, nous utilisons la section transverse centrale du détecteur (80?8080?80?80 cm 2 )

. , nous rejetons les 5 premiers plans du détecteur (plan horiz.+grille+plan vert.+grille+plan horiz.) utilisés comme plans véto

, nous ne comptons pas les 8 derniers plans (deux fois horiz.+grille+vert.+grille) pour conserver une efficacité de reconstruction élevée

V. Le and . Fv-"-80?80?2980?80?8080?80?80?80?29, comme illustré sur la Figure D.2. Il est composé d'eau et de scintillateurs. Pour chaque plan de scintillateurs et pour chaque grille, nous avons 32 scintillateurs dans le volume fiduciel (plus exactement, sur une longueur totale de 120 cm, seulement 80 cm de ces scintillateurs sont dans le volume fiduciel), vol.25

W. Pauli, Liebe Radioaktive Damen und Herren

C. L. Cowan, Detection of the free neutrino : A Confirmation, Science, vol.124, pp.103-104, 1956.

G. Danby, Observation of High Energy Neutrino Reactions and the Existence of Two Kinds of Neutrinos, Phys. Rev. Lett, vol.9, pp.36-44, 1962.

K. Kodama, Observation of tau-neutrinos interactions, Phys. Lett, vol.504, pp.218-224, 2001.

E. Majorana, Teoria simmetrica dell'elettrone e del positrone, Nuovo Cimento, vol.14, 1937.

Y. Fukuda, Evidence for Oscillation of Atmospheric Neutrinos, Phys. Rev. Lett, vol.81, p.1562, 1998.

Q. R. Ahmad, Measurement of the rate of ? e ` d Ñ p ` p ` e ´ interactions produced by 8 B solar neutrinos at the Sudbury Neutrino Observatory, Phys. Rev. Lett, vol.87, p.71301, 2001.

M. Martini, Unified approach for nucleon knock-out and coherent and incoherent pion production in neutrino interactions with nuclei, Phys. Rev. C80, p.65501, 2009.
URL : https://hal.archives-ouvertes.fr/in2p3-00424236

J. Nieves, Inclusive charged-current neutrino-nucleus reactions, Phys. Rev. C83, p.45501, 2009.

K. M. Graczyk and J. T. Sobczyk, Lepton mass effects in weak charged current single pion production, Phys. Rev. D77, p.53003, 2008.

. Ch, L. M. Berger, and . Sehgal, Partially conserved axial vector current and coherent pion production by low energy neutrinos, Phys. Rev. D79, p.53003, 2009.

K. Abe, The T2K Experiment, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00609764

A. Blondel, The WAGASCI experiment at J-PARC to measure neutrino cross-sections on water, PoS, vol.2015, p.292, 2015.

B. Pontecorvo, Nuclear Capture of Mesons and the Meson Decay, Phys. Rev, vol.72, p.246, 1947.

J. Steinberger, On the Range of the Electrons in Meson Decay, Phys. Rev, vol.75, p.1136, 1949.

T. D. Lee and C. N. Yang, Question of Parity Conservation in Weak Interactions, Phys. Rev, vol.104, 1956.

C. S. Wu, Experimental test of Parity Conservation in Beta Decay, Phys. Rev, vol.105, p.1413, 1957.

A. Lesov, The Weak Force : From Fermi to Feynman, 2012.

S. L. Glashow, Partial symmetries of weak interactions, Nucl. Phys, vol.22, pp.579-588, 1961.

A. Salam and J. C. Ward, Electromagnetic and weak interactions, Phys. Lett, vol.13, pp.168-171, 1964.

S. Weinberg, A Model of Leptons, Phys. Rev. Lett, vol.19, pp.1264-66, 1967.

T. Nakano and K. Nishijima, Charge Independence for V-particles, Prog. Theor. Phys, vol.10, pp.581-582, 1953.

M. Gell-mann, The interpretation of the new particles as displaced charge multiplets, Nuovo Cimento 4, vol.2, pp.848-866, 1955.

M. Tanabashi, Review of Particle Physics. Phys. Rev. D98, p.30001, 2018.

F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Bosons, Phys. Rev. Lett, vol.13, pp.321-323, 1964.

P. W. Higgs, Spontaneous Symmetry Breakdown without Massless Bosons, Phys. Rev, vol.145, pp.1156-1163, 1966.

. , Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett, vol.716, pp.1-29, 2012.

. , Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett, vol.716, pp.30-61, 2012.

H. Yukawa, On the Interaction of Elementary Particles, Proc. Phys. Math. Soc. Japan, vol.17, p.48, 1935.

F. An, Neutrino Physics with JUNO, J. Phys, vol.43, p.30401, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01180414

P. Paganini, An introduction to the Standard Model of Particle Physics, 2018.

C. Giunti and C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics, 2007.

B. Aharmim, Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory, Phys. Rev. C88, p.25501, 2013.

K. Abe, Solar neutrino measurements in SuperKamiokande-IV, Phys. Rev. D94, p.52010, 2016.

M. G. Aartsen, Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data, Phys. Rev. D91, p.72004, 2015.

A. Gando, The KamLAND collaboration). Reactor On-Off Antineutrino Measurement with KamLAND, Phys. Rev. D88, p.33001, 2013.

F. P. An, New measurement of ? 13 via neutron capture on hydrogen at Daya Bay, Phys. Rev. D93, p.72011, 2016.

K. Abe, Measurement of neutrino and antineutrino oscillations by the T2K experiment including a new additional sample of ? e interactions at the far detector, Phys. Rev. D96, p.92006, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01669719

P. Adamson, Combined Analysis of ? µ Disappearance and ? µ Ñ ? e Appearance in MINOS Using Accelerator and Atmospheric Neutrinos, Phys. Rev. Lett, vol.112, 2014.

P. Adamson, The NOvA Collaboration). First measurement of muon-neutrino disappearance in NOvA, Phys. Rev, vol.93, p.51104, 2016.

S. P. Mikheyev, A. Yu, and . Smirnov, Resonant Amplification of ? Oscillations in Matter and Solar-Neutrino Spectroscopy, Nuovo Cimento C9, vol.17, 1986.

J. Arafune, M. Koike, and J. Sato, CP Violation and Matter Effects in Long Baseline Neutrino Oscillation Experiments, Phys. Rev, vol.56, pp.3093-3099, 1997.

K. Hagiwara, N. Okamura, and K. Senda, The earth matter effects in neutrino oscillation experiments from Tokai to Kamioka and Korea, J. High Energ. Phys, vol.09, p.82, 2011.

J. A. Formaggio and G. P. Zeller, From eV to EeV : Neutrino cross sections across energy scales, Rev. Mod. Phys, vol.84, p.1307, 2012.

S. M. Bilenky, Basics of Introduction to Feynman diagrams and Electroweak Interactions Physics. Editions Frontières, 1994.

V. Koch, Introduction to Chiral Symmetry, 1995.
DOI : 10.2172/1414767

URL : http://arxiv.org/pdf/nucl-th/9512029

M. L. Goldberger and S. B. Treiman, Form Factors in ? Decay and µ Capture, Phys. Rev, vol.111, 1958.

R. Feynman, M. Kislinger, and F. Ravndal, Current Matrix Elements from a Relativistic Quark Model, Phys. Rev. D3, vol.11, 1971.
DOI : 10.1103/physrevd.3.2706

URL : https://authors.library.caltech.edu/3555/1/FEYprd71.pdf

F. , Weak Production of Nuclear Resonances in a Relativistic Quark Model, Nuovo Cimento 18A, 1973.

D. Rein and L. M. Sehgal, Neutrino-Excitation of Baryon Resonances and Single Pion Production, Annals of Physics, vol.133, pp.79-153, 1981.
DOI : 10.1016/0003-4916(81)90242-6

K. M. Graczyk and J. T. Sobczyk, Form factors in the quark resonance model, Phys. Rev, vol.79, p.79903, 2009.
DOI : 10.1103/physrevd.77.053001

S. K. Singh, Quasielastic Neutrino Nucleus Scattering. Cours donné à l'école d'été NuSTEC, 2015.

E. J. Moniz, Nuclear Fermi Momenta from Quasielastic Electron Scattering, Phys. Rev. Lett, vol.26, p.445, 1971.
DOI : 10.1103/physrevlett.26.445

J. Zmuda, Constructing Efficient Monte Carlo Generators. Cours donné à l'école d'été VANISH, 2014.

Y. Hayato, A neutrino interaction simulation program library NEUT, Acta Phys. Polon, vol.40, pp.2477-2489, 2009.

D. Rein and L. M. Sehgal, Coherent ? 0 production in neutrino reactions, Nucl. Phys, vol.223, pp.29-44, 1983.
DOI : 10.1016/0550-3213(83)90090-1

P. De-perio, Y. Hayato, and R. Tacik, Note technique n ? 33 de la collaboration T2K, 2012.

A. Bercellie, Cross section parameters for the 2014 oscillation analysis. Note technique n ? 192 de la collaboration T2K, 2015.

P. Rodrigues, A. Bercellie, and K. Mcfarland, Tuning the NEUT resonance model. Note technique n ? 197 de la collaboration T2K, 2014.

M. Dunkman, Updated Recommendations of the 2015 NIWG Parameters. Note technique n ? 265 de la collaboration T2K, 2016.

N. , Measurements of ? ? differential yields from the surface of the T2K replica target for incoming 31 GeV/c protons with the NA61/SHINE spectrometer at the CERN SPS, Eur. Phys. J, p.617, 2016.

K. Abe, The T2K Neutrino Flux Prediction, Phys. Rev. D87, p.12001, 2013.
DOI : 10.1103/physrevd.87.012001

URL : https://hal.archives-ouvertes.fr/in2p3-00750280

K. Abe, Measurement of the single ? 0 production rate in neutral current neutrino interaction on water, Phys. Rev. D97, p.32002, 2018.

K. Abe, First measurement of the ? µ charged-current cross section on a water target without pion in the final state, Phys. Rev. D97, p.12001, 2018.

K. Abe, First measurement of the muon neutrino charged current single pion production cross section on water with the T2K near detector, Phys. Rev. D95, p.12010, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-01321555

K. Abe, Combined Analysis of Neutrino and Antineutrino Oscillations at T2K, Phys. Rev. Lett, vol.118, p.151801, 2017.
URL : https://hal.archives-ouvertes.fr/in2p3-01424849

F. Gizzarelli, Measurement of the ? µ CC0? oxygen over carbon cross-section ratio in the FGD2. Note technique n ? 305 de la collaboration T2K, 2017.

C. Bronner, Contribution à la caractérisation du faisceau de neutrinos de l'expérience T2K avec le détecteur proche INGRID, 2011.

K. Abe, Measurement of the T2K neutrino beam properties using the INGRID on-axis near detector, Nucl. Instrum. Meth, vol.694, pp.211-223, 2012.

K. Abe, Measurement of the ? µ charged current quasi-elastic cross section on carbon with the T2K on-axis neutrino beam, Phys. Rev. D91, p.112002, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01139039

K. S. Hirata, Experimental study of the atmospheric neutrino flux, Phys. Lett. B205, p.416, 1988.

Y. Fukuda, Atmospheric ? µ {? e ratio in the multi-GeV energy range, Phys. Lett, vol.335, pp.237-245, 1994.

K. S. Hirata, Observation in the Kamiokande-II detector of the neutrino burst from supernova SN1987A, Phys. Rev, vol.38, pp.448-458, 1988.

J. Hignight, Super-Kamiokande Events and Data Quality Studies for T2K Run 4. Note technique n ? 148 de la collaboration T2K (supplément), 2014.

K. Abe, Evidence for the Appearance of Atmospheric Tau Neutrinos in Super-Kamiokande, Phys. Rev. Lett, vol.110, p.181802, 2013.

M. Antonova, The Baby MIND muon spectrometer for the J-PARC T59 (WAGASCI) experiment. PoS (EPS-HEP2017), vol.508, 2017.

M. Antonova, Baby MIND : A magnetized spectrometer for the WAGASCI experiment, 2017.

U. Wikipédia, , p.5

U. Wikipédia,

, Notice technique de la société Kuraray. Plastic scintillator fibers

, Notice technique de la société Hamamatsu. MPPC, MPPC modules

B. Quilain, Measurement of the muon neutrino cross section through charged-current interactions and search for Lorentz invariance violation at the T2K experiment, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01413989

M. Licciardi and B. Quilain, Charge and time calibration of the INGRID WaterModule. Note technique n ? 361 de la collaboration T2K, 2018.

T. Koga, Measurements of the flux averaged inclusive ? µ charged current cross section on H 2 O and cross-section ratios between H 2 O, CH and Fe at on-axis, 2017.

J. Beringer, Passage of particles through matter, Chin. Phys, vol.40, p.100001, 2016.

G. , A Multidimensional unfolding method based on Bayes' theorem, Nucl. Instrum. Meth, vol.362, 1995.

C. Andreopoulos, The GENIE Neutrino Monte Carlo Generator, Nucl. Instrum. Meth, vol.614, pp.87-104, 2010.

M. Kuusela, Statistical issues in unfolding methods for high energy physics, 2012.

M. Kuusela, Introduction to Unfolding Methods. Présentation donnée au T2K Workshop on Neutrino Cross Sections, 2016.

B. Quilain and M. Licciardi, Measurement of the numu cross-section on hydrocarbon and water through the CC0? channel using the on-axis detectors, 2018.

T. Kikawa, Measurements of the flux averaged CC inclusive cross section with INGRID and Proton Module. Note technique n ? 160 de la collaboration T2K, 2013.

M. Licciardi and B. Quilain, Differential measurement of the ? µ-CC1? cross section on H 2 O and CH and of the H 2 O/CH cross-section ratio using on-axis detectors, 2018.

J. B. Birks, Scintillation from Organic Crystals : Specific Fluorescence and Relative Response to Different Radiations, Proc. Phys. Soc, vol.64, pp.874-877, 1951.

T. Kikawa, Measurement of the ? µ charged current quassi-elastic cross section with the Proton Module. Note technique n ? 181 de la collaboration T2K, 2015.

L. L. Salcedo, Computer simulation of inclusive pion nuclear reactions, Nucl. Phys, vol.484, pp.557-592, 1988.

R. Castillo and F. Sánchez, Measurement of the ? µ CC1?`CrossCC1?`CC1?`Cross Section on CH using the near detector. Note technique n ? 199 de la collaboration T2K, 2016.

C. L. Mcgivern, Cross sections for ? µ and ¯ ? µ induced pion production on hydrocarbon in the few-GeV region using MINERvA, Phys. Rev. D94, p.52005, 2016.

A. A. Aguilar-arevalo, Measurement of neutrino-induced charged-current charged pion production cross sections on mineral oil at E ? " 1 GeV, Phys. Rev. D83, p.52007, 2011.

T. Golan, J. T. Sobczyk, and J. Zmuda, NuWro : the Wroclaw Monte Carlo Generator of Neutrino Interactions, Nucl. Phys. B-Proc. Suppl, vol.449, pp.229-232, 2012.

P. A. Rodrigues, Comparing pion production models to MiniBooNE data, 2014.

A. A. Aguilar-arevalo, First measurement of the muon neutrino charged current quasielastic double differential cross section, Phys. Rev. D81, p.92005, 2010.

L. Bellantoni and P. Rubinov, Bench test of First TRIP-t prototypes