W 2 C(O) such thatW satis es (1.20). If for
all x2 O andu 2 Uy such that *Y =1, Ii"rln e "W(x*U(r))=0, then:
r

W(x) V(x) forall x2 O,
If there existsx 2 O andu 2 Uy such that :

L(x™ (s);u (s)+ F(x*" (s);u (s)) DW (x™" (s))

. _ (1.21)
= HX® (s);DW (X" (s)))
for almost everys 2 [0; *Y ) and W(x*Y ( XY ))= g(x*¥ ( *Y ) if *Y < 1, then
u is optimal for initial data x and W(x) = V(X).

1.1.3 Stochastic optimal control problems with nite horizon

While a deterministic optimal control problem consists in optimizing a functional payo on
trajectories of deterministic control processes, a stochastic optimal control problem look at
the optimization of the expectation of a functional payo on trajectories of stochastic control
processes. As in section 1.1.1, a time variable in a bounded interval [to;t1] of R and a
space variablex in an open setO of R" are considered.O may be bounded. In this case, we
suppose that @Ois a compact of classC?3.

Stochastic control processes considered are usually continuous time Markov processes. We
will limit ourselves here only to Markov di usion processes.

Let( ;F ;(F) t t,;P)bea ltered probability space and (By)t, ¢ 1, be aRY Brownian
motion de ned on this Itered probability space. We denote by the 4-tuple ( ;(Ft)t, t t,;P;B)
that is called a reference probability system (see [28]).

We also denote the control processes here by*! as in Section 1.1.1. They are solutions
of the following stochastic di erential equation :

dx () = f(s; XY (s);u(s))ds+  (s;x™V (s);u(s)dBs; t sty

XU () = x; (1.22)

whereu(s) 2 U, U closed subset oR™, f :[to;t1] R” U! R", :Jto;ts] R U! R" 9,
For this stochastic di erential equation to have a unique solution f F sg-progressively mea-
surable with continuous sample paths, the following assumptions are usually required.

A 1.1.6. f and are continuous functions on[tg;t;] R"™ U andforanyv2 U, f(; ;v),
(; ;v) are once continuously di erentiable on [to;t1] R".

A 1.1.7. There exists a constantC > 0 such that :
i+t G
Jd+ix G
JFExv)) CL+ jxj+ jvj);
J(txv)) CL+ jxj+ jvj):

(1.23)

wherefy, ¢, fx, x denote respectively the-partial derivatives and the gradients with respect
to x of the functionsf and . The norm considered for the partial derivatives is the sup norm
as de ned in section 0.1.
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A 1.1.8. The control processesu( ) are fF g progressively measurable and such that
Z,,
E ju(s)j’ds < 1: (1.24)
t

The control processesf F sg-progressively measurable which verify the inequality (1.24)
are called admissible control processes.
As in Section 1.1.1, the processX®™V (s))s ¢ stops by de nition at s = t;. However, forO
bounded, it will stop at its exit time from O if this time is lower than t;. We will denote by
tXU the stopping time of the processx"*Y . As this process is stochastic andF s- measurable,
tXU js random and adapted to the Itration Fs.
The running functional payo L and the terminal functional payo are real functions
which verify the following conditions :

A119. L2C(tp;ta] O U)and 2 C(to;t] O)
A 1.1.10. There exists a constantC and an integer k such that :

LExv)] - CL+ jxi* + jvik);

) . . (1.25)
JCEX)) L+ jxj):
The overall payo function is then :
" #
tx;u
J (tx;u)=E L(s;x™Y (s);u(s))ds+ (B xtu () (1.26)

t

Let A; denote the set of admissible control processes starting from timein the reference
probability system . As in the previous sections, we consider here a minimization problem.
If the goal is to minimize J (t;x;u) over the control processes ofA; for a given reference
probability system , then the solution of the problem is -optimal and the related value
function is :

V (t;x) = uiznit; J (tx;u): (2.27)

If the goal is to minimize the overall payo function J (t;x;u) over all control processes of
the setsA. for any reference probability system , then a solution of the problem is globally
optimal and the related value function is de ned by :

Vpwm (t;x) = inf V (t;Xx):

To study the value function Vpy with the dynamic programming theory, a stronger version
of the dynamic programming principle is needed. It is expressed in the following way where
V = VPM-

De nition 1.1.1 (Dynamic programming principle). For every ;u() 2 Ay and fF sg-
stopping time ,
Z tx;u A

V(tx) E L (s;x%Y (s); u(s))ds
t " (1.28)

+ V( LX;u A ;Xt;X;U( LX;u A )) :
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For every > 0, there exist and u() 2 A; such that :

n
Z txu A

V(t;x) + E L(s;x%Y (s);u(s))ds
t # (1.29)

+ V( LXu A .XI;X;U( LX;u A )) :
The Hamilton-Jacobi-Bellman equation here is :

@@)[N(t;x)+ H(t; x;DXW(t;x);DEW(t;x)) =0; (t;x) 2 [to;t1) O; (1.30)

where the Hamiltonian H is de ned by :
H(tx;p;A)=sup f(tx;v) p %Tr( |(t; X;V)A)  L(txv) ; (1.31)
v2U

for (t;x) 2 [to;t1)) O, p2 R", A2 S(n), set of N n symmetric matrices.
The PDE that should verify here the value function V = Vpy = W is then

8
< Cg)[/V(t;x)+ H(tx;DxW(t;x);D2W(t;x)) =0; (;x) 2 Q=[to;t1) O

T W(Ex)= ( 6X); (5X) 2 @Q:

This form of the PDE include the case ofO = R" or O bounded. The veri cation theorem
allowing to identify the value function Vpy as the classical solution of this PDE is then stated
as follows.

(1.32)

Theorem 1.1.4 ([28, Theorem IV.3.1]). Let W 2 CY2([tg;t;) O)\ Cp([to;t1] O) be a
solution of the PDE (1.32). Then :

W(t;x) J (t;x;u) for any probability reference system , control processu 2 A and
any initial data (t;x) 2 Q.

If there exist a reference probability system =( ;fFsg;P ;B )andu 2 A such
that :
h
u (s) 2 argmin f(s;x%Y (s);v) DyW(s;x™ ! (s))
i
+ %Tr L (s;x54 (5); v)D2W (s; x56Y (5))  + L(s; XY (s);V)

for Lebesgue P -almostall(s;!) 2 [t; <Y ] ,thenW (t;x) = Vpm(t;x) = J  (t;x;u ).

Under su cient conditions, Vpy = V for all reference probability system . We give here
a Corollary of Theorem IV.7.1 of [28] stating additional conditions to have this result in the
case ofO = R".

Corollary 1.1.1 ([28, Theorem IV.7.1]). Assume A 1.1.6-A 1.1.10 andO = R". If U is
compact, is bounded and ( t1;) 2 Cg(R”), then for all reference probability system
VPM =V.
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The optimal control problem presented above, can be generalized with the use of a discount
factor with a discount rate function :[to;t;] RY U! R. The payo function is then :
' Z txu

J (tx;u)= E e ¢ (XPU AU (g xtXU (g):y(s))ds
t

#
‘e Rtt;x;u (rx B%Y (r);u(r))dr ( tx;u ;Xt;x;u( t:x;u )) :

The Hamilton-Jacobi-Bellman equation is

C§}/V('[;x)+ H(tx; W (tx); DxyW (t;x); D2W (t;x)) = 0; (t;x) 2 [to;t1) O;

where the Hamiltonian is de ned by :

H(txnp;A)=sup  f(txv) p %Tr( Ltxv)A)+  (Exv)r L(Exv) ;
v2U

for (t;x) 2 [to;t1) O, r 2 R,p2 R", A 2 §(n).

1.1.4 Stochastic optimal control problem with in nite horizon

Stochastic optimal control problems with in nite horizon are stochastic control problems with
a time variable in an unbounded interval. In this case, the unboundness of the time variable
raises questions of niteness of the overall payo .

To x the ideas, let us consider a stochastic control process with autonomous state dy-
namics de ned by the following stochastic di erential equation :

dx () = £ (U (s)u(s)ds+  (¢(s)iu(s)dBs; s 0 (1.33)
XU (0) = x: (1.34)

with x 2 R", u:[0;1)! U R™f:R" U! R", :R" U! R" 9and (Bs)s o0a
RY-Brownian motion de ned on a ltered probability space ( ;F ;(Fs)s o;P). We denote
as in the previous section, by the reference probability system ( ;(F s)s o;P;B).

For this stochastic process to be well de ned, the following assumptions can be taken :

A 1.111. f and are continuous onR" U.
A 1.1.12. f(;v)and (;v) arein C}(R") for any v2 U.
A11.13. jfxyj C,jxj C
oGV CA+jxj+jvi); J (V)i C(L+ jxj+ jvj)
for some constantC.

A 1.1.14. The control processesu( ) are f F sg progressively measurable and such that for all
t1<1,
Z,
E ju(s)j’ds < 1 (1.35)
0
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We consider as in the other sections, the exit time of the control procesg*! from O that
we denote here by *Y. If O= R", we set *!Y =+ 1 .

The running functional payo L and the terminal functional payo g are real functions
which verify the following conditions.

A 1.1.15 L2C(R" U)andg2 C(R".
A 1.1.16. There exists a constantC and an integer k such that
LGV CL+ jxj + jvi)

We consider also a discount factor with a constant discount rate in the overall payo
function which is then :
Z X;u
J(x;u)=E e SLOXXU(s):u(s)ds+ xwege g(x¥u( xuy) (1.36)
0

The set of admissible control processes in the reference probability systemis the setA
of control processes verifying the condition A 1.1.14 and the following condition.
Z X;u

E e SjL(x®U(s):u(s)jds < 1 : (1.37)
0

As in the previous section, we consider here a minimization problem with two cases :

either a minimization of the overall functional payo on the controls of A in a given
reference probability system with a value function de ned by

\Y = inf ;u);

(x) Lllr21A J OGu);

or a global minimization of the overall functional payo over all the reference probability
systems with a value function de ned by

Vem (X) =inf V (X):

The Hamilton-Jacobi-Bellman equation here is :
W (x)+ H(x;DW (x);D?W(x))=0; x2 O; (1.38)
where the Hamiltonian H is de ned by :
1
H(x;p;A) = sup f(x;v) p ETr( I(x;v)A) L(x;v) ; (1.39)
u2U

with x 2 O, p2 R", A 2 §(n).
The PDE that should verify the value function Vpy = W is then

W (x)+ H(x;DW (x);D?W(x))=0:; x2 O;

(1.40)
W(x) = g(x); x2 @O:

The veri cation theorem allowing to solve the stochastic optimal control problem using
this PDE is then stated as follows :
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Theorem 1.1.5 ( [28, Theorem IV.5.1]). Let W 2 C?(0O)\ Cp(O) be a solution of (1.40)
Then for everyx 2 O :

W(x) J (x;u) for any -admissible control processu( ) such that :
liminf e VIE [ xu o W(XMU(t))] O (1.41)
1:

Suppose that there exist =( ;fFgsgP ;w)andu ()2 A such that:

h
u (s) 2argmin f (x*" (s);v) DxW(x*" (s))

[
FOT OO (hVIDIW(E () + LY (5):)

(1.42)

for Lebesgue P -almost all (s;!) suhch that0 s  *Y (!) and
i

Jme DE . WU (1) =0

Then W(x) = J(x;u ).

In the previous theorem, the equality of W to Vpy is not obtained as a result of the
theorem. What is rather obtained is the equality of W to Vpym which is the in mum of
J (x;u) among all reference probability system and admissible controlu() 2 A such that
(1.41) holds. This allows us to state the following corollary.

Corollary 1.1.2. Let W be a function verifying all the conditions of Theorem 1.1.5. IfW
is bounded, thenW = Vpy.

1.1.5 Zero-Sum Stochastic di erential games

Stochastic di erential games is a subproblem of game theory where the players try to optimize
their payo s which depend on a state variable evolving in time according to a stochastic
di erential equation. In zero-sum stochastic di erential games, there are only two players
who have adverse goals. One player tries to maximize a given payo while the other player
tries to minimize the same payo .

We consider here a nite horizon zero-sum stochastic di erential game where the corre-
sponding stochastic control process is a Markov di usion process. Let™2b be this stochastic
control process with a being the control of player 1 while b denotes the control of player 2.
xt%ab is solution of the following stochastic di erential equation :

dx®@P () = f (s;x&P (s): a(s); (s))ds+ (s;x¥@P(s):a(s);(s))dBs; t s t1

Xt;x;a;b (t) = X

(1.43)
where a(s) 2 A, b(s) 2 B, A closed subset ofR™ and B closed subset ofRP, f
[to;ts] R A B ! R", :Jte;sts] R A B! R" 9and (Bs), s t, a RU-

Brownian motion de ned on a ltered probability space ( ;F ;(Fs), s t,;P). We let
=( ;(Fs)t, s t;;P;B) denote the related reference probability system.
The conditions for x%@P to be well de ned can be deduced from the conditions of existence
of a Markov di usion process having only one control. We will consider here an adaptation
of conditions enumerated in Section 1.1.3.
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A 1.1.17. f and are continuous functions on[tp;t;] R" A B andf(; ;a;b, (; ;a;b
are of once continuously di erentiable on [tp;t;] R" forany (a;2 A B.

A 1.1.18. There exists a constantC > 0 such that :
ifi+iftx G
Jd+ix G
jfGxab)j  C(L+ jxj+ jaj + jb);
j (tx;a;b)j  C(L+ jxj+ jaj + jb):

(1.44)

A 1.1.19. The control processesa() and b() are fF sg progressively measurable and such
that,
Zy
E ja(s)j’ds < 1 ;
t
Z,, (1.45)
E jb(s)j?ds < 1 :
t

These assumptions are weaker than those usually considered in the literature. For the
sake of simplicity and just in this section, we will add two more assumptions.

A 1.1.20. A and B are compact sets.
A 1.1.21. f and are bounded.

In what follows, we will ignore the dependence of the problem to the reference probability
system . Indeed, the above conditions of the problem being similar to those of Corollary 1.1.1,
we can infer the independence of the problem to the reference probability system even if a
formal proof remains to be done.

The state spaceO is supposed to be equal tdR", so that the state process only stops at
ts.

The running functional payo L and the terminal functional payo are real functions
which verify the following conditions :

A1122. L2C(tp;ta] R™ A B)and 2 C(R").

A 1.1.23. There exists a constantC and an integer k such that :
iL(t;x;a;b)]  C(L+ jxj*+ jaj* + jg*);
J-( . )J -(-k X"+ jaj" + j) (1.46)

j(x)j CA+ jx):

There are then a lower value function and a upper value function to the zero-sum stochastic
di erential game problem denoted respectively byV and V*, and de ned by :

Z 1
V* = inf supE t L(s;x"P (s):a(s); b(s))ds+  (x25&P (1)) ; (1.47)
aZ2A ppB Zt
t1
V =sup inf E L(s; x@P (s):a(s); b(s))ds+ (x5¥&P(t1)) : (1.48)
2B a2A t

Let us now introduce the notion of nonanticipative strategies
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De nition 1.1.2. If A (t;t1) and B (t;t1) denotes respectively the sets of bounded Lebesgue
measurable functionsa : [t;t1] ! A, b: [t;t1] ! B, a nonanticipative strategy is a map

cA(tty)) ' B (t;t1) such that for any time s, (t < s <t 1) and any control process
aj;ax 2 A (t;t1), a; = ap almost everywhere inft;s], implies that (a;) = (a2) almost
everywhere in[t; s].

It can be shown ([64]) that the following de nitions of the lower and upper value functions
are equivalent to the ones given in (1.47) and (1.48).

Z 1
V*=inf sup E t L(s;x% ®Bs): ( (b)(s);b(s))ds+ (x¥ ®bty))y o (1.49)
2Ad 2B (tt1) t
V =sup inf E tlL(s;xt;X;a; @(s);a(s); ( (a))(s))ds+ (x¥& @(ty)) ; (1.50)

2B 4 a2A (tt1) t

where A4 and B 4 denotes the set of nonanticipative strategies respectively fronB (t;t1) to
A (t;t1) and from A (t;t;) to B (t;t1).

By using these de nitions of the upper and the lower value functions, it is possible to
obtain a dynamic programming property of these value functions. This allows to obtain then
that V is at least a viscosity solution of the following PDE :

8
@
f @)[N(t;x)+ H (6D xW(tx);DEW (X)) =0; (tx) 2 Q=[to;t1) R" (1.51)
©W(t;x) = (x); x 2 R,
while V* is at least the viscosity solution of the following PDE :
8
< gw(t”‘“ H* (XD xW(tX);DEW (X)) =0; (tX) 2 Q = [to;ts) R" (1.52)

S W(tix) = ()i x 2R

whereH andH™* are respectively the upper and lower Hamiltonians and are de ned by :

H (tx;p;A)=inf sup f(t;x;a;b) p }Tr( l(t;x;a;b)A)  L(t;x;a;b) ; (1.53)
b2B 5o 2

H*(t;x;p;A)=sup inf  f(t;x;a;b) p }Tr( |(t; x;a;b)A)  L(t;x;a;b) (1.54)
a2A b2B 2

for (t;x) 2 [to;t1)) R",p2 R", A2 S(n).

The above PDE are called the Hamilton-Jacobi-Isaacs equations. Under the Isaacs condi-
tion, which is the equality of the two Hamiltonians, the lower and the upper value functions
coincide. One partial di erential equation is then obtained. Usually, it is not possible to nd
a classical solution to this partial di erential equation. The value function is then identi ed
to the viscosity solution of the partial di erential equation. This type of solution will be the
subject of the next section.
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1.2 Viscosity solutions

We will start this section by a discussion about the veri cation theorems of the previous
section. Each of these theorems supposed the existence of a smooth solution to the Hamilton-
Jacobi-Bellman equation and identi ed the value function of the optimal control problem to
the classical solution of this PDE which is at least of the rst order. This suppose that the
value function of the problem is at least di erentiable. However, in most cases, we do not
have this di erentiability of the value function.

For the deterministic optimal control problems, we can give the following example.

Example 1.2.1. Let us consider a nite horizon deterministic optimal control problem with
tp=0,t=1,0=( L;1),U=R,f(t;x;u)=u, L(t;x;u)=1+ %uz and ( t;x)=0. This
is a problem of calculus of variations. It can be shown that the value function of this problem

IS :
10X ixji t
V(t;x) = 1 .JX.J
1t jxj<t

which is not di erentiable if t = jxj.

For stochastic control problems, to have a chance to apply the veri cation theorems stated
in Sections 1.1.3 and 1.1.4, an uniform parabolicity is required on the di usion term which
is stated as follows.

A 121 Leta(tx;u)= (tx;u) I(tx;u). There existsc > 0 such that, for all (t;x;u) 2
[to;t1) R"™ U (with t; potentially in nite), and 2 R",

X] . -
[atGx; W [ d i% (1.55)
ihj =1

This condition allows the solution of the Hamilton-Jacobi-Bellman equation to be smooth
enough. If this condition is not ensured, there is typically not a classical solution to the PDE.
For zero-sum stochastic di erential games, it is worse because even the uniform parabolicity
is not su cient to have a smooth solution to the Hamilton-Jacobi-lsaacs equation. However,

a generalized solution can be considered. This is also the case for the deterministic optimal
control problems when di erentiability cannot be obtained everywhere. However, such a
generalized solution is not unique in general. This has motivated the introduction of the
notion of viscosity solution introduced rst in 1984 in a paper of Crandall and Lions [21]. The
aim was to characterize the value function. It was rst developed in the deterministic case.
However an extension to the stochastic case has been introduced in other papers ( [49]). In
the following years, many related papers have been published. This ensured the development
of the theory making viscosity solutions a standard nowadays in optimal control problems.

We will give here the de nition of this notion of viscosity solution and of the related notions
of second order subjets and superjets as presented in [20]. We will also recall a theorem of [20]
allowing to identify an element of the superjet of a function in particular cases. This theorem
is particularly important to prove a comparison principle for a given PDE. It can for example
be used in the context of Section 3.2 to obtain Lipschitz continuity of the viscosity solution of
the Hamilton-Jacobi-Bellman equation. Existence and unicity results of vicosity solutions for
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second order Hamilton-Jacobi-Bellman equations will also be given in the case where all the
coe cients are bounded and in the linear quadratic case with unbounded coe cients. In this
last case, we extend the results of Da Lio and Ley of the paper [23] by obtaining existence
results of the viscosity solution on any time interval [0; T] (T > 0), rather than only on a
small time interval [0; ], by using some extra conditions.

Similar veri cation theorems as the one stated in section 1.1.1-1.1.4 exist in the literature,
making the link between the viscosity solution of the Hamilton-Jacobi-Bellman equation and
the value function of the related optimal control problem (see [67] and [39] as examples). We
will not recall these results here as it will drive us away from the main subject of this work.

1.2.1 De nition of Viscosity solutions and of related notions

We want to give here rst a de nition of viscosity solutions using the notion of subjet and
superjet found in [20]. For that, we need to de ne rst what is the subjet and superjet of a
function at a given point.

De nition 1.2.1. Let W be a given function dened onO RN and ® 2 O. The second
order superjet of W at ® is the subset denoted bng'W(k) of RN S(N) such that for any

(P;X) 2 IETW(R) :
W(x) WE+p (x R+ %(x R) X(x R)+ o(jx Rj%) asx! % x 2 O:

The second order subjet ofW at R is the subset denoted byg W (%) of RN S(N) such
that for any (p;X) 2 J& W(R) :

W(x) WE+p (x R+ %(x R) X(x R)+ o(jx Rj%) asx! % x 2 O:
Remark 1.2.1.  JZ*( W)(X) = JZ W(%). Moreover, the dependence 03" W (&) and
Jé; W (%) to O can be removed wher is an interior point of O.

Now we can give the de nition of viscosity solutions in the continuous setting.

De nition 1.2.2  ([20, De nition 2.2]) . Let F be a continuous real function onRN R
RN S(N) such that for anyr;s 2 R, x;p2 RN, X;Y 2 S(N) :

FOGnp; X))  F(Xs;p;Y)

wheneverr sandY X in the Loewner order on S(N). Let O RN. A viscosity
subsolution of F = 0 (equivalently a viscosity solution ofF  0) on O is a function W upper
semicontinuous onO such that :

FOGW (x);p;X)  Oforall x2 O and (p;X) 2 35" W(x)

Similarly, a viscosity supersolution of F = 0 (or viscosity solution of F 0O)on O is a
function W lower semicontinuous onO such that :

F(;W (x);p;X)  Oforall x2 O and (p;X) 2 3& W(x)

Finally, W is a viscosity solution of F = 0 in O if it is both a viscosity subsolution and a
viscosity supersolution ofF =0 in O.
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Another equivalent de nition of viscosity solution is the following.
De nition 1.2.3.  Let F be a function as in De nition 1.2.2. W is a viscosity solution of
F(x; W (x); DW (x); D?W(x)) =0 (1.56)
in O if and only if W veri es the two following conditions :

W is upper semicontinuous and8 2 C2?(0), if # 2 O is a point where W reachs a
local maximum, then :

F(&W(R);D (%);D? (%) O (1.57)
W is lower semicontinuous and8 2 C?(0), if ® 2 O is a point where W reachs a
local minimum, then :

F(&W(R);D (%);D? (%) O (1.58)

If W satis es just the rst condition, W is a subsolution of (1.56). If it satis es only the
second condition, it is a supersolution of (1.56).

In the above de nitions, the set O considered can have a time interval part. So it can be
of the form (tg;t1) O, (to;t1] O or [to;t1) O whereO R" = RN 1 These de nitions
can then be applied to parabolic or elliptic PDEs.

In the case of a parabolic PDE, the semijets]é;+ W (x) and Jé; W (x) are denoted respec-
tively by P 3" W(t;x) and P 3 W(t;x) for O = (to;t;) O. The superjet of W at (s;2) 2 O
becomes the set of;p;X) 2 R R" S(n) such that :

W(t;x) W(s;2)+ alt s)+ p (x z)+%(x zZ) X(x 2
+o(jt sj+ijx zjd)as({tx)! (s:z); (tx)2 O:

The subjet of W at (s;2z) 2 O is then the set of @;p; X) 2 R R" S(n) such that :

W(t;x) W(s;2)+ alt s)+p (x z)+%(x Z) X(x 2

+o(jt sj+ijx zjdas{tx)! (s;2); (tx)2 O:

The present work mainly concerns nite horizon stochastic control problems where a
parabolic PDE arises as the Hamilton-Jacobi-Bellman equation. We recall now a theorem
of [20] in this setting that can be used to obtain Lipschitz results of the viscosity solution of
the Hamilton-Jacobi-Bellman equation in the unbounded framework (Similar to Section 3.2).
We recall that USC(O) is the set of upper semicontinuous functions orO and LSC(O) is the
set of lower semicontinuous functions orO.

Theorem 1.2.1 (J20, Theorem 8.3]) Let W; 2 USC((0; T) O;) fori =1;::;k whereQ; is a
locally compact subset oR". Let be a real-valued function de ned on an open neighbourhood
of (0;T) O1 i Ok andsuch that(t;xq;:::;xk) 7V (t;X1;:::;Xk) is once continuously
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di erentiable in t and twice continuously di erentiable in (X1;:::;Xk) 2 O1 ::: Ok. Suppose

b C whenever(b;qg;Xi) 2 P g:Wi(t;Xi);

. o . o (1.59)
i Rij+ijt ff randjwitxi)j+ jgj+ jXij M:

Then for each > 0 there are X; 2 S(n;) such that

0 1
1 X1 i 0
C+ia) B . K A+ A%
0 1 Xy

b+ i+ be= GbRreiinR),

Crandall, Ishii and Lions notice in [20] that the condition (1.59) is guaranteed whenW;
is a subsolution of a parabolic equation.

We present this theorem because it can be used to obtain Lipschitz results on the viscosity
solution of the Hamilton-Jacobi-Bellman equation with unbounded coe cients similar to the
equation of Section 3.2. This Lipschitz result can then be used in the same way as Assellaou,
Bokanowski and Zidani in [5] to obtain symmetric error estimates for the convergence of
numerical schemes having a solution with a Lipschitz property. A particular probabilistic
scheme that we introduce in Chapter 3, ts well in this setting.

1.2.2 Existence and Unicity results

We are going to recall now existence and unicity results of viscosity solutions of Hamilton-
Jacobi-Bellman and Hamilton-Jacobi-Bellman-lsaacs equations that will be mentioned or used
in Chapter 2 and Chapter 3.

The notations in the theorems, lemma and corollary reported here from other papers,
have been changed to keep as much as possible a consistency in notations throughout this
document.

We start with a result of Barles and Jakobsen on the viscosity solutions of a general
switching system which is a generalization of the Hamilton-Jacobi-Bellman equations and the
Hamilton-Jacobi-Bellman-lsaacs equations.

Theorem 1.2.2 ([7, Theorem A.1]). Let us consider the following system.

Fi(t;x;W;@g}[/;DXWi;DfWi)zoin Qr=(0;T] R";, i21 =1f1:::;Mg; (1.60)
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with
Fi(t;X;r;pe;px; X) =max  p + sup irzﬂéLi; X ri;pG X))t Mir
2A
L, (Gxsig;X) = Tlay (6x)X] B (6x) g ¢ (Ex)s f;7 (tx);
r = I L+
Mir rTjngnifrJ kg
whereA ;B are compact metric spacesr is a vectorr =(rq;:::;rm), and k > 0is a constant
(the switching cost).
Assume that for any ; ;i , & = % A ! for somen pmatrix ;° . Furthermore,
there is a constantC independent ofi; ; ;t such that
i @)+ (6)iatig ()it ify (5)in C (1.61)

with j j; de ned in Section 0.1.

If W 2 USC(Qt;RM) is a subsolution of (1.60) bounded above an® 2 LSC(Qt;RM)
is a supersolution of (1.60) bounded below, thetW V in Qr.

There exists a unique bounded continuous viscosity solutiow of (1.60).

The above theorem suppose the boundedness of the coe cients of the PDE and the com-
pactness of the control spaces. The new max-plus probabilistic method that this manuscript
introduces, can be used in the case of unboundedness of the PDE coe cients and of the
control spaces as in linear quadratic problems. The following results due to Da Lio and Ley
in [23], give existence and unicity results in this setting.

Theorem 1.2.3 ([23, Theorem 2.1]) Let us consider the following second order PDE.
8 @w
) @t H (6%, D xW; DXW) + G(t;x;DxW;DZW) =0 in (0;T) R";
T W(O0;x)= () in R"

(1.62)

with H and G are de ned by
H(txpX) = inf fo(tx ) p+ (tx ) Tr[ (tx; ) I(tx; )X]g;

GxpX)=supf gtix; ) p ftx ) Trictx )c(tx )XIg;
2B
for (t;x)2 (0;T) R",p2 R"andX 2 S(n).
Assume that there exist positive constant€C and such that :
A is a subset of a separable complete normed space possibly unbounded.
b2 C([0;T] R"™ A ;R") satisfying for x;y 2 R",t2[0;T], 2 A,
jtx; ) bty; )i C@A+j pix Y
jotx; )i C@A+jxj+] j)
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"2 C(0;T] R"™ A ;R)satisfyingforx2 R",t2[0;T], 2A,

5l 2+ o(tx ) with o(tx; ) C(L+ jxj?)

and for R > 0, there exists a modulus of continuitymg such that for anyx;y 2 B(0; R)
(B(0;R) is the open ball ofR" of center 0 and radiusR), t 2 [0;T]; 2 A,

C+jx?+j 5 “(tx )

PEx )y )i @+ P)meix i)
2 C([0;T] R"™ A :R" 9 is locally Lipschitz with respect tox uniformly in (t; ) 2
[0;T] A andsatises for everyt2 [0;T], x2 R", 2 A,
Jx )i C@+jxj);
B is a bounded subset of a normed space.

g2 C(0;T] R"™ B;R") is locally Lipschitz with respect tox uniformly in (t; ) 2
[0;T] B and satises for everyt 2 [0;T], x2 R", 2B,

jgtx; )i CA+ jxj);
f 2 C(0;T] R"™ B;R) is locally Lipschitz with respect tox uniformly in (t; ) 2
[0;T] B and satises for everyt 2 [0;T], x2 R", 2B,

iftx )i C@+jx);
c2 C([0;T] R"™ B:R" 9 is locally Lipschitz with respect tox uniformly in (t; ) 2
[0;T] B and satises for everyt2 [0;T], x2 R", 2B,

je(tx; )i C(L+ jxj);

2 C(R";R) and
j (i CL+xj?)

for every x 2 R".

Let W 2 USC([0;T] R") be a viscosity subsolution of(1.62) and V 2 LSC([0;T] R") be
a viscosity supersolution of (1.62). Suppose thatW and V have quadratic growth, i.e there
exists € > 0 such that for allx 2 R", t 2 [0; T],

IWEX)EIVExX)  Ca+ ixid): (1.63)
ThenW Vin [0;T] R".

The above theorem gives the unicity result by stating the comparison principle for the
PDE (1.62) and is completed by the following Lemma for the existence result.

Lemma 1.2.1 ([23, Lemma 2.1]) Consider the same assumptions as in Theorem 1.2.3. If
K C+1 and are large enough, then Wt;x) = Ke ! (1 + jxj2) is a viscosity subsolution
of (1.62) in [0;T] R" and there exists0 < T such thatW (t;x) = Ke ' (1 + jxj?) is a

viscosity supersolution of (1.62) in [0; ] R".
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From the two previous statements, the corollary below is deduced.

Corollary 1.2.1 ([23, Corollary 2.1]). Consider the same assumptions as in Theorem 1.2.3.
Then there exists > 0 such that there exists a unique continuous viscosity solution 0f1.62)
in [0; ] R" satisfying the growth condition (1.63).

We notice that the existence of the viscosity solution holds only on a time interval [Q ] not
necessarily equal to [T]. Previous work of Ito in [41] has shown the existence of a solution
of a similar PDE on any interval [0;t1] (t1 > 0). But this result needed a uniform parabolicity
condition on the PDE and more regularity assumptions were taken on the solution.

We introduce the two following results ensuring the existence of a supersolution of PDE (1.62)
on [0; T] by taking some extra assumptions.

Lemma 1.2.2. Consider the assumptions of Theorem 1.2.3. LeT > 0. For K > C, there
exists > 0and Cy > 0 such that if o(t;x; ) Cijxj2 C, W(t;x) = Ke'(1+ jxj?) is a
supersolution of PDE (1.62) on [0; T] R". ("o is the function introduced in the assumption
of Theorem 1.2.3 on the Lagrangian™ of PDE (1.62).)

Proof. Let K> C, > 0andW(t;x) = Ke'(1+ jxj. Let C; be such that “o(t;x; )
C]_ijZ C.
av - ‘N2 - ‘P2
@t+ H(t;x;DxW;DxW)+ G(t;x; D x\W;DsW)
= etK(1+jxj2)+ir12fA bit;x; ) 2Ke'x+ (tx; ) Tr (tx; ) (tx )2Ke!

+sup  g(tx; ) 2Ke'x f(tx; ) Tr ct;x; )d(tx; )2Ke'!
2B

ket (1+ixi?) 20+ ixpixi+ S5 oo+ w2+ inf A aci i
Ke't 2A  2Ke't
#
200+ N (L4 X)) 201+ X)) =
) Ket K 4
t ~2
Ke' (1+x?) (6+ 2 +8C)CW+x)+ b 2O i

For (6+ I%+8 C)C andC; M, we then obtain that W is a viscosity supersolution
of (1.62) on [QT] R". O

Lemma 1.2.3. Consider the assumptions of Theorem 1.2.3. Let us suppose that f@t; x) 2
O;T] R" 5 15 22A, 2B:

jotx; 1) btx 2 Cji1 2
otx ) Cixj
j®x )i Cixj;
jot,x; )i Cjxj;
if(tx )i Cixj%
jet,x; )i Cjxj:
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We also suppose that there exists a controlg 2 A that we will suppose equal t® such that
for a given constant Co,

b(t;X; o) X Cajxj*:
Then, for K> CandC, > (1+2C+ 2)C+ KC2 Wt x) = K(1+ jxj2) is a viscosity
supersolution of the PDE (1.62) on [0; T] R".

Proof. Let K> C and W (t;x) = K (1 + jxj?). Consider the assumptions of Lemma 1.2.3.

L (t;x;D yW;D2W) + G(t;x; D yW; D2W)

@t
inf fh(t;x; 0) 2Kx +(B(tx; ) B(tx; 0)2Kx + (tx; ) Tr( (6 ) 1(tx; )2K)g
+supf g(t;x; ) 2Kx  f(t;x; ) Tr(c(tx; )c| (t;x; )2K)g
2B, "
2K C,jxj2 (C+ 1 Cjxj% + inf i Cj “x'o 1+ C+ 1 Cjxj®
2xj° ( R)JJ w )] Jixp o« i)”

" #

2K Cojxj> (1+2C+ Ki)cj'sz %czjsz :

SoforC, (1+2C+ £)C+ 2ZXC W is a viscosity supersolution of (1.62) on [pT] R". [



CHAPTER

Numerical methods in Optimal control

In the previous chapter, we presented optimal control problems which are solved by using
Hamilton-Jacobi-Bellman (HJB) equations. We have seen that these PDE generally do not
have classical solutions and the type of solutions that are looked for in the optimal control
theory are viscosity solutions. We do now a brief review of the type of numerical methods in
the literature which are used to solve HIB equations and to obtain approximations of their
viscosity solutions. We introduce in Section 2.1 an extension of the well known convergence
result of monotone numerical schemes due to Barles and Souganidis to be able to apply it to

an unbounded setting.
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2.1 Finite di erence methods

The nite di erence method is historically the oldest type of numerical method used nowadays
to solve partial di erential equations. The starting point of the development of this method
can be identi ed with the paper of Courant, Friedrichs and Lewy [18] in 1928 even if some
ideas about the method may be found in the literature before this date. The nite di erence
method knew after that, a bursting period before the introduction in 1960s of the nite
element method which became more popular in the subsequent years. However, it remained
an active eld of research with new nite di erence schemes ( [11, 57] for HIB equations and
[50, 31, 32, 58, 56] for other types of PDES) and new results on the generalization of nite
di erence method results to other types of numerical methods. We can give as examples
the theorem on the convergence of approximation schemes for fully non linear second order
equations stated by Barles and Souganidis [8] and the order of convergence of approximation
schemes for parabolic Hamilton-Jacobi-Bellman equations obtained by Barles and Jakobsen [7]
which uses in its proof the method of shaking the coe cients of Krylov [46, 47].

We will give here the de nition of the nite di erence method and of the related concepts
used with it and recall most popular nite di erence schemes in optimal control. We will also
recall the previously cited generalization results of nite di erence methods. We will then
introduce as a theorem, an extension of the Barles and Souganidis theorem which will allow
us to apply their result in an unbounded setting in Chapter 3. Notations in the subsequent
reported theorems have been changed to maintain a consistency in notations throughout this
document.

2.1.1 De nition and related results in the Literature

When solving a partial di erential equation (PDE), a nite di erence method consists in :
discretizing the variables space of the equation by building a grid;

discretizing the equation which consists in approximating the equation using nite dif-
ferences instead of partial derivatives such that the resulting equation converges to the
initial equation when the grid step goes to zero;

solving the resulted discretized equation at the grid points by iterative methods. The
resulted solution is an approximation of the solution of the initial PDE and its value is
computed by interpolation at points which are not grid points.

The discretization of the equation results in the construction of a scheme. It appears in
many numerical methods for solving PDE. The particularity of the nite di erence method
is then the exclusive use of nite di erences in the approximation of partial derivatives when
building the scheme. The latter has a very important role in the quality of the approximation
of the solution of the equation. If the approximated solution obtained with a given scheme
converges to the solution of the PDE problem when the discretization step of the grid goes
to zero, the scheme is said to be convergent.

It was known for a while that the conditions for a nite di erence scheme to be convergent
were :

the consistency of the scheme meaning that the discretized equation must converge to
the initial PDE when the grid step goes to zero and the function is regular,
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the stability of the scheme meaning that the solution of the scheme is bounded with
respect to the bounds of the equation parameters.

The stability condition was the most challenging one. Depending on the type of scheme,
there was a conditional stability (explicit scheme) or an unconditional stability (implicit
scheme). The conditional stability for explicit scheme was subject to the CFL condition after
Courant, Friedrichs and Lewy who found in their paper [18], that a nite di erence method
involving a space discretization with step x and a time discretization with step t results
in a stable explicit nite dierence scheme if x ¢ t for hyperbolic equations, ¢ being
a constant to compute. This has an equivalent for parabolic equations with the inequality

x?> ¢ t which is also called the CFL condition.

The conditions of convergence of nite di erence schemes have been generalized to PDE
problems with viscosity solutions with the following theorem which can be applied to general
schemes as we are going to see in Sections 2.2 and 2.3.

Theorem 2.1.1 ([8, Theorem 2.1]) Consider a problem of the following form :

F(D?W;DW;W;x)=0 in ; (2.1)
where is an open subset oRN andF : S(N) RN R has the following form :
H(M;p;rpx)ifx2 ;
F(M;p;rix) = (M:p:r)

r (x)ifx2@;

for a given function de ned on @ . H is supposed to be fully non linear. Consider also an
approximation scheme of the following form :

S(;x;W (X);W)=0in ; (2.2)

whereS : R* R B() ! R s locally bounded withB() being the set of bounded
functions on . Consider the following assumptions.

1. S is monotone, which means that :
S(;x;rnW ) S(ixnV ) (2.3)
if WV for all 0,x2 ,r2R, W;V2B().

2. S is stable, which means that for all > 0, there exists a solutionW of (2.2) such
that W 2 B() with a bound independent of .

3. The schemeS is consistent which means that for allx 2 and 2 C! () \ B()

SCiys N+ 5+ )

lim sup limsupF (D? (y);D (¥); (¥);y);
W X Ve
0
and
imint 0¥ W32 ) i int (D2 (9D ) ()i

['¢ 2
y!O y
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4. (2.1) has the following strong uniqueness (comparison principle) property : IfW 2
B() is an upper semicontinuous subsolution of(2.1) andV 2 B() is a lower semi-
continuous supersolution of (2.1) then W  V on

Assume all the assumptions enumerated above. Then, aggoes to0, the solution W of (2.2)
converges locally uniformly to the unique continuous viscosity solution 0f2.1).

We can see that the condition of monotonicity on the scheme has been added. There are
two very famous examples of monotone nite di erence schemes in the literature. The rst
one (the approximation scheme of Kushner) which is the oldest, is monotone conditionally
to the di usion coe cient matrix and the second one (the approximation scheme of Bonnans
Zidani) is unconditionally monotone.

The approximation scheme of Kushner (see [48])
This scheme has been introduced by Kushner in 1977. If we consider a partial di erential
equation containing an operatorL de ned by :

L (tx)= %Tr[a (t:x)D? (tx)]+ b (tX)D (tX); (2.4)

the approximation scheme consists in replacind- in the PDE by :

hd ) X + 1y )] S M
L, (tx)= ~ [a (t,zx)]n i+ - [a (tz’x)]u :JL [a (;X)]Ij ;
. e ¥ (2.5)

Hb T ()i b X)) (5x)
wherew* = max(w;0), w = min(w;0) and

P w(tx) = ixfw(t;x xe))  w(t;x)g

iw(t;x) = %fw(t;x +  xe)  2w(t;x) + w(t;x xe)g
1
X2

+ . —
i w(t;x) = >
1
2 x2

i w(t; x) =

faw(t;x)+ w(t;x +  x(e + g)) + w(t;x x(e + g))g

fw(t;x +  xej)+ w(t;x + xej)+ w(t;x xXej) + w(t; x X€j)g
1
2 x2

fw(t;x +  xe)+ w(t;x +  xej)+ w(t; x xej) + w(t;x x€j)g

faw(t;x) + w(t;x +  x(g §))+ w(tx x(& §)g

+

2 X2

X being the space discretization step.
This scheme is then monotone and stable if and only if the matrixa is diagonally dom-
inant. The particular discretization of the gradient with respect to the sign of its coe cient
in the PDE is also referred as an upwind scheme in the literature. This will be used in a
probabilistic form in Section 3.1.

The approximation scheme of Bonnans and Zidani (see [11])
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It is assumed here that there exists a nite stencilS ~ ZNnfOg and a set of positive coe -
cientsfa; 2Sg R* foreach 2 A suchthat:
X
a (tx)= a@tx) ! inQry; 2A:
2s

The operator L de ned in (2.4) can then be written as :

X
L (tx)= a (x)D? (x)+ b (x)D (t;x)

2s
whereD? =Tr | D2. The approximation scheme of Bonnans and Zidani consists in replac-
ingL by:

X X ..

Ly = a + ™ B (2.6)
2S i=1

with the same notations as for the approximation of Kushner for the derivative of order 1,
and where

w(x) = j.lxsz(x + X)  2w(x) + w(x X)g:

2
This scheme is unconditionally monotone. In [11], Bonnans and Zidani give explicit conditions
of existence of the nite stencil S and techniques to build it systematically.

Once a scheme is known to be convergent, a question remains about how quick is this
convergence with the grid step. There comes the notion of order of convergence. It is the
power of the grid step such that with an appropriate multiplicative factor, it bounds the error
between the approximated solution of the PDE obtained with the scheme and its exact solu-
tion. The following theorem is a result on the error bounds for any monotone approximation
scheme for a parabolic Hamilton-Jacobi-Bellman equation. It is due to Barles and Jakobsen.
For the de nition of the norms and notations used in this theorem, see Section 0.1.

Theorem 2.1.2 ([7, Theorem 3.1]). Let us consider the following partial di erential equation

@@Vt\/+ F(t;x;W; D xW;D2W) =0 in Qr =(0;T] R", 2.7)
W(@O;x)= ( x) inR™ (2.8)
where
F(txrnp;X )= SLZJR fL (txrnp;X)g;
with
L (txnp;X )= Tr(a (Ex)X) b tx)p c (tx)r f (tx): (2.9)

The coecients a , b, c,f andthe terminal data take values respectively irS(n), R",

R, R and R. Let us also consider the following approximation numerical scheme tq2.7)-(2.8)
written in the following abstract way :

S(h; t;x; Wh(tX); [Whlix) =0 in G = G,nft=0g; (2.10)

Wh(0;x) = h(x) in G2 = G,\f t=0g (2.11)
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where G, is the grid related to the schemeh = ( x; t) is a multidimensional vector con-
taining the space and the time discretization steps an@WyJ..x represents typically the values
of the function W), at points of the grid other than (t; x).

We consider the following assumptions :

Al: Forany 2 A,a = % | for somen p matrix and there is a constant
K independent of such that :

joji+) i+jbjatijeji+if ji K
A2: For every > 0, there areM 2 N and f igi’\ﬁl A such that forany 2 A :

Jnf G etib bliotjc  clo+if T o)

S1: There exists ; 0, hg > 0 such that if jhj  hg (wherej j is the Euclidean
norm), W V are functions continuous and bounded orG,, and (t) = e! (a+ bt)+ ¢
for a;b;c 0O, then :

S(hitx;r + (1);[W+ Jix)  S(hit;x;r, [VIe)+ b=2 ¢ in G
S2: For every h and continuous and bounded function on G,, the function (t;x) 7!

S(h;t;x; ;[] tx) is bounded and continuous inG, and the functionr 7! S(h; t;x;r; [] tx)
is uniformly continuous for boundedr, uniformly in (t;x) 2 Gh+-

S3 ) : There exists a functionE (K h; ) such that for any sequencé g- ¢ of smooth
functions satisfying :

j@D ° (tx)j K120l YinQrforany o2 N; °=( 9 2NV,

L Py o .
(G 9="I; 9, the following inequality holds :

S(hitx; (6x)1 Iex) @@t+ F(tx, ;D ;D2 )+ Ey(Kh; );

in G .
S3ii) : There exists a functionE» (K h; ) such that for any sequencé g o of smooth
functions satisfying :

j@D ° (tx)j K120l YinQrforany o2 N; °=( 9 2NV,

P
(j j being the Euclidean norm andj § = iN:1 9, the following inequality holds :
S(hitx; (6x)[ Iex) @@t+ F(tx, ;D ;D? ) EaKh; );
in G .
Assume (Al), (S1), (S2), and that (2.10) has a unique continuous and bounded solution

W} on G,. Let W denotes the solution of(2.7)-(2.8) and h a vector of real numbers su ciently
small.
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If (S3 i) holds, then there exists a constantC depending only on , K in (S1), (Al)
such that :

W W, el h) o+ Crr>1i(r)1 + Ey(K;h; ) in Gy

whereK = jWjj.

If (S3ii) and (A2) holds, then there exists a constantC depending only on , K in
(S1), (A1) such that :

W W, e'j( h) jo Cmin =B+ Ex(Kih; ) in Gy

whereK = jWj1.

In the above theorem, the condition A1 allows one to have the existence and unicity of a
viscosity solution to the PDE problem (2.7)-(2.8) according to Theorem 1.2.2.

The above theorem allows one to obtain the following corollary which is a consequence of
Theorem 4.1 in [7].

Corollary 2.1.1. Consider the PDE problem(2.7)-(2.8) presented in the previous theorem.
Let us consider the following approximation scheme for this PDE using the-method which
is a generalization of the Crank-Nicholson scheme (= %).

W (t;x) =W(t t; x)
@ ) tsupf L,W cW f gt t;x)
2A

tsupf LW cW f g(tx)inG;;
2A

wherelL, is given by (2.5) or (2.6), t being the time discretization step.
If a solution W}, to this scheme exists, then under the conditions of stability (CFL condi-
tions), we have the following result :

el j( W jo Chs W W, e'j( W) jo+ Ch?
Withh=p X2+ t.

2.1.2 Barles and Souganidis result in unbounded setting

We want to have a convergence result such as the one of Barles and Souganidis (Theorem 2.1.1)
when the PDE solution lives in the space of functions with polynomial growth. This will be
particularly useful in Section 3.2 to obtain the convergence of a probabilistic scheme in a
linear quadratic style problem. The following theorem gives such a result and is proved using
the same tools as for Theorem 2.1.1.

Theorem 2.1.3. Consider the same PDE problem as in Theorem 2.1.1. We replace the set
of bounded functionsB () in the theorem by the set of functions with a giverk-polynomial
growth BK() de ned by :

it ()
EEL

f 2BX() if 9C > 0;8x 2
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In this setting, we consider the same assumptions as for Theorem 2.1.1 except for the con-
sistency assumption where for : x 7! 1+ jxj¥, the following inequalities are considered
instead.

Iimlsgps(;y; W+ O * ) Iirg!syloF(D2 (¥);D (¥); (¥):y)
"3 z

and

imigg SCY O Oh * ) e 2 ()0 () (i)
" g

forx2 and 2C1() \ B¥().
Then, the result of Theorem 2.1.1 still holds.

Proof. We will redo the proof of Barles and Souganidis withB*() functions.

=i W (y) = liminf W_()
Let K(x) = Im;!sg(p Try K and K(x) = Imgiméf Triyjk

1o

The functions W (x) = K (x)(1 + jxj*) and W(x) = K (x)(1 + jxjK) are respectively upper-
semicontinuous and lower-semicontinuous and/V W. If we show that W and W are
respectively viscosity sub and super solution of equation (2.1), then the comparison principle
applied to functions in B¥()) will give us the inequality W W which will end in an equality
sothat W =W =W = IiImOW will be the unique viscosity solution of (2.1).

We will show that W is a viscosity subsolution of (2.1), the proof of Wbeing a viscosity
supersolution of (2.1) having the same pattern.

Let x 2 and 2Cl() \ BX)suchthat 0 = ( W )( x) is a local maximum of
W(x) (X) ; i i W) (y)
w . T S then also a local maximum of the functiony 7! REETLE
Let rc > 0 be such that, for all y in the ball B(x;r¢),

W) (y) W) (%),
1+ jyj L+jxjc -

We may suppose without loss of generality, a strict maximum is achieved atx and that
(y) (1+jyjsupi jgjzg outside the ball B(x;r¢).
z2

Then, there exists ( n)n2n @nd (Yn)n2n Such that :

W n(yn)  ( Yn) _

Ilnm n=0; Ilnm VYn = X; Ilnm 1+ jynf¥
and y, is a global maximum ofy 7! W
Let , = W We have Iinm n=0andforally2 , W (y) @+jyj* n+( y).

We also haveW " (yn) = (1 + jynj%) n+ ( yn). So, by the monotonicity condition,

SC iYW "(Yn);W ) S nsyns (V) +(X+ jyai) ns + 0 )
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where :y 7! 1+ jyj¥. We then have :
0 liminf S( niyn; (Yn)*+(@+ jyni*) ni + 1)

liminf SCiy: (y)+@+ jyi): + )

yl x
10

liminf F(D?(y):D ()i ( ¥):y);
y2
by the consistency assumption.

Hence, we deduce thatV is a viscosity subsolution of (2.1). We obtain then the result of
the theorem. O
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2.2 Semi-Lagrangian methods

Semi-Lagrangian methods can be found in the literature since 1950s with the famous paper [19]
of Courant, Isaacson and Rees. They were related rst to the advection equation and were
used in the context of atmospheric modelling. However, during the eighties, similar methods
appeared in the eld of optimal control theory. The rst paper refered in the control literature
is the paper of Capuzzo Dolcetta ([15]) in 1983 where the author is interested in a deterministic
optimal control problem with in nite horizon. Then, followed the paper of Capuzzo Dolcetta
and Ishii ([16]) , the papers of Gonzales and Rofman ([37], [38]), the paper of Falcone ([26])
and for the stochastic optimal control problems the paper of Menaldi ([55]) and the paper
of Camilli and Falcone ([14]). Recently, Debrabant and Jakobsen have proposed in [24] a
unifying framework for the study of these methods.

We will start here by giving a unifying de nition of Semi-Lagrangian method and then
show some Semi-Lagrangian schemes found in the literature and recall convergence results
obtained in [24].

2.2.1 De nition of Semi-Lagrangian methods

Semi-Lagrangian methods follow the same steps as nite di erence methods as described in
the previous section. But, on the contrary of the nite di erence schemes where the directions
in which the points are taken for the partial derivatives approximations are limited by the grid,
the directions taken in Semi-Lagrangian schemes for the partial derivatives approximations
are guided by the coe cients of the PDE problem and may not allow to choose a grid point.
This may imply the use of an interpolation technique of the value of the solution of the PDE
problem at the points chosen for partial derivatives approximations with its value at their
closest grid points.

One example of Semi-Lagrangian scheme is the scheme introduced by Capuzzo Dolcetta
in [15] and completed with a space discretization by Falcone in [26] where the PDE

rr}%xfw b DW f g=0in R"

with A being a nite set, is approximated by

n 0
max Wh(xi) @ h)WP(xi+bh) hf (x)

where x; is a point of the grid and h is a parameter which can be compared to a time
discretization step.

We give below a brief review of Semi-Lagrangian approximation techniques found in the
literature to approximate operators of the form (2.9). Assume that|  is an interpolation
operator using functions values at grid points andk and h are parameters related to the grid
discretization steps. The approximation of (2.7)-(2.8) consists in replacing (2.9) by using the
following approximations.

The approximation of Falcone in [26] whena = 1 l=0:

I x (Ex+hb (t;x) | x (),

b (t;x) Dx (tXx) h
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the approximation of Crandall and Lions [22] whenb =0:

%Tr( (tx) (tx)DZ (t;x))

X x+ktx) 2 Ex)+ 1 x (Ex kj(6x)
- 2k2 ’

where  (t;x) 2 R" P and ; (t;x) denote the j-th column of  (t;x). The same
notations are considered for the following approximations.

The corrected version of the approximation of Camilli and Falcone [14]

%Tr( (tx) N(Ex)DZ (tx))+ b (tx) Dy (tx)

X* oy (t;x+pﬁj(t;x)+%b(t;x)) 2l 4 (Ex)+ 1 4 (X IOEj(t;x)+gb(t;x))_
2h ’

j=1
The combination of the approximation of Falcone in [26] and Crandall and Lions in [22]

I x (Ex+hb (X)) | x (tx)
h
X (x+k(tx) 20« (Ex)+ 1« (Ex Kk (tx))
¥ 2K ;

%Tr( (tx) T(tx)DZ (tx))+ b (tx) Dx (tx)

=1
The new more e cient version of the approximation of Camilli and Falcone in [14].

%Tr( (tx) N(Ex)DZ (tx))+ b (tx) D (tx)

KA x+k (X)) 20 )+ 1 (Gx k| (6x))
2k2

j=1
.\ I x (Ex+k p(Ex)+ K2 (X)) 20 (Ex)+ 1 x (Ex Kk 5(tx)+ k2D (tx))
2k?2

Debrabant and Jakobsen proposed in [24] a unifying and more general form of the above
approximations which is the following.

Ta’ (tx)D2 (tx)]+ b (5x) Dx (Ex) Lg [I x 1(tx)
with

XMootx+yy T(6x) 2 (EGx)+ (Ex+yy (6X))

L, [ 1(tx):= e

(2.12)
i=1

for k > 0 and someM 1, under some conditions on the functionsy,.; * andy,: that
will be given in the next section. ' '

This unifying form allows Debrabant and Jakobsen to obtain quite general results on
Semi-Lagrangian schemes which will be the subject of the next section.
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2.2.2 Convergence and error bounds for Semi-Lagrangian schemes

We will start with a convergence result of Semi-Lagrangian schemes obtained by Debrabant
and Jakobsen in [24] which uses the Theorem of Barles and Souganidis quoted in Theo-
rem 2.1.1. The authors consider the following PDE problem.

ew .. " OVt (b ) 0 Or = (0:T1 RV
—— infsup L' [W]tx)+c X)W+ (;x) =0in Q7 :=(0;T] RY (2.13)
@t 2A 3

W(0;x) = ( x)in RN (2.14)
where A and B are complete metric spaces, and
L' [ultx)=Tr[a’ (t;x)D2u(t;x)]+ b* (t;x)Dyu(t;x):

The coecients a' ;b ,c' ,f: and take values respectively in S(N), RN, R, R and R.
The coe cient a' is assumed to be positive semi-de nite. So the equation may degenerate.
The solution is then to be considered as a viscosity solution.

Theorem 2.2.1 ([24, Theorem 4.2]) Consider the following scheme for the PDE prob-
lem (2.13)- (2.14).

8 n . . N . N 0

< GWh=infosup Ly [ xW T o Fw " Y inG
2B

. (2.15)
" W2= (x)in X

where G = (tn;Xi)ni IS the time-space grid which is a Cartesian product of a time grid
T ¢ and a space gridX , th = tqn ty 1, mnax th t, Lk; is de ned by (2.12),

o fro(th 1+ tn; Xi),

|« is a space interpolation operator, W" = W (tn;x;), f; " =

Cl,,n 1+ - C' (tn 1+ tn1xl)’ Lk’ [I XW n In 1+ = Lk’ [I XW in ](tn l+ tnlxl)l
.n .n 1 .
owp= W WE T o ywn e w
th
and

oW =@ ) w1 wm

X is considered here as an upper bound of the discretization step & x. Assume the
following.

Al: Forany 2 A and 2B,a =

3 | for someN P matrix ‘@ and
there is a constantK independent of ; s

uch that :
joji+i o ja+ijb o jatijc ji+if o j1 K
11: There are K> 0 andr 2 N such that for all smooth functions ,

i x) jo KijDy jo X
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I2: There is a set of non-negative functionsf w; (x)g; such that
X

(I x)(x)= ( xj)w; (x)

and for all i;j 2 N,
X
wi(x) 0, wi(x;)= j and wi(x) 1
[

1

gt
o -

3 Vi T+ Vi =2k + O(k%:;
i=1

e Ve T v v 1=2k2 e ok,
1

%0

[[yk| ]jl[yk;;i; +]jz[yk;;i; +]j3+[yk;;i; ]jl[yk;;i; ]jz[yk;;i; lis]= O(k%;

i=1

[[yk;;i; +]J'1[yk;;i; +]J'2[yk;;i; +]J'3[yk;;i; +]J'4+[yk;;i; ]jl[yk;;i; ]jz[yk;;i; ]ja][yk;;i; li.]= O(k4);
i=1
forall ji;j2;jsja=1;2  ;n.
CFL condition
@a )t % ch 1 and ;" Y1 8;;n;i (2.16)

Then, there exists a unique bounded squtioth to (2.15) and U converges uniformly to the
solution W of (2.13)- (2.14) as t;k; k2 I 0.

In the above Theorem, the condition A1 allows one to have the existence and unicity of
a viscosity solution to the PDE problem (2.13)- (2.14) using Theorem 1.2.2.

The previous Theorem is completed in [24] by a result on the error bound in the conver-
gence of Semi-Lagrangian schemes recalled below.

Theorem 2.2.2 ([24, Theorem 7.2]) Consider the PDE problem (2.13)- (2.14) and its ap-
proximation scheme (2.15) where the setB is supposed to be a singleton (we can drop then
the indexation in ).

With the assumptions names of Theorem 2.2.1, assumAl, Y1, (2.16), k 2 (0;1) and
the following condétion :

%

[yk;;i+ + yk;;i ][y‘k;;i+ + ylé;i ] 2k2(b b )1
1

i
. 4l . - . cpl : -
[yk,;i+ yky;i+ + yk’;i yk’;i ] + ['yk’;i+ y'k’;i+ + ‘yky;i y'k’;i ]

i=1
Py R sy ! SN
% i Vi + Vi Yi t ¥ Yt Vi Wi
2k3( ~ ) ~)+2k*b B)b b )li
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where ;b ;yk;.i represent here the values of the functions of the same name &t x) and

~ ;b ;yk;;i represent the values of these functions dtt;y). The above system must then hold
for any t;x;y. If W and U are bounded solutions respectively 0f(2.13)-(2.14) and (2.15),
then there existscy such that for t 2 (0; ¢p),

iU wj c@r1 2j t**+ 22+ k¥ inG: (2.17)

The error bound obtained here seems to be better than the error bound obtained in Corol-
lary 2.1.1 for nite di erence schemes. However, in practice, the best error estimate deduced
from the above theorem is x™ which is achieved whenk = O( x%™). It corresponds then
to the negative lower bound of the error obtained in Corollary 2.1.1, the upper bound being
of a higher order ( x172).

There is also a recent result about the error bound of a Semi-Lagrangian scheme in an
unbounded setting due to Assellaou, Bokanowski and Zidani ( [5]). It is stated as follows.

Theorem 2.2.3 ([5, Theorem 4.1]). Consider the following PDE :

@@;Vtv(t;X)+ H(tx;DxW(t;x);D2W(t;x))=0; in (0;T) RY
W(T:;x)= (x); inR%
where 1
Htxp X)) =inf - STr( (Exu) HExu)X) btxu) p
u2u 2

with (t;x;p;X) 2 (0;T) RY RY S(d). It is supposed that :

1. U is a non empty compact subset oR% (q > 0).

2.b2C(@(0;T] RY U;RY) and 2C(0;T] RY U;RI M),

3. There existsLg > 0 such that for any (s;t;x;y;u) 2 [0;T] [0;T] RY RY U,
txu) Bsywi+i (Gxu) o (siyiu)j o Lo(x  yi+ it si?);
4. is a continuous real function and there exists a constantvlg > 0 such that :
i 00 Mo(1+jxj); (x2RY:

This PDE has a unique viscosity solutionW in the space of functions with linear growth.
Let x (1 k m)denotes thek-th column of and , (1 k 2m) be de ned as follows :

(txuy=( )m b 2o(LX;U);

where bac denotes the integer part ofa 2 R.
Let h > Obe atime step of atime grid(tn)o n n, X x beaspacegridand/™" (0 n N)
be the solution of the scheme :

VN(x) = (x);
VT I(x)= S"(th;x;V"); forl n N
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where for anyt 2 [0;T], x 2 X x and any functionw : X 4! R,
(g )

s"(tx;w) = Zimax [w](x + hb(t;x;u) + "h KGxu)
m u2U k=1

where [w] denotes the linear interpolation ofw on the grid X x having a grid step x.
V" is completed on points which are not on the time and space grid by bilinear interpolation,
which gives the functionV.

Assume that is a Lipschitz continuous function with a Lipschitz constantL . There
existsC 0 depending only onT and Lg, such that for everyR > 0, we have :

KV  Wk1 g, CL R7ﬂ‘h1=4+JTXJ :

where kwk; 1 (g) represents the supremum ofw(t; x)j for (t;x) 2 [0;T] Bgr, Br being the
ball of center 0 and radius R.



44 CHAPTER 2. NUMERICAL METHODS IN OPTIMAL CONTROL

2.3 Probabilistic methods

Finite di erence methods and Semi-Lagrangian methods need the discretization of the space
variable which leads to a storage and algorithmic complexity exponential in the space dimen-
sion and thus cannot be used in high dimension (greater or equal to 4). This problem is
known as the curse of dimensionality and was a major stepback in the resolution of many
PDEs problems numerically for many years. The introduction of the Feynman-Kac formula
in [42] in 1951 by Kac, was a major breakthrough in the numerical methods for solving PDE
problems. It related linear PDE problems to stochastic di erential equations, requiring just
the computation of an expectation to solve them and allowing to use probabilistic methods
such as Monte Carlo method to solve these problems. This rst article was only about linear
PDE problems. However, in the following years, a lot of works have been done to enhance
this result and be able to solve non linear partial di erential equations in the same way. The
notion of Backward Stochastic Di erential Equations has been introduced by Bismut [10] in
1973 in the linear case and by Pardoux and Peng [61] in 1990 in the general case. It al-
lowed to enlarge the class of PDE problems that can be solved using relations similar to the
Feynman-Kac formula from linear to quasi-linear PDE problems. In 2007, Cheridito, Soner,
Touzi and Victoir introduced in [17] the second order Backward Stochastic Di erential Equa-
tions allowing to have a form of Feynman-Kac formula for fully non linear PDE problems
like those which arise in optimal control problems. Their work has been extended by Fahim,
Touzi and Warin in [25] who showed that the resulted scheme of [17] can be introduced like
a nite di erence scheme where partial derivatives are approximated in a probabilistic way
instead of using nite di erences. These developments introduced the need to compute a
conditional expectation. But, in the same time, probabilistic methods evolved to solve this
new diculty. We can cite in this setting the introduction of the Longsta and Schwartz
method in [51], the representation formulae based on Malliavin calculus ([30], [29], [12]) and
the quantization-based approach [6, 59]. Further studies followed like the paper of Bouchard
and Touzi [13] and the paper of Gobet, Lemor and Warin [36].

We are going rstly to de ne probabilistic methods and give a description of their di erent
variants introduced in the literature to deal with the computation of the conditional expecta-
tion. We will also present related notions such as Backward Stochastic Di erential Equation
and second-order Backward Stochastic Di erential Equation and the results which link them
to PDE problems. We will then present some particular probabilistic schemes [25, 40] that
we will improve in Section 3.1.

2.3.1 Description of probabilistic methods

When applied to a PDE problem, a probabilistic method needs generally a discretization
of the time variable if there is any. Then, it consists in simulating one or many stochastic
processes according to time-discretized equations on these processes forming the probabilistic
scheme, in order to compute in a backward method the solution of the PDE and sometimes its
derivatives. It may involve the approximation of an expectation or a conditional expectation.
The expectation is generally approximated by the mean of the simulated values which is known
to converge to the theoretical expectation when the number of simulated values increase (Law
of Large Numbers). The computation of the conditional expectation is more complicated. In
the literature, three main approaches have been developed for this calculus. We describe
them in the following subsections.
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2.3.1.a Longsta and Schwartz method The Longsta and Schwartz method is based on
the fact that the conditional expectation of a random variable Y with respect to a random
variable X verify the following condition : There exists a measurable functionf from R to
R which is square integrable on (X) such that for all measurable functions g fromR to R
which are square integrable on (X), E[(Y f(X))g(X)] =0 ( (X) denotes the -algebra
generated by X ). Then, E[Y j X] = f(X). Solving this condition is equivalent to solve the
following problem : Find a measurable functionf , square integrable on (X) such that

f —argmin E (Y g(X))? ;
092G

G being the set of measurable functions square integrable on(X).

The Longsta and Schwartz method consists in considering a particular space of nite
dimension instead of the set of measurable functions such that this problem can be solved with
the least squares method after replacing the expectation by a mean operator on a nite number
of simulations. The conditional expectation is then computed using a simple regression. The
space considered fofs is generally the space of polynomials with degrees smaller or equal to
a given valuek. But, as shown by Gobet, Lemor and Warin in [36], the space generated by
indicator functions on hypercubes or on a Voronoi partition of the state space can also be
used.

2.3.1.b The Malliavin approach The Malliavin approach for the computation of the condi-
tional expectation of a random variable Y with respect to another random variable X consists
in expressing this conditional expectation as a weighted expectation of with the expression
of the weight obtained by Malliavin calculus. The obtained expectation can then be computed
as a mean value over the simulations which converge to the theoretical expectation according
to the law of large numbers.

The intuition here consists in using the fact that :

= w1- ELIY x(X)]
S X=X L)

where y is the Dirac function at the point x. Then in the above expectations, the Dirac
function is replaced by expectations with an Heaviside functionH times an appropriate
weight , using Malliavin calculus integration by parts. For more details, see [29] and [12].

Bouchard and Touzi in [13] made an analysis of the error due to the use of the Malli-
avin approach to approximate the conditional expectation in the particular example of the
computation of the solution of a decoupled Forward-Backward stochastic di erential equation
(presented further in this section). They found that this error grows exponentially with the
dimension of the state space. This can be considered as another manifestation of the curse of
dimensionality in the convergence of probabilistic method. However, on the contrary of grid
based methods such as nite di erence methods and Semi-Lagrangian methods that cannot
even be implemented in high dimension, probabilistic methods have this advantage to be
implementable even in high dimension.

2.3.1.c The quantization approach This method is described or used in [6, 59, 33]. After a
discretization in time common to all the methods presented above, the quantization approach
uses also a discretization in space of the simulated stochastic processes. A space grid is built
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at any time step and a projection of the simulated stochastic processes is done on the grid.
The fact that the method uses a space grid can make it comparable to grid based methods
such as nite di erence and semi-Lagrangian methods except that, in this case, the space grid
is stochastic as it is built using processes simulated values.

If we consider then a processYs)s and a process X s)s for which we want to compute the

conditional expectation E[Ys,,, ] Xs] at any time step s;;1 i N 1 knowing Y5, as a
function of X5, , the quantization method will rst apply a discretization of the state space
using simulations of X5, 1 i N and build functions ¢ known as quantizers which relate

any point in the space to a point of the grid corresponding to times; (a Voronoi partition is
generally used here). Then, transitional probabilities from any point of the grid corresponding
to time s; to any point of the grid corresponding to time sj+1 will be computed using statistics
on simulations of the process Xs, )1 k ~. Afterwards, values of the conditional expectation
E[Ys, J] Xsy ;] are then deduced as the sum of the values ofs, expressed at the points of
the grid corresponding to time sy weighted by the transitional probabilities. In the same
way, from the values of E[Ys, | Xs, ,] at the grid points corresponding to time sy 1, the
values of E[Ys, , j Xs, ,] can be deduced and so on.

2.3.2 Backward Stochastic Di erential Equations

The problem we presented above is a simple form of a problem of a Backward stochastic
di erential equation. Let fB¢; t 2 [0;T]g be a standard d-dimensional Brownian process
de ned on a probability space ( ;F ;P), and let fF (g be its natural Itration. Let Y be aF
measurablek-dimensional random variable. A Backward stochastic di erential equation as
generalized by Pardoux and Peng in [61], consists in nding & - adapted pair of stochastic
processes Y;;Zt)o ¢ T With values respectively in RX and RX 9 which verify the following
equation :
Z Z
Y: + f(s;Ys; Zs)ds+ a(s; Ys; Zs)dBs = Y
t t
where f is a measurable function from [0;T] Rk RX 9to Rk which is supposed to
be uniformly Lipschitz with respect to the two last variables, and g is a measurable function
from [0;T] RX Rk 9to Rk 9 such that the mapping z 7! g(s;y;z) is a bijection for
any (I;s;y).

This stochastic di erential equation is generally linked to a forward stochastic di erential
equation in order to obtain an equivalence with PDE. The result is a Forward Backward
Stochastic Di erential Equation (FBSDE). The solution of the forward stochastic di erential
equation enters then in the dynamics of the Backward stochastic di erential equation. If on
the other hand, the solution of the Backward Stochastic Di erential equation is included in
the terms of the forward stochastic di erential equation, the FBSDE is coupled. Otherwise,
it is uncoupled.

Example of uncoupled FBSDE from [60]

8 .t . |
3 dXg* = b(X¢¥)ds+ (Xg¥)dBs;t s T
X% = x;
z o Zg o Zr
TYE = g(X f(r X P Y Z ) dr Zp*dB;t s T

S S
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wherebis a function from R" to R" of classC? with all its derivatives up to order 3 bounded,

is a function from R" to R" 9 of classC? with all its derivatives up to order 3 bounded,
x 2 R", g2 C3(R";R¥), f is dened from [0;T] R" R Rk ¢to R* such that for any
s2 [0;T], (x;y;2) 7! f(s;x;y;z) is of classC3, x 7! f(s;x;0;0) is of classC? and the rst
partial derivative of f with respect to y and z are bounded on [0T] R"™ Rk RK 9as well
as their derivatives of order one and two with respect tox, y, z. The unknown processes are
then the F s-adapted processesXs*; Y™ ; Z& ) s210T-

The related PDE is then :
SR+ LWER) 1 EXW (6X); (W )(6X)) =0;
W(T;x) = g(x);

whereW :[0;T] RI! RX: (t;x) 7! (Wa(t;x);  :Wi(t; x)), and

0 1
LW,
LW-= ED : X;
LW
1 @ @
L = 51 ( )I] (t’X)@X@}(-'- h(tix)@(

i=1

W (t;x) is then identied to Y,”, if W is the viscosity solution of this PDE.
Example of coupled FBSDE from [9]

8 Z, Z,
% Xi= X+ b(s; Xs; Ys)ds + (s; Xs; Ys)dBg
0 0
Z Z;
-§ Yi = 9(X1) f(s;Xs; Ys; Zs)ds ZsdBs; t 2 [0;T]

t t

whereb:[0;T] RY R! RY, :[0:T] RY R! RIIf:[0;T] R! R RI! Rand
g:RY! R are deterministic and Lipschitz continuous functions of linear growth which are
additionally supposed to satisfy some weak coupling or monotonicity condition.

The related PDE is then :

8

5@@\1\/(t;x)+;Tr ( D W (tx)D2W (K x)

3 +DyW(t;x) b(t;x; W (t;x))  f(tx; W (t;x);DxW(t;x) (t;x; W (t;x)))=0;
W (T;x) =9g(x);

and we haveY; = W(t; X ) and Z; = D,yW(t; X¢) (t;x; W (t; X)), if W denotes the viscosity
solution of this PDE.

Uncoupled FBSDEs can be related to semilinear PDE problems while coupled FBSDEs
can be related to quasi-linear PDE problems (see [60], [62], [63]). However, the Hamilton-
Jacobi-Bellman equation and the Hamilton-Jacobi-Bellman-lsaacs equation encountered in
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Section 1.1 in the stochastic case are either semilinear when the di usion coe cients do not
depend on the controls or fully nonlinear.

To be able to deal with fully nonlinear PDE problems, Cheridito, Soner, Touzi and
Victoir introduced the notion of second-order Backward Stochastic Di erential Equation.
Let (FT) = (F )s2per) be the augmented Itration generated by (Bs Bi)sypet)- One
example of this di erential equation consists in nding a quadruple F'T -adapted process
(Yo z& 2 A%) taking valuesin R RY  S(d) RY such that given functions ;g and
a processX " strong solution to the forward stochastic di erential equation :

( dX & = b(X)ds+ (XEX)dBs

XX = x

with b:RY! R%and :RY! M4 (M3, : set of invertible matrices of RY 9) Lipschitz of

Lipschitz constant smaller or equal to K and such that
)i+ ()f K@+ jxjP);

p1 2 [0;1], we have
8

3 dYS* = F(SIXG V23 P)ds+ 29 dX + ST (X$) T(X$) & dsi s2 [6T);

3 02 = AZds+ $dX&;s2[4T);
Yt = g(X71):
(2.18)

wheref :[0;T) RY R RY S(d)! Randg:RY! R are continuous functions.
This stochastic di erential equation is related to a fully nonlinear PDE problem according
to the following theorem of Cheridito, Soner, Touzi and Victoir in [17].

Theorem 2.3.1 ([17, Theorem 4.10]) Let us consider the second order Backward Stochastic
Di erential Equation (2BSDE) (2.18) and the following PDE problem :
@Ww,

@(s;x)+ f(s;x;W(s;x);DxW(s;x);D2W(s;x))=0; on[0;T) RY (2.19)

W(T;x) = g(x); x2 R (2.20)

Consider the classA* ((t;x) 2 [0;T] R%andm 0) of processes(Zs)s such that :
Z S Z S
Zs=z+  A/dr+ cAX B s2 6T,
t t
wherez 2 RY, (As)so[eTy Is an RY-valued, FtT -progressively measurable process, s)s2[tT] IS
an S(d)- valued, FtT -progressively measurable process such that :

maxfj Zsj; jAsi;] sig m(1+jX§ij4); 8s2[t;T]

and
Proosl Mm@ X X s+ X XE)

forall r;s 2 [t;T], where ps and ps are xed positive constants.
SetA ™ = [ oAm* and consider the following assumptions.
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Al : Forevery N 1, there exists a constantFy such that
ftxy;z; ) ftxyz )i Faiy ¥
forall (txy;yz; )2[0:T) RY R R RY Sd) with
maxfj xj; jyi; iyi;jziij jg9  N:

A2 : There exists constantsF and p, 0 such that

ftxyizo )l F@+ X+ jyj+ jzi + ] j7)
forall (t;x;y;z; )2[0;T) RY R RY ).
A3 : There exists constantsG and p3 0 such that

j9(x)j - G(L+ jxj™)

for all x 2 RY.
A4 : Forall (tx:y;z)2[0:T) RY R RYand ; ~2 S(d),

f(txy;z; ) f(txy;z;~) whenever =
A5 : Forall t 2 [0;T), the PDE (2.19) with the terminal condition (2.20) satis es the
comparison principle on [t;T] R" in the space of functions with a growth exponent
p = maxf p2; ps; P2p4; Pa + 2 P10, this space of functions being the set of function¥ such

that :
iV(s;x)j C@+jxj?) 8(s;x)2[tT) R

If there exists (t;x) 2 [0;T) RY such that the 2BSDE (2.18) corresponding to (X %% f;g)
has a solution (Yt ; Zt; tx: AtX) with Zt™ 2 A ' then the PDE (2.19) with the terminal
condition (2.20) has a unique viscosity solutionW on [t; T] RY in the space of functions
with growth exponentp = maxf py; ps; p2pa; Pa+2p1g, W is continuous on[t; T] RY, and the
processY ™ is almost surely of the form

Y& = W(s; XE);, s2 6Tl (2.21)

In particular, (YSX*;ZsX; SX;ASX) is the only solution of the 2BSDE (2.18) corresponding
to (X% ;f;g) with ZS* 2 A SX,

The above theorem is mainly used to compute the solution of a PDE problem using equal-
ity (2.21). A time discretization approximation of the process (Ys™*)sye7] is then computed
by using a probabilistic scheme. Cheridito, Soner, Touzi and Victoir, proposed in [17] such a
probabilistic scheme that we present below.

Set

Ftxyiz )= FExyiz )+ b 2+ ST (0 () ]

Let s, == t+ n(T t)=N and (YY)n, (ZY)n, ( §)n be approximations respectively of
Y, z%, ' The probabilistic scheme in [17] consists in computing g\ )n, (ZX)n, ( & )n
using the following (implicit) equations :

Y= g(Xy); ZY = Dg(X 7"
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and forn=1;::; N,

Ys,:l e E[YS’;l j Xér?( 1]+ F(sn 1;Xg|:( 1;YS,:1l 1;Z&|‘:\r|1 L ’S\ln 1)(Sn Sn 1)
1 . i .
2 = (X&) 'ElBs, Bs, )Ye | XE ]
Sh  Sn 1
1 Dyt -
Y BN (Bs Be IXE L] (X )Y

This probabilistic scheme has been the subject of a deeper study in [25]. This study will
be presented in the next subsection.

2.3.3 Probabilistic scheme for Fully NonLinear PDEs

Fahim, Touzi and Warin in [25] showed that the scheme described at the end of the previous
subsection, can be introduced like a nite di erence scheme, where partial derivatives are
approximated by using probabilistic expressions. The convergence of the scheme can then be
proved without using the theory of second order Backward Stochastic Di erential Equations,
but by using instead theorems related to nite di erence schemes such as the Theorem 2.1.1
due to Barles and Souganidis.

Let us consider the PDE of equation (2.19)-(2.20) with the standardd-dimensional Brow-
nian motion and the probability space ( ;F ;P) introduced in the previous subsection.

As shown in [25], the rst hidden step in the scheme of Cheridito and al in [17] is to
decompose the functionf in two parts, a linear part and a nonlinear part such that the
PDE (2.19) can be written as :

L XW F(;W;DyW;D2W)=0; (2.22)
with
L X I(tx):= %t(t;x)+ b(t;x) Dy (tx)+ %Tr(i(t;x)J (t;x)D2 (t;x)):

The scheme can then be introduced by using the fact thatL * is the in nitesimal
generator of a computable diusion processX and that by the PDE (2.22), L XW =
F(;W;DxW, D)%W). It remains to approximate the function W and its derivatives Dy W,
D2W used with the function F. By using Hermite polynomials and a di erentiation in the
sense of distributions, this is done in [25] through the result recalled in Lemma 2.3.1. We
introduce an Euler discretization )@,ﬂ;x = x+ bt x)h+ _(x)(Bi+n Bt) of the processX
and for k = 0;1;2, the operatorsDXW are replaced by the operators

DEW (t;x) := E[DXW(t + h; X))
For a given function on RY, we let :
h [
DAL X)= E ( X7 ;

(2.23)

Di[1( x) = E ( XP)(_(tx)) 18;]}‘ ; (2.24)
tptl

DAL 0= E (X)) 22 M ) 1, (2.25)

whereB{ = Bi+n By, and | is the identity d d matrix.
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Lemma 2.3.1 ([25, Lemma 2.1]) For every function :(0;T] RY! R with exponential
growth, we have :

Dy (tx) = DL (t+ h; )I(X); (2.26)

Dy (t:x) = Dl (t+ h; )I(X); (2.27)

D (t:x)= D& [ (t+ h; )I(X); (2.28)
For a positive integern, h:= T=n, t; = ih, i =0; :n, the scheme is then :

WN(th:x) = g(x); x 2 RY
W (%) = TeonW (e s DIt x); x2RTI=0;  in
where Ty, is de ned by
Ten[1( tx) == E[( X1+ hF (6 DG [1( X); Dgh[1( x); D& X)); (2.29)

for : RY! R with exponential growth.

Using, Barles and Souganidis theorem, Fahim, Touzi and Warin obtained the following
convergence result :

Theorem 2.3.2 ([25, Theorem 3.6]) Assume the following onF :
1. The nonlinearity F is Lipschitz continuous with respect to(x; r; p; ) uniformly in t and
JF(;:0,0,0)o< 1;
2. F is elliptic and dominated by the di usion of the linear operator L X, that is :
DF O (2.30)
() DF] 1 (2.31)

on[0;T) RY R RY g(d), whereD F represents the partial gradient of F with
respect to its last variable ;

3. DpF 2 Image(D F) and jDoFD F DpFjo < 1 where DyF is the partial gradient of
F with respect to its fourth variable andD F denotes the pseudo-inverse dd F.

Assume also thatjbj;;j_j1 < 1 and _ is invertible. Also, assume that the fully nonlinear
PDE (2.19) has a comparison principle for bounded functions. Then for every bounded Lips-
chitz function g, there exists a bounded functionV such thatw" ! W locally uniformly. In
addition, W is the unique bounded viscosity solution of probleni2.19)- (2.20).

One of the most strong hypothesis in the above theorem is the second hypothesis én
It comes from the monotonicity requirement of the scheme.

1
DF= f Z_1I;
2 1
wheref s the partial gradient of f from PDE 2.19 with respect to its last variable. So,
1
(_NHIDF] o1, )Y éil) 1
1 1

,Tr () i ST g
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The last inequality holds if

e %| %n (2.32)

The inequalities here are to be understood in the sense of the Loewner order. A3 F should
also be nonnegative,

1 1
1 [y 1 = 2.
0 _ ) 2| OI|.
That give us
| 2y .
2f a+ a) : (2.33)

The inequality (2.32) is necessary if all the eigenvalues of f (_!) ! are equal.

When the dimensiond increases, condition (2.33) reduces the non linearity character df
with respect to its last variable and makes the PDE more close to a quasi-linear PDE than
to a fully non linear PDE as encountered in optimal control problems.

Guo, Zhang and Zhuo tried to improve this condition in a subsequent work ([40]) by using
instead of a Brownian motion in the above scheme, a trinomial tree with a new kernel for the
Hessian approximation. They manage to allow greater variations in the diagonal terms of .
However, the other terms off must remain almost constant in great dimension.

We note that the probabilistic scheme of Fahim, Touzi and Warin in [25] is equivalent
if we replace the Brownian motion B by a binomial or trinomial random walk, to a nite
di erence scheme. The condition (2.31) is then a stronger than the usual form of the CFL
condition which is materialized in dimension greater or equal to 2 by the need to have a
di usion coe cient matrix diagonally dominant. We give more details about this observation
in the following discussion.

Discussion on the scheme of [25] and the condition (2.31)

Let us rst show on examples the behavior of the discretization of [25]. For this, we shall
show what happen when the increments of the Brownian motionB., B are replaced by
any nite valued independent random variables with same law. This will allow us in particular
to compare the discretization of [25] with nite di erence schemes. Similar comparisons were
done in [25] but here we shall discuss in addition the meaning of the constraint (2.31) in this
situation that we call here the critical constraint .

To simplify the comparison, we drop the dependence of PDE terms irt and consider the
case wherd is linear and depends only on :

fo;np;, )= %Tr(A )
where A is a d-dimensional symmetric positive de nite matrix. We assume that A | and
chooseL X (x;p; )= 3Tr( ), thatisb Oand_ I|.HenceF(x;r;p; )= 3Tr((A 1) ).

Then denoting by N any d-dimensional normal random variable, we get that the operator
Ty of (2.29) satis es:

T O %)= DYOC X+ N2 TH(A 1DZO( X))

= E (x+th)(1+;Tr((A D(NNT 1) (2.34)
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This operator is linear, lgmd it is thus order preserving if and only if for almost all values ofN
the coe cientof ( x+ hN) inside the expectation, that is (1 + %Tr(( A D(NNT 1), is
nonnegative. The critical constraint Tr[(__|) 1D F] 1is equivalent here to% Tr(A 1) 1.
This corresponds exactly to the condition that the coe cient of ( x) inside the expectation is
nonnegative. Thus, if N is replaced by any random variable taking a nite number of values
including 0, the critical constraint is necessary.

Consider the dimensiond = 1 and a simple discretization of N by the random variable
taking the values  with probability 1 =2 2) and the value O with probability 1 1= 2,
where > 1. Then, we obtain

b P— p—

TenOOCx)=( )+ 5= (x+ h)+(x —h) 20(x) ; (2.35)
with b=1+ %(All 1)( 2 1). This scheme is F?quivalent to an explicit nite di erence
discretization of (2.19) with a space step x = ﬁ , Which is consistent with (2.19) if
and only if b = Aj; and so if and only if = " 3. In that case, the critical condition

%(All 1) 1 is necessary for the scheme to be monotone and it is equivalent to the CFL
condition Ai1th ( x)2.

For nite di erence schemes, the CFL condition can be satis ed by increasing x. How-
ever, here x is stongly connected to the possible values ol and since the probability of
large N is small, one cannot avoid the critical constraint if we keep the discretization (2.28)
of D2W.

We can note that in this case the expression oD&h()( X) is

"Ry (x "Ry

( x

+ h)
D} X) = p—
t;h ( )( ) 2V h
which corresponds to a centered nite discretization.
Now, consider the dimensiond = 2, and the simple discretization of N where ez?)cb entry
of N = (Nj)j=1.--q IS replaced by a random variable as above, taking the values = 3 with
probability 1 =6 and the value 0 with probability 2=3. In that case, the critical constraint
%(An + Ay, 2) 1is necessary and su cient for the discretization to be monotone. We
have
0 1
p_ 1%
Ten()( X)=E@( x+ hN)(L+ > (A i)NiING A
ihj =1

=(Ne@ WA 1)

1 X X p__
+ — (x+ 3hep)dBA; L+2 Tr(A 1))
18i:1 = 1
1 X P
= (x+ 3h( 180+ 2€9))
1= 2= 1

3 (Aj )i t2 Tr(A 1)
ijj =1
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where (e1; &) is the canonical basis ofR2. This discretization can be rewritten as
00 1 1

X2
T 0=( )+ 1@@" (A 4BHD) (A +b " (A :
ij =1

whereb = (1 +Tr( A 1))=3, Di*j‘ is the standard 5-point stencil discretization of the

partial derivative %@X on the grid with space step x = 3h (as above), and " is

the discretization of using the external vertices of the 9-point stencil (that is the points
X+ X( e+ &)). We point out the similarity with the Kushner scheme here. Note also
that the critical constraint Tr( A 1) 2 impliesb 1. Moreover, sinceA | is positive
semide nite, then 2jA15j Tr(A 1) 2andAj 1, s0jA1pj Aj fori=1;2. The latter
condition means that the matrix is diagonally dominant.

In general, we see that the critical condition (2.31) comes from the CFL condition. As the
ratio between the equivalent space grid step and the time grid step is xed, the probabilistic
scheme cannot be applied in any case.

We saw that the scheme in [25] is similar to a centered nite di erence discretization for
the gradient and a Kushner discretization for the Hessian. We improve it in Section 3.1 by
introducing a sort of probabilistic upwind scheme to deal with terms of the PDE (2.19) in
DxW and an equivalent in probabilistic world of large stencil schemes such as the scheme of
Bonnans and Zidani (see Section 2.1) to deal with terms irD2W. This scheme is used in a
general new technique combining probabilistic methods to max-plus methods which will be
presented in the next sections.



2.4. MAX-PLUS METHODS 55

2.4 Max-plus methods

Max-plus methods were introduced in the optimal control theory to exploit the max-plus
linearity of the semigroups associated to Hamilton-Jacobi-Bellman equations of the rst order.
Indeed, even if the HIB equation is non linear, optimal control problems can be seen as linear
in the max-plus algebra. The rst methods proposed in the literature were subject to the
curse of dimensionality because they needed the construction of a basis of functions over the
state space as in nite element method and thus needed a discretization in space. A basis of
functions over the state space was xed and the value function was projected on this basis at
each time step using various technigues.

In 2007, McEneaney proposed in the paper [52] a new max-plus approach where there is
no need to project the value function on a xed basis of functions at each time step. In fact,
the value function is still expressed as a linear combination of functions in the max-plus sense,
but these functions appear naturally at each time step. The curse of dimensionality of old
max-plus approaches disappeared but a new curse appeared called the curse of complexity.
This new approach was later extended to the stochastic case with the resolution of HIB
equations of the second order ([43, 54, 44]).

We will rst de ne what the max-plus algebra is, then give a brief description of old
max-plus approaches before presenting in the deterministic and the stochastic case the curse-
of-dimensionality free max-plus approach developed by McEneaney.

2.4.1 De nition of Max-plus algebra

The max-plus algebra consists in de ning onR the max operator or a min operator as an
addition and the usual addition as a multiplication. The properties of these operators onR
make that they can be used to build a new structure of semi-ring. Indeed, the seR [f 1g
denoted asRnax equipped with the max operator and the usual addition respectively as
"addition” and "multiplication” operators is a semiring called the max-plus semiring in the
same way as the seR[f +1g denoted by Rmin equipped with the min operator and the
usual addition respectively as "addition” and "multiplication" operators. The last one is
called the min-plus semiring. The set of functions (resp. upper bounded, continuous, lower
semicontinuous, lower semicontinuous and convex) from a subset oRN to Rmax iS then
a Rmax- semimodule while the set of functions (resp. lower bounded, continuous, upper
semicontinuous, upper semicontinuous and concave) from toRmin is a Rmin-semimodule.
Using this, the scalar product is rede ned on these semimodules in the following way :

<f;g> =supf(x)+ g(x)for f;g 2 Ryax;
X2

<fig> =inf f(x)+ g(x) for f;g 2 Rpypn :
X

2.4.2 Max-plus nite element type approaches

The max-plus approaches for solving rst order HIB equations rely on the max-plus linearity
of the related Lax-Oleinik semigroup or evolution semigroup. For a deterministic optimal
control problem with nite horizon, the Lax-Oleinik semigroup or evolution semigroup is the
operator which maps for each horizonT, the terminal payo function to the value function
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at time 0. Its expression for a maximization goal is given by

Zy
St X)=Sttp . L(x(s);u(s))ds+ ( x(T))
d)((zl(sS) = f(x(s);u(s)); x(0)=x x2R% u(s)2 U

Itis a semigroup as for anyt;s 0, Si+s = St Ss, using the Dynamic Programming Principle.
This property allows to write for a maximization problem, that for a given small time horizon
,W({t ;)= S (W(t )) where W is the value function.
As we said in the introduction of this subsection, another good property of the Lax-Oleinik
semigroup is its max-plus linearity. In fact :

Srlsupff;gg] =supfSr[f];Sriglg; Srlf + 1=Srlf]l+ ; 2 Rmax;

where f;g are 2 functions from RY to Rmax, supff;gg is the function obtained by taking
the pointwise maximum of f and g, and f + is de ned on RY such that for x 2 RY,
(f+ )(x)= f(x)+ . The same observations can be made for a problem with a minimization
goal where the max operator andRax are replaced by a min operator andRmjn .

One approach presented by Fleming and McEneaney in [27] consisted in approximating
the terminal payo function as a linear max-plus combination of some basis functions §;);.
Then, the value function was computed inductively by using S for small time horizon ,
considered as the time step.S is approximated by a max-plus linear operator over the max-
plus semimodule generated by basis functionsy);. The expression of the value function after
each time step , needed then only the max-plus projection of § (g;)); on the basis functions
(g)i and a max-plus matrix multiplication.

Another approach presented by Akian, Gaubert and Lakhoua in [4] improved the approach
presented above by introducing another basis of test functionsZ); such that the following
conditions are satis ed :

<z Wt ;) > <z S(W( ) > 8 (2.36)

where W is the approximated value function in this approach.

The highest function W satisfying these conditions is chosen. These conditions introduce
a new requirement in the computation of the value functionW when the basis functions ¢; );
are di erent from the basis functions (g;);. It then helps to improve the approximation error
of the method. The drawback of this method is that when the functions (@ ); and (z;); are
not Dirac functions, the condition (2.36) can be interpreted as a zero-sum deterministic game
which is not max-plus linear anymore.

All these approaches rely on the choice of basis functions which requires a discretization
of the state space as in nite di erence methods. It is thus impossible to avoid the curse of
dimensionality.

2.4.3 Curse of dimensionality free approach of McEneaney in deterministic case

The use of max-plus basis functions in the max-plus methods presented in the above subsec-

tion, leads to a particular type of max-plus methods called the max-plus basis methods.
McEneaney introduced a new category of max-plus methods by exploiting the good prop-

erties of linear quadratic deterministic optimal control problems which are among the few type

of deterministic optimal control problems having a classical solution analytically computable.
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Let consider an Hamilton-Jacobi-Bellman equation in the deterministic case with an
Hamiltonian H such that the PDE is written as follows :

@—Vtv(t;x) + H (tx;DxW(t;x))=0 (2.37)

@
W(T;x)= ( X) (2.38)

Let us suppose that the objective of the related optimal control problem is to maximize an
overall functional payo so that H (t;x;D xW(t; X)) is a maximum of terms. The rst step
in the McEneaney approach is to decompose H in a max-plus sum as follows :
H (t;x; D xW(t;x)) = max f H ™(t;x;DxW(t;x))g (2.39)
m 9

.....

where eachH ™ (m 2 f 1;:::; M g) is the Hamiltonian of a linear quadratic optimal control
problem and M is called the complexity of the Hamiltonian H .

Let (Stt+n)t o that we will denote also by (Sﬁ])t o be the backward evolution operator
of the PDE (2.37) from time t + h to time t and in the same way, let @ﬁm )t o be the
backward evolution operator of the PDE (2.37) where the HamiltonianH is replaced by the
Hamiltonian H ™ for m 2 f 1;:::;; M g. By the dynamic programming principle used to obtain
the Hamilton-Jacobi-Bellman equation,

SHW(t+h;)) W(tx) QW, N |
h @t(t,X) H (t;x; D xW(t;x))

SST(W(t+h; ) W(tx) @W (2.40)
h (t;x) H ™t;x;DxyW(t;x)) ; whenh! 0
h @t
Using equalities (2.39) and (2.40), one deduces that
SLW(t+ h;)) max Sﬁm [W(t+h;)] whenh! O: (2.41)
m2f 1;:5M g
As for an horizon T, So.t = Soh St n1 Whereh is chosen small enough and such that
T=his an integer, the approximation (2.41) allows one to deduce that
g0 gom gihim g(T=h Hhim,.
T (m2fn:1LaXM g h ) (m2fn:1LaXM g h ) (m2fr?.aXM g h )

Let N = T=h. Each S:]h;m m2fl:;Mg, i2f0 ;N  1g being max-plus linear, the
composition operator in the above equality is distributive with respect to the max operator.
So

s9 max AL Sr(]N Dhimiy

The number of terms in this last max-plus summation is exponential with the complexity
M. So, even if the curse of dimensionality has disappeared, a curse of complexity appears due
to the exponential growth with M of the number of terms to compute in order to obtain the
nal result S?. Pruning algorithms have been proposed to eliminate unnecessary functions
in this nal max-plus summation (see [53], [34], [35]).

Linear quadratic evolution operators operate on quadratic functions. They transform
quadratic functions into quadratic functions. So for the method described above to work, the
terminal payo function must be quadratic or a pointwize maximum of quadratic functions.
The value function will then also be a pointwize maximum of quadratic functions. The method
is said to be idempotent as it preserves the form of the terminal payo .
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2.4.4 Curse of dimensionality free approach of McEneaney in stochastic case

In the stochastic case, the evolution operator of the Hamilton-Jacobi-Bellman equation is no
more max-plus linear. This complicates the application of the curse of dimensionality free
approach of McEneaney as it is applied to the deterministic case.

To see this, let us consider a stochastic optimal control problem with nite horizon T
de ned as in section 1.1.3 with trajectories x&“")s in R". We drop the dependence on the
time variable and we consider a maximization problem instead of a minimization problem in

order to use the max-plus algebraRmax. The evolution semigroup is St)t o such that :
Zt
Sr[l( x)=sup E L(x*"(s);u(s))ds+ ( x*(T))
0

Because of the expectation operator, the equalitySt[supf f; g g] = supf St[f ]; St[g]lg may
not be true for any function f and g. This fact compromises the max-plus linearity of the
semigroup St)7 0.

In [43, 54], McEneaney, Kaise and Han propose another approach speci c to the stochastic
case. It uses a sort of max-plus distributivity of the expectation operator over the max
operator which is summarized in the equality below :

E max ( w;z) =max E[( w;&wW))]; (2.42)
227 227

where w represents here a random variable which lives in a subsé of RY, Z is a possible
continuum set and Z denotes the set of measurable functions fronw to Z.

We can see that like the expectation operator, the evolution semigroup in the stochastic
case has this property. It is generalized in Theorem 4.1 to any monotone additively -
subhomogeneous operatofl in the following way :

T max (w;z2) =max T [( w;&wW))]:
227 227

On the contrary of the max-plus linearity, this distributivity property of the evolution
semigroup which we will call the probabilistic distributivity, does not maintain the cardinal-
ity of elements present in the initial max operator, but it makes it grows at the power of a
functional space. The same algorithm as in the deterministic case presented in the previous
subsection, can then be applied here except that the probabilistic distributivity of the evo-
lution operators which replace the max-plus linearity, will make the number of terms in the
nal maximum or minimum very high. This makes the use of a pruning algorithm critical
here, but very hard to implement in practice as the set of elements to which is applied this
pruning algorithm is a continuum set. In [54], McEneaney, Kaise and Han propose a prun-
ing algorithm based on a rst discretization of this continuum set by a nite set using the
properties of compact sets. However they do not explicitly explain how to make this rst
discretization.

In Chapter 4, we will propose a method which uses the above probabilistic max-plus
distributivity property mixed with probabilistic methods. This mix removes the need to do
this di cult pruning operation.



CHAPTER

New probabilistic schemes for
stochastic control problems

In this chapter, we describe two new probabilistic monotone schemes for the resolution of an
Hamilton-Jacobi-Bellman equation in the stochastic case. The rst scheme which is simpler,
was introduced in [2] while the second, more complex was introduced in [3]. We make the
proof of the convergence of these schemes and obtain related error estimates in a bounded
setting rst by using the results of Barles and Jakobsen (Theorem 2.1.2). We then present
our method and the related results to obtain the convergence of the second scheme in an
unbounded quadratic growth setting.
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3.1 New probabilistic monotone schemes in bounded setting

Let us consider the following Hamilton-Jacobi-Bellman equation :

@@\/:/ ig; fL WIEx)+ ¢ (EX)W +f (Ex)g=0in Qr :=[0;T) R% 3.1
W(T;x) = ( x)in RY (3.2)

where A is a complete metric space, and
L [WI](t;x) = %Tr[a (tX)D2W (5 x)] + b (t;x) DyW(t;x):

The coecients a ;b ,c ,f and take values respectively in S(d), RY, R, R and R.
Let fBy; t 2 [O; T]g be a standardd-dimensional Brownian process de ned on a probability
space ( ;F ;P).
As Fahim, Touzi and Warin in [25] (see also Section 2.3.3), we introduce functiond :
[0:T] RY! RYand :[0;T] RY! RY 9such that the PDE (3.1) is written as :
LXW F(;W;DyW;D2W)=0; (3.3)
with
X @ 1 | 2
[L 1(t; x) = @t(t;x)+ b(t;x) Dy (t;x)+ éTr(i(t;x)i (t;x)Dy (tx)):

L * is the in nitesimal generator of a di usion process X solution of the stochastic di erential
equation
dXs = b(s; Xs)ds+ _(s; Xs)dBs:

The Hamiltonian F of (3.3) is then
F (6 W;DxW; DZW) = inf, 16 [WIEX)+ ¢ (6)W + f (6X)g; (3.4)
where
G WItx)= 3T (@ h(E)DIW@EX) +(b  B(tX) DW(EX):  (35)

In the following subsection, we build schemes by replacingV, Dy W, DZW by conditional
expectations in the same spirit as in [25]. The resulted schemes are monotone with simple
assumptions on the initial PDE (3.1). The results of the following subsection were presented
in [2, 3]. We consider a time discretizationTy, = f0O; h; 2h;::;; (n 1)hg with h = T=nand the
Euler discretization X of the di usion process X given by :

X(t+h)= X(t)+ bt X(t)h+ (X ({E)(Bun By (3.6)

We denote by Ty, the setf0; h; 2h;:::; nhg.
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3.1.1 Probabilistic approximation of di erential operators and their estimates

We rst describe the approximation of the second order derivatives proposed in [2] and esti-
mated in [3]. Consider any matrix 2 RY ~ with * 2 N and let us denote by ;j =1;:::",
its columns. We recall that CX([0; T] RY) is the subset of functions of CX([0; T] RY) with
bounded derivatives up to orderk. For any W 2 C2([0; T] RY), we have

»
%Tr(i(t;x) T T(tx)D2W (X)) = = T_T(x)DEW(EX)_(EX) 1 (3.7)

For any integer k, consider the polynomial:

X [ TW]- 4k+2
PZwi=  k ik o _kj de (3.8a)
j=1 ) K2
with
1 1
%= @krEN®E] % ez (3.8b)

whereN is a one dimensional normal random variable, and where we use the convention that
the j th term of the sum is zero whenk k> = 0. This is the sum of P 2”_ ;k(w) de ned for

each column  in the same way asP 2., (w).

Let W 2 Cg‘([O;T] RY), and X as in (3.6), then, under some conditions, the following

expression is an approximation of (3.7) with an error inO(h) uniform in t and x [2, Th. 3.1]:
h [
h 1E W(t+ hX(@t+h)P 2, (h ¥2Bun By))jX({)=x : (3.9)

In order to obtain error estimates for the scheme, we need the more precise following result
(Th. 3.1.2).
For p and q two integers and a function from [0; T] R to R with partial derivatives up to
order pin t and q in x, we introduce the following notation :

+q
j@p9 j= sup @ (tx) :
(tx)2[0F] R @N@x ;@Y
( )i2N; , i=q

Theorem 3.1.1. Let X be as in (3.6), and denoteB}, = Bi+n B:. Consider any matrix

2 RY with ° dand any integerk 2 N. Assume thatb and _ are bounded by some
constant C uniformly in t and x, and let M be an upper bound of T j. Then, there exists
K = K(C;M) > 0 such that, for all W 2 C#([0;T] RY), we have, for all(t;x) 2 Tn RY,

N .
h E W(t+ hX(+h)P 2, (h ¥2B})jX(t)= xI
%Tr(i(t;x) T T(t;x) D2W(t; x))

_h

K@+ IDh)4 h(i@D?Wj+ j@D°wj + jdD*Wj)+ _
o o |

h hj@D3Wj + h%@D?Wj + he" hj@Dwj + h3@D°wj
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To do the proof of this theorem, we will need the following results.

Lemma 3.1.1. Let A 2 §(d). Let U/ DU be the decomposition ofA after diagonalization,
with U being an orthogonal matrix andD a diagonal matrix. Let k be a positive integer. Let
usdene g > Oasin (3.8b) and p 2 RY, Ka 2 R, and the polynomial A as follows :

_ Ti(A
Ka = 4r|§+2)’

P
atRILRZT7U L (UZI)*2[ p] Ka.
The map A satises, forall p2 R4, R2 S(d) andj 2f 1;::;dg,

t

E A(PD) =0 ; (3.108)
Bt

E a(PP B =0 ; (3.10b)

t
E B!'RB! A(g—:]) = hTr(RA) ; (3.10¢)
t tl t Bﬁ )
E [B{}BY RB) a(PL) =0 : (3.10d)

t
Proof. Fort 0, as E% is a Gaussian vector with independent standard normal random
t
coordinates and the matrix U is orthogonal, Ug% is still a Gaussian vector with independent

standard normal random coordinates. SolJ E%L N, N being a zero-mean, one dimensional
normal random variable with identity covariance.

We thus have :
P = E N o] Ka

DS Tr(A)
— 4k+2 . .
=E N Ck [D]li AK+2°

i=1
From (3.8b), we havecE N4*2 = 1 and since Tr(D) = Tr( A), we deduce that

Bt
E A(FF%) =0 ;

which shows (3.10a).
Let p2 RY, we have

BL. P__ B B!
E p'Bj A(PL) =" hE |O'19ﬂH A(PE)

" I#

p_ Bt X gt .
=" hE (Up)'(Up—%) [Up%]i‘“‘ [ bl
i=1

B t
K AE IC’h(u|o)'(ugﬂh)
=0 ;
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as each of the terms of this di erence can be written as a sum of monomials of odd degree in
t

[U E%]i (3 i d)which are independent random variables with standard normal law. This

shows (3.10b).

Then, we have to notice that using the formulaE N2° = (pz!g)p!,we havec, = (E N*+4  N4k+2 ) 1
So, givenR 2 S(d), we have

#
t t Bﬁ =h Bﬁ | | Bﬁ X Bﬁ 4k+2 _
E By RBj A(FFH) =hE (UFFE) URU (U%ﬁ) [U%ﬁ]i [ ol

i=1
KAE BLRBY

X xd
=h [URUITEIN**?][ p];+ h  [URU!J EIN*][ p];

6] i=1
KahTr(R)
X xd h i
=h  [URUIGEIN*?][ o]y + h  [URU'J; EIN**] EN*?] [p]
iij i=1
KahTr(R)
=hE[N**2]g Tr(A) Tr(R) + hTr(URU/D) KahTr(R)
_h Tr(A)
= 2crs TA)TI(R) + hTr(URU! D) 22 N TH(R)

=hTr(RA) ;

which shows (3.10c).
Forj 2f1;::;dg, [BL] = € B}, = (Ug)! UB}, whereg; is the vector of RY with 1 at index
j and 0 everywhere else.

So: . "
B! p_ BL. Bl BL X B!
E [B}]iBh RB}, a( ) =h"hE (Ug)l(Up(UPD)IURUI(UBDL) B[ ol

i=1
KAE [Bi]BLRB
:0;

t
as this expression can be written as a sum of monomials of odd degree B[] or [U E%L (1

i d) which are independent random variables with standard normal law. It shows (3.10d).
O

Corollary 3.1.1. Let A 2 S(d) be written asA = |, with 2 RY. Let k, ¢, and K be
as in Lemma 3.1.1, and dene A :RY! R by

A(Z)= o 1Z2)%*2=k Kk§* Ka :
Then (3.10) holds for this de nition of 4.
Proof. Let U be any orthogonal matrix such that the rst row of U is equal to (k kp) 1 |
and let D be the diagonal matrix with the rst diagonal term being equal to k k3 and the

others beeing 0. Then, we haveA = U/ DU and in this case, the map a of Lemma 3.1.1
coincides with the one of Corollary 3.1.1. So, the corollary follows. O
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P.
Corollary 3.1.2. Let A 2 §(d) be writen asA = ., ; i |,with 2R, ;2R%and
1. Let k, ¢, and Ka be as in Lemma 3.1.1, and dene A :RY! R by
X\ | 4k +2 4k
A(Z) = o i( (Z2)777=k ik3® Ka

i=1
Then (3.10) holds for this de nition of 4.

P.

Proof. From the linearity of Ka with respectto A, we getthat Ao = ,_; i i where ;s
de ned as in Corollary 3.1.1 with ; instead of . A'pplying Corollary 3.1.1 to each matrix
Ai = ,' , and taking the linear combination, A = ,_; A, we deduce (3.10) for . O

Corollary 3.1.3. The equations (3.10a)(3.10d) hold for Ao = P 2;k where A = I, with
2RY 1

P.
Proof. Apply Corollary 3.1.2 to the expressionA = =1 i |J . O
Now, we can prove Theorem 3.1.1.
Proof of Theorem 3.1.1. Let X := x + b{t; x)h+ _(t;x)B}.

h i h i
E W(t+ hX(t+h)P 2 (h ¥2Bl)jX(t)=x = E W(t+hXZ)P 2 (h ¥2B})

By applying the Taylor formula to order 3 to the function W at point (t;x), we obtain :

W(t+ h; X)) =W(tx) + @@V:/(t;x)h+ Dy W (t; x)! ()(t; x)h + _(t;x)B})

+ }(p(t;x)h + _(t;x)B})! DfW(t;x)(b(t'x)h + _(t;x)B})

+ *h(b(t x)h+ _(tx)B})! @ (1 )+ th@% (tx)
X
+ % [b(t;x)h + 7(t;x)Bh]i&)(t;x)h + 7(t;x)Bh]j [b(t;x)h + 7(t;x)Bﬁ,]k
ik
aw _
axexax" )
N Wbt Oh+  (Ex)BLbE )+ (€x)BLY —CY (tx)
2 T AR SRR @@ e
X
‘7 D On+ (0B e (630 + s D (1
+ MY W;t;x;h;BY) -
(3.11)

where M # can be interpreted as the remainder in an integral form of the Taylor formula and
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is a continuous function with respect to its last argument and such that

4
M A(W; t;x; h; B ) %j@DOWj
ER SN .
+ 5 I@DWiiltx)h+ _(tx)B]]
i=1
h2X o . -
+ o I@DPWiiltx)h+ _(6X)BRLiiila(tx)h + _(6x)Bj
i

X
+ 07 @AW 0h+ (Ex)BRGEG N+ (6B )
HHY
IO+ (6084
¢ I@DWbE O+ (6B N+ (6B
i5p
b X0+ (6 X)BRIGi b )N+ (6X)B}Ig -

By using Corollary 3.1.3, the term
1 ] 2 ¢y _ h? | 2
SEEX)h + _(6X)Bp)  DW (Ex)(BEX)h + _(6x)Bp) = -0t X) DLW (6 X)(t;x)

+ hi(t; x)! D2W (t; x)_(t; x)B},

N %(B}])L(t;x)' D2W (t;x)_(t;x)B},

when multiplied by
h P 2, (h 17B});

has an expectation equal to
1 | v\ 2 : . .
éTr _(EX)'DyW (t; x)_(t;x)

The other terms in h i
h 'E W(t+ hX)P 2 (h 2B}) ;

are null except terms cominghfrom the product of monomials qf degree 2 irg}]i (1 i d)
by P 2, (h ¥2B{)and h 'E M*W;t;x;h;B )P 2, (h ™2B[) . This last term is bounded
by a sum of terms of the form

P—.. . P—, P :
KhP Y(h+  h)9jd@DWj KhP @1+ h)*C h)j@DWj;
where K is a constant function of C and M and p+ q=4. The other terms are bounded by
Kh(@D?Wj+ j@D3Wj) Kh(1+ pﬁ)“(j@DZWj + j@D3Wj):

In this way, we obtain the result of Theorem 3.1.1. O
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Remark 3.1.1. When the second order derivatives approximation(3.9) will be used in prob-
abilistic schemes in the next subsections, a value &f high enough will be required for these
schemes to be monotone. We can see that a high valuekofends to increase the weight of the
values of the functionW at points far from (t;x) and decrease the weight of the values of the
function W at points close to(t;x) in the approximation of the second order derivatives. In
this way, approximation (3.9) is analogous to a large-stencil nite di erence approximation

of the second order derivatives. This analogy will be used in the next subsection to name the
resulted schemes.

Let us also introduce the following approximation of the rst order derivatives. For any
vector g 2 RY, consider the piecewise linear functiorP é onRY:

P gl(W) =2(g+ W+t g W) ; (3.12)

where for any vector 2 RY, ,; 2 RYaredenedsuchthat] +]i =max( 1;0),[ ] =
min([ Ji;0). Note that P é is nonnegative. We shall show that

h i
E (W(t+ hX™) W(Ex)P g(h Bf) (3.13)

is @ monotone approximation of

(_(x)9) DxW(t;x) :

Before this, let us note that if _(x) = 1, b(x) = 1 and h 1=ZB§] is discretized by a ran-
dom variable taking the values 1 and 1 with probability 1 =2, then the discretization (3.13)
corresponds to the Kushner (upwind) discretization found in [48]
" #
xd W(t+ h;x + h'2e)  W(tx) W(t+hx h¥2e) W(tx)
[oi): e +[g] hi

i=1

Theorem 3.1.2. Let X[ := x+ b({t;x)h+ _(tx)(Bi+n By) and denoteB{ = By+n  By.
Consider any vectorg 2 RY. Assume thatband _ are bounded by some constar® uniformly
in t and x, and let M be an upper bound ofgj. Then, there existsK = K(C;M) > 0 such
that, for all W 2 C2([0; T] RY), we have, for all(t;x) 2 T, RY,
h [
(L(tx)g) DXW(tx) E (W(t+ h X)) W(tx)P s(h 'Bf)

K (1 + pﬁ)Z pﬁ(j@DOWj +j@Dwj + j[@D?W))
- |
+h(j@Dwj) + hp hj@D°W;|

Proof. By applying Taylor formula to order 1 to the function W at point (t;x), we obtain :

W(t+ b XY W(gx) = @g@"tv(t;x)m DLW () (Bt X)h+ (£X)BL)

+ MWt h; B);

(3.14)
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where M 2 can be interpreted as the remainder in an integral form of the Taylor formula and
is a continuous function with respect to its last argument and such that :

M 2(W; t; x; h; B 1)j J@D2Wijj[o(t; x)h + _(t;x)BLLijib(t; x)h + _(tX)BR]jj
iij

X 1
+h @D Wit x)h+ _(tX)BpLij+ Shs@D°Wj :

1
2

E DxyW(tx) _(tx)BRP g(h 'Bf)

= 2E D,W(EX)_(6x)BL(G (BL):+g (BY) )

h™ 20 1 | 3
2 X X '
= HE4@ [D«W (t; X)L L_(t;x)]; B A [0+ k[(BL)+1k +[9 KI(Bf) k °
i;j k
2 3

X
= ZE4T DWEOLLEON BE (03 (B)-] +(g J (@) 1 8

Ll

X
% DxW (&)L EX)] [} E [(BR)+F [9 LE [(Bf) TP
]

t
E [(By)+] =hE [(gﬂh)+]j2 = hE[max(N; 0)] = g;

where N is a Gaussian one dimensional variable. In the same way,
h
t — .
E(B) =35
So
X

E DxW(tX)!_(tx)BEP g(h 'Bf) [DxW (&)L (6x) (8] [9 1)
i (3.15)
DxW (t;x) (_(t;x)g):
h i
The terms of E (W (t+ h;X[™)  W(tx))P g(h *Bp) involving the partial derivatives

of order 2 (through M 2(W;t;x; h; B 1)) can be bounded by terms of the form

KhP 2(h + pﬁ)qj@Dqu KhP 1%2(1 + pﬁ)z(p h)%@Dwj;

whereK is function of C and M, p+ q= 2.
The other terms can be bounded by

K" h(i@Dp°wj + j@biwj) K g h(1+ P h)2(i@D°wj + j@Dwj):
In this way, we prove Theorem 3.1.2. O

In addition to the approximation of the rst and second derivatives, we will need a prob-
abilistic approximation of L X W.
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Lemma 3.1.2. Let XX := x+b(t;x)h+ _(x)(Bi+n By). Assume thatband _ are bounded
by some constantC uniformly in t and x. Then, there existsK = K (C) > 0 such that, for
all W 2 C4([0;T] RY), we have, for all(t;x) 2 Tn  RY,

ht EhW(t+ h;>’<‘,§x)I W(tx) LXw
K(1+ pﬁ)“hh(j@DZWj +j@D'Wj+ j@D°Wj+ jdD’Wj+ j@D*Wj + [@D*Wj)
+h” @D + R2(GDAW + [ @D W] + j@DWi) + b @D W]
+h3@D W

Proof. We consider the Taylor development (3.11) ofW (t + h; ﬁﬁx) that was used to prove
Theorem 3.1.1. From this development, we can notice that. X W appears naturally in the

expression of h i
ht E W+ hX™)  W(x)

The other terms involving the derivatives of order 4 through M 4(W;t; x; h; B |) are bounded
by expressions of the form

KhP 1(h+ pﬁ)@lj@Dqu KhP 1(1+ IOE)“(IO h)9@D W (3.16)

and K function of C, and p+ q=4.
The terms left from the Taylor development of W (t + h; )@ﬁx) are bounded by the following
expression :

Kh(j@D2Wj + j@D W]+ j@D°Wj+(1+ | h2(@DWi+ j@D2W)))
+Kh?(j@D'Wj + j@D°Wj)

K@+ " R)*hG@D?wi + @D Wi+ j@D°Wj + j@D°W] + j@D2Wi)
+Kh?(j@D'Wj + j@D°Wj)

In this way, we obtain the result of Lemma 3.1.2. O

We add to these results, the estimates of the probabilistic approximation ofD W (t; x)
used by Fahim, Touzi and Warin in [25]. Let for any vector g 2 RY, P 91;0 be the linear
function on RY such that :

Pso%w)=g w: (3.17)

Lemma 3.1.3. Let X;* and B} be as in Theorem 3.1.2. Consider any vectog 2 RY. Assume
that b and _ are bounded by some constant€ uniformly in t and x, and let M be an upper
bound ofjgj. Then, there existsK = K (C;M) > 0 such that, for all W 2 C2([0; T] RY), we
have for all (t;x) 2 T, R,

h [

(_(tX)@) DxW(tx) E W(t+h;X™)P 3°h 'B}) (3.18)

~ hp B i
K(1+ P h)? g hj@D?Wj + hj@Dwj + h" hj@D W (3.19)
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Proof. We use the same Taylor development (3.14) oV at point (t;x) as in the proof of
Theorem 3.1.2. The terms

E W(tx)P 3°%h 'Bf) ;
@wW : .
E “gitx)P g°(h 'BR) ;

E DxW(t;x) bit;x)hP 3O 'Bf) ;

h i
are all nullasg P g°h 1B!) =0.

E wagtbx)h(t;x)Bﬁ,P 3°h 'BY)

13
lea@” A o5
= +E @ [DxW (tx)li[_(t: )] [BR] [9lk[Br ]k
5 i 3 k
_ 1 4X . . t12r41. 5
= HE [DxW (& )] (8 x)]ii [Br I Tdl
isj
= DxW(t;x) (_(t;x)Q):
h [
The other terms of E W(t + h; X )P g% !B{) coming from M2(W;t;x;h;B ) can be
bounded as in the proof of Theorem 3.1.2. This gives the result of the lemma. O

3.1.2 Monotone probabilistic schemes and convergence

We will prove the convergence of two di erent schemes here under some simple assumptions
on the PDE (3.1)-(3.2). The rst scheme presented in [2] uses a mix between second order
derivatives approximation (3.9) and the scheme of Fahim, touzi and Warin found in [25]. We
will call it large stencil probabilistic scheme The second scheme presented in [3], is a better
version of the rst scheme where the upwind rst order derivatives approximation (3.13) is
used with the second order derivatives approximation (3.9). We will call it upwind large
stencil probabilistic scheme

3.1.2.a Large stencil probabilistic scheme The scheme is very similar to the one of Fahim,
Touzi and Warin detailed in Section 2.3.3 except that we use approximation (3.9) for the
second order derivatives. As this approximation depends on the coe cient matrix by which
is multiplied the Hessian D2W, it can not be used just as an input of the Hamiltonian F
of (3.3). We need the decomposition of as a in mum of Hamiltonians which are a ne in
W, DxW and D2W. This decomposition is given by (3.4).

For each 2 A , we suppose that there exists a function :[0;T] RY! RY for> d
such that for any (t;x) 2 [0;T] R%:

@ _hex)=(_ 1T Hx): (3.20)

One may use for instance the Cholesky factorisation of the matrix ( Y(a () H)(t;x).
To ensure the existence of this Cholesky factorisation, we suppose that

a (tx) (_x);
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and _(t;x) is invertible forany 2 A and (;x) 2 [0;T] RC.
The scheme is then, with the notations introduced previously:

W6 x) = T IW N+ h )I(Ex); (x)2Th  RY

3.21
WMN(T;x):= ( x); x2RS (3.21)
with
ho - ) o
TOMICEx):= E (X)) +h inf E ( XPOh P2 gx(h 2B)
h i

t; 1;0 1

+ E (>€,1X)F>71(t;x)(b p)(t;x)()h Bl) (3.22)

+C (t;x)Eh( )’(‘ﬁx)I +f (t;x)
We now establish the conditions under which this scheme is convergent.
Lemma 3.1.4 (Consistency). Assume :
_ and b are bounded int and x;
__ | is lower bounded by a positive matrix uniformly int and x;
a ,b andc are bounded int, x uniformly in ;
the left hand element of PDE(3.3) is continuous in t and x.

Then, for 2 CX([0;T] R9Y),

fim (c+ )siy) TRpllc+ )(s+ hi)l(siy)

(sy)! (tx) h
(h;c)t (0;0)
s+h T

= (LX(x)+ F(tx; (5x);Dx (£x);D2 (x)):

Proof. In the conditions of Lemma 3.1.4, Theorem 3.1.1, Lemma 3.1.2 and Lemma 3.1.3 can
be applied. Indeed, the second condition on | implies that _ ! is bounded. So with the
others conditions, and _ (t;x)(b  b)(t;x) are bounded.

Let 2 C4([0;T] RYand(s;y)2[0;T] RYandc;h> 0small suchthats+ h T.

h i
(c+ Xsiy) Tollc+ s+ h)(siy)  (sy) E (s+hXy)
( h - h
h 1p 2 1=2 I h 1,0 1 !
H . Sy = S . sy ) S
inf E (s+ h XY )h TP 2 i (h 2BR) + E (s+ hiXpY)P * Lsy)b bsy (N TBR)
h i h i
+C (s;y)E) (s+ h; XYYy +f (s;y)+ cE h 1P 2 (sy)k(h =2gsy+ p i'ol(s;y)(b sy (N BY)

+ cC (S1Y)
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By Theorem 3.1.1 and the de nition of ,

h

i
%Tr(a _ND(s;y)DE (siy)  O(h)y E (s+ hXpH)h P2 ) (h °B})

2T @ )syDE (siy) + Ofh;

where O(h) is uniform in s, y and
In the same way, by Lemma 3.1.3,

h i
. . P . ; 1,0
(b B(siy) Dx (s5y) OC h) E (s+ hiXp")P ™5 i sy (D 'BR)
(b b(siy) Dx (s;y)+ O( h);
where O(p h) is uniform in s, y and
By Lemma 3.1.2, we have :
h i
(s5y) E (s+ hXPY)
+0(h)y LX (siy)
h h N
(siy) E (s+ hXpY)
+ O(h);

h

whereO(h) isuniformin s,yand . Asband _are boundedinsandyand 2 Cg‘([O; T] RY),
L X (s;y)= O(1). This allows us to deduce that :

h i
(s;y) O(h) E (s+hX:Y)  (siy)+ O(h):

Then asc is bounded ins, y uniformly in , we have :
h i
c(s;y) (s5y) O(h) c(siYE (s+ XPY) ¢ (sy) (s;y)+ O(h);

where in all these inequalities,O(h) is uniform in s, y and
h [
2 1=2 10 1 —
CE P ° (syk(h Bp) + P~ L(sy)(b p)(S;y)(h Bp) =0 (3.23)
and cc (s;y) = O(c) with O(c) uniform in s;y; asc is bounded. All these observations
allow us to deduce that

i (c+ )siy) Teallc+ s+ h;)i(s;y)

(h;c)! (0;0) h
s+h T

= (L* (ssy)+ F(s;y; (s:y);Dx (s;y);DZ (si))

! (LX (x)+ F(tx; (5x);Dyx (x);D2 (tx))):
(ssy)! (tx)

O]

Before giving results related to the monotonicity, we are going rst to de ne what we call
a monotone operator.
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De nition 3.1.1.  An operator T is monotone on a spaceD of functions if for any couple of
functions and in D,

) T[T T L
Lemma 3.1.5 (Monotonicity) . Assume that :
__and b are bounded int and x;
_ | is lower bounded by a positive matrix uniformly int and x;
a ,b andc are bounded int, x uniformly in ;

There exists a bounded mag :[0;T] RY! RY such that
_MEx) b B(Ex) = (5X)g (6X):

Then for k > kg to compute, there existshp such thatT‘lz;h is monotone forh  hg over the
set of bounded functionsRY9! R and there existsC; such thatTE;h is C1h-almost monotone
for all h > 0 which means that for and bounded functions inR%! R

) TRnl 1 TRal 1+ Cihsup( ) (3.24)

Proof. Let ; :RY! R be bounded such that ,h>0andk 2 N. Let g bea
bounded map [QT] RY! RY such that

_Hex)(b o b(Ex)= (Ex)g (tx):

n h i 0]
Tl IEx) = inf  E  (XPOP KN (h 2BY) +hf (5x) ;

where
X; ik; 1,0 = i)
P wekh (w)y=1+ P2 ) (w)+ hP (09 0N W)+ he (tx):
We now use the inequality :

inf d inf e inffd eg

for (d ) and (e ) , two families of real numbers indexed by the parameter . This allows
us to deduce that :

n h io

(T2l 1 TeIDEX) inf E ( )RPOP =6 (h 128}

Let C be a bound ofc and g int, x uniformly in
pwekh (w) 1 h'2Ck  (tx)!lwka hC+ P2 (W)
In the following development, we use the inequality
d? €
— +

de —; 3.25
S (3.25)
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for d;e>0and%+ %:1. Forany matrix 2 RY ,w2RY and ; > 0, we have

k Twky 5K T wk + 1

0 2 , 1
X Tl
@ LW oeasl
0 " 1 0 1
%k X Ty 4K+ .
[~ w k;jk§A+L@ k;jk§A+i
K+2 -k ke (@k+2) 2
2 ™ T) 2k 1
= 1 . + + T + .
w2 Pt 7 @k+z O )t

with ¢, > 0 as in (3.8). At the rst line, we wrote k Twk, as® k T wk, and used (3.25)
with p= g=2and d= k Twk; and e = 1. We used this operation at the third line too

[ 7w 1 [ Twj

2 2
by wriing  —=L as® L, and using inequality (3.25) with p=2k+1, q= 2+l

2k

_ LTw 2 _
d= k:jk; ande=1.

In the conditions of Lemma 3.1.5, is bounded, sois Tr( (t;x) (;x)7). Let abe a
bound of Tr(  (t;x) (t;x)T).

Taking = 2 such that h’C :kké ¢ '=1andusing that Tr(  (tx) (tx)T) a, we
obtain
N a h122Cc 2k 1
P W) 1 hC g (G2t 2
We can observe that
1= 4k+1 1
h=c k2% 1
(4k + 2) c @ k1+1) )
)T o
1
By letting Cl= @20 @ we thus have
1=2
R
Ci
C  2k+1
= — h%-+1:
Ci

Since "2C is a multiple of h@k+1) =4k+1) there exists a constantCy depending onk and a,
such that

P t;x; ;k:h (W) I—k;h =1 hC 4ki 5 Ckh(2k+1) =(4k+1)

for all w 2 RY. Let us choosek such that z2, < 1. We get that the lower bound Ly, of
P txkh " is nonnegative forh  hg for somehy > 0, which implies that T, is monotone.

Then, for h  hg, Cxh@k*D=4k+1) = COfor some constantC® > 0, which implies that
Lkh h(C+ C9 forall h> 0. This shows that T, satis es (3.24) with C; =(C+C9. O
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Remark 3.1.2. In the condition of Lemma 3.1.5, the existence of the bounded mag can
be ensured by the fact than | is uniformly lower bounded by a positive matrix.

We will need the following de nition in what follows.

De nition 3.1.2.  We say that an operatorT between any set§ and F ©of partially ordered
sets of real valued functions, which are stable by the addition of a constant function (identi ed
to a real number), is additively -subhomogeneous if

2 R; 00 2F =) T( + ) T()+ : (3.26)

Lemma 3.1.6. Assumec is upper bounded int, x uniformly in . Then, T?, is additively

h subhomogeneous over the set of bounded continuous functioR$! R, for some constant
h=1+ ChwithC 0.

Proof. Let be a bounded continuous function fromRY to R and 0. LetC Obea
constant such thatc  C. Let (t;x) 2 [0;T] RY. As:
h )

|
E P2 ok (N 7Bf) =0;

h |
10 1Rty =0
EP o pwo Br) =0
De nition 3.22, implies that TR.,.[ + ] Tp,[ [+(1+ Ch) . Hence, the result of lemma. [

Lemma 3.1.7 (Stability) . Let assumptions of Lemma 3.1.5 and Lemma 3.1.6 hold. Assume
that f is bounded int, x uniformly in  and let WM be the solution of the schem&3.21)
where is a bounded function. ThenW" is bounded, meaning that the scheme is stable.

Proof. f bounded uniformlyint, x and impliesthatthere existsC > 0 such thathE;h[O]j

Ch. The assumptions of Lemma 3.1.5 imply that there existsC; such that TE.h is C1h-almost
monotone. We can takeC; = C. As assumptions of Lemma 3.1.6 also hoId: we can also take
C such that T, is additively (1 + Ch)-subhomogeneous. Let us suppose thgWw"(t + h; )]
(t2Th)is bounded by a constantK .. Then, by the Ch-almost monotonicity

WG ) TRnIKeen]+ Ch(2K ten):
The (1 + Ch)-subhomogeneity of T E;h implies that

TonlKien]  Tepl0]+ (L + Ch)Kiep
Ch+(1+ Ch)Ksn:
Hence,

Wit ) Ch+@+3ChKish:

By symmetry, we obtain that jW"(t; )j is bounded by K; = Ch + (1 +3 Ch)Ks+pn. We
suppose also that the bound of is C. We deduce by induction that jW"j is bounded by
(L+3Ch)T""1+3Ch+ C) €&€T(1+ C+3Chy). O

Theorem 3.1.3 (Convergence) Assume that :
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a,b,c,f, are bounded int, x uniformly in and Lipschitz continuous with
respectx with a Lipschitz constant independent of and t;

_:[0;T] RY! RY 9andb:[0;T] RY! RY are continuous functions and such that

{ a | is lower bounded by a positive matrix uniformly int, x and
{ 7' is lower bounded by a positive matrix uniformly int and x;
{ band _ are bounded;

Then, the PDE (3.1)-(3.2) has a unique bounded continuous viscosity solution and the scherf®21)
converges to this solution.

Proof. The fact that the PDE (3.1)-(3.2) has a unique bounded continuous viscosity solution
comes from the rst assumption and Theorem 1.2.2 due to Barles and Jakobsen, which gives
us also the fact that the PDE (3.1)-(3.2) satis es a comparison principle in the space of
continuous bounded functions. This rst assumption with the other allow the assumptions
of Lemma 3.1.4, Lemma 3.1.5, Lemma 3.1.7 to hold. Theorem 2.1.1 due to Barles and
Souganidis allow us to conclude that the scheme de ned by (3.21) converges to the viscosity
solution of (3.1)-(3.2). O

3.1.2.b Upwind large stencil probabilistic scheme In this scheme, we use the upwind
rst order derivatives approximation (3.13) instead of the approximation of Lemma 3.1.3.
Moreover, we do not approximate W by Dt?h [W] in the Hamiltonian as Fahim, Touzi and
Warin in [25].
In the sequel, we will rst obtain a raw form of the discretized equation before writing it
in the form of a scheme. We will use the notationsX * and B}, introduced in Section 3.1.1.
Let us de ne as in the previous subsection ((3.20)) andy such that

(b b(tx)= _(tx)g (tx): (3.27)

In the PDE (3.3) where the Hamilonan F is given by (3.4), we approximate for ¢;x) 2
Th RY,

L XW(t;x)
by
h i
E W(t+hX>)  W(tx)
- :

We also approximate for 2 A, (t;x)2 Tn RY,

%Tr (@ _ )(tx)D2W(t;x)
by

1_h X\ 2 1=2 |
PE W(t+ h; X)P 2 yx(h 12BR)
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and
(b B)(t;x) DxW(t;x)

by
h _ i
E (W(t+ hXP) WEX)P § o(h 'Bf)

This gives us the following equation as an approximation of (3.3).
h i (
E W(t+hXP)  W(tx)

h

h i
1 : }
inf DB W(t+ hiX)P 2 o u(h 1B
h i
+E (W(t+ hXP) WEX)P I o (h 'Bf)
; :

+c (ExX)W(x)+ f (t;x) =0;

(3.28)
which is equivalent to :
( h . ) i
sup E W(t+h X))@+ P2 (h 2BH+ hP (. (h 'BY))
) (3.29)

h i
+ W(tX)(L+ hE Py (h 'BY)  hc (tx)) hf (tx) =0:

Let
h i
D . — 1 1pt . .
Thg (Kx):=1+ hE P 9 (I;X)(h Bp) hc (t;x);

and
Tehos (EX):=1+ P2 (o (h 7?Bi)+ hP g ,y(h 'BR):

Lemma 3.1.8. If Tr?;;B (t;x) is lower bounded by a positive constant uniformly in (which
happens ifc is lower bounded uniformly in and h is small enough), then equation(3.29)
implies that
8 h i 9
<E W(t+ hXP)TN. 5 (6X) +hf (5x)=
W (t; x) = inf '
2A . TP g (6X) ,

(3.30)

Proof. Let suppose that equation (3.29) holds. LetM (t; x) > 0 be a lower bound ofr,.'ﬁ;B (t; ).
Then for any > 0, there exists  such that :

h i
E W(t+ hXPOTN. stx) +hf (tx) WEX)TE g(6x)
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This gives us h _
|
E W(t+ hX)TN, gtx) +hf (tx)

+ W (t;
X TP g(tx) TP 5(tx) (tx)
o | P
E W(t+ hXP)T, gtx) +hf (tx)
— + W(t; x):
) TP g(tx) M (t;x) ()
By letting go to 0, we obtain that :
8 h _ [ 9
<E W(t+ hXP)TN o (Ex) + hf (tx)=
inf s
DA TP s (X) :
h . i
E W(t+ hXPOTN, g(Ex) +hf (£x)
lim 5
1o Ty s(tX)
W (t; x):

On the other hand,gor 2A _
|
0 E W(t+ hXP) T g (Ex) +hf (5x) W(EX)TE g (6X)
o .

|
E W(t+hX)TN,. 5 (Ex) +hf (tx)

) W(t;x)
TP o (t:x
h “”Bt.( : i 9
<SE W(t+ hXP)TN. 5 (EX) +hf (Ex)=
) W(t;x) inf 5 o
2A - Ty s (tX) ;
Hence the result of the lemma. O

Lemma 3.1.9. |If ThD;;B (t;x) is lower bounded by a positive constant and upper bounded
uniformly in  (which happens ifg and ¢ are bounded), then equation(3.29) is equivalent
to (3.30).

Proof. The implication (3.29) ) (3.30) has been proved in the previous lemma.
We now suppose that equation (3.30) holds and]'ht;’;B (t;x)  M(t;x) > 0. Let N(t;x)
be an upper bound ofTﬁ;B (t;x). Then for any > O there exists such that :
[
E W(t+ hXP)TN, gtx) +hf (tx)
TP g(tx)

W(t;x)+ :

This givr?s us i
E W+ hXP)T, stx) +hf (tx) WEX)TY gEGx)+ TR g(tx)
) EhW(t+ h; X TR ;B(t;x)f +hf (tx) WEX)TE g(Ex)+ N (tx)
) EhW(t+ h; X PO T ;B(t;x)l +hf (6x) WEX)TY gtx) N (tx)
) ig; nEhW(t+ h; XPOTRh 8 (t;x)I +hf (5x) W(EX)TE g (t;x)O N (t;x):
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By letting goes to 0, we then obtain

n h i o]
inf E W(t+ h XP)TRh s (EX) +hf (Ex) WEX)TRg (EX) O

On the other hand, for 2 A :

h i
E W(t+ hX)TN,. 5 (6x) +hf (tx)
h T (GX)
v |
) E W(t+ hXP)TN. s (Ex) +hf (Ex) WEX)TR g (6X)
h i

W (t;x)

) E W(t+ hXPOTN g (6Xx) +hf (Ex) W(EX)TRg (6x) O
n h i 0
) iQL E W(t+ hXP)TN. s (6x) +hf (6x) W(EX)TEg (Ex) O

Hence, in the conditions of the lemma, equation (3.30) implies (3.29). Hence, the result of
the lemma. O

Now, let us consider the following scheme :

Wt x) = T WPt + h; )I(6X); (6x)2 T RY

WR(Tix):=( %); x2 R (331
where
8 h [ 9
. . <E (XP)The (6x) +hf (6x)=
TicnlI( tx) = 'ng : T (%) : (3.32)
We are going to give the conditions under which this scheme is convergent.
Lemma 3.1.10 (Consistency). Assume that :
_and b are uniformly bounded int and x;
__ | is lower bounded by a positive matrix uniformly int and x;
a,b andc are bounded int, x uniformly in ;
the left hand part of PDE (3.3) is continuous;
Then, the scheme(3.31) is consistent with PDE (3.3).
Proof. In the conditions of the lemma, 1 is bounded, so i . C is also bounded. Then

by Lemma 3.1.9, the scheme (3.31) is equivalent to the discretized equation (3.30) which is
equivalent to equation (3.28). Moreover, Theorem 3.1.1, Theorem 3.1.2 and Lemma 3.1.2 can
be applied.
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By using these results and letting S(h; t;x; W (t;x); W(t + h; )) be the left hand side of
equation (3.28) for W 2 C}([0;T] RY), we have :

S(h;s;y; W(s;y)+ c;W(s+ h; )+ ¢) = I(_ XW(s;y)+ O(h)
nl ST @ D(syDIW(SY) + o)
“(b BEX) D)+ O B+ € (HOW(E)
+f (tx)+ c (tx)c ;
for (s;y) 2 [O;T] RY such that s+ h T. We can notice that c disapear everywhere
inithe expression of S(h;s;y; W(s;y) + ¢;W(s + h; ) + c) except as a factor ofc (t;x) as

EP* oKD 7B}) =0.
As ¢ is bounded uniformly in t;x; , ¢ (t;x)c= O(c). So:

I. h “v'W(s: +cW + h +
(h;c)l!m(O;O)S( S YW(s;y) + ¢;W(s+ h; )+ ¢)

= LXW(siy) F(siyiW(siy):DxW(s;y); DIW(s:y))

! L XW(t;x) F(tx;W (t;x); DyW (t;x); D2W (t; x));
(sy)! (tx)

because of the continuity of L *W(;) F(; ;W(;);DxW(;);D2W(; )) which is an
assumption of the lemma. Hence, the consistency of the scheme (3.31) with PDE (3.3). [J

Lemma 3.1.11 (Monotonicity) . Assume that :
__ | is lower bounded by a positive matrix uniformly int and x;
__is bounded int and x;
a is bounded int and x uniformly in ;

There existskg 2 N such that for k > k 9, the scheme(3.31) is monotone.

Proof. The conditions of the lemma ensure that is bounded int, x uniformly in . Let C
be a bound of

i (tx)j?
4Kk + 2
CZ

4k +2°

Tohs (X)) 1

Let ko be such that z&5 < 1. Then for k > ko,
N . 1.,
Tk;h; B (t,X) > é > 0

Hence the monotonicity of the scheme. O
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Lemma 3.1.12. If ¢ is bounded int and x uniformly in , then there existshg > 0 such
that for h < ho, T, is additively nh-subhomogeneous over the set of bounded continuous

functions Rdh! R for some =1+ Chwith C 0.
i

Proof. ASE P2 . (h '?B}) =0, for abounded function from R?to Rand > 0,

we have )
SR ! : #2
<E ( )eh’ )TIL\;lh; B (t;X) + hf (t;X) hc (t;x) =
+ .

Tinl +  1tx) = inf + —
il (t:x) WA : TP (tx) TP g (EX) ;

As c is bounded int and x uniformly in , there existshg such that for h < h g, Tr?;s (t;x)
M > 0. In this setting, there exists C > 0 such that
c (t;x)
D .5 (tx)

hence the result of the lemma. O

Lemma 3.1.13 (Stability) . Let the assumptions of Lemma 3.1.11 and Lemma 3.1.12 hold.
Assume thatf is bounded int and x uniformly in and let Wh be the solution of the
scheme(3.31) where is a bounded function. Then there existkg 2 N and hg > 0 such that
for k > kg and h <ho, W" is bounded, meaning that the scheme is stable.

Proof. The assumptions of Lemma 3.1.12 imply that there existshg such that for h < hg,
the operator T&;h is additively (1 + Ch)-subhomogeneous folC > 0 and Thf;’;B (t;x) is lower
bounded by a positive constantM .

f(t;x)

TL [0ltx)= hinf ——1"1_
k,h[ ]( X) IQA TE;B (t,X)

fo(tx)

Asf is bounded andTP 5 is lower bounded int and x uniformly in , inf 4 o (tx)
v h;;B \©

is bounded. We can takeC also as its bound.
Let us suppose thatjWw"(t+ h; )j (t 2 Ty) is bounded by a constantK +,. By Lemma 3.1.11,
there existskg 2 N such that for k > k g, the scheme (3.31) is monotone. So fok > k g,

T&;h[ Keen] WL ) T%;h[KHh]:
By the (1 + Ch)-subhomogeneity of the operatorT ﬁ;h, we have :
Tli;h[o] T&;h[ Kt+h]+ Kt+h(l+ Ch)
)  Ch Kgun(@+Ch) Tipl Kenl,
and
TinlKeenl  Tinl0]+ Keen(1+ Ch)
) TinlKirnl  Ch+ Kirn(1+ Ch):

Hence, jW"(t; )j is bounded by Ch + K+h(1 + Ch). If C is also a bound of , then by
induction (we can also use the Gronwall Lemma), we obtain thatjw"j is bounded by (1 +
Ch)T="(1+ Ch+ C) €°T(1+ C+ Chy). O
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Theorem 3.1.4 (Convergence) Assume that :

a,b,c,f , arebounded int, x uniformly in  and Lipschitz continuous with
respectx with a Lipschitz constant independent of andt;

_:[0;T] RY! RY dandb:[0;T] RY! RYare continuous functions and such that

{a |

{ __! is lower bounded by a positive matrix uniformly int and x;
{ band _ are bounded;

Then, the PDE (3.1)-(3.2) has a unique bounded continuous viscosity solution and the scherf&31)
converges to this solution.

Proof. We use Theorem 1.2.2 to obtain the existence and unicity of the viscosity solution of
PDE (3.1)-(3.2). The convergence of the scheme (3.31) is then deduced from Theorem 2.1.1
as a consequence of Lemma 3.1.10, Lemma 3.1.11, Lemma 3.1.13 and the comparison prin-
ciple of the PDE (3.1)-(3.2) in the space of bounded continuous functions obtained from
Theorem 1.2.2. O

Remark 3.1.3. We can notice that the convergence of this second probabilistic scheme re-
quires less restrictive conditions than the rst one presented in Section 3.1.2.a aa |
should not necessarily be lower bounded by a positive matrix uniformly ity x and , but is
just required to be nonnegative.

3.1.3 Error estimates of probabilistic schemes
We now use Theorem 2.1.2 to obtain error estimates of each scheme presented in the previous
subsection. For that, we will need a few lemma to be able to apply Theorem 2.1.2.

3.1.3.a Large stencil probabilistic scheme We start by the large stencil probabilistic scheme.

Lemma 3.1.14. Under the conditions of Lemma 3.1.5, there exists; 0, hg > 0 such
that if h ho, W V are continuous and bounded functions onT;, RY, and (t) =
e T U@+ BT t))+ cfora;b;c O, then:

sthitx;r + (1);[W+ J(t+h;)) SYhmtxnV (t+h )+ b2 cinTp R
where

ro TRall(tx)

1kt ve —
sithitx;r; )= - ,

(3.33)

(tx)2Th RY r2R, bounded function onRY.

Proof. Let ;a;b;c 0, and be dened as in the lemma. LetW V be two continuous
and bounded functions onT}, RY. Under the conditions of Lemma 3.1.5,c is bounded and
there existshg > 0 such that for h < hg, T, is monotone. LetM be a bound ofc . By
using a development similar to the one of the proof of Lemma 3.1.4, we obtain that :

(t) (1+ Mh) (t+ h)

Stthitx;r + (t);[W+ J(t+h;)) SYhtx;rW (t+ h;))+ .
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For h<hyg,

Sthitx;nW (t+ h; )  SYhitx;nV (t+ h;)):

(t) @+Mh) t+h=eT Y91 @+ Mh)e ")(a+ KT t)) Mhc
+e (T t M@+ Mh)bh
For high enough (>M ),1 (1+ Mh)e "™ >0forh<hi. Sobytaking =M,

() @1+ Mh) (t+h)
h

Hence the result of the lemma. O

c b2 c

Lemma 3.1.15. Under the conditions of Theorem 3.1.3, for everyh > 0 and continuous
and bounded function on Ty RY, the function (t;x) 7! Si(h:t;x; ( t;x); (t+ h;)) is
bounded and continuous onT, RY and the functionr 7! Sl(h;t;x; r; ( t+h;)) is uniformly
continuous for boundedr, uniformly in (t;x) 2 T, RY with S? given by equation(3.33).

Proof. Let h> 0 and be a continuous and bounded function on T, RY. As T}, is nite,
to prove that (t;x) 7! SX(h:t;x; ( t;x); ( t+ h;)) is bounded and continuous onT, RS9, it
is su cient to prove that for any t2 Tp, x 7! SY(h;t;x; ( t;x); ( t+ h;)) is continuous and
bounded.

h i
(tx) E (t+hXX)
("
inf B (t+ hX7)P 2 ou(h B

Sthitx; (tx); (t+h;))=

i )

L p L0 y(h IBR)+ ¢ (X)) +f (5x)

Htx) (b b)(tx

In the conditions of Theorem 3.1.3,a (t; ), b (t; ), ¢ (t; ) and f (t; ) are bounded and
Lipschitz continuous with a Lipschitz constant uniformin t and . _and bare also continuous
and bounded and such that  (t;x) (t;x)! is lower and upper bounded by a positive matrix
uniformly in t, x and and _ 1is bounded.

P2 (t;x);k(h 1=2B}]) being the result of polynomial and fractional operations on columns

of ,itis then continuous in x uniformly in . Soisx 7! P 1;01(t;x)(b B)(tx) fort2 Th.
We then have that for t 2 Ty, the function
h i
RV = 1,0 .
XTVE (t+ hXP)(P 2 (s BRI+ P 0% po(h "BR)+ € (X))

is continuous uniformly in  as is continuous. It is also bounded uniformly in t, x and by
an integrable random variable. So by the dominated convergence theorem, the expectation of
this function is continuous in x uniformly in . This allows us to conclude that all the part
of ST which is in the inmum on 2 A is continuous in x uniformly in  and bounded. So
this in mum is continuous in x and bounded.
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h i
By the dominated convergence theorem, we also obtain thax 7! E ( t+ h;)@,ﬂ;x) is

continuous in x. So, for anyt 2 Ty, x 7! SY(h;t;x; ( t;x); ( t + h;)) is continuous and
bounded.

From the expression ofS1, we can see thatr 7! Sl(h; t;x;r; ( t+h;))is an ane function
with the coe cient of r being 1=h and such that for r = 0, it is nite and bounded uniformly
in t and x. This function is then uniformly continuous, uniformly in ( t;x) 2 T, RY. O

Lemma 3.1.16. Under the conditions of Theorem 3.1.3, ifW 2 Cg ([0; T] RY) is such that

j@piwj K19 gpg2N
with 0 < 1, K> 0, then, whenh is small enough :
SHh X W (EX); W (t+ h; )+ L X W] X) + F (X W (tX); DxW (X); DIW (£ X))
E(K;h; )
forall t 2 T, and x 2 RY with
E(K:h; )= KK h 3@+ IOH)“(1+ pﬁ 14+ pﬁ la+ IOE)2(1+ pﬁ hH2 .
where K depends on bounds of, b, (b  b) and and St is given by (3.33).

Proof. We will use the elements of the proof of Theorem 3.1.1, Lemma 3.1.3 and Lemma 3.1.2.
We considerW as in the lemma.

From the proof of Theorem 3.1.1, the S'(h;t;x; W (t;x); W (t + h; )) approximates the
second order term inF uniformly with a residual error having two components. The rst
component is

p_
Kih(@+ " h)*(@D*Wij+ j@D*wj)
which, considering the conditions of Lemma 3.1.16, gives the following expression
P— P—
K.ihk@+ h* 3+ 2 2k;K@+ h*h 3%

K1 being a constant depending on the bounds of , b,
The second component is a sum of terms of the form

1P Hh+ D RSG@DW  Keh® e | Ry RG@Dow;
kaa+ Ui (Ot @
for p+ q=4. This gives us the following expression
P |

_ p_!a
ki@ P Rth e Mok PRt S PR ey

©

=K“K1(1+pﬁ)4h 3@+ h bt

So the residual error between the second order term of and its approximation in S? is
bounded by :

2K 1K (1 + |Oﬁ)“h 31+ pﬁ 14
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Using the elements of the proof of Lemma 3.1.3, we also have the rst order terms df
that are approximated in S* uniformly with a residual error being a sum of terms of the form

- P—, P - P— P—
KohP 221+ h)2(C h)@DWj Koh 21+ h)?hP( h)dk 1 2P q
for p+ g=2, and K, being a constant depending on the bounds of (b b), , b.

hp(pﬁ)qw T2 a g (h 2+ pﬁ h2
p+ =2 0
Kh Y1+ h 1?2
§9 the ergor estimate in St for the rst order term of F, is bounded by KZK“pﬁ 1+
h)?2(1+ h 12
Using the elements of the proof of Lemma 3.1.2, we have that * W is approximated in
St with a residual error having a rst component of the form :

Ks(l+ pﬁ)“h(j@DZWj +j@D'Wj + j@D°Wj+ j@D Wj + j@D*Wj)
Ka(l+ h*hk( '+ 2+ 3+ 24+ 39
p_
Ks(1+ h)%skh 3
K 3 being a constant dependent on the bounds of and b.
The second component is exactly as the second error component seen for the approxima-

tion of the second order term ofF above with K 3 instead of K 1. This gives us an error bound
approximation of L X W of

BK 3K (1 + IDH)“h 31+ °h 14

The third component which is the residual of the form K gh?(j@D*Wj + j@D°Wj) can be
bounded by
p_
2Kgh?kK 5 2Kgkh 3@+ h bH*

K¢ being a constant dependent on thebounds of and b.
The approximation of W in F by E W(t+ h;X*) in S'is then bounded by

5K 3K (1 + IDH)‘*h2 31+ °h D%+ hkL *Wk; ;
wherekL X Wk; bc,the supremum) ofjL X Wj which is Bounded byK“g+2 h=K 1(+2).
As 5K 3K (15 h)*h? 31+ h H* KyuK@+ h)*h 31+ h H*andhk 1( +

2) KsK(@+ h)*h 3@+ h 1H*for h small, we deduce the result of the lemma. [

We consider the following assumption.

A 3.1.1. Forevery > 0O, there areM 2 Nandf g%, A such that forany 2 A :

inf (] ot jb  bljo+jc  cljo+jf  f Tjo)
1 i M
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Theorem 3.1.5. Under the conditions of Theorem 3.1.3 and considering Assumption A 3.1.1,
if W is the solution of the scheme(3.21) and W is the solution of (3.1)- (3.2), then there
exists Cy; C, functions of jWj1 (j j1 being de ned in Section 0.1), such that, for all (t;x) 2

Th RY,

C:h¥10 (wh w)(t;x) Coh'™:

Under the conditions of Theorem 3.1.3, the assumption 3.1.1 can be veried ifA is
compact.

Proof. Using Lemma 3.1.14, Lemma 3.1.15, Lemma 3.1.16, we can see that under the condi-
tions of Theorem 3.1.3 and with the assumption A 3.1.1, all the assumptions needed to apply
Theorem 2.1.2 of Barles and Jakobsen are veri ed.

Indeed, by taking = h'™ in the min expression of the upper bound of the result of
Theorem 2.1.2 and = h310 in the lower bound, we obtain the bounds given above.
This gives us the result of the Theorem. O

The bounds we obtain in this case are the same as in Corollary 2.1.1 giving the error
bounds estimates for nite di erence schemes.

3.1.3.b Upwind large stencil probabilistic scheme We are going to obtain in the same
way as above, error estimates for the second probabilistic scheme. We will consid&ras the
operator de ned by :

n h

[ 0
shitxin ()= pswp B (RP)T s (66) +MRg (630 hF (6X)

This operator has already been used in the proof of Lemma 3.1.10.

Lemma 3.1.17. Under the conditions of Lemma 3.1.11 and Lemma 3.1.12, there exists
X 0, hg > 0 such that if h hg, W V are functions continuous and bounded on
Thn RY and (t)= e (T Y@+ T t))+ cfora;b;c O, then :

S(hit;x;r + (t); W+ J(t+h;)) ShtxrV (+h )+b2 cinTp, R

Proof. Let ;a;b;c 0, and be dened as in the lemma. LetW V be two continuous
and bounded functions onT;, R%and (t;x) 2 T, RY.

S(h;t,x;r + (t);W+ ](t+ h;))
n h

1
= sup =

i
LE W+ h XPO)TN 8 (EX) + %rThE?;B (t;x)
2A

(0}
)+ 2t ME T 1) + (OTR g (1)

From the expressions off2 5 (t;x) and T, 5 (t;x) and using the factthat (t)  (t+h) > 0,
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h i
EP 91 o (N 1B{) 0andjc jis bounded byM,
h i
(t+hE s (6X) + OT2 G)=( () (t+h) 1+E P (h 'BY)
c (t;x)h (1)
(@) (t+h) c(tx)h (1)
e Da+pT tHA e ™ hM)
+e (T U Mph Mhc:

By taking > M , there existshg such that forh<hgo, 1 e ™ hM > 0. We then have:

S(h;t;X;r + (t);[W + ](t+ h; )) S(h;t;X; rnw (t+ h; ))
+e T UMy Mc
S(h;t;x;rV (t+ h;))
+ b2 Mc;

by Lemma 3.1.11. Hence we obtain the result of the lemma for = M. O

Lemma 3.1.18. Under the conditions of Theorem 3.1.3 which are stronger than the con-
ditions of Theorem 3.1.4, for every h and continuous and bounded function on T, R9Y,
the function (t;x) 7! S(h:t;x; ( t;x); ( t+ h;)) is bounded and continuous oriT;, RY and
the function r 7! S(h;t;x;r; ( t+ h;)) is uniformly continuous for boundedr, uniformly in
(tx)2Tn RO

Proof. Let be abounded continuous function on T, RY. Using the same kind of arguments
as in Lemma 3.1.15, we obtain that under conditions of Theorem 3.1.37I'|2‘h; B (t;x) and
TrP;;B (t;x) are continuous in x uniformly in and bounded for anyt 2 Ty. Then, by
using the properties of and f and the dominated convergence theorem, we conclude that
the part of S(h;t;x; ( t;x); ( t+ h;)) which is in the supremum on is continuous in x
forany t 2 Ty, uniformly in  and bounded. So, the supremum over is continuous in x
for any t 2 Ty and bounded. This allows us to conclude the continuity and boundness of
(tx) 7' S(h:t;x; (tx); (t+h;)onTh RY Ty, being discrete.

S(h;t;x;r; (t+ h;)) is the supremum of ane functions of r which are bounded for
bounded r and such that the coe cient (TrP;;B (t;x) ) of r is bounded. So it is Lipschitz
continuous with respect to r bounded, so uniformly continuous for boundedr, uniformly in
(tx)2Tn RO O

Lemma 3.1.19. Under the conditions of Theorem 3.1.4, if W 2 Cé ([0;T] RY) is such
that :
j@dbawj K129 8pg2N

with 0 < 1, K> 0, then, whenh is small enough :

S(hitx; W (6Xx); W (t+ h; )+ L X[W](tx) + F (X W (8 x); DxW (£, X); DEW (t; )
E(Kh; )
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for all t 2 T, and x 2 RY with
p_ p_ p_ p_ p_
E(K:h; )= KK h 3@+ h?*a+ h H%+ h @+ h?@+ h H? ;
where K depends on the bounds of, b, g and

Proof. We use exactly the same arguments as in the proof of Lemma 3.1.16. The only
di erence here is that W (t;x) in F(t;x; W (t;x); DxW (t;x); D2W (t;x)) is not approximated

in S(h;t;x; W (t;x); W(t + h; )) and the approximation of the rst order derivative term of
F(t; %W (t;X); DxW (t;x); D2W (t;x)) in S(h;t;x; W (t;x); W (t+ h; )) results in an additional
error (see the proof Theorem 3.1.2) which is :

p_— p—
Ke h(j@D%+j@D%) Ke hk(1+ Y
p_
Kk h 1( +1)
p_— p_— p_—
K-k h 1+ h)?@+ h H%
where Kg and K7 depend on the bounds of , band g . Hence we obtain the result of the

lemma. O

Theorem 3.1.6. Under the conditions of Theorem 3.1.3 (which are stronger than the con-
ditions of Theorem 3.1.4) and considering the assumption A 3.1.1, ifW" is the solution of
the scheme(3.31) and W is the solution of (3.1)- (3.2), then there existsCs; C, functions of
jWij1 (j j1 de ned in Section 0.1), such that, for all (t;x) 2 T, RS,

C:h¥0 (WM w)(t;x) Coh¥*:

Proof. Using Lemma 3.1.17, Lemma 3.1.18, Lemma 3.1.19, we can see that under the con-
ditions of Theorem 3.1.3 and with the assumption A 3.1.1, all the assumptions needed to

apply Theorem 2.1.2 of Barles and Jakobsen are veried. By the same arguments as for
Theorem 3.1.5, we obtain the result of the theorem. O
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3.2 Extension to PDE with unbounded coe cients

We tried to show that the upwind large stencil probabilistic scheme still converges when the
coe cients of the PDE and the terminal function have growth similar to those of a linear
quadratic optimal control PDE, but we did not succed. However, we want to present the
method and results we obtained in this attempt. We also outline a method used by Assellaou,
Bokanowksi and Zidani in [5] to obtain error estimates of a Semi-Lagrangian scheme when the
PDE has Lipschitz coe cients with linear growth and the terminal function is also Lipschitz
with a linear growth. Indeed, it allows them to obtain the same lower and upper bound of
the error, unlike Barles and Jakobsen. Their method relies then on the Lipschitz character
not only of the viscosity solution of the PDE but also of the approximated solution obtained
with their scheme.

In the following, we present the method and the results that we obtained when trying
to show the convergence of the upwind large stencil probabilistic scheme when the PDE
coe cients and terminal functions are unbounded and satisfy some conditions (alike linear
quadratic optimal control problems conditions).

Let us consider the PDE (3.1)-(3.2) with the following conditions on the coe cients :

A 3.2.1. There exists positive constantsC; ;C 1; Cp; Cjp such that :
A is unbounded;
c =0
The function (t;x; ) 7! b (t;x) is continuous and forx;y 2 RY, t 2 [0;:T], 2 A,
jb (x) b (ty)j Cix i (3.34a)
jb (tEx)j  CA+jxj+] j) (3.34b)
The function (t;x; ) 7! f (t;x) is continuous and forx 2 RY, t 2 [0;T], 2 A,
5] PHootx ) fo(Ex) CL+xjP+ ] ) with o(tx; ) Cijxj® C
jfx) f (Ey)] CQA+jxj+jyj+] jix i

where C; > 2(C2*1) o6 &80T ()
There exists which does not depend on such thata = | and 2 C([0;T]

RY:RY 9) and for everyt 2 [0;T], x;y 2 RY,
j (tx)j C (3.35a)
Jx)  (wy) Cjx i (3.35b)
2 C(R%:R) and for x;y 2 RY,

JOXI Cal+ jx2);
JOX) (Wi Cip(L+ jxj?+ jyj?)ix i
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We can notice that from Corollary 1.2.1 and Lemma 1.2.2, the PDE (3.1)-(3.2) has a
unigue continuous viscosity solution in the space of functions with quadratic growth in this
setting.

We rst give error estimates for the approximations (3.9) and (3.13) in this setting.

We consider the spaceCqua([0; T] RY) of C! functions on [0;T] RY with quadratic
growth in x such that forany p2 N, g 2 and 2 Cgua, we have with the notations of
Section 3.1 :

j@p® (x)j Cpo (1+jxj?) (3.36)
i@Dt (tx)j Cpr 1+ jx)) (3.37)
j@DY (t;x)j Cpg; : (3.38)

We hereby, de ne the constantsCrs. for ;s 2 Nand 2 Cqua([0;T] RY).

Theorem 3.2.1. Let X as in (3.6), and denoteB{ = Bi+n B:. Consider any matrix

2 RY  with ° d and any integerk 2 N. Assume thatb and _ are such that there
exists a constantC uniform in t and x such thatjb(t;x)j] C(1+ jxj) andj j C, and
let M be an upper bound of T j. Then, there existsK = K (C;M) > 0 such that, for all
W 2 Cqua([0; T]  RY), we have, for all(t;x) 2 T, RY,

h i
h E W(t+ hX @+ h)P 2, (h 2B)jX(t)= x

%Tr(i(t; x) T _T(t;x)D2W(t;x))

h
p— .
K@+ h)*2+jxj*) h(Cizw + Cozw + Coaw)+
p— p_ i
h" hCygw + h?Caaw + h* hCa1w + h3Csow

Proof. The proof is very similar to the proof of Theorem 3.1.1. We use a Taylor formula to
order 3 of W(t + h; )’(\ﬁx) at point (Hx). As seen in the proof of Tpeorem 3.1.1, by using this

Taylor formula, the terms leftin E W (t + h; X*)P 2, (h 172B)) are

ST T T (650 DIW (G X))
h [
h 'E M4W;t;xh;BL)P 2, (h ¥™2B})
and the terms coming from the product of monomials of degree 2 ing{]i (1 i d) by
P Z;k(hlzzB}]). The di erence is in the way of bounding terms in this formula, coming from

the bound of b(t; x) which is now C(1 + jxj) and the bound of the derivatives. The latter
terms are bounded by :

. p_— .
Kh(Craw + (1+ jxj)Cozw) Kh(@+ h)*2+ jxj*)(Cr2w + Cozw):

By replacing the derivatives which appear inM 4(W; t; x; h; B 1) by their bounds on the interval
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between ¢;x) and (t + h; )’(\fjx), we obtain that M #(W;t; x; h; B }]) is now bounded by :

4
IMAW;txhi B ) 5, Caow 3(L+ ixj? + Jbt X)hj® + |_(t;X)Bpj?)
h3 X o . . .
t 5 Caaw (L + jxj + jo(t;x)hj + j_(t;x)Bpj)jb(t; x)h + _(t;x)Bylij
i=1
2 X

+ hz Cozwil(tx)h+ _(6x)Brlijilb(t x)h + _(tx)Byl;j

X
+ 27 Cogmilt o+ _(6OBIIBEON+ (58]
iip
jm(Xt;X)h + _(tX)Bploi
" 714 Coawilbt;x)h+ _(5x)BRLB(GX)h + _(6X)B]]
ij;pid

jlb(t; x)h + _(tx)BRii[b(t x)h + _(tX)Bflgi :

So
h X
h 'E MAW;txhiB [P 2, (h *7B}) Ky(1+ jxjmef2 a09)(1 + p)maxi2 a0opP 1
p+g=4 D
(qgl"'jxj)"' H)qcp;q;w
Kal(L+ jxj)(L+ h)]™T2 9091 + jxj)9nP 4
p+ g=4
P—, P
(1x+ h)3C h)Cpqw
P—, P—
KL+ jxiHhP 21+ h)*( h)iChqw;
ptg=4
with K 1; K depending only onC and M . Hence the result of the theorem. O

Theorem 3.2.2. Let X[ := x+ b({t;x)h+ _(tx)(Bi+n By) and denoteB{ = Byn  By.
Consider any mapg :[0;T] RY! RYsuchthatjg (t;x)j C(1+jxj+]j j), with C uniform
in t and x. Assume thatb and _ are such thatjb(t;x)j] C(1+ jxj) andj_(t;x)j C. Then,
there exists K = K(C) > 0 such that, for all W 2 Cgua([0; T] RY), we have, for all

(tx)2Th RY, A _

i

(L(tx)g (X)) DxW(tX) E (W(t+hXP) WEx)P g (h 'Bf)

h

P . . P
K@+ h*Q+xj)@+ jxj+] ) h(Crow + Cozw *+ Cozw)
B i
+hC1;1;W +h hCZ;O;W

Proof. A Taylor formula applied to W (t + h;)@ﬁx) to order 1 at (t;x) and a development

similar to the one of the proof of Theorem 3.1.2 give that :
h ;

E (W(t+ hXX) W(Ex)P§ (h 13;)I = h(@@vtv(t;x)+ DxW (t;x)!b(t;x))E P § (h 'Bf)

+(_(t;x)g (X)) DxW(t;x)
+E MAW;t;x;h;BR)P & (h 'Bf)
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We have :
(L0 + DW(EX) BEX)E P& (h B
that is smaller than
N : :

C(1+ jxj?) h(Cyow + Corw)ig (tX)j

which is smaller than
CA+ XA+ h)@A+jxj+] j) h(Cuow + Corw):

By replacing the derivatives involved in M 2(W;t; x; h; B |) by their bounds over the interval

between ¢;x) and (t + h; )@,ﬁx), we also have

. 1 X . . .
M 2(W; t; x; h; B L)j 5 Cozwilbtx)h + _(EX)BEL(EX)h + _(6X)BL] |
iij
X
+h  Crow(1+jxj+ j(t;x)hj+ j_(tx)BLil(tx)h+ (6 Xx)B]ij

+ Sh23Co0m (1+ jxi? + JBE N2 + |_(6X)BL?)
So

K1(1+ jxjmaxfz q;Og)(1+ h)maxfz q;Oghp 1=2

E M3 W;t;x;h;BR)P ¢ (h 'B}) )
(h@+ jxi)+ ) IChqw(L+ jxj + ] j)

p+ g=2

P . -
p+ g=2 Kl((]‘-)"' ijr)>(1+ h))mxf2 499(1 + jxj)ThP 172
1+ h)%( ﬁ)qCp;q;w(1+jxg+j i)
P ivi2 hA4hP 1=2/" 1\q
gz K@+ X2+ " h)*hP =2(" h)
Cpaqw (L + jXj+] j);
where K 1; K are constants depending only onC. Hence the result of the theorem. O

Lemma 3.2.1. Let XX := x+ B(tx)h+ _(x)(Bi+n By). Assume thatb and _ are
such thatjb(t;x)j C(1+ jxj) andj_(t;x)j] C for some constantC uniform in t and x.
Then, there existsK = K (C) > 0 such that, for all W 2 Cqua([0; T] RY), we have, for all
(tx)2Tp RY,
h i
ht E W+ X)) WEx) LXw
h
K(1+ " BY*(d+ xi) N(Coaw + Criw + Caow + Comw *+ Cizw + Coaw)

p_ p_ :
+h hC1;3;W + hZ(CZ;Z;W + C2;1;W + C3;O;W) + h2 hC3;1;W + h304;0;W

Proof. We use also here for the proof a Taylor development ofV (t+ h; )’(‘ﬁx) to order 3 at (t;x)
which gives us the same result as in the proof of Theoremg.1.1. The terms which afe monomi-

als of degree 1 irh, give ushL X W in the expression ofE W(t+ h; X *) W(t;x) . Using



92 CHAPTER 3. NEW PROBABILISTIC SCHEMES

the expression ofM 4(W; t;x; h; B |) of the proof of Theorem 3.2.1,h E M4(W;t;x;h;B )
can be bounded by
K@+ jxjhh? 11+ g H)“(IO h)9Cpqw:
pt g=4
h _ [
The other terms of h 'E W(t + h;)@,ﬂ'x) W (t;x) which are not null, are bounded by the
following terms

1 . . . p_ .
(Ko+ éhlb(t; X)i9)Co2w (L+ h)Ki(L+ jxj)Co2w hK 1+ h)*1+ jxj*)Co2w
Kohjb(t; x)ji1 + jxjiCraw  hK1(1+ jxj?)Craw  hK (1 + jxj*)Craw
KOhjl + ijZjCZ;O;W hK (l + jxj4)C2;0;W

1. PN , o o P -
(Ko + chibt x)i)hi(t:X)iCosw MK (1 + M)A+ Xj*)(L+ jxi)Cozw (L + " h)*K (1+ jxj*)Cozw
1. , P o
(Ko+ Shi(tx)i)hCazw  hK @+ " h)*(1+ jxj*)Craw;
SA+ X)ZBEX)iConw K1+ Xj)h*Conw  Kh*(L+ jXj*)Conw;

1 .. .
5(1 + jxj>)h?Caow  Kh2(1+ jxj*)Caow:

whereK g; K 1; K are constants depending only at most onC. Hence the result of the Lemma.
O

We tried to show the convergence of the upwind large stencil probabilistic scheme in the
unbounded setting given by Assumption A 3.2.1 by using the improvement of the Barles and
Souganidis Theorem that we presented and proved in Section 2.1 (Theorem 2.1.3). However,
we did not get all the elements needed to prove the stability of the scheme in this setting. We
give below the di erent results that we obtained.

We consider the assumption :
A 3.2.2. _ is bounded andb has a linear growth with respect tox.

g and are de ned as in Section 3.1.2.b meaning that for T uniformly greater than
a postive matrix Mg 2 S(d) and a(t;x) T, is well de ned and bounded andg is
of linear growth in x and . We consider as functionnal spaceB2([0; T] RY) which is the
space of functions with quadratic growth in x.

The result of monotonicity of Lemma 3.1.11 still holds in this setting. However, we need
to obtain a consistency and a stability result. We will start by the consistency result. We
saw in Section 3.1.2.b that the use of the upwind large stencil probabilistic scheme results in
the following discretized equation.

S(h;t;x; W (6x);W(t+ h; ))=0; (tx)2 T, R
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where

h i
E W(t+hX>)  W(tx)
S(h;t;x; W (t;x);W(t+ h; )= h (3.39)
— i
inf %E W(t+ hXP)P 2 o (h 2B)  (3.40)
) .

|
+E (W(t+ h X)) WEX)P § o 'BR)  (3.41)
)

+c (X)W x)+ f (tx) (3.42)

Theorem 3.2.3 (Consistency result in the unbounded setting) Let :x 7! (1 + jxj%) and
W 2 Cqua([0; T] RY. If T is uniformly greater than a postive matrix My 2 S(d) and
a(t;x) T with _ and a bounded, then

rlli'mo S(h;s;y;W(s;y)+ ¢ (Y);W(s+ h; )+ c)
(S;ygli (()t;X)

= LXW(t;x) F(t;x;W(t;x);DXW(t;x);DSW(t;x));

F being the Hamiltonian given in Equation (3.3).

Proof. Let h;c > 0 small enough andy 2 RY. Using Theorem 3.2.1, Theorem 3.2.2 and
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Lemma 3.2.1, we have o

i
E W(s+ hXY)  W(s;y)
h

S(h;s;y; W(s;y)tc (y);W(s+ h; )+ c )=
. L . B i
inf B W(s+ h; XEY)P 2 yyk(h 1-23th)

h
+E (W(s+ hX5Y) W(SiV))P J sy (h 1Bh)

+ f (S y)
|
+ 7E (1+ J% 12)(P 2 (s;y);k(h 1:ZBIt1))
h i )
+ cE (IX3Y1% § Yi)P § sy (0 B
i

h
CE Ry
h (

= L XW(ty)+ OCh@+iyi) inf

h i
%Tr C ()T _TXsY)DRW(sry) + Kh(L+ jyj*)

+ _(siy)g (s y) DxW(s;y) + K (1+ jyj)(1 + iyit J)

+ f (S y)+ 7E (1+ J)e JZ)P 2 (s;y);k(h 1= th)
h i)

+cE (IX3Y5% § Yi)P § sy (h 1B
h i

+ CE IR P

K being a constant proportlonal to the constant K of Theorem 3.2.1, Theorem 3.2.2 and
Lemma 3.2.1.

j)ka];yjz :X\rs];yoeﬁ:y)l
=jyj? + h?jb(s; )i+ (BR)T (LT _)(siy)Bf,
+2(hy"b(s;y)+ y' _(s;y)Bj, + hb(s;y)" _(s;y)Bp):
From the properties of P 2 (sy)k(h 1=2B1) deduced in Corollary 3.1.3, we then have
Eh(1h+ iXVi2p 2 (S;y);k(ih 1=25h)
=hTr _ ( )'_"Xsy)
and we canhshow using same reasoning as in the proof of Theorem 3.1.2 that :
E (X3Y1? ] YIPP § (D 1Bh) i
=(h?ji(s; y)j? + 2hy" b(s; y))E P a (v »(h *BR) _
+2(y+ hbsiy) (g s+ E BHTCTSYBEP & oy h 1B})
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so that H _
|
N sy . R .
GE (X3Y% J VIP)P g (syy(h 'BR) J Ka(@+jyj®) he+ Ka(L+ jyj?)ct
N o
Ka((1+ jyj®) h+1+ jyi)q |;

K1 being proportional to the constant K introduced above. We also have
h [
E X2 jyi2 h@+ 9K

Ko proportional to K. So,

h i
o E IXPYi2 vz o1+ jyi?)Ke:
We thus have : (
S(h;siy;W(siy) + ¢ (y);W(s+ h;)+c)= L *XW(s;y) int
1 h T T . 2 . i
5 () _")Ns;y)DgW(s:y)

+_(s1y)g (siy) )DxW(s:y)+ f (siy)
+ K e hijyi; )+ K 2(c;hijyi);

with K 1 having a linear growth in  such that it converges to 0 whenc and h go to 0 for
= o and its growth coe cient with respect to goes to 0 withc and h. We also have
K 2(c; h;jyj) that converges to 0 whenc and h go to zero.

These observations with the fact thatf is strictly convex in  according to Assumption
A 3.2.1, allows us to conclude that :

lim S(h;s;y;W(siy) + ¢ (y);W(s+ hi)+c)
c 0
= L XW(sy) F(s;y;W(s;y); DxW(s;y); D2W(s;y));

with a convergence uniform ins and y for s;y bounded. Hence,
rI]i'm0 S(h;s;y; W(s;y)+ ¢ (y);W(s+ h; )+ c)
c 0
(sy)! (tx)
= L XW(tx) F(tx;W (tx); DxW (t;x); DEW (t;x)):
Hence the result of the theorem. O

For the stability, we tried to use a modi ed version of the additive - subhomogeneity
given in De nition 3.1.2.

De nition 3.2.1.  We say that an operator T de ned on functions with quadratic growth is
additively -subhomogeneous if for : x 7! 1+ jxj2, for any function with quadratic growth
and forany > 0

TC+ ) T(O)+
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We obtained the following result.

Proposition 3.2.1. Considering assumptions A 3.2.1 and A 3.2.2, the operatoﬁ' de ned
by (3.32) is additively sblbhomogeneous over the set of functions with quadratlc grovvth for
some constant , =1+ C hwith C 0.

Proof. Let be a function with quadratic growth and be de ned as in De nition 3.2.1. Let
> 0.

h i
. _ (g T s GX)( +  )XEY) + hf (t;x))
Tinl + ](t;x):mzfA D (tx)
(h "E h o)
_ E Thhg (X)) (X)) +hf (6x) E Th.g (X))@ + jX7%j3)
- Ing TP g (tX) ¥ TP g (tX)

Using the development made in the proof of Theorem 3.2.3, we have :

h [ h [ h [
E Ths X)L+ X7 =E 1+J>€“X12 +E (1+J>€“J'2)P2_ (h 7B}

+ hE (1+ XEAP S (tx)(h 1Bh)
=1+ jxj?+ h%jb(t;x)j>+ hTr ( T)(tx) +2hxT (t; x)

+hTrh(7 ( )T T)(tx)

+(1+ JXJZ)hE P g wo(h Bh) _

+ (h?jb(t; x)j? + 2hx T b(t; x))hE P g woh lBh) '

+2(x+ hb(t;x))h (_g )(t;x)+ Eh(Bh)T( T )(EX)BEP ¢ (tx)(h 1Bh)
=(1+ jxj%+ h?j(t;x)j> +2hxT b(tx))(1+ hE P g woh 1Bh))

+2(x+ h(t;x))h (_g )(t;x)+ hTr (7 ( )T )(t,x)

+hTr h(7T )(t;x)I ;

jh%ib(t x)j? +2hxT bt x)j  Kh(1+ jxj?)
K depending only on the linear growth coe cient of bin x.

H :
2(x+ hb(t;x))h (g )(Ex)+ hTr (_ ( )T,T)(t:x)I

h i
+hTr (__T)(tx)

hK (1+ h)(1 + jxj)ig (tx)j+ h;
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depending on the bounds of ( )T and 7. We thus have :

h i
E TN & (Ex)@+ X2 o
kih; ;B 5 h (1+ ijZ)(1+ Kh)+ hK (1+ h)(l +in(J)Jg (taX)J + h
Thig (6X) 1+ K" hjg (tx)]

I K L P—
1+ jx9)@+(K+ )h)+ E(“ xp@+h) h

@+ 2+ Ry

Thus the result of the proposition. O

To obtain the stability of the scheme, it would have been preferable to obtain the -
subhomogeneity of the scheme operator with a constant = (1 + Ch) for some C > 0.
As

. f (t;x)
1 — .
Tien 01 = inf, TPg (X))’

with f bounded from above and below by convex functions in plus functions in x with
quadratic growth, Tﬁ;h[O] is of quadratic growth and a proof similar to the one done in
Section 3.1.2.b would have allowed us to obtain the stability of the scheme.
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CHAPTER

New probabilistic max-plus method

We present in this chapter a new method for solving stochastic control problem that we called
a probabilistic max-plus method. It has been introduced in [1] where it was used with the
probabilistic scheme of Fahim, Touzi and Warin presented in Section 2.3.3. It has then been
applied to the schemes presented in Section 3.1.2.a and Section 3.1.2.b respectively in [2]
and [3]. The originality of the method is the use of a low number of basis functions in the
regression needed to compute the conditional expectation in a probabilistic scheme, while
keeping a good approximation of the function solution we try to approximate. In particular,
the non linearity of this function is well taken into account. The idea is that, if a probabilistic
scheme used with the method keep stable a given space of functions with low dimension, then
the method can be used with this scheme with terminal functions expressed as supremum or
in mum of these functions depending on the goal of the underlying optimal control problem.
We consider here as functionnal space with low dimension, the space of quadratic functions.

We give the theoretical results in the setting of each of the probabilistic schemes de-
scribed in Section 3.1 and then present the di erent versions of the algorithm that we have
implemented.
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4.1 Theoretical results

The originality of the method in [1] is that instead of applying a regression estimation to
compute Dt‘;h (WP(t + h;)) as proposed in [25] by Fahim, Touzi and Warin, we approximate
W" by a max-plus linear combination of basic functions (namely quadratic forms) and use the
distributivity property stated in Theorem 4.1 which generalizes Theorem 3.1 of McEneaney,
Kaise and Han [54, 44]. It also generalizes a more old result stated in Theorem 14.60 of [65]
by Rockafellar and Wets along with another result stated in Proposition 6.1 of [66] by Shapiro
and Ruszczynski. This allows us to keep a non linearity in the expression ofV" in adequation
with the non linearity of the related stochastic control problem.

In the sequel, we denoteW = RY and D the set of measurable functions fromW to R
with at most some given growth or growth rate (for instance with at most exponential growth
rate), assuming that it contains the constant functions.

Theorem 4.1. Let W = R% and D be the set of measurable functions fronw to R with at
most some given growth or growth rate (for instance with at most exponential growth rate),
containing the constant functions, and let G be a monotone additively -subhomogeneous
operator from D to R, for some constant > 0. Let (Z; A) be a measurable space, and &V
be endowed with its Borel -algebra. Let :W Z ! R be a measurable map such that for all
z2Z, (;z)is continuous and belongs td. Let v2 D be such thatv(w) = sup,,, (w;Zz).
Assume thatv is continuous and bounded. Then,

G(v) =sup G( ?)
227

where 2:W ! R; w7! (w;z(w)), and
Z =fz :W ! Z; measurable and such that? 2 Dg:

Proof. Sincev belongs toD, G(v) is well de ned. Similarly, by de nition, for all z2 Z, ?
belongs toD, so that G( ?) is well de ned.
Let > 0. By de nition of v, for all w 2 W, there existsz" 2 Z such that (w;z")

v(w) . Then, sincew®7! (w®z%) and w®7! v(w9 are continuous mapsW ! R, there

exists Y > 0 such that for all w°2 B(w; %) (the open ball centered atw with radius %),

i w8z  (w;z")j and jv(w9 v(w)j . Then, for w92 B(w; W), we have
wez")y  (w;zV) viw) 2 v(wY 3 :

As W is the countable union of compact metric spaces, there exists a sequence;|; o of
W such that W = [ oB(w;; Yi). Let us denote, foralli 0, W, = B(w;; ") and VViO:
Win([ j<i W ). De ne the function z; such that, forall i 0, zy(w% = 2", for w°2 W Since
(vvif)i o is a countable partition of W composed of Borel sets, the maz; is well de ned on
W and measurable. Since is measurable, this implies that # is also measurable. Moreover,
by the above properties and the de nition of v, we have

v(w) w)= (w;zi(w))  v(w) 3; 8w2W :

Sincev 2 D, and D is the set of measurable functions from\W to R with at most some given
growth or growth rate and containing the constant functions, we get that % has also this
growth or growth rate, which implies that 2 2 D, soz; belongs toZ.
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Since G is monotone and additively -subhomogeneous fronD to R, and > 0, we get
that
G(v) G(*) G(v 3) G((v) 3

Then
supG( %) G(v) 3
227
On the other hand, foranyz2 Z, ? v. SoG( ?) G(v). We then have

G(v) supG( %) G(v) 3
227

and since this property holds for all > 0, we obtain the equality, which shows the assertion
of the theorem. O

We will consider in the following a Hamilton-Jacobi-Bellman PDE more general than the
one seen previously (PDE (3.1)), with a control represented by a couple if; u) where m is
a discrete control andu is a control living in a continuum set. We will also suppose without
loss of generality, that the PDE coe cients do not depend on the time variable and we will
be interested in a maximization problem. The PDE we consider is the following :

Qw N (5 v ) - S T, d. T
“at H (W (t;x);DW (t;x); D“W(t;x))=0; x2R"% t2][0;T); (4.1a)
W(T;x)= ( x); x2RY% (4.1b)

where the HamiltonianH :RY R RY S(d)! R of the above control problem is de ned
as:

H (x;r;p; ):=max H ™(x;r;p;) ; (4.2a)
m2M
with
H™xnp; ):=sup H™xnp; ) ; (4.2b)
u2uU

H M np; )= S TH(al00)+ B p
+ o ()r+ 17 (x) ; (4.2¢)

ar = {]‘)', By, ', f" taking the place ofa , b, c, f of Section 3.1. It can be
seen that the modi cations made here to the initial problem (3.1)-(3.2) of Section 3.1 do not
change the validity of the results obtained in Section 3.1.

We rewrite eachH ™ (m 2 M ) in the form (3.3) where the diusion X and the Hamilto-
nian F depends now on the discrete controm. b becomesd™ and _ becomes ™.

We consider then the backward operatofT related to any probabilistic scheme encountered
previously in this document as :

Ton( () = max TRL 1(X) ; (4.32)
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with
Ten [ 1¥) = Gl (Tehix) (4.3b)
where
ShRY W RY (w) 7 ST Gw) = x+ FM0Oh+ M (x)w ; (4.3¢)
.= (Sh(x)2D if 2D : (4.3d)

For the probabilistic scheme of Fahim, Touzi and Warin ([25]), Gg},., is the operator from
D to R given by

Gp;qh;x (M= Dgh;m;x (")

*h Max G™ (%: D Shymix ()i Dittymax ()i DEnmu () (4.3e)

with

Ddimx ()= E("(Been  BY)) ;

Dimx ()= E(C(Ben  B)(™(X)") *h X(Bun BY) ;

Bt)(Bt+h Bt)l hi
h

DZumy (0= h 1 TBrn BIL"00)) 2B IO

where
G (xrp; ) = %Tr[( al(x)  _")_"eONT+(H) BN(X) pt cO)r + F(x):
Indeed, the Euler discretization XM of the di usion with generator L X™ satis es
X™(t+h)= S{X™ (O Ween W) (4.4)
We will rede ne these operators in the following subsections to adapt them to the proba-
bilistic scheme considered.

4.1.1 Method in the large stencil probabilistic scheme setting

To explain the algorithm, assume that the nal reward of the control problem can be
written as the supremum of a nite number of quadratic forms. Denote Qg = S(d) RY R
and let

a(x; z) := %XT Qx+b x+c; with z=(Q;b;9 2 Qq ; (4.5)

be the quadratic form with parameter z applied to the vector x 2 RY. Then for gr = g, we
have

W™NT;x)= ( x)= sup gr(x;z)
22771

where Z1 is a nite subset of Qg and W" is the approximated solution of the PDE (4.1)
computed using a scheme.

We rewrite eachH ™ (m 2 M) in the form (3.3) where the di usion X and the Hamil-
tonian F depends now on the discrete controm. b becomesb™ and becomes ™. The



4.1. THEORETICAL RESULTS 103

function W" can then be computed by a scheme operator de ned as the maximum over
m of the large stencil probabilistic scheme operators for Hamilton-Jacobi-Bellman equation
with H ™ as Hamiltonian. So the operatorTck’;h de ned by (3.22) in Section 3.1.2.a, can be
replaced in this setting by :

TRl1C %) = max TRn[]( tix) (4.6)

where eachT }y" is de ned by :

. h €
Teml(tx):= E (X™) +hsup E

i
suf ( %;;X;m)h lP zm(x);k(h 1:28}2)

h

i
tx;m 1;0 1pt
+E (XVP Oy o pg")(x)(h Bn)

h
+ '(x)E (>’<‘E”m)'+fl§“(x> ;

where XXM = x + B"(x)h + _™(x)B} and [ is the equivalent of  dened in Sec-
tion 3.1.2.a.
In the following, we introduce some notations. Let us consider a continuous function
:R91 R;x 7! (x)and dene

Ten J¢) = TRal 1(tx); (4.7a)
T 1) = Tl 1(6x): (4.7b)
Let G}, be the operator fromD to R given by

G?h;x (~) = Dt(?h;m;x (~)

+h sup G™ (%D hymx ()i Dingmx (N + Dty mpgw( D) (4.7¢)
with
Dlmx ()= E(T(Bisn  By) ;
Dinmx ()= E((Bren  BYC"0)T) *h *(Bun BY) &
D «()(X):=h E (Bun B)IP x«(h ?Bun By)
and :

G xnp) = (H(x)  B(X) p+ el Or + fN(X):
Then we have

TtT1[ 1(x) = G{;nh;x (~{;nh;x) ; (4.8)

with ~fh., and S}, as in (4.3d) and (4.3c).

Using the same arguments as for Lemma 3.1.5 and Lemma 3.1.6, one can obtain the
stronger property that for h  ho, all the operators Gf}., belong to the class of monotone
additively -subhomogeneous operators fronD to R if the conditions of these lemma are
satis ed. This allows us to apply Theorem 4.1 and thus have the following result.



104 CHAPTER 4. NEW PROBABILISTIC MAX-PLUS METHOD

Theorem 4.2 ([1, Theorem 2], compare with [54, Theorem 5.1]) Consider the control prob-
lem equivalent to the Hamilton-Jacobi-Bellman equation(4.1). Assume thatU = RP and
that for eachm 2 M, ' and &' are constant, &' is nonsingular, ' is a ne with respect
to (x;u), f" is quadratic with respect to (x;u) and strictly concave with respect tou, and
that is the supremum of a nite number of quadratic forms. Consider the schem&3.21),
with TR, as in (4.6) and let GJ}., be as in(4.7). Assume that_™ constant and nonsingu-
lar, " constant and nonsingular andd™ a ne. Assume that D is the set of functions with
at most quadratic growth. Assume that the operatorsz} ., belong to the class of monotone
additively -subhomogeneous operators frond to R, for some constant , = 1+ Ch with
C 0. Assume also that the value functionW" of (3.21) belongs toD and is locally Lip-
schitz continuous with respect tox. Then, for all t 2 T, there exists a setZ; and a map
g :RY Z;! R such thatforallz2 Z;, g( ;z) is a quadratic form and

wh(t; x) = sup a(x;2) : (4.9)

Moreover, the setsZ; satisfy Zi = M f z.n: W ! Zii | Borel measurable.

Theorem 4.2 uses the following property which was stated in [1, Lemma 3] without proof,
and without the upper bound assumption mentioned in it. We give here the proof of the
lemma.

Lemma 4.3 (Compare with [1, Lemma 3]). Let us consider the notations and assumptions of
Theorem 4.2. Let # be a measurable function from\W to Qg and let 6x denotes the measurable
mapW I R; w 7! q(S{}, (x;w); 2(w)), with g as in (4.5). Assume that there existsz 2 Qg
such thatg(x; 2(w))  q(x; z) for all x 2 RY, and almost allw 2 W, and that & belongs to
D, for all x 2 RY. Then, the function x 7! Gih (&) is a quadratic function that is, it can be
written as q(x;Z) for someZ 2 Qyg.

Proof. Since Sf}, is linear with respect to x, e(w) is a quadratic function of x the coe -
cients of which depend onw. Then, due to the assumptions that_™ and [ are constant
and nonsingular, we get that Dthmx (ex) with i =0;1, and thh ™ (X); (&) are quadratic

functions of x. Let Gthx (7) denotes the expression in (4.7c) without the maximization in
u. We get that G} (ex) is of the form K (x;u) + (Ax + Bu) Df . (&), where K is a
quadratic function of (x;u), strictly concave with respect to u and A and B are matrices.
This also holds if we replacezfw) by z, that is if we replace gk by Q{‘fh;x w7 (ST (x5 w); 2)
with Q(x) = o(x;z). However in that case, sinceQ is deterministic, D, .. (Qt;h;x) =
th m (Q)(X) = E(DQ(S{}, (x;Bt+n  Bt))) which is an a ne function of X, sinceDQ is a ne.

Therefore G{“hux (Qt;h;x) is a quadratic function of (x;u), strictly concave with respect to u,
S0 its maximum overu 2 U is a quadratic function of x, that we shall denote by P (x).
SinceGy},., is assumed to be monotone fronD to R, we get that G}, (&) thx (Qphix ) =
P(x) Therefore for all x 2 R% and u 2 U = RP, we obtain that K (x;u) + (Ax + Bu)
thmx (ex) = Gthx(qx) P(x). So (Ax + Bu) Dthmx (ex) is a polynomial of degree at
most 3 in the variables x1;:::;Xq;U1;:::; Uy upper bounded by a polynomial of degree at
most 2. Taking the limit when the x; andu; goto 1 , we deduce that all the monomials of
degree 3 have zero as coe cients, so thatAx + Bu) D thmx (6) is @ quadratic function of
(x u) Dthmx (ex) does not depend onu. So (Ax + Bu) Dthmx (&) is linear in u. Hence,
thx (&) is a quadratic function of (x;u), strictly concave with respect to u, which implies
that its maximum over u2 U , G{‘fh;x (&), is a quadratic function of x. O
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Proof of Theorem 4.2. Lemma 4.3 shows in particular the property that each operator T}
such that TR 1(x) = G} (Tthy ) with Gf}, as in (4.7c), sends a deterministic quadratic
form into a quadratic form. Since for any nite number of quadratic forms, there exists a
quadratic form which dominate them, the assumptions of Theorem 4.2 imply that and then
all the functions W"(t; ) are upper bounded by a quadratic form (recall that M is a nite
set). Then, applying Theorem 4.1 to the mapsW"(t; ) and using Lemma 4.3, we get the
representation formula (4.9). O

In Theorem 4.2, as in [54, 44, Theorem 5.1], the setZ; are innite for t < T . If the
Brownian process is discretized in space, the salV can be replaced by a nite subset, and
the sets Z; become nite. Nevertheless, their cardinality increases at each time step as
#Z,=# M  (# Zi+n)P where p is the cardinality of the discretization of W. Then, if all
the quadratic functions generated in this way were di erent, we would obtain that # Zg =
#M =P D @M P Dgzo )P is doubly exponential with respect to the number of time
discretization points and more than exponential with respect top. Since the Brownian process
is d-dimensional, one may need to discretize it with a numbeip of values which is exponential
in the dimension d. Hence, the computational time of the resulting method would be worst
than the one of a usual grid discretization. In [54], McEneaney, Kaise and Han proposed to
apply a pruning method at each time stept 2 Ty, to reduce the cardinality of Z;. For this,
they assume already that the function W" is represented as the supremum of the quadratic
functions parameterized by a nite set Z; of Q4. They show that pruning (that is eliminating
elements ofZ;) is optimal if one looks for a subset ofQ4 with given size representingW " as
the supremum of the corresponding quadratic functions with a minimal measure of the error.
There, the measure of the error is the maximum of the integral of the di erence of functions
with respect to any probabilistic measure onRY. Then, restricting the set of probabilistic
measures to the set of normal distributions, they propose to use LMI techniques to nd
the elements ofZ; that can be eliminated. However, whatever the numberN of quadratic
functions used at the end to representw " at each time step is, the computational time of
the pruning method is at least in the order of the cardinal of the initial set Z;. Hence, if Z;
is computed as above using a discretization of the Brownian process and the representation
of WM at time t + h already usesN quadratic forms, then #Z; = # M NP, so that it
is exponential with respect to p and can then be doubly exponential with respect to the
dimensiond.

In [1], we proposed to compute the expression of the map®/"(t; ) as a maximum of
quadratic forms by using simulations of the processeX ™. These simulations are not only
used for regression estimations of conditional expectations, which are computed there only in
the case of random quadratic forms, leading to quadratic forms, but they are also used to x
the \discretization points" x at which the optimal quadratic forms in the expression (4.9) are
computed. We will explicitly give the algorithm in Section 4.2 but rst let us make the same
analysis as above in the upwind large stencil probabilistic scheme setting.

4.1.2 Method in the upwind large stencil probabilistic scheme setting

By the same reasoning as in the previous subsection, the following version of the upwind large
stencil probabilistic scheme operatorT ., can be used to solve PDE (4.1).

Thal( %)= max TENTI( tx);
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with :
8 h tx;m N i 9
Lm cu e <E( %h’ ") Tehmup (6X) + hf I (x) = .
Tk;h[]( t;x) == sup =5 _ i
u2u - hmug (6X) ;
where :
h i
Tomus (6X) =1+ hE P gui(h *BR) - hel();
and

Tehmue (6X) =1+ P 2y 00 (h 2BL)+ hP 4y (h 'BY);
& and g' being such that :
@ _"CMHEx) =™ e MHEMDEX); (4.10)
(B B™)(tx) = _(tx)gy (6 x); (4.11)

P g and P 2, being de ned as in (3.12) and (3.8) andX;*™ = x + g"(x)h + _M(x)B}.
As in the previous subsection, we de ne some operators by considering for a continuous
function :RI!1 R;x 7! (x):

Ten[ 100 = Tienl 1&%); (4.12a)
TR 100 = TRl 16 x): (4.12b)
Let G}, be given by
Glhoxmu ()
GM . (7 = sup —xmut Z . (4.13)
t,h,X u2U Tl,?’m’u,B (X)
with
G{\;Ih;x;m;u (~) = Dto,h(‘v)"' h f&n(x)"' Dt%h;gllp(x)(‘v)"' th;h; um(x);k(’v) ; (414)
where
Dt(;)h(d)z E(7(Bt+n By)) ;
Ding (D) = E((Bisn hBt)P g(h *(Bwn By) ; ;
DZ «(D(X):=h 'E T(Bun By)P %y (h *(Bun Bu))
Then, we have :
Ttr;ﬂ[ 1(x) = Gg]h;x(j?h;x ; (4.15)

with ~fh., and S}, as in (4.3d) and (4.3c).

Using the same arguments as for Lemma 3.1.11 and Lemma 3.1.12, one can obtain the
property that for h  ho, all the operators G}, belong to the class of monotone additively
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h-subhomogeneous operators fror® to R if the conditions of these lemma are satis ed. This
allows us to apply Theorem 4.1. However, we do not have a result similar to Theorem 4.2
here as in this case, the expressiong” and g in the value of Dtlh (7) prevent the operator
thx from sending a convex random quadratic form that is upper bounded by a deterministic
quadratic form into a quadratic form.
Despite this fact, one can still obtain the following result.

Theorem 4.1.1. Let us consider the notations and assumptions of Theorem 4.2, except that
Tck’;h is replaced by the operatorT ﬁ;h. Let us use the notations and properties of(4.12)
and (4.13). Let z be a measurable function fromW to Qg and Z 2 Qg be such that
aix;z(W)) q(x;Z) for all x 2 R andw 2 W, whereq is as in (4.5). Let & be the map
W1 R; w7! q(Sgh (x;w); z(w)), Then, the function q: x 7! G, (&) is upper bounded by
a quadratic map. The same property holds for lower bounds.

Moreover, there existsC > 0, independent ofh such that if the mapz is constant, that
is deterministic, and kzk K for some norm on Qg. Then, there existsz 2 Qg such that
kz zk C(K +1)2h and

jax)  a(x;z)j C(K +1)3h%2(jxj?+1)3?; forall x 2 RY :

Proof. Let By, and B}, G}, denote respectively the operatorsTyn, T, and Gi}., de ned
in (4.7). The notations Typ, Tj and G}, will then refer to De nition (4 12). We introduce

Gihxmu and @t;h;g such that :

Gk () = max Gtnxmu (7) (4.16)
Gnxmu () = DY (DA + c'(x)h)
+h f'(x)+ B} thigm o () + Dth meyk(D) (4.17)

thg(~) = E("(Bun Byg (h '(Bwn By) :

Let z be a measurable function fromW to Qg and Z 2 Qg be such that q(x; z(w)) q(x;Z)
for all x 2 RY and w 2 W, where q is as in (4.5). Consider the map (x) = q(x;Z).

satises CK (1 + jxj?) (xX) CK(1+ jxj%) as soon askZk K. Here and belowk k
denotes a norm onQq and C is any positive constant independent ofh 1. Since G{},,

is monotone, we get thatq(x) — Gfj., (Tthy) = T¢h( )(x) and a similar result holds for a
lower bound. Due to the assumptions on the parameters of the problem, it is easy to show
that for any (deterministic) quadratic form, €7 ( ) is a quadratic form. Hence, to obtain
the two assertions of the theorem, it is su cient to show that, for any quadratic form  with
norm K, T¢R () is bounded above and below by quadratic forms, the norm of which depend

onK, 13{;‘,‘1( ) is a quadratic form such that the norm of its di erence with  is bounded by
C(K +1)2h, and that we have

ITRO)X)  BRO)X) C(K +1)3n%2(jxj2 +1) %2 forallx 2 RY :

Using that P é(w) =g w+jg (wj E(wj)+ jg E(jwj), we deduce

thxmu Q) Dtc;)h(“) Gthxmu () D h(d)"' Rthgu (x)(~)
Th;m;u;B( ) Th;m;u;B (X)

, (4.18)
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where h i
Reng ()= E (Bp)igi (iBri E(Bpi))  with By = Bun By ;

and jB|j representing the absolute value term by term ofB}..

Due to the assumptions on the coe cients and on the schemest;”;] (x;w) is ane with
respect to (x;w), (x;u) 7! '(x) is constant and nonsingular, &;u) 7! g'(x) is ane in
(x;u), and (x;u) 7! c'(x) is constant. Hence the map “{?h;x (w) is a quadratic function
of (x;w). Applying expectations with appropriate factors, we obtain that Dgh(‘{;"h;x) is a
quadratic form, such that the norm of DJ, (“H.,) (x) is bounded by CKh, and that
th;h; [P(x);k( “thix ) is a constant (in x and u) which can be bounded byCK .

Since the coordinates of} are independent and with zero expectation, we also get that
the rst order term I§th gm (Xu)( t;h;x) in (4.17) is equal to the scalar product ofg'(x), which
is ane in ( x;u), with an a ne function of x, the norm of which is bounded by CK. We
deduce that

Cinxmiu (~tr;nh;x) Dth( thx) = h(fg )+ ( xu) ; (4.19)
where is quadratic in x and u with second order derivatives inu equal to 0, with a norm
bounded by CK and that D, ("}, ) is quadratic in x, and that their norms are bounded

by CK. Taking the supremum with respect to u in the previous expression, we deduce that
Th( )= 6L (Tfhy) is quadratic in x, and that the norm of its di erence with  is bounded
by C(K +1)2h.
Sinceg™ : (x;u) 7! g'(x) has linear growth,
h [
iRemgp oo (Tthx )i C(L+ juj+ Jx)DKE T (BR)(IBH  E(iBRi) k:

Again due to the properties of T}, and B}, we get that the second factor in the former

inequality is constant and is bounded by CKh 3=,
All together, we deduce that

Gthxmu Th;x) D ( h(fm(x)+( Xu))+ CKh32(1+jUJ+jX])

Then, using CKh'?juj j uj2=2+ C?K?2h=(2), for > 0 small enough, and similarly for
jXj, and using that TFE;)m;u;B (x) 1 hcl'(x) 1=2 for h small enough, we deduce that the
right hand side of the above inequality is bounded above by a quadratic form inx, so does
the supremum with respect tou of the left hand side. SinceD h( thx ) IS @ quadratic form,

we deduce thatG{}, (Thy) = T¢h( )(x) is bounded above by a quadratic form. Moreover
the norm of this quadratic form is bounded by K + C(K +1)2h. A similar lower bound can

be obtained.
To obtain the second assertion of the lemma, we shall now use the following equation

; (4.20)

thxmu(‘) m ()= Ginxmu () G () + Ringp 0o(7)

D (v) t;h;x
Tr?;m;u;B (X) Tr?;m;u;B (X)

where
Rt;h;g{}“ (X)(j = ( Dt(?h ( ~) @{;nh;x (A.))(Tlfl?;m;u;B (X) 1) + Rt;h;g{Jn (x)( ~) :
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Using (4.19), we get that for == T}, Guhemu (7)  Gff (7) can be written in the form
h(u L(x))TQ(u L(x))whereL is ane with a norm bounded by CK and Q is a positive
de nite matrix, independent of K, so there exists > 0 such that this expression is bounded
above by hju L(x)j% Using (4.19) again, we obtain thatDSh(“) @{‘;“h;x (7) is a quadratic
form, the norm of which is bounded by C(K + 1) 2h. Moreover, ThD;m;u;B x) 1= c'(xX)h+
C hjgl'(x)j for some norm (the 1-norm) onRY and jRingm(x) ()i CKh32jgl(x)j. We
deduce that jRn.gm (x) (7] Ch?(K +1)2(1 + jxj?) + C(K +1)2h332(1 + jxj?)jgM(x)j. Then,
using that Tt%;m;u (x) 1+ ™h 1=2for h small enough, and thaty 7! y=(a+y) is increasing

with respect to y > 0, for any a > 0, we obtain

jﬁt;h;g{}‘ (x)(“)j
Tr?;m;u;B (X)

, C(K+1) h%2(1 + jxj?)jgl (X)]
1+C' hjgh(x)j
C(K +1)2h(1+ jxj)A(X;u)
1+ A(x;u)

Ch?(K +1)%(1+ jxj?)

Ch?(K +1)%(1+ jxj%) +

for any bound A(x; u) of h'¥%jg" (x)j. Sincejgl'(x)j C(K +1)(1+ jxj)+ju L(x)j, we can take
AQGU) = C(K +1) W21+ 2124 syl L(OJ+ SR forany >
0. Then, bounding above separatly the three terms of the sum i\ (x; u)=(1+ A(x; u)) by lower
bounding 1+A(x; u), and using the same upper boundA(x; u) of h¥™2kg™ (x)k in the expression
of the rst summand in (4.20), and that Gyhxmu (7) G, (D) hju L(x)j? 0, we
deduce for =2 I:

o
N
Gt;h;x;m;u (N)
TI’?m;u;B (X)
Then, taking the supremum over u, we obtain

G{?h;x (M @Enh;x () C(K +1) 3[h(1 + jsz)]3=2 :

Gl () C(K +1)°h( + jxj?)*? :

For the reverse inequality, using that Gyhyxmu (7)  6f}, (7) = 0 for u = L(x), and
applying the above bound ofﬁt;h;gm x)(7) to u= L(x), we get directly that
Gihx (D) GBIk (D) C(K +1)°[h(L+ jxj?)** :
L]

If the last inequality of Lemma 4.1.1 were true for randoan mapsz, then one may expect
to obtain Equation (4.9) of Theorem 4.2 up to an error in O(" h(1+ kxk?)372). Note that, for
this bound to be true, one would also need to show the following Lipschitz property forT;.p,
if (x)  9x) K@+ kxk?®)32forall x 2 RY, and and Chave a given quadratic growth,
then Ten ( )(X)  Ten( 9(x) (1 + Ch)K (1 + kxk?)3%2 for all x 2 RY.

4.2 Description of the algorithm and complexity

4.2.1 Description of the algorithm presented in [1]

Using the notations T¢f), and Gy, introduced in the previous section whose meaning should
be understood depending on the scheme that is used, the rst description of the max-plus
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probabilistic algorithm introduced in [1] was the following. (Some notations were introduced
in Section 3.1).

Algorithm 4.2.1.

Input: A constant giving the precision, and a5-uple N = ( Nin; Nrg; Nx; Nw; Nm) of integers
giving the sizes of the samples and the \method of samplingh,, 2 f1;:::;59 described
below. A nite subset Zt of Qq such thatj ( X) maxz2z, d(X;z)j , for aII x 2 RY, and
#Z1 M Nin, and the operatorsT/} and G{l., .

Output: The subsetsZ; of Qq, for t 2 T, [f Tg, and the approximate value functionw "N :
(Th[f Tg) RI! R.

Initialization: Let X ™(0) = X (0), for all m 2 M , where X (0) is random and independent
of the Brownian process. Consider a sample ofX (0); (Bi+n Bt)t2T,) Of size Nj, indexed
by! 2 n,, = f1;:::;Njhg, and denote, for eacht 2 T, [f Tgand! 2 ,,, XM(t;1) the
value of X ™M (t) mduced by this sample and satisfyingd ™ (t + h) := X™(t) + b™(X™(t))h +
_M(X™(1)(Bi+n  By). De ne the function WN (T; ) by WMN (T: x) = max ,27, q(x;z), for
x 2 RY, with q as in (4. 5)

Fort=T h;T 2h;:::;0apply the following 3 steps:

(1) For each ! 2y, and m 2 M, construct a sample (! 1;! 9);:::;(! Ny ! ﬂrg) of
elements of y,, N;, » Using the method described below in item named "Method ," and
using possibly the constantdNy and Ny,. Induce the sampleX ™(t;! ;) (resp. (Bixn Bi)(! iO))
fori2 y, of X™M(t) (resp. Bi+n  By). Denote by WN W the set of (Bisn  By)(! 9 for
12 Npg-

(2) ?:or each! 2 y,, andm 2 M, construct z; 2 Q4 depending on! and m as follows:

Let zn :WN ! Zyn Qg be such that, for alli 2 ,, we have

WN (¢ + h; ST (X™ (6! )i (Bien  Bo)(! D))
=g SIHX™E! );Been B! )i zen((Bien Bo)(! DY)

Extend z;;+, as a measurable map onWV. Let qxz““ be the mapW ! R; w 7! g(x+ B"(x)h+

Zt+h

_M(X)w; z+n(w)). Compute an approximation of x 7! Gfi,., (qxh ) by a linear regression
estimation on the set of quadratic forms using the sampl¢X™(t;! i); (Bixn Bi)(! i‘b), with
i 2 n,. We obtain z 2 Qq such thata(x;z.) ' Gy (gn").
(3) Denote by Z; the set of all thez; 2 Q4 obtained in this way, and de ne the function
WIN (t: ) by :
WHN (t;x) = max q(x;z) 8x 2 RY
t

Let us precise now the dierent choicesN,, of the \method of sampling” used in the
algorithm:

Method 1 : AssumeN;y = Nj, and take ! = ! iO: i fori2 n,, which means that
we take the initial sampling.

Method 2 : AssumeN; = Ny Ny, with Ny Nj,, and choose once for all 2 y;,
and m 2 M in the algorithm: a random sampling !;1; i = 1;:::;Nx among the
elements of y, and independently a random sampling! OJ j = 1 """ i Nw among
the elements of y, , then take the product of samplings, leading to Q i1 ! 1 ) for
i =1;:::;Nx andj = 1;:::;Ny. Reindexing the sampling, we obtain ( ;;! ‘5 for
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Method 3 : Do as in Method 2, but choose di erent samplings for each 2y, and
m 2 M in the algorithm, independently.

Method 4 : AssumeNy = Ny Ny and Ny = Nj; and do as in Method 2, but take
the xed sampling ! (1);1 = | instead of random sampling.

Method 5 : AssumeN, = N2 and do as in Method 2, but take the xed samplings
l'ip =1 and! (1’;1- = j instead of random samplings.

4.2.2 Complexity of the algorithm presented in [1]

Note that no computation is done at Step (3), which gives only a formula (or procedure) to be
able to compute the value function at each time stept and point x 2 RY as a function of the
setsZ;. This is what is done for instance to obtain plots. In particular, the algorithm only
stores the elements ofZ; which are elements ofQg. It is easy to see that the setsZ; of the
above algorithm satisfy #Z; M Nj, forall t 2 T, and Q4 has dimension @+1)(d+2) =2.
The memory space to store the value function at a time step is in the ordeM  Nj,  d?,
so the maximum space complexity of the algorithm isO(M  Nj, d? T=h). The number
of computations at each time step for the optimization (computation of the z. ) will be
at most in the order of (M Ni;)2 Nj, in methods 1 and 5 and at most in the order of
(M Nip)? Ny when using methods 2,3,4. Moreover, the number of computations at each
time step for the regression estimation will be at most in the order ofM  Nj, N so will
be dominated by the number of computations of the optimization step.

4.2.3 Description of the algorithm presented in [2]

A particular case of the algorithm described previously was presented in [2], where we added
the possibility of having the same operatorL X" for dierent m, in which case we choose
to simulate the processX™ only one time for each possibleL X™. Then the number of
simulations and quadratic forms decreases. To formalize this, we considered in the algorithm
the projection map which sends an elementn of M to a particular element of its equivalence

class for the equivalence relation m  mCif L X" = L X" . The algorithm is described in
the following.

Algorithm 4.2.2.  Input: A constant giving the precision, a time steph and a horizon time
T such thatT=h is an integer, a 3-uple N = ( Nijn; Nx; Ny) of integers giving the sizes of the
samples, such thatNy, Nj,, a subsetM M and a projection map :M ! M. A nite
subsetZt of Qq such thatj (x) maxz2z, q(X; z)j Jforall x2 RY, and#Zt #M Ni,.
The operators Ten, ST and G, for t 2 Tp andm 2 M, with L X" (and thus S})
depending only on (rﬁ). - '
Output: The subsetsZ; of Qq, for t 2 T, [f Tg, and the approximate value functionw"™N :
(Th[f Tg) RI! R.

Initialization: Let X™(0) = X (0), for all m 2 M, where X (0) is random and independent
of the Brownian process. Consider a sample ofX (0); (Bisn Bt)i2T,) Of sizeNj, indexed by
'2 n;, := f1;:::;Nijng, and denote, for eacht 2 Ty[f Tg,! 2 n,,,andm 2 M, )'(\m(t;! )
the value of X ™(t) induced by this sample satisfying(4.4). De ne the function W™N (T; ) by
WHMN (T; x) = max 22z, q(x;z), for x 2 RY, with g as in (4.5).

Fort=T h;T 2h;:::;0apply the following 3 steps:
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(1) Choose a random sampling i.1; i = 1;:::;Nyx among the elements of y,, and inde-
pendently a random sampling! (1)”» j =1;:::;Nyw among the elements of y,, , then take the
product of samplings, that is consider! (jj) = !i;1 and! ?i'j) =1 g;j for all i andj, leading to

(r-;! 0) for * 2 Neg = f1;:::;Nxg f 1;:::;NwO.

Induce the sampleX™(t;! +) (resp. (Bisn  By)(1 9) for ~ 2 N Of X™(t) withm2 M
(resp. Bi+h  By). Denote by WN W the set of(Brsn  Bi)(! 9 for "2 .

(2) Foreach! 2, andm 2 M, denotex; = X™M(t;! ) and constructz; 2 Qq depending
on! and m as follows:

(@) Choosezirn : WN ! Ziyn Qg such that, for all ~ 2 N, We have

WN (t+ h; ST (Xe; (Bien BO(TY))
= q S (X Been B! N zeen((Bren  Bo)(! 9)

Extend z;+n as a measurable map fromW to Qg. Let é.nx be the element ofD given by
w2 W 7! q(SE} (X W); Zt+ h(W)).

(b) Foreachm 2 M such that (m) = m, compute an approximation ofx 7! G{?h;x (Bk:h:x )
by a linear regression estimation on the set of quadratic forms using the samp{& ™ (t;! -); (Bt+n
By)(!9), with * 2 N, » and denote byz{" 2 Qq the parameter of the resulting quadratic form.

(c) Choosez; 2 Qg optimal among thez™ 2 Q4 at the point X¢, that is such thatq(xt; z;) =
Max (m)= m AXc; Z").

(3) Denote by Z; the set of all thez; 2 Q4 obtained in this way, and de ne the function
WHN (t; ) by :

WHN (t;x) = max q(x;z) 8x 2 RY
t

The same algorithm has been given in [3].

4.2.4 Complexity of the algorithm presented in [2]

The same remark about the representation ofWhN that has been done in Section 4.2.2,
still holds here. SinceZ; satisfy # Z; #M N, forall t 2 Ty, and Qq has dimension
(d+1)(d+2)=2, the memory space to store the value function at a time step is in the order of
#M Nj, d? sothe maximum space complexity of the algorithm isO# M Nj, d? T=h).
Before computing the value function, one need to store the values of all the processes, with a
memory space inO# M Nj, d T=h). Moreover, the total number of computations at each
time step is in the order of #M  Nin)?> Ny d?+# M Nin (Nx Ny d?+ Ny d°+df),
where the rst term corresponds to step (a) and the second one to step (b). Note also that
Ny can be chosen to be in the order of a polynomial ird since the regression is done on the
set of quadratic forms, so in general the second term is negligible, and it is also worth to take
#M small.



CHAPTER

Numerical Results

We present in this chapter our numerical results that we group in two parts. The rst
section present numerical results of the test of the di erent options of the new probabilistic
max-plus method described in Algorithm 4.2.1 when applied with the probabilistic scheme
of Fahim, Touzi and Warin. The second section presents numerical results of the test of
Algorithm 4.2.2 with the large stencil probabilistic scheme described in Section 3.1.2.a. In
all these tests, we are interested in nding the superhedging price of a basket option in an
uncertain correlation model. To test the new probabilistic max-plus method with the upwind
large stencil probabilistic scheme presented in Section 3.1.2.b, we looked at a problem of
dynamic optimization of a portfolio with transaction costs. However, the characteristics of
the problem (utility function) caused us important numerical problems which did not allow
us to obtain relevant results.
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5.1 Test of Algorithm 4.2.1 with the probabilistic scheme of [25]

To test our algorithm, we consider the problem of pricing and hedging an option with uncertain
volatility and two underlying processes, studied as an example in Section 3.2 of [45]. There
the method proposed is based on a regression on a process involving not only the state but
also the (discrete) control.

With the notations of Chapter 4, we consider the case whered =2, M = f in; maxd
with 1 min: max 1 ,and there is no continuum control, sou is omitted. The dynamics
of the controlled processes are given, for alin 2 M , by b™ =0, and for =( 1; ») 2 R?,

m(y= A1 0
oamz2 2 1 m?2,

with 1; 2> 0. The parameters of the overall functional payo satisfy c™ =0, f™ =0, and,
for =( 1; 2) 2 R?,

()=(1 2 K" (1 2 K

with x* =max(x;0), K; <K 5.

The two coordinates of the controlled process stay irR. , the set of positive real numbers.
To be in the conditions of Theorem 4.2, we approximate the function with a supremum of
a nite number of concave quadratic forms on a large subset oR?, typically on the subset of

suchthat 1 22 [ 100 100]. Note that since the second derivative of is 1 in some
points, it is not c-semiconvex for anyc > 0 and bounded domain, so the approximation need
to use some quadratic forms with a large negative curvature, and so the algorithm proposed
in [54] may not work. The maps ™ for m 2 M are not constant but they are linear. In this
setting, the conditions of Theorem 4.2 are not fully satis ed. However, as we are going to see,
we still obtain satisfactory results.

We take the same constants asin [45]: 1 =0:4; 2,=0:3; Ki= 5 K>=5; T =0:25,

min = 0:8; max =0:8. We x the time discretization step to h =0:01.

We rst tested our algorithm in the case where M is the singleton f ming or f max0,
which means that there is no action on the process, so that the true value function can
be computed analytically, and compared with the solution obtained by our algorithm. The
method N, = 1 gives very bad results even at timeT h. The method N, = 5 need too
much space and time even folN;, = 1000. In Table 5.1, we present for di erent values of
N = (Nin;Nrg;Nx;Nw;Nm), with Ny = 2;3;4, the norm of the error on the value function
attime t =0 and states , =50 and ; 2 [20;80]. We see that the best method is the second
one, and that Method 3 gives very bad results. This may be explained by the introduction of
a bias due to the maximization of independent random variables. Note also that the errors
for Method 2 are comparable to the standard deviations obtained in [36] by Gobet, Lemor
and Warin in the case of similar option problems with a usual regression estimation of the
value function.

In view of these results, we present in Figure 5.1 the result obtained for the control problem
tested in [45], that is with M = f nin; max9, and Nij, = 1000, Nrg = Nx Ny, Ny = 10,
Ny = 1000 and N, = 2. The result is very similar to the one presented in [45].
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Nin Nrg Nx | Nw [ Nnm €1 €1
-0.8 | 1000| 10000| 10 | 1000| 2 | 0.521| 0.173
0.8 | 1000| 10000| 10 | 1000| 2 | 0.157| 0.074
-0.8 | 1000| 1000 | 10 | 100 2 0.75 | 041
0.8 | 1000| 1000 | 10 | 100 2 0.36 | 0.11
-0.8 | 1000| 1000 | 10 | 100 3 3.48 | 1.92
0.8 | 1000| 1000 | 10 | 100 3 3.05 | 0.81
-0.8 | 100 | 1000 | 10 | 100 2 1.95 | 0.46
0.8 | 100 | 1000 | 10 | 100 2 1.81 | 0.33
-0.8 | 100 | 10000| 10 | 1000| 2 2.09 | 0.53
0.8 | 100 | 10000| 10 | 1000| 2 1.79 | 0.36
-0.8 | 100 | 1000 | 10 | 100 4 2.15 | 0.55
0.8 | 100 | 1000 | 10 | 100 4 1.80 | 0.39
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Table 5.1: Sup-norm and normalized ! norm of the error, on the value function with constant
, attime t =0, and states , =50 and 1 2 [20;80], denotede; and e; resp.

Figure 5.1: Value function obtained att =0, and , =50 as a function of 1 2 [20;80]. Here
Nw, Nx =10, Ny = 1000 and N, = 2. In blue,

Nin = 1000, Nrg = NX
to 0:8,in green

is constant equal to 08, and in black 2 f

0:8; 0:8g.

is constant equal
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5.2 Test of Algorithm 4.2.2 with the probabilistic scheme of Sec-
tion 3.1.2.a

To illustrate our algorithm, we consider the problem of evaluating the superhedging price of
an option under uncertain correlation model with several underlying stocks (the number of
which determines the dimension of the problem), with changing sign cross gamma. As we saw
in the previous section, the case with two underlying stocks was studied rst as an example in
Section 3.2 of [45], where the method proposed is based on a regression on a process involving
not only the state but also the (discrete) control. In the previous section, we presented our
algorithm tests with M = M on the same 2-dimensional example as [45]. Here we shall
consider the same example withM reduced to one element and then consider a similar one
with 5 stocks (so in dimension 5). lllustrations are obtained from aC++implementation of
Algorithm 4.2.2, which can easily be adapted to any model.

With the notations of the introduction, the problem has no continuum control, so u is
omitted, and forall m2 M , 0" =0and c™" =0= f™. So it reduces to maximize

JEx )=E[( 1)] +=x] :

The dynamics is given byd is = i is0dBjs where the B; are Brownians with uncertain cor-
relations: < dBs;dBjs >=[ g]jdswith 52 Cor, a subset of the set of positive symmetric
matrices with 1 on the diagonal. This is equivalent to the condition that

[ ™(x) "(x)"T1j = ixi jx;mj; form 2 Cor :

Here we assume thatCor is the convex hull of a nite set M . Since the Hamiltonian of the
problem is linear with respect to m, the maximum over Cor is the same as the maximum over
M , so we can assume that the correlations satisfy s 2 M . We consider the following nal

payo :

(x)= i(maxx; min xj); x 2 R%;
i odd j even
1x)=(x K" (x K", x2R;
x* = max(x; 0);

Ki1<Koj:

K K2

Since 1 is nondecreasing, we have ) 1(Xi  xj), for all i odd andj even. Then,
we can lower bound the value function in dimensiord by the application of the value function
of dimension 2 with volatilities ( j; j) and setM =f ; gwith = maxfmj;m 2 Cormg.
Indeed if we denote byvzi; ; the value function of the 2-dimensional problem with volatilities

i; j with M =f ; gand by v2, the value function of the 5-dimensional problem, then
v? cor(tX) supE[ 1(( 1)i;( 7)j) ] t= x]. Since this depends on (1);;( 7); only and that
these processes do not depend on the other coordinatest(x with k 6 i;j, we get that
Voea(tX) V2L (6 X5 XG).

Note that all the coordinates of the controlled process stay inR., the set of positive
real numbers. To be in the conditions of Theorem 4.2, we approximate the function ;
with a supremum of a nite humber of quadratic forms on a large subset ofR, typically on
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[ 100Q 1000], so that is approximated with a supremum of a nite number of quadratic
forms on thex 2 RY such that x; Xj 2 [ 100Q 1000]. Note that since the second derivative
of 1is 1 in some poaints, it is not c-semiconvex for anyc > 0 and bounded domain, so
the approximation need to use some quadratic forms with a large negative curvature, and so
we are not under the conditions of [54]. Moreover, since the state space is unbounded, one
cannot approximate as a supremum of a nite number of quadratic forms on all the state
space as assumed in Algorithm 4.2.2. However, due to stability considerations, the simulated
process stays with almost probability one in a ball around the initial point, so that one may
expect the value function to be well approximated in a bounded subset oRY. The maps ™
form 2 M are not constant but they are linear, and one can choose such that _(x) * ™(x)
is constant and b= 0, and get that the result of Theorem 4.2 still holds.

In the illustration below, we chooseK; = 5; K, =5; T =0:25, the time steph =0:01,
the volatilities 1=0:4; ,=0:3; 3=0:2; 4=0:3; 5=0:4 and the following correlations
sets:

_ _ 1 - _
M=fm= = ™2 jmp= ¢ for 2 stocks,
and 2 3
1 mip0 O 0
mp 1 00 0 .
M=fm=4 0" 010 09jmp= :mg= for 5 stocks.
S 359 J ma2 45 g
0 0 Omygs 1

In dimension 2, we chooseNy = 10, N,, = 1000 and test several values of simulation
size Nij,, and compare our results with the true solutions that can be computed analytically
when M is a singleton, see Figures 5.2 and 5.3. For =0 or = 0:4, k =0 is su cient
in Lemma 3.1.5 (indeed the nonlinearity of the PDEF =0 for =0, so there is no second
derivative to discretize), whereas for = 0:8, one need to takek = 2 to obtain the mono-
tonicity of the scheme. This may explain why a greater sampling sizéNj, is needed to obtain
the convergence for =0:8.

In dimension 5, we chooseNy = 50, Ny = 1000 and N;, = 3000, and compare our
results with a lower bound obtained from the results in dimension 2, as explained above, see
Figure 5.4. Although, the lower bound appears to be above the value function computed
from the Hamilton-Jacobi-Bellman equation in dimension 5, the di erence between the value
function and the lower bound is small and of the same amount as the di erence observed in
Figure 5.3 between the value functions computed in dimension 2 with the simulation sizes
Nin = 2000 and Nj, = 3000. This indicates that the size of the simulations Nj, = 3000 is
not enough to attain the convergence of the approximation, although the results give already
the correct shape of the value function. Such a result would be dicult to obtain with
nite di erence schemes, and at least will take much more memory space. For instance, the
computing time for one time step of a nite di erence scheme on a regular grid over [0100P
with 100 steps by coordinate is in 18° and is thus comparable with the computing time of
Algorithm 4.2.2, N2 N,, d?, with the above parameters, whereas the memory space needed
for the nite di erence scheme at each time step is similar to the computing time and is thus
much larger than the one needed in Algorithm 4.2.2 (inNj, d? = 7:510).

The computation of the value function in dimension 5 took' 19h with the C++program
compiled with \OpenMP" on a 12 core Intel(R) Xeon(R) CPU E5 2667 - 290GHz with
192Go of RAM (each time iteration taking ' 2500s). The main part of the computation time
is taken by the optimization part (a) of Algorithm 4.2.2, with a time in O(N2 N,, d?). The
bottleneck here is in the computation, for each given statex at time t + h, of the quadratic
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form which is maximal in the expression ofW™N (t+ h;x). Therefore, a better understanding

of this maximization problem is necessary in order to decrease the total computing time. This
would allow us to obtain better approximations in dimension 5 in particular, and increase the

dimension with a small cost. Such an improvement is left for further work.
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Figure 5.2: Value function in dimension 2, for
and x» = 50 as a function of x1

=0ontop,and =0:4o0n bottom, att =0,

X2. Here Nj, =1000; 2000, or 3000Nyx =10, Ny = 1000.
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Figure 5.3: Value function in dimension 2, for = 0:8, at x, = 50 as a function of x; X
obtained with Ny = 10, N,, = 1000. On top, the value is shown at each time step multiple
of 0:05 and is obtained forN;j, = 3000. On bottom, the value at time t = 0 is compared for
Nin = 1000, 2000 and 3000 and with the exact solution wherM is a singleton.
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Figure 5.4: Value function for = 0:8 in dimension 5, atXx, = X3 = X4 = X5 = 50 as a
function of x;  x». Here Nj; = 3000, Nx = 50, N,, = 1000. On top, the value is shown at
each time step multiple of @05. On bottom, the value at time t = 0 is compared with a lower
bound obtained by using the results in dimension 2.
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Figure 5.5: Value function for = 0:8 in dimension 5, atx, = X3 = X4 = X5 = 50 as a
function of x1  X2. On top, Nj, = 3000 and 5000. On bottom, Nj, = 3000, 5000 and 10000.
Ny =50, Ny = 1000. The value is computed using an optimization algorithm for computing

Zt+h.



Conclusion

We introduced new probabilistic schemes to solve Hamilton-Jacobi-Bellman equations in the
stochastic case which are monotone and can converge with less restrictions than those of
Fahim, Touzi and Warin in [25] and Guo, Zang and Zhuo in [40]. Indeed, the non linearity
of the PDE with respect to the second order derivative can be high and the only condition
is that the PDE is uniformly elliptic. We proved convergence and obtained error estimates
for PDE with bounded coe cients. What remains is to obtain same convergence results in
the case of PDE with unbounded coe cients. We think that error estimates can be obtained
using the same method as Assellaou, Bokanowski and Zidani in [5] as the solution of the
probabilistic scheme we considered for the unbounded setting is Lipschitz continuous. By
obtaining Lipschitz result on the viscosity solution of the PDE in the unbounded setting
given in Section 3.2 and then taking the same steps as in [5], convergence results and error
estimates can then be obtained. Before going this far, we have to notice that the method
of [5] allows already to improve the lower bound error estimate that we obtained with the
method of Barles and Jakobsen [7] in this manuscript for PDE with bounded coe cients. It
can also be generalized to a lot of other schemes where the solution of the scheme is Lipschitz
continuous.

The second new result of this work is the max-plus probabilistic method. We showed that
we have theoretical results which shows that the convergence of the method is justi ed at
least for one of the probabilistic scheme we presented here in the case of a linear quadratic
problem. However, a more precise result giving error estimates of the method with respect
to the number of simulations and the other algorithm variables is needed. Some numerical
tests have been performed but need to be extended to more di cult problems.

All these remarks are left for further work.
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Résumé : Les problemes de contrle stochas-
tigue optimal a horizon ni forment une classe de
problemes de contréle optimal ou interviennent des
processus stochastiques considérés sur un intervalle
de temps borné. Tout comme beaucoup de probleme
de contrdle optimal, ces problemes sont résolus
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mique qui induit une équation aux dérivées partielles
(EDP) appelée équation d'Hamilton-Jacobi-Bellman.
Les méthodes basées sur la discrétisation de I'espace
sous forme de grille, les méthodes probabilistes ou
plus récemment les méthodes max-plus peuvent alors
étre utilisées pour résoudre cette équation. Cepen-
dant, le premier type de méthode est mis en défaut
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gue de résoudre des problemes ou la non linéarité
de I'équation aux dérivées partielles par rapport a la
Hessienne n'est pas trop forte. Quant au troisieme
type de méthode, il entraine une explosion de la
complexité de la fonction valeur. Nous introduisons

dans cette these deux nouveaux schémas probabi-
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dis que l'autre peut étre appliqué aux EDP a co-
ef cients born és ou non bornés. Nous prouvons la
convergence des deux schémas probabilistes et ob-
tenons des estimées de l'erreur de convergence dans
le cas d'EDP a coef cients born és. Nous donnons
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Abstract :  Stochastic optimal control problems with
nite horizon are a class of optimal control problems
where intervene stochastic processes in a bounded
time. As many optimal control problems, they are of-
ten solved using a dynamic programming approach
which results in a second order Partial Differential
Equation (PDE) called the Hamilton-Jacobi-Bellman
equation. Grid-based methods, probabilistic methods
or more recently max-plus methods can be used then
to solve this PDE. However, the rst type of methods
default in a space of high dimension because of the
curse of dimensionality while the second type of me-
thods allowed till now to solve only problems where
the nonlinearity of the PDE with respect to the second
order derivatives is not very high. As for the third type
of method, it results in an explosion of the complexity
of the value function. We introduce two new proba-
bilistic schemes in order to enlarge the class of pro-

blems that can be solved with probabilistic methods.
One is adapted to PDE with bounded coef cients
while the other can be applied to PDE with bounded
or unbounded coef cients. We prove the convergence
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mates in the case of a PDE with bounded coef cients.
We also give some results about the behavior of the
second probabilistic scheme in the case of a PDE
with unbounded coef cients. After that, we introduce a
completely new type of method to solve stochastic op-
timal control problems with nite horizon that we call
the max-plus probabilistic method. It allows to add the
non linearity feature of max-plus methods to a proba-
bilistic method while controlling the complexity of the
value function. An application to the computation of
the optimal super replication price of an option in an
uncertain correlation model is given in a 5 dimensio-
nal space.
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