=. Simplify,

, ))), that is, 5 i,j=1 v i v j ? i ? j f

, = g = eta g1

, = d2Exp = Simplify [( d2f /. { g1-> Function

. , 212 6.2 Basic definitions and statement of the main result, p.214

. .. Fields, 216 6.3.1 Every line field can be realized as a proto-line-field, p.219

. .. Linear-euclidean-case,

.. .. , 233 6.6.1 What changes if we change the metric g, p.235

, P1 ?? ? (??, ?), F (??) = ?F (?) and G(??) = ?G(?)

, P2 ?? ? [??, 0), F (? + ?) ? F (?) = ? and G(? + ?) ? G(?) = ?

, Let ? > 0 and ? ? [??, ?) be as in Proposition 6.4.6. First consider the case where ? ? 1. The derivative (2F ? G) is then always positive, except possibly at two points in the case ? = 1. Hence 2F ? G is a bijection between [??, ?) and its image. We claim that 2F ? G (mod 2?) is a bijection between [??, ?) and [0, 2?)

, 2F ? G) (?) = 0 and 2F (?) ? G(?) = ? (mod 2?). The case ? ? (0, 1) requires a further study of 2F ? G. From Proposition 6.4.6, we know that (2F ? G) (?) has the same sign as cos(2? + ?) + ?. Let ? 0 ? [0, ?) be such that cos(2? 0 + ?) + ? = 0 and ?2 sin(2? 0 + ?) > 0, and let ? 1 ? [? 0 , ? 0 + ?) be such that cos(2? 1 + ?) + ? = 0 and ?2 sin(2? 1 + ?) < 0. Then cos(2? + ?) + ? > 0 on (? 0 , ? 1 ) and cos(2? + ?) + ? < 0 on (? 1 , ? + ? 0 ). Since (2F ? G) is ?-periodic, the case ? = 1 the set E X is made of a single line through the origin, corresponding to the two values of ? for which

, which correspond to an exceptional set E X made of two lines. Proof of Theorem 6.4.3 when X has a singularity of index ?1. In this case we have that G < 0 and F > 0 on [??, ?). So 2F ?G, as a function from [??, ?) to R is increasing and has total variation 6?. Hence there exists y ? (??, 0) such that (2F ?G)?(2F ?G)(??) is a bijection from (??, y) onto (0, 2?); it exists x ? (y, ?) such that (2F ?G)?(2F ?G)(??) is a bijection from (y, x) onto (2?, 4?); and again (2F ? G) ? (2F ? G)(??) is a bijection from (x, ?) onto (4?, 6?). Hence we have found that there are three solutions to (6.1). Since (2F ? G)(? + ?) = (2F ? G)(?) + ? (mod 2?), 2F ? G)(x), ?, (2F ? G)(?? + x)

, Linearization, blow-up and proof of Theorem 6, vol.2

, The goal of this section is to prove the topological equivalence of a hyper-hyperbolic proto-line-field at a hyperbolic singularity and its linearization. As a direct consequence

A. A. Agrachev, D. Barilari, and U. Boscain, Introduction to Riemannian and Sub-Riemannian geometry, 2016.

A. A. Agrachev, F. Boarotto, and A. Lerario, Homotopically invisible singular curves, Calc. Var. Partial Differential Equations, vol.56, issue.4, 2017.
DOI : 10.1007/s00526-017-1203-z

URL : http://arxiv.org/pdf/1603.08937

A. Agrachev, D. Barilari, and L. Rizzi, Sub-Riemannian curvature in contact geometry, Journal of Geometric Analysis, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01160901

A. A. Agrachev, G. Charlot, J. P. Gauthier, and V. M. Zakalyukin, On sub-Riemannian caustics and wave fronts for contact distributions in the three-space, J. Dynam. Control Systems, vol.6, issue.3, pp.365-395, 2000.

A. A. Agrachev and R. V. Gamkrelidze, Exponential representation of flows and a chronological enumeration, Mat. Sb, vol.639, issue.149, p.103, 1978.

A. Agrachev and J. P. Gauthier, Sub-Riemannian metrics and isoperimetric problems in the contact case, Journal of Mathematical Sciences, vol.103, issue.6, pp.639-663, 2001.

V. I. Arnold, S. M. Guse?-i-n-zade, and A. N. Varchenko, The classification of critical points, caustics and wave fronts, Translated from the Russian by Ian Porteous and Mark Reynolds, Monographs in Mathematics, vol.I, 1985.

A. A. Agrachev, Exponential mappings for contact sub-Riemannian structures, J. Dynam. Control Systems, vol.2, issue.3, pp.321-358, 1996.

V. I. Arnold, Catastrophe theory, 1992.

A. A. Agrachëv and A. V. Sarychev, Filtrations of a Lie algebra of vector fields and the nilpotent approximation of controllable systems, Dokl. Akad. Nauk SSSR, vol.295, issue.4, p.102, 1987.

A. A. Agrachev and A. V. Sarychev, Abnormal sub-Riemannian geodesics: Morse index and rigidity, Ann. Inst. H. Poincaré Anal. Non Linéaire, vol.13, issue.6, pp.635-690, 1996.
DOI : 10.1016/s0294-1449(16)30118-4

URL : https://doi.org/10.1016/s0294-1449(16)30118-4

A. A. Agrachev and Y. L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia of Mathematical Sciences, vol.87, 2004.

D. Barilari, Trace heat kernel asymptotics in 3d contact sub-riemannian geometry, Journal of Mathematical Sciences, vol.195, issue.3, p.139, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00672262

D. Barilari, U. Boscain, G. Charlot, and R. Neel, On the heat diffusion for generic riemannian and sub-riemannian structures, International Mathematics Research Notices, vol.2017, pp.4639-4672, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00879444

D. Barilari, U. Boscain, and R. W. Neel, Small-time heat kernel asymptotics at the sub-riemannian cut locus, J. Differential Geom, vol.92, issue.3, p.138
URL : https://hal.archives-ouvertes.fr/hal-00687651

D. Barilari, U. Boscain, and M. Sigalotti, Lecture notes from the IHP Trimester held at the Institut Henri Poincaré, Paris and from the CIRM Summer School "Sub-Riemannian Manifolds: From Geodesics to Hypoelliptic Diffusion, Geometry, analysis and dynamics on sub-Riemannian manifolds, vol.1, 2016.

U. Boscain, R. A. Chertovskih, J. P. Gauthier, and A. O. Remizov, Hypoelliptic diffusion and human vision: a semidiscrete new twist, SIAM J. Imaging Sci, vol.7, issue.2, p.212, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01097156

U. Boscain, G. Charlot, R. Ghezzi, and M. Sigalotti, Lipschitz classification of almost-Riemannian distances on compact oriented surfaces, J. Geom. Anal, vol.23, issue.1, p.99, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00464414

U. Boscain, J. Duplaix, J. P. Gauthier, and F. Rossi, Anthropomorphic image reconstruction via hypoelliptic diffusion, SIAM J. Control Optim, vol.50, issue.3, p.212, 2012.
DOI : 10.1137/11082405x

URL : http://arxiv.org/pdf/1006.3735

A. Bellaïche, The tangent space in sub-Riemannian geometry, SubRiemannian geometry, vol.144, pp.1-78, 1996.

D. Bennequin, Caustique mystique. Séminaire Bourbaki, vol.27, pp.19-56, 19841985.

J. W. Bruce and D. L. , On binary differential equations and umbilics, Proc. Roy. Soc. Edinburgh Sect. A, vol.111, issue.1-2, p.212, 1989.
DOI : 10.1017/s0308210500025087

M. V. Berry and J. H. Hannay, Umbilic points on gaussian random surfaces, Journal of Physics A: Mathematical and General, vol.10, issue.11, p.1809, 1977.
DOI : 10.1088/0305-4470/10/11/009

L. Robert, L. Bryant, and . Hsu, Rigidity of integral curves of rank 2 distributions, Invent. Math, vol.114, issue.2, pp.435-461, 1993.

A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, vol.125, 2007.

R. Biggs, T. Péter, and . Nagy, On sub-Riemannian and Riemannian structures on the heisenberg groups, Journal of Dynamical and Control Systems, vol.22, issue.3, p.138, 2016.

U. Boscain, R. Neel, and L. Rizzi, Intrinsic random walks and sublaplacians in sub-Riemannian geometry, Advances in Mathematics, vol.314, pp.124-184, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01122735

M. Rosa, G. Bianchini, and . Stefani, Graded approximations and controllability along a trajectory, SIAM J. Control Optim, vol.28, issue.4, pp.903-924, 1990.

J. W. Bruce and F. Tari, On binary differential equations, Nonlinearity, vol.8, issue.2, p.212, 1995.

H. William, Y. Bosking, B. Zhang, D. Schofield, and . Fitzpatrick, Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex, Journal of neuroscience, vol.17, issue.6, pp.2112-2127, 1997.

A. Cayley, On differential equations and umbilici. The London, Edinburgh, and Dublin Philosophical Magazine, Journal of Science, vol.26, issue.176, pp.373-379, 1863.
DOI : 10.1017/cbo9780511703713.032

S. Chandrasekhar, Liquid Crystals, 1992.

G. Charlot, Quasi-contact S-R metrics: normal form in R 2n , wave front and caustic in R 4, Acta Appl. Math, vol.74, issue.3, p.136, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00383021

G. Citti and A. Sarti, A cortical based model of perceptual completion in the roto-translation space, J. Math. Imaging Vision, vol.24, issue.3, p.41, 2006.

G. Darboux, Note VII, Sur la forme des lignes de courbure dans le voisinage d'un ombilic, Leçons sur la théorie générale des surfaces. Gauthier-Villars, 1896

F. Dumortier, J. Llibre, and J. C. Artés, Qualitative theory of planar differential systems, vol.92, 2006.

S. J. Decamp, G. S. Redner, A. Baskaran, M. F. Hagan, and Z. Dogic, Orientational order of motile defects in active nematics, Nat Mater, vol.14, issue.11, p.212, 2015.

M. M. Diniz, M. M. José, and . Veloso, Regions where the exponential map at regular points of sub-Riemannian manifolds is a local diffeomorphism, J. Dyn. Control Syst, vol.15, issue.1, pp.133-156, 2009.

-. H. El, . Ch, J. P. El-alaoui, I. Gauthier, and . Kupka, Small sub-Riemannian balls on R 3, J. Dynam. Control Systems, vol.2, issue.3, pp.359-421, 1996.

B. Franchi, R. Serapioni, and F. S. Cassano, Rectifiability and perimeter in the Heisenberg group, Math. Ann, vol.321, issue.3, pp.479-531, 2001.

B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents, Acta mathematica, vol.139, issue.1, pp.95-153, 1977.
DOI : 10.1007/bf02392235

URL : https://doi.org/10.1007/bf02392235

C. Golé and R. Karidi, A note on carnot geodesics in nilpotent lie groups, Journal of Dynamical and Control Systems, vol.1, issue.4, pp.535-549, 1995.

V. V. Gru?in, A certain class of hypoelliptic operators, Mat. Sb. (N.S.), vol.83, issue.125, p.99, 1970.

M. W. Hirsch, Differential topology, vol.33, p.219, 2012.

H. Hopf, The Total Curvature (Curvatura Integra) of a Closed Surface with Riemannian Metric and Poincaré's Theorem on the Singularities of Fields of Line Elements, Differential geometry in the large: seminar lectures New, vol.3, 1956.

. Springer, , vol.88, p.216, 2003.

. Walker-keener-hughen, The sub-Riemannian geometry of three-manifolds

L. Proquest, A. Arbor, and M. I. , Thesis (Ph.D.)-Duke University, vol.67, 1995.

D. H. Hubel and T. N. Wiesel, Receptive fields, binocular interaction and functional architecture in the cat's visual cortex, The Journal of physiology, vol.160, issue.1, pp.106-154, 1962.

S. Izumiya, M. Del-carmen-romero, M. A. Fuster, F. Soares-ruas, and . Tari, Differential geometry from a singularity theory viewpoint, 2016.

C. G. Jacobi, De la ligne géodésique sur un ellipsoïde et des différents usages d'une transformation analytique remarquable, Journal de mathématiques pures et appliquées, vol.6, p.219, 1841.

F. Jean, Uniform estimation of sub-Riemannian balls, J. Dynam. Control Systems, vol.7, issue.4, pp.473-500, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01010757

F. Jean, Control of nonholonomic systems: from sub-Riemannian geometry to motion planning, SpringerBriefs in Mathematics, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01137580

N. Juillet and M. Sigalotti, Pliability, or the Whitney extension theorem for curves in Carnot groups, Analysis & PDE, vol.37, issue.3, pp.1637-1661, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01285215

M. Kass and A. Witkin, Analyzing oriented patterns. Computer vision, graphics, and image processing, vol.37, pp.362-385, 1987.
DOI : 10.1016/s0734-189x(86)80033-0

E. Le-donne and G. Speight, Lusin approximation for horizontal curves in step 2 Carnot groups, Calc. Var. Partial Differential Equations, vol.55, issue.5, 2016.

A. Lerario, How many geodesics join two points on a contact sub-riemannian manifold, Journal of Symplectic Geometry, vol.15, issue.1, pp.247-305, 2017.
DOI : 10.4310/jsg.2017.v15.n1.a7

URL : https://hal.archives-ouvertes.fr/hal-01096718

G. Monge, Sur les lignes de courbure de l'ellipsoïde, Journal de l'École Polytechnique, IIème cahier, cours de Floréal, vol.3, p.219, 1796.

R. Montgomery, A tour of subriemannian geometries, their geodesics and applications. Number 91, 2006.
DOI : 10.1090/surv/091

P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math, vol.129, issue.2, pp.1-60, 1989.
DOI : 10.2307/1971484

R. Penrose, The topology of ridge systems, Annals of human genetics, vol.42, issue.4, pp.435-444, 1979.

J. Petitot, Neurogéométrie de la vision: modèles mathématiques et physiques des architectures fonctionnelles. Editions Ecole Polytechnique, vol.212, 2008.

I. R. Porteous, Geometric Differentiation, vol.89, 2001.

J. Prost, The physics of liquid crystals, Number, vol.83, 1995.

O. Pantz and K. Trabelsi, A post-treatment of the homogenization method for shape optimization, SIAM Journal on Control and Optimization, vol.47, issue.3, pp.1380-1398, 2008.

A. O. Remizov, The multidimensional Poincaré construction and singularities of lifted fields for implicit differential equations, Sovrem. Mat. Fundam. Napravl, vol.19, p.212, 2006.

L. Rifford, Sub-Riemannian geometry and optimal transport, Briefs in Mathematics, 2014.
DOI : 10.1007/978-3-319-04804-8

URL : https://hal.archives-ouvertes.fr/hal-01131787

F. Serra and C. , Some topics of geometric measure theory in carnot groups, Geometry, analysis and dynamics on sub-Riemannian manifolds, vol.1, p.96, 2016.

J. Sotomayor and C. Gutierrez, Structurally stable configurations of lines of principal curvature, Asterisque, pp.195-215, 1982.

J. Sotomayor and R. Garcia, Lines of curvature on surfaces, historical comments and recent developments, The São Paulo Journal of Mathematical Sciences, vol.2, issue.1, pp.99-143, 2008.

G. Speight, Lusin approximation and horizontal curves in Carnot groups, Rev. Mat. Iberoam, vol.32, issue.4, pp.1423-1444, 2016.
DOI : 10.4171/rmi/924

URL : http://arxiv.org/pdf/1412.2531

J. Héctor and . Sussmann, Some properties of vector field systems that are not altered by small perturbations, J. Differential Equations, vol.20, issue.2, p.126, 1976.

R. Thom, Stabilité structurelle et morphogénèse. 1972. Essai d'une théorie générale des modèles, Mathematical Physics Monograph Series

E. Trélat, Some properties of the value function and its level sets for affine control systems with quadratic cost, J. Dynam. Control Systems, vol.6, issue.4, pp.511-541, 2000.

E. Trélat, Contrôle optimal. Mathématiques Concrètes

P. Vuibert, Théorie & applications, vol.122, 2005.

S. K. Vodopyanov, Differentiability of curves in the category of Carnot manifolds, Doklady Mathematics, vol.74, issue.2, pp.686-691, 2006.

S. K. Vodop&apos;yanov, Geometry of Carnot-Carathéodory spaces and differentiability of mappings, The interaction of analysis and geometry, vol.424, pp.247-301, 2007.

S. K. Vodop&apos;yanov and I. M. Pupyshev, Whitney-type theorems on the extension of functions on Carnot groups, Sibirsk. Mat. Zh, vol.47, issue.4, pp.731-752, 2006.

Y. Wang and J. Hu, Estimating ridge topologies with high curvature for fingerprint authentication systems, IEEE International Conference on Communications, p.213, 2007.
DOI : 10.1109/icc.2007.200

URL : http://researchbank.rmit.edu.au/view/rmit:1573/n2006006559.pdf

H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc, vol.36, issue.1, pp.63-89, 1934.

Y. Wang, J. Hu, and D. Phillips, A fingerprint orientation model based on 2d fourier expansion (fomfe) and its application to singular-point detection and fingerprint indexing. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.29, issue.4, p.212, 2007.
DOI : 10.1109/tpami.2007.1003

S. Zimmerman, The Whitney extension theorem for C 1 , horizontal curves in the Heisenberg group, The Journal of Geometric Analysis, vol.28, issue.1, pp.61-83, 2018.