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Résumé substantiel en français

Ma thèse se compose de deux parties indépendantes. La première, qui comporte deux

chapitres, appartient au nouveau champ dit de "la crypto-économie", tandis que la

deuxième, qui constitue le troisième chapitre, s’occupe d’économétrie théorique.

Dans le premier chapitre, co-écrit avec M. Julien Prat, nous présentons un mod-

èle qui prédit la puissance de calcul totale déployée par les mineurs de bitcoins en

utilisant le taux de change bitcoin / dollar. Il s’agit du premier modèle dynamique

d’équilibre du marché des mineurs. Le problème auquel les mineurs font face

s’apparente à un quasi-cas d’école d’un problème d’investissement dans un secteur

où les revenus sont incertains. En effet, le marché des mineurs remplit quatre condi-

tions précises. Premièrement, de par la nature des problèmes cryptographiques que

doivent résoudre les mineurs, ce secteur bénéficie de rendements d’échelle constants.

Deuxièmement, miner étant une activité à la portée de tous, il y a libre entrée sur ce

marché. Troisièmement, les mineurs ont tous accès à la même technologie et font tous

face aux mêmes coûts. Si leur revenus, qui dépendent directement du taux de change

bitcoin / dollar, sont très volatils, ceux-ci constituent la seule source d’incertitude. Il

n’y a aucun aléa au niveau individuel. Enfin, le matériel informatique utilisé étant spé-

cifique à cette activité, il ne peut être revendu. Acheter une de ces machines constitue

donc un investissement irréversible. Ces quatre caractéristiques correspondent aux

hypothèses du modèle de Caballero et Pyndick (1996). Il y a cependant une différence

notable entre ce dernier et le marché des mineurs: le matériel de minage bénéficie

d’un important taux de progrès technique. Nous adaptons donc le modèle précédent

en conséquence et le calibrons avec les données. Nous démontrons empiriquement

sa pertinence en comparant ses prédictions avec la puissance de calcul observée.

Dans le deuxième chapitre, écrit seul, je propose une méthode simple et réaliste

pour enrayer la hausse (à court terme) et amorcer la baisse (à plus long terme) de la

consommation déraisonnable d’électricité de Bitcoin et rompre le lien entre celle-ci

et le taux de change du bitcoin. En m’appuyant sur une version simplifiée du mod-

èle développé dans le premier chapitre, je mets en évidence l’inefficacité du proto-

cole Bitcoin actuel. Je montre que celui-ci offre un niveau de sécurité beaucoup trop

élevé au prix d’un formidable gâchis d’électricité financé par les détenteurs de bit-

coins. En effet, il serait possible de diminuer grandement la puissance de calcul du

réseau tout en conservant à un niveau extrêmement faible la probabilité qu’un agent
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malveillant puisse réussir à annuler une transaction. Cela signifie qu’il serait possible

de moins rémunérer les mineurs en leur accordant moins de nouveaux bitcoins pour

chaque nouveau bloc trouvé et ainsi converger plus rapidement vers le protocole de

long terme proposé par Nakamoto (2008), selon lequel les mineurs sont exclusive-

ment rémunérés par les frais de transaction. Sans même tenir compte de l’externalité

environnementale, les détenteurs de bitcoins bénéficieraient d’une telle mesure car

celle-ci réduirait l’augmentation du stock total de bitcoins. Un tel protocole Pareto-

dominerait le protocole actuel car la libre entrée sur le marché des mineurs assure

que ces deniers ne réalisent pas de profit, quelque soit le protocole en vigueur. Mal-

heureusement, la transition entre les deux protocoles s’avère impossible à cause d’un

problème d’incitations. Les mineurs déjà entrés sur le marché ne sont, eux, pas indif-

férents entre les protocoles car ils ont déjà acheté leurs machines. Ce sont justement

eux qui décident si le changement de protocole doit avoir lieu ou non. Pour pallier ce

problème, je détermine le protocole le plus économe en électricité qui ne lèse pas les

mineurs actifs. L’intuition est la suivante: afin que ceux-ci acceptent une future et per-

manente baisse de leurs revenus, il faut leur accorder le plus tôt possible une prime

conséquente. Ainsi, il faut commencer par augmenter fortement et temporairement le

nombre de nouveaux bitcoins créés par blocs avant de lui donner sa valeur souhaitée

pour le plus long terme.

Dans le troisième chapitre, j’étudie les problèmes d’identification et d’estimation

de l’effet marginal moyen dans un modèle logit sur données de panel avec effets fixes.

Je commence par montrer que le paramètre d’intérêt n’est que partiellement iden-

tifié et je pose le problème d’optimisation qu’il faudrait résoudre pour obtenir les

bornes exactes de l’intervalle d’identification. Il s’agit d’un problème d’optimisation

sur un espace fonctionnel, extrêmement complexe en théorie comme en pratique. En

m’appuyant sur la théorie des systèmes de Chebyshev, je montre que les bornes ad-

mettent une caractérisation simple qui permet de les calculer très rapidement

numériquement. Malheureusement, le problème dit "du fléau de la dimension" em-

pêche, la plupart du temps, d’appliquer la même méthode pour estimer les bornes

sur des données. Je propose alors plusieurs idées pour contourner ce problème et les

évalue à l’aide de simulations.
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General introduction

Specific case for this dissertation This dissertation can be seen as a specific case

since it concatenates two independent topics. In fact, I started working on a theoreti-

cal econometrics subject but, due to great difficulties, then switched to another topic

which fascinates me: Bitcoin. Such a choice was motivated by the novelty and the

originality of my new topic, which raises incredibly many unanswered questions in all

the sub-fields of economics. Today, I reckon I made the right decision since this sub-

ject has become extremely fashionable and working on it has enabled me to write my

dissertation on time. To deliver a faithful image of the dissertation, the introduction

splits in two parts: one part on Bitcoin and the other one on econometrics.

Bitcoin

Bitcoin was created in the beginning of January 2009. It is the first currency which

works without any central actor such that a central bank or commercial banks. But

Bitcoin is more than a mere currency. Each payment is assorted with a condition that

the recipient must fulfill in order to redeem the sent funds. This technology, known as

"smart contracts", can be used to solve many commitment problems. For a long time,

Bitcoin remained extremely confidential or confined to a small circle of computer sci-

ence experts. That is why, until 2016, when Bitcoin eventually became more famous

for the general public, most works on it were undertaken by computer sciantists. The

aim of those works was often to improve Bitcoin’s functionalities. For instance, King

and Nadal (2012) show how to deprive Bitcoin from its dependency on energy con-

sumption. Assia et al. (2013) create a protocol which enables users to transfer the

ownership of any asset using Bitcoin. Back et al. (2014) design a general method used

to leverage Bitcoin’s capabilities, which Lerner (2015) resort to in order to enhance the

possibilities offered by smart contracts. Finally, Poon and Thaddeus (2016) explain

how to transfer bitcoins instantaneously and safely. Other articles focus on the safety

of transactions. Karame et al. (2012) wonder to which extent it is possible to can-

cel a Bitcoin payment, when the corresponding good is delivered immediately. Reid

and Harrigan (2012) question the anonimity of transactions. Decker and Wattenhof-

fer (2013) explain how delays when transmitting information on the network can be

detrimental and Grunspan and Pérez-Marco (2017) correct Nakamoto’s computations

about the probability of success of an attack.
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Along with Bitcoin’s democratization, its disruptive potential and the one of blockchain,

the underlying technology, have become ever more palpable. Little by little, one could

witness the development of a whole ecosystem of more than a thousand cryptocur-

rencies endowed with different aims and functionnalities, and applications relying on

those cryptocurrencies. New economic practices have appeared and attracted economists’

attention who have started studying the unidentified economic object with the seem-

ingly most natural tool: monetary economics. Fernández-Villaverde and Sanches (2016)

wonder whether it makes sense to have a plethora of cryptocurrencies. Hong et al.

(2017) study to what extent cryptocurrencies can represent a threat for fiat currencies.

Chiu and Koeppl (2017) call into question the choice for parameters of the Bitcoin

protocol and Gandal et al. (2017) shed light on some exchange rate manipulations.

True, Bitcoin enables the development of new economic practices. But its link to

economics is much stronger. It is fascinating to see to which extent its design hinges

on the economic science. If Bitcoin’s safety remains, before all, a matter of robust-

ness of its cryptographic primitives, the security also crucially depends on miners’

economic incentives to provide the network with their computing power. Several arti-

cles study those incentives. Rosenfeld (2011) study the different mining pools reward

systems, Biais et al. (2017) wonder under which condition can the chain of blocks split

in two and Huberman et al. (2017) focus on the behavior of the different actors once

(almost) all the bitcoins are mined.

Those last articles are probably the closest to my work since I focus on miners’

behavior as well. But what especially stroke me was Bitcoin’s staggering electricity

consumption, which, in June 2018, was a bit above 0.3% of the world electricity con-

sumption. In a first chapter, I try to understand how miners make their decisions

about when investing in new mining hardware. Since the B/ $ exchange rate directly

influences miners’ revenues, the investment decision must obviously depend on it.

Yet, knowing exactly when miners should invest remains more challenging because

they must take into account the high volatility of the exchange rate, the high embod-

ied technical progress rate the mining hardware enjoys and the competitive nature of

the market. In the first chapter, my coauthor, Mr. Julien Prat, and I design a model

which accounts for those points. Using the B/ $ exchange rate, the model manages to

reproduce fairly well the observed computing power on the medium and long terms.

In a second chapter, I start with describing the current Bitcoin protocol to show

how much electricity and money are wasted for the sake of an unnecessarily high level
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of security. I present the ideal protocol but show that it remains utopic due to an im-

possible transition from the current one. Indeed, any protocol change must be agreed

upon by miners. Miners would certainly veto this specific proposal since they would

be the only losers. Finally, I introduce the best realistic protocol: the one which leads

to the smallest amount of electricity being consumed without hurting miners.

Panel data with a binary dependent variable

As opposed to statistics, econometrics often deals with endogeneity issues. Resorting

to panel data remains one of the most frequent strategy, all the more so since panel

data are ever more available in many areas. In econometric models, the use of panel

data enables the econometrician to decompose the unobserved component, or error,

in an individual-specific variable, fixed in time and an idiosyncratic random variable.

If only the time-fixed component1, called "fixed effect", suffers from endogeneity, then

estimators remain consistent as long as there exists a way to transform the model so

as to make the fixed effects disappear. Note that getting rid of the fixed effects is a

necessity. Simply estimating them does not work because of the so-called "inciden-

tal parameters problem". Lancaster (2000) provides a literature review on this issue,

which arises when the number of parameters to estimate grows with the sample size,

at the same speed. In general, it implies the non-consistency of the estimator of the

parameter of interest.

With the linear model, the most frequently used, one can easily get rid of the fixed

effects simply by differentiating the data with respect to time. In this chapter, I con-

sider the binary dependent variable case. The marginal effect of an explanatory vari-

able on the dependent variable is interpreted as the extent to which the explanatory

variable affect the probability that the dependent one be equal to one. When this

probability is already very close to zero or very close to one, the marginal effect of

an explanatory variable has to be extremely week. Thus, for the model to make math-

ematical and economic sense, the marginal effect of a variable must tend to zero at

infinity. The linear model, which, in this case, remains the simplest option, does not

satisfy this basic requirement.

1The term "panel data" is used when several observation are available for each individual. If hese

multiple observations often stem from a survey that the same people answer several times, panel mod-

els can be used in many other situations. For the sake of simplicity, I shall always speak about time.
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With panel data, one must prefer the logit model since it satisfies the above re-

quirement and still enables the econometrician to get rid of the fixed effects, resorting

to a simple sufficient statistic. Chamberlain (2010) shows that when only two periods

are available, only the logit model fulfills these two conditions.

Yet, for many applications, knowing the value of the parameter of the model is not

enough since it cannot easily be interpreted. Here, I focus on the average marginal ef-

fect of an explanatory variable, which is, according to me, one of the most interesting

quantities. The average marginal effect cannot be directly computed with the model

parameter. Indeed, since individuals marginal effects depend on the values of those

individuals’ fixed effects, the average marginal effect depends on the joint distribution

of the fixed effects and the explanatory variables. . . which is not identified. The easi-

est solution is then to assume that the fixed effects follow a normal distribution are

independent from the explanatory variables. But this is a very restrictive assumption.

Here, I try to remain as agnostic as possible on the joint distribution of the fixed

effects and the explanatory variables. Such a choice comes at a cost: the average

marginal effect is no longer point identified but only set identified. Finding the sharp

identification interval boils down to minimize and maximize the average marginal ef-

fect on the set of all the fixed effects distributions which satisfy the constraints im-

posed by the model. But except for some very particular cases, infinite dimension

optimization problems, like the one we have here, are extremely difficult to solve in

practice. Chernozhukov et al. (2013) suggest a solution which involves an arbitrary

discretization the set of distributions. Of course, their method under-estimates the

real size of the identification region.

My two coauthors for this chapter, Messrs. Davezies and D’Haultfœuille, and I

manage to solve this problem. We provide a simple, easy-to-use and non computer-

intensive method to identify the sharp bounds of the identification region of the aver-

age marginal effect. This is the main contribution of our article.
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1 An equilibrium model of the market for bitcoin mining

Joint work with Julien Prat.

Abstract

We propose a model which uses the Bitcoin/US dollar exchange rate to pre-

dict the computing power of Bitcoin’s network. We show that free entry places an

upper-bound on mining revenues and we devise a structural framework to mea-

sure its value. Calibrating the model’s parameters allows us to accurately forecast

the evolution of the network computing power over time. We establish the accu-

racy of the model through out-of-sample tests and investigation of the entry rule.

We find that around one third of seigniorage income is dissipated in electricity

consumption. The model indicates that a slowing down in the rate of technologi-

cal progress will significantly increase Bitcoin’s carbon footprint.

1.1 Introduction

Bitcoin is the first currency that operates without a central authority or a trusted third

party. It enables merchants and customers to transact at a low cost and almost as

securely as if they were relying on the banking system. The disintermediation of mon-

etary transactions is only the initial stage of the paradigm shift initiated by Bitcoin. Its

success has ushered in a new era of financial innovation, with hundreds of cryptocur-

rencies created over the last couple of years.

Bitcoin’s design relies on a hybrid model that combines the robustness of its cryp-

tographic primitives with the economic incentives of the agents participating in the

execution of its protocol. Miners are at the center of the infrastructure since they guar-

antee the validity of transactions. They stack transactions into blocks and timestamp

those in a cryptographically robust way by adding a "proof-of-work".2 Miners are re-

warded for their efforts with new bitcoins and transaction fees. The cost of attacking

Bitcoin is proportional to the computing power deployed by miners because it deter-

mines the difficulty of the cryptographic puzzles included in their proofs-of-work.

As the value of Bitcoin skyrocketed, so did the resources devoted to mining. What

started as a hobby for a few miners using their personal computers, eventually blos-

2See Section 1.2 for a description of the tasks accomplished by miners.
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somed into an industry which consumes nearly 0.3% of the world’s electricity through

its network of mining farms,3 each one of them operating thousands of machines spe-

cially designed for mining. In spite of the growing concerns about the carbon footprint

of the mining industry, our paper is the first to propose an equilibrium model charac-

terizing its evolution over time. We show that miners’ investment in computing power

can be accurately forecasted using the Bitcoin/US dollar ( B/$) exchange rate.

Investment in mining hardware has two important characteristics. First, it cannot

easily be reversed: machines have no resale value outside of the market for mining

because they have been optimized for mining only. Second, there is a lot of uncer-

tainty about future revenues due to the tremendous volatility of B/$ exchange rate.

This combination generates a range of inaction where expected revenues are too low

to justify entry, yet still sufficient to prevent incumbents from exiting the market.

The main challenge for our analysis is that we cannot consider the problem of each

miner in isolation or treat revenues as exogenous. Instead, we have to take into ac-

count how returns are endogenously determined by the number of active miners. A

key insight of our model is that Bitcoin’s protocol generates revenues functions that

are decreasing in aggregate output, thereby ensuring that the market for mining be-

haves as a competitive industry.

Combining B/$ exchange rate with the total computing power of Bitcoin’s network,

we construct a new measure for miners’ payoffs. Our model predicts that miners buy

hardware only when this measure reaches a reflecting barrier. It never exceeds the

barrier because new entries push down payoffs by triggering additional increases in

mining costs. The characterization of the equilibrium is complicated by the fact that

mining hardware benefits from a high rate of embodied technological progress. We

show how one can adapt the canonical model of Caballero and Pyndick (1996) to ac-

count for this trend, and prove that the entry barrier decays at the rate of technological

progress.

Then we calibrate the model and find that it forecasts remarkably well how miners

respond to changes in B/$ exchange rate. The accuracy of our predictions is a testa-

ment to the fact that miners operate in a market where perfect competition is a good

approximation of reality. Its structure verifies many properties that are often assumed

but rarely verified in practice. First, free entry holds because mining is a mostly un-

3See, among other sources, digiconomist.net/bitcoin-energy-consumption .
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regulated activity with a streamlined set of tasks. To enter the mining race, one simply

has to buy the appropriate hardware and install the mining software. Second, there is

very little heterogeneity among miners since they all face the same problem and earn

the same rewards. Third, as explained below, the mining technology exhibits returns

to scale that are constant by nature. Fourth, the elasticity of revenues with respect to

the network computing power is commonly known because it is encoded in Bitcoin’s

protocol, and is therefore observable by all parties. Finally, we have access to per-

fectly clean and exhaustive data since all transactions are public. The conjunction of

all these features is extremely rare, if not unique, thus making the market for Bitcoin

mining a perfect laboratory for models of industry dynamics.

After having established that our baseline model accurately matches the data, we

relax a couple of simplifying assumptions in order to assess its robustness. First, we

allow for discontinuities in miners’ rewards that take into account reductions in the

monetary creation rate triggered by Bitcoin’s protocol every four years. Second, in-

stead of assuming that investment is completely irreversible, we endow miners with

the option to mothball or scrap their machines. We find that these extensions im-

prove the fit of the model but only marginally so. However, the model with partially

reversible investment has the significant benefit of separating the entry from the op-

erating costs, indicating that around one third of seigniorage income is dissipated in

electricity consumption. Studying the impact that each parameter has on the electric-

ity consumption of miners, we find that Bitcoin’s carbon footprint is likely to increase,

principally because of a slowdown in the rate of progress of the mining technology.

Related literature.—Our paper uses insights from the literature on irreversible in-

vestment to contribute to the nascent field of cryptoeconomics. Bitcoin was created

almost a decade ago when Nakamoto’s paper (Nakamoto (2008)) was made public on

October 31st 2008. It did not immediately attract much attention and it took a few

years for Bitcoin to become the focus of academic research. Early works analyzed the

reliability of Bitcoin’s network (Karame et al., 2012; Decker and Wattenhoffer, 2013).

Reid and Harrigan (2012) examined the anonymity of users, which enabled Athey et al.

(2017) to quantify the different ways bitcoins are used and Foley et al. (2018) to pre-

cisely identify illegal bitcoin users. Grunspan and Pérez-Marco (2017) and Bowden

et al. (2018) both corrected mathematical approximations made by Nakamoto in his

seminal paper.

It is only recently that papers studying the economic implications of cryptocur-
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rencies have started to emerge. Most articles rely on monetary economics for their

analysis. Observing the plethora of existing cryptocurrencies, Fernández-Villaverde

and Sanches (2016) wonder under which conditions competition between currencies

is economically efficient and how those currencies should be regulated. Hong et al.

(2017) and Schilling and Uhlig (2018) study the interactions between fiat and crypto

currencies. Chiu and Koeppl (2017) assess the choice of values for the parameters that

underlie Bitcoin’s design while Gandal et al. (2017) analyze exchange rate manipula-

tions. Cong and He (2017) question the public disclosures of information which result

from the use of the blockchain technology.

A series of recent papers is more closely related to our research since it studies the

market for mining. Rosenfeld (2011), Houy (2016) and Biais et al. (2017) investigate

miners’ incentives to behave cooperatively, as expected in Bitcoin’s protocol, or to play

"selfish". Ma et al. (2018) model the market for mining as a game between miners.

Huberman et al. (2017) look at the very long run, when miners will be rewarded in

transaction fees only. They analyze how users set their fees and how their decisions

impact electricity consumption.

Our paper also models the market for mining but unlike aforementioned articles,

we focus on miners’ entry decisions. We show that their behavior can be captured us-

ing standard methods from the real options literature. Since it would be impossible to

cover all the major contributions to this field, we refer to Dixit and Pyndick (1994) and

their bibliography for a broad overview. Our model being devised in an equilibrium

setting, it builds on the seminal work of Bertola and Caballero (1994) and Caballero

and Pyndick (1996) on industry dynamics. We find that, despite its apparent novelty,

the market for Bitcoin mining behaves very much like a competitive industry. Our

analysis illustrates that it is a perfect laboratory for real options theory because all the

miners solve a common problem whose parameters are easily observable.

Structure of the paper.—The article is organized as follows. Section 1.2 briefly ex-

plains how the market for Bitcoin mining operates. Section 1.3 introduces our baseline

model that yields the computing power of the network as a function of B/$ exchange

rate. Section 1.4 presents the data and explains how to calibrate the model. Section 1.5

proposes two extensions of the baseline model that relax its simplifying assumptions.

Section 1.6 concludes. The proofs of the Propositions and some additional results are

relegated to the Appendix.
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1.2 Bitcoin and the market for mining

This section describes the tasks accomplished by miners and the rewards they get in

return. Since it is well beyond the scope of this paper to explain the overall architecture

of Bitcoin, we only cover the elements that are required for the understanding of our

model, and refer readers interested in a more comprehensive treatment to Nakamoto

(2008) and Antonopoulos (2014).

The function of miners.— Bitcoin is a decentralized cryptocurrency which oper-

ates without a central authority. Decentralization is achieved through the recording of

transactions in a public ledger called the blockchain. The main challenge for a decen-

tralized currency is to maintain consensus among all participants on the state of the

blockchain (who owns what) in order to prevent double spending of the same coin. A

user spends a coin twice when one of her payments is accepted because the recipient

is not aware of a previous payment spending the same coin. In order to avoid such

conflicts, transactions are added to the blockchain by blocks and producing a valid

block is made so difficult that the time it takes to build a block is, on average, much

longer than the time it takes for a block to propagate across the network. This ensures

that, in most instances, the whole network agrees on which transactions are part of

the blockchain.

Blocks are cryptographically chained according to their dates of creation. This in-

cremental process implies that the information contained in a given block cannot be

modified without updating all subsequent blocks. Nakamoto’s groundbreaking in-

sight was to recognize that the cost of manipulation would increase dramatically in

the number of modified blocks, thus ensuring that tampering with a given block be-

comes prohibitively expensive as more blocks are added on top of it.

To be accepted by other Bitcoin users, a new block must be stamped with a "proof-

of-work". Each block possesses a header, which contains both a "nonce", i.e. an ar-

bitrary integer, and a statistic summing up the transactions of the block, the time the

block was built and the header of the previous block. Finding a valid proof-of-work

boils down to finding a nonce satisfying the condition h(header) ≤ t, where h is the

SHA-256 hash function applied twice in a row and t is a threshold value. The hash

function h has the property of being numerically non-invertible. Moreover knowing

h(n), for any n ∈ N, yields no information on h(m) for all m 6= n. Hence the only way

to find a valid nonce is to randomly hash guesses until the condition above is satis-
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fied. This activity is called mining and it requires few special skills besides the means

to spend resources on the mining process. The average time it takes to mine a valid

block can be made arbitrarily long by lowering the threshold t. Since Bitcoin’s proto-

col specifies that one valid block should be found every 10 minutes, the threshold is

updated every 2016 blocks to account for changes in the computing power, or hash-

power, deployed by miners .

Building a valid block is costly both in terms of hardware and electricity, hence

miners must be rewarded. For each block there is a competition between miners. Only

the first miner who finds a valid nonce wins the reward: she earns a predetermined

amount of new coins and the sum of the mining fees granted by the transactions in-

cluded in the block. The amount of new bitcoins for block numberB is approximately

50 × (1/2)bB/210,000c while fees are freely chosen by users.4 The amount of new coins

halves every 210,000 blocks so as to ensure that the supply of bitcoins converges to a

finite limit, namely 21 millions.

The market for Bitcoin mining.— To enter the mining race, a potential miner has to

buy the right hardware. Free entry prevails because anyone can easily order the ma-

chine and install the software. There is no heterogeneity across miners besides their

amounts of hashpower and the price they pay for electricity. The amount of hash-

power a miner owns should not matter due to constant returns to scale: two pieces of

hardware will generate valid blocks exactly twice as often as a single piece of hardware.

It has nonetheless become common for miners to build impressive mining farms. Al-

though such concentrations of computing power suggest that returns are increasing,5

the conclusion is not warranted. It might very well be that the size of each farm is de-

termined by the amount of cheap electricity that is available in its specific location.

Such a constraint would determine the geographical allocation of mining power with-

out affecting the industry dynamics at the world level. Actually, since Bitcoin mining is

still far from having exploited all the world supply of cheap electricity, it is only natural

to conjecture that active miners face operating costs that are broadly similar.

The hardware used for mining benefits from constant upgrades. At the beginning,

miners used to mine with their own computers. In mid-2010, they realized that Graph-

4We use b·c to denote the integer part, i.e. bxc = max
n∈N
{n ≤ x}.

5Among the reasons why mining may exhibit increasing returns, the most commonly advanced one

is that average maintenance costs are decreasing in farm size. Assessing this channel requires detailed

micro data on mining which, to the best of our knowledge, are not yet available.

17



ical Processing Units (GPU) were much more efficient. One year later, miners started

using Field Programmable Gate Arrays (FGPA) and, since 2013, they mostly mine with

Application Specific Integrated Circuits (ASIC). Investing in a GPU was a reversible de-

cision since GPUs could serve many other purposes besides mining; should the B/$

exchange rate drop, the GPU could easily be sold to some video games addict. By

contrast, buying an ASIC is an irreversible investment because, as indicated by their

names, ASICs can be used for Bitcoin mining only. Hence, if the exchange rate col-

lapses, ASICs cannot be resold at a profit because all miners face the same returns.

A mining cycle unfolds as follows. A new miner buys a recent piece of hardware

and starts mining with it. Little by little, the revenues generated by her machine drop

as ever more powerful hardware enters the race. When the flow income falls below the

cost of electricity, the miner turns off her machine and exits the market.

Mining solo is very risky since a miner earns her reward solely when she finds a

valid block, which is a very rare event given the number of miners participating in

the race.6 This is why miners pool their resources and share the revenues earned by

their pools according to the relative hashpower of each member. Obviously miners

have the option but not the obligation to exchange their bitcoins against fiat money.

However, since the exchange rate ensures that traders are indifferent between holding

fiat money or bitcoins, the value of the reward at the time it is earned is accurately

measured by its level in fiat money.7

For the sake of completeness, it is worth mentioning that the bitcoins issued with a

new block cannot be exchanged straight away. A retention period is imposed because

valid blocks are not always added to the blockchain. The validity of the nonce is not

enough to maintain consensus when two blocks are found within a short time lapse

by two different miners. Then participants will have different views of the state of the

blockchain depending on which of the two blocks was broadcasted to them in the first

place. Such conflicts create forks in the blockchain that are eventually resolved as min-

ers coordinate on the branch requesting the greatest amount of hashpower ("longest

chain rule"). The blocks that were added to the abandoned branch, called "orphan

blocks", are discarded. To ensure that the new coins contained in orphan blocks do

6On July 1st 2017, the best ASIC miner could perform 14 tera hashes per second and cost $ 2400. The

whole Bitcoin network performs 10 exa hashes (10 millions of tera hashes) per second.
7Depending on their locations, some investors may convert their bitcoins into different fiat curren-

cies. However, those differences are negligible since from 2009 on, the price of Bitcoin has been far

more volatile than that of any major currency.
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not contaminate the blockchain, miners have to wait until 100 additional blocks have

been added on top of their block before being able to transfer their newly earned coins.

In other words, miners have to wait on average 16 hours 40 minutes before transferring

their rewards. In practice, this delay is long enough to ensure that the block is indeed

included in the blockchain. For our model’s purpose, however, forking is a sufficiently

rare event that its impact on miners’ payoffs can be safely ignored.89

1.3 The Model

We now propose a framework which captures the main features of the market for min-

ing described in the previous section. Our approach takes the demand for bitcoins as

given and uses the trajectory of the exchange rate to predict the hashpower of the net-

work. We devise our model in continuous time and normalize the length of a period

to 10 minutes because it corresponds to the average duration separating successive

blocks. Since returns to scale are constant, we can think of miners as infinitesimal

units of hashpower, and thus assume that the total hashrate of the network takes any

positive value on the real line.10

Miners’ payoffs.—We useRt to denote the block reward in dollars, i.e. B/$ exchange

rate multiplied by the sum of new coins and fees. We also let Πt denote the Poisson rate

at which one miner finds a valid block. Then the flow payoff Pt of a miner is equal to

Pt ≡ Rt × Πt. (1)

The block finding rate Πt is adjusted every 2016 blocks by Bitcoin’s protocol. The

updating rule takes the overall hashpower of the network over the previous period as

given, and adjusts the difficulty of the hashing problem until new blocks are created on

average every ten minutes. This procedure ensures that monetary creation proceeds

at a steady pace. Then the complexity of the hashing problem is adjusted on average

8Orphan blocks account for less than 0.2% of all mined blocks. The longest chain ever orphaned for

a normal reason (not due to a bug) was 4 blocks long, well below 100.
9We will also neglect merged mining, i.e. the possibility to mine namecoins together with bitcoins

without any additional effort. The reward miners get from namecoins is negligible (not even 0.1%)

when compared to the reward in Bitcoins.
10Consider, for instance, the following normalization: one miner performs exactly one hash per pe-

riod, the time interval being 10 minutes. Its relative size is indeed tiny since in mid 2017 the network

performed around 1019 hashes every second.
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every two weeks only. Since our model is designed in continuous time, adding this dis-

crete interval makes it impossible to derive tractable solutions. This is why we slightly

idealize the actual protocol and assume that Πt is continuously adjusted.

Assumption 1. The valid-proof of work threshold is continuously updated according to

the actual total hashrate, so that Πt = 1/Qt for all t.

The number of hashes the network needs to perform to find a valid block follows

a geometric distribution with parameter Πt. Since the network computes Qt hashes

in one period (10 minutes), the network expected waiting time is Qt/Πt = 1, as pre-

scribed by the protocol. We show in Appendix 1.7 that, during our period of study,

the number of blocks mined every day mostly remains within the confidence interval

of the null hypothesis. In other words, our data do not significantly deviate from the

idealized updating state that would prevail under Assumption 1.

Value of hashpower.—Mining is a costly activity. To operate a unit of hashpower

bought at time τ , miners incur the flow electricity cost Cτ . The costs vary with the vin-

tages of the machines because they benefit from embodied technological progress, as

newer machines are able to perform more hashes with the same amount of energy.11

We have already emphasized that investment in hashpower is irreversible because ma-

chines cannot be resold. We strengthen this constraint and assume that miners cannot

turn off their machines. This simplifying assumption will be relaxed in Section 1.5.2.

Assumption 2. Mining units cannot be voluntarily switched off so as to save on elec-

tricity costs.

Assumption 2 allows us to express the value of a unit of hashpower of vintage τ as

follows

V (Pt, τ) = Et

[∫ ∞
t

e−r(s−t)Psds

]
− Cτ

r
, (2)

where r is the discount rate.12 We have assumed that all the miners of a given vintage

face the same problem. In practice, electricity costs may differ across locations but,

11Note that we implicitly assume that the price of electricity remains constant. It is easy to relax this

restriction by letting C also depend on the current date t. However, changes in electricity costs can be

safely ignored in the empirical analysis because they are dwarfed by variations in Bitcoin’s exchange

rate.
12The discount rate r includes the rate at which hardware breaks down. Such failures seem to oc-

cur at a much slower rate than technological obsolescence since we do not observe that the network

hashpower decreases in the absence of market entry.
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due to free entry, only those miners that have access to the cheapest sources of elec-

tricity will find it profitable to enter the market. This is consistent with the observation

that mining is concentrated in a few places, most notably in China, where electricity is

comparatively cheap, or in Nordic countries and Canada, where cold weather makes

it easy to cool down the mining rigs.

Under Assumption 1, the flow payoff is given by

Pt = Rt/Qt. (3)

Equation (3) defines an isoelastic payoff function with unitary elasticity. Its micro-

foundation is rather unique since the decreasing relationship between payoffs P and

industry output Q does not stem from the satiation of consumers’ demand, but is in-

stead generated by the increase in mining costs encoded in Bitcoin’s protocol.

We do not attempt to endogenize the demand for bitcoins and thus take the ex-

change rate R as given. Following much of the literature on irreversible investment,

we assume that (Rt)t≥0 is a Geometric Brownian Motion (GBM hereafter). We assess

the accuracy of this assumption when we estimate the model in Section 1.4.13

Assumption 3. (Rt)t≥0 follows a Geometric Brownian Motion so there is an α ∈ R, and

a σ ∈ R+, such that

dRt = Rt (αdt+ σdZt) , (4)

where (Zt)t≥0 is a standard Brownian motion.

Knowing the law-of-motion followed by the exchange rate does not enable us to

compute the expected value of payoffs because they also depend on the hashpower of

the network Q, whose level is endogenously determined. To solve for the equilibrium,

one has to simultaneously derive the process followed by Q and the entry policy of

miners.

Market entry.—Entrants that want to join the mining race have to buy a unit of

hashpower whose price we denote by It. Both the entry cost and the cost of electricity

decrease over time because machines become more efficient. Let At measures tech-

nological efficiency, so that a miner can buy At units of hashpower at time t with the

amount needed to buy one unit of hashpower at date 0. For the reasons explained

13Note that the GBM specification disregards the halvings of the money creation rate occurring every

2016 blocks. We will address this shortcoming in Section 1.5.1.
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below, we focus on periods where technological improvements accrue at a constant

pace, i.e. At = exp(at) with a > 0.

Assumption 4. Machines get more efficient at the constant rate a > 0. Hence the entry

and operating costs satisfy It = I0/At = exp(−at)I0 and Ct = C0/At = exp(−at)C0.

Free entry ensures that no profits can be made by adding hashpower to the net-

work. Thus the following inequality must hold

It ≥ Et

[∫ ∞
t

e−r(s−t)Psds

]
− Ct

r
= V (Pt, t), for all t. (5)

At times where miners enter the market, (5) will hold with equality. Since the exchange

rate follows a Markov process, it is natural to conjecture that their decisions will only

depend on the current realization of P : whenever payoffs reach some endogenously

determined threshold P t, a wave of market entries will ensure that the free entry con-

dition (5) is satisfied.

To see why such a mechanism defines a competitive equilibrium, it is helpful to

decompose the law of motion of P . Reinserting (4) into (3) and using Ito’s lemma, we

find that

d log(Pt) =

(
α− σ2

2

)
dt+ σdZt − d log(Qt). (6)

Payoffs are decreasing inQ because the response of the protocol to an increase in total

hashpower is to decrease the valid proof-of-work threshold, thus making it less likely

for each miner to earn a reward. This is why free entry places an upper bound on

payoffs. Their value can never exceed a threshold P t as more miners would find it

profitable to enter the market, which would push payoffs further down.

Industry equilibrium.—So far, the main takeaway from our analysis is that the mar-

ket for mining can be described as a perfectly competitive industry with irreversible

investment because Bitcoin’s protocol generates a cost function that is increasing in

the hashpower of the network. Thus we expect to observe equilibria similar to the

ones studied by Caballero and Pyndick (1996) in their seminal paper on industry evo-

lution.

Definition 1.1 (Industry equilibrium).

An industry equilibrium is a payoff process Pt and an upper barrier P t such that:

(i) Pt ∈ [0, P t].

(ii) The free entry condition (5) is satisfied at all points in time, and it holds with equality
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whenever Pt = P t.

(iii) The network hashpower Qt increases only when Pt = P t.

From a formal standpoint, the only fundamental difference between our model

and standard s-S models is that, due to embodied technological progress, entry and

variable costs decrease over time. Hence the entry barrier P t cannot remain constant.

However, if we impose Assumption 4, so that mining efficiency improves at a constant

rate, we can solve for the equilibrium in the space of detrended payoffs in order to

recover a flat barrier.

Proposition 1.2. Assume that assumptions 1, 2, 3 and 4 hold. Then there is an industry

equilibrium
(
Pt, P t

)
such that Pt is a GBM reflected at P t = P 0/At where14

P 0 =
β(r − α)

β − 1

[
I0 +

C0

r

]
, and β =

σ2

2
− α− a+

√(
α+ a− σ2

2

)2
+ 2σ2 (a+ r)

σ2
> 0. (7)

A typical equilibrium is illustrated in Figure 1. The upper-panel reports an arbi-

trary sample path for the payoff process (Pt)t≥0. Payoffs follow the changes in the ex-

change rate and thus behave as a GBM until they hit the reflecting barrier P t. Such

events trigger market entry, as shown in the lower-panel. The resulting increase in

hashpower raises the difficulty of the mining problem and thus pushes payoffs down

until market entry is not anymore profitable. The entry barrier decreases at the rate

of technological progress because it corresponds to the pace at which both entry and

operating costs fall over time.

14Note that, when α = r, P 0 =
(
I0 + C0

r

) (
α+ a+ σ2

2

)
.
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Figure 1: Industry Equilibrium

Comparative statics.—The higher the barrier, the lower the average rate of invest-

ment as miners procrastinate further before entering the market. It is therefore in-

structive to study the effect of the parameters on P 0. Differentiating its expression in

(7), we find that ∂P 0/∂a > 0 and ∂P 0/∂r > 0. If technological progress accelerates,

miners’ revenues shrink more rapidly because there will be more entries in the future.

Hence miners have to earn more in the periods following their entries and so the bar-

rier must be higher. A similar mechanism explains the impact of r since the value of fu-

ture profits is discounted at a higher rate when r goes up. Not surprisingly, an increase

in the average growth rate α of the block reward incentivizes entry as ∂P 0/∂α < 0. Fi-

nally, the volatility of payoffs σ discourages entry since ∂P 0/∂σ > 0. Note that this ef-

fect is not due to an increase in the value of waiting because the perfectly competitive

structure of the industry rules out such an option: competitors would preempt any

procrastination beyond the zero expected profit threshold. Instead, the negative im-

pact of σ on P 0 is mechanical. Given that payoffs are truncated from above by the re-

flecting barrier, an increase in their spread automatically lowers their expected value.

Quantitatively, the rate of technological progress a has, by far, the largest effect on P 0.
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1.4 Calibration

Data.—We now show that feeding our model with exchange rate data allows one to

accurately predict the evolution of the network hashrate. For this purpose, we need

to infer the miners’ payoffs Pt = Rt/Qt. Remember that the numerator, Rt, is equal

to the value of new coins plus the transaction fees. The number of created coins per

block is specified by the protocol while the exchange rate is directly available from

coindesk.com.15 The transaction fees are recorded in the blockchain and can easily

be retrieved from btc.com. Thus all the components of (Rt)t≥0 are readily available.

This is, however, not the case for the network hashrate (Qt)t≥0 whose values must be

estimated using the theoretical probability of success and the number of blocks found

each day. Given that we are not primarily interested in statistical inference, we relegate

the description of our estimation procedure to Appendix 1.7 and save on notation by

using Qt to denote our estimate, although its time series only approximates the true

hashrate. We show in Appendix 1.7 that the approximation is accurate. We update the

value ofQt on a daily basis and, since there are on average 144 blocks mined every day,

the expected payoffs per day are given by Pt = 144×Rt/Qt.

We report the series followed by (Rt)t≥0 and (Qt)t≥0 in Figure 2. There is a clear cor-

relation between the two variables. Our model suggests that their structural relation

should become apparent if one takes the ratio of the two series and detrend it at the

rate of technological progress a. Then the resulting series should behave as a reflected

Brownian motion. A natural guess for the rate of progress is Moore’s law according to

which processor speed doubles every two years. We actually expect improvements in

the mining technology to outpace those in processing speed because miners came up

with a series of innovations which allowed them to leverage their computing power.

Thus we will refine our guess later on by calibrating the value of a. Yet it is instructive

at this exploratory stage to use Moore’s law as a benchmark.

15There are many different exchanges and the exchange rates vary a bit across them. We neglect those

variations since they are dwarfed by the changes over time of the exchange rate.

25

https://www.coindesk.com
https://www.btc.com


Figure 2: Miners Revenues R and Network Hashrate Q

Note: Rt is computed using information collected on coindesk.com and btc.com. Qt

is inferred using the procedure described in Appendix 1.7.

The detrended payoff series based on Moore’s law is reported in Figure 3. It exhibits

two stationary regimes, with a break in the middle where payoffs decreased regularly

until they reached a lower plateau. At first, this behavior does not seem to square with

the model. But if we focus on the date at which the break initiates, we realize that

it coincides with the switch to Application Specific Integrated Circuits (ASICs). Since

this revolution in the mining technology boosted the rate of progress well above its

long-run trend, Assumption 4 does not hold and thus one should not expect the pre-

dictions of our model to be verified during this transitory phase. Hence we leave aside

the lapse of time where miners switched from GPUs and FPGAs to ASICs, and focus in-

stead on the two subperiods where miners used the same technology. More precisely,

during the first period, which ranges from 2011/04/01 to 2013/01/31, miners mainly

mined with GPUs; while they mostly relied on ASICs from 2014/10/01 onwards. Our

second subperiod ranges from 2014/10/01 to 2017/03/31. So far, we leave aside the

most recent period, which witnessed the birth and death of a giant bubble in the B/

$ exchange rate, because the model is unable to account for those data. We will, how-

ever, make clear below why this very period is problematic and why it should not be

interpreted as evidence against the accuracy of our model. Note that the first halving

of the monetary creation rate happened on 2012/11/28, towards the end of the first

period, while the second halving happened in 2016/07/09, around the middle of the
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second period.

Figure 3: Detrended Payoff Series

Note: Pt has been computed dividing 144Rt (the daily network revenue) by Qt.

Calibrating the parameters.—We calibrate the parameters for each subperiod. The

model is parsimonious enough to rely on six parameters only: the deterministic trend

α of rewards and their volatility σ2, the rate of technological progress a, the discount

rate r, the price I0 of one unit of hashpower bought at time 0 and the electricity costC0

of that same unit. The first two parameters can be directly estimated using (Rt)t≥0 only.

Under assumption 3, the log returns are independent and follow a normal distribution

with mean µ ≡ α − σ2/2 and variance σ2, which we estimate by maximum likelihood

(see Appendix 1.7).

The rate of technological progress, a, and the reflecting barrier, P 0, are set to mini-

mize a (pseudo)distance between the observed and the simulated paths of the hashrate.

A direct consequence of our equilibrium definition is that Qt = max
(
Qt−1,

RtAt
P 0

)
for

all t. This condition provides us with a straightforward way to simulate the hashrate

for any sample with T observations:

1. Set the initial value of the simulated hashrate Qsim
0 equal to its empirical coun-

terpart, i.e. Qsim
0 := Q0.

2. Update the simulated hashrate as follows: Qsim
t := max

(
Qsim
t−1,

RtAt
P 0

)
, for t =

1, . . . , T .
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Since (Rt)t≥0 and Q0 are observed, the minimization procedure boils down to find-

ing the value of a and P 0 such that

(â, P̂ 0) ∈ argmin
(a,P 0)∈R+×R+

T∑
t=1

(
Qt −Qsim

t (a, P 0)

Qt

)2

. (8)

Unfortunately, the three other parameters {r, I0, C0} cannot be disentangled. We

therefore fix r, and recover the total costs of one terahash per second bought at the

beginning of each subperiod, K0 ≡ I0 + C0/r, by equating the expression for P 0 in

(7) with the estimated P̂ 0. The arbitrary choice for the discount rate r turns out to be

relatively unimportant because the term β(r − α)/(β − 1) in (7), and thus total costs,

are rather inelastic with respect to r.16 The parameters resulting from our calibration

strategy are summarized in Table 1, where all values are expressed as yearly rates.17

Table 1: Calibrated Parameters

Method Parameter Interpretation 1st period 2nd period

(fixed) r Discount Rate 0.1 0.1

(estimated)
µ Trend log(Rt) 1.41 0.19

σ2 Variance log(Rt) 1.95 0.54

(calibrated)
a Rate of TP 1.18 0.76

K0 Total Costs $5.6× 106 $ 1825

According to Moore’s law, a should be close to log(2)/2 ≈ 0.35 since it predicts that

the price of one unit of hashpower is divided by two every two years. Our calibra-

tion suggests that the mining technology progressed at a much faster rate although it

slowed down considerably in the second period. This finding is consistent with the

conjecture that miners were able to implement innovations specific to the hashing

problem on top of the raw increase in computing power. But such improvements be-

came harder to unearth as the mining technology matured and the rate of progress

gradually converged towards the one predicted by Moore’s law.

The average growth rate of rewards, µ, also decreased a lot between the two pe-

riods of study. As one would expect, early buyers of Bitcoins earned higher returns.

16In the second period, setting r = 0.2 yields K0 = $ 1639, while r = 0.05 yields K0 = $ 1934.
17For example, the estimates for ameans that the price of a new machine has been on average divided

by exp(a) every year during each period of study.
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Information about their profits pushed the demand for Bitcoins which raised the ex-

change rate even more. But the extremely high returns observed at the beginning be-

came harder to sustain as the market capitalization grew from a negligible amount to

nearly 20 billions $ by the end of our sample. In spite of this cooling process, investing

in Bitcoin remained extremely profitable, especially when one bears in mind that the

values we report for µ take the halvings into account. These tremendous returns have

led many observers to announce the imminent collapse of Bitcoin.18 Whether or not

such predictions will eventually be vindicated is beyond the scope of this paper, but

our estimates for the volatility coefficient σ indicate that there was no obvious arbi-

trage opportunity as investors willing to bet on Bitcoin also had to bear a huge risk.

Even though the volatility of rewards was divided by three in the second period, its

value remained an order of magnitude higher than its counterpart for the S&P 500.19

Figure 4: Simulated vs Observed Hashrates

First Period Second Period

Predicted vs actual hashpower.—The estimation procedure provides us with an es-

timate for the reflecting barrier, P 0, as well as for its trend, a. Using these two values,

we can run the two-step algorithm described above to simulate the network hash-

power (Qsim
t )t≥0. We report the simulated series against its empirical counterpart in

Figure 4. In spite of its very parsimonious structure, the model tracks the actual hash-

power remarkably well over the long run. We nonetheless notice some temporary dis-

18According to bitcoinobituaries, by May 2018, 299 opinion pieces had already predicted the death of

Bitcoin.
19We find that, for the S&P 500, σ2 = 0.053 for the first period and σ2 = 0.027 for the second period
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crepancies. In particular, during the second period, the model is a bit less accurate

around the halving date (2016/07/09). This is not surprising because miners do not

anticipate halvings in our model while they certainly do in reality. Hence, it is actu-

ally more intriguing that such a disconnect between the simulation and the data is not

apparent around the first halving date (2012/11/28). The explanation is the following:

the technical progress rate was so high during the first period that miners’ payoff were

anyway very low at the time of the halving, except for those who entered the race just

before. We investigate this conjecture in Section 1.5.1 where we explicitly introduce

halvings into our model.

Another noticeable difference between the actual and the simulated hashrates is

that the former sometimes decreases, especially during the first period, while the latter

never does. Our model cannot reproduce these drops in haspower because it is based

on the premise that investment is totally irreversible. We will address this shortcoming

in Section 1.5.2 by allowing miners to mothball or scrap their machines.

These discrepancies do not invalidate our approach since the model was devised

to capture long run trends in haspower. Yet one could argue that such a conclusion is

too generous because our procedure minimizes the distance between the simulation

and the data, and so would fit the data fairly well even if the model were misspecified.

Our first answer to this argument is that we optimize on two parameters only, which is

not much to fit times series of 608 and 913 data points. Moreover, to perform the sim-

ulations we start from the initial hashrate for each subperiod and then let the model

run without using intermediate realizations to correct its output. Given that our es-

timation procedure does not place any additional weight on the final values of the

hashpower, any fundamental misspecification would have generated a noticeable gap

between the simulation and the data during some subperiod. Thus we view the fact

that there is no obvious deterioration of the model’s fit over time as a convincing veri-

fication of its accuracy. We now provide support for this interpretation by performing

out-of-sample tests, and by comparing the entry rule predicted by the model with the

one prevailing in the data.

Out-of-sample tests.—We assess the model’s ability to match out-of-sample data by

dividing the second period into a fit period and a test period. We calibrate a and P 0 on

the fit period only and find that, even when the fit period is pretty small, the calibrated

values remain close to the ones based on the full sample. Thus the predicted hashrate

remains accurate several years after the end of the fit period, as shown in Figure 5.
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Note, however, that out-of-sample tests are much less conclusive for the first sub-

period because the hashrate increases only at the beginning and at the end of that

period. Hence, if we split the first data sample into a fit and a test period, the payoffs

do not hit the reflecting barrier often enough to deliver reliable calibrations. For in-

stance, the parameters are not identified if the payoffs hit the barrier only once as one

cannot pinpoint a line with the help of a single point.

Figure 5: Out-of-sample Test

Note: The fit period is the shortest one for which the overall fit remains accurate.
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Figure 6: Simulated vs. Observed Payoffs

First Period Second Period

Inspecting the entry rule.—Besides assessing the model’s overall fit, we can also

check whether the data are in line with the s-S rule predicted by the theory. For this

purpose, we report the simulated and observed payoffs in the upper-panels of Figure

6. As forecasted by the model, the observed payoffs remain below the barrier most of

the time and tend to reflect downwards when they reach its vicinity. This is remark-

able in itself since P t was estimated regardless of this requirement, fitting the hashrate

only.

Although the observed and simulated hashrate series are nearly superimposed for

most of the dates, there are some time intervals where the two series differ signifi-

cantly. These divergences occur for two reasons. First, the fit of the model deteriorates

significantly around the halving date (2016/07/09) of the second period. But, as ex-

plained above, this is precisely what one should expect since the model does not take

halvings into account. Second, the model sometimes fails due to extreme realizations

of the exchange rate. This can be seen by comparing the upper-panels of Figure 6 with

the lower panels where we report the B/$ exchange rate. One quickly notices that the
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periods of divergence between observed and simulated payoffs are clustered around

the dates where the exchange rate is extremely volatile. Quite intuitively, when the

exchange rate goes up 30% or more in one day,20 miners cannot enter the market as

quickly as the model predicts because they are facing, among many other frictions,

delivery and manufacturing delays. Devising a model that takes into account such

constraints, by introducing frictions along with potentially convex adjustment costs

at the industry level, would probably improve the correspondence between the two

series. We leave such refinements to further research because they greatly complicate

the solution of the model,21 while our findings suggest that they are not likely to yield

significant forecasting gains beyond short-term horizons.22

The 2017 bubble.—While this paper was being written, Bitcoin experienced a pe-

riod of trading frenzy. From $3, 226 on the 14th of September of 2017, Bitcoin’s ex-

change rate shot up to $19, 343 on the 16th of December and then dropped back to

$6, 914 on the 5th of February of 2018.23 Since then, the exchange rate has some-

what recovered and fluctuated around $9, 000. Perhaps not surprisingly, our model

indicates that the relation between the exchange rate and the network hashrate broke

down during that period. Figure 7 shows that, if the relation had remained stable, the

hashrate should have been six times higher at the peak of the bubble.24

The discrepancy between the predicted and observed hashrate is explained by three

different factors. First, investment in hashpower was constrained by delivery delays.

In May 2017, there were approximately 230,000 active machines. Between May and

December 2017, B/$ exchange rate was multiplied by 12. To keep up with this pace,

approximately 2,700,000 new machines would have had to be installed within eight

months only. Such a dramatic increase was bound to stretch the productive capacity

of Bitmain, the manufacturer of ASICs for Bitcoin mining. Second, Bitmain being the

only producer of ASICs, it probably exercised his monopoly power and decided not

to flood the market with new machines in order to raise their selling price. Indeed,

20Extreme daily gains of 30% or more were observed on 05/10/2011, 06/03/2011, 04/17/2013,

11/18/2013 and 12/18/2013.
21See for example the work of Aid et al. (2015) on regulated Brownian motions with delays.
22This conjecture is supported by the observation that, when the payoff variable temporarily exceeds

the barrier due to a surge in the exchange rate, it tends to quickly decrease afterwards. These corrections

are very much in line with our model: they occur because the hashrate catches up and not because the

exchange rate decreases.
23Exchange rates as reported by coindesk.
24Remember that Figure 7 uses a log-scale for the hashpower.
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the price of an Antminer S9 mining rig was multiplied by three between the beginning

and the climax of the bubble, and then divided by around four during the following

crash.25 Third, it seems plausible that some miners waited to see whether or not the

boom was sustainable, and so wisely refrained from over-investing in mining power.

A supporting evidence for our interpretation is that, as of April 2018, the hashrate

would have caught up with its predicted value if the bubble never happened. Looking

at the lower panel of Figure 7, one sees that the exchange rate in November 2017 is

the same as in April 2018; while the upper panel shows that the value of the predicted

hashrate in November 2017 is also equal to the value of the observed hashrate in April

2018. This is consistent with delivery delays of five to six months which would have

prevented miners from investing at the peak of the bubble. Of course, our model does

not take into account such constraints and so overestimates the hashpower after the

bubble burst. However, our model is again accurate if we reinitialize its calibration

at the end of the bubble (see Figure 8), thus providing further evidence that its fail-

ure during the bubble is probably explained by manufacturing delays and congestion

externalities.

Figure 7: The 2017 bubble

25See https://www.anythingcrypto.com/guides/bitcoin-antminer-S9-prices-2018.
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Figure 8: After the bubble

1.5 Extensions

Our model hinges on two simplifying assumptions: (i) the rate of money creation is

kept constant; and (ii) miners do not have the option to turn off their machines. We

now relax each one of them and describe the extent to which such generalizations

improve the fit of the model.

1.5.1 Model with halvings.

So far we have assumed that revenues follow a GBM (Assumption 3). Thus we have

ignored that the number of new coins issued per block is divided by two every 210,000

blocks. These so-called halvings create discontinuities in the paths of Rt that are in-

consistent with the GBM specification. In this subsection, we take halvings into ac-

count by replacing Assumption 3 with Assumption 5, so that block rewards are divided

by two every four years.

Assumption 5. The block reward is equal to Rt = htR̃t. R̃t follows a GBM while ht =(
1
2

)bt/4c
, where t measures the number of years elapsed since the inception of Bitcoin.

Assumption 5 slightly simplifies the halving process. First, the reward a miner gets

when she finds a block is not exactly divided by two after each halving because it in-

cludes transaction fees on top of new coins. The discrepancy is, however, not very

important in our data sample since we study only the first two halvings and, by the

time of the second halving, transaction fees always accounted for less than 2% of av-
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erage block rewards.26 Second, halvings do not occur every four years, but instead ev-

ery 210,000 blocks. Counting years is a way to approximate elapsed time because the

Bitcoin protocol adjusts the difficulty of the hashing problem every 10 minutes on av-

erage.27 Appendix 1.7 shows that the updating rule managed to keep the block-finding

rate close to one every 10 minutes.

Halvings render the miners’ problem non-stationary: the closer they are to the

halving date, the lower their expected payoffs. Hence we cannot anymore solve for

the entry barrier in closed-form. Instead, we have to rely on numerical methods. We

proceed by backward induction: starting from the stationary solution derived in the

previous section, we use a finite-difference procedure to approximate the entry rule.

Going back in time, the algorithm quickly converges towards an entry barrier that is

independent of the number of future halvings.28

The values of the non-calibrated parameters {r, µ, σ} are the same as in the base-

line model. The numerical procedure described above allows us to recover the entry

barrier for given values of a and K0, thus enabling us to use the algorithm outlined in

Section 1.4 to simulate the network hashrate. Minimizing the distance between the

simulated and the observed paths yields the parameter values reported in Table 2.

The introduction of halvings has a negative impact on mining costs K0 and a pos-

itive one on the rate of technological progress a. The increase in K0 is quite intuitive:

since halvings decrease expected revenues, free entry requires that mining costs de-

crease too. The reason why a increases is a bit more subtle. This adjustment cor-

rects the misspecification of the baseline model which necessarily overestimates the

hashrate around the halving dates. This is why the minimization procedure, when

applied to the baseline specification without halvings, generates a negative bias for a

because it uses its value to reduce the discrepancies around the halving date.

26There are a few exceptions when some users mistakenly sent huge amount of transaction fees. For

instance, on 2016/04/26, a transaction gave 291 bitcoins as fees.
27Note that, in our model, the block-finding rate is constant since we assume that the difficulty of the

mining problem is updated continuously (see Assumption 1). Hence Assumption 5 could equivalently

be stated using the numbers of created blocks instead of calendar time.
28More precisely, the entry barrier is essentially stable after four iterations. We use finite-difference

methods to approximate the Hamilton-Jacobi-Bellman equations satisfied by the value functions of

miners. We rely on the implicit Euler scheme in order to ensure that the approximation is stable. The

system of linearized equations is solved using a generalization of the Gauss-Seidel iterative method

known as the successive-over-relaxation method.
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Table 2: Calibrations with and without Halvings

Parameter Interpretation 1st period 2nd period

Halvings No Halvings Halvings No Halvings

a Rate of TP 1.29 1.18 0.85 0.76

K0 Total costs $5.3× 106 $5.6× 106 $ 1,655 $ 1,825

Note: all the other parameters are as reported in Table 1.

Note, however, that these corrections are rather small, which should not be surpris-

ing since the baseline model was already pretty accurate. Figure 9 shows that, for the

first period, the paths predicted by the models with and without halvings are nearly

identical. As conjectured in the previous section, neglecting the first halving was not

so important due to the extreme volatility of the exchange rate at that time. For the

second period, the simulated paths remain very close to each other except around

the halving date where, as one should expect, the extended model outperforms the

baseline specification. This indicates that the halving affected miners’ behavior only

a couple of months ahead, a conjecture which can be substantiated by looking at the

entry barrier.

Figure 9: Hashrates Comparison

First Period Second Period

Figure 10 displays the shape of the entry barrier in the second period.29 By con-

struction, the barrier shifts down by 50% on the day of the halving. This drop follows

29The barrier obtained for the first period is very similar and thus not displayed.
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a period where the barrier slopes up because miners anticipate the drop in future rev-

enues and so procrastinate more before entering the market. But this adjustment be-

comes noticeable only a few months before the halving and is therefore not relevant

for most of the period. This might be surprising given that a division by two of rev-

enues seems like a huge loss. Two effects can account for this fact. First, miners who

enter the race a couple months before the halving enjoy anyway, when this event oc-

curs, a payoff substantially lower than at their entrance times. Second, for the same

miners, comparatively to the model without halving, the future loss of income is par-

tially compensated by a higher revenue before the halving, due to a lower hashrate.

When the technical progress rate decreases, halvings will have a more noticeable im-

pact on the network hashrate.

Figure 10: Entry Barrier with Halvings

1.5.2 Mothballing and scrapping options.

We now relax Assumption 2 according to which miners always keep their hardware in

mining mode. In practice, miners have the option to switch off their machines, and

they can switch them back on should mining become profitable again. We assume

that the hardware can be kept idle at zero costs. Thus the mothballing decision is

fully reversible, and as such does not involve any forward-looking component. Ma-

chines are mining whenever their flow revenues are higher than their operating costs.
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In other words, the per-period profits at time t of a miner entered at time τ are equal

to max (Pt − Cτ , 0), and their value functions read

V (Pt, τ) = Et
[∫ +∞

t

max (Ps − Cτ , 0) e−r(s−t)ds

]
. (9)

If there is no technological progress, all miners pay the same electricity costs (Cτ
is constant) and thus face the same problem. Then the industry equilibrium features

two reflecting barriers: an upper-barrier generated by the entry of new miners which

push payoffs downwards until free entry is satisfied again, and a lower barrier gener-

ated by the exit of incumbents which push payoffs upwards until miners are indiffer-

ent between operating and stopping their machines.30 With technological progress,

the structure of the industry is much more intricate. Then miners cannot all be indif-

ferent since they bear different operating costs. The least productive miners are the

first to mothball their machines, and they do so until the marginal miner makes zero

flow profits. This endogenous cutoff depends on the distribution of vintages among

incumbents. Thus the law of motion of P is not anymore a function of current rev-

enues only, but also of the vintage distribution. This in turn greatly complicates the

decision of prospective entrants who now have to solve a problem which includes a

distribution function among its state variables.

Analyzing such a problem involves devising new and complex numerical methods.

Instead of following this direct approach, we take the view that prospective entrants do

not have access to the data required to solve the full information problem. Finding the

vintage of all machines is an extremely tedious, if not impossible, task. It is therefore

quite unlikely that miners actually looked for this information before investing and,

even if they did, they would only have observed a very noisy measure of the actual dis-

tribution. We assume instead that potential entrants make their decisions considering

only the current value of the flow payoffs. We establish below the plausibility of this

restriction by showing that mothballing and scrapping have very little impact on the

hashrate, so that entrants cannot significantly benefit from solving the full informa-

tion problem. From a formal standpoint, we assume that miners’ expectations satisfy

the following Markov property.

Assumption 6. Let Ft ≡ σ(Ps; 0 ≤ s ≤ t) denote the filtration generated by P . We as-

sume that, for all measurable setA ∈ R+ and all s > t, Pre (Ps ∈ A|Ft) = Pre (Ps ∈ A|Pt),

30See Alvarez and Shimer (2011) for a model with two reflecting barriers generated by workers entry

and exit.
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where Pre(ω) is the probability of event ω as evaluated by potential entrants.

Figure 11: Mothballing and scrapping regions

We show in the proof of Proposition 1.3 that, under Assumption 6, the equilibrium

is again characterized by an entry barrier P t which decays at the rate of technological

progress. Since payoffs are reflected downwards when they hit the barrier, it will never

be profitable to operate a piece of hardware which is so obsolete that its operating

costs exceed the entry barrier. A typical mining cycle is illustrated in Figure 11: the

machine is mothballed whenever payoffs fall below its operating costs, as indicated

by the colored area; and it is scrapped when the entry barrier crosses the operating

costs. The addition of this exit threshold makes it impossible to analytically solve for

P 0.

Proposition 1.3. Assume that Assumptions 1, 3, 4 and 6 hold true. Then there exists a

P 0 > 0 such that
(
Pt, P t = P 0/At

)
is an industry equilibrium that satisfies the require-

ments of Definition 1.1.

Simulating the hashrate.—Simulating the hashrate is more complicated than for

the baseline model because one must keep track of the electricity costs, as well as of

the activity status of all miners. The inputs of the algorithm are the exchange rate

((Rt)0≤t≤T ), the rate of technological progress a, and the initial hashrate, electricity

costs and entry barrier
(
Q0, C0, P 0

)
. We also need to initialize the vintage distribution

of all active miners. A series of robustness checks demonstrates that the initial choice
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of vintages hardly affects the simulated paths after a couple of days.31 This is in line

with Assumption 6 since knowing the true distribution of miners’ vintages does not

significantly improve forecast accuracy.

The simulation procedure works as follows. For each day, we start by deleting from

the database all miners whose electricity costs are bigger than the entry barrier. As

explained before, those miners scrap their machines because they will never find it

profitable to mine in the future. Then, given the new value ofRt, we compute the tem-

porary payoff miners would face if the hashrate remained constant. Depending on

its value, two configurations may arise. First, if this temporary payoff is smaller than

the electricity costs of the least efficient (i.e. oldest) active miner, we know that some

miners should switch off their machines. Thus we let the least efficient miners moth-

ball their hardware, and update the temporary payoff until no active miner prefers to

remain idle. Alternatively, if the temporary payoff is higher than the electricity costs

of the most efficient inactive miner, we know that some miners should switch on their

machines. Finally, if all incumbents are active and the temporary payoff is still bigger

than the entry barrier, we let new miners enter the market until the temporary payoff

equals the entry barrier.

Figure 12: Simulated vs Observed Hashrates

First Period Second Period

31We therefore pick a distribution of vintages for which the mass of miners of any vintage is inversely

proportional to the price of their vintage, as would have happened if the environment were determin-

istic.
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Predicted vs actual hashpower.—As before, we calibrate a, P 0 and C0 so as to min-

imize the distance between the simulated and actual hashrates. Figure 12 reports the

resulting series along with the prediction of the baseline model. As expected, the

model with exit fits the data better whenever the actual hashrate decreases. But the

improvement is rather marginal because significant decreases in hashrate are excep-

tional events. Most of the time the predictions of the two models coincide, thus sub-

stantiating our claim that Assumption 2 is a reasonable benchmark.

Disentangling investment from operating costs.—We now add an assumption which

allows us to disentangle the price of machines from their operating costs. The sim-

ulations reported in Figure 12 show that entrants can ignore the impact that moth-

balling and scrapping have on the hashrate, and nonetheless make accurate predic-

tions about their future payoffs. Hence we strengthen Assumption 6 and let entrants

disregard the rare instances where the hashrate shrinks.

Assumption 7. When forming their expectations, potential entrants ignore the impact

that mothballing and scrapping have on the network hashrate.

Entrants who base their expectations on the premise that incumbents will never

stop mining can disregard the technology operated by other miners. Thus Assump-

tion 7 implies Assumption 6, although the converse is not true. Assumption 7 ensures

that expected payoffs follow a reflected GBM as in the baseline model. Knowing the

distribution of P allows us to compute the entrants’ expected profits. In particular,

equation (9) is compatible with free entry if and only if

It ≥
∫ +∞

t

(∫ P s

t

max (y − Ct, 0) f e
Ps|Pt=P t (y) dy

)
e−r(s−t)ds, for all t, (10)

where f e
Ps|Pt=P t

(·) denotes the distribution of Ps conditional on Pt = P t as anticipated

by entrants. For the sake of conciseness, we defer the explicit expression of f e to

Lemma 1.1 in the Appendix. Evaluating the integral on the right-hand side for the

calibrated values of a, P 0 and C0 yields the consistent investment cost I0. Equation

(10) also places an upper bound on total costs paid by miners. Let T denote the time it

takes for the entry barrier to reach the electricity costs of new entrants. Given that the

entry barrier decays at the rate of technological progress, we have T = log
(
P 0/C0

)
/a.

The total costs paid by miners who entered at time 0 must necessarily be inferior to

K0 = I0 +
∫ T

0
C0e

−rtdt because they will never find it profitable to mine after date T .
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Table 3: Calibration with and without Exit

Parameter Interpretation 1st period 2nd period

Exit Baseline Exit Baseline

a Rate of TP 1.15 1.18 0.76 0.76

P 0 Barrier 23858 25996 5.05 5.30

C0 Daily electricity cost $ 2,767 $ 0.68

I0 Price of mining rig $3.1× 106 $ 1,002

K0 Total costs $4.8× 106 $5.6× 106 $ 1,581 $ 1,825

T Maximal mining time 1.87 years 2.65 years

Table 3 reports the parameter values resulting from these computations along with

their counterparts for the baseline calibration. The discounted total costs are lower in

the model with exit than in the baseline model. This is not surprising because min-

ers now have a finite horizon. Since costs are smaller, entries happen sooner, which

translates into a lower entry barrier. Miners’ total costs have two components: the ini-

tial purchase of a mining rig and the daily electricity expenditure. We are now able to

disentangle them and report their values in the third and fourth lines of Table 3.32

It is difficult to get accurate information on how much miners paid for their mining

rigs. Yet we can verify that our estimates are in the ballpark of available data. The

Antminer S4 ASIC mining rig was released a few days after the beginning of the second

period. Thus, taking into account delivery delays, we reckon that most miners were

still using the Antminer S3 ASIC early on in the second period. It could perform 0.441

Tera hashes per second and had a power consumption of 340 watts. Depending on the

source, the cost of buying an Antminer S3 ASIC varies from $ 382 to $ 480.33 Assuming

that miners paid 4 cents per kilowatt hour,34 they had to spend between 866 and 1080

dollars to buy 1 Tera hash of the Antminer S3 mining rig, and then pay 74 cents of
32The estimated value for I0 depends on rwhich we set equal to 0.1 as in the baseline model. However,

our results are not very sensitive to the choice of r because the obsolescence process is so fast that

miners do not operate their machines for a very long time. For example, r = 0.05 yields I0 = $1033 in

the second period, while r = 0.2 yields I0 = $943.
33The lowest estimate is available on Bitcoin wiki (https://en.bitcoin.it/wiki/Mining_hardware_

comparison), whereas the highest is from a reddit forum stating that the Antminer S3 ASIC costs 0.75 bit-

coins, which amounted to $ 480 at that time (https://www.reddit.com/r/Bitcoin/comments/29jni2/

i_did_the_maths_for_antminer_s3_potential/).
34See https://en.wikipedia.org/wiki/Electricity_pricing for an estimation of the electricity

costs. Miners probably manage to pay below the market price for their electricity, but their consump-
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electricity per day. These values are indeed very close to the ones resulting from our

estimation.

Network electricity consumption.—As Table 3 shows, electricity costs accounted for

at most 35% and 37% of entrants’ expected discounted costs in the first and second pe-

riod, respectively.35 Hence all seignorage income was not spent on electricity, as often

argued, but instead largely captured as a monopoly rent by Bitmain, the only manu-

facturer of ASICs for Bitcoin mining. There is no official source on Bitmain’s operat-

ing profits because it is not a publicly traded company. The most reliable estimates

suggest that Bitmain is indeed a very profitable company that made between 3 and 4

billions US dollars in profits in 2017.36

Table 4: Ratio of Operating Costs over Mining Rewards

Configuration µ σ2 a Operating Costs/Rewards

Calibration 0.19 0.54 0.76 0.37

a = 0.36 (Moore’s law) 0.19 0.54 0.36 0.50

µ = 0 0 0.54 0.76 0.40

σ2 = 0.05 0.19 0.05 0.76 0.34

µ = 0, a = 0.36 0 0.45 0.36 0.55

Note: All other parameters are as reported in Table 3 for the model with exit over the

second period.

Our model can precisely quantify the share of block rewards that is dissipated in

electricity expenditures. Such a statistic is easily recovered from the simulations be-

cause they yield the distribution of vintages among incumbents. We focus on averages

because the exchange rate (and hence the block reward) are much more volatile than

the hashrate. To estimate the share of block rewards devoted to electricity, we simulate

many GBM trajectories and take their averages. The initial conditions (namely the ini-

tial distribution of hardware vintages and the distance between initial payoffs and the

entry barrier) influence the ratio of interest at the beginning of each paths. In order to

tion is also higher than the one needed to run the machines because they also have to cool them down.
35Remember that our procedure places an upper bound on expected costs.
36By comparison, NVIDIA, a world leader in GPU manufacturing, "only" made 3 billions US

dollars in operating profits in 2017. See, among other sources, https://www.cnbc.com/2018/02/23/

secretive-chinese-bitcoin-mining-company-may-have-made-as-much-money-as-nvidia-last-year.

html
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neutralize this dependency, we simulate long trajectories of 10,000 days and discard

the first 1,000 observations. Besides the baseline calibration, we perform a series of

comparative statics exercises, where we vary the values of one parameter and update

P 0 consequently. Table 4 displays the outcomes of these experiments with the ratio of

electricity expenditures over total block rewards in the last column.

Using the calibrated values for the second period, we find that the cross-sectional

share of electricity costs over total rewards is 37%. This digit is in line with the results

of Table 3. Turning our attention to the comparative statics exercises, we find that the

rate of technological progress, a, is again the crucial parameter, with a substantial neg-

ative effect on the ratio. We have already shown that the rate of technological progress

significantly raises the reflecting barrier P 0. This increase lowers the share of revenues

devoted to operating costs because a higher barrier means less investment in min-

ing hardware and so less machines competing for the same reward. By contrast, the

growth rate of the block reward, µ, has a negative impact on P 0. However, µ also di-

rectly increases revenues which raises the denominator of the ratio. Those two effects

go in opposite directions so, overall, µ has a weak negative impact on the ratio. Simi-

larly, the volatility of the exchange rate, σ, has a negative effect on the barrier which is

compensated by its direct effect on the ratio, as more volatile payoffs are more likely

to be well below the barrier.

What lessons can we draw from these experiments regarding the future of Bitcoin’s

electricity consumption? Sooner or later, the rate of return for holding Bitcoins will

have to decline. Similarly, the rate of technological progress will have to slow down

and converge, in the best case scenario, to the value predicted by Moore’s law. Both

adjustments will contribute to increase the share of seignorage income spent on elec-

tricity, with long-term ratios above 50%, as displayed in the bottom line of Table 4.

Then, should the exchange rate stabilize around $ 40.000 after the next halving, Bit-

coin’s electricity consumption will reach 1% of the world’s consumption. Such levels

of pollution are likely to push governments into taking serious steps against the cryp-

tocurrency, thus suggesting that Bitcoin’s carbon footprint may eventually place a hard

cap on its exchange rate.
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1.6 Conclusion

We have shown that the behavior of miners can be approximated using a standard

model of industry dynamics with irreversible investment and embodied technologi-

cal progress. We believe that our findings will be of interest to both economists and

Bitcoin practitioners.

For economists, Bitcoin’s protocol encodes several features that are rarely observed.

Miners mostly face aggregate uncertainty. They operate a technology which exhibits

constant returns to scale at the micro-level, and earn revenues that are decreasing

in aggregate capacity. All these characteristics make the market for mining a perfect

laboratory, all the more so since data are exhaustive, clean and easily available. It is

therefore quite reassuring that the canonical model of industry dynamics convinc-

ingly replicates the evolution of mining capacity over time.

Our approach also provides a forecasting tool for Bitcoin practitioners willing to

invest in mining power. From a practical standpoint, it has three main implications.

First, the hashrate of the network is closely related to the exchange rate and, in the

event of a significant market crash, the hashrate barely moves in the short run due

to the irreversibility of past investments. This is good news for the security of Bitcoin

transactions but bad news for their carbon footprint. Second, around two thirds of

all seigniorage income is not dissipated in electricity consumption, as often argued,

but is instead spent on mining hardware. Third, we expect the energy efficiency of

the network to deteriorate as the rate of technological progress inevitably decelerates

from the high pace it has experienced so far.

Although our model is fairly accurate in the medium to long run, it sometimes

temporarily deviates from the data. These discrepancies arise during periods of high

volatility, and so are probably explained by congestion effects and non-linearities in

the adjustment cost function. Incorporating these imperfections into our framework

is a demanding task since they render the entry barrier state-dependent. Future re-

search should nonetheless strive to estimate such an extension as it would probably

improve the model’s accuracy during periods of trading frenzy. Finally, another in-

teresting direction for further research would consist in using other cryptocurrencies’

markets for mining to calibrate the model, starting with Ethereum as the first obvious

candidate.
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1.7 Appendix

Proof of Propositions.

Proof of Proposition 1.2 Let W
(
Pt, P t, At

)
≡ V (Pt, t) + Ct/r denote the value of an

entrant net of variable costs as a function of the payoff Pt, the entry barrier P t and the

efficiency of the technology At. Assumption 4 requires that dAt = −aAtdt. Assump-

tions 1 and 3 imply that dPt = Pt (αdt+ σdZt) whenever Pt < P t because Qt remains

constant in that region of the payoff space. Finally, the law-of-motion of the entry bar-

rier P t is endogenous and it is precisely the aim of this proof to show that the market

for mining satisfies the equilibrium requirements stated in Definition 1.1 when P t de-

creases at the rate of technological progress. Thus we conjecture that P t = P 0/At, with

P 0 as in Proposition 1.1, and proceed to show that it is indeed optimal for entrants to

wait until Pt = P t.

Having specified the law of motion of the three state variables allows us to use Ito’s

Lemma to derive the Hamilton-Jacobi-Bellman equation satisfied by the value func-

tion

rW
(
Pt, P t, At

)
= Pt + αPtW1

(
Pt, P t, At

)
− aP tW2

(
Pt, P t, At

)
+ aAtW3

(
Pt, P t, At

)
+
σ2

2
P 2
t W11

(
Pt, P t, At

)
.

Assume that α 6= r.37 Then the general solution of the Hamilton-Jacobi-Bellman

equation reads

W
(
Pt, P t, At

)
=

Pt
r − α

+
D1

At

(
Pt

P t

)β1
+
D2

At

(
Pt

P t

)β2
,

where D1 and D2 are constants whose values will be chosen so as to match some

boundary conditions, while β1 and β2 are the two roots of the following quadratic

equation

Q(β) ≡ σ2

2
β(β − 1) + (α + a)β − a− r = 0.

Since Q(0) = −a − r < 0 and the coefficient associated to the second order term is

strictly positive, we know that one root, β1 for instance, is strictly positive while the

other root, β2, is strictly negative.

37As r tends to α, P 0 converges to
(
I0 + C0

α

) (
α+ a+ σ2/2

)
and W

(
Pt, P t, At

)
tends to

I0+
C0
α

At

(
Pt
P t

) [
1− log

(
Pt
P t

)]
.
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The function W has to satisfy the following three boundary conditions. First, since

P̃t = 0 is an absorbing state, we must have W (0, P t, At) = 0. This implies that D2 = 0,

as otherwise the value function would diverge to either minus or plus infinity when

P goes to zero. Second, the left continuity of the value function at the entry thresh-

old P t implies that there can be no arbitrage opportunity solely if the value function

is flat at the contact point. This requirement, known as the smooth-pasting condi-

tion, is satisfied when W1

(
P t, P t, At

)
= 0, i.e. when D1 = − P 0

β1(r−α)
. Finally, the entry

barrier is pinned down by the free entry condition W
(
P t, P t, At

)
= It + Ct/r. This im-

plies P 0 = (I0 + C0/r)
(r−α)β1
β1−1

.38 Thus we have found a solution which satisfies all the

requirements laid-out in Definition 1.1 for the existence of a competitive equilibrium.

Proof of Proposition 1.3 We proceed as in the proof of Proposition 1.2. We assume

that P t = P 0/At, for some P 0, and show that it is indeed optimal for miners to en-

ter the race when Pt = P t. The value function of an active miner entered at time τ

reads W
(
Pt, P t, Cτ

)
=
∫ +∞
t

(∫ P s
0

max(x− Cτ , 0)f ePs|Pt(x)dx
)
e−r(s−t)ds, where f ePs|Pt de-

notes the density of the payoff variable at time s as anticipated by entrants at time t.

Under the equilibrium rule, the barrier (P s)s≥t is deterministic. This is why we do not

account for the dependency on the whole future trajectory of the barrier when defin-

ing W . We only need to show that W
(
P t, P t, Ct

)
= W

(
P 0, P 0, C0

)
/At because then

the condition W
(
P t, P t, Ct

)
= It = I0/At will be met for all t whenever P 0 is chosen

such that W
(
P 0, P 0, C0

)
= I0.

According to Assumption 6, potential entrants make their entry decisions based on

Pt and P t only. Multiplying the two by the rate of technological progress, this is equiv-

alent to saying that potential entrants make their entry decisions based on AtPt and

P 0 only. In this detrended space, the barrier is flat. Hence, under the conjectured rule

for entry, the process AtPt anticipated by potential entrants is Time-Homogeneous

Markov, meaning that f eAtPt|AsPs(y) = f eAt−1Pt−1|As−1Ps−1
(y). Reinserting this equality into

38Alternatively, we could have solved the planner’s problem and used the "super contact" condition

W11

(
P t, P t, At

)
= 0.
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the definition of W , we find that

W
(
P t, P t, Ct

)
=

∫ +∞

t

(∫ P s

0

max (x− Ct, 0) f e
Ps|Pt=P t(x)dx

)
e−r(s−t)ds

=

∫ +∞

0

(∫ Pu
At

0

max (x− Ct, 0) f e
Pu+t|Pt=P t(x)dx

)
e−rudu

=

∫ +∞

0

(∫ Pu

0

1

At
max

(
y

At
− C0

At
, 0

)
f e
Pu+t|Pt=P t

(
y

At

)
dy

)
e−rudu

=
1

At

∫ +∞

0

(∫ Pu

0

max (y − C0, 0) f e
Pu+tAt|AtPt=P 0

(y) dy

)
e−rudu

=
1

At

∫ +∞

0

(∫ Pu

0

max (y − C0, 0) f e
Pu|P0=P 0

(y) dy

)
e−rudu

=
W
(
P 0, P 0, C0

)
At

.

The second equality follows from u = s − t and replacing P u+t by P u/At. The third

and fourth equalities use the change of variable y = Atx. The fifth equality is a direct

consequence of the Time-Homogeneous Markov property of AtPt. The last equality

holds by definition and proves that free entry is indeed satisfied when P t decays at the

rate of technological progress.

Lemma 1.1. Let Assumptions 1, 3, 4 and 7 hold true. Then, for all t > 0, the density of

Pt conditional on the barrier being reached at time τ < t reads

f e
Pt|Pτ=P τ

(x) =

(
1

x

)
(

1

σ
√
t

)
φ

 log(P τ )− log(x) +
(
α− σ2

2

)
t

σ
√
t


+ exp

[(
log(P τ )− log(x)− at

)(
1− 2

(
a+ α

σ2

))]

×

(2

(
a+ α

σ2

)
− 1

)
Φ

 log(x)− log(P τ ) +
(

2a+ α− σ2

2

)
t

σ
√
t


+

(
1

σ
√
t

)
φ

 log(x)− log(P τ ) +
(

2a+ α− σ2

2

)
t

σ
√
t

1]0,P t]
(x),

where φ and Φ are the density and the cumulative distribution function of the standard

normal distribution, respectively.

Proof of lemma 1.1 Since Assumption 7 implies Assumption 6, Proposition 1.3 ap-

plies and we know that there exists a P 0 such that (Pt, P t = P 0/At) is an industry equi-
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librium. Moreover, Assumption 7 also implies that the anticipated Pt follows a GBM

when Pt < P t because the hashrateQt remains constant. Hence the anticipated Pt fol-

lows a GBM reflected at P 0/At. The density of a positive Brownian motion reflected at

0 and which starts at 0 is given in Harrison (2013). We now show that it can be applied

to the logarithm of P .

Without loss of generality, we can set the hitting time τ = 0. Then R0/Q0 = P 0

because we are looking for a density conditional on P0 = P 0. Hence the hashrate Qt is

given by

Qt = sup
0≤s≤t

AsRs/P 0.

Replacing this expression into the decomposition of AtPt, we find that

log(AtPt) = log(AtRt)− log(Qt)

= log(AtRt)− sup
0≤s≤t

log(AsRs) + log(P 0)

= log(P 0)−
[
− log(AtRt)− inf

0≤s≤t
(− log(AsRs))

]
= log(P 0)− Zt,

where Zt follows a positive Brownian motion with parameters (σ2/2− a− α, σ), re-

flected at 0 and with initial condition Z0 = 0. We know from Harrison (2013) that, for

all x ≥ 0, Pr (Zt ≤ x) = Φ

(
x−
(
σ2

2
−a−α

)
t

σ
√
t

)
− e

2

(
σ2

2 −a−α
)
x

σ2 Φ

(
−x−

(
σ2

2
−a−α

)
t

σ
√
t

)
. Straightfor-

ward differentiation of this expression yields the solution for f e.

Test of Assumption 1.

According to Assumption 1, finding a block would always take 10 minutes on average

so that the daily number of blocks found would not be statistically different from 144.

Figure 13 plots the daily number of blocks found along with the two 95% confidence

bounds. For our periods of interest, the results are satisfying except for the beginning

of the first period. According to this graph, it is sensible not to consider the period in

between when ASICs were introduced. Then technological progress was so fast that

the hashrate significantly exceeded the target of one block every ten minutes.
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Figure 13: Number of blocks found per day

Note: the number of blocks fund per day has been retrieved from coindesk.com.

Test of Assumption 3.

The GBM assumption implies that the log returns of block reward should be both in-

dependent and normally distributed. We first show that the distribution of log returns

can be well approximated using a normal distribution. Figure 14 compares the non-

parametrically estimated density of log returns with their normal density estimated

under the GBM assumption. For our parametric estimation, we exclude some extreme

events by discarding the 5% most extreme returns on each side. This procedure yields

densities that are quite close to each other.

Figure 14: Normality of returns

As for the independence property, Figure 15 shows that log returns are not linearly

autocorrelated. We obtain similar results composing the log returns with many other

functions. However, statistical tests indicate that the variance of the exchange rate

does not remain constant over time, and goes instead through periods of high and
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low volatility. Although the issue is strongly alleviated by our division of the sample

into two subperiods, it suggests that a more realistic specification should allow the

variance coefficient σ to vary over time. We leave this extension to further research

because it makes the barrier state dependent and thus greatly complicates the char-

acterization of the equilibrium.

Figure 15: Independence of returns

Note: his autocorrelogram has been obtained using the second period log returns.

Estimation of Q.

(Qt)t≥0 is not observable but can be estimated using a two-step procedure. First, for

each day t, let Q̂t ≡ Nt/Π̃t, where Nt is the number of blocks found for day t and Π̃t

is the probability to find a valid block with a single hash. Both are directly observable

in the blockchain. Since Nt ∼ Bi
(
Qt, Π̃t

)
, Q̂t is a very natural estimator of the daily

hashrate. This estimator is non biased and it can easily be shown that it is asymp-

totically equivalent to the maximum likelihood estimator. Given that there is a lot of

variation across daily estimates, we smooth this new time series using a local linear

regression. Figure 16 shows we are not losing much information performing a local

linear regression over Q̂.
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Figure 16: Estimation of Q

The two green curves are confidence bounds for the first step estimation if the true

(log (Q)t)t≥0 were the red curve (the second step estimate). If the erratic variations of

the first step estimation captured not only the first step estimation variance but also

some real variations of the hashrate not captured by the second step estimation, then

its variance should be bigger than the one resulting from the first step estimation error

only. Thus it should cross the green bounds much more often than 5% of the time,

which does not happen in our data. For the sake of clarity, we do not show the whole

series but the test works very well for the whole period.
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2 How to make the Bitcoin network more environmen-

tally friendly

Abstract

I start modeling very simply the interactions between the different Bitcoin stake-

holders to emphasize the inefficiency in the current Bitcoin protocol yielding to a

terrible waste of money and electricity. I then show that the first best protocol

is unfortunately unreachable due to an incentive-compatibility constraint. I pin

down the second best protocol and show that it is preferable to the current pro-

tocol as soon as the yearly technical progress rate as regard mining hardware is

above 10%.

2.1 Introduction

Bitcoin was created in the end of 2008 / beginning of 2009 by Satoshi Nakamoto (see

Nakamoto (2008)). It is the first viable currency which needs not rely on banks (central

or commercial) to work. It was first designed to ease online commerce. On top of the

absence of intermediary, which means lower costs, sellers need not be wary of their

customers and hassle them with many personal details because bitcoin payments are

irreversible. But Bitcoin can provide many more financial services than mere mone-

tary transfers. The use of smart contracts (originally invented by Szabo (1996)) enables

the sender of a payment to specify complex conditions that the recipient needs to sat-

isfy to redeem the coins. Nowdays, many second-layer protocols, which enable users

to perform a bunch of fancy operations, rely on Bitcoin, making it the backbone of

an ever-growing ecosystem of new technologies. To cite a few, the lightning network

(Poon and Thaddeus (2016)) enables users to send free and instant payments, Root-

stock (Lerner (2015)) extends the possibilities offered by smart contracts, coloured

coins Assia et al. (2013) allow users to exchange real assets using Bitcoin and Tether is

a cryptocurrency pegged to the US dollar.

Miners are the ones who make the Bitcoin network secure by providing it with com-

puting power. Together, they solve difficult cryptographic puzzles. If an attacker wants

to cancel one of her payments, she needs to solve those cryptographic puzzles faster
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than all the other miners together. This way of securing transactions is called "Proof-

of-Work". The more computing power (called the "hashrate") miners deploy, the more

secure Bitcoin transactions are. Miners are rewarded for their work. Every ten minutes

on average, one randomly chosen miner earns a predetermined reward. The proba-

bility for a miner to win the reward is proportional to her computing power. Prat and

Walter (2018) model the market for mining and show that the total hashrate of the net-

work can be very well predicted with the reward scheme. The reward increases with

the Bitcoin / US dollar exchange rate. Free entry on the market for mining implies that

after an increase in the Bitcoin / US dollar exchange rate, more miners start mining

and so more electricity is spent on this activity.

If the total hashrate is high enough, everybody reckons that no single entity can

outperform honest miners and so everybody sees bitcoin transaction as absolutely

irreversible. A higher hashrate would then be sub-optimal. Bitcoin would not be

deemed safer but more electricity would be wasted on useless computations. I be-

lieve that by the time those lines are written - February 2018 - the hashrate is much

too high, as regard the previous criterion. As a result: miners’ electricity consump-

tion is tremendous: Bitcoin consumes as much electricity as Morocco or Bulgaria! Of

course, Bitcoin is deemed extremely safe, but this was already the case a couple years

ago, when the electricity consumption was not a tenth of what it is today!

Electricity being consumed on securing transactions is inherent to the Proof-of-

Work algorithm. Other algorithms, much less electricity-dependent are available. Pp-

coin, also known as Peercoin, (see King and Nadal (2012)) uses the Proof-of-Stake

algorithm, where coin age (the number of coins an entity holds multiplied by the

age of those coins) is substituted to computing power. No miners are needed to se-

cure Peercoin. Sunny King also introduced Primecoin (see King (2013)), which relies

on Proof-of-Work, but where the computations performed are useful (as opposed to

Bitcoin) since they consist in finding sequences of prime numbers, which can be of

great interest for mathematicians. IOTA resorts to a directed acyclic graph instead of

a blockchain to secure transactions. See Popov (2017). This approach is also much

environmental-friendlier than Proof-of-Work.

It seems very unlikely to see Bitcoin switch to Proof-of-Stake, for instance, in the
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near future. This would represent a substantial change in the protocol and this idea

is not in the pipes. I argue that even within the current Proof-of-Work setting, it is

easy to dramatically lower miners’ electricity consumption without giving up on secu-

rity simply by lowering miners’ rewards. By the time those lines are written, every ten

minutes, one of the miners wins about 112,000 US dollars. In January 2018, this reward

briefly reached 300,000 US dollars! No surprise it creates a huge incentive for miners

to mine. Why is the reward so high? First, because bitcoins are very expensive. The

role Bitcoin plays within the fintech industry shows that it has a fundamental value.

Yet, many people argue that Bitcoin is a bubble ready to burst. The point of this article

is not to answer this question. Second, Satoshi Nakamoto designed the whole reward

scheme in the beginning of 2009 and the community has failed to modify it since then.

If Nakamoto’s scheme made much sense at the beginning, it is not adapted to the cur-

rent Bitcoin / US dollar exchange rate any more. Nakamoto could obviously not pre-

dict in 2009 the entire path the exchange rate would follow.

Modifying the Bitcoin protocol to lower miners’ reward is not an easy task since,

due to their central role, miners have the power to prevent any protocol change. Pro-

tocol change proposals must then be made incentive-compatible with respect to the

miners. For that matter, I suggest to first give miners a substantial bounty before low-

ering their rewards, in order to compensate them for the drop in their incomes. I show

that in most cases such a scheme can be made incentive-compatible a lead to much

electricity being saved.

The rest of the article is organized as follows. Section 2 briefly explains how Bit-

coin works and highlights the role of miners and the energy waste caused by their ill-

designed reward scheme. In section 3, I model the interactions between the different

Bitcoin stakeholders and compare the current Bitcoin protocol with the unreachable

first best one. In section 4, I find the second best protocol and show to what extent it

is better than the current one. Section 5 concludes.

2.2 Bitcoin and the miners

This section describes the role miners play in the Bitcoin protocol. The goal of this

article is not to explain how Bitcoin works since this task has already been successfully
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fulfilled many times. I refer the interested reader to Nakamoto (2008) and Antonopou-

los (2014). I only explain what is necessary to know to understand the rest of the arti-

cle.

Bitcoin needs not rely on banks. This property is known as "decentralization" since

no single central authority controls the currency. If such a design supposedly raises

security, it creates one main problem: how to prevent a user from spending the same

coin twice? A user can try spending a coin twice by broadcasting on the network two

conflictual transactions simultaneously. Since the two transactions are conflictual,

one of the two will eventually be discarded. The double-spend attempt succeeds if the

recipient of the transaction which will be discarded accepts the payment and delivers

the corresponding good / service. For the system to work efficiently, a recipient of a

transaction must know very quickly whether the transaction is fraudulent or not. The

solution to this problem Satoshi Nakamoto proposed relies on the Blockchain tech-

nology and on the Proof-of-Work mechanism.

Transactions are not added to the Blockchain (the full history of all transactions)

one by one, they are added by blocks. Producing a valid block is, on purpose, very

difficult. Each block possesses a header, which contains an arbitrary integer (called

a nonce) and a statistic which sums up all the transactions of the block, the time the

block was assembled and the header of the previous block. Finding a valid Proof-of-

Work boils down to finding a nonce such that h(header) ≤ t, for some threshold t,

where h is the sha-256 hash function applied twice. As a hash function, h is numeri-

cally non invertible. On top of that, knowing h(n) for some n ∈ N yields no information

on h(m), for allm 6= n. As a result, there exists no smart algorithm to find a valid Proof-

of-Work. The only method available is to increase the nonce and hash the header until

the condition h(header) ≤ t is satisfied. This problem can be made arbitrarily difficult

by lowering the threshold t. Trying to find valid blocks is called mining, and individ-

uals, or entities, who use their computing power to accomplish this task are called

miners.

How do they make transactions secure? Since the header of a block contains the

hash of the header of the previous block, blocks are cryptographically chained. It

means that if a block is tampered with, not only its hash will not be under the thresh-
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old anymore, but all the blocks later in the chain will also become invalid. When the

network is aware of two competitive chains, all nodes select the longest one (in terms

of the number of blocks). Thus, to be able to erase a transaction from the blockchain,

an attacker would have to build himself a blockchain longer than the main one. She

has to recompute the block in question as well as all the blocks found later. . . and this

before one of the honest miners finds one more block. So if honest miners account for

a large majority of the computing power, a transaction part of a block buried under a

couple other blocks is deemed irreversible.

Mining is a costly activity. It requires acquiring the right hardware and providing

it with electricity. Therefore, mining must be rewarded. When a miner creates a valid

block, she earns a fixed amount of newly created coins and the sum of all fees granted

by the transactions included in the block. Transactions fees are freely chosen by users.

Nakamoto’s idea was the following: in the long term miners must be rewarded only

with transactions fees, so users pay for the service they use. But in the short term,

before Bitcoin is famous enough to generate enough transaction fees, to keep the sys-

tem secure miners must also earn the newly created coins. This way of remunerating

miners also solves the money creation problem. Nakamoto chose the following de-

sign. At the beginning, each block yields 50 new bitcoins to the miner who finds it.

Every 210,000 blocks (around 4 years), this reward is divided by two, so that the re-

ward scheme slowly converges towards the long term solution. It is easy to see that

the monetary base will converge to 21 millions. Since the inception of Bitcoin, this

reward design has never been adapted, although the number of new coins awarded

to miners is nothing more than a parameter which can be freely chosen. It is by no

means a fundamental feature of Bitcoin and it is not even discussed in Nakamoto

(2008). Nowdays, Bitcoin is probably famous enough to implement, or at least move

close to, Nakamoto’s long term solution. Yet, miners still receive 12.5 new bitcoins per

block.

Since they are the ones who create blocks, miners have a big say on the rules which

define the Bitcoin protocol. Imagine that a substantial number (in terms of hashrate)

of miners do not like the new protocol and keep following the old protocol. Those min-

ers will reject blocks created by the miners who follow the new rules and they will build

their own blocks, that the miners who follow the new rules will reject. The blockchain
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will split in two, which can be detrimental due to the network effect and create confu-

sion among users. Only if the new protocol is a subset of the old one (every block or

transaction valid under the set of new rules is still valid under the set of old rules) and

a majority of miners follow the new rules can a change of protocol be successful with-

out almost all the miners agreeing, due to the longest chain rule. The protocol change

I advertise is unfortunately not a subset of the current protocol. I need all miners to

agree on it so none of them must be worse-off.

2.3 The model

I start modeling the interactions between the bitcoin holders, the users and the min-

ers, to underline the inefficiency of the current situation. Of course, in reality users and

holders are, at least partially the same people since one needs to own bitcoins in order

to use them. Yet, in this model, it is easier to consider them separately. The model

uses discrete time. Let t = 0 denote the time period the protocol change I advocate is

announced. I model the interactions between the different Bitcoin stakeholders from

this day on only. What happened before does not matter here. The model is extremely

simple and often far from reality. Yet, the way agents behave and variables of interest

evolve has been changing fast. I argue that the gap between the model and reality is

a bit narrower for the most recent period. So the model should be assessed on this

period only.

Market capitalization and exchange rate Like Prat and Walter (2018), (from now on

abbreviated "PW") I take the B/ $ exchange rate as exogenous. The extreme volatil-

ity of this exchange rate for sure influences miners’ behavior. The two previous au-

thors took this phenomenon into account and modeled miners’ reward as a geomet-

ric brownian motion (GBM). Proceeding so was a basic requirement for them since

the main point of their article was to provide a model which uses the exchange rate to

reproduce miners’ observed investment behavior. In this article, the exchange rate is

deterministic. The first reason to motivate this choice is that the exchange rate plays a

much less central role here than in PW. The second reason is that here the reward min-

ers earn is decomposed into the fees and the newly minted bitcoins. Assuming that

the sum of the two follows a GMB implies that the fees alone follow a very not natural
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process, which may complicate a lot the analysis since the fees play a more central role

in this article then in PW. Last, the mechanism I want to study is pretty simple and so

I prefer focusing on clarity and simplicity instead of fidelity towards reality. I denote

K, the market capitalization of Bitcoin (the value of all the bitcoins). It is assumed to

grow at a rate α. That is to say, we have Kt = K0 × (1 + α)t, where K0 is exogenous. Let

Bt denote the number of new bitcoins minted at date t. The B/ $ exchange rate, which

I denote Rt, is equal to the market capitalization divided by the number of bitcoins in

circulation. We haveRt = Kt
B0+

∑t
s=1Bs

, whereB0 is the total number of bitcoins at time 0.

Transaction fees Transaction fees are freely chosen by users. They are used to clear

the block space market. Indeed, blocks are limited to 1 MB. When more than 1 MB

of transaction data are broadcast to the network every ten minutes, all transactions

cannot be included into blocks. Miners select the ones which pay the highest fees. For

simplicity, the $ value of the total transaction fees per period is constant over time in

the model. This is definitely a simplifying assumption but I reckon that the gap be-

tween this assumption and reality, not too wide, does not affect much miners’ behav-

ior. First, note that users have in mind the B/ $ exchange rate when they pick trans-

action fees. If the B/ $ exchange rate increases, everything else equal, the amount of

fees, paid in bitcoins, decreases. This fact is illustrated on the following figure, which

plots the average number of satoshis (10−8 bitcoins) given as fee per byte of transaction

data and the B/ $ exchange rate.

60



On the long term, the exchange rate goes up and the amount of bitcoins given as

fees per byte goes down. This is particularly visible in 2013. The rise in fees in 2017 is

due to congestion: at that time the size of transaction data broadcast every ten min-

utes was getting close to the upper limit. But what matters here is not the fees per byte

of transaction data but the total amount of fees per time period. This last quantity of

course depends on the number of transaction broadcast per time period. Since the

beginning of 2017, most blocks are very close to 1 MB and the demand for block space

is unlikely to go down in the near future. Second, in reality, the level of transaction

fees is very volatile even within a single day, depending on the instant demand for

block space and how lucky miners are finding blocks (instant block space offer). But

due to the irreversibility of investments in mining hardware, the network hashrate en-

joys a certain inertia and does not respond to the very short term volatility in revenues

induced by transaction fees. Miners would behave in a very similar way, were the level

of transaction fees flat, at its average.

The bitcoin holders Bitcoin holders maximize their wealths. In this model, they

all have symmetric roles. Maximizing separately the wealth of each bitcoin holder is

equivalent to maximizing the sum of the wealths. For the sake of simplicity, I assume

that a single agent owns all the bitcoins. This agent is not financially constrained: she

is a long term investor who does not have to sell some of her bitcoins at an early date.

She wants to maximize her wealth at a far-away date T . The exact date T does not

matter much. With the protocol change I propose, the agent will be a bit worse-off

than with the current protocol in the short term but much better-off quite quickly.

The far-away date T only highlights the fact that the short term does not matter here.

At every period, the holder buys all the newly minted bitcoins. Her wealth at date t

reads Wt = Kt −
∑t

s=0 RsBs. The value of her wealth does not matter. What matters

is the difference between the current protocol and the one we propose. That is why it

is not necessary to subtract from her wealth all the bitcoins mined before before the

date t = 0.

The miners The mining industry enjoys constant returns to scale (two pieces of min-

ing hardware will generate valid blocks twice as often as one piece of hardware will),

so for a given miner, it does not matter who (herself or somebody else) owns the other
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machines. Consequently, I assume that at each period t, a new miner has the oppor-

tunity to enter the race and buys a quantity qt ∈ R+ of hashpower. A machine which

delivers one unit of hashpower costs Ĩt, at time t. To operate this machine, the miner

must payCt per unit of hashpower for electricity at every period. Those pieces of hard-

ware are specifically designed to mine Bitcoin. As a result, they are incredibly fast but

cannot be used for any other purpose. Thus those machines cannot be resold. Buying

hashpower constitutes an irreversible investment. Mining solo is very risky since one

may well never find any valid block. To smooth their revenues, miners are all parts of

a few big mining pools, which share revenues according to individual hashpower. In

March 2018, the 10 biggest mining pools represent around 95 percent of the network

hashrate. After a couple weeks, there is no more uncertainty left. Miners’ revenues are

exactly proportional to their computing powers.

Let Qt denote the network hashrate at time t. At each period s, a miner who has

entered the race at time t earns qt (RsBs + F ) /Qs and pays qtCt for electricity. The

mining hardware enjoys a constant rate of technological progress, a. That is to say, we

have Ĩt = Ĩ0/(1 + a)t and Ct = C0/(1 + a)t. I assume that miners cannot stop mining.39

Let r denote the discount factor. The profit of a miner who enters the race at date t

reads:

Πt = qt

+∞∑
s=t

(
RsBs+F

Qs
− Ct

)
(1 + r)s−t

− Ĩt


= qt

(
+∞∑
s=t

RsBs + F

Qs(1 + r)s−t
−
(
Ct(1 + r)

r
+ Ĩt

))

= qt

(
+∞∑
s=t

RsBs + F

Qs(1 + r)s−t
− It

)
,

where It = Ct(1+r)
r

+ Ĩt is the total discounted cost paid by a miner. We still have It =

I0/(1+a)t so this last equality shows that assuming that miners are not allowed to stop

mining (even when they lose money) is equivalent to assuming that electricity is free.

In both cases, the hashrate can never decrease and we have Qt = Q0 +
∑t

s=1 qs. Free

entry translates into

Πt = 0, for all t ≥ 0 (11)

39This assumption is discussed in detail in PW. It simplifies the model a lot and it does not affect the

network hashrate much.
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An equilibrium on the market for mining is a Nash equilibrium of the game where

miner t’s strategy is qt ≥ 0. If Q−1 is known, knowing the path {qt, t ≥ 0} is equivalent

to knowing the path {Qt , t ≥ 0}. I use the latter in the formal definition of an equilib-

rium.

First, let denote the whole network earnings Et ≡ RtBt + F . And from now on, the

symbol "*" as an exponent is used to denote variables at equilibrium.

Definition 2.1 (Equilibrium on the market for mining). An equilibrium on the mar-

ket for mining for an earnings path {Et, t ≥ 0} and an initial hashrate Q−1 is an in-

creasing hashrate path {Q∗t , t ≥ 0} such that equation 11 holds and q∗t = 0 implies∑+∞
s=t

Es
Q∗s(1+r)s−t

− It ≤ 0.

The users The users send / receive bitcoins and pay transaction fees, F per period,

to miners. Here again, all users are symmetric so it is simpler to consider a single user.

Of course this user likes safe transactions. LetQt denote the threshold hashrate at time

t, above which mined transactions are considered totally irreversible. The utility of the

user at time t reads Ut = βmin
(
Qt
Qt
, 1
)
− F , for some positive β. The "total cost of all

the running machines", for a hashrate level Qt is ItQt. This quantity is a qualitative

indicator of how much it would cost an attacker to try double-spending coins. I define

Qt as the minimum hashrate such that the total cost of all running machines is higher

than a certain security level S, so QtIt = S. We see that Qt increases at the technical

progress rate. I discuss later what would be the value for S.

Note that I will not have to aggregate a level of wealth, a profit and a utility since

the protocol change I advocate Pareto-dominates the current one in the model.

First best protocol and inefficiency of the current one. I now state that transaction

fees are high enough to sustain a hashrate Qt higher that Qt, even if they are miners’

only income source.

Assumption 8. F ≥ S a+r+ar
(1+a)(1+r)

Lemma 2.1. Under assumption 8, if miners earn transaction fees only (that is to say,

we have Et = F , fo all t ≥ 0), and if the initial hashrate Q−1 is low enough (Q−1 ≤
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F
I0

(
(1+a)(1+r)
a+r+ar

)
), there exists an equilibrium on the market for mining for whichQ∗t ≥ Qt,

for all t ≥ 0.

Proof. Let consider the hashrate path
{
Qt = F

It

(
(1+a)(1+r)
a+r+ar

)
, t ≥ 0

}
. This path is strictly

increasing. At each date, the miner who has the opportunity to enter the race does it.

A simple computation shows that for all t,
∑+∞

s=t
RsBs+F
Qs(1+r)s−t

− It = 0. We have indeed an

equilibrium. Moreover, assumption 8 yields Qt ≥ S
It

= Qt.

Is assumption 8 likely to be satisfied in reality? This, of course, depends on the

value of S, which is hard to know exactly. The following table gives approximate values

for QtIt, for each year since 2011.

Table 5: Approximate security level (Qt × It) by year

time security level in $M

01/2011 .15

01/2012 .4

01/2013 1

01/2014 40

01/2015 200

01/2016 550

01/2017 890

01/2018 2150

We see that the cost of spending coins twice has always increased, along with miner’s

earnings. For already many years, Bitcoin has had the reputation of being extremely

safe. To be honest, until 2015, most articles in mainstream economic journals rather

highlight the different frauds and bitcoin thefts. However, those are linked to the (bad)

way some bitcoins are stored. They are totally independent from the Bitcoin protocol.

As a matter of fact, there has apparently never been any successful double-spending

attempt. If I consider (quite conservatively) that S is the security level prevailing in the

beginning of 2015, (S = 200) we see that the current hashrate can be divided by ten

without any risk. With such a value for S, assumption 8 is by far satisfied, considering

the high level of transaction fees miners enjoy in the beginning of 2018, because those

account for much more than 10 percent of miners ’rewards.
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On top of that, were assumption 8 not quite satisfied, the rest of this article would

still make sense. Instead of setting the number of new bitcoins created per block to 0,

as is suggested a bit further, one could set it to a strictly positive value, well below its

current value but high enough in order to maintain security. Even under the current

Bitcoin protocol, the number of new bitcoins created per block will converge to 0. So if

assumption 8 is not satisfied, the current protocol may not be viable in the long term,

were the minimum fee level not raised.

The equilibrium I highlighted is not the only one. For example, one can find an

equilibrium where new miners enter the market every other day only. I will still con-

sider only the equilibrium of lemma 2.1 since it is the most natural one and the only

Markov-perfect one. Besides, for other equilibria, the hashrate path would undu-

late around the equilibrium hashrate path I gave. Provided those undulations are

small enough (which is the case for the equilibrium where miners invest every other

day), there is no significant qualitative difference between all the obtained equilib-

rium hashrate paths.

Let Pt = RtBt+F
Qt

, be miners’ per period payoffs.

Assertion 2.2 (Equilibrium selection). Whenever it is available (whenever it does not

require the hashrate to decrease), miners coordinate on the equilibrium where Pt =

P0/(1 + a)t, for some P0.

I now compare the current protocol with the one I advocate. A Bitcoin protocol is

a set of rules defining precisely what is a valid transaction and what is a valid block.

In the model, the only rule that can be changed is how many new bitcoins are miners

allowed to give themselves per block.

Definition 2.3 (Protocol). A protocol is a path {Bt ≥ 0, t ≥ 0} for the number of new

bitcoins miners earn per block.

So far, I consider two different protocols: the current protocol and the "utopic pro-

tocol". To describe them, let assume a time period is a day.
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Current protocol. We have Bt = 180040 until the next reward halving, then Bt = 900

for four years, then Bt = 450, and so on. At equilibrium, the hashrate is always above

Q thanks to lemma 2.1 and miners’ earnings are always bigger (much bigger at the be-

ginning) than F . So the user’s utility is Ut = β − F . The holder’s wealth at time t is

Wt = Kt −
∑t

s=0 BsRs. And miners always earn 0, by definition of an equilibrium.

Utopic protocol. It is defined by Bt = 0 for all t ≥ 0. If this protocol were antic-

ipated for long enough, Q−1 would be low enough, as in lemma 2.1 and the equilib-

rium hashrate would be the one displayed in lemma 2.1. The user’s utility would still

be Ut = β−F . The holder’s wealth would be W̃t = Kt > Wt, for all t > 0. Miners would

still earn 0.

The utopic protocol Pareto-dominates the current protocol. It is easy to see that

the utopic protocol is actually the Pareto-optimum. The current protocol is very inef-

ficient. At every period, the holder must pay a substantial "tax" BtRt, which does not

increase the utility / profit of anybody else and is only used to buy mining hardware

and burn electricity.

Unfortunately, the today’s hashrate, Q−1 is already way too high. If we were to

switch tomorrow, for all equilibria that could arise, active miners would make losses.

This is particularly problematic since miners have the power to block any protocol

change. This is why I design a third protocol, the "feasible protocol", which takes into

account this incentive-compatibility constraint. I now explain how to write this con-

straint easily, although miners all start mining at different times. From now on, the

symbols "CP" and "FP" as exponents are used to denote variables in the current pro-

tocol and feasible protocol respectively.

At time t, the fraction of their incomes active miners have not earned yet is

qt
∑+∞

s=t
RsBs+F
Qs(1+r)s−t

, for all of them. This also holds for the miner who has the oppor-

tunity to enter at time t, once the cost It has been paid. Before any protocol change is

anticipated, the market for mining is at the current protocol equilibrium, for which∑+∞
s=t

RsBs+F
Qs(1+r)s−t

= It, for all t. As a result, we must only check whether the miner

who has the opportunity to enter the market at time t = 0, when the future proto-

col change is announced, is indeed willing to do so. If so, no miner will be worse-off.

40This corresponds to 12.5 new bitcoins per block and 144 blocks per day on average.
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The incentive-compatibility constraint reads:

+∞∑
t=0

RtBt + F

Q∗FPt (1 + r)t
= I0 (12)

Feasible protocol. We have Bt =


1800 for 0 ≤ t < t1

B >> 1800 for t1 ≤ t < t2

0 for t ≥ t2

.

I assume that the effective protocol change happens only at t = t1 but that the idea

to change the protocol is made public at time t = 0 already. Miners anticipate the

new reward scheme from t = 0 onward. In reality, time is always needed between the

moment when a protocol change is announced and the moment it becomes effective,

because all users must upgrade their softwares. I fix t1 = 183 (6 months). There are

still two parameters: t2 and B. These should be determined so as to maximize the

holder’s wealth under the incentive-compatibility constraint. The theoretical solution

for t2 is easy to get. The holder must transfer some wealth to miners and we are trying

to minimize this transfer. Due to the presence of the discount factor, the sooner the

transfer is done, the more miners will value it, the smaller it can be. So theoretically,

t2 should be as close as possible to t1. Yet, in reality it would not make sense to have

t2 = t1 + 1. Even though miners mine in pools, there remains a bit of uncertainty

as regards when blocks are found. This uncertainty can become problematic if the

bounty period is very short. I thus pick t2 = t1 + 30. Now, as long as the incentive-

compatibility constraint is satisfied, the holder’s wealth is clearly decreasing in B. I

proceed numerically to find B̂: the lowest B which satisfies the constraint.

2.4 Numerical analysis

To visualize what the solution looks like, figure 17 compares the optimal feasible pro-

tocol with the current one, plotting the protocol design, the hashrate path and the net

profit per unit of hashpower miners would make entering the race.

67



Figure 17: Protocol comparison

The fact that the miner who has the opportunity to invest at time 0 would not make

a negative profit investing proves that the incentive-compatibility constraint is satis-

fied and the fact that the hashrate remains flat at the beginning shows the optimality

of the protocol. To see what ill-calibrated protocols look like, figure 18 plots the profit

of entering miners for a too greedy protocol (B too low) and the hashrate prevailing

under a too generous protocol (B too high). For the too greedy protocol, we see that

the incentive-compatibility constraint is not satisfied (the miner who could enter the

market at day t = 0 would make losses doing it) and we see that the generous protocol

leads to an unnecessary high hashrate.
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Figure 18: Too greedy and too generous protocols

Now, to find B̂, I need to know, for a given B, whether the resulting protocol satis-

fies the incentive-compatibility constraint or not.

Redefining miners’ strategies. So far, I have defined miners’ strategies using qt. Here

it is useful to define them differently. Let introduce P t, the threshold value for the

payoff process at time t, above which investment is triggered. More precisely, if the

payoff that would arise at time t without investment, Et/Qt−1, is bigger than P t, then

the miner who has the opportunity to invest at time t does it until Et/Qt = P t. qt is a

function of P t. We have:

qt = max

(
Et

P t

−Qt−1, 0

)
(13)

When the miner t chooses qt, she has P t in mind. So I can alternatively state that

miner t’s strategy is P t. Using this new notation, 12 becomes

EFP
0 /Q∗CP−1 ≥ P

∗FP
0 , (14)

The advantage of defining the strategies this way is that the best response of miner

t only depends on the strategies of future miners, whereas this is not the case using qt.

As a result,
{
P
∗
t , t ≥ t2

}
is known and is equal to the utopic equilibrium payoff series
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since assertion 2.2 ensures that miners invest everyday. Then, the whole equilibrium

path
{
P
∗
t , t ≥ 0

}
can be recovered going backward.

Recovering the equilibrium path
{
P
∗
t , t ≥ 0

}
. Let t ≥ 0. If miner t + 1 does not

invest at time t+ 1, we have Pt+1 = Et+1

Et
Pt. If she invests, we have Pt+1 = P

∗
t+1. So, Pt+1

reads

Pt+1 = min

(
Pt ×

Et+1

Et
, P
∗
t+1

)
. (15)

Iterating equation 15 and using the free entry condition, P
∗
t is the unique solution41

of the equation (which unknown is Pt)

Pt +
+∞∑
s=t+1

min
(
Pt × Es

Et
, P
∗
t+1 × Es

Et+1
, . . . , P

∗
s−1 × Es

Es−1
, P
∗
s

)
(1 + r)s−t

= It (16)

Using equation 16, P
∗
t2−1 can first be recovered, then P

∗
t2−2, . . . , and eventually P

∗
0.

To recover Q∗CP−1 , the same methodology can be applied for the current protocol. The

path
{
P
∗CP
t , t ≥ 0

}
is displayed on figure 19

41the left hand side is clearly an increasing function in Pt.
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Figure 19:
{
P
∗CP
t , t ≥ 0

}

The curve plotted decreases exponentially (except around halvings) because of

technological progress. We see that halvings of the number of newly created coins af-

fect P
∗CP

only a couple months ahead, which confirms the findings of PW. As a result,

since the date t = 0 we consider is far enough from the next halving, we do not need

to take halvings into account and Q∗CP−1 is equal to the equilibrium hashrate prevailing

under the hypothetical "flat protocol", where Bt = 12.5 forever. This quantity is easily

computed using assertion 2.2. The condition in equation 14 can now be checked.

Choice and effects of parameters on the holder’s expenditure for the two protocols.

The value for B̂ and the magnitude of the efficiency gain switching from the current

protocol to the optimal feasible one depend on many parameters. These are the tech-

nical progress rate, a, the discount rate, r, the market capitalization at time 0, K0, the

growth rate of the market capitalization, α, the number of available bitcoins at time 0,

B0, the level of fees F and the total costs of one unit of hashpower at time 0: I0.

The current and the feasible protocols do not differ until date t = t1. Even though

the hashrate differs from date t = 0 onward, this does not affect the holder’s expen-

diture since it only depends on the protocol design and the exchange rate. So the
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comparison starts at date t = 1. The holder’s expenditure under the current protocol

reads

ExpCP = K0

+∞∑
t=t1

(1 + α)tBCP
t

B0 +
∑t

s=1B
CP
s

and the holder’s expenditure under the optimal feasible protocol reads

ExpFP = K0B̂

t2−1∑
t=t1

(1 + α)t

B0 + (t− t1 + 1)B̂
.

It is clear that ExpCP increases much more than ExpFP with α. Even though α has

been very high in the past, for the comparison to be fair, we have to pick a low α. An

α significantly higher that the global growth rate is not sustainable in the long term. I

adopt a very conservative approach and set α = 0, which is the most adverse case (not

considering negative values for α) to advocate the protocol change. B0 is easily ob-

servable and I therefore set it at 17, 000, 000. All the other parameters may affectExpFP

indirectly through B̂ but they have the same direct effect (or no direct effect at all) on

ExpCP and ExpFP . Finally, note that ExpFP is clearly increasing (almost linearly) with

B̂. Thus, to assess how the parameters affect the efficiency gain switching to the fea-

sible protocol, it is sufficient to assess their effects on B̂. The lower B̂, the higher the

efficiency gain.

The parameter which has by far the strongest effect on B̂ is a. B̂ strongly decreases

with a. When a increases, future miners enjoy a much more efficient technology which

enables them to invest more. Even under the current protocol, active miners’ profits

will vanish quickly. So it is not necessary to give them a high compensation for the

protocol change. Again, I select an adverse case and set a according to the so-called

Moore law, which stipulates that It should be divided by two every two years. Note

that PW estimate a twice faster technical progress rate. If a is below 10% per year, then

the protocol switch becomes pointless because satisfying the incentive-compatibility

constraint would make the holder worse-off.

r also has a non-negligible effect on B̂. B̂ decreases with r. When r increases, the

future income loss matters less for miners who are thus ready to accept a lower trans-

fer. Following PW, I pick, somewhat arbitrarily, r = 10% annually.
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All the other parameters have negligible effects on B̂. Both the market capitaliza-

tion and the level of transaction fees are also easily observed but very volatile. I set

K0 = 200, 000, 000, 000 $, which is consistent with a B/$ exchange rate slightly above

10, 000 $, and F = 72000 $ per day, which is the average fee level. These choices do not

matter much since B̂ increases extremely slightly with K0 and decreases extremely

slightly with F . I0 has no effect at all on B̂. It only affects the hashrate. α also has a

negligible negative effect on B̂.

Results Using the values for the parameters previously discussed, I obtain the fol-

lowing optimal feasible protocol.

Optimal feasible protocol.

1. For six months, each new block yields 12.5 new bitcoins.

2. Then for one month, each new block yields 243 new bitcoins.

3. Then, no more new bitcoins are ever created.

Figure 20 compares the holder’s total expense between the two protocols, for the

Moore law technical progress rate and the rate estimated by PW. As explained in the

previous section, we see that under the optimal feasible protocol, the holder is tem-

porarily worse-off but eventually much better-off.
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Figure 20: Efficiency gain

To have a quantitative idea of the effects of the different parameters on B̂, table

6 compares the value obtained for B̂ with the default set of parameters, with the B̂

obtained for other sets of parameters, for which one of the parameters is significantly

changed (often multiplied by 2). We see that the effect is indeed mostly driven by the

technical progress rate.

Table 6: Quantitative effects of parameters

B̂ (new bitcoins per block)

Default 243

a× 2 99

a = 10% yearly 649

r × 2 203

r ≈ 0 299

K0 × 2 254

F × 2 224

α = 10% yearly 227
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2.5 Conclusion

I have shown that the current Bitcoin protocol is inefficient because holders pay a

tax which is used to buy hardware and electricity without any gain for the security

of transactions. Switching to the first best protocol is unfortunately impossible in

practice because it would harm miners, who have the power to prevent any proto-

col change. I have then pined down numerically the second best protocol, which is

basically the first best protocol with a transfer to miners just high enough to satisfy

the incentive-compatibility constraint. Finally, I have shown that the magnitude of

the efficiency gain offered by the second best protocol depends crucially on the tech-

nical progress rate as regard mining hardware. Bitcoin holders will eventually benefit

implementing the protocol change provided the yearly technological progress rate is

above 10%.
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3 Identification and estimation of the average marginal

effect in a panel data fixed effects logit model

Joint work with Laurent Davezies and Xavier D’Haultfœuille.

Abstract

This article focuses on the average marginal effect in a fixed effects logit model

with panel data. We show that this quantity is partially identified and provide a

nice and easy to use characterization for the sharp bounds of the identification

region. We then explain how to estimate those bounds, using our characteriza-

tion. Finally, we perform Monte-Carlo simulations to assess the performance of

our estimators.

3.1 Introduction

So far no method is truly satisfying when drawing inference on a binary variable using

panel data. Panel data can help mitigate the endogeneity problem since they enable

the econometrician to decompose the error term into an individual effect, fixed in

time, and an idiosyncratic shock. For many models, the data can be transformed so

as to get rid of the individual effect. Thus, only the indiosyncratic shock needs not

be correlated with the regressors and no assumption must be made on the individ-

ual effect and its link with the regressors. Note that the individual effects cannot be

treated as parameters and estimated due to the, so-called, incidental parameter prob-

lem. See Lancaster (2000) for a survey on this issue. In this case, when the number

of individuals increases, the number of parameters to estimate increases at the same

speed. This phenomenon prevents the econometrician from correctly estimating not

only the individual effects, but also the parameter of interest. If one wants to avoid

making assumptions on the individual effects, one must get rid of them.

The simplest way to proceed is to assume a linear model. Simply differentiating

the data makes the individual effects disappear. However linear models with binary

dependent variables (called linear probability models) have a well-known drawback:

they imply that the marginal effect of a regressor on the explained variable is the same

for all individuals, no matter what their unobserved individual components are. This
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is a serious restriction. On top of that, should the model be used for prediction, linear

probability models do not restrict the probability that the explained variable equal

one to belong to the set [0, 1]. Fortunately, one can also assume a, so-called, fixed

effect logit model. Rasch (1961) and Chamberlain (1980) have found an exhaustive

statistic for the individual effect (called the fixed effect) in this model. Proceeding

conditionally to this statistic, the data do not depend on the fixed effect anymore and

this enables the econometrician to consistently estimate β0, the parameter of interest.

Yet, in a logit model, each individual has its own marginal effect, which depends

on his fixed effect. Even though this is what we wanted, it complicates the estimation.

Different quantities can sum up the effect for the whole population. In this article,

we focus on the average marginal effect. Knowing β0 is, however, not enough to re-

cover the average marginal effect because it depends on the unknown distribution of

the fixed effects. The model still yields some information on that distribution but not

enough to point-identify the average marginal effect, which remains partially identi-

fied. Chernozhukov et al. (2013) give a first and natural characterization of the sharp

bounds for the average marginal effect. The characterization they give induces an esti-

mation strategy which involves a maximization over an infinite-dimensional set. Such

a problem is very difficult to solve both in practice and in theory.

In this article, we provide another characterization of the sharp bounds, relying

on the theory of Chebyshev systems, using many results from Krein and Nudel’man

(1977). Our characterization is nicer since it involves only some costless operations,

namely solving a linear system and finding the roots of a polynomial. We proceed

almost as in D’Haultfœuille and Rathelot (2011), who resort to the same methodology

to study segregation indexes.

This article builds on the partial identification literature. This notion was democra-

tized by Manski (2003). It generalizes point-identification and enables the econome-

trician to still extract information on a parameter from the data while relaxing some

restrictive assumptions needed in classical models. Many articles in this literature

yield sharp bounds in very general frameworks. But often, this generality comes with

great difficulties to apply the method in practice. In Chesher et al. (2013) and Galichon

and Henry (2011), for instance, the econometrician obtains an infinite number of re-

strictions. We rather do the opposite: the framework we consider is more specific and

enables us to provide a very easy-to-use characterization of the sharp identification

bounds. Thus, the philosophy of our article is closer to Davezies and D’Haultfœuille
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(2016), Bontemps et al. (2012) and Kaido and Santos (2014) who use convexity restric-

tions to derive simple results.

The rest of the article is organized as follows: section 2 presents the identification

results, section 3 deals with the estimation procedure, section 4 shows some Monte-

Carlo simulations and section 5 concludes.

3.2 Identification results

3.2.1 The parameters of interest

We suppose we observe panel data of the form (Y1, X1, ..., YT , XT ), with Yt ∈ {0, 1} and

Xt = (X1t, ..., Xpt) ∈ Rp for t ∈ {1, ..., T}. Note that in this section, we do not index

units by i for the sake of lighter notations. We focus on the so-called fixed effect logit

by considering the following assumption.

Assumption 9. We have

Yt = 1{Xtβ0 + α + εt ≥ 0},

where α, ε1,...,εT are real random variables. Moreover, (ε1, ..., εT ) are i.i.d., follow a lo-

gistic distribution and are independent of (α,X1, ..., XT ).

Importantly, this assumption allows for arbitrary dependence between the individ-

ual effect α and the covariates X = (X1, ..., XT ). We are interested here in the identifi-

cation of aggregate marginal effects. Without loss of generality, we focus on marginal

effects on the last period. Assumption 9 implies that Pr(YT = 1|XT , α) = Λ(XTβ0 + α),

with Λ(x) = 1/(1 + exp(−x)), the c.d.f of the logistic distribution. Thus, the marginal

effect of XkT on YT is β0kΛ
′(XTβ + α), with Λ′ the derivative of Λ. Rather than such

individual effects, we focus here on an aggregate measure, namely

∆k = β0kE [Λ′(XTβ0 + α)]

In the following, we show that this parameter is partially identified, and provide

a useful characterization of the corresponding bounds. This characterization will, in

turn, allow us to produce a fairly simple estimator. Before, let us recall that β0 is iden-

tified in this model, as the maximizer of the (expected) conditional log-likelihood. See

Rasch (1961) and Chamberlain (1980). For completeness, we first state this result be-

low.

78



Let S =
∑T

t=1 Yt, let Ck(x; β) =
∑

(d1,...,dT )∈{0,1}T :∑T
t=1 dt=k

exp
(∑T

t=1 dtxtβ
)

and let

`C(y1, ..., yT |k, x; β) =
∑T

t=1 ytxtβ − ln (Ck(x; β)).

Proposition 3.1. Suppose that Assumption 9 holds. Then

β0 = arg max
β

E [`C (Y1, ..., YT |S,X; β)] .

Proof. See Chamberlain (2010).

Because β is identified, computing bounds on ∆ reduces to the identification of

features of the distribution of α conditional on X. To see this, note that

∆k = β0kE [E [Λ′(XTβ0 + α)|X]]

This equality implies that it is sufficient to find bounds on the prescribed moment

of α given X. Specifically, one must bound, ∆(X) = E [Λ′(XTβ0 + α)|X].

3.2.2 Sharp bounds

We now show that ∆(X) is only partially identified in general. Conditionally on X, all

the information contained in the data is

pX(y1, . . . , yT ) ≡ Pr (Y1 = y1, . . . , YT = yT |X). Integrating out the conditional distri-

bution of α, we see that those probabilities read

pX(y1, . . . , yT ) =

∫ T∏
t=1

Λ(X ′tβ0 + α)yt
(
1− Λ(X ′tβ0 + α)

)1−yt dF (α|X), (y1, . . . , yT ) ∈ {0, 1}T

(17)

So the model provides us with some constraints on the conditional distribution of

α because the left hand side of this equality is identified in the data. We know some

moments of this distribution but not the moment corresponding to ∆(X), in general.

In some cases we will pin down below, ∆(X) is a linear combination of the identified

moments. Yet, this is not always the case. Thus, in general, ∆(X) is only partially iden-

tified. Finding the sharp lower bound (resp. upper bound) of its identification region

amounts to minimizing (resp. maximizing)
∫

Λ′ (X ′Tβ0 + α) dF (α) over the set of all

79



distributions F that satisfy the constraints (17). Those constraints encompass all the

available information so the bounds will indeed be sharp.

We now provide a first characterize of the bounds. The idea is to obtain constraints

on raw moments42 of some random variable instead of the complicated moments we

now have. For that purpose, let us introduce some additional notation. First, let A =

(ai,j)0≤i,j≤T =
(
T−i
j−i

)
I(i ≤ j) and

(c0(x), . . . , cT (x))′ = A

(
Pr (S = 0|X = x)

C0(x; β0)
, . . . ,

Pr (S = T |X = x)

CT (x; β0)

)′
.

Second, for k = 0, . . . , T , let

m(x) = (m1(x), . . . ,mT (x)) =

(
c1(x)

c0(x)
, ...,

cT (x)

c0(x)

)
. (18)

Note that because m(x) only involves β0 and the conditional distribution of S, it is

identified from the data. Third, let us define

Ω(u, x) =
u(1− u)

∏T−1
t=1 (u(exp(xtβ)− 1) + 1)

u(exp(xTβ)− 1) + 1
.

Finally, let D denote the set of cumulative distribution functions on [0, 1] and for

any m = (m1, ...,mT ), let

F (m) =

{
F ∈ D :

∫
utdF (u) = mt, t = 1, . . . , T

}
.

Proposition 3.2. The sharp identification region of ∆(x) is
[
∆(x),∆(x)

]
, with

∆(x) = exp(xTβ)c0(x) min
F∈F(m(x))

∫
Ω(u, x)dF (u),

∆(x) = exp(xTβ)c0(x) max
F∈F(m(x))

∫
Ω(u, x)dF (u).

Moreover, ∆(x) = ∆(x) whenever xt = xT for some t < T .

Proof. Using a simple change of variable, the objective function becomes:

∆(X) = exp(XTβ0)
∫ 1

0
u(1−u)

(u(exp(X′T β0)−1)+1)
2dF (u|X), where F (.|X) is the conditional

distribution of U = exp(α)
1+exp(α)

given X.

42for a random variableU , raw moments areE[U ], E[U2],. . . . We do not call them canonical moments

because this terminology has a very specific meaning in the theory we use.

80



As for the constraints on the conditional distribution of α, we actually do not need

the 2T of them. Since S is a sufficient statistic for α, all the relevant information for our

application is encompassed in the T + 1 conditional probabilities

Pr (S = 0|X) , . . . ,Pr (S = T |X).43

For all k = 0, . . . , T , we have

Pr (S = k|X) = Ck (X, β0)

∫
exp(kα)∏T

t=1 (1 + exp (X ′tβ0 + α))
dF (α|X).

The same change of variables as before yields

Pr (S = k|X) = Ck (X, β0)

∫ 1

0

uk(1− u)T−k∏T
t=1 (u(exp(X ′tβ0)− 1) + 1)

dF (u|X). (19)

Using the notation we have defined, we can rewrite the set of constraints as:

for all k = 0, . . . , T, ck(X) =

∫ 1

0

uk∏T
t=1 (u(exp(X ′tβ0)− 1) + 1)

dF (u|X).

In order to get rid of the denominator so that our constraints are raw moments, we

introduce a new conditional measure G(u|X) such that
dF (u|X)
dG(u|X)

= c0(X)
∏T

t=1 (u(exp(X ′tβ0)− 1) + 1). The constraints now become{ ∫ 1

0
dG(u|X) = 1 (G is a probability measure on [0,1])∫ 1

0
ukdG(u|X) = mk(X), k = 1, . . . , T

(20)

And ∆(X) becomes

∆(X) = exp(XTβ0)c0(X)

∫ 1

0

Ω (u,X) dG(u|X)

We have found the expression of proposition 3.2. Before all the transformations we did

in this proof we had sharp bounds. Nowhere did we lose information in the process.

So the bounds of proposition 3.2 are still sharp.

Finally, if xt = xT for some t, then one of the terms in the product in the numerator

of Ω(u, x) will cancel with the denominator, leaving a polynomial of degree at most

T . Since the identified moments (the constraints) define a basis of the vector space of

polynomials with degree at most T , ∆(X) can be expressed as a linear combination of

the identified moments.
43Note that this is the property we use to identify β0.
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This proposition first shows that finding the sharp bounds on ∆(x), and thus on

∆, amounts to bounding a prescribed moment of a distribution on [0, 1], given the

knowledge of its first T raw moments. It also shows that the conditional distribution

of S, as opposed to the one of (Y1, ..., YT ), is sufficient to obtain sharp bounds on ∆(x).

This feature is convenient for estimation, because for T large, the T +1 probabilities of

the distribution of S will be estimated more accurately than the 2T probabilities of the

distribution of (Y1, ..., YT ). Finally, the proposition shows that the bounds are actually

equal for “stayers”, that is to say units satisfying xt = xT for some t < T . This result

was expected and is not specific to the logit model we consider here. It is indeed a

particular case of Hoderlein and White (2012).

Now, the problem of finding bounds of a moment given other moments can be

difficult. Formulated as in Proposition 3.2, it involves an infinite dimensional con-

strained optimization. Several simplifications are however possible. First, an applica-

tion of Caratheodory’s theorem shows that one can actually restrict the set of potential

distributions to discrete distributions with at most T +1 support points. This turns the

problem into a nonlinear constrained optimization problem of dimension 2T+1. Such

an optimization problem can still be difficult to solve, yet. Fortunately, further sim-

plifications are possible when the function Ω involved in the moment
∫

Ω(u, x)dF (u)

under consideration satisfies certain conditions that are detailed below. For us those

conditions are satisfied. As a result, special and discrete distributions, called the lower

and upper principal representations, rationalize the moment constraints and yield the

sharp bounds on the prescribed moment. Moreover, those two distributions are very

parsimonious and can be computed very easily.

So far, the bounds are defined as the solutions of two optimization problems, for

which non convex optimization is to be performed over infinite-dimensional sets.

Solving such problems is usually very difficult. This is where lies the main added value

of this paper: we provide a very simple and computationally almost costless way to do

so, which gives us a much nicer characterization of the two bounds.
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3.2.3 A nicer characterization for the bounds

Before stating the main result, we illustrate the intuition in the two-period case. Let

B ≡ {m ∈ [0, 1]2 such that F(m) 6= ∅}. B is the set of moment constraints that can be

rationalized for some conditional distribution for the transformed fixed effects U ≡
Λ(α). In the two-period case it is easy to see that B is the area between the segment

{y = x for x, y ∈ [0, 1]} and the curve {y = x2 for x, y ∈ [0, 1]}. B is represented on

figure 21.

Figure 21: Graphical example with two periods

If the model is true, then the vector m(x) = (m1(x),m2(x)) corresponds to the two

first moments of a random variable supported by [0, 1]. So we must have m(x) ∈ B. If

m(x) is on the lower border of B (say, for example, m1(x) = p ∈ [0, 1] and m2(x) = p2,

then the only distribution F for U that can rationalize the constraints is the Dirac dis-

tribution centered at p. Indeed it implies that
∫
udF (u) = p and

∫
u2dF (u) = p2 so

V(U) = 0. If m(x) is on the upper border of B, say, m1(x) = m2(x) = p, then the only
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distribution F () for U which can rationalize the constraints is the Bernoulli distribu-

tion with parameter p. In those two particular cases, the distribution of U is point

identified and so is ∆(x). If m(x) is in the interior of B, then the set F(m(x)) contains

an infinite number of elements and the conditional distribution ofU is partially identi-

fied. Yet, the distributions we are looking for (the one which minimizes
∫

Ω(u, x)dF (u)

and the one which maximizes that same quantity) can be obtained very easily!

Given the convexity ofB,44 as shown on figure 21, ifm(x) is in the interior ofB, it can

be obtained as a linear combination of two points on the lower border of B. Such a lin-

ear combination actually defines a distribution with two support points since a point

on the lower border corresponds to a Dirac distribution. We focus on two specific

combinations: the one where one of the two points on the lower border is (0, 0) and the

one where one of the two points is (1, 1). Those two distributions are called the lower

and upper principal representation respectively and are plotted on figure 21. It turns

out that one of those two distributions is the one which minimizes
∫

Ω(u, x)dF (u) and

the other one maximizes that same quantity. Not only are those two distributions easy

to obtain, they also make the computation of
∫

Ω(u, x)dF (u) straightforward since they

turn the integral into a sum of two terms! We now introduce the prerequisite needed

to state the main result.

Definition 3.3 (Chebyshev systems). A set of K + 1 functions is called a Chebyshev

system on an interval [a; b] if any non-trivial linear combination of theseK+1 functions

vanishes at K different points of [a; b] at most.

Lemma 3.1. If for all t < T , exp(xtβ0) 6= exp(xTβ0), then the set of T + 2 functions

(which variable is "u")
{

1, u, u2, . . . , uT ,
u(1−u)

∏T−1
t=1 (u(exp(x′tβ0)−1)+1)

u(exp(x′T β0)−1)+1

}
is a Chebyshev system

on [0, 1].

Remark 3.1. We have already seen that if exp(xtβ0) = exp(xTβ0) for some t < T , then

the marginal effect conditional to x is identified. This is the simplest but not the most

interesting case.

Proof. Multiplying all the functions of a Chebyshev system by the same strictly pos-

itive function preserves the Chebyshev property.45 Let multiply all our functions by

44It is obvious that B is convex. Indeed, ifm1 ∈ B, then there exist a distribution F1 with support [0, 1]

such that
∫
udF1(u) = m1

1 and
∫
u2dF1(u) = m1

2. Idem for some m2 and F2. Then, the moment vector

(m1 +m2)/2 belongs also to B since it is rationalized by the distribution (F1 + F2)/2.
45Indeed, let g be a strictly positive function. We have:

∑K
k=1 λkfk(x) = 0⇔

∑K
k=1 λkg(x)fk(x) = 0
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u(exp(x′Tβ0)− 1) + 1 > 0 for u ∈ [0, 1]. Proving the lemma is thus equivalent to showing

that the set of functions{
u(exp(xTβ0)− 1) + 1, . . . , uT (u(exp(xTβ0)− 1) + 1),

u(1− u)
∏T−1

t=1 (u(exp(xtβ0)− 1) + 1)
}

is a Chebyshev system. The T + 1 functions

uk(u(exp(x′Tβ0) − 1) + 1), k = 0, . . . , T are clearly linearly independent. Any linear

combination of these function can be written as (u(exp(xTβ0)− 1) + 1)
∑T

k=0 aku
k. The

last function,

u(1 − u)
∏T−1

t=1 (u(exp(xTβ0)− 1) + 1), cannot be written like this since for all t < T ,

exp(xtβ0) 6= exp(xTβ0). Thus, we have T+2 linearly independent polynomials of degree

at most T + 1. This is a base of the set of polynomials of degree at most T + 1. No non

trivial linear combination of those functions can vanish more than T + 1 times.

We need to (re-)define a few more notions in order to state the main result in a very

general case. First, let f0, . . . , fT be some functions defined on [0, 1] and let

F̃ (m) =

{
F ∈ D such that

∫
fk(u)dF (u) = mk, k = 0, . . . , T

}
In our case, fk(u) = uk and F̃ = F . Let also

B̃ =
{
m ∈ [0, 1]T such that F̃ (m) 6= ∅

}
B̃ is the set of values for which the moment constraints can be rationalized by some

distribution on [0, 1]. Second, for a point m in B̃, any distribution in F̃(m) is called

a representation of the moment vector m. We know that if m is in the interior of B̃,

there exists an infinity of representations. Most of them are not discrete. Yet, in the

two-period case we saw that the solution to our problem was obtained for a discrete

distribution. This result remains true in the general case so we only consider discrete

representations. Last, the number of support points of a discrete representation is

called the index of the representation, with the exception that 0 and 1 are counted

only 1/2 if they are support points.46

Let Ω̃ be some function defined on [0, 1]. We focus on the following problem: bound

the quantity
∫

Ω̃(u)dF (u), over the set F̃(m).

46for example, the index of a representation where 0.3 and 0.7 are support points is 2, the index of a

representation where 0 and 0.6 are support points is 3/2 and the index of a representation where 0 and

1 are support points is 1.
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We can now state the main result which tells us how to find the sharp bounds for

the marginal effect.

Theorem 3.4 (Main result).

Assume that the set of functions (f0, . . . , fT ) is a Chebyschev system. Then,

(1) A point m is on the border of B̃ if and only if it admits a representation of index at

most T
2

. In this case, this representation is unique.

(2) A point m is in the interior of B̃ if and only if it admits no representation of index

strictly smaller than T+1
2

and exactly two representations of index T+1
2

. Those two repre-

sentation are called the principal representations of the point m.47

Now assume, on top, that m is in the interior of B̃.

(2’) If T is even, one of the representation has the support point 0 (it is called the lower

principal representation) and the other representation has the support point 1 (it is

called the upper principal representation). If T is odd, then one of the representations

has neither the support point 0, neither the support point 1 (it is called the lower princi-

pal representation) and the other representation has both the support points 0 and 1 (it

is called the upper principal representation).

(2”) Let F− and F+ denote the lower and upper principal representations of m respec-

tively and let assume that the set of functions (f0, . . . , fT , fT+1 ≡ Ω̃) is a Chebyshev sys-

tem. If for all 0 < u0 < · · · < uT+1 < 1, the determinant of the matrix (fi(uj))0≤i,j≤T+1 is

strictly positive, then, we have
∫

Ω̃(u)dF−(u) = min
F∈F̃(m)

∫
Ω̃(u)dF (u) and

∫
Ω̃(u)dF+(u) =

max
F∈F̃(m)

∫
Ω̃(u)dF (u). If for all 0 < u0 < · · · < uT+1 < 1, the determinant of the matrix

(fi(uj))0≤i,j≤T+1 is strictly negative, then, we have
∫

Ω̃(u)dF+(u) = min
F∈F̃(m)

∫
Ω̃(u)dF (u)

and
∫

Ω̃(u)dF−(u) = max
F∈F̃(m)

∫
Ω̃(u)dF (u).

Proof. See Krein and Nudel’man (1977), chapter 4, theorem 1.1, page 109

Remark 3.2. The fact that for all 0 < u0 < · · · < uT+1 < 1, the sign of the determinant

of the matrix (fi(uj))0≤i,j≤T+1 is constant is ensured by (f0, . . . , fT , fT+1 ≡ Ω̃) being a

Chebyshev system.

Note that the two principal representations do not depend on Ω̃. Therefore the

same principal representations can be used to find bounds for the quantity
∫

Ω̃(u)dF (u),

with a different Ω̃ as long as those functions define a Chebyshev system. This is a very

powerful result! This theorem applies in our case. Indeed, it is obvious that the set of

47Of course, it admits many representations of greater indexes, which we do not care about here.
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functions (1, u, u2, . . . , uT ) is a Chebyshev system and we have checked that this prop-

erty is conserved when the function Ω(., x) is added to the set. We now explain how to

find the two principal representations.

3.2.4 Computation of the bounds

For the sake of simpler notations, we omit the dependency on x in "m(x)" for this part.

If m belongs to the border of B ≡
{
m ∈ [0, 1]T such that F(m) 6= ∅

}
, the marginal ef-

fect is identified since it is a linear combination of the identified moment constraints.

Computing it is straightforward. From now on we assume that m is in the interior of

B. Once the two principal representations are known, computing the bounds is easy

because the integral
∫

Ω(u, x)dF (u) becomes a sum of just a few terms. The only chal-

lenge is to get the two principal representations. Although at this point it is not obvious

how to get them, once known, the procedure is very simple and computationally al-

most costless for it involves only inverting a linear system and finding the roots of a

polynomial. Indeed, we start with giving ourselves a polynomial, which roots are the

support points. The restrictions on those, given by theorem 3.4, enable us to obtain a

linear system, which unknowns are the coefficients of the polynomial. Once we have

the support points, we can easily write another linear system, which unknowns are the

weights associated to the support points. We detail the procedure for T even and for

the upper principal representation only. The three other cases are very similar and the

procedure can be readily adapted.

We know that there are T
2
+1 support points, including 1. So, letP = (1−X)

∑T/2
k=0 ekX

k

be a polynomial of degree T
2

+1 whose roots are the support points. The T +1 moment

conditions give us equations to recover the coefficients ek, k = 0, . . . , T/2.

Let F+ denote the upper principal representation. Let (p1, . . . , pT/2+1) denote its

support points and let (w1, . . . , wT/2+1) denote the associated weights. Since F+ is a

representation of m, it satisfies the moment conditions. So we have

EF+
[
U t
]

= mt, t = 0, . . . , T, with m0 ≡ 1. (21)
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Using equation 21, we can show that

for l = 0, . . . ,
T

2
− 1,

T/2∑
k=0

ek (ml+k −ml+k+1) = 0. (22)

Indeed,

For l = 0, . . . , T
2
− 1, we have:

T/2∑
k=0

ek (ml+k −ml+k+1) =

T/2∑
k=0

ekEF+
[
U l+k(1− U)

]
= EF+

U l(1− U)

T/2∑
k=0

ekU
k


= EF+

[
U lP (U)

]
=

T/2+1∑
j=1

wjp
l
jP (pj)

=

T/2+1∑
j=1

wjp
l
j × 0

= 0.

Multiplying P by a non-zero constant does not change its roots. We can thus set

eT/2 = 1. The set of equation 22 becomes

ml+T
2

+1 −ml+T
2

=

T/2−1∑
k=0

ek (mk+l −mk+l+1) , l = 0, . . . ,
T

2
− 1. (23)

The set of equation 23 defines a system, which unknowns are the coefficients of P :


1−m1 m1 −m2 · · · mT

2
−1
−mT

2

m1 −m2 m2 −m3 · · · mT
2
−mT

2
+1

...
...

...

mT
2
−1
−mT

2
mT

2
−mT

2
+1

· · · mT−2 −mT−1




e0

e1
...

eT
2
−1

 =


mT

2
+1
−mT

2

mT
2
+2
−mT

2
+1

...

mT −mT−1



Simply solving the system yields the support points. As for the vector of weights, it is

also the solution of a linear system.
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Using only the T/2 first moments, we obtain:

mk = EF̄
[
Uk
]

=

T/2+1∑
j=1

wjp
k
j =

T/2∑
j=1

wjp
k
j +

1−
T/2∑
j=1

wj

 pkT/2+1 (24)

Rearranging equation 24, we get:

mk − pkT/2+1 =

T/2∑
j=1

wj
(
pkj − pkT/2+1

)
k = 1, . . . , T/2 (25)

So the weights are obtained solving the system:
p1 − pT/2+1 · · · pT/2 − pT/2+1

...
...

p
T/2
1 − pT/2T/2+1 · · · p

T/2
T/2 − p

T/2
T/2+1




w1

...

wT/2

 =


m1 − pT/2+1

...

mT/2 − pT/2T/2+1


We have shown that in general the average marginal effect is partially identified, we

have derived sharp bounds for the identification interval as well as a very nice char-

acterize of the bounds. Finally, we have shown how those bounds can be computed.

The last point - computation of the bounds - is still part of the "identification" section.

There is no data so far. Indeed some problems can (do) arise when data are used.

3.3 Estimation

3.3.1 The use of an index

The "identification" part suggests us to estimate ∆(x) for all x in the support of X and

then integrate the conditional effects with respect to the empirical distribution of X.

Processing this way might however not be a brilliant idea since the first step of the es-

timation procedure is to estimate Pr(
∑T

t=1 Yt = k|X = x) nonparametrically. If there

are a couple covariates, such an estimator may not behave very well at all due to the

curse of dimensionality because the dimension of X is k × T . Since in the expression

of the parameter of interest, ∆(x), and the constraints, Pr
(∑T

k=0 Yt = k|X = x
)

, there

is always Vt ≡ exp(Xtβ0) and never X alone, it is possible to do the whole machinery

conditional to V = (V1, . . . , VT ) instead of X. Now, the dimension of the regressor in

the nonparametric regression is T instead of k × T . Of course, proceeding that way

we obtain outer bounds because we do not use all the information available in the
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data. Yet at the end of the day it is not the size of the identification region that matters

but the size of the confidence region. In most cases, using the index V will probably

strongly decrease the variance of the estimators of the bounds while barely increase

the size of the identification region. So, after estimating β, our first step is to estimate

Pr(S = k|V = v), k = 0, . . . , T . Then, we get m̂(v) substituting P̂r(S = k|V = v) to

Pr (S = k|V = v), k = 0, . . . , T in equation 18.

We know that if the model is true,m(v) must be inB. Yet, nothing ensures that m̂(v)

will belong to B! This issue gets more severe when T increases because the volume of

the set B shrinks exponentially fast with T (see Gamboa and Lozada-Chang (2004)). If

m̂(v) ∈ B, we can proceed exactly as in the "identification" section. But in the general

case, this procedure is not available any more when m̂(v) /∈ B. To overcome this issue,

there are at least two solutions. The first idea essentially boils down to projecting m̂(v)

on B. The second idea, available only in the two-period case, is to always follow the

procedure we follow when m(v) ∈ B.

3.3.2 A first idea

When m̂(v) /∈ B it seems natural to project m̂(v) on B. Projecting with respect to the

euclidean distance is very difficult because it involves finding out the exact geome-

try of B for any number of periods T . Instead, we can resort to a procedure close to

maximum likelihood. We now estimate m(v) under the constraint that m̂(v) ∈ B. Let

qk(v) = Pr(S = k|V = v). Conditional to V = v, the statistic S follows a multinomial

distribution with parameters (T+1, q0(v), . . . , qT (v)). If this distribution were uncondi-

tional, the probabilities q0, . . . , qT would be estimated by maximum likelihood, maxi-

mizing the log-likelihood: max
q0,...,qT

∑T
k=0

Nk
N

log(qk), under the constraint that
∑T

k=0 qk = 1,

where N is the total number of individuals and Nk is the number of individuals for

which S = k. This is close to what we do. In our case, Nk/N has to be replaced

with the nonparametric estimate q̂k(v). The unconstrained estimator of q(v) maxi-

mizes max
q0,...,qT

∑T
k=0 q̂k(v) log(qk) under the constraint that

∑T
k=0 qk = 1. The solution is

qk(v) = q̂k(v), of course. We can now add the restriction that (q0(v), . . . , qT (v)) has

to be such that m(v) ∈ B. Using equation 19, for k = 0, . . . , T , we have qk(v) =

c0(v)Ck(v)
∫
uk(1 − u)T−kdF (u|v). Since the unconstrained m̂(v) does not belong to B,

the constrained m̂(v) will belong to the border of B. From theorem 3.4 (1), we know
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that F (.|v) has at most T/2 support points if T is even and at most T/2 + 1 support

points if T is odd, including 0 or 1.

For the T even case, for instance, we thus solve the following problem:

max
p0(v),...,pT/2(v),w1(v),...,wT/2(v)

T∑
k=0

ĥk(v) log

c0(v)Ck(v)

T/2∑
j=1

pj(v)k(1− pj(v))T−kwj(v)



subject to


p1(v), . . . , pT/2(v) ∈ [0, 1]

w1(v), . . . , wT/2(v) ∈ [0, 1] and
∑T/2
j=1 wj = 1∑T

k=0 c0(v)Ck(v)
∑T/2
j=1 pj(v)k(1− pj(v))T−kwj(v) = 1

Solving this problem directly gives us the unique principal representation. Note,

however, that this method can prove computationally costly for big sample sizes be-

cause it involves many constrained optimization problems, with non linear constraints.

3.3.3 A second idea

With just two periods, the procedure we follow whenm(v) ∈ B remains available when

m(v) /∈ B. When m(v) ∈ B, the sharp bounds for ∆(v) can directly be expressed using

the qk(v), k ∈ {0, 1, 2}. The bound obtained with the upper principal representation

reads ∆(v) = q1(v)
(

v2
v1+v2

)(
q1(v)v1+q0(v)(v1+v2)
q1(v)v2+q0(v)(v1+v2)

)
and the bound obtained with the lower

principal representation reads ∆(v) = q1(v)
(

v1
v1+v2

)(
q1(v)v2+q2(v)(v1+v2)
q1(v)v1+q2(v)(v1+v2)

)
. Provided that

q̂k(v), k = 0, 1, 2 are all positive,48 those quantities can always be computed even when

the corresponding m(v) does not belong to B.

This approach has two advantages. First, it makes the estimator a smoother func-

tion of the data, which can help performing inference. Second, it is computationally

costless. Its drawback is that it does not make much sense mathematically. When

m(v) /∈ B, ∆(v) and ∆(v) have no more meaning. As a result this estimator overes-

timates even more the size of the identification region. The further m̂(v) away from

B, the wider the estimated identification region. Yet, the further m̂(v) away from B,

the likelier it is that m(v) be close to the border of B, the thinner the size of the real

identification region.

48Even though those quantities are estimated probabilities, they can sometimes be negative depend-

ing on which nonparametric estimator is used.
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3.3.4 More than two periods are available

When T > 2 periods are available, the first estimator can always be computed whereas

the second one is unavailable. Yet, using the first one as described above might not be

the best thing to do. Thanks to the use of an index, the dimension of the regressor

in the nonparametric regression is T instead of T × K. This is a substantial gain but

T alone can still be too big. The solution we propose is to use the periods two by

two. More precisely, using the periods k and T only, k = 1, . . . , T − 1, we can estimate

bounds l(Xk, XT ) and u(Xk, XT ). We can then use all the partial bounds to perform

inference on the true bounds for ∆. The average marginal effect can be written ∆ =

E [E [Λ′ (XTβ0 + α) |X1, . . . , XT ]] ≡ E [f (X1, . . . , XT )]. When Xk and XT only are used,

we estimate bounds l(Xk, XT ) and u(Xk, XT ) such that

l (Xk, XT ) ≤ E [f (X1, . . . , XT ) |Xk, XT ] ≤ u (Xk, XT )

Thus, the parameter ∆ satisfies the 2T − 2 moment inequalities:{
E [u (Xk, XT )−∆] ≥ 0

E [∆− l (Xk, XT )] ≥ 0

We can then perform inference on ∆ resorting to generalized moment selection, as

described in Andrews and Soares (2010), provided we can estimate the standard errors

for each conditional bound.

So far, we have unfortunately not been able to prove the consistency, let alone the

asymptotic normality of our estimator. We thus try to convince readers our estimator

works fine through simulations.

3.4 Monte-Carlo simulations

To fix ideas we start with a very simple data generating process. There are two periods

and X is bi-dimensional. Let Xt,k denote the value of the k-th covariate of X at period

t. X1,1 and X1,2 can both take the value a ≡ log(9) with probability 1/2 and the value

−a with probability 1/2. X2,1 is always equal to 1 and X2,2 is always equal to 0. Finally,

we have β0 = (1 − 1)′ and α = −X1,1.

For all x1 ∈ {(−a,−a); (−a, a); (a,−a); (a, a)}, the distribution of α givenX is a Dirac

distribution. The corresponding moment vector admits a representation of index 1 =
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T/2, so theorem 3.4 tells us that this representation is unique. As a result, the average

marginal effect is identified since each conditional marginal effect is. In this example,

identification is lost when conditioning by V instead of X. Indeed, individuals for

whom v1 = 1 can either have x1 = (−a,−a) or x1 = (a, a). So for those individulas, the

distribution of α is no more a Dirac distribution, it has now two points of support. The

moment vectors are represented on figure 22 below. In this simple case we do not have

to perform any nonparametric estimation. We see that our two different estimators

are consistent.

Figure 22: A simple example

Identification Consistency

We now consider data generating process for which V is continuous. We start with

T = 2: X1,1, X1,2
⊥⊥∼U [−3, 3], X21, X2,2

⊥⊥∼U [−2, 4]. X1 ⊥⊥ X2, α = −X1,1 and β0 = (1 −
1)′. This data generating process is simple enough for us to compute the exact true

effect and the exact bounds, conditional to V . Figure 23 shows the consistency and

the asymptotic normality of the estimators. For the asymptotic normality part, each

estimate is computed with a sample of size 10, 000. We still see a small finite distance

bias for the estimator of the upper bound.
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Figure 23: T = 2

Consistency Asymptotic normality

Finally, we consider a very similar data generating process with T = 3. We have
⊥⊥∼U [−3, 3], X21, X2,2

⊥⊥∼U [−2, 4], X31, X3,2
⊥⊥∼U [−4, 2]. X1, X2 and X3 are mutually inde-

pendent. α = −X1,1 and β0 = (1 − 1)′. Figure 24 shows how our two estimators per-

form for this data generating process. For our first estimator, we display, like before,

estimates of the identification bounds. For our second estimator, we display confi-

dence intervals for the true parameter because this is what we directly obtain applying

Andrews and Soares (2010)’s method. To implement this method, we need to provide

a variance-covariance matrix for the four bounds estimated using two periods only.

Since we have no formula for it, this matrix is estimated as a first step using simula-

tions.

94



Figure 24: T = 3

The first idea estimator seems to be consistent and the second idea confidence

intervals seem reasonable as well, although it is very difficult to assess their accuracy.

3.5 Conclusion

We have shown that the theory of Chebyshev systems could be used to change a diffi-

cult maximization problem into a very simple one and yield a nice characterization of

the sharp bounds for the average marginal effect. We presented the method in a gen-

eral enough way to show that it can be applied for other effects, which translate into

other objective functions for the maximization problem. Quantile effects, for instance,

are good candidates. This method can also certainly be used for totally different prob-

lems, as long as the Chebyshev assumption is satisfied. Investigating in which other

cases this method can be applied is left for future research.
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General conclusion

Bitcoin

Mr. Julien Prat and I provide the first dynamic equilibrium model of the market for

Bitcoin mining. This work provides both a successful empirical test of the theoreti-

cal model developed in Caballero and Pyndick (1996), and a deeper understanding of

bitcoin miner’s behavior. I then rely on this new insight to suggest a simple solution

to lower Bitcoin’s electricity consumption. Both chapters also highlight the prepon-

derant role played by the technical progress rate of mining hardware. The lower this

rate, the higher the aggregate level of investment, the higher the network electricity

consumption and the less that consumption can be cut using the solution I advocate.

If the idea proposed in the second chapter is to be implemented, waiting is not only a

loss of time, it is detrimental since the technical progress rate keeps decreasing.

These two chapters have the following limitations. The model developed in the

first chapter can predict the hashrate relatively accurately on the medium and long

term. Yet, it fails to do it well in the short term, mainly due to manufacturing / delivery

delays which are not accounted for. An obvious direction for future research would be

to try and improve the model this way. For the sake of simplicity, the second chapter

does not exactly build on the first chapter’s model but on a simplified version of it,

where the B/ $ exchange rate is deterministic. If such an idealized model remains

realistic enough to convey the main idea of the suggested protocol change, a more

realistic model may be needed to accurately calibrate the different parameters and

make sure the protocol change will not harm active miners. Future research should

then try adapting this toy model to the exact framework developed in the first chapter.

Panel data and binary dependent variables

In the third chapter, Messrs. Davezies and D’Haultfœuille and I provide a new and sat-

isfying method to bound the average marginal effect of explanatory variables, one of

the main quantity of interest, when the dependent variable is binary and when panel

data are available. I deem this method as satisfying for two reasons. First, very few,

if any, strong and embarrassing assumptions have to be made, as opposed to the lin-

ear or the random effect logit models. Second, our estimator can be computed very
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quickly and can thus be applied on pretty massive data sets. The framework in which

our proposed estimator is available is very broad and so I believe that this new method

will be of interest for many applied researchers.

The main drawback of this chapter is obvious: neither the consistency nor asymp-

totic normality, let alone the uniformly valid inference property of our estimator are

proved so far. Finding under which exact set of technical assumptions those results

hold and proving them should be the priority for future research. As a byproduct, the

method developed in this chapter brought to the field of economics a not very-well-

known mathematical result. Mathematical problems similar to the one we solved can

probably be encountered in many other frameworks. Other effects, such as quantile

effects, for the same model are good candidates. Finding out other situations where

Chebyshev systems results can be applied is also a promising future research track.
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