L. Lei and M. Koslowski, Mesoscale modeling of dislocations in molecular crystals, Philos. Mag, vol.91, issue.6, p.12, 2011.

M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, p.40, 1989.

A. Ambos, F. Willot, D. Jeulin, and H. Trumel, Numerical modeling of the thermal expansion of an energetic material, International Journal of Solids and Structures, vol.28, p.37, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01118112

S. Amelinckx, Dislocations in particular structures, Dislocations in, vol.25, p.34, 1979.

Q. An, W. A. Goddard, S. V. Zybin, A. Jaramillo-botero, and T. Zhou, Highly shocked polymer bonded explosives at a nonplanar interface: Hot-spot formation leading to detonation, J. Phys. Chem. C, vol.117, p.14, 2013.
DOI : 10.1021/jp404753v

URL : https://authors.library.caltech.edu/43520/7/jp404753v_si_001.pdf

R. W. Armstrong, H. L. Ammon, W. L. Tsai, and D. H. , Investigation of hot spot characteristics in energetic crystals, Thermochim. Acta, vol.384, p.14, 2002.

R. A. Austin, N. R. Barton, J. E. Reaugh, and L. E. Fried, Direct numerical simulation of shear localization and decomposition reactions in shock-loaded hmx crystal, J. Appl. Phys, vol.4, issue.18, p.14, 2015.

M. Avrami, Kinetics of phase change. i general theory, J. Chem. Phys, vol.7, issue.12, 1939.

J. A. Barker and R. O. Watts, Monte carlo studies of the dielectric properties of water-like models, Mol. Phys, vol.26, p.70, 1973.

S. Bates, R. C. Kelly, I. Ivanisevic, P. Schields, G. Zografi et al., Assessment of defects and amorphous structure produced in raffinose pentahydrate upon dehydration, J. Pharm. Sciences, vol.96, issue.5, p.12, 2007.

D. Bedrov, O. Borodin, G. D. Smith, T. D. Sewell, D. M. Dattelbaum et al., A molecular dynamics simulation study of crystalline 1,3,5-triamino-2,4,6-trinitrobenzene as a function of pressure and temperature, J. Chem. Phys, vol.6, issue.22, p.206, 2009.

T. Belytschko, Y. Y. Lu, and L. Gu, Element-free galerkin methods, Int. J. Num. Methods Eng, vol.37, issue.2, pp.229-256, 1994.

H. J. Berendsen, J. P. Postma, W. F. Van-gunsteren, A. Dinola, and J. R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys, vol.81, issue.8, p.68, 1984.

F. Birch, Finite elastic strain of cubic crystals, Phys. Rev, vol.71, p.168, 1947.

W. R. Blumenthal, I. Gray, G. T. Idar, D. J. Holmes, M. D. Scott et al., Influence of temperature and strain rate on the mechanical behavior of pbx 9502 and kel-f 800, AIP Conference Proceedings, vol.505, issue.1, p.36, 2000.

O. Borodin and G. D. Smith, Development of quantum chemistry-based force fields for poly(ethylene oxide) with many-body polarization interactions, J. Phys. Chem. B, vol.107, issue.28, p.34, 2003.

O. Borodin, G. D. Smith, T. D. Sewell, and D. Bedrov, Polarizable and nonpolarizable force fields for alkyl nitrates, J. Phys. Chem. B, vol.112, issue.3, p.68, 2008.

V. V. Bulatov and W. Cai, Computer simulations of dislocations, p.77, 2006.

H. H. Cady and A. C. Larson, The crystal structure of 1,3,5triamino-2,4,6-trinitrobenzene, Acta. Crys, vol.18, p.104, 1965.

L. Cao and M. Koslowski, Rate-limited plastic deformation in nanocrystalline ni, J. Appl. Phys, issue.24, p.78, 2015.

M. J. Cawkwell, K. J. Ramos, D. E. Hooks, and T. D. Sewell, Homogeneous dislocation nucleation in cyclotrimethylene trinitramine under shock loading, J. Appl. Phys, vol.107, issue.6, p.15, 2010.

W. Connick and F. G. May, Dislocation etching of cyclotrimethylene trinitramine crystals, J. Cryst. Growth, vol.5, issue.1, p.15, 1969.

A. J. Davidson, R. P. Dias, D. M. Dattelbaum, and C. Yoo, Stubborn triaminotrinitrobenzene: Unusually high chemical stability of a molecular solid to 150 gpa, J. Chem. Phys, vol.135, issue.17, p.207, 2011.

W. C. Davis, High explosives: The interaction of chemistry and mechanics, Los Alamos Sci, vol.4, 1981.

P. Delavignette, Dissociation and plasticity of layer crystals, J. Phys. Colloques, vol.35, p.34, 1974.
URL : https://hal.archives-ouvertes.fr/jpa-00215876

C. Denoual, Dynamic dislocation modeling by combining peierls nabarro and galerkin methods, Phys. Rev. B, vol.70, p.84, 2004.

C. Denoual, Modeling dislocation by coupling peierls-nabarro and element-free galerkin methods, Comp. Met. Appl. Mech. Eng, vol.196, p.84, 2007.

C. Denoual, , p.155

C. Denoual, A. Caucci, L. Soulard, and Y. Pellegrini, Phase-field reaction-pathway kinetics of martensitic transformations in a model fe 3 Ni alloy, Phys. Rev. Lett, vol.74, p.189, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00506237

C. Denoual and A. Vattré, A phase field approach with a reaction pathways-based potential to model reconstructive martensitic transformations with a large number of variants, J. Mech. Phys. Solids, vol.90, p.189, 2016.

B. Diu, C. Guthmann, D. Lederer, and B. Roullet, Physique Statistique. Hermann, vol.43, p.67, 1996.

R. M. Eason and T. D. Sewell, Molecular dynamics simulations of the collapse of a cylindrical pore in the energetic material ?-rdx, J. Dyn. Behav. Mat, vol.1, p.14, 2015.

M. D. Eddleston, E. G. Bithell, and W. Jones, Transmission electron microscopy of pharmaceutical materials, J. Pharm. Sciences, vol.99, issue.9, p.15, 2010.

W. L. Elban, D. B. Sheen, and J. N. Sherwood, Vickers hardness testing of sucrose single crystals, J. Cryst. Growth, vol.137, issue.1, p.13, 1994.

D. J. Evans, On the representatation of orientation space, Mol. Phys, vol.34, issue.2, p.193, 1977.

D. J. Evans and S. Murad, Singularity free algorithm for molecular dynamics simulation of rigid polyatomics, Molecular Physics, vol.34, issue.2, pp.327-331, 0193.

T. Feng, S. Bates, and M. T. Carvajal, Toward understanding the evolution of griseofulvin crystal structure to a mesophase after cryogenic milling, Int. J. Pharm, vol.367, issue.1, p.12, 2009.

J. E. Field, Hot spot ignition mechanisms for explosives, Acc. Chem. Res, vol.25, p.14, 1992.

G. Filippini and A. Gavezzotti, The crystal structure of 1,3,5-triammo-2,4,6-trimtrobenzene: Centrosymmetric or noncentrosymmetric?, Chem. Phys. Lett, vol.231, issue.1, p.33, 1994.

D. Frenkel and B. Smit, Understanding Molecular Simulation, vol.40, p.48, 2001.

. Gallagher, Dislocation slip systems in pentaerythritol tetranitrate (petn) and cyclotrimethylene trinitramine (rdx), Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.339, p.15, 1654.

J. Gasnier, Etude du comportement thermo-mécanique et de l'endommagement d'un matériaú energétique granulaire par méthodes de fourier. Mines ParisTech, vol.30, p.37, 2017.

J. Gasnier, F. Willot, H. Trumel, B. Figliuzzi, D. Jeulin et al., A fourier-based numerical homogenization tool for an explosive material, Matériaux and Techniques, vol.103, issue.3, p.37, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01141495

R. H. Gee, S. Roszak, K. Balasubramanian, and L. E. Fried, Ab initio based force field and molecular dynamics simulations of crystalline tatb, J. Chem. Phys, vol.120, issue.15, p.33, 2004.

L. Giacomazzi, P. Carrez, S. Scandolo, and P. Cordier, Dislocation properties of coesite from an ab-initio parametrized interatomic potential, Phys. Rev. B, 2011.

B. K. Godwal, S. K. Sikka, and R. Chidambaram, Equation of state theories of condensed matter up to about 10 tpa, Physics Reports, vol.102, issue.3, pp.121-197, 1983.

M. Guerain, A. Forzy, A. Lecardeur, and H. Trumel, Structural defect evolution of tatb-based compounds induced by processing operations and thermal treatments, Prop., Expl., Pyro, vol.41, issue.3, p.16, 2016.

P. M. Gullett, M. F. Horstemeyer, M. I. Baskes, and H. Fang, A deformation gradient tensor and strain tensors for atomistic simulations, Modelling Simul. Mater. Sci. Eng, vol.16, issue.1, p.209, 2008.

P. J. Halfpenny, K. J. Roberts, and J. N. Sherwood, Dislocations in energetic materials: I. the crystal growth and perfection of pentaerythritol tetranitrate (petn), J. Cryst. Growth, vol.67, issue.2, p.15, 1984.

D. Hoffman and A. T. Fontes, Density distributions in tatb prepared by various methods, Prop., Expl., Pyro, vol.35, issue.1, p.16, 2010.

D. E. Hooks, M. J. Cawkwell, and K. J. Ramos, Plasticity in crystalline molecular explosives-a key to unraveling unpredictable responses, Prop., Expl., Pyro, vol.41, issue.2, p.14, 2016.

D. E. Hooks, K. J. Ramos, C. A. Bolme, and M. J. Cawkwell, Elasticity of crystalline molecular explosives, Prop., Expl., Pyro, vol.40, issue.3, p.13, 2015.

E. Kober, N. Mathew, and S. Rudin, Characterizing atomistic geometries and potential functions using strain functionals, 20th APS Topical Conference on Shock Compression of Condensed Matter, vol.59, p.74, 2017.

J. R. Kolb and H. F. Rizzo, Growth of 1,3,5-triamino-2,4,6trinitrobenzene (tatb) i. anisotropic thermal expansion, Prop., Expl., Pyro, vol.4, issue.1, p.33, 1979.

M. Koslowski, A. M. Cuitiee, and M. Ortiz, A phase-field theory of dislocation dynamics, strain hardening and hysteresis in ductile single crystals, J. Mech. Phys. Solids, vol.50, issue.12, 2002.

M. P. Kroonblawd, T. D. Sewell, and J. Maillet, Characteristics of energy exchange between inter-and intramolecular degrees of freedom in crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (tatb) with implications for coarse-grained simulations of shock waves in polyatomic molecular crystals, J. Chem. Phys, vol.28, p.35, 2016.

M. P. Kroonblawd, T. D. Sewell, M. P. Kroonblawd, and T. D. Sewell, Predicted anisotropic thermal conductivity for crystalline 1,3,5triamino-2,4,6trinitobenzene (tatb): Temperature and pressure dependence and sensitivity to intramolecular force field terms, Prop., Expl., Pyro, vol.41, issue.3, pp.502-513

M. P. Kroonblawd and T. D. Sewell, Theoretical determination of anisotropic thermal conductivity for crystalline 1,3,5-triamino-2,4,6trinitrobenzene (tatb), J. Chem. Phys, vol.32, p.35, 2013.

M. P. Kroonblawd and T. D. Sewell, Theoretical determination of anisotropic thermal conductivity for initially defect-free and defective tatb single crystals, J. Chem. Phys, vol.32, p.35, 2014.

M. P. Kroonblawd and T. D. Sewell, Anisotropic relaxation of idealized hot spots in crystalline 1,3,5-triamino-2,4,6-trinitrobenzene (tatb), J. Phys. Chem. C, vol.120, p.35, 2016.

P. Lafourcade, C. Denoual, and J. Maillet, Detection of plasticity mechanisms in an energetic molecular crystal through shocklike 3d unidirectional compressions: A molecular dynamics study, APS Shock Compression of Condensed Matter Meeting Abstracts, pp.8-10, 2017.

P. Lafourcade, C. Denoual, and J. Maillet, Dislocation core structure at finite temperature inferred by molecular dynamics simulations for 1,3,5-triamino-2,4,6-trinitrobenzene single crystal, J. Phys. Chem. C, vol.121, p.129, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01676309

P. Lafourcade, C. Denoual, and J. Maillet, Irreversible deformation mechanisms for 1,3,5-triamino-2,4,6trinitrobenzene single crystal through molecular dynamics simulations, J. Phys. Chem. C, vol.122, issue.26, p.95, 2018.

P. Langevin, Sur la théorie du mouvement brownien. Comptes Rendus de l'Académie des Sciences, vol.44, p.68, 1908.

C. Lei, A. Hunter, I. J. Beyerlein, and M. Koslowski, The role of partial mediated slip during quasi-static deformation of 3d nanocrystalline metals, J. Mech. Phys. Solids, vol.78, pp.415-426, 2015.

A. Maiti, R. H. Gee, D. M. Hoffman, and L. E. Fried, Irreversible volume growth in polymer-bonded powder systems: Effects of crystalline anisotropy, particle size distribution, and binder strength, J. Appl. Phys, vol.103, issue.5, p.36, 2008.

A. Makke, O. Lame, M. Perez, and J. Barrat, Nanoscale buckling in lamellar block copolymers: A molecular dynamics simulation approach, Macromolecules, vol.46, issue.19, p.120, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01540107

B. S. Mallik, I. W. Kuo, L. E. Fried, and J. I. Siepmann, Understanding the solubility of triamino-trinitrobenzene in hydrous tetramethylammonium fluoride: a first principles molecular dynamics simulation study, Phys. Chem. Chem. Phys, vol.14, p.16, 2012.

M. R. Manaa and L. E. Fried, Nearly equivalent inter-and intramolecular hydrogen bonding in 1,3,5-triamino-2,4,6trinitrobenzene at high pressure, J. Phys. Chem. C, vol.116, issue.3, pp.2116-2122, 2012.

N. Mathew, M. P. Kroonblawd, T. D. Sewell, and D. L. Thompson, Predicted melt curve and liquid-state transport properties of tatb from molecular dynamics simulations, Mol. Sim, vol.44, issue.8, p.35, 2018.

N. Mathew and R. C. Picu, Molecular conformational stability in cyclotrimethylene trinitramine crystals, J. Chem. Phys, vol.135, issue.2, p.13, 2011.

N. Mathew and R. C. Picu, Slip asymmetry in the molecular crystal cyclotrimethylenetrinitramine, Chemical Physics Letters, vol.582, p.15, 2013.

N. Mathew and T. D. Sewell, Generalized stacking fault energies in the basal plane of triclinic molecular crystal 1,3,5-triamino2,4,6-trinitrobenzene, Philos. Mag, vol.95, p.144, 2015.

N. Mathew and T. D. Sewell, Nanoindentation of the triclinic molecular crystal 1,3,5-triamino-2,4,6-trinitrobenzene: A molecular dynamics study, J. Phys. Chem. C, vol.120, p.37, 2016.

A. Metsue, P. Carrez, C. Denoual, D. Mainprice, and P. Cordier, Peierls-nabarro modelling of dislocations in diopside, Phys. Chem. Min, vol.37, p.78, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00558238

F. D. Murnaghan, Finite deformations of an elastic solid, American Journal of Mathematics, vol.59, issue.2, p.168, 1937.

F. D. Murnaghan, The compressibility of media under extreme pressures, Proceedings of the National Academy of Sciences, vol.30, issue.9, p.168, 1944.

S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys, vol.52, p.195, 1984.

S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys, vol.8, issue.1, p.195, 1984.

B. Olinger and H. Cady, The hydrostatic compression of explosives and detonation products to 10 gpa (100 kbars) and their calculated shock compression : Results for petn, tatb, co2 and h2o, p.6, 1976.

, Symposium (International) on Detonation, vol.152, p.153

L. Onsager, Electric moments of molecules in liquids, J. Am. Chem. Soc, vol.58, issue.8, p.70, 1936.

A. Pal and C. R. Picu, Contribution of molecular flexibility to the elastic-plastic properties of molecular crystal ?-rdx, Mod. Sim. Mat. Sci. Eng, vol.25, issue.1, p.70, 2017.

A. Pal and R. C. Picu, Rotational defects in cyclotrimethylene trinitramine (rdx) crystals, The Journal of Chemical Physics, vol.140, issue.4, p.15, 2014.

M. Parrinello and A. Rahman, Crystal structure and pair potentials: A molecular-dynamics study, Phys. Rev. Lett, vol.45, p.194, 1980.

M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys, vol.52, issue.12, p.194, 1981.

M. Parrinello and A. Rahman, Strain fluctuations and elastic constants, J. Chem. Phys, vol.76, issue.5, p.54, 1982.

R. Peierls, The size of a dislocation, Proc. Phys. Soc, vol.52, issue.1, 1940.

D. S. Phillips, R. B. Schwarz, C. B. Skidmore, M. A. Hiskey, and S. F. Son, Some observations on the structure of tatb, American Institute of Physics Conference Series, vol.505, p.33, 2000.

S. Piazolo, M. Montagnat, F. Grennerat, H. Moulinec, and J. Wheeler, Effect of local stress heterogeneities on dislocation fields: Examples from transient creep in polycrystalline ice, Acta Mater, vol.90, pp.303-309, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01746106

N. Pineau, Cold curve of tatb, 20th Symposium (International) on Detonation, vol.50, p.71, 2015.

T. Plisson, N. Pineau, G. Weck, E. Bruneton, N. Guignot et al., Equation of state of 1,3,5-triamino-2,4,6trinitrobenzene up to 66 gpa, J. Appl. Phys, vol.122, issue.23, p.153, 2017.

M. Pravica, B. Yulga, Z. Liu, and O. Tschauner, Infrared study of 1,3,5-triamino-2,4,6-trinitrobenzene under high pressure, Phys. Rev. B, vol.76, pp.64102-64124, 2007.

M. Pravica, B. Yulga, S. Tkachev, and Z. Liu, , 2009.

, High-pressure far-and mid-infrared study of 1,3,5-triamino-2,4,6trinitrobenzene, J. Phys. Chem. A, vol.113, issue.32, pp.9133-9137

N. Rai, D. Bhatt, J. I. Siepmann, and L. E. Fried, Monte carlo simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (tatb): Pressure and temperature effects for the solid phase and vapor-liquid phase equilibria, J. Chem. Phys, vol.129, issue.6, p.33, 2008.

K. J. Ramos, D. E. Hooks, and D. F. Bahr, Direct observation of plasticity and quantitative hardness measurements in single crystal cyclotrimethylene trinitramine by nanoindentation, Philos. Mag, vol.89, issue.27, p.15, 2009.

D. J. Read, R. A. Duckett, J. Sweeney, and T. C. Mcleish, The chevron folding instability in thermoplastic elastomers and other layered materials, J.Phys. D: Applied Physics, vol.32, issue.16, p.134, 1999.

T. D. Sewell, R. Menikoff, D. Bedrov, and G. D. Smith, A molecular dynamics simulation study of elastic properties of hmx, J. Chem. Phys, vol.119, issue.14, p.34, 2003.

S. F. Son, B. W. Asay, B. F. Henson, R. K. Sander, A. N. Ali et al., Dynamic observation of a thermally activated structure change in 1,3,5-triamino-2,4,6-trinitrobenzene (tatb) by second harmonic generation, J. Phys. Chem. B, vol.103, issue.26, p.33, 1999.

L. Soulard, Molecular dynamics study of the micro-spallation, Eur. Phys. J. D, vol.44, issue.3, p.68, 2008.

L. N. Stevens, D. H. Velisavljevic, and D. Dattelbaum, Hydrostatic compression curve for triamino-trinitrobenzene determined to 13.0 GPa with powder x-ray diffraction, Prop. Expl. Pyro, vol.33, issue.4, p.154, 2008.

A. Stukowski and L. Albe, Extracting dislocations and nondislocation crystal defects from atomistic simulation data. Modelling and Simulation in, Materials Science and Engineering, vol.18, issue.8, 2010.

M. R. Taw, J. D. Yeager, D. E. Hooks, T. M. Carvajal, and D. F. Bahr, The mechanical properties of as-grown noncubic organic molecular crystals assessed by nanoindentation, Journal of Materials Research, vol.3, p.37, 2017.

D. G. Thompson, R. Deluca, and G. W. Brown, Timetemperature analysis, tension and compression in pbxs, Journal of Energetic Materials, vol.30, issue.4, p.36, 2012.

G. J. Tucker, J. A. Zimmerman, and D. L. Mcdowell, Continuum metrics for deformation and microrotation from atomistic simulations: Application to grain boundaries, Int. J. Eng. Sci, vol.49, issue.12, p.74, 2011.

M. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation, OUP Oxford, vol.43, p.67, 2010.

A. Vattré and C. Denoual, Polymorphism of iron at high pressure: A 3d phase-field model for displacive transitions with finite elastoplastic deformations, J. Mech. Phys. Solids, vol.92, p.189, 2016.

L. Verlet, Computer experiments on classical fluids. ii. equilibrium correlation functions, Phys. Rev, vol.165, issue.1, p.70, 1968.

P. Vinet, J. Ferrante, J. R. Smith, and J. H. Rose, A universal equation of state for solids, J. Phys. C: Solid State Physics, vol.19, issue.20, p.168, 1986.

M. Waldman and A. T. Hagler, New combining rules for rare gas van der waals parameters, J.Comp. Chem, vol.14, issue.9, p.69, 1993.

D. C. Wallace, Thermoelasticity of stressed materials and comparison of various elastic constants, Phys. Rev, vol.162, p.75, 1967.

D. C. Wallace, Statistical Physics Of Crystals And Liquids. World Scientific, vol.52, p.75, 2002.

R. O. Watts, Monte carlo studies of liquid water, Mol. Phys, vol.28, p.70, 1974.

E. Weinan, W. Ren, and E. Vanden-eijnden, String method for the study of rare events, Phys. Rev. B, vol.66, p.107, 2002.

P. L. Wildfong, B. C. Hancock, M. D. Moore, and K. R. Morris, Towards an understanding of the structurally based potential for mechanically activated disordering of small molecule organic crystals, Journal of Pharmaceutical Sciences, vol.95, issue.12, p.12, 2006.

C. Zhang, Investigation of the slide of the single layer of the 1,3,5-triamono-2,4,6-trinitrobenzene crystal: Sliding potential and orientation, J. Phys. Chem. B, vol.111, issue.51, pp.14295-14298, 2007.