T. Fördös, K. Postava, H. Jarès, J. Pi²tora, and H. Drouhin, Mueller matrix ellipsometric study of multilayer spin-VCSEL structures with local optical anisotropy, Appl. Phys. Lett, vol.112, p.221106, 2018.

T. Fördös, H. Jarès, K. Postava, M. Seghiali, A. Garnache et al., Eigenmodes of Spin-VECSELs with local linear birefringence and gain dichroism, Phys. Rev. A, vol.96, p.43828, 2017.

T. Fördös, K. Postava, H. Jarès, and J. Pi²tora, Matrix approach for modeling of spin-polarized light-emitting diodes and lasers, J. Opt, vol.16, issue.6, p.65008, 2014.

K. Postava, T. Fördös, H. Jarès, L. Halaga£ka, H. J. Drouhin et al., Modeling of anisotropic grating structures with active dipole layers Proc. SPIE 9516, 95160O, 2015.

T. Fördös, O. šivotský, K. Postava, D. Hrabovský, J. Pi²tora et al., Ferromagnetic nanoparticular lms studied by optical and magneto-optical ellipsometry, Journal of Physics: Conference Series, vol.303, p.12041, 2011.

T. Fördös, K. Postava, and J. Pi²tora, Magneto-optical eects in nanostructures with reduced symmetry, Proc. SPIE, vol.8306, 2011.

T. Fördös,

H. Jarès,

K. Postava,

J. Pi²tora,

H. J. Drouhin, Properties of linear birefrigence of InGaAs/GaAsP semiconductor spin VECSELs: From experiment to theory and models, Magnetics and Optics Research International Symposium-MORIS 2015, 2015.

T. Fördös,

H. Jarès,

K. Postava,

J. Pi²tora,

A. Garnache and H. J. Drouhin, Eigenmodes of semiconductor spin-lasers with local linear birefringence and gain dichroism, SPIE Spintronics X, 2017.

T. Fördös,

H. Jarès,

K. Postava,

M. Drong,

J. Pi²tora,

H. J. Drouhin, Polarization and anisotropic properties of spin-VCSELs, SPIE Spintronics XI, 2018.

, Oral presentation

T. Fördös,

H. Jarès,

K. Postava,

J. Pi²tora,

H. J. Drouhin, Properties of light emission from multilayer InGaAs/GaAsP semiconductor spin-lasers and VECSELs, SPIE SPINTRONICS VIII, 2015.

K. Postava,

T. Fördös,

H. Jarès,

L. Halaga£ka,

H. J. Drouhin and ;. Pi²tora, Modeling of anisotropic grating structures with active dipole layers, Proc. SPIE 9516, Integrated Optics: Physics and Simulations II, 95160O, pp.13-16

A. , , 2015.

H. Jarès, T. Fördös, K. Postava, J. George, J. Pi²tora et al., Properties and linear birefringences of InGaAs/GaAsP semiconductor spin-vecsels: from experiments to theory and models, The 3th workshop on VECSELS, pp.17-19

. November, , 2015.

T. Fördös,

H. Jarès,

K. Postava,

J. George, J. Frougier, J. Pi²tora, and ;. Drouhin,

, multilayer InGaAs/GaAsP spin-lasers with optical birefringence, Energy, Materials and Nanotechnology: Summer Meeting, 2016.

T. Fördös,

H. Jarès,

K. Postava,

J. Pi²tora,

H. J. Drouhin, Mueller matrix ellipsometric study of multilayer spin-lasers structures with local optical anisotropy, Nano Ostrava, 2017.

M. N. Baibich, J. M. Broto, A. Fert, F. N. Van-dau, F. Petro et al.,

A. Creuzet, J. Friederich, and . Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett, vol.61, p.24722475, 1988.

G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Phys. Rev. B, vol.39, p.48284830, 1989.

F. Meier and B. Zakharchenia, Optical orientation, Modern problems in condensed matter sciences, 1984.

M. Fiederling, G. Keim, W. Reuscher, . Ossau, A. Schmidt et al., Injection and detection of a spin-polarized current in a lightemitting diode, Nature, vol.402, p.787790, 1999.

H. J. Zhu, M. Ramsteiner, H. Kostial, M. Wassermeier, H. Schönherr et al., Room-temperature spin injection from Fe into GaAs, Phys. Rev

. Lett, , vol.87, p.16601, 2001.

C. Adelmann, X. Lou, J. Strand, C. J. Palmstrøm, and P. A. Crowell, Spin injection and relaxation in ferromagnet-semiconductor heterostructures, Phys. Rev. B, vol.71, p.121301, 2005.

X. Jiang, R. Wang, R. M. Shelby, R. M. Macfarlane, S. R. Bank et al., Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100), Phys. Rev. Lett, vol.94, p.56601, 2005.

Y. Lu, V. G. Truong, P. Renucci, M. Tran, H. Jares et al., MgO thickness dependence of spin injection eciency in spin-light emitting diodes, Appl. Phys. Lett, vol.93, p.1521021521023, 2008.

S. Hovel, N. C. Gerhardt, M. R. Hofmann, F. Lo, A. Ludwig et al.,

E. Wieck, H. Schuster, W. Wende, O. Keune, K. Petracic et al., Room temperature electrical spin injection in remanence, Appl. Phys. Lett, vol.93, p.21117, 2008.

V. G. Truong, P. Binh, P. Renucci, M. Tran, Y. Lu et al., High speed pulsed electrical spin injection in spin-light emitting diode, Appl. Phys. Lett, vol.94, p.141109141109
URL : https://hal.archives-ouvertes.fr/hal-01759258

J. Zarpellon, H. Jarès, J. Frougier, C. Deranlot, J. M. George et al., Spin injection at remanence into III-V spin light-emitting diodes using (Co/Pt) ferromagnetic injectors, Phys. Rev. B, vol.86, p.205314, 2012.

A. Fert and H. Jarès, Conditions for ecient spin injection from a ferromagnetic metal into a semiconductor, Phys. Rev. B, vol.64, p.184420, 2001.

E. I. Rashba, Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem, Phys. Rev. B, vol.62, pp.16267-16270, 2000.

G. Schmidt, D. Ferrand, L. W. Molenkamp, A. T. Filip, and B. J. Van-wees, Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diusive semiconductor, Phys. Rev. B, vol.62, pp.4790-4793, 2000.

A. T. Hanbicki, O. M. Van-erve, R. Magno, G. Kioseoglou, C. H. Li et al.,

G. Jonker, R. Itskos, M. Mallory, A. Yasar, and . Petrou, Analysis of the transport process providing spin injection through an Fe/AlGaAs schottky barrier, Appl. Phys. Lett, vol.82, p.40924094, 2003.

S. H. Liang, T. T. Zhang, P. Barate, J. Frougier, M. Vidal et al., Large and robust electrical spin injection into GaAs at zero magnetic eld using an ultrathin CoFeB/MgO injector, Phys. Rev. B, vol.90, p.85310, 2014.

M. Holub and . Bhattacharya, Spin-polarized light-emitting diodes and lasers, J. Phys. D: Appl. Phys, vol.40, p.179, 2007.

J. Sinova and . Zutic, New moves of the spintronics tango, Nature Materials, vol.11, p.368371, 2012.

D. Basu, D. Saha, C. C. Wu, M. Holub, Z. Mi et al., Electrically injected InAs/GaAs quantum dot spin laser operating at 200K, Appl. Phys. Lett, vol.92, p.91119, 2008.

D. Basu, D. Saha, and P. Bhattacharya, Optical polarization modulation and gain anisotropy in an electrically injected spin laser, Phys. Rev. Lett, vol.102, p.93904, 2009.

H. Dery, Y. Song, P. Li, and I. Zutic, Silicon spin communication, Appl. Phys. Lett, vol.99, p.82502, 2011.

N. C. Gerhardt, M. Y. Li, H. Jähme, H. Höpfner, T. Ackemann et al.,

. Hofmann, Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers, Appl. Phys. Lett, vol.99, p.151107, 2011.

S. Hallstein, J. D. Berger, M. Hilpert, H. C. Schneider, W. W. Rühle et al., Manifestation of coherent spin precession in stimulated semiconductor emission dynamics, Phys. Rev. B, vol.56, pp.7076-7079, 1997.

H. Ando, T. Sogawa, and H. Gotoh, Photon-spin controlled lasing oscillation in surface-emitting lasers, Appl. Phys. Lett, vol.73, p.566568, 1998.

M. Holub, J. Shin, D. Saha, and P. Bhattacharya, Electrical spin injection and threshold reduction in a semiconductor laser, Phys. Rev. Lett, vol.98, p.146603, 2007.

J. Rudolph, S. Döhrmann, D. Hägele, M. Oestreich, and W. Stolz, Room-temperature threshold reduction in vertical-cavity surface-emitting lasers by injection of spinpolarized electrons, Appl. Phys. Lett, vol.87, p.241117, 2005.

M. Holub and B. T. Jonker, Threshold current reduction in spin-polarized lasers: role of strain and valence-band mixing, Phys. Rev. B, vol.83, p.125309, 2011.

N. Li, D. Alexandropoulos, H. Susanto, I. Henning, and M. Adams, Stability analysis of quantum-dot spin-VCSELs, Electronics, vol.5, p.83, 2016.

N. Gerhardt, S. Hovel, M. Hofmann, J. Yang, D. Reuter et al., Enhancement of spin information with vertical cavity surface emitting lasers, Electron. Lett, vol.42, p.8889, 2006.

S. Iba, S. Koh, K. Ikeda, and H. Kawaguchi, Room temperature circularly polarized lasing in an optically spin injected vertical-cavity surface-emitting laser with (110) GaAs quantum wells, Appl. Phys. Lett, vol.98, p.81113, 2011.

K. Schires, R. A. Seyab, A. Hurtado, V. Korpijärvi, M. Guina et al., Optically-pumped dilute nitride spin-VCSEL, Opt. Express, vol.20, p.35503555, 2012.

J. Frougier, G. Baili, M. Alouini, I. Sagnes, H. Jarès et al., Control of light polarization using optically spininjected vertical external cavity surface emitting lasers, Appl. Phys. Lett, vol.103, p.252402, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01142108

J. Frougier, Towards spin-LED and spin-VECSEL operation at magnetic remanence, 2014.

A. Joly, G. Baili, M. Alouini, J. George, I. Sagnes et al., Compensation of the residual linear anisotropy of phase in a vertical-externalcavity-surface-emitting laser for spin injection, Opt. Lett, vol.42, p.651654, 2017.

M. Dyakonov and V. Perel, Chapter 2-theory of optical spin orientation of electrons and nuclei in semiconductors, Modern Problems in Condensed Matter Sciences, vol.8, pp.11-71, 1984.

M. S. Miguel, Q. Feng, and J. V. Moloney, Light-polarization dynamics in surface-emitting semiconductor lasers, Phys. Rev. A, vol.52, p.17281739, 1995.

T. Fördös, H. Jarès, K. Postava, M. Seghilani, A. Garnache et al., Eigenmodes of spin vertical-cavity surface-emitting lasers with local linear birefringence and gain dichroism, Phys. Rev. A, vol.96, p.43828, 2017.

J. Yu, Y. Chen, C. Tang, C. Jiang, and X. Ye, Observation of strong anisotropic forbidden transitions in (001) InGaAs/GaAs single-quantum well by reectance-dierence spectroscopy and its behavior under uniaxial strain, Nanoscale Res. Lett, vol.6, p.210, 2011.

O. Krebs and P. Voisin, Giant optical anisotropy of semiconductor heterostructures with no common atom and the quantum-conned pockels eect, Phys. Rev

. Lett, , vol.77, p.18291832, 1996.

T. Fördös, K. Postava, H. Jarès, and J. Pi²tora, Matrix approach for modeling of emission from multilayer spin-polarized light-emitting diodes and lasers, J. Opt, vol.16, p.65008, 2014.

S. Cortez, O. Krebs, and P. Voisin, Breakdown of rotational symmetry at semiconductor interfaces: a microscopic description of valence subband mixing, The Europ, Phys. J. B-Cond. Matter Compl. Syst, vol.21, p.241250, 2001.

L. F. Lastras-martínez, R. E. Balderas-navarro, and . Lastras-martínez, Stress-induced optical anisotropies measured by modulated reectance, Semicond. Sci. Tech, vol.19, p.35, 2004.

T. Fördös, K. Postava, H. Jarès, D. Quang-to, J. Pi²tora et al., Mueller matrix ellipsometric study of multilayer spin-vcsel structures with local optical anisotropy, Appl. Phys. Lett, vol.112, p.221106, 2018.

M. Alouini, J. Frougier, A. Joly, G. Baili, D. Dol et al., VSPIN: a new model relying on the vectorial description of the laser eld for predicting the polarization dynamics of spin-injected V(e)CSELs, vol.26, p.67396757, 2018.

K. Postava, T. Fördös, H. Jarès, L. Halaga£ka, H. J. Drouhin et al., Modeling of anisotropic grating structures with active dipole layers, Proc. SPIE, vol.9516, p.95160, 2015.

L. Coldren, S. Corzine, and M. Mashanovitch, Diode lasers and photonic integrated circuits, Wiley Series in Microwave and Optical Engineering, 2012.
DOI : 10.1002/9781118148167

N. C. Gerhardt and M. R. Hofmann, Spin-controlled vertical-cavity surfaceemitting lasers, Advances in Optical Technologies, p.26894915, 2012.

S. Pfalz, R. Winkler, T. Nowitzki, D. Reuter, A. D. Wieck et al., Optical orientation of electron spins in gaas quantum wells, Phys. Rev. B, vol.71, p.165305, 2005.

G. Schmidt, Concepts for spin injection into semiconductors-a review, J. Phys. D: Appl. Phys, vol.38, p.107, 2005.

V. F. Motsnyi, P. Van-dorpe, W. Van-roy, E. Goovaerts, V. I. Safarov et al., Optical investigation of electrical spin injection into semiconductors, Phys. Rev. B, vol.68, p.245319, 2003.

M. Guina, A. Rantamäki, and . Härkönen, Optically pumped VECSELs: review of technology and progress, J. Phys. D: Appl. Phys, vol.50, p.383001, 2017.

N. Basov, O. Bogdankevich, and A. Grasyuk, Semiconductor lasers with radiating mirrors, IEEE J. Quantum Electron, vol.2, p.594597, 1966.
DOI : 10.1109/jqe.1966.1073948

H. Q. Le, S. D. Cecca, and A. Mooradian, Scalable high-power optically pumped GaAs laser, Appl. Phys. Lett, vol.58, p.19671969, 1991.
DOI : 10.1063/1.105034

M. Kuznetsov, F. Hakimi, A. Sprague, and . Mooradian, High-power (>0.5-w cw) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM00 beams, vol.9, pp.1063-1065, 1997.

J. Lee, R. Oszwaªdowski, and C. Gøthgen, Mapping between quantum dot and quantum well lasers: from conventional to spin lasers, Phys. Rev. B, vol.85, p.45314, 2012.

I. Zutic and P. E. Faria, Taken for a spin, Nature Nanotechnology, vol.9, 2015.

J. Rudolph, D. Hägele, H. M. Gibbs, G. Khitrova, and M. Oestreich, Laser threshold reduction in a spintronic device, Appl. Phys. Lett, vol.82, p.45164518, 2003.

’. Vi²¬ovský, Magneto-optical permittivity tensor in crystals, Czech. J. Phys. B, vol.36, p.14241433, 1986.

M. Dyakonov, Spin physics in semiconductors, Springer Series in Solid-State Sciences, 2017.
URL : https://hal.archives-ouvertes.fr/hal-00277269

M. V. Durnev, M. M. Glazov, and E. L. Ivchenko, Spin-orbit splitting of valence subbands in semiconductor nanostructures, Phys. Rev. B, vol.89, p.75430, 2014.

E. L. Ivchenko, A. Y. Kaminski, and U. Rössler, Heavy-light hole mixing at zinc-blende (001) interfaces under normal incidence, Phys. Rev. B, vol.54, pp.5852-5859, 1996.
DOI : 10.1103/physrevb.54.5852

K. C. Hall, E. Altunkaya, W. H. Lau, M. E. Flatté, T. F. Boggess et al.,

. Inas/gasb-superlattices, Phys. Rev. B, vol.68, p.115311, 2003.

O. Krebs, P. Voisin, D. Rondi, J. Gentner, L. Goldstein et al., Giant optical anisotropy in semiconductor heterostructures with no-common atom, Physica E: Low-dim, Sys. Nanostr, vol.2, p.64, 1998.

O. Hunderi, J. Zettler, and K. Haberland, On the AlAs/GaAs (001) interface dielectric anisotropy, Thin Solid Films, vol.472, p.269, 2005.

J. Van-der-veen, P. Larsen, J. Neave, and B. Joyce, The GaAs (001)-c(4x4) and (2x4) reconstructions: a comparative photoemission study, vol.49, p.662, 1984.

S. E. Acosta-ortiz and A. Lastras-martínez, Electro-optic eects in the optical anisotropies of (001) GaAs, Phys. Rev. B, vol.40, p.14261429, 1989.

A. Yariv, Optical electronics, The Oxford Series in Electrical and Computer Engineering, 1990.

M. S. Park, B. T. Ahn, B. Yoo, H. Y. Chu, H. Park et al., Polarization control of vertical-cavity surface-emitting lasers by electrooptic birefringence, Appl. Phys. Lett, vol.76, p.813815, 2000.

J. Frougier, G. Baili, I. Sagnes, D. Dol, J. George et al., Accurate measurement of the residual birefringence in VECSEL: towards understanding of the polarization behavior under spin-polarized pumping, Opt. Express, vol.23, p.9588, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01142137

M. Seghilani, Highly coherent iii-v-semiconductor laser emitting phase-, amplitudeand polarization-structured light for advanced sensing applications: vortex, spin, feedback dynamics, 2016.

S. Visnovsky, Optics in magnetic multilayers and nanostructures, Optical Science and Engineering, 2006.

B. Saleh and M. Teich, Fundamentals of photonics, 2007.

M. Freiser, A survey of magnetooptic eects, IEEE Transactions on Magnetics, vol.4, p.152161, 1968.

R. M. Azzam and N. Bashara, Ellipsometry and polarized light, North-Holland personal library, 1987.

’. Vi²¬ovský, Magneto-optical ellipsometry, Czech. J. Phys. B, vol.36, p.625650, 1986.

P. Yeh, Electromagnetic propagation in birefringent layered media, J. Opt. Soc. Am, vol.69, p.742755, 1979.

D. Aspnes and A. Frova, Inuence of spatially dependent perturbations on modulated reectance and absorption of solids, Solid State Communications, vol.7, p.159, 1969.

L. F. Lastras-martínez, D. Rönnow, P. V. Santos, M. Cardona, and K. Eberl, Optical anisotropy of (001)-GaAs surface quantum wells, Phys. Rev. B, vol.64, p.245303, 2001.

H. Fujiwara, Spectroscopic ellipsometry: principles and applications, 2007.

J. Lee, J. Koh, and R. W. Collins, Multichannel mueller matrix ellipsometer for real-time spectroscopy of anisotropic surfaces and lms, Opt. Lett, vol.25, p.1575, 2000.

D. S. P-weightman, R. J. Martin, T. Cole, and . Farrell, Reection anisotropy spectroscopy, Rep. Prog. Phys, vol.68, p.1251, 2005.

D. E. Aspnes, Above-bandgap optical anisotropies in cubic semiconductors: a visible-near ultraviolet probe of surfaces, J. Vac. Sci. Technol, vol.3, p.14981506, 1985.

E. Garcia-caurel, A. D. Martino, J. Gaston, and L. Yan, Application of Spectroscopic Ellipsometry and Mueller Ellipsometry to Optical Characterization, Appl. Spectrosc, vol.67, p.121, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00738027

R. W. Collins and J. Koh, Dual rotating-compensator multichannel ellipsometer:instrument design for real-time mueller matrix spectroscopy of surfaces and lms, J. Opt. Soc. Am. A, vol.16, p.19972006, 1999.

G. E. Jellison and F. A. Modine, Parameterization of the optical functions of amorphous materials in the interband region, Applied Physics Letters, vol.69, p.373, 1996.

C. Johs, J. Herzinger, . Dinan, J. Cornfeld, and . Benson, Development of a parametric optical constant model for Hg 1?x Cd x Te for control of composition by spectroscopic ellipsometry during MBE growth, Thin Solid Films, vol.137, p.142, 1998.

D. W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, SIAM Journal on Applied Mathematics, vol.11, p.431441, 1963.

E. D. Palik and E. , Handbook of optical constants of solids I, vol.II, 1991.

M. Bass, C. Decusatis, J. Enoch, V. Lakshminarayanan, G. Li et al., Handbook of optics, third edition volume iv: optical properties of materials, nonlinear optics, quantum optics (set), Handbook of Optics, 2009.

S. Zollner, Model dielectric functions for native oxides on compound semiconductors, Appl. Phys. Lett, vol.63, p.25232524, 1993.

M. Losurdo and K. Hingerl, Ellipsometry at the nanoscale, 2013.

S. Adachi, Optical properties of crystalline and amorphous semiconductors: materials and fundamental principles, 2012.

P. Yu and M. Cardona, Fundamentals of semiconductors: physics and materials properties, 2013.

I. Khanin, Fundamentals of laser dynamics, 2006.

G. , Gain nonlinearities in semiconductor lasers: theory and application to distributed feedback lasers, IEEE J. Quantum Electron, vol.23, p.860868, 1987.

S. E. Hodges, M. Munroe, J. Cooper, and M. G. Raymer, Multimode laser model with coupled cavities and quantum noise, J. Opt. Soc. Am. B, vol.14, p.191199, 1997.

J. Martin-regalado, F. Prati, M. S. Miguel, and N. B. Abraham, Polarization properties of vertical-cavity surface-emitting lasers, IEEE J. Quantum Electron, vol.33, p.765783, 1997.

L. Lugiato, F. Prati, and M. Brambilla, Nonlinear optical systems, 2015.

H. E. Türeci, A. D. Stone, and B. Collier, Self-consistent multimode lasing theory for complex or random lasing media, Phys. Rev. A, vol.74, p.43822, 2006.

M. Y. Li, H. Jähme, H. Soldat, N. C. Gerhardt, M. R. Hofmann et al., Birefringence controlled room-temperature picosecond spin dynamics close to the threshold of vertical-cavity surface-emitting laser devices, Ultrafast spin-induced polarization oscillations with tunable lifetime in vertical-cavity surface-emitting lasers, vol.97, p.191114, 2010.

H. Fu and H. Haken, Multifrequency operations in a short-cavity standing-wave laser, Phys. Rev. A, vol.43, p.24462454, 1991.

A. Cerjan, Y. Chong, L. Ge, and A. D. Stone, Steady-state ab initio laser theory for n-level lasers, Opt. Express, vol.20, p.474488, 2012.

A. Cerjan, Y. D. Chong, and A. D. Stone, Steady-state ab initio laser theory for complex gain media, Opt. Express, vol.23, p.64556477, 2015.

A. Fiore and A. Markus, Dierential gain and gain compression in quantum-dot lasers, IEEE J. Quantum Electron, vol.43, p.287294, 2007.

C. Gothgen, R. Oszwaldowski, A. Petrou, and I. Zutic, Analytical model of spinpolarized semiconductor lasers, Appl. Phys. Lett, vol.93, p.42513, 2008.

J. Lee, W. Falls, R. Oszwaldowski, and I. Zutic, Spin modulation in semiconductor lasers, Appl. Phys. Lett, vol.97, p.41116, 2010.

G. J. De-valcarcel, E. Roldan, and F. Prati, Semiclassical theory of amplication and lasing, vol.52, 2006.

H. Breuer and F. Petruccione, The theory of open quantum systems, 2002.

W. Chow and S. Koch, Semiconductor-laser fundamentals: physics of the gain materials, 1999.

A. Gahl, S. Balle, and M. S. Miguel, Polarization dynamics of optically pumped VCSELs, IEEE J. Quantum Electron, vol.35, p.342351, 1999.

F. Bretenaker and A. L. Floch, Laser eigenstates in the framework of a spatially generalized jones matrix formalism, J. Opt. Soc. Am. B, vol.8, p.230238, 1991.

A. E. Siegman, Lasers (University Science Books, 1986.

P. E. Faria, G. Xu, J. Lee, N. C. Gerhardt, and G. M. Sipahi, Toward highfrequency operation of spin lasers, Phys. Rev. B, vol.92, p.75311, 2015.

C. Henry, Theory of the linewidth of semiconductor lasers, IEEE J. Quantum Electron, vol.18, p.259264, 1982.

S. Balle, Simple analytical approximations for the gain and refractive index spectra in quantum-well lasers, Phys. Rev. A, vol.57, p.13041312, 1998.

G. Baili, L. Morvan, M. Alouini, D. Dol, F. Bretenaker et al., Experimental demonstration of a tunable dual-frequency semiconductor laser free of relaxation oscillations, Opt. Lett, vol.34, p.34213423, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00664805

S. De, A. E. Amili, I. Fsaifes, G. Pillet, G. Baili et al., Phase noise of the radio frequency (RF) beatnote generated by a dual-frequency VECSEL, J. Light. Techn, vol.32, p.13071316, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01142118

S. De, G. Baili, S. Bouchoule, M. Alouini, and F. Bretenaker, Intensity-and phase-noise correlations in a dual-frequency vertical-external-cavity surface-emitting laser operating at telecom wavelength, Phys. Rev. A, vol.91, p.53828, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01168330

M. Sargent, M. Scully, and W. Lamb, Laser physics, Advanced book program, 1978.

A. Garnache, B. Sermage, R. Teissier, G. Saint-giro, and I. Sagnes, A new kind of fast quantum-well semiconductor saturable-absorber mirror with low losses for ps pulse generation, International conference on Indium Phosphide and related materials, p.247250, 2003.

M. Travagnin, M. P. Van-exter, A. K. Jansen-van-doorn, and J. P. Woerdman, Erratum: role of optical anisotropies in the polarization properties of surfaceemitting semiconductor lasers, phys. rev. a, vol.54, p.46414641, 1996.

M. Herms, V. Fukuzawa, . Melov, P. Schreiber, M. Mock et al., Residual strain in annealed GaAs single-crystal wafers as determined by scanning infrared polariscopy, X-ray diraction and topography, Journal of Crystal Growth, vol.210, 2000.

O. Krebs, J. P. Seidel, . André, C. Bertho, P. Jouanin et al., Investigations of giant`forbiddengiant`forbidden' optical anisotropy in GaInAs-InP quantum well structures, Semicond. Sci. Technol, vol.12, p.938, 1997.

S. Cortez, O. Krebs, and P. Voisin, In-plane optical anisotropy of quantum well structures: from fundamental considerations to interface characterization and optoelectronic engineering, J. Vac. Sci. Tech. B, vol.18, p.22322241, 2000.

E. A. Cerda-méndez, R. E. Balderas-navarro, A. Lastras-martínez, L. F. Lastrasmartínez, A. Garnache et al.,

, Al x Ga 1?x As y Sb 1?y multi-quantum-well heterostructures probed by transmittance anisotropy spectroscopy, J. Appl. Phys, vol.98, p.66107, 2005.

H. Shen, M. Wraback, J. Pamulapati, P. G. Newman, M. Dutta et al.,

. Kuo, Optical anisotropy in GaAs/Al x Ga 1?x As multiple quantum wells under thermally induced uniaxial strain, Phys. Rev. B, vol.47, p.1393313936, 1993.

D. J. English, P. G. Lagoudakis, R. T. Harley, P. S. Eldridge, J. Hübner et al., Strain-induced spin relaxation anisotropy in symmetric (001)-oriented GaAs quantum wells, Phys. Rev. B, vol.84, p.155323, 2011.

H. Benisty, R. Stanley, and M. Mayer, Method of source terms for dipole emission modication in modes of arbitrary planar structures, J. Opt. Soc. Am. A, vol.15, p.11921201, 1998.

’. Vi²¬ovský, M. Nývlt, V. Pa°ízek, P. Kielar, V. Prosser et al., Magneto-optical studies of Pt/Co multilayers and Pt-Co alloy thin lms, IEEE Trans. Magn, vol.29, p.33903392, 1993.

R. Jansen, B. C. Min, S. P. Dash, S. Sharma, G. Kioseoglou et al., Electrical spin injection into moderately doped silicon enabled by tailored interfaces, Phys. Rev. B, vol.82, p.241305, 2010.

B. T. Jonker, G. Kioseoglou, A. T. Hanbicki, C. H. Li, and P. E. Thompson, Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact, Nat Phys, vol.3, p.542546, 2007.

P. B. Johnson, R. W. Christy-;-ti, V. Cr, . Mn, . Fe et al., Phys. Rev. B, vol.9, p.50565070, 1974.

A. Garnache, A. Ouvrard, L. Cerutti, D. Barat, A. Vicet et al., 2-2.7 m single frequency tunable sb-based lasers operating in CW at RT: microcavity and external cavity vcsels, dfb, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00324343

A. Garnache, A. Ouvrard, and D. Romanini, Single-frequency operation of externalcavity VCSELs: non-linear multimode temporal dynamics and quantum limit, Opt. Express, vol.15, p.94039417, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00327675

A. Laurain, M. Myara, G. Beaudoin, I. Sagnes, and A. Garnache, Multiwattpower highly-coherent compact single-frequency tunable vertical-external-cavitysurface-emitting-semiconductor-laser, Opt. Express, vol.18, p.1462714636, 2010.

M. Sondermann, M. Weinkath, and T. Ackemann, Polarization switching to the gain disfavored mode in vertical-cavity surface-emitting lasers, IEEE J. Quant. Electr, vol.40, p.97104, 2004.

M. Schubert, V. Gottschalch, C. M. Herzinger, H. Yao, P. G. Snyder et al., Optical constants of Ga(x)In(1-x)P lattice matched to GaAs, J. Appl. Phys, vol.77, p.34163419, 1995.