M. A. Augustin and Y. Hemar, Nano-and Micro-Structured Assemblies for Encapsulation of Food Ingredients, Chemical Society Reviews, vol.38, pp.902-912, 2009.

R. Dubey, T. C. Shami, and K. B. Rao, Microencapsulation Technology and Applications, Defense Science Journal, vol.59, pp.82-95, 2009.

C. Vauthier and K. Bouchemal, Methods for the Preparation and Manufacture of Polymeric Nanoparticles, Pharmaceutical Research, vol.26, pp.1025-1058, 2009.

F. Cuomo, M. Cofelice, F. Venditti, A. Ceglie, M. Miguel et al., In-Vitro Digestion of Curcumin Loaded Chitosan-Coated Liposomes, Colloids and Surfaces B : Biointerfaces, vol.168, pp.29-34, 2018.

H. Souguir, F. Salaün, P. Douillet, I. Vroman, and S. Chatterjee, Nanoencapsulation of Curcumin in Polyurethane and Polyurea Shells by an Emulsion Diffusion Method, Chemical Engineering Journal, vol.221, pp.133-145, 2013.

B. K. Green, Oil-Containing Microscopic Capsules and Method of Making Them-Brevet N ` US2800458A, 1957.

B. Gibbs, C. Mulligan, S. Kermasha, and I. Alli, Encapsulation in the Food Industry : A Review. International Journal of Food Sciences and Nutrition, vol.50, pp.213-224, 1999.

A. Kumari, S. K. Yadav, and S. C. Yadav, Biodegradable Polymeric Nanoparticles Based Drug Delivery Systems, Colloids and Surfaces B : Biointerfaces, vol.75, pp.1-18, 2010.

P. Couvreur, G. Barratt, E. Fattal, and C. Vauthier, Nanocapsule Technology : A Review. Critical Reviews&trade ; in Therapeutic Drug Carrier Systems, vol.19, pp.99-134, 2002.

J. O. Eloy, M. Claro-de-souza, R. Petrilli, J. P. Barcellos, R. J. Lee et al., Liposomes as Carriers of Hydrophilic Small Molecule Drugs : Strategies to Enhance Encapsulation and Delivery, Colloids and Surfaces B : Biointerfaces, vol.123, pp.345-363, 2014.

C. Ye and H. Chi, A Review of Recent Progress in Drug and Protein Encapsulation : Approaches, Applications and Challenges, Materials Science and Engineering : C, vol.83, pp.233-246, 2018.

I. P. Pollack, H. A. Quigley, and T. S. Harbin, The Ocusert Pilocarpine System : Advantages and Disadvantages, Southern Medical Journal, vol.69, pp.1296-1298, 1976.

A. Madene, M. Jacquot, J. Scher, and S. Desobry, Flavour Encapsulation and Controlled Release-a Review, International Journal of Food Science & Technology, vol.41, pp.1-21, 2005.
DOI : 10.1111/j.1365-2621.2005.00980.x

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2621.2005.00980.x

A. Ammala, Biodegradable Polymers as Encapsulation Materials for Cosmetics and Personal Care Markets, International Journal of Cosmetic Science, vol.35, pp.113-124, 2012.
DOI : 10.1111/ics.12017

URL : http://onlinelibrary.wiley.com/doi/10.1111/ics.12017/pdf

F. G. Hougeir and L. Kircik, A Review of Delivery Systems in Cosmetics, Dermatologic Therapy, vol.25, pp.234-237, 2012.

S. V. Ley, C. Ramarao, R. S. Gordon, A. B. Holmes, A. J. Morrison et al., Polyurea-Encapsulated Palladium(II) Acetate : A Robust and Recyclable Catalyst for Use in Conventional and Supercritical Media, Chemical Communications, vol.0, pp.1134-1135, 2002.
DOI : 10.1002/chin.200235054

S. V. Ley, C. Ramarao, A. Lee, N. Østergaard, S. C. Smith et al., Microencapsulation of Osmium Tetroxide in Polyurea, Organic Letters, vol.5, pp.185-187, 2003.

H. B. Scher, M. Rodson, and K. Lee, Microencapsulation of Pesticides by Interfacial Polymerization Utilizing Isocyanate or Aminoplast Chemistry, Pesticide Science, vol.54, pp.394-400, 1980.

F. Sopeña, C. Maqueda, and E. Morillo, Controlled Release Formulations of Herbicides Based on MicroEncapsulation, vol.36, pp.27-42, 2009.

E. N. Brown, S. R. White, and N. R. Sottos, Microcapsule Induced Toughening in a Self-Healing Polymer Composite, Journal of Materials Science, vol.39, pp.1703-1710, 2004.
DOI : 10.1023/b:jmsc.0000016173.73733.dc

URL : http://autonomic.beckman.illinois.edu/files/publications_papers/2004_Brown_Microcapsule_Toughening.pdf

K. S. Toohey, N. R. Sottos, J. A. Lewis, J. S. Moore, and S. R. White, Self-Healing Materials with Microvascular Networks, Nature Materials, vol.6, pp.581-585, 2007.
DOI : 10.1038/nmat1934

P. S. Given, Encapsulation of Flavors in Emulsions for Beverages, Current Opinion in Colloid & Interface Science, vol.14, pp.43-47, 2009.
DOI : 10.1016/j.cocis.2008.01.007

M. Kakran and M. N. Antipina, Emulsion-Based Techniques for Encapsulation in Biomedicine, Food and Personal Care, Current Opinion in Pharmacology, vol.18, pp.47-55, 2014.
DOI : 10.1016/j.coph.2014.09.003

D. Chong, X. Liu, H. Ma, G. Huang, Y. L. Han et al., Advances in Fabricating Double-Emulsion Droplets and Their Biomedical Applications. Microfluidics and Nanofluidics, vol.19, pp.1071-1090, 2015.
DOI : 10.1007/s10404-015-1635-8

F. Jiménez-colmenero, Potential Applications of Multiple Emulsions in the Development of Healthy and Functional Foods, Food Research International, vol.52, pp.64-74, 2013.

J. Berg, D. Sundberg, and B. Kronberg, Microencapsulation of Emulsified Oil Droplets by In-Situ Vinyl Polymerization, Journal of Microencapsulation, vol.6, pp.327-337, 1989.

F. Tiarks, K. Landfester, and M. Antonietti, Preparation of Polymeric Nanocapsules by Miniemulsion Polymerization, Langmuir, vol.17, pp.908-918, 2001.
DOI : 10.1021/la001276n

S. Fu, C. Xu, C. Du, A. Tian, and M. Zhang, Encapsulation of C.I. Pigment Blue 15 :3 Using a Polymerizable Dispersant via Emulsion Polymerization, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.384, pp.68-74, 2011.

P. Viala, E. Bourgeat-lamy, A. Guyot, P. Legrand, and D. Lefebvre, Pigment Encapsulation by Emulsion Polymerisation, Redespersible in Water, Macromolecular Symposia, vol.187, pp.651-662, 2002.

D. Nguyen, H. S. Zondanos, J. M. Farrugia, A. K. Serelis, C. H. Such et al., Pigment Encapsulation by Emulsion Polymerization Using Macro-RAFT Copolymers, Langmuir, vol.24, pp.2140-2150, 2008.
DOI : 10.1021/la7027466

I. Rajot, S. Bône, C. Graillat, and T. Hamaide, Nonionic Nanoparticles by Miniemulsion Polymerization of Vinyl Acetate with Oligocaprolactone Macromonomer or Miglyol as Hydrophobe. Application to the Encapsulation of Indomethacin, Macromolecules, vol.36, pp.7484-7490, 2003.
DOI : 10.1021/ma0343434

M. Jacquemond, N. Jeckelmann, L. Ouali, and O. P. Haefliger, Perfume-Containing Polyurea Microcapsules with Undetectable Levels of Free Isocyanates, Journal of Applied Polymer Science, vol.114, pp.3074-3080, 2009.
DOI : 10.1002/app.30857

A. M. Pensé, C. Vauthier, F. Puisieux, and J. P. Benoit, Microencapsulation of Benzalkonium Chloride, International Journal of Pharmaceutics, vol.81, pp.111-117, 1992.

K. Bouchemal, S. Briançon, P. Chaumont, H. Fessi, and N. Zydowicz, Microencapsulation of Dehydroepiandrosterone (DHEA) with Poly(Ortho Ester) Polymers by Interfacial Polycondensation, Journal of Microencapsulation, vol.20, pp.637-651, 2003.

I. Hanno, C. Anselmi, and K. Bouchemal, Polyamide Nanocapsules and Nano-Emulsions Containing Parsol® MCX and Parsol® 1789 : In Vitro Release, Ex Vivo Skin Penetration and Photo-Stability Studies, Pharmaceutical Research, vol.29, pp.559-573, 2012.

S. Galindo-rodriguez, E. Allémann, H. Fessi, and E. Doelker, Physicochemical Parameters Associated with Nanoparticle Formation in the Salting-Out, Emulsification-Diffusion, and Nanoprecipitation Methods, Pharmaceutical Research, vol.21, pp.1428-1439, 2004.

S. Freitas, H. P. Merkle, and B. Gander, Microencapsulation by Solvent Extraction/Evaporation : Reviewing the State of the Art of Microsphere Preparation Process Technology, Journal of Controlled Release, vol.102, pp.313-332, 2005.

D. Quintanar-guerrero, E. Allémann, E. Doelker, and H. Fessi, Preparation and Characterization of Nanocapsules from Preformed Polymers by a New Process Based on Emulsification-Diffusion Technique, Pharmaceutical Research, vol.15, pp.1056-1062, 1998.

E. Allémann, R. Gurny, and E. Doelker, Preparation of Aqueous Polymeric Nanodispersions by a Reversible Salting-out Process : Influence of Process Parameters on Particle Size, International Journal of Pharmaceutics, vol.87, pp.247-253, 1992.

M. F. Zambaux, F. Bonneaux, R. Gref, P. Maincent, E. Dellacherie et al., Vigneron, C. Influence of Experimental Parameters on the Characteristics of Poly(Lactic Acid) Nanoparticles Prepared by a Double Emulsion Method, Journal of Controlled Release, vol.50, pp.31-40, 1998.

H. S. Yoo, J. E. Oh, K. H. Lee, and T. G. Park, Biodegradable Nanoparticles Containing Doxorubicin-PLGA Conjugate for Sustained Release, Pharmaceutical Research, vol.16, pp.1114-1118, 1999.

X. Li, S. Chang, G. Du, Y. Li, J. Gong et al., Encapsulation of Azithromycin into Polymeric Microspheres by Reduced Pressure-Solvent Evaporation Method, International Journal of Pharmaceutics, vol.433, pp.79-88, 2012.

C. Perez, A. Sanchez, D. Putnam, D. Ting, R. Langer et al., Lactic Acid)-Poly(Ethylene Glycol) Nanoparticles as New Carriers for the Delivery of Plasmid DNA, Journal of Controlled Release, vol.75, pp.211-224, 2001.

D. M. Ciombor, A. Jaklenec, A. Z. Liu, C. Thanos, N. Rahman et al., Encapsulation of BSA Using a Modified W/O/O Emulsion Solvent Removal Method, Journal of Microencapsulation, vol.23, pp.183-194, 2006.

R. Arshady and M. Microspheres, Suspension Cross-Linking, vol.1, pp.1746-1758, 1989.

N. Wang and X. S. Wu, Preparation and Characterization of Agarose Hydrogel Nanoparticles for Protein and Peptide Drug Delivery. Pharmaceutical Development and Technology, vol.2, pp.135-142, 1997.

R. Arshady and M. Microspheres, Survey of Manufacturing Techniques Part II : Coacervation, vol.30, pp.905-914, 1990.

D. J. Burgess and J. E. Carless, Manufacture of Gelatin/Gelatin Coacervate Microcapsules, International Journal of Pharmaceutics, vol.27, pp.61-70, 1985.

L. Maldonado, R. Sadeghi, and J. Kokini, Nanoparticulation of Bovine Serum Albumin and Poly-d-Lysine through Complex Coacervation and Encapsulation of Curcumin, Colloids and Surfaces B : Biointerfaces, vol.159, pp.759-769, 2017.

S. Leclercq, K. R. Harlander, and G. A. Reineccius, Formation and Characterization of Microcapsules by Complex Coacervation with Liquid or Solid Aroma Cores, Flavour and Fragrance Journal, vol.24, pp.17-24, 2009.

S. Rojas-moreno, G. Osorio-revilla, T. Gallardo-velázquez, F. Cárdenas-bailón, and G. Meza-márquez, Effect of the Cross-Linking Agent and Drying Method on Encapsulation Efficiency of Orange Essential Oil by Complex Coacervation Using Whey Protein Isolate with Different Polysaccharides, Journal of Microencapsulation, vol.35, pp.165-180, 2018.

E. P. Holowka and S. K. Bhatia, Drug Delivery

G. Gaudriault, Biodegradable Drug Delivery Compositions-Brevet N ` WO2012090070A2, 2012.

`. Brevet-n and . Wo2012090070a2,

R. Langer, New Methods of Drug Delivery, Science, vol.249, pp.1527-1533, 1990.

A. P. Esser-kahn, S. A. Odom, N. R. Sottos, S. R. White, and J. S. Moore, Triggered Release from Polymer Capsules, Macromolecules, vol.44, pp.5539-5553, 2011.

J. Hu, H. Chen, and Z. Zhang, Mechanical Properties of Melamine Formaldehyde Microcapsules for Self-Healing Materials, Materials Chemistry and Physics, vol.118, pp.63-70, 2009.

K. E. Broaders, S. J. Pastine, S. Grandhe, and J. M. Fréchet, Acid-Degradable Solid-Walled Microcapsules for pH-Responsive Burst-Release Drug Delivery, Chemical Communications, vol.47, pp.665-667, 2010.

E. R. Gillies and J. M. Fréchet, pH-Responsive Copolymer Assemblies for Controlled Release of Doxorubicin, Bioconjugate Chemistry, vol.16, pp.361-368, 2005.

. Bibliographie,

S. D. Khaja, S. Lee, and N. Murthy, Acid-Degradable Protein Delivery Vehicles Based on Metathesis Chemistry, Biomacromolecules, vol.8, pp.1391-1395, 2007.

S. J. Pastine, D. Okawa, A. Zettl, and J. M. Fréchet, Chemicals On Demand with Phototriggerable Microcapsules, Journal of the American Chemical Society, vol.131, pp.13586-13587, 2009.

L. Greene, L. X. Phan, E. E. Schmitt, and J. M. Mohr, Polymeric Delivery Systems

, ACS Symposium Series, vol.520, pp.244-256, 1993.

M. F. Bédard, B. G. De-geest, A. G. Skirtach, H. Möhwald, and G. B. Sukhorukov, Polymeric Microcapsules with Light Responsive Properties for Encapsulation and Release, Advances in Colloid and Interface Science, vol.158, pp.2-14, 2010.

Z. Lu, M. D. Prouty, Z. Guo, V. O. Golub, C. S. Kumar et al., Magnetic Switch of Permeability for Polyelectrolyte Microcapsules Embedded with Co@Au Nanoparticles, Langmuir, vol.21, pp.2042-2050, 2005.

S. Hu, C. Tsai, C. Liao, D. Liu, and S. Chen, Controlled Rupture of Magnetic Polyelectrolyte Microcapsules for Drug Delivery, Langmuir : the ACS journal of surfaces and colloids, vol.24, pp.11811-11818, 2008.

S. Mura, J. Nicolas, and P. Couvreur, Stimuli-Responsive Nanocarriers for Drug Delivery, Nature Materials, vol.12, pp.991-1003, 2013.

G. Kong, G. Anyarambhatla, W. P. Petros, R. D. Braun, O. M. Colvin et al., Efficacy of Liposomes and Hyperthermia in a Human Tumor Xenograft Model : Importance of Triggered Drug Release, Cancer Research, vol.60, pp.6950-6957, 2000.

H. Grüll and S. Langereis, Hyperthermia-Triggered Drug Delivery from Temperature-Sensitive Liposomes Using MRI-Guided High Intensity Focused Ultrasound, Journal of Controlled Release, vol.161, pp.317-327, 2012.

H. Oliveira, E. Pérez-andrés, J. Thevenot, O. Sandre, E. Berra et al., Magnetic Field Triggered Drug Release from Polymersomes for Cancer Therapeutics, Journal of Controlled Release, vol.169, pp.165-170, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00926568

M. A. Chaves, P. L. Oseliero-filho, C. G. Jange, R. Sinigaglia-coimbra, C. L. Oliveira et al., Structural Characterization of Multilamellar Liposomes Coencapsulating Curcumin and Vitamin D3, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.549, pp.112-121, 2018.

F. Jiménez-colmenero, Potential Applications of Multiple Emulsions in the Development of Healthy and Functional Foods, Food Research International, vol.52, pp.64-74, 2013.

R. Jiménez-alvarado, C. I. Beristain, L. Medina-torres, A. Román-guerrero, and E. J. Vernon-carter, Ferrous Bisglycinate Content and Release in W1/O/W2 Multiple Emulsions Stabilized by Protein-polysaccharide Complexes, Food Hydrocolloids, vol.23, pp.2425-2433, 2009.

A. L. Márquez and J. R. Wagner, Rheology of Double (w/O/W) Emulsions Prepared with Soybean Milk and Fortified with Calcium, Journal of Texture Studies, vol.41, pp.651-671, 2010.

R. Lutz, A. Aserin, L. Wicker, and N. Garti, Release of Electrolytes from W/O/W Double Emulsions Stabilized by a Soluble Complex of Modified Pectin and Whey Protein Isolate, Colloids and Surfaces B : Biointerfaces, vol.74, pp.178-185, 2009.

K. Yoshida, T. Sekine, F. Matsuzaki, T. Yanaki, and M. Yamaguchi, Stability of Vitamin A in Oil-in-Waterin-Oil-Type Multiple Emulsions, Journal of the American Oil Chemists' Society, vol.76, pp.1-6, 1999.

A. Fechner, A. Knoth, I. Scherze, and G. Muschiolik, Stability and Release Properties of Double-Emulsions Stabilised by Caseinate-dextran Conjugates, Food Hydrocolloids, vol.21, pp.943-952, 2007.

A. Benichou, A. Aserin, N. Garti, and . W/o/w, Double Emulsions Stabilized with WPI-polysaccharide Complexes, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.294, pp.20-32, 2007.

R. Bou, S. Cofrades, and F. Jiménez-colmenero, Physicochemical Properties and Riboflavin Encapsulation in Double Emulsions with Different Lipid Sources. LWT-Food Science and Technology, vol.59, pp.621-628, 2014.
DOI : 10.1016/j.lwt.2014.06.044

URL : https://digital.csic.es/bitstream/10261/103975/1/accesoRestringido.pdf

K. Frank, E. Walz, V. Gräf, R. Greiner, K. Köhler et al., Stability of Anthocyanin-Rich W/O/W-Emulsions Designed for Intestinal Release in Gastrointestinal Environment, Journal of Food Science, vol.77, pp.50-57, 2012.

D. De-almeida-paula, A. Mota-ramos, E. Basílio-de-oliveira, . Maurício-furtado, E. Martins et al., Increased Thermal Stability of Anthocyanins at pH 4.0 by Guar Gum in Aqueous Dispersions, International Journal of Biological Macromolecules, vol.117, pp.665-672, 2018.

M. Akhtar, B. S. Murray, E. I. Afeisume, and S. H. Khew, Encapsulation of Flavonoid in Multiple Emulsion Using Spinning Disc Reactor Technology, Food Hydrocolloids, vol.34, pp.62-67, 2014.

R. Casagrande, S. R. Georgetti, W. A. Verri, M. F. Borin, R. F. Lopez et al., In Vitro Evaluation of Quercetin Cutaneous Absorption from Topical Formulations and Its Functional Stability by Antioxidant Activity, International Journal of Pharmaceutics, vol.328, pp.183-190, 2007.

M. Shima, T. Matsuo, M. Yamashita, and S. Adachi, Protection of Lactobacillus Acidophilus from Bile Salts in a Model Intestinal Juice by Incorporation into the Inner-Water Phase of a W/O/W Emulsion, Food Hydrocolloids, vol.23, pp.281-285, 2009.

D. J. Pimentel-gonzález, R. G. Campos-montiel, C. Lobato-calleros, R. Pedroza-islas, and E. J. Vernoncarter, Encapsulation of Lactobacillus Rhamnosus in Double Emulsions Formulated with Sweet Whey as Emulsifier and Survival in Simulated Gastrointestinal Conditions, Food Research International, vol.42, pp.292-297, 2009.

M. Kaimainen, S. Marze, E. Järvenpää, M. Anton, and R. Huopalahti, Encapsulation of Betalain into w/o/w Double Emulsion and Release during in Vitro Intestinal Lipid Digestion. LWT-Food Science and Technology, vol.60, pp.899-904, 2015.
DOI : 10.1016/j.lwt.2014.10.016

M. L. Gonçalez, D. G. Marcussi, G. M. Calixto, M. A. Corrêa, and M. Chorilli, Structural Characterization and In Vitro Antioxidant Activity of Kojic Dipalmitate Loaded W/O/W Multiple Emulsions Intended for Skin Disorders, 2015.

T. J. Elliott, More Durable Make-up Based on Pigmented Water-in-Solvent Emulsions, International Journal of Cosmetic Science, vol.1, pp.17-25, 1979.

J. Djuris, D. Vasiljevic, S. Jokic, and S. Ibric, Application of D-optimal experimental design method to optimize the formulation of O/W cosmetic emulsions, International Journal of Cosmetic Science, vol.36, pp.79-87, 2013.

M. Moussour, M. Lavarde, A. Pensé-lhéritier, and F. Bouton, Sensory Analysis of Cosmetic Powders : Personal Care Ingredients and Emulsions, International Journal of Cosmetic Science, vol.39, pp.83-89, 2016.
DOI : 10.1111/ics.12352

G. Muschiolik, Multiple Emulsions for Food Use, Current Opinion in Colloid & Interface Science, vol.12, pp.213-220, 2007.
DOI : 10.1016/j.cocis.2007.07.006

C. Chung and D. J. Mcclements, Structure-function Relationships in Food Emulsions : Improving Food Quality and Sensory Perception, Food Structure, vol.1, pp.106-126, 2014.

B. Ozturk and D. J. Mcclements, Progress in Natural Emulsifiers for Utilization in Food Emulsions. Current Opinion in Food Science, vol.7, pp.1-6, 2016.

J. Rossi and J. Leroux, Role of Lipid Excipients in Modifying Oral and Parenteral Drug Delivery, pp.88-123, 2006.

S. Tamilvanan, Pharmaceutical Manufacturing Handbook

. Wiley-blackwell, , pp.1327-1366, 2007.

J. Mitchell, B. Ninham, and . Micelles, Vesicles and Microemulsions, Faraday Transactions 2 : Molecular and Chemical Physics, vol.77, pp.601-629, 1981.

C. Solans and H. Kunieda, Industrial Applications of Microemulsions, 1996.

M. J. Rosen and D. J. Kunjappu, Surfactants and Interfacial Phenomena

E. Lémery, S. Briançon, Y. Chevalier, C. Bordes, T. Oddos et al., Skin Toxicity of Surfactants : Structure/Toxicity Relationships, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.469, pp.166-179, 2015.

N. Garti and A. Aserin, Double Emulsions Stabilized by Macromolecular Surfactants. Advances in Colloid and Interface Science, vol.65, pp.37-69, 1996.

M. Rubinstein and R. H. Colby, Polymer Physics, 2003.

P. Perrin and F. Lafuma, Low Hydrophobically Modified Poly(Acrylic Acid) Stabilizing Macroemulsions : Relationship between Copolymer Structure and Emulsions Properties, Journal of Colloid and Interface Science, vol.197, pp.317-326, 1998.

P. Perrin, N. Devaux, P. Sergot, and F. Lequeux, Shear-Induced Formation of Ordered Monodisperse Emulsions Stabilized by an Associating Amphiphilic Polyelectrolyte, Langmuir, vol.17, pp.2656-2663, 2001.

M. Protat, N. Bodin-thomazo, F. Malloggi, J. Daillant, R. A. Campbell et al., Neutron Reflectivity Measurements at the Oil/Water Interface for the Study of Stimuli-Responsive Emulsions“, The European Physical Journal E, p.85, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01841467

L. C. Ter-beek, M. Ketelaars, D. C. Mccain, P. E. Smulders, P. Walstra et al., Nuclear Magnetic Resonance Study of the Conformation and Dynamics of Beta-Casein at the Oil/Water Interface in Emulsions, Biophysical Journal, vol.70, pp.2396-2402, 1996.

S. Tcholakova, N. D. Denkov, I. B. Ivanov, and B. Campbell, Coalescence Stability of Emulsions Containing Globular Milk Proteins, Advances in Colloid and Interface Science, pp.259-293, 2006.

H. Kim, E. A. Decker, and D. J. Mcclements, Influence of Free Protein on Flocculation Stability of ?-Lactoglobulin Stabilized Oil-in-Water Emulsions at Neutral pH and Ambient Temperature, Langmuir, vol.20, pp.10394-10398, 2004.

Y. Chevalier and M. Bolzinger, Emulsions Stabilized with Solid Nanoparticles : Pickering Emulsions, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.439, pp.23-34, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02044597

F. Tu and D. Lee, One-Step Encapsulation and Triggered Release Based on Janus Particle-Stabilized Multiple Emulsions, Chemical Communications, vol.50, pp.15549-15552, 2014.

B. P. Binks and C. P. Whitby, Silica Particle-Stabilized Emulsions of Silicone Oil and Water : Aspects of Emulsification, Langmuir, vol.20, pp.1130-1137, 2004.

M. Destribats, M. Rouvet, C. Gehin-delval, C. ;. Schmitt, and B. Binks, Emulsions Stabilised by Whey Protein Microgel Particles : Towards Food-Grade Pickering Emulsions, Soft Matter, vol.10, pp.6941-6954, 2014.

T. F. Tadros, Emulsion Formation and Stability

. Wiley-blackwell, , pp.1-75, 2013.

F. Leal-calderon, J. Bibette, and V. Schmitt, Emulsion Science : Basic Principles ; Emulsion Science : Basic Principles, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00801651

W. D. Bancroft, The Theory of Emulsification, V. The Journal of Physical Chemistry, vol.17, pp.501-519, 1912.

B. P. Binks, Emulsion Type below and above the CMC in AOT Microemulsion Systems, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.71, pp.167-172, 1993.

P. Finkle, H. D. Draper, and J. H. Hildebrand, The Theory of Emulsification, Journal of the American Chemical Society, vol.45, pp.2780-2788, 1923.

K. Golemanov, S. Tcholakova, P. A. Kralchevsky, K. P. Ananthapadmanabhan, and A. Lips, Latex-ParticleStabilized Emulsions of Anti-Bancroft Type, Langmuir, vol.22, pp.4968-4977, 2006.

M. Destribats, V. Lapeyre, E. Sellier, F. Leal-calderon, V. Schmitt et al., Oil Emulsions Stabilized by Water-Dispersible Poly(N-Isopropylacrylamide) Microgels : Understanding AntiFinkle Behavior, vol.27, pp.14096-14107, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00678282

L. Besnard, M. Protat, F. Malloggi, J. Daillant, F. Cousin et al., Breaking of the Bancroft Rule for Multiple Emulsions Stabilized by a Single Stimulable Polymer, Soft Matter, vol.10, pp.7073-7087, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01157197

. Bibliographie,

W. C. Griffin, Classification of Surface-Active Agents by "HLB, Journal of Cosmetic Science, vol.1, pp.327-335, 1949.

W. C. Griffin, Calculation of HLB Values of Non-Ionic Surfactants, Journal of Cosmetic Science, vol.5, pp.249-256, 1954.

J. T. Davies, A Quantitative Kinetic Theory of Emulsion Type, I. Physical Chemistry of the Emulsifying Agent, Proc. 2nd Int, pp.426-438, 1957.

J. N. Israelachvili, D. J. Mitchell, and B. W. Ninham, Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers, Journal of the Chemical Society, vol.2, pp.1525-1568, 1976.

W. D. Harkins, E. C. Davies, and G. L. Clark, The Orientation of Molecules in the Surface of Liquids, the Energy Relations at Surfaces, Solubility, Adsorption, Emulsification, Molecular Association and the Effect of Acid and Bases on Interfacial Tension 1 (Surface Energy VI), Journal of the American Chemical Society, vol.39, pp.541-596, 1917.

I. Langmuir, The Constitution and Fundamental Properties of Solids and Liquids II. Liquids 1, Journal of the American Chemical Society, vol.39, pp.1848-1906, 1917.

A. Kabalnov and H. Wennerström, Macroemulsion Stability : The Oriented Wedge Theory Revisited, Langmuir, vol.12, pp.276-292, 1996.

J. L. Salager, M. Miñana-pérez, M. Pérez-sánchez, M. Ramfrez-gouveia, and C. I. Rojas, Surfactant-OilWater Systems near the Affinity Inversion-Part III : The Two Kinds of Emulsion Inversion, Journal of Dispersion Science and Technology, vol.4, pp.313-329, 1983.

J. Salager, L. Márquez, A. A. Peña, M. Rondón, F. Silva et al., Current Phenomenological Know-How and Modeling of Emulsion Inversion, Industrial & Engineering Chemistry Research, vol.39, pp.2665-2676, 2000.

B. P. Binks, R. Murakami, S. P. Armes, and S. Fujii, Temperature-Induced Inversion of NanoparticleStabilized Emulsions, Angewandte Chemie International Edition, vol.44, pp.4795-4798, 2005.

M. Protat, N. Bodin, F. Gobeaux, F. Malloggi, J. Daillant et al., Biocompatible Stimuli-Responsive W/O/W Multiple Emulsions Prepared by One-Step Mixing with a Single Diblock Copolymer Emulsifier, Langmuir, vol.32, pp.10912-10919, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01387471

S. Khoukh, P. Perrin, F. B. De-berc, and C. Tribet, Reversible Light-Triggered Control of Emulsion Type and Stability, ChemPhysChem, vol.6, 2005.

N. Zambrano, E. Tyrode, I. Mira, L. Márquez, M. Rodríguez et al., Emulsion Catastrophic Inversion from Abnormal to Normal Morphology. 1. Effect of the Water-to-Oil Ratio Rate of Change on the Dynamic Inversion Frontier, Industrial & Engineering Chemistry Research, vol.42, pp.50-56, 2003.

W. Seifriz, Studies in Emulsions. III-V. The Journal of Physical Chemistry, vol.29, pp.738-749, 1925.

W. J. Herbert, MULTIPLE EMULSIONS : A New Form of Mineral-Oil Antigen Adjuvant. The Lancet, vol.286, p.771, 1965.

E. Dickinson, Double Emulsions Stabilized by Food Biopolymers, Food Biophysics, vol.6, pp.1-11, 2011.

M. Bonnet, M. Cansell, A. Berkaoui, M. H. Ropers, M. Anton et al., Release Rate Profiles of Magnesium from Multiple W/O/W Emulsions, Food Hydrocolloids, vol.23, pp.92-101, 2009.

A. T. Florence and D. Whitehill, The Formulation and Stability of Multiple Emulsions, International Journal of Pharmaceutics, vol.11, pp.277-308, 1982.

M. Ficheux, L. Bonakdar, F. Leal-calderon, and J. Bibette, Some Stability Criteria for Double Emulsions, Langmuir, vol.14, pp.2702-2706, 1998.

J. Bibette, F. L. Calderon, and P. Poulin, Emulsions : Basic Principles. Reports on Progress in Physics, vol.62, 1999.

N. Garti, Double Emulsions-Scope, Limitations and New Achievements, Colloids and Surfaces A : Physicochemical and Engineering Aspects, pp.233-246, 1997.

K. Lindenstruth, B. W. Müller, and . W/o/w, Multiple Emulsions with Diclofenac Sodium, European Journal of Pharmaceutics and Biopharmaceutics, vol.58, pp.621-627, 2004.

P. S. Clegg, J. W. Tavacoli, and P. J. Wilde, One-Step Production of Multiple Emulsions : Microfluidic, Polymer-Stabilized and Particle-Stabilized Approaches, Soft Matter, vol.12, pp.998-1008, 2016.

W. Zhang, X. Zhai, W. Ou, L. Song, and Q. Zhang, Influencing Factors of Multiple Emulsions Formed by One-Step Emulsification. Colloid and Polymer Science, vol.296, pp.259-269, 2018.

C. Zhao, Multiphase Flow Microfluidics for the Production of Single or Multiple Emulsions for Drug Delivery, Advanced Drug Delivery Reviews, vol.65, pp.1420-1446, 2013.

W. Wang, M. Zhang, and L. Chu, Microfluidic Approach for Encapsulation via Double Emulsions, Current Opinion in Pharmacology, vol.18, pp.35-41, 2014.

G. T. Vladisavljevi?, Recent Advances in the Production of Controllable Multiple Emulsions Using Microfabricated Devices, Particuology, vol.24, pp.1-17, 2016.

A. R. Abate,

D. A. Weitz, High-Order Multiple Emulsions Formed in Poly(Dimethylsiloxane) Microfluidics, Small, vol.5, pp.2030-2032, 2009.

T. Nisisako, S. Okushima, and T. Torii, Controlled Formulation of Monodisperse Double Emulsions in a Multiple-Phase Microfluidic System, Soft Matter, vol.1, pp.23-27, 2005.

S. Van-der-graaf, C. G. Schroën, and R. M. Boom, Preparation of Double Emulsions by Membrane Emulsification-a, Review. Journal of Membrane Science, vol.251, pp.7-15, 2005.

Z. Li, H. Liu, L. Zeng, H. Liu, S. Yang et al., Preparation of High Internal Water-Phase Double Emulsions Stabilized by a Single Anionic Surfactant for Fabricating Interconnecting Porous Polymer Microspheres, Langmuir, vol.30, pp.12154-12163, 2014.

B. P. Binks and J. A. Rodrigues, Types of Phase Inversion of Silica Particle Stabilized Emulsions Containing Triglyceride Oil, Langmuir, vol.19, pp.4905-4912, 2003.

B. P. Binks, P. D. Fletcher, M. A. Thompson, and R. P. Elliott, Influence of Propylene Glycol on Aqueous Silica Dispersions and Particle-Stabilized Emulsions, Langmuir, vol.29, pp.5723-5733, 2013.

M. Liu, X. Chen, Z. Yang, Z. Xu, L. Hong et al., Tunable Pickering Emulsions with Environmentally Responsive Hairy Silica Nanoparticles, ACS Applied Materials & Interfaces, vol.8, pp.32250-32258, 2016.

Y. Zhu, J. Sun, C. Yi, W. Wei, and X. Liu, One-Step Formation of Multiple Pickering Emulsions Stabilized by Self-Assembled Poly(Dodecyl Acrylate-Co-Acrylic Acid, Nanoparticles. Soft Matter, vol.12, pp.7577-7584, 2016.

F. Tu and D. Lee, One-Step Encapsulation and Triggered Release Based on Janus Particle-Stabilized Multiple Emulsions, Chemical Communications, vol.50, pp.15549-15552, 2014.

Q. Chen and X. Deng, An, Z. pH-Induced Inversion of Water-in-Oil Emulsions to Oil-in-Water High Internal Phase Emulsions (HIPEs) Using Core Cross-Linked Star (CCS) Polymer as Interfacial Stabilizer, Macromolecular Rapid Communications, vol.35, pp.1148-1152, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00001210

M. Hoppel, D. Mahrhauser, C. Stallinger, F. Wagner, M. Wirth et al., Natural PolymerStabilized Multiple Water-in-Oil-in-Water Emulsions : A Novel Dermal Drug Delivery System for 5-Fluorouracil, Journal of Pharmacy and Pharmacology, vol.66, pp.658-667, 2013.

A. R. Patel, P. Dumlu, L. Vermeir, B. Lewille, A. Lesaffer et al., Rheological Characterization of Gel-in-Oil-in-Gel Type Structured Emulsions, Food Hydrocolloids, vol.46, pp.84-92, 2015.

J. A. Hanson, C. B. Chang, S. M. Graves, Z. Li, T. G. Mason et al., Nanoscale Double Emulsions Stabilized by Single-Component Block Copolypeptides, Nature, vol.455, pp.85-88, 2008.

. Bibliographie,

Y. Zhang, J. Gou, F. Sun, S. Geng, X. Hu et al., Impact of Electrolytes on Double Emulsion Systems (W/O/W) Stabilized by an Amphiphilic Block Copolymer, Colloids and Surfaces B : Biointerfaces, vol.122, pp.368-374, 2014.

L. Hong, G. Sun, J. Cai, and T. Ngai, One-Step Formation of W/O/W Multiple Emulsions Stabilized by Single Amphiphilic Block Copolymers, Langmuir, vol.28, pp.2332-2336, 2012.

G. Sun, M. Liu, X. Zhou, L. Hong, and T. Ngai, Influence of Asymmetric Ratio of Amphiphilic Diblock Copolymers on One-Step Formation and Stability of Multiple Emulsions, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.454, pp.16-22, 2014.

J. Bae, T. P. Russell, and R. C. Hayward, Osmotically Driven Formation of Double Emulsions Stabilized by Amphiphilic Block Copolymers, Angewandte Chemie International Edition, vol.53, pp.8240-8245, 2014.

L. Besnard, F. Marchal, J. F. Paredes, J. Daillant, N. Pantoustier et al., Multiple Emulsions Controlled by Stimuli-Responsive Polymers, Advanced Materials, vol.25, pp.2844-2848, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01537679

M. Protat, Formation d'émulsions multiples stimulables en une seule étape d'émulsification : effet du sel et évolution vers des architectures biocompatibles, 2016.

Z. Wang, S. Liao, and Y. Wang, Supramolecular Polymer Emulsifiers for One-Step Complex Emulsions, Chinese Journal of Polymer Science, vol.36, pp.288-296, 2018.

D. Wang, S. Liao, S. Zhang, and Y. Wang, A Reversed Photosynthesis-like Process for Light-Triggered CO2 Capture, Release, and Conversion, vol.10, pp.2573-2577, 2017.
DOI : 10.1002/cssc.201700365

X. Huang, R. Fang, D. Wang, J. Wang, H. Xu et al., Tuning Polymeric Amphiphilicity via Se-N Interactions : Towards One-Step Double Emulsion for Highly Selective Enzyme Mimics, Small, vol.11, pp.1537-1541, 2015.
DOI : 10.1002/smll.201402271

Z. Wang, J. Song, S. Zhang, X. Xu, and Y. Wang, Formulating Polyethylene Glycol as Supramolecular Emulsifiers for One-Step Double Emulsions, Langmuir, vol.33, pp.9160-9169, 2017.

L. Besnard, Mécanismes d'inversion Dans Les Émulsions Stimulables et Réversibles, 2013.

P. Van-de-wetering, E. E. Moret, N. M. Schuurmans-nieuwenbroek, M. J. Van-steenbergen, and W. E. Hennink, Structure-Activity Relationships of Water-Soluble Cationic Methacrylate/Methacrylamide Polymers for Nonviral Gene Delivery, Bioconjugate Chemistry, vol.10, pp.589-597, 1999.

V. Bütün, S. P. Armes, and N. C. Billingham, Synthesis and Aqueous Solution Properties of NearMonodisperse Tertiary Amine Methacrylate Homopolymers and Diblock Copolymers, Polymer, vol.42, pp.5993-6008, 2001.

F. A. Plamper, M. Ruppel, A. Schmalz, O. Borisov, M. Ballauff et al., Tuning the Thermoresponsive Properties of Weak Polyelectrolytes : Aqueous Solutions of Star-Shaped and Linear Poly(N,N-Dimethylaminoethyl Methacrylate), Macromolecules, vol.40, pp.8361-8366, 2007.

W. Hong, W. Jiao, J. Hu, J. Zhang, C. Liu et al., Periplasmic Protein HdeA Exhibits Chaperone-like Activity Exclusively within Stomach pH Range by Transforming into Disordered Conformation, Journal of Biological Chemistry, vol.280, pp.27029-27034, 2005.
DOI : 10.1074/jbc.m503934200

URL : http://www.jbc.org/content/280/29/27029.full.pdf

M. A. Ross, Determination of Ascorbic Acid and Uric Acid in Plasma by High-Performance Liquid Chromatography, Journal of Chromatography B : Biomedical Sciences and Applications, vol.657, pp.197-200, 1994.

H. Mukhtar and N. Ahmad, Tea Polyphenols : Prevention of Cancer and Optimizing Health, The American Journal of Clinical Nutrition, vol.71, pp.1698-1702, 2000.
DOI : 10.1093/ajcn/71.6.1698s

URL : https://academic.oup.com/ajcn/article-pdf/71/6/1698S/23939506/1698s.pdf

N. Khan and H. Mukhtar, Tea Polyphenols for Health Promotion, Life Sciences, vol.81, pp.519-533, 2007.
DOI : 10.1016/j.lfs.2007.06.011

URL : http://europepmc.org/articles/pmc3220617?pdf=render

H. Hatcher, R. Planalp, J. Cho, F. M. Torti, and S. V. Torti, Curcumin : From Ancient Medicine to Current Clinical Trials, Cellular and Molecular Life Sciences, vol.65, pp.1631-1652, 2008.
DOI : 10.1007/s00018-008-7452-4

URL : http://europepmc.org/articles/pmc4686230?pdf=render

. Bibliographie,

J. W. Betts and D. W. Wareham, In Vitro Activity of Curcumin in Combination with Epigallocatechin Gallate (EGCG) versus Multidrug-Resistant Acinetobacter Baumannii, BMC Microbiology, vol.14, p.172, 2014.

R. Manikandan, M. Beulaja, C. Arulvasu, S. Sellamuthu, D. Dinesh et al., Synergistic Anticancer Activity of Curcumin and Catechin : An in Vitro Study Using Human Cancer Cell Lines. Microscopy Research and Technique, vol.75, pp.112-116, 2012.

N. P. Aditya, S. Aditya, H. Yang, H. W. Kim, S. O. Park et al., Co-Delivery of Hydrophobic Curcumin and Hydrophilic Catechin by a Water-in-Oil-in-Water Double Emulsion, Food Chemistry, vol.173, pp.7-13, 2015.

N. P. Aditya, S. Aditya, H. Yang, H. W. Kim, S. O. Park et al., Curcumin and Catechin Co-Loaded Water-in-Oil-in-Water Emulsion and Its Beverage Application, Journal of Functional Foods, vol.15, pp.35-43, 2015.

N. Li, L. S. Taylor, M. G. Ferruzzi, and L. J. Mauer, Kinetic Study of Catechin Stability : Effects of pH, Concentration, and Temperature, Journal of Agricultural and Food Chemistry, vol.60, pp.12531-12539, 2012.

M. Fontanielle, J. Vairon, and . Polymérisation, , vol.3040, p.1, 2009.

A. Guyot and . Polymérisation, , vol.5830, p.1, 2000.

K. Matyjaszewski, Encyclopedia of Radicals in Chemistry, Biology and Materials

T. Hamaide, Polymérisations en chaîne-Mécanismes, techniques de l'ingénieur ed, 2017.

K. Matyjaszewski and J. Xia, Atom Transfer Radical Polymerization, Chemical Reviews, vol.101, pp.2921-2990, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01564110

K. Matyjaszewski, Introduction to Living Polymeriz. Living and/or Controlled Polymerization, Journal of Physical Organic Chemistry, vol.8, pp.197-207, 1995.

K. Matyjaszewski, The Synthesis of Functional Star Copolymers as an Illustration of the Importance of Controlling Polymer Structures in the Design of New Materials, Polymer International, vol.52, pp.1559-1565, 2003.

K. Matyjaszewski, Radical Nature of Cu-Catalyzed Controlled Radical Polymerizations (Atom Transfer Radical Polymerization), Macromolecules, vol.31, pp.4710-4717, 1998.

Z. Luo and T. -h.-;-he, Synthesis and Characterization of Poly(Dimethylsiloxane)-Block-Poly(2,2,3,3,4,4,4Heptafluorobutyl Methacrylate) Diblock Copolymers with Low Surface Energy Prepared by Atom Transfer Radical Polymerization. Reactive and Functional Polymers, vol.68, pp.931-942, 2008.

M. Protat, Formation d'émulsions multiples stimulables en une seule étape d'émulsification : effet du sel et évolution vers des architectures biocompatibles, 2016.

D. Fischer, Y. Li, B. Ahlemeyer, J. Krieglstein, and T. Kissel, Vitro Cytotoxicity Testing of Polycations : Influence of Polymer Structure on Cell Viability and Hemolysis, vol.24, pp.1121-1131, 2003.

B. D. Monnery, M. Wright, R. Cavill, R. Hoogenboom, S. Shaunak et al., Cytotoxicity of Polycations : Relationship of Molecular Weight and the Hydrolytic Theory of the Mechanism of Toxicity, International Journal of Pharmaceutics, vol.521, pp.249-258, 2017.

S. Agarwal, Y. Zhang, S. Maji, and A. Greiner, PDMAEMA Based Gene Delivery Materials, Materials Today, vol.15, pp.388-393, 2012.

P. Van-de-wetering, J. Cherng, H. Talsma, D. J. Crommelin, and W. E. Hennink, 2(Dimethylamino)Ethyl Methacrylate Based (Co)Polymers as Gene Transfer Agents, Journal of Controlled Release, vol.53, pp.145-153, 1998.

J. M. Layman, S. M. Ramirez, M. D. Green, and T. E. Long, Influence of Polycation Molecular Weight on Poly(2-Dimethylaminoethyl Methacrylate)-Mediated DNA Delivery In Vitro, Biomacromolecules, vol.10, pp.1244-1252, 2009.

L. B. Rawlinson, S. M. Ryan, G. Mantovani, J. A. Syrett, D. M. Haddleton et al., Antibacterial Effects of Poly(2-(Dimethylamino Ethyl)Methacrylate) against Selected Gram-Positive and Gram-Negative Bacteria, Biomacromolecules, vol.11, pp.443-453, 2010.

S. Keely, A. Rullay, C. Wilson, A. Carmichael, S. Carrington et al., In Vitro and Ex Vivo Intestinal Tissue Models to Measure Mucoadhesion of Poly (Methacrylate) and N-Trimethylated Chitosan Polymers, Pharmaceutical Research, vol.22, pp.38-49, 2005.

L. B. Rawlinson, P. J. O'brien, and D. J. Brayden, High Content Analysis of Cytotoxic Effects of pDMAEMA on Human Intestinal Epithelial and Monocyte Cultures, Journal of Controlled Release, vol.146, pp.84-92, 2010.

E. Moreau, M. Domurado, P. Chapon, M. Vert, and D. Domurado, Biocompatibility of Polycations : In Vitro Agglutination and Lysis of Red Blood Cells And In Vivo Toxicity, Journal of Drug Targeting, vol.10, pp.161-173, 2002.

D. S. Lee, S. J. Kim, E. B. Kwon, C. W. Park, S. M. Jun et al., Comparison of in Vivo Biocompatibilities between Parylene-C and Polydimethylsiloxane for Implantable Microelectronic Devices, Bulletin of Materials Science, vol.36, pp.1127-1132, 2013.

L. Liu and H. Sheardown, Glucose Permeable Poly (Dimethyl Siloxane) Poly (N-Isopropyl Acrylamide) Interpenetrating Networks as Ophthalmic Biomaterials, Biomaterials, vol.26, pp.233-244, 2005.

M. Bélanger, Y. Marois, and B. Hemocompatibility, Inflammatory and in Vivo Studies of Primary Reference Materials Low-Density Polyethylene and Polydimethylsiloxane : A, Review. Journal of Biomedical Materials Research, vol.58, pp.467-477, 2001.

L. Bordenave, R. Bareille, F. Lefebvre, J. Caix, and C. H. Baquey, Cytocompatibility Study of NHLBI Primary Reference Materials Using Human Endothelial Cells, Journal of Biomaterials Science, vol.3, pp.509-516, 1992.
DOI : 10.1163/156856292x00475

S. I. Ertel, B. D. Ratner, A. Kaul, M. B. Schway, and T. A. Horbett, In Vitro Study of the Intrinsic Toxicity of Synthetic Surfaces to Cells, Journal of Biomedical Materials Research, vol.28, pp.667-675, 1994.

K. L. Spilizewski, R. E. Marchant, J. M. Anderson, and A. Hiltner, Vivo Leucocyte Interactions with the NHLBI-DTB Primary Reference Materials : Polyethylene and Silica-Free Polydimethylsiloxane, vol.8, pp.12-17, 1987.
DOI : 10.1016/0142-9612(87)90021-4

M. Bélanger, Y. Marois, R. Roy, Y. Mehri, E. Wagner et al., Selection of a Polyurethane Membrane for the Manufacture of Ventricles for a Totally Implantable Artificial Heart : Blood Compatibility and Biocompatibility Studies, Artificial Organs, vol.24, pp.879-888, 2000.

J. Kim, H. Huh, D. Hamilton, G. , ;. E. Ingber et al., Human Gut-on-a-Chip Inhabited by Microbial Flora That Experiences Intestinal Peristalsis-like Motions and Flow, vol.12, pp.2165-2174, 2012.
DOI : 10.1039/c2lc40074j

M. Fisichella, F. Berenguer, G. Steinmetz, M. Auffan, J. Rose et al., Intestinal Toxicity Evaluation of TiO2 Degraded Surface-Treated Nanoparticles : A Combined Physico-Chemical and Toxicogenomics Approach in Caco-2 Cells, Particle and Fibre Toxicology, vol.9, p.18, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01426198

A. Car, P. Baumann, J. T. Duskey, M. Chami, N. Bruns et al., pH-Responsive PDMS-b-PDMAEMA Micelles for Intracellular Anticancer Drug Delivery, Biomacromolecules, vol.15, pp.3235-3245, 2014.
DOI : 10.1021/bm500919z

Y. Sambuy, I. D. Angelis, G. Ranaldi, M. L. Scarino, A. Stammati et al., The Caco-2 Cell Line as a Model of the Intestinal Barrier : Influence of Cell and Culture-Related Factors on Caco-2 Cell Functional Characteristics, Cell Biology and Toxicology, vol.21, pp.1-26, 2005.

A. Béduneau, C. Tempesta, S. Fimbel, Y. Pellequer, V. Jannin et al., A Tunable Caco-2/HT29-MTX Co-Culture Model Mimicking Variable Permeabilities of the Human Intestine Obtained by an Original Seeding Procedure, European Journal of Pharmaceutics and Biopharmaceutics, vol.87, pp.290-298, 2014.

T. Lesuffleur, A. Barbat, E. Dussaulx, and A. Zweibaum, Growth Adaptation to Methotrexate of HT29 Human Colon Carcinoma Cells Is Associated with Their Ability to Differentiate into Columnar Absorptive and Mucus-Secreting Cells, Cancer Research, vol.50, pp.6334-6343, 1990.

D. Antoine, Y. Pellequer, C. Tempesta, S. Lorscheidt, B. Kettel et al., Biorelevant Media Resistant Co-Culture Model Mimicking Permeability of Human Intestine, International Journal of Pharmaceutics, vol.481, pp.27-36, 2015.
DOI : 10.1016/j.ijpharm.2015.01.028

M. C. Pagliacci, F. Spinozzi, G. Migliorati, G. Fumi, M. Smacchia et al., Nicoletti, I. Genistein Inhibits Tumour Cell Growth in Vitro but Enhances Mitochondrial Reduction of Tetrazolium Salts : A Further Pitfall in the Use of the MTT Assay for Evaluating Cell Growth and Survival, European Journal of Cancer, vol.29, pp.1573-1577, 1993.

T. Mosmann, Rapid Colorimetric Assay for Cellular Growth and Survival : Application to Proliferation and Cytotoxicity Assays, Journal of Immunological Methods, vol.65, pp.55-63, 1983.
DOI : 10.1016/0022-1759(83)90303-4

D. Koley and A. J. Bard, Triton X-100 Concentration Effects on Membrane Permeability of a Single HeLa Cell by Scanning Electrochemical Microscopy (SECM), Proceedings of the National Academy of Sciences, vol.107, pp.16783-16787, 2010.

. Bibliographie,

K. Kim and M. J. Loessner, Enterobacter Sakazakii Invasion in Human Intestinal Caco-2 Cells Requires the Host Cell Cytoskeleton and Is Enhanced by Disruption of Tight Junction, Infection and Immunity, vol.76, pp.562-570, 2008.

M. Protat, Formation d'émulsions multiples stimulables en une seule étape d'émulsification : effet du sel et évolution vers des architectures biocompatibles, 2016.

W. Xin, Y. Hong, Z. Huang, and S. Liu, Moisturizer Suitable for Being Used on Oily Skin and Preparation Method Thereof-Brevet N ` CN104997653 (A), 2015.

Y. Tang and B. Qian, Anti-Wrinkle Anti-Aging Eye Cream for Pregnant Women and Preparation Method Thereof-Brevet N ` CN103006524 (A), 2013.

N. Lv, Gentle Moisture Makeup Removing Lotion and Preparation Method Therefor-Brevet N ` WO2016090647 (A1), 2016.

X. Guo, Anti-Aging Moisturizer-Brevet N ` CN106924136 (A), 2017.

S. Chen, Y. Ni, J. Liu, X. Li, and G. Wang, Skin Care Product for Preventing and Treating Striae Gravidarum and Preparation Method of Skin Care Product-Brevet N ` CN106913485 (A), 2017.

Y. Lu, Y. Wu, C. Wu, H. Shen, R. You et al., Preparation Method of Moistening Cream Containing Dendrobium Officinale-Brevet N ` CN106420527 (A), 2017.

A. Benichou, A. Aserin, N. Garti, and . Polyols, High Pressure, and Refractive Indices Equalization for Improved Stability of W/O Emulsions for Food Applications, Journal of Dispersion Science and Technology, vol.22, pp.269-280, 2001.

N. Patel, U. Schmid, and M. J. Lawrence, Phospholipid-Based Microemulsions Suitable for Use in Foods, Journal of Agricultural and Food Chemistry, vol.54, pp.7817-7824, 2006.
DOI : 10.1021/jf051288k

M. D. Chatzidaki, E. Mitsou, A. Yaghmur, A. Xenakis, and V. Papadimitriou, Formulation and Characterization of Food-Grade Microemulsions as Carriers of Natural Phenolic Antioxidants, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.483, pp.130-136, 2015.

Y. Li, W. Yokoyama, S. Xu, S. Zhu, J. Ma et al., Formation and Stability of W/O Microemulsion Formed by Food Grade Ingredients and Its Oral Delivery of Insulin in Mice, Journal of Functional Foods, vol.30, pp.134-141, 2017.

L. Besnard, M. Protat, F. Malloggi, J. Daillant, F. Cousin et al., Breaking of the Bancroft Rule for Multiple Emulsions Stabilized by a Single Stimulable Polymer, Soft Matter, vol.10, pp.7073-7087, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01157197

L. Besnard, F. Marchal, J. F. Paredes, J. Daillant, N. Pantoustier et al., Multiple Emulsions Controlled by Stimuli-Responsive Polymers, Advanced Materials, vol.25, pp.2844-2848, 2013.
DOI : 10.1002/adma.201204496

URL : https://hal.archives-ouvertes.fr/hal-01537679

L. Besnard, Mécanismes d'inversion Dans Les Émulsions Stimulables et Réversibles, 2013.

A. Adamson, Physical Chemistry of Surfaces

J. Viades-trejo and J. Gracia-fadrique, Spinning Drop Method : From Young-Laplace to Vonnegut, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.302, pp.549-552, 2007.
DOI : 10.1016/j.colsurfa.2007.03.033

J. L. Cayias, R. S. Schechter, and W. H. Wade, The Measurement of Low Interfacial Tension via the Spinning Drop Technique, ACS Symposium Series, vol.8, pp.234-247, 1975.

D. Danino, R. Gupta, J. Satyavolu, and Y. Talmon, Direct Cryogenic-Temperature Transmission Electron Microscopy Imaging of Phospholipid Aggregates in Soybean Oil, Journal of Colloid and Interface Science, vol.249, pp.180-186, 2002.

A. C. Miller, A. Bershteyn, W. Tan, P. T. Hammond, R. E. Cohen et al., Copolymer Micelles as Nanocontainers for Controlled Release of Proteins from Biocompatible Oil Phases, Biomacromolecules, vol.10, pp.732-741, 2009.

. Bibliographie,

I. Ben-barak and Y. Talmon, Direct-Imaging Cryo-SEM of Nanostructure Evolution in Didodecyldimethylammonium Bromide-Based Microemulsions. Zeitschrift für Physikalische Chemie, vol.226, pp.665-674, 2012.

L. Wolf, H. Hoffmann, Y. Talmon, T. Teshigawara, and K. Watanabe, Cryo-TEM Imaging of a Novel Microemulsion System of Silicone Oil with an Anionic/Nonionic Surfactant Mixture, Soft Matter, vol.6, pp.5367-5374, 2010.

K. A. Traul, A. Driedger, D. L. Ingle, and D. Nakhasi, Review of the Toxicologic Properties of MediumChain Triglycerides, Food and Chemical Toxicology, vol.38, pp.79-98, 2000.

R. J. Feldmann, T. J. Macek, C. E. Shoop, and I. D. Pincus, Emollient Gel Comprising Lanolin Alcohol, Microcrystalline Wax and a Liqquid Fatty Acid Ester-Brevet N ` US3210248A, 1965.

A. Kabalnov and H. Wennerström, Macroemulsion Stability : The Oriented Wedge Theory Revisited, Langmuir, vol.12, pp.276-292, 1996.
DOI : 10.1021/la950359e

M. Protat, N. Bodin-thomazo, F. Malloggi, J. Daillant, R. A. Campbell et al., Neutron Reflectivity Measurements at the Oil/Water Interface for the Study of Stimuli-Responsive Emulsions“, The European Physical Journal E, p.85, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01841467

F. A. Plamper, M. Ruppel, A. Schmalz, O. Borisov, M. Ballauff et al., Tuning the Thermoresponsive Properties of Weak Polyelectrolytes : Aqueous Solutions of Star-Shaped and Linear Poly(N,N-Dimethylaminoethyl Methacrylate), Macromolecules, vol.40, pp.8361-8366, 2007.

M. Sedlak, Domain Structure of Polyelectrolyte Solutions : Is It Real ? Macromolecules, vol.26, pp.1158-1162, 1993.
DOI : 10.1021/ma00057a040

M. Protat, N. Bodin, F. Gobeaux, F. Malloggi, J. Daillant et al., Biocompatible Stimuli-Responsive W/O/W Multiple Emulsions Prepared by One-Step Mixing with a Single Diblock Copolymer Emulsifier, Langmuir, vol.32, pp.10912-10919, 2016.
DOI : 10.1021/acs.langmuir.6b02590

URL : https://hal.archives-ouvertes.fr/cea-01387471

P. Slade, Handbook of Fiber Finish Technology
DOI : 10.1201/9780203719282

. Routledge, , 1998.

K. Feitosa, S. Marze, A. Saint-jalmes, and D. J. Durian, Electrical Conductivity of Dispersions : From Dry Foams to Dilute Suspensions, Journal of Physics : Condensed Matter, vol.17, p.6301, 2005.

A. Docoslis, R. F. Giese, and C. J. Van-oss, Influence of the Water-air Interface on the Apparent Surface Tension of Aqueous Solutions of Hydrophilic Solutes, Colloids and Surfaces B : Biointerfaces, vol.19, pp.147-162, 2000.

L. Bhattacharyya and . Rohrer, Applications of Ion Chromatography for Pharmaceutical and Biological Products, pp.455-456, 2012.

M. Bonnet, M. Cansell, A. Berkaoui, M. H. Ropers, M. Anton et al., Release Rate Profiles of Magnesium from Multiple W/O/W Emulsions, Food Hydrocolloids, vol.23, pp.92-101, 2009.

R. Jiménez-alvarado, C. I. Beristain, L. Medina-torres, A. Román-guerrero, and E. J. Vernon-carter, Ferrous Bisglycinate Content and Release in W1/O/W2 Multiple Emulsions Stabilized by Protein-polysaccharide Complexes, Food Hydrocolloids, vol.23, pp.2425-2433, 2009.

R. Lutz, A. Aserin, L. Wicker, and N. Garti, Release of Electrolytes from W/O/W Double Emulsions Stabilized by a Soluble Complex of Modified Pectin and Whey Protein Isolate, Colloids and Surfaces B : Biointerfaces, vol.74, pp.178-185, 2009.

M. R. Plata, C. Koch, P. Wechselberger, C. Herwig, and B. Lendl, Determination of Carbohydrates Present in Saccharomyces Cerevisiae Using Mid-Infrared Spectroscopy and Partial Least Squares Regression, Analytical and Bioanalytical Chemistry, vol.405, pp.8241-8250, 2013.

L. Wilhelmy, Über Die Abhängigkeit Der Capillaritäts-Constanten Des Alkohols von Substanz Und Gestalt Des Benetzten Festen Körpers, Annalen der Physik, vol.1863, pp.177-217

K. Bock and R. U. Lemieux, The Conformational Properties of Sucrose in Aqueous Solution : Intramolecular Hydrogen-Bonding, Carbohydrate Research, vol.100, pp.63-74, 1982.

. Bibliographie,

S. D. Allison, B. Chang, T. W. Randolph, and J. F. Carpenter, Hydrogen Bonding between Sugar and Protein Is Responsible for Inhibition of Dehydration-Induced Protein Unfolding, Archives of Biochemistry and Biophysics, vol.365, pp.289-298, 1999.

L. S. Taylor and G. Zografi, Sugar-polymer Hydrogen Bond Interactions in Lyophilized Amorphous Mixtures, Journal of Pharmaceutical Sciences, vol.87, pp.1615-1621, 2000.

Q. Y. Zhu, R. R. Holt, S. A. Lazarus, J. L. Ensunsa, J. F. Hammerstone et al., Stability of the Flavan-3-Ols Epicatechin and Catechin and Related Dimeric Procyanidins Derived from Cocoa, Journal of Agricultural and Food Chemistry, vol.50, pp.1700-1705, 2002.

Q. Y. Zhu, J. F. Hammerstone, S. A. Lazarus, H. H. Schmitz, and C. L. Keen, Stabilizing Effect of Ascorbic Acid on Flavan-3-Ols and Dimeric Procyanidins from Cocoa, Journal of Agricultural and Food Chemistry, vol.51, pp.828-833, 2003.

M. Kofink, M. Papagiannopoulos, and R. Galensa, Catechin in Cocoa and Chocolate : Occurence and Analysis of an Atypical Flavan-3-Ol Enantiomer, Molecules, vol.12, pp.1274-1288, 2007.

L. Gu, S. E. House, X. Wu, B. Ou, and R. L. Prior, Procyanidin and Catechin Contents and Antioxidant Capacity of Cocoa and Chocolate Products, Journal of Agricultural and Food Chemistry, vol.54, pp.4057-4061, 2006.

Z. Charouf and D. Guillaume, Phenols and Polyphenols from Argania Spinosa, American Journal of Food Technology, vol.2, pp.679-683, 2007.

G. W. Cheng and C. H. Crisosto, Browning Potential, Phenolic Composition, and Polyphenoloxidase Activity of Buffer Extracts of Peach and Nectarine Skin Tissue, Journal of the American Society for Horticultural Science, vol.120, pp.835-838, 1995.

V. K. Ananingsih, A. Sharma, and W. Zhou, Green Tea Catechins during Food Processing and Storage : A Review on Stability and Detection, Food Research International, vol.50, pp.469-479, 2013.

N. Li, L. S. Taylor, M. G. Ferruzzi, and L. J. Mauer, Color and Chemical Stability of Tea Polyphenol (-)Epigallocatechin-3-Gallate in Solution and Solid States, Food Research International, vol.53, pp.909-921, 2013.

N. Li, L. S. Taylor, M. G. Ferruzzi, and L. J. Mauer, Kinetic Study of Catechin Stability : Effects of pH, Concentration, and Temperature, Journal of Agricultural and Food Chemistry, vol.60, pp.12531-12539, 2012.

Z. Chen, Q. Y. Zhu, D. Tsang, and Y. Huang, Degradation of Green Tea Catechins in Tea Drinks, Journal of Agricultural and Food Chemistry, vol.49, pp.477-482, 2001.

T. Nakagawa and T. Yokozawa, Direct Scavenging of Nitric Oxide and Superoxide by Green Tea, Food and Chemical Toxicology, vol.40, pp.1745-1750, 2002.

Q. Guo, B. Zhao, S. Shen, J. Hou, J. Hu et al., ESR Study on the Structure-antioxidant Activity Relationship of Tea Catechins and Their Epimers, Biochimica et Biophysica Acta (BBA)-General Subjects, vol.1427, pp.13-23, 1999.

J. B. Paquay, G. R. Haenen, G. Stender, S. A. Wiseman, L. B. Tijburg et al., Protection against Nitric Oxide Toxicity by Tea, Journal of Agricultural and Food Chemistry, vol.48, pp.5768-5772, 2000.

N. Salah, N. J. Miller, G. Paganga, L. Tijburg, G. P. Bolwell et al., Polyphenolic Flavanols as Scavengers of Aqueous Phase Radicals and as Chain-Breaking Antioxidants, Archives of Biochemistry and Biophysics, vol.322, pp.339-346, 1995.

N. T. Zaveri, Green Tea and Its Polyphenolic Catechins : Medicinal Uses in Cancer and Noncancer Applications, Life Sciences, vol.78, pp.2073-2080, 2006.

C. G. Fraga, M. Galleano, S. V. Verstraeten, and P. I. Oteiza, Basic Biochemical Mechanisms behind the Health Benefits of Polyphenols, Molecular Aspects of Medicine, vol.31, pp.435-445, 2010.

B. Frei and J. V. Higdon, Antioxidant Activity of Tea Polyphenols In Vivo : Evidence from Animal Studies, The Journal of Nutrition, vol.133, pp.3275-3284, 2003.

J. Bernatoniene and D. M. Kopustinskiene, The Role of Catechins in Cellular Responses to Oxidative Stress, Molecules, vol.23, p.965, 2018.

G. L. Tipoe, T. Leung, M. Hung, and M. Fung, Green Tea Polyphenols as an Anti-Oxidant and Anti-Inflammatory Agent for Cardiovascular Protection, p.166, 2007.

N. Khan and H. Mukhtar, Tea Polyphenols for Health Promotion, Life Sciences, vol.81, pp.519-533, 2007.

I. A. Hakim and R. B. Harris, Joint Effects of Citrus Peel Use and Black Tea Intake on the Risk of Squamous Cell Carcinoma of the Skin, BMC Dermatology, vol.1, p.3, 2001.

L. N. Mu, X. F. Zhou, B. G. Ding, R. H. Wang, Z. F. Zhang et al., A case-control study on drinking green tea and decreasing risk of cancers in the alimentary canal among cigarette smokers and alcohol drinkers, Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi, vol.24, pp.192-195, 2003.

A. K. Kubík, P. Zatloukal, L. Tomá?ek, N. Pauk, L. Havel et al., Dietary Habits and Lung Cancer Risk among Non-Smoking Women, European Journal of Cancer Prevention, vol.13, pp.471-480, 2004.

M. Wang, C. Guo, and M. Li, A Case-Control Study on the Dietary Risk Factors of Upper Digestive Tract Cancer. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi, vol.20, pp.95-97, 1999.

B. Ji, W. Chow, A. W. Hsing, J. K. Mclaughlin, Q. Dai et al., Green Tea Consumption and the Risk of Pancreatic and Colorectal Cancers, International Journal of Cancer, vol.70, pp.255-258, 1997.

C. Sun, J. Yuan, W. Koh, M. C. Yu, and . Green-tea, Black Tea and Breast Cancer Risk : A MetaAnalysis of Epidemiological Studies, Carcinogenesis, vol.27, pp.1310-1315, 2006.

J. D. Lambert and C. S. Yang, Cancer Chemopreventive Activity and Bioavailability of Tea and Tea Polyphenols. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, pp.201-208, 2003.

M. S. Baliga, S. Meleth, and S. K. Katiyar, Growth Inhibitory and Antimetastatic Effect of Green Tea Polyphenols on Metastasis-Specific Mouse Mammary Carcinoma 4T1 Cells In Vitro and In Vivo Systems, Clinical Cancer Research, vol.11, pp.1918-1927, 2005.

J. Jankun, S. H. Selman, R. Swiercz, and E. Skrzypczak-jankun, Why Drinking Green Tea Could Prevent Cancer, Nature, vol.387, p.561, 1997.

N. Ahmad, D. K. Feyes, A. L. Nieminen, R. Agarwal, and H. Mukhtar, Green Tea Constituent Epigallocatechin-3-Gallate and Induction of Apoptosis and Cell Cycle Arrest in Human Carcinoma Cells, Journal of the National Cancer Institute, vol.89, pp.1881-1886, 1997.

H. Mukhtar and N. Ahmad, Tea Polyphenols : Prevention of Cancer and Optimizing Health, The American Journal of Clinical Nutrition, vol.71, pp.1698-1702, 2000.

A. Noormandi and F. Dabaghzadeh, Effects of Green Tea on Escherichia Coli as a Uropathogen, Journal of Traditional and Complementary Medicine, vol.5, pp.15-20, 2014.

Y. S. Cho, N. L. Schiller, H. Y. Kahng, and K. H. Oh, Cellular Responses and Proteomic Analysis of Escherichia Coli Exposed to Green Tea Polyphenols, Current Microbiology, vol.55, pp.501-506, 2007.

P. D. Stapleton, S. Shah, J. C. Anderson, Y. Hara, J. M. Hamilton-miller et al., Modulation of ?-Lactam Resistance in Staphylococcus Aureus by Catechins and Gallates, International Journal of Antimicrobial Agents, vol.23, pp.462-467, 2004.

K. Kawai, N. H. Tsuno, J. Kitayama, Y. Okaji, K. Yazawa et al., Epigallocatechin Gallate, the Main Component of Tea Polyphenol, Binds to CD4 and Interferes with Gp120 Binding, Journal of Allergy and Clinical Immunology, vol.112, pp.951-957, 2003.

Y. Kao, R. A. Hiipakka, and S. Liao, Modulation of Endocrine Systems and Food Intake by Green Tea Epigallocatechin Gallate, Endocrinology, vol.141, pp.980-987, 2000.

Y. Kao, H. Chang, M. Lee, C. Chen, and . Tea, Obesity, and Diabetes. Molecular Nutrition & Food Research, vol.50, pp.188-210, 2006.

C. Juhel, M. Armand, Y. Pafumi, C. Rosier, J. Vandermander et al., Green Tea Extract (AR25®) Inhibits Lipolysis of Triglycerides in Gastric and Duodenal Medium in Vitro, The Journal of Nutritional Biochemistry, vol.11, pp.45-51, 2000.

. Bibliographie,

V. Crespy and G. Williamson, A Review of the Health Effects of Green Tea Catechins in In Vivo Animal Models, The Journal of Nutrition, vol.134, pp.3431-3440, 2004.

Y. Kao, R. A. -h.-;-hiipakka, and S. Liao, Modulation of Obesity by a Green Tea Catechin, The American Journal of Clinical Nutrition, vol.72, pp.1232-1233, 2000.

M. E. Waltner-law, X. L. Wang, B. K. Law, R. K. Hall, M. Nawano et al., Epigallocatechin Gallate, a Constituent of Green Tea, Represses Hepatic Glucose Production, Journal of Biological Chemistry, vol.277, pp.34933-34940, 2002.

R. A. Anderson and M. M. Polansky, Tea Enhances Insulin Activity. Journal of Agricultural and Food Chemistry, vol.50, pp.7182-7186, 2002.

F. Fan, L. Sang, and M. Jiang, Catechins and Their Therapeutic Benefits to Inflammatory Bowel Disease, vol.22, p.484, 2017.
DOI : 10.3390/molecules22030484

URL : https://www.mdpi.com/1420-3049/22/3/484/pdf

Y. Komatsu, S. Suematsu, Y. Hisanobu, H. Saigo, R. Matsuda et al., Effects of pH and Temperature on Reaction Kinetics of Catechins in Green Tea Infusion, Biotechnology, and Biochemistry, vol.57, pp.907-910, 1993.

J. Z. Xu, S. Y. Yeung, Q. Chang, Y. Huang, and Z. Chen, Comparison of Antioxidant Activity and Bioavailability of Tea Epicatechins with Their Epimers, British Journal of Nutrition, vol.91, pp.873-881, 2004.

Q. Y. Zhu, A. Zhang, D. Tsang, Y. Huang, and Z. Chen, Stability of Green Tea Catechins, Journal of Agricultural and Food Chemistry, vol.45, pp.4624-4628, 1997.
DOI : 10.1021/jf9706080

R. G. Bailey, H. E. Nursten, and I. Mcdowell, Isolation and Analysis of a Polymeric Thearubigin Fraction from Tea, Journal of the Science of Food and Agriculture, vol.59, pp.365-375, 1992.

V. Roginsky and A. E. Alegria, Oxidation of Tea Extracts and Tea Catechins by Molecular Oxygen, Journal of Agricultural and Food Chemistry, vol.53, pp.4529-4535, 2005.
DOI : 10.1021/jf040382i

S. Sang, M. Lee, Z. Hou, C. Ho, and C. S. Yang, Stability of Tea Polyphenol (-)-Epigallocatechin-3Gallate and Formation of Dimers and Epimers under Common Experimental Conditions, Journal of Agricultural and Food Chemistry, vol.53, pp.9478-9484, 2005.

T. Tanaka, C. Mine, S. Watarumi, T. Fujioka, K. Mihashi et al., Accumulation of Epigallocatechin Quinone Dimers during Tea Fermentation and Formation of Theasinensins, Journal of Natural Products, vol.65, pp.1582-1587, 2002.

E. Roberts, .. H. Myers, and M. , The Phenolic Substances of Manufactured Tea. IV.-Enzymic Oxidations of Individual Substrates, Journal of the Science of Food and Agriculture, vol.10, pp.167-172, 1959.
DOI : 10.1002/jsfa.2740141003

S. Sang, X. Cheng, R. E. Stark, R. T. Rosen, C. S. Yang et al., Chemical Studies on Antioxidant Mechanism of Tea Catechins : Analysis of Radical Reaction Products of Catechin and Epicatechin with 2,2-Diphenyl-1-Picrylhydrazyl, Bioorganic & Medicinal Chemistry, vol.10, pp.2233-2237, 2002.

J. Xu, T. Tan, L. Kenne, and C. Sandström, The Use of Diffusion-Ordered Spectroscopy and Complexation Agents to Analyze Mixtures of Catechins, New Journal of Chemistry, vol.33, pp.1057-1063, 2009.

G. Cao and R. L. Prior, Measurement of Oxygen Radical Absorbance Capacity in Biological Samples, Methods in Enzymology, vol.5, pp.50-62, 1999.

R. Van-der-werf, Evaluation Du Pouvoir Antioxydant Des Aliments. Recherche de Leur Effets Modulateurs Sur Le Stress Oxydant Dans Le Cas Du Diabète, 2013.
URL : https://hal.archives-ouvertes.fr/tel-01037983

B. Ou, M. Hampsch-woodill, and R. L. Prior, Development and Validation of an Improved Oxygen Radical Absorbance Capacity Assay Using Fluorescein as the Fluorescent Probe, Journal of Agricultural and Food Chemistry, vol.49, pp.4619-4626, 2001.

J. Li, B. Zhu, Y. He, and Y. Inoue, Thermal and Infrared Spectroscopic Studies on Hydrogen-Bonding Interaction between Poly(3-Hydroxybutyrate) and Catechin, Polymer Journal, vol.35, pp.384-392, 2003.
DOI : 10.1295/polymj.35.384

URL : https://www.nature.com/articles/pj200350.pdf

. Bibliographie,

B. Zhu, J. Li, Y. He, H. Yamane, Y. Kimura et al., Effect of Steric Hindrance on Hydrogen-Bonding Interaction between Polyesters and Natural Polyphenol Catechin, Journal of Applied Polymer Science, vol.91, pp.3565-3573, 2004.
DOI : 10.1002/app.13581

R. Manikandan, M. Beulaja, C. Arulvasu, S. Sellamuthu, D. Dinesh et al., Synergistic Anticancer Activity of Curcumin and Catechin : An in Vitro Study Using Human Cancer Cell Lines. Microscopy Research and Technique, vol.75, pp.112-116, 2012.

J. W. Betts and D. W. Wareham, Vitro Activity of Curcumin in Combination with Epigallocatechin Gallate (EGCG) versus Multidrug-Resistant Acinetobacter Baumannii, vol.14, p.172, 2014.

Y. B. Pawar, H. Purohit, G. R. Valicherla, B. Munjal, S. V. Lale et al., Novel Lipid Based Oral Formulation of Curcumin : Development and Optimization by Design of Experiments Approach, International Journal of Pharmaceutics, vol.436, pp.617-623, 2012.

A. Kuksis, M. J. Mccarthy, and J. M. Beveridge, Triglyceride Composition of Native and Rearranged Butter and Coconut Oils, Journal of the American Oil Chemists' Society, vol.41, pp.201-205, 1964.
DOI : 10.1007/bf03024647

J. Bezard, M. Bugaut, and G. Clement, Triglyceride Composition of Coconut Oil, Journal of the American Oil Chemists' Society, vol.48, pp.134-139, 1971.
DOI : 10.1007/bf02545736

K. Yoshida, T. Sekine, F. Matsuzaki, T. Yanaki, and M. Yamaguchi, Stability of Vitamin A in Oil-in-Waterin-Oil-Type Multiple Emulsions, Journal of the American Oil Chemists' Society, vol.76, pp.1-6, 1999.

, I La microfluidique et son utilisation pour la génération de gouttes, p.173

.. .. Principes-généraux-de-la-microfluidique,

, Des écoulements dominés par des forces inhabituelles, p.173

. Microfluidique and . .. Écoulements-laminaires, , p.173

. Avantages and . .. De-la-microfluidique, , p.173

. .. , Matériaux utilisés pour former les puces microfluidiques, vol.174

, Différentes géométries permettant la formation de gouttes simples178

.. .. Le-co-Écoulement,

T. .. Les-jonctions-en,

, Adaptation à la formation de doubles émulsions, p.179

, Concilier des mouillabilités opposées sur la même puce, p.181

, Activation des surfaces et greffage/adsorption de molécules, p.181

. , Via un traitment de surface local

.. .. Sans-traitement-de-surface,

. , II Mise au point d'une technique permettant la formation de gouttes multiples au sein de la même puce microfluidique

.. .. Mode-opératoire,

C. V. Formation-d'émulsions-e/h/e-par, E. Voie-microfluidique, . De, and . Ii,

, Caractérisation des surfaces protégées par le marqueur, p.185

. , Utilisation d'un marquage fluorescent

, Formation de doubles émulsions E/H/E avec des tensioactifs modèles, p.187

. .. Conclusions,

. , III Formation d'émulsions stabilisées par des copolymères PDMS-b-PDMAEMA par voie microfluidique

. Émulsions-obtenues and . .. Stabilité,

. Émulsions-obtenues and . .. Stabilité,

. .. , Formation d'émulsions doubles en microfluidique

. , Optimisation de la géométrie de la puce

. .. Mesures-de-viscosité,

M. De-contact and .. .. ,

. .. Conclusions,

. .. Conclusions,

, d Formation d'émulsions doubles chargées en catéchine, p.204

.. .. Résultats,

.. .. Relargage-de-la-catéchine,

. .. Conclusions,

D. B. Weibel, M. Kruithof, S. Potenta, S. K. Sia, A. Lee et al., Torque-Actuated Valves for Microfluidics, Analytical Chemistry, vol.77, pp.4726-4733, 2005.
DOI : 10.1021/ac048303p

D. J. Beebe, G. A. Mensing, and G. M. Walker, Physics and Applications of Microfluidics in Biology. Annual Review of Biomedical Engineering, vol.4, pp.261-286, 2002.

J. Wang, G. Sui, V. P. Mocharla, R. J. Lin, M. E. Phelps et al., Integrated Microfluidics for Parallel Screening of an In Situ Click Chemistry Library, Angewandte Chemie, vol.118, pp.5402-5407, 2006.

P. W. Miller, L. E. Jennings, A. J. Demello, A. D. Gee, N. J. Long et al., A Microfluidic Approach to the Rapid Screening of Palladium-Catalysed Aminocarbonylation Reactions. Advanced Synthesis & Catalysis, vol.351, pp.3260-3268, 2009.

A. Manz, D. J. Harrison, E. M. Verpoorte, J. C. Fettinger, A. Paulus et al., Planar Chips Technology for Miniaturization and Integration of Separation Techniques into Monitoring Systems : Capillary Electrophoresis on a Chip, Journal of Chromatography A, vol.593, pp.253-258, 1992.

A. Hibara, S. Iwayama, S. Matsuoka, M. Ueno, Y. Kikutani et al., Surface Modification Method of Microchannels for Gas-Liquid Two-Phase Flow in Microchips, Analytical Chemistry, vol.77, pp.943-947, 2005.

H. Miyaguchi, M. Tokeshi, Y. Kikutani, A. Hibara, H. Inoue et al., Microchip-Based Liquid-liquid Extraction for Gas-Chromatography Analysis of Amphetamine-Type Stimulants in Urine, Journal of Chromatography A, vol.1129, pp.105-110, 2006.

M. Tokeshi, T. Minagawa, and T. Kitamori, Integration of a Microextraction System on a Glass Chip : Ion-Pair Solvent Extraction of Fe(II) with 4,7-Diphenyl-1,10-Phenanthrolinedisulfonic Acid and Tri-nOctylmethylammonium Chloride, Analytical Chemistry, vol.72, pp.1711-1714, 2000.

A. H. Ng, U. Uddayasankar, and A. R. Wheeler, Immunoassays in Microfluidic Systems, Analytical and Bioanalytical Chemistry, vol.397, pp.991-1007, 2010.

S. K. Sia and G. M. Whitesides, Microfluidic Devices Fabricated in Poly(Dimethylsiloxane) for Biological Studies, Electrophoresis, vol.24, pp.3563-3576, 2003.

J. Baret, O. Miller, V. Taly, M. Ryckelynck, A. El-harrak et al., Fluorescence-Activated Droplet Sorting ( FADS ) : Efficient Microfluidic Cell Sorting Based on Enzymatic Activity, vol.9, pp.1850-1858, 2009.

R. Gómez-sjöberg, A. A. Leyrat, D. M. Pirone, C. S. Chen, S. R. Quake et al., Fully Automated, Microfluidic Cell Culture System, Analytical Chemistry, vol.79, pp.8557-8563, 2007.

P. Abgrall and A. Gué, Lab-on-Chip Technologies : Making a Microfluidic Network and Coupling It into a Complete Microsystem-a, Review. Journal of Micromechanics and Microengineering, vol.17, p.15, 2007.

P. B. Umbanhowar, V. Prasad, and D. A. Weitz, Monodisperse Emulsion Generation via Drop Break Off in a Coflowing Stream, Langmuir, vol.16, pp.347-351, 2000.

A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone et al., Monodisperse Double Emulsions Generated from a Microcapillary Device, Science, vol.308, pp.537-541, 2005.

A. I. Toldy, A. Z. Badruddoza, L. Zheng, T. A. Hatton, R. Gunawan et al., Spherical Crystallization of Glycine from Monodisperse Microfluidic Emulsions, Crystal Growth & Design, vol.12, pp.3977-3982, 2012.

D. C. Duffy, J. C. Mcdonald, O. J. Schueller, and G. M. Whitesides, Rapid Prototyping of Microfluidic Systems in Poly(Dimethylsiloxane), Analytical Chemistry, vol.70, pp.4974-4984, 1998.

J. N. Lee, C. Park, and G. M. Whitesides, Solvent Compatibility of Poly(Dimethylsiloxane)-Based Microfluidic Devices, Analytical Chemistry, vol.75, pp.6544-6554, 2003.

. Bibliographie,

H. ;. Klank, J. Kutter, and O. Geschke, CO 2-Laser Micromachining and Back-End Processing for Rapid Production of PMMA-Based Microfluidic Systems, vol.2, pp.242-246, 2002.

S. Qi, X. Liu, S. Ford, J. Barrows, G. Thomas et al., Microfluidic Devices Fabricated in Poly(Methyl Methacrylate) Using Hot-Embossing with Integrated Sampling Capillary and Fiber Optics for Fluorescence Detection, pp.88-95, 2002.

J. Steigert, S. Haeberle, T. Brenner, C. Müller, C. P. Steinert et al.,

J. Ducrée, Rapid Prototyping of Microfluidic Chips in COC, Journal of Micromechanics and Microengineering, vol.17, p.333, 2007.

A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays, Angewandte Chemie International Edition, vol.46, pp.1318-1320, 2007.
DOI : 10.1002/ange.200603817

URL : http://europepmc.org/articles/pmc3804133?pdf=render

R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, Droplet Based Microfluidics. Reports on Progress in Physics, vol.75, p.16601, 2012.

Y. Z. Liu, B. J. Kim, and H. J. Sung, Two-Fluid Mixing in a Microchannel, International Journal of Heat and Fluid Flow, vol.25, pp.986-995, 2004.
DOI : 10.1016/j.ijheatfluidflow.2004.03.006

A. D. Stroock, S. K. Dertinger, A. Ajdari, I. Mezi?, H. A. Stone et al., Chaotic Mixer for Microchannels, Science, vol.295, pp.647-651, 2002.
DOI : 10.1126/science.1066238

F. Jiang,

K. S. Drese,

S. Hardt,

M. Küpper,

F. Schönfeld, Helical Flows and Chaotic Mixing in Curved Micro Channels, AIChE Journal, vol.50, pp.2297-2305, 2004.

A. Günther, K. F. Jensen, and . Microfluidics, From Flow Characteristics to Chemical and Materials Synthesis, Lab on a Chip, vol.6, pp.1487-1503, 2006.

A. Günther, S. A. Khan, M. Thalmann, F. Trachsel, and K. F. Jensen, Transport and Reaction in Microscale Segmented Gas-liquid Flow, vol.4, pp.278-286, 2004.

G. F. Christopher and S. L. Anna, Microfluidic Methods for Generating Continuous Droplet Streams, Journal of Physics D : Applied Physics, vol.40, p.319, 2007.
DOI : 10.1088/0022-3727/40/19/r01

J. J. Agresti, E. Antipov, A. R. Abate, K. Ahn, A. C. Rowat et al., Ultrahigh-Throughput Screening in Drop-Based Microfluidics for Directed Evolution, Proceedings of the National Academy of Sciences, vol.107, pp.4004-4009, 2010.
DOI : 10.1073/pnas.0910781107

URL : https://hal.archives-ouvertes.fr/hal-02136491

M. T. Guo, A. Rotem, J. A. Heyman, and D. A. Weitz, Droplet Microfluidics for High-Throughput Biological Assays, vol.12, pp.2146-2155, 2012.
DOI : 10.1039/c2lc21147e

A. R. Abate,

D. A. Weitz, High-Order Multiple Emulsions Formed in Poly(Dimethylsiloxane) Microfluidics, Small, vol.5, pp.2030-2032, 2009.

W. Engl, R. Backov, and P. Panizza, Controlled Production of Emulsions and Particles by Milli-and Microfluidic Techniques, Current Opinion in Colloid & Interface Science, vol.13, pp.206-216, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00672548

R. Dreyfus, P. Tabeling, and H. Willaime, Ordered and Disordered Patterns in Two-Phase Flows in Microchannels, Physical Review Letters, vol.90, p.144505, 2003.
DOI : 10.1103/physrevlett.90.144505

URL : https://hal.archives-ouvertes.fr/hal-02106276

Z. Chong, Z. Hwa-tan, S. ;. Gañán-calvo, A. Beng-tor, S. Hiang-loh et al., Active Droplet Generation in Microfluidics. Lab on a Chip, vol.16, pp.35-58, 2016.

C. Cramer, P. Fischer, and E. J. Windhab, Drop Formation in a Co-Flowing Ambient Fluid, Chemical Engineering Science, vol.59, pp.3045-3058, 2004.

T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, Dynamic Pattern Formation in a VesicleGenerating Microfluidic Device, Physical Review Letters, vol.86, pp.4163-4166, 2001.

S. L. Anna, N. Bontoux, and H. A. Stone, Formation of Dispersions Using, Flow Focusing" in Microchannels. Applied Physics Letters, vol.82, pp.364-366, 2003.

. Bibliographie,

A. R. Abate, A. T. Krummel, D. Lee, M. Marquez, C. Holtze et al., Photoreactive Coating for High-Contrast Spatial Patterning of Microfluidic Device Wettability, vol.8, pp.2157-2160, 2008.

S. C. Kim, D. J. Sukovich, and A. R. Abate, Patterning Microfluidic Device Wettability with SpatiallyControlled Plasma Oxidation, vol.15, pp.3163-3169, 2015.

W. C. Bauer, M. Fischlechner, C. Abell, and W. T. Huck, Hydrophilic PDMS Microchannels for HighThroughput Formation of Oil-in-Water Microdroplets and Water-in-Oil-in-Water Double Emulsions, Lab on a Chip, vol.10, pp.1814-1819, 2010.

S. Li, X. Gong, C. S. Nally, M. Zeng, T. Gaule et al., Rapid Preparation of Highly Reliable PDMS Double Emulsion Microfluidic Devices, RSC Advances, vol.6, pp.25927-25933, 2016.

P. Panizza, W. Engl, C. Hany, and R. Backov, Controlled Production of Hierarchically Organized Large Emulsions and Particles Using Assemblies on Line of Co-Axial Flow Devices, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.312, pp.24-31, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00207690

S. Okushima, T. Nisisako, T. Torii, and T. Higuchi, Controlled Production of Monodisperse Double Emulsions by Two-Step Droplet Breakup in Microfluidic Devices, Langmuir, vol.20, pp.9905-9908, 2004.

A. Tóth, I. Bertóti, M. Blazsó, G. Bánhegyi, A. Bognar et al., Oxidative Damage and Recovery of Silicone Rubber Surfaces. I. X-Ray Photoelectron Spectroscopic Study, Journal of Applied Polymer Science, vol.52, pp.1293-1307, 1994.

, Dou Yue-Hua

, Bao Ning

X. Jing-juan,

C. Hong-yuan, A Dynamically Modified Microfluidic Poly(Dimethylsiloxane) Chip with Electrochemical Detection for Biological Analysis. ELECTROPHORESIS, vol.23, pp.3558-3566, 2002.

S. Hu, X. Ren, M. Bachman, C. E. Sims, G. P. Li et al., Surface-Directed, Graft Polymerization within Microfluidic Channels, Analytical Chemistry, vol.76, pp.1865-1870, 2004.

G. Decher, Fuzzy Nanoassemblies : Toward Layered Polymeric Multicomposites, Science, vol.277, pp.1232-1237, 1997.

F. Chang and Y. Su, Controlled Double Emulsification Utilizing 3D PDMS Microchannels, Journal of Micromechanics and Microengineering, vol.18, p.65018, 2008.

A. Rotem, A. R. Abate, A. S. Utada, V. V. Steijn, and D. A. Weitz, Drop Formation in Non-Planar Microfluidic Devices, vol.12, pp.4263-4268, 2012.

B. Sarrazin, R. Brossard, P. Guenoun, and F. Malloggi, Investigation of PDMS Based Bi-Layer Elasticity via Interpretation of Apparent Young's Modulus, Soft Matter, vol.12, pp.2200-2207, 2016.

W. D. Bancroft, The Theory of Emulsification, V. The Journal of Physical Chemistry, vol.17, pp.501-519, 1912.

T. Nisisako, S. Okushima, and T. Torii, Controlled Formulation of Monodisperse Double Emulsions in a Multiple-Phase Microfluidic System, Soft Matter, vol.1, pp.23-27, 2005.

J. D. Wehking, M. Gabany, L. Chew, and R. Kumar, Effects of Viscosity, Interfacial Tension, and Flow Geometry on Droplet Formation in a Microfluidic T-Junction, Microfluidics and Nanofluidics, vol.16, pp.441-453, 2014.

R. Lutz, A. Aserin, L. Wicker, and N. Garti, Release of Electrolytes from W/O/W Double Emulsions Stabilized by a Soluble Complex of Modified Pectin and Whey Protein Isolate, Colloids and Surfaces B : Biointerfaces, vol.74, pp.178-185, 2009.

M. Bonnet, M. Cansell, A. Berkaoui, M. H. Ropers, M. Anton et al., Release Rate Profiles of Magnesium from Multiple W/O/W Emulsions, Food Hydrocolloids, vol.23, pp.92-101, 2009.

R. Jiménez-alvarado, C. I. Beristain, L. Medina-torres, A. Román-guerrero, and E. J. Vernon-carter, Ferrous Bisglycinate Content and Release in W1/O/W2 Multiple Emulsions Stabilized by Protein-polysaccharide Complexes, Food Hydrocolloids, vol.23, pp.2425-2433, 2009.

L. Besnard, F. Marchal, J. F. Paredes, J. Daillant, N. Pantoustier et al., Multiple Emulsions Controlled by Stimuli-Responsive Polymers, Advanced Materials, vol.25, pp.2844-2848, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01537679

L. Besnard, M. Protat, F. Malloggi, J. Daillant, F. Cousin et al., Breaking of the Bancroft Rule for Multiple Emulsions Stabilized by a Single Stimulable Polymer, Soft Matter, vol.10, pp.7073-7087, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01157197

Q. Chen and X. Deng, An, Z. pH-Induced Inversion of Water-in-Oil Emulsions to Oil, Water High Internal Phase Emulsions (HIPEs) Using Core Cross-Linked Star (CCS) Polymer as Interfacial Stabilizer
URL : https://hal.archives-ouvertes.fr/in2p3-00001210

, Macromolecular Rapid Communications, vol.35, pp.1148-1152, 2014.

F. Tu and D. Lee, One-Step Encapsulation and Triggered Release Based on Janus Particle-Stabilized Multiple Emulsions, Chemical Communications, vol.50, pp.15549-15552, 2014.

Y. Zhu, J. Sun, C. Yi, W. Wei, and X. Liu, One-Step Formation of Multiple Pickering Emulsions Stabilized by Self-Assembled Poly(Dodecyl Acrylate-Co-Acrylic Acid, Nanoparticles. Soft Matter, vol.12, pp.7577-7584, 2016.

B. P. Binks and J. A. Rodrigues, Types of Phase Inversion of Silica Particle Stabilized Emulsions Containing Triglyceride Oil, Langmuir, vol.19, pp.4905-4912, 2003.

L. Hong, G. Sun, J. Cai, and T. Ngai, One-Step Formation of W/O/W Multiple Emulsions Stabilized by Single Amphiphilic Block Copolymers, Langmuir, vol.28, pp.2332-2336, 2012.

Y. Zhang, J. Gou, F. Sun, S. Geng, X. Hu et al., Impact of Electrolytes on Double Emulsion Systems (W/O/W) Stabilized by an Amphiphilic Block Copolymer, Colloids and Surfaces B : Biointerfaces, vol.122, pp.368-374, 2014.

M. Protat, N. Bodin, F. Gobeaux, F. Malloggi, J. Daillant et al., Biocompatible Stimuli-Responsive W/O/W Multiple Emulsions Prepared by One-Step Mixing with a Single Diblock Copolymer Emulsifier, Langmuir, vol.32, pp.10912-10919, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01387471

M. Protat, Formation d'émulsions multiples stimulables en une seule étape d'émulsification : effet du sel et évolution vers des architectures biocompatibles, 2016.

K. Bock and R. U. Lemieux, The Conformational Properties of Sucrose in Aqueous Solution : Intramolecular Hydrogen-Bonding, Carbohydrate Research, vol.100, pp.63-74, 1982.

S. D. Allison, B. Chang, T. W. Randolph, and J. F. Carpenter, Hydrogen Bonding between Sugar and Protein Is Responsible for Inhibition of Dehydration-Induced Protein Unfolding, Archives of Biochemistry and Biophysics, vol.365, pp.289-298, 1999.

L. S. Taylor and G. Zografi, Sugar-polymer Hydrogen Bond Interactions in Lyophilized Amorphous Mixtures, Journal of Pharmaceutical Sciences, vol.87, pp.1615-1621, 2000.

J. Li, B. Zhu, Y. He, and Y. Inoue, Thermal and Infrared Spectroscopic Studies on Hydrogen-Bonding Interaction between Poly(3-Hydroxybutyrate) and Catechin, Polymer Journal, vol.35, pp.384-392, 2003.

B. Zhu, J. Li, Y. He, H. Yamane, Y. Kimura et al., Effect of Steric Hindrance on Hydrogen-Bonding Interaction between Polyesters and Natural Polyphenol Catechin, Journal of Applied Polymer Science, vol.91, pp.3565-3573, 2004.