Multi-scale modelling of thermoplastic-based woven composites, cyclic and time-dependent behaviour - PASTEL - Thèses en ligne de ParisTech Accéder directement au contenu
Thèse Année : 2018

Multi-scale modelling of thermoplastic-based woven composites, cyclic and time-dependent behaviour

Modélisation multi-échelle des composites tissés à matrice thermoplastique, comportement cyclique et dépendance au temps

Résumé

In this thesis, a multi-scale model established from the concept of periodic homogenization is utilized to study the cyclic and time-dependent response of thermoplastic-based woven composites. With the proposed approach, the macroscopic behaviour of the composite is determined from a finite element simulation of the representative unit cell of the periodic microstructure, where the local constitutive behaviours of the components are directly integrated, namely: the matrix and the yarns. The local response of the thermoplastic matrix is described by a phenomenological multi-mechanisms constitutive model accounting for viscoelasticity, viscoplasticity and ductile damage. For the yarns, a hybrid micromechanical-phenomenological constitutive model is considered. The latter accounts for anisotropic damage and anelasticity induced by the presence of a diffuse micro-crack network through the micromechanical description of a micro-cracked representative volume element. The capabilities of the multi-scale model are validated by comparing the numerical prediction with experimental data. The capabilities of the model are also illustrated through several examples where the composite undergoes time-dependent deformations under monotonic loading, constant or cyclic stress levels and non-proportional multi-axial loading. Furthermore, the multi-scale model is also employed to analyse the influence of the local deformation processes on the macroscopic response of the composite.
Dans ce travail de thèse, une modélisation multi-échelle est mise en place à partir du concept d’homogénéisation périodique pour étudier le comportement cyclique et dépendant du temps des composites tissés à matrice thermoplastique. Avec l’approche proposée, le comportement macroscopique du composite est déterminé à partir d’une simulation éléments finis effectuée sur une cellule unitaire représentative de la microstructure périodique, où les lois de comportement des constituants sont directement intégrées, à savoir: la matrice et les torons. La réponse locale de la matrice est décrite par une loi de comportement phénoménologique multi-mécanismes intégrant viscoélasticité, viscoplasticité et endommagement ductile. Pour les torons, une loi de comportement hybride micromécanique-phénoménologique est considérée. Cette dernière prend en compte l’endommagement anisotrope et l’anélasticité induite par la présence d’un réseau diffus de microfissures à travers une description micromécanique d’un volume élémentaire représentatif contenant des microfissures. Les capacités du modèle multi-échelles sont validées en comparant les prédictions numériques aux essais expérimentaux. Les capacités du modèle sont également illustrées à travers plusieurs exemples où le composite subit des déformations dépendantes du temps lors de chargements monotones, de chargements à amplitude constante ou cyclique et encore lors de chargement multiaxiaux non proportionnels. En outre, le modèle multi-échelle est aussi utilisé pour analyser l’influence des mécanismes de déformation locaux sur la réponse macroscopique du composite.
Fichier principal
Vignette du fichier
PRAUD.pdf (27.02 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01936624 , version 1 (27-11-2018)

Identifiants

  • HAL Id : tel-01936624 , version 1

Citer

Francis Praud. Multi-scale modelling of thermoplastic-based woven composites, cyclic and time-dependent behaviour. Mechanics of materials [physics.class-ph]. Ecole nationale supérieure d'arts et métiers - ENSAM, 2018. English. ⟨NNT : 2018ENAM0018⟩. ⟨tel-01936624⟩
493 Consultations
471 Téléchargements

Partager

Gmail Facebook X LinkedIn More