, Pour des valeurs de p non diviseurs de M , le dernier intervalle contenant moins de p points est exclu du calcul. On considère alors un nombre M de mesures inférieur à M. Pour p M , ce qui est généralement le cas ici

J. L. Straalsund, R. W. Powell, and B. A. , Chin : An overview of neutron irradiation effects in LMFRB materials, J. Nucl. Mater, vol.108, p.299, 1982.

F. A. , Garner : 4.02-Radiation damage in austenitic steels, éditeur : Comprehensive Nuclear Materials, pp.33-95, 2012.

M. Griffiths, A review of microstructure evolution in zirconium alloys during irradiation, J. Nucl. Mater, vol.159, p.190, 1988.

D. Mosedale, D. R. Harries, J. A. Hudson, G. W. Lewthwaite, and R. J. Mcelroy, Irradiation creep in fast reactor core component materials, Proc. Int. Conf, p.209, 1977.

K. Farrell, J. Bentley, and D. N. Braski, Direct observation of radiationinduced coated cavities, Scripta Metall, vol.11, p.243, 1977.

S. J. Zinkle, K. Farrell, and H. Kanazawa, Microstructure and cavity swelling in reactor-irradiated dilute copper-boron alloy, J. Nucl. Mater, p.994, 1991.

M. Kiritani, Microstructure evolution during irradiation, J. Nucl. Mater, vol.216, p.220, 1994.

S. Jitsukawa and K. Hojou, Effect of temperature and flux change on the behavior of radiation induced dislocation loops in pure aluminum, J. Nucl. Mater, vol.212, p.221, 1994.

S. Yoshida, M. Kiritani, and Y. Shimomura, Dislocation loops with stacking fault in quenched aluminum, J. Phys. Soc. Japan, vol.18, issue.2, p.175, 1963.

M. Kiritani, Similarity and difference between fcc, bcc and hcp metals from the view point of point defect cluster formation, J. Nucl. Mater, vol.276, p.41, 2000.

K. Shiraishi, A. Hishinuma, Y. Katano, and T. Taoka, Electron irradiation damage in aluminum in a high voltage electron microscope, J. Phys. Soc. Japan, vol.32, issue.4, p.964, 1972.

M. Kiritani, S. Yoshida, and H. Takana, Foreman : Production bias and void swelling in the transient regime under cascade damage conditions, J. Phys. Soc. Japan, vol.36, issue.3, p.975, 1974.

G. W. Greenwood, A. J. Foreman, and D. E. , Rimmer : The role of vacancies and dislocations in the nucleation and growth of gas bubbles in irradiatied fissile materials, J. Nucl. Mater, vol.4, p.305, 1959.

A. D. Brailsford and R. Bullough, The rate theory of swelling due to void growth in irradiated metals, J. Nucl. Mater, vol.44, p.121, 1972.

R. Bullough, B. L. Eyre, and K. Krishan, Cascade damage effects on the swelling of irradiated materials, Proc. Royal Soc. Lond. A, vol.346, p.81, 1644.

W. G. Wolfer, M. Ashkin, and A. Boltax, Creep and swelling deformation in structural materials during fast-neutron irradiation, Am. Soc. Test. Mater., Spec. Tech. Publ, p.570, 1975.

P. T. Heald and M. V. Speight, Steady-state irradiation creep, Philos. Mag, vol.29, issue.5, p.1075, 1974.

L. K. Mansur, Irradiation creep by climb-enabled glide of dislocations resulting from preferred absorption of point defects, Philos. Mag. A, vol.39, issue.4, p.497, 1979.

C. H. Woo and E. J. Savino, Stress-induced prefered absorption due to saddlepoint anisotropy : The case of an infinitesimal dislocation loop, J. Nucl. Mater, vol.16, p.17, 1983.

B. C. Skinner and C. H. Woo, Shape effect in the drift diffusion of point defects into straight dislocations, Phys. Rev. B, vol.30, issue.6, p.3084, 1984.

C. H. Woo and U. Gösele, Dislocation bias in anisotropic diffusive medium and irradiation growth, J. Nucl. Mater, vol.119, p.219, 1983.

C. H. Woo, Theory of irradiation deformation in non-cubic metals : Effects of anisotropic diffusion, J. Nucl. Mater, vol.159, p.237, 1988.

H. Rouchette, L. Thuinet, A. Legris, and A. Ambard, Domain : Influence of shape anisotropy of self-interstitials on dislocation sink efficiencies in Zr : Multiscale modeling, Phys. Rev. B, vol.90, p.14104, 2014.

E. Clouet, C. Varvenne, and T. Jourdan, Elastic modeling of point-defects and their interaction, Comput. Mater. Sci, vol.147, p.49, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01703022

R. Siems, Mechanical interactions of point defects, Phys. Stat. Sol, vol.30, p.645, 1968.

W. , Wolfer : 1.01-Fundamental properties of defects in metals, éditeur : Comprehensive Nuclear Materials, page 1, 2012.

H. Kanzaki, Point defects in face-centred cubic lattice-I Distortion around defects, J. Phys. Chem. Solids, vol.2, issue.1, pp.24-36, 1957.

H. R. Schober, Polarizabilities of point defects in metals, J. Nucl. Mater, vol.126, issue.220, 1984.

K. H. Robrock and W. Schilling, Diaelastic modulus change of aluminium after low temperature electron irradiation, J. Phys. F : Metal Phys, vol.6, issue.3, p.303, 1976.

V. Spiri?, L. E. Rehn, K. Robrock, and W. Schilling, Anelastic relaxation due to single self-interstitial atoms in electron-irradiated Al, Phys. Rev. B, vol.15, p.672, 1977.

R. A. Johnson, Point-defect calculations for an fcc lattice, Phys. Rev, vol.145, p.423, 1966.

P. H. Dederichs and K. Schroeder, Anisotropic diffusion in stress fields, Phys. Rev. B, vol.17, issue.6, p.2524, 1978.

Z. Chang, D. Terentyev, N. Sandberg, K. Samuelsson, and P. Olsson, Anomalous bias factors of dislocations in bcc iron, J. Nucl. Mater, vol.461, p.221, 2015.

V. I. Dubinko, A. S. Abyzov, and A. A. , Turkin : Numerical evaluation of the dislocation loop bias, J. Nucl. Mater, vol.336, issue.1, p.11, 2005.

T. Jourdan, Influence of dislocation and dislocation loop biases on microstructures simulated by rate equation cluster dynamics, J. Nucl. Mater, vol.467, p.286, 2015.

H. Wiedersich, On the theory of void formation during irradiation, Radiat. Eff, vol.12, p.111, 1972.

F. A. Nichols, On the estimation of sink-absorption terms in reaction-rate-theory analysis of radiation damage, J. Nucl. Mater, vol.75, p.32, 1978.

A. D. Brailsford, R. Bullough, and M. R. , Hayns : Point defects sink strengths and void-swelling, J. Nucl. Mater, vol.60, p.246, 1976.

A. D. Brailsford and R. Bullough, The theory of sink strengths, Philos. Trans. Royal Soc. Lond. A, vol.302, p.87, 1465.

H. Rauh and D. Simon, On the diffusion process of point defects in the stress field of edge dislocations, Phys. Stat. Sol. A, vol.46, issue.2, p.499, 1978.

I. G. Margvelashvili and Z. K. , Saralidze : Influence of an elastic field of a dislocation on steady-state diffusion fluxes of point defects, Sov. Phys. Solid State, vol.15, p.1774, 1974.

F. S. Ham, Stress-assisted precipitation on dislocations, Journal of Applied Physics, vol.30, issue.6, p.915, 1959.

W. G. Wolfer, Ashkin : Diffusion of vacancies and interstitials to edge dislocations, J. Appl. Phys, vol.47, issue.3, p.791, 1976.

L. Malerba and C. S. Becquart, Domain : Object kinetic Monte Carlo study of sink strengths, J. Nucl. Mater, vol.360, p.159, 2007.

W. G. Wolfer and M. Ashkin, Stress-induced diffusion of point defects to spherical sinks, J. Appl. Phys, vol.46, issue.2, p.547, 1975.

V. A. Borodin, A. I. Ryazanov, C. Abromeit, ;. Bullough, M. R. Hayns et al., The sink strength of dislocation loops and their growth in irradiated materials, J. Nucl. Mater, vol.207, p.93, 1979.

C. H. Woo, The sink strength of a dislocation loop in the effective medium aprroximation, J. Nucl. Mater, vol.98, p.279, 1981.

R. Cade, A perturbation method for solving torus problems in electrostatics, IMA J. Appl. Math, vol.21, issue.3, p.265, 1978.

W. A. Coghlan and M. H. Yoo, Radius dependence of the sink strength of a dislocation loop, éditeurs : Dislocation Modelling of Physical Systems, p.152, 1981.

Z. Chang, P. Olsson, D. Terentyev, and N. Sandberg, Dislocation bias factors in fcc copper derived from atomistic calculations, J. Nucl. Mater, vol.441, issue.1-3, p.357, 2013.

Z. Chang, N. Sandberg, D. Terentyev, K. Samuelsson, G. Bonny et al., Olsson : Assessment of the dislocation bias in fcc metals and extrapolation to austenitic steels, J. Nucl. Mater, vol.465, p.13, 2015.

C. H. Woo, W. S. Liu, and M. S. Wuschke, A finite-difference calculation of point defect migration into a dislocation loop, Atomic Energy of Canada Limited, 1979.

R. Bullough, D. W. Wells, J. R. Willis, and M. H. Wood, The interaction energy between interstitial atoms and dislocations and its relevance to irradiation damage processes, éditeurs : Dislocation Modelling of Physical Systems, p.116, 1981.

C. N. Tomé, H. A. Cecatto, and E. J. Savino, Point-defect diffusion in a strained crystal, Phys. Rev. B, vol.25, p.7428, 1982.

H. Rouchette, L. Thuinet, A. Legris, and A. Ambard, Domain : Numerical evaluation of dislocation loop sink strengths : A phase-field approach, Nucl. Instrum. Meth. B, vol.352, p.31, 2015.

L. Thuinet, H. Rouchette, and A. Legris, 3D phase-field modelling of dislocation loop sink strengths, J. Nucl. Mater, vol.483, p.62, 2017.

H. Rouchette, L. Thuinet, A. Legris, and A. Ambard, Domain : Quantitative phase field model for dislocation sink strength calculations, Comp. Mater. Sci, vol.88, p.50, 2014.

H. L. Heinisch, B. N. Singh, and S. I. Golubov, The effects of one-dimensional glide on the reaction kinetics of interstitial clusters, J. Nucl. Mater, vol.283, p.737, 2000.

A. Vattré, T. Jourdan, H. Ding, M. Marinica, and M. J. Demkowicz, Nonrandom walk diffusion enhances the sink strength of semicoherent interfaces, Nat. Commun, vol.7, p.10424, 2016.

J. Hou, X. Kong, X. Li, X. Wu, C. S. Liu et al., Modification on theory of sink strength : An Object Kinetic Monte Carlo study

, Comp. Mater. Sci, vol.123, p.148, 2016.

T. Ahlgren and L. Bukonte, Sink strength simulations using the Monte Carlo method : Applied to spherical traps, J. Nucl. Mater, vol.496, p.66, 2017.

G. Subramanian, D. Perez, B. P. Uberuaga, C. N. Tomé, and A. F. , Voter : Method to account for arbitrary strains in kinetic Monte Carlo simulations, Phys. Rev. B, vol.87, p.144107, 2013.

A. B. Sivak, V. M. Chernov, V. A. Romanov, and P. A. Sivak, Kinetic MonteCarlo simulation of self-point defect diffusion in dislocation elastic fields in bcc iron and vanadium, J. Nucl. Mater, vol.417, p.1067, 2011.

A. B. Sivak and P. A. , Sivak : Efficiency of dislocations as sinks of radiation defects in fcc copper crystal, Crystallogr. Rep, vol.59, issue.3, p.407, 2014.

P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev, vol.136, p.864, 1964.

W. Kohn and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev, vol.140, p.1133, 1965.
DOI : 10.1103/physrev.140.a1133

URL : http://link.aps.org/pdf/10.1103/PhysRev.140.A1133

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett, vol.77, issue.18, p.3865, 1996.
DOI : 10.1103/physrevlett.77.3865

P. E. , Blöchl : Projector augmented-wave method, Phys. Rev. B, vol.50, p.17953, 1994.

F. Soisson and C. Fu, Cu-precipitation kinetics in ??Fe from atomistic simulations : Vacancy-trapping effects and Cu-cluster mobility, Phys. Rev. B, vol.76, p.214102, 2007.

C. J. Ortiz, M. J. Caturla, C. C. Fu, and F. Willaime, Influence of carbon on the kinetics of He migration and clustering in ?-Fe from first principles, Phys. Rev. B, vol.80, p.134109, 2009.

C. C. Fu, J. Dalla-torre, F. Willaime, J. L. Bocquet, and A. Barbu, Multiscale modelling of defect kinetics in irradiated iron, Nature Mater, vol.4, p.68, 2005.

T. Jourdan, C. Fu, L. Joly, J. L. Bocquet, M. J. Caturla et al., Direct simulation of resistivity recovery experiments in carbon-doped ?-iron, Phys. Scr, vol.145, p.14049, 2011.

S. Pellegrino, J. P. Crocombette, A. Debelle, T. Jourdan, P. Trocellier et al., Multi-scale simulation of the experimental response of ion-irradiated zirconium carbide : Role of interstitial clustering, Acta Mater, vol.102, p.79, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01206309

G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B, vol.47, issue.1, p.558, 1993.

G. Kresse and J. Hafner, Ab initio molecular-dynamics simulation of the liquidmetal-amorphous-semiconductor transition in germanium, Phys. Rev. B, vol.49, issue.20, p.14251, 1994.

G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comp. Mater. Sci, vol.6, p.15, 1996.

G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set, Phys. Rev. B, vol.54, issue.16, p.11169, 1996.

A. Glensk, B. Grabowski, T. Hickel, and J. Neugebauer, Breakdown of the Arrhenius law in describing vacancy formation energies : The importance of local anharmonicity revealed by ab initio thermodynamics, Phys. Rev. X, vol.4, p.11018, 2014.

C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse et al., Van de Walle : First-principles calculations for point defects in solids, Rev. Mod. Phys, vol.86, p.253, 2014.

G. Henkelman, B. P. Uberuaga, and H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, J. Chem. Phys, vol.113, issue.22, p.9901, 2000.

C. Varvenne, F. Bruneval, M. Marinica, and E. Clouet, Point defect modeling in materials : Coupling ab initio and elasticity approaches, Phys. Rev. B, vol.88, p.134102, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00875386

C. Varvenne and E. Clouet, Elastic dipoles of point defects from atomistic simulations, Phys. Rev. B, vol.96, p.224103, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01780049

G. J. Ackland, Theoretical study of the effect of point defects on the elastic constants of copper, J. Nucl. Mater, vol.152, p.53, 1988.

M. P. Puls and C. H. Woo, Diaelastic polarizabilities due to vacancies and interstitials in metals, J. Nucl. Mater, vol.139, p.48, 1986.

H. L. Heinisch, Defect production in simulated cascades : Cascade quenching and short-term annealing, J. Nucl. Mater, vol.117, p.46, 1983.

H. L. Heinisch and B. N. Singh, Stochastic annealing simulation of intracascade defect interactions, Proceedings of the International Workshop on Defect Production, Accumulation and Materials Performance in an Irradiation Environment, vol.251, p.77, 1997.

M. J. Caturla, N. Soneda, E. Alonso, B. D. Wirth, T. Díaz-de-la-rubia et al., Comparative study of radiation damage accumulation in Cu and Fe, J. Nucl. Mater, vol.276, p.13, 2000.

T. Jourdan, J. Bocquet, and F. , Soisson : Modeling homogeneous precipitation with an event-based Monte Carlo method : Application to the case of Fe-Cu, Acta Mater, vol.58, issue.9, pp.3295-3302, 2010.

G. Nandipati, W. Setyawan, H. L. Heinisch, K. J. Roche, R. J. Kurtz et al., Displacement cascades and defect annealing in tungsten, Part II : Object kinetic Monte Carlo simulation of tungsten cascade aging, J. Comput. Phys, vol.462, p.10, 1975.

D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys, vol.2, p.403, 1976.

F. Soisson, C. S. Becquart, N. Castin, C. Domain, L. Malerba et al., Atomistic Kinetic Monte Carlo studies of microchemical evolutions driven by diffusion processes under irradiation, J. Nucl. Mater, vol.406, p.55, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01828143

F. Soisson, Kinetic Monte Carlo simulations of radiation induced segregation and precipitation, J. Nucl. Mater, vol.349, issue.3, p.235, 2006.

C. Domain, C. S. Becquart, and L. Malerba, Simulation of radiation damage in fe alloys : an object kinetic Monte Carlo approach, J. Nucl. Mater, vol.335, issue.1, p.121, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01828687

E. Martínez, O. Senninger, C. Fu, and F. Soisson, Decomposition kinetics of Fe-Cr solid solutions during thermal aging, Phys. Rev. B, vol.86, p.224109, 2012.

N. Soneda, S. Ishino, A. Takahashi, and K. Dohi, Modeling the microstructural evolution in bcc-Fe during irradiation using kinetic Monte Carlo computer simulation, Proceedings of the Second IEA Fusion Materials Agreement Workshop on Modeling and Experimental Validation, vol.323, p.169, 2003.

A. B. Sivak, P. A. Sivak, V. A. Romanov, and V. M. Chernov, Dislocation sinks efficiency for self-point defects in iron and vanadium crystals, Inorg. Mater. Appl. Res, vol.6, issue.2, pp.105-113, 2015.

A. B. Sivak, P. A. Sivak, V. A. Romanov, and V. M. Chernov, Effect of external stresses on efficiency of dislocation sinks in bcc (Fe, V) and fcc (Cu) crystals

, Inorg. Mater. Appl. Res, vol.6, issue.5, pp.466-472, 2015.

H. Cheng, L. Greengard, and V. Rokhlin, A fast adaptive multipole algorithm in three dimensions, J. Comput. Phys, vol.155, issue.2, p.468, 1999.

A. Finel and D. Rodney, Phase field methods and dislocations, p.652, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00125516

S. Y. Hu and L. Q. Chen, Solute segregation and coherent nucleation and growth near a dislocation-a phase-field model integrating defect and phase microstructures, Acta Mater, vol.49, p.463, 2001.

D. Rodney, Y. Le-bouar, and A. Finel, Phase field methods and dislocations, vol.51, p.17, 2003.
DOI : 10.1016/s1359-6454(01)00379-2

URL : https://hal.archives-ouvertes.fr/hal-00125516

J. Dalla-torre, J. Bocquet, N. V. Doan, E. Adam, and A. Barbu, JERK, an event-based kinetic Monte Carlo model to predict microstructure evolution of materials under irradiation, Philos. Mag, vol.85, p.549, 2005.

N. M. Ghoniem and D. D. Cho, The simultaneous clustering of point defects during irradiation, Phys. Stat. Sol. A, vol.54, issue.1, p.171, 1979.

N. M. Ghoniem and S. Sharafat, A numerical solution to the Fokker-Planck equation describing the evolution of the interstitial loop microstructure during irradiation, J. Nucl. Mater, vol.92, issue.1, p.121, 1980.

C. J. Ortiz, P. Pichler, T. Fühner, F. Cristiano, B. Colombeau et al., A physically based model for the spatial and temporal evolution of self-interstitial agglomerates in ion-implanted silicon, J. Appl. Phys, vol.96, issue.9, p.4866, 2004.

C. J. Ortiz, M. J. Caturla, C. C. Fu, and F. Willaime, He diffusion in irradiated ??Fe : An ab-initio-based rate theory model, Phys. Rev. B, vol.75, p.100102, 2007.

D. Xu and B. D. Wirth, Modeling spatially dependent kinetics of helium desorption in bcc iron following He ion implantation, J. Nucl. Mater, vol.403, p.184, 2010.

D. Xu, B. D. Wirth, M. Li, and M. A. Kirk, Defect microstructural evolution in ion irradiated metallic nanofoils : Kinetic Monte Carlo simulation versus cluster dynamics modeling and in situ transmission electron microscopy experiments
DOI : 10.1063/1.4748980

, Appl. Phys. Lett, vol.101, issue.10, p.101905, 2012.

T. Jourdan and G. Bencteux, Adjanor : Efficient simulation of kinetics of radiation induced defects : A cluster dynamics approach, J. Nucl. Mater, vol.444, p.298, 2014.

T. Soneda and R. Diaz-de-la, Defect production, annealing kinetics and damage evolution in ?-Fe : An atomic-scale computer simulation, Philos. Mag. A, vol.78, issue.5, p.995, 1998.

A. Hardouin-duparc, C. Moingeon, N. Smetniansky-de-grande, and A. Barbu, Microstructure modelling of ferritic alloys under high flux 1 MeV electron irradiations, J. Nucl. Mater, vol.302, p.143, 2002.

J. P. Hirth and J. Lothe, Theory of Dislocations, 1982.

W. G. Wolfer, L. K. Mansur, and J. A. Sprague, Theory of swelling and irradiation creep, 1977.

M. Kiritani, Analysis of the clustering process of supersaturated lattice vacancies, J. Phys. Soc. Japan, vol.35, issue.1, pp.95-107, 1973.

S. I. Golubov, A. M. Ovcharenko, A. V. Barashev, and B. N. Singh, Grouping method for the approximate solution of a kinetic equation describing the evolution of point-defect clusters, Philos. Mag. A, vol.81, p.643, 2001.

T. Jourdan, G. Stoltz, F. Legoll, and L. Monasse, An accurate scheme to solve cluster dynamics equations using a Fokker-Planck approach, Comput. Phys. Commun, vol.207, p.170, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01302986

A. A. Kohnert and B. D. Wirth, Grouping techniques for large-scale cluster dynamics simulations of reaction diffusion processes, Modelling Simul. Mater. Sci. Eng, vol.25, issue.1, p.15008, 2017.

M. Koiwa, On the validity of the grouping method-comments on "analysis of the clustering process of supersaturated lattice vacancies, J. Phys. Soc. Japan, vol.37, issue.6, p.1532, 1974.

J. S. Chang and G. Cooper, A practical difference scheme for Fokker-Planck equations, J. Comput. Phys, vol.6, issue.1, p.1, 1970.

J. Marian and V. V. Bulatov, Stochastic cluster dynamics method for simulations of multispecies irradiation damage accumulation, J. Nucl. Mater, vol.415, p.84, 2011.

M. Gherardi, T. Jourdan, S. Le-bourdiec, and G. Bencteux, Hybrid deterministic/stochastic algorithm for large sets of rate equations, Comput. Phys. Commun, vol.183, 1966.

M. P. Surh, J. B. Sturgeon, and W. G. Wolfer, Master equation and Fokker-Planck methods for void nucleation and growth in irradiation swelling, J. Nucl. Mater, vol.325, p.44, 2004.

P. Terrier, M. Athènes, T. Jourdan, G. Adjanor, and G. Stoltz, Cluster dynamics modelling of materials : A new hybrid deterministic/stochastic coupling approach, J. Comput. Phys, vol.350, p.280, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01378916

D. Brimbal, L. Fournier, and A. Barbu, Cluster dynamics modeling of the effect of high dose irradiation and helium on the microstructure of austenitic stainless steels, J. Nucl. Mater, vol.468, p.124, 2016.

M. Zouari, L. Fournier, A. Barbu, and Y. Brechet, Cluster dynamics prediction of the microstructure evolution of 300-series austenitic stainless steel under irradiation : influence of helium, éditeurs : 15th International Conference on Environmental Degradation of Materials In Nuclear Power Systems-Water reactors, p.1371, 2011.

D. Xu, B. D. Wirth, M. Li, and M. A. Kirk, Combining in situ transmission electron microscopy irradiation experiments with cluster dynamics modeling to study nanoscale defect agglomeration in structural materials, Acta Mater, vol.60, p.4286, 2012.

A. Dunn and L. Capolungo, Simulating radiation damage accumulation in ?Fe : A spatially resolved stochastic cluster dynamics approach, Comp. Mater. Sci, vol.102, p.314, 2015.

B. Michaut, T. Jourdan, J. Malaplate, A. Renault-laborne, F. Sefta et al., Cluster dynamics modeling and experimental investigation of the effect of injected interstitials, J. Nucl. Mater, vol.496, p.166, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01646025

J. Rottler, D. J. Srolovitz, and R. Car, Point defect dynamics in bcc metals, Phys. Rev. B, vol.71, p.64109, 2005.

R. E. Stoller, S. I. Golubov, C. Domain, and C. S. Becquart, Mean field rate theory and object kinetic Monte Carlo : A comparison of kinetic models, J. Nucl. Mater, vol.382, issue.2, p.77, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01828292

T. Jourdan and J. Crocombette, On the transfer of cascades from primary damage codes to rate equation cluster dynamics and its relation to experiments

, Comp. Mater. Sci, vol.145, p.235, 2018.

J. Dalla-torre, C. C. Fu, F. Willaime, A. Barbu, and J. L. , Bocquet : Resistivity recovery simulations of electron-irradiated iron : Kinetic Monte Carlo versus cluster dynamics, Proceedings of the E-MRS 2005 Spring Meeting Symposium N on Nuclear Materials (including the 10th Inert Matrix Fuel Workshop), vol.352, p.42, 2006.

F. Berthier, E. Maras, I. Braems, and B. Legrand, Multiscale modelling of the ageing kinetics of a 2D deposit, Solid-Solid Phase Transformations in Inorganic Materials, volume, vol.172, p.664, 2011.

T. Jourdan and J. Crocombette, Rate theory cluster dynamics simulations including spatial correlations within displacement cascades, Phys. Rev. B, vol.86, p.54113, 2012.

A. Barbu and E. Clouet, Cluster dynamics modeling of materials : Advantages and limitations, Multiscale kinetic modelling of materials, vol.129, p.51, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00171496

C. J. Ortiz and M. J. Caturla, Simulation of defect evolution in irradiated materials : Role of intracascade clustering and correlated recombination, Phys. Rev. B, vol.75, p.184101, 2007.

C. J. Ortiz and M. J. Caturla, Cascade damage evolution : rate theory versus kinetic Monte Carlo simulations, J. Comput. Aided Mater. Des, vol.14, issue.1, pp.171-181, 2007.

S. I. Golubov, B. N. Singh, and H. Trinkaus, On recoil-energy-dependent defect accumulation in pure copper Part II. Theoretical treatment, Philos. Mag. A, vol.81, p.2533, 2001.

E. Clouet, A. Barbu, L. Laé, and G. Martin, Precipitation kinetics of Al 3 Zr and Al 3 Sc in aluminum alloys modeled with cluster dynamics, Acta Mater, vol.53, issue.8, p.2313, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00004518

D. I. Norris, The growth of voids in nickel in a high-voltage electron microscope, Philos. Mag. A, vol.23, issue.181, p.135, 1971.

K. Urban, Gowth of defect clusters in thin nickel foils during electron irradiation, Phys. Stat. Sol. A, vol.4, p.761, 1971.

P. Ehrhart, Atomic Defects in Metals, Atomic defects in metals · Al : Datasheet from Landolt-Börnstein-Group III Condensed Matter ·, vol.25, 1991.

D. Carpentier, T. Jourdan, Y. Le-bouar, and M. Marinica, Effect of saddle point anisotropy of point defects on their absorption by dislocations and cavities, Acta Mater, vol.136, p.323, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01632426

W. G. Wolfer, éditeurs : Fundamental Aspects of Radiation Damage in Metals, vol.II, p.812, 1975.

A. I. Ryazanov and D. G. Sherstennikov, Void bias factor in materials with weak cubic anisotropy, J. Nucl. Mater, vol.186, p.33, 1991.

J. L. Tallon and A. Wolfenden, Temperature dependence of the elastic constants of aluminum, J. Phys. Chem. Solids, vol.40, p.831, 1979.

H. Flyvbjerg and H. G. Petersen, Error estimates on averages of correlated data, J. Chem. Phys, vol.91, issue.1, p.461, 1989.

W. Schilling, Self-interstitial atoms in metals, J. Nucl. Mater, vol.69, p.465, 1978.

P. T. Heald and M. V. Speight, Point defect behaviour in irradiated materials, Acta Metall, vol.23, p.1389, 1975.

P. T. Heald, The preferential trapping of interstitials at dislocations, Philos. Mag, vol.31, p.551, 1975.

C. Jiang, N. Swaminathan, J. Deng, D. Morgan, and I. Szlufarska, Effect of grain boundary stresses on sink strength, Mater. Res. Lett, vol.2, p.100, 2014.

R. Bullough and R. C. Newman, The kinetics of migration of point defects to dislocations, Rep. Prog. Phys, vol.33, issue.1, p.101, 1970.

W. G. , Wolfer : The dislocation bias, J. Comput. Aided Mater. Des, vol.14, issue.3, p.403, 2007.

W. P. Kuykendall and W. Cai, Conditional convergence in two-dimensional dislocation dynamics, Modelling Simul. Mater. Sci. Eng, vol.21, issue.5, p.55003, 2013.

H. R. Brager and J. L. Straalsund, Defect development in neutron irradiated type 312 stainless steel, J. Nucl. Mater, vol.46, p.134, 1973.

H. Rouchette, Sink efficiency calculation of dislocations in irradiated materials by phase-field modelling, 2015.

I. Chen, Anisotropic diffusion of point defects to edge dislocations, J. Nucl. Mater, vol.125, p.52, 1984.

V. A. Borodin and A. I. Ryazanov, The effect of diffusion anisotropy on dislocation bias and irradiation creep in cubic lattice materials, J. Nucl. Mater, vol.210, p.258, 1994.

C. H. Woo, Irradiation creep due to elastodiffusion, J. Nucl. Mater, vol.120, p.55, 1984.

J. Ahrens, G. Berk, and C. Law, Paraview : An end-user tool for large-data visualization, éditeurs : Visualization Handbook, p.717, 2005.

C. H. Woo, Intrinsic bias differential between vacancy loops and interstitial loops, J. Nucl. Mater, vol.107, p.20, 1982.

F. Kroupa, Circular edge dislocation loop, Czech. J. Phys. B, vol.10, p.284, 1960.

T. A. Khraishi, J. P. Hirth, H. M. Zbib, and M. A. , The displacement and strain-stress fields of a general circular and Volterra dislocation loop, Int. J. Eng. Sci, vol.38, p.251, 2000.

Z. Yang, N. Sakaguchi, S. Watanabe, and M. Kawai, Dislocation loop formation and growth under in situ laser and/or electron irradiation, Scientific Reports, vol.1, p.1, 2011.

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa, The quickhull algorithm for convex hulls, ACM Trans. Math. Softw, vol.22, issue.4, p.469, 1996.

S. Kumar, S. K. Kurtz, J. R. Banavarn, and M. G. Sharma, Properties of a three-dimensional Poisson-Voronoi tesselation : A Monte Carlo study, J. Stat. Phys, vol.67, p.523, 1992.

E. A. Lazar, J. K. Mason, R. D. Macpherson, and J. , Srolovitz : Statistical topology of three-dimensional Poisson-Voronoi cells and cell boundary networks, Phys. Rev. E, vol.88, p.63309, 2013.