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List of Abbreviations

• Dynamical System: a system in which a function describes the time depen-
dence of a point in a geometrical space

• Normal Forms: a �simpler form� of the original system where all the system
property is kept

• Method of Normal Forms (MNF): the method that study the dynamical
system based on its normal forms

• Normal Form Transformation: the transformation of coordinates of state-
variables to obtain the normal forms

• Normal Form Coordinates: the coordinates where the dynamics of the
state-variables are described by the normal forms

• Normal Dynamics: the dynamics of the normal forms

• DAEs: di�erential algebraic equations

• Invariant: if motion (or oscillation) is initiated on a particular mode, they
will remain on this mode without transfer to others

• Modal Suppersition

• Decoupled: the dynamics of one state-variable is independent of that of
others

• Amplitude-dependent Frequency Shift: it describes a phenomenon that
in system exhibiting nonlinear oscillations, the free-oscilation frequency will
vary with respect to the amplitudes

• Normal Mode: a basic particular solution of systems in free-oscillations.
of motion that move independently to others, the most general motion of a
system is a combination of its normal modes.

• LNM: Linear Normal Mode

• NNM: Nonlinear Normal Mode

• MS method: the Modal Series method

• SP method: the Shaw-Pierre method
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Introductions générales

Cadre général

Les systèmes électromécaniques industriels à haute performance sont souvent com-
posés d'une collection de sous-systèmes interconnectés travaillant en collaboration,
dont la stabilité dynamique est très préoccupante dans l'opération. Plusieurs exem-
ples sont présentés dans la �gure 1.

(a) un parc éolien; (b) un avion plus électrique

(c) un sou-marin; (d) une véhicule électrique

Figure 1: Examples of Multiple-input with Coupled Dynamics

Du point de vue des systèmes dynamiques, ces systèmes électromécaniques sont
dans le cadre �système à entrées multiples avec dynamique couplée�, qui sont om-
niprésents dans tous les aspects de notre vie quotidienne. Leur stabilités méritent
d'être étudiées de manière intelligente et méticuleuse pour exploiter leur capacité
avec moins de travail humain. Cela donne naissance à l'avenir des technologies avec
des bienfaits tels que l'auto-conduite (mieux contrôlé), respect de l'environnement
(pour réduire la consommation d'énergie) et etc.

Ce travail de thèse s'inscrit dans le cadre général de l'analyse et la commande des
systèmes non-linéaires à entrées multiples ayant dynamiques couplées, qui donne
un aperçu sur les comportements dynamiques non-linéaires d'une grande classe des
systèmes à entrées multiples, comme illustré sur la �gure 1. Ce travail de thèse
est multidisciplinaire et la méthodologie systématique proposée analyse et contrôle
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les systèmes non-linéaires en simpli�ant les non-linéarités par la théorie des formes
normales. Des applications sont d'abord réalisées sur l'analyse de la stabilité et la
commande des grands réseau électriques.

Analyse de la dynamique des grands réseaux électriques

Un grand réseau électrique (appelé aussi système de puissance interconnectés) se
compose d'éléments (générateurs, transformateurs, lignes, ...), plus ou moins nom-
breux selon la taille du réseau, interconnectés, formant un système complexe capable
de générer, de transmettre et de distribuer l'énergie électrique à travers de vastes
étendues géographiques.

L'analyse de la dynamique des réseau électriques d'aujourd'hui est un problème
di�cile et un problème à forte intensité de calcul. Dans la dynamique, de nombreux
phénomènes sont intéressants et restent encore à relever.

Cela s'explique en partie par le fait que chacun services d'électricité n'est pas des iles
de génération et de contrôle indépendants. Les interconnexions des grandes régions
et son utilisation intensive de ces interconnexions faire les ingénieurs de système
de puissance d'a�ronter un système large, poussé à la limite et non-linéaire pour
analyser et faire fonctionner.

Par exemple, de plus en plus d'énergie renouvelable a été incluse dans les grands
réseaux électriques à ce jour. L'énergie est générée dans des sites distants puis trans-
férée aux zones urbaines avec une longue ligne de transport d'électricité. Ses côtés
de l'énergie sont interconnectés pour assurer une répartition optimale de l'énergie.
Un exemple du système de puissance interconnecté à grande échelle s'appelle �super
grid�, qui attire de plus en plus d'attention nationale et globale, comme illustré sur
la �gure 2.

Figure 2: Supergrid� Transfering the Renewable Energy from Remote Sites to the
Cities
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D'autre part, selon l'exigence de transférer de l'énergie �intelligemment�, il s'agit
d'exploiter la capacité de transfert en réponse à la crise de l'énergie et d'économiser
le travail humain, ce qui conduit à un système de puissance stressé dont la dy-
namique devrait être examinée a�n d'assurer une opération stable. Alors l'étude de
la dynamique du système de puissance est nécessaire, surtout, la stabilité des grands
réseaux électriques.

La dynamique du système est souvent caractérisée par des oscillations électrique-
mécaniques. Analyser la dynamique du système est de répondre à deux questions:

• Comment les composants du système interagissent l'un sur l'autre ? � les
interactions modales

• Est-ce que le système arrive �nalement un état de stabilité ? �évaluation de
stabilité

Les deux questions sont répondu par l'étude de la stabilité du système de puissance.

L'étude de la stabilité des grands réseaux électriques

La stabilité du réseau électrique peut se dé�nir de manière générale comme
la propriété d'un système qui lui permet de rester en état d'équilibre opérationnel
dans des conditions de fonctionnement normales et de retrouver un état acceptable
d'équilibre après avoir subi une perturbation (Étape post-défaut). La stabilité du
système dépend de la condition de fonctionnement initiale ainsi que de la nature de
la perturbation. Le système est initialement supposé être à une condition d'état de
pré-défaut régie par les équations.

Cette thèse se concentre sur la dynamique des angles du rotor quand il y a des per-
turbations sur la ligne de transport d'électricité, puisque les oscillations électriques-
mécaniques sont souvent contastées dans la dynamique des angles rotoriques. Et la
dynamique des angle rotoriques caractérise la capacité du système de transférer de
l'électricité.

Pour étudier la dynamique des angles rotoriques, on suppose que la stabilité de
tension et la stabilité de fréquencie sont déjà assurées.

• Stabilité de tension

On peut dé�nir la stabilité de tension comme la capacité d'un système
d'énergie électrique à maintenir des tensions stables à tous ses n÷uds après
avoir été soumis à une perturbation à partir d'une condition initiale de fonc-
tionnement de ce système. Dans un certain nombre de réseaux, l'instabilité
de tension est considérée comme une importante contrainte d'exploitation.

• Stabilité de fréquence
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Dans un grand système interconnecté, la fréquence subit des variations rel-
ativement faibles, même lors d'incidents sévères. L'instabilité de fréquence
concerne essentiellement les situations où la perte de plusieurs lignes de trans-
port conduit à un morcélement du système. Si un bloc se détache du reste du
système, il évolue vers une fréquence propre et le contrôle de celle-ci peut être
di�cile en cas de déséquilibre important entre production et consommation au
sein de ce bloc. En cas de dé�cit de production, la chute de la fréquence peut
être arrêtée par un délestage de charge (en sous-fréquence). Par contre, en
cas de surplus de production, la hausse de la fréquence du système est arrêtée
par une déconnexion rapide de certaines unités de productions de sorte que
l'équilibre production �consommation soit rétablie.

En e�et, selon la nature de la perturbation provoquant l'instabilité, on distingue
deux types de stabilité des angles rotoriques que l'on explique ci-après :

• Stabilité angulaire aux petites perturbations : Dans les réseaux
modernes, l'instabilité angulaire aux petites perturbations prend la forme
d'oscillations rotoriques faiblement amorties voire instables. En e�et, ces os-
cillations du rotor qui s'ajoutent au mouvement uniforme correspondant à un
fonctionnement normal, ont des fréquences qui se situent entre 0.1 et 2Hz

suivant le mode d'oscillation.

L'extension d'une interconnexion et l'incorporation à celle-ci de systèmes
moins robustes peut faire apparaître de telles oscillations. Les modes
d'oscillation les plus di�ciles à amortir sont les modes interrégionaux dans
lesquels les machines d'une région oscillent en opposition de phase avec celles
d'une autre région.

• Stabilité angulaire transitoire : L'instabilité angulaire aux grandes per-
turbations concerne la perte de synchronisme des générateurs sous l'e�et d'un
court-circuit éliminé trop tardivement (raté de protection) ou de la perte de
plusieurs équipements de transport. La perte de synchronisme se solde par le
déclenchement des unités concernées.

Traditionnellement, les études de la dynamique angulaire aux petites perturba-
tions utilisent le modèle linéaire et les études de la dynamique angulaire transitoire
utilisent le modèle non-linéaire par contre. Cependant, il est di�cile de isoler ces
deux parties. Par exemple, les oscillations interrégionaux, qui est un sujet important
de la dynamique angulaire aux petites perturbations, sont observées dans l'analyse
transitoire (après avoir un défaut de court-circuit triphasé dans la ligne de transport
d'électricité), mais sa propriété est étudiée par l'analyse de la stabilité aux petites
perturbations.

En outre, lorsque le système éprouve de grandes perturbations, non seulement les
limites de transfert sont concernées, mais aussi les sources et les fréquences des
oscillations devraient être étudiées. Pour ce problème, l'analyse de la stabilité aux
petites perturbations est plus appropriée.
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Par conséquent, dans ce travail de thèse, létude de la dynamique angulaire aux
petites perturbations est actuellement étendu au domaine non linéaire, pour étudier
des oscillations non-linéaires dans des réseaux électriques lorsque le système subi
une grande perturbation. Et l'analyse de la stabilité transitoire se concentre sur les
limites de transfert, où une stabilité analytique approximative est proposée.

Une analyse bibliographique des recherches de la dynamique angulaire sont présentée
dans les parties suivantes.

Analyse de la stabilité angulaire aux petites perturbations basée sur
la linéarisation du modèle

La quasi-totalité des systèmes dynamiques réels possède des caractéristiques non-
linéaires. Le comportement dynamique d'un système de puissance peut être décrit
par un ensemble d'équations di�érentielles et algébriques (EDA) (1).

x = f(x,u) (1)

g(x,u) = 0

Compte tenu que le système de puissance, évolue généralement autour d'un point
de fonctionnement donné lors des petites perturbations, il est possible de linéariser
ses équations EDA autour de ce point.

Le point de fonctionnement normal du système se dé�nit comme un point d'équilibre
ou une condition initiale. Les dérivées des variables d'état en ce point sont donc
égales à zéro.

ẋ0 = f(x0,u0) = 0 (2)

Où: x0 est le vecteur des variables d'état correspondantes aux points d'équilibre.

Si une petite perturbation se superpose aux valeurs d'équilibre, la série de taylor de
(1) en point x0 est la série de fonctions suivante :

4ẋ = A4x+O(2) (3)

avec matrice d'état A (n× n) dont Akl = ∂fk
∂xl

et u = u0. O(2) ramasse les termes
d'ordre supérieur.

Négliger tout les termes d'ordre supérieur et diagonaliser A par des transformations
de similarité unitaires x = Uy. Nous obtenons :

4ẏ = Λ4y (4)

Où: λi est une ième valeur propre, Ui est le ième valeur propre à droite associé à λi,
Vi est le ième valeur propre à droite associé à λi.
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Figure 3: Kundur's 2 Area 4 Machine System

La solution de (4) est une série de e(λi)t, i = 1, 2, · · · , N . C'est-à- dire que la
dynamique du système est la supposition des modes indépendants se caractérise par
λi = σi + jωi. La stabilité de mode i se caractérise par σi. Si σi < 0, le système est
stable en régime dynamique. Et moins σ est, plus stable c'est.

Analyse des interactions modales basée sur la linéarisation du mod-
èle

Vecteur propre à droite U mesure l'in�uence relative de chaque variable d'état xk
dans un ième mode et qu'un vecteur propre à gauche Vi indique la contribution de
l'activité de xk dans le ième mode. Par conséquent, une �quantité� caractéristique
d'un mode donné peut être obtenue par produit, élément par élément, d'un vecteur
propre à droite et d'un vecteur propre à gauche correspondant. Cette quantité,
appelée le facteur de participation, est calculée par la relation suivante:

pki = UkiVik (5)

Ainsi, le facteur de participation peut fournir des informations �nes sur le problème:
il représente une mesure relative de la participation de la kème variable d'état dans
le ième mode, et vice versa [1].

Par le facteur de participation, nous constatons que il y a quatre type d'oscillation
dans des grands réseaux électriques:

• Les oscillations des modes locaux Les modes locaux sont les modes les plus
rencontrés dans les systèmes de puissance. Ils sont associés aux oscillations
entre un générateur (ou un groupe des générateurs) d'une centrale électrique
et le reste du système. Le terme local est utilisé car les oscillations sont
localisées dans une seule centrale ou une petite partie du système, (par exemple
: les générateurs G1 par rapport au générateur G2 trouvé dans la même
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région (Area 1), �gure 3). La gamme de fréquence de ces oscillations est
généralement de 1 à 2 Hz. L'expérience montre que ces oscillations tendent à se
produire lors de l'utilisation des régulateurs de tension possédant une réponse
rapide et quand le lien de transmission entre une centrale et ses charges est
très faible. Pour assurer un bon amortissement de ces modes, des sources
d'amortissement, tel le stabilisateur de puissance, peuvent être ajoutées aux
générateurs à l'origine de ces modes.

• Les oscillations des modes globaux Les oscillations des modes globaux, ou
oscillations interrégionales, sont associées à l'oscillation entre certains généra-
teurs d'une partie du système et certains générateurs d'une autre partie du
système (par exemple : les générateurs, G1 et G2 de la région (area 1) oscillent
ensemble par rapport au générateur G3 et G4 de la région (area 2), �gure 3).

Les modes associés à ces oscillations présentent généralement des amortisse-
ments très faibles et, si ces derniers sont négatifs, de petites perturbations
peuvent exciter des oscillations divergentes.

Les fréquences de ces oscillations se trouvent généralement dans la gamme
de 0.1 à 1 Hz. Cette gamme est inférieure à celle des modes locaux car les
réactances des liens entre les systèmes de puissance sont élevées. Générale-
ment, la fréquence naturelle et le facteur d'amortissement d'un mode interré-
gional décroissent lorsque l'impédance d'une ligne d'interconnexion ou la puis-
sance transmise augmente. Le système d'excitation et les caractéristiques des
charges a�ectent également les oscillations des modes interrégionaux. Ainsi,
ces modes présentent des caractéristiques plus complexes que ceux des modes
locaux. Étant donné que les modes interrégionaux impliquent plusieurs généra-
teurs, un bon amortissement de tels modes peut exiger l'utilisation de stabil-
isateurs de puissance pour un grand nombre des générateurs.

• Les oscillations des modes de contrôle Les oscillations associées aux
modes de contrôle sont dues :

� soit, aux contrôleurs des générateurs (mauvais réglage des contrôleurs des
systèmes

� soit, aux autres dispositifs contrôleurs (convertisseurs HVDC, SVC,...).

La fréquence de ces oscillations est supérieure à 4Hz.

• Les oscillations des modes de torsion Ces oscillations sont essentiellement
reliées aux éléments en rotation entre les générateurs et leurs turbines. Elles
peuvent aussi être produites par l'interaction des éléments de rotation avec le
contrôle d'excitation, le contrôle de gouverneur, les lignes équipées avec des
compensateurs de condensateurs en série,... La fréquence de ces oscillations
est aussi supérieure à 4Hz.

Un système ayant plusieurs générateurs interconnectés via un réseau de transport se
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comporte comme un ensemble de masses interconnectées via un réseau de ressorts
et présente des modes d'oscillation multiples. Parmi tout les types de oscillations,
les oscillations des modes globaux nous intéressent le plus. Dans les oscillations
de modes interrégionaux, plusieurs générateurs de di�érentes régions sont impliqués
et ils peuvent provoquer des défauts en cascade. Étudier les interactions entre les
composantes sont très important pour comprendre les comportements dynamique
du système et puis améliorer sa performance dynamique, par exemple, l'amortissent
des oscillations de modes interrégionaux par l'emplacement optimal de PSS (power
system stabilizer).

Évaluation de la stabilité transitoire

Le processus transitoire peut durer longtemps, et ce que nous nous intéressons,
c'est le processus de post-perturbation, c'est-à-dire si le système va revenir à l'état
d'équilibre après que la perturbation est e�acée. Il s'agit de l'évaluation de la
stabilité transitoire (TSA).

Une variété d'approches permettant l'évaluation de la stabilité des réseaux d'énergie
électrique a été proposée dans la littérature. Les méthode les plus répandue peuvent
être classées en deux catégories distinctes :

• Méthodes indirectes d'intégration numérique.

• Méthodes directes énergétiques.

Il y a des méthodes pour TSA où une solution analytique n'est pas fournie. Voyez
chapitre 1 pour un examen de la littérature plus détaillé des recherches sur ce sujet.

Méthodes indirectes d'intégration numérique

C'est l'approche la plus largement appliquée dans le marché est l'intégration
numérique étape pas-à-pas, mais généralement nécessite beaucoup de calcul pour
l'application en ligne. Les algorithmes d'intégration numérique sont utilisés pour
résoudre l'ensemble des équations di�érentielles de premier ordre qui décrivent la
dynamique d'un modèle de système. L'intégration numérique fournit des solutions
relatives à la stabilité du système en fonction des détails des modèles utilisés.

Dans de nombreux cas, cela su�t pour s'assurer que le système restera synchronisé
pour tous les temps après le retour.

Cependant, dans d'autres cas, la dynamique du système peut être telle que la perte
de synchronisme ne se produit pas jusqu'à ce que les générateurs aient connu de
multiples oscillations. Alors c'est di�cile de décider quand s'arrêter une simulation
et c'est impossible d'obtenir la marge de stabilité .
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Méthodes directes énergétiques

Méthodes graphiques (Critère d'égalité des aires) Considérons un défaut, tel
un défaut sur la ligne de transmission, appliqué au système précédent disparaissant
après quelques périodes du système. Ceci va modi�er l'écoulement de puissance et,
par conséquent, l'angle de rotor δ. Retraçons la courbe (P − δ) en tenant compte
de ce défaut, �gure 4. En dessous de cette courbe, nous pouvons considérer deux
zones [1] :

1. La première zone (zone A1, zone d'accélération) se situe au-dessous de la droite
horizontale correspondante au point de fonctionnement initial (la droite de
charge). Elle est limitée par les deux angles de rotor (δ0 et δ1) correspondants
à l'apparition et à la disparition de défaut. Cette zone est caractérisée par
l'énergie cinétique stockée par le rotor du fait de son accélération : Pm > Pe.

2. La deuxième zone (zone A2, zone de décélération), qui commence après
l'élimination du défaut, se situe en dessus de la droite de charge : elle est
caractérisée par la décélération du rotor : Pm < Pe.

Si le rotor peut rendre dans la zone A2 toute l'énergie cinétique acquise durant la
première phase, le générateur va retrouver sa stabilité. Mais si la zone A2 ne per-
met pas de restituer toute l'énergie cinétique, la décélération du rotor va continuer
jusqu'à la perte de synchronisme. (Voyez [1, 2] pour une démonstration mathéma-
tique.)

Durant les trois dernières décennies, les méthodes énergétiques directes ont sus-
cité l'intérêt de plusieurs chercheurs [3]. A.M. Lyapunov a développé une struc-
ture générale pour l'évaluation de la stabilité d'un système régi par un ensem-
ble d'équations di�érentielles a�n d'obtenir une évaluation plus rapide. L'idée de
base des nouvelles méthodes développées est de pouvoir conclure sur la stabilité ou
l'instabilité du réseau d'énergie sans résoudre le système d'équations di�érentielles
régissant le système après l'élimination du défaut. Elles utilisent un raisonnement
physique simple basé sur l'évaluation des énergies cinétique et potentiel du système.

Contrairement à l'approche temporelle, les méthodes directes cherchent à déterminer
directement la stabilité du réseau à partir des fonctions d'énergie. Ces méthodes
déterminent en principe si oui ou non le système restera stable une fois le défaut
éliminé en comparant l'énergie du système (lorsque le défaut est éliminé) à une
valeur critique d'énergie prédéterminée.

Les méthodes directes énergétiques non seulement permettent de gagner un temps
requis au calcul pas à pas que nécessite l'analyse temporelle, mais donnent égale-
ment une mesure quantitative du degré de stabilité du système. Cette information
additionnelle rend les méthodes directes très intéressantes surtout lorsque la stabil-
ité relative de di�érentes installations doit être comparée ou lorsque les limites de
stabilité doivent être évaluées rapidement. Un avantage clé de ces méthodes est leur
habilité dans l'évaluation du degré de stabilité (ou d'instabilité). Le second avantage
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Figure 4: Equal Area Criteria (E-A)
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est leur capacité à calculer la sensibilité de la marge de stabilité à divers paramètres
du réseau, permettant ainsi un calcul e�cient des limites d'exploitation.

Dans la pratique, il existe encore des problèmes non résolus et des inconvénients
de cette approche. L'e�cacité de cette méthode dépend des simpli�cations choisies
des variables du système. L'intégration de la faute sur les équations du système est
nécessaire pour obtenir la valeur critique pour évaluer la stabilité. Il est di�cile
de construire la fonction appropriée de Lyapunov pour re�éter les caractéristiques
internes du système. La méthode n'est rigoureuse que lorsque le point de fonction-
nement est dans la région de stabilité estimée.

Problème

Depuis une trentaine d'années, les grands réseaux électriques se trouvent obligés
de fonctionner à pleine puissance et souvent aux limites de la stabilité. Faire la
linéarisation d'un système d'équations entraînerait beaucoup d'erreurs de modélisa-
tion et échouerait pour prédire des comportements dynamiques tell que oscillations
non-linéaires à fréquence variable [4] et la stabilité [5]. Il a entraîné la nécessité
d'une meilleure compréhension des non-linéarités dans le comportement dynamique
du réseaux électrique.

Quelques caractéristiques propres aux grands réseaux électriques qui contribuent
aux comportements non linéaire en régime dynamique ou transitoire peuvent être
citées :

• la relation puissance-angle qui est une relation non-linéaire en sinus;

• étendue géographique des sites jusqu'à plusieurs dizaines d'hectares composée
d'une collection de générateurs;

• longueur des connexions, lignes et câbles, jusqu'à centaines de kilomètres pour
les di�érents niveaux de tension;

• une plus forte demande en électricité tel que le système est déjà poussé à la
limite.

Alors il faut trouver une méthodologie systématique pour étudier les comportements
non-linéaire en utilisant les modelés non-linéaire.

Il aussi nécessite de trouver une méthode a�n

• d'identi�er les interactions modales nonlinéaires entre les composants du sys-
tème et les modes d'oscillations non-linéar;

• d'obtenir une évaluation de la stabilité plus rapide et plus facile en tenant
compte les non-linéarités.

Cependant, garder tous les termes non-linéaires est laborieux et n'est pas nécessaire.
Dans mes travaux, il s'agit de trouver une méthode où les non-linéarités principales
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sont gardées a�n de conserver l'essentiel du comportement non-linéaire, alors que
d'autres sont ignorées pour simpli�er les calculs.

Nous conservons notamment les termes qui contribuent à la précision, la stabilité, et
la fréquence des oscillations. Cette méthode est basée sur la théorie des formes nor-
males de Poincaré qui élimine des termes non-linéaire par le biais de transformations
non-linéaires.

Méthode des formes normales

Théorie des formes normales

Théorème de Poincaré-Dulac : Soit un système dynamique dépendant de X: Ẋ =

AX +N(X). A est linéaire, N(X) est nonlinéaire. Le changement de variable X =

Y + h(Y ) permet d'éliminer tous les monômes non-résonnants: Ẏ = AY + An(Y ),
qui est sous sa forme �la plus simple�.

Cette méthode est intéressante pour des systèmes su�samment di�érentiables. En
prenant successivement les changements de variables X = Y + h2(Y ), puis Y =

Z+h3(Z) etc, on stabilise bien un terme supplémentaire de degré �xé à chaque étape
et obtient les formes normales avec une certaine précision. On a déjà obtenu des
réussites sur l'analyse d'un systèmes en mécanique des structures. Nous considérons
l'utiliser sur systèmes électromécaniques à dynamiques couplées non-linéaires.

Analyse de la dynamique des grands réseaux électriques par la
théorie des formes normales

Des formes normales à l'ordre 2 sont proposée et bien appliquées dans l'analyse des
dynamiques de grands réseaux électriques [6�15]. Cependent, il y a des phénomènes
non-linéaire restent à relever par des formes normales à l'order 3. Mais des formes
normales à l'order 3 n'est pas complétée et n'est pas su�samment précise [5, 16].

Analyse en mécanique des structures basée sur la théorie des formes
normales

Notion de mode normal

Pour un système oscillatoire à plusieurs degrés de liberté, un mode normal ou mode
propre d'oscillation est une forme spatiale selon laquelle un système excitable (micro
ou macroscopique) peut osciller après avoir été perturbé au voisinage de son état
d'équilibre stable; une fréquence naturelle de vibration est alors associée à cette
forme. Tout objet physique, comme une corde vibrante, un pont, un bâtiment ou
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encore une molécule possède un certain nombre, parfois in�ni, de modes normaux de
vibration qui dépendent de sa structure, de ses constituants ainsi que des conditions
aux limites qui lui sont imposées. Le nombre de modes normaux est égal à celui des
degrés de liberté du système.

Le mouvement le plus général d'un système est une superposition de modes nor-
maux. Le terme �normal� indique que chacun de ces modes peut vibrer indépen-
damment des autres, c'est-à-dire que l'excitation du système dans un mode donné
ne provoquera pas l'excitation des autres modes. En d'autres termes, la décompo-
sition en modes normaux de vibration permet de considérer le système comme un
ensemble d'oscillateurs harmoniques indépendants dans l'étude de son mouvement
au voisinage de sa position d'équilibre stable.

Mode non-linéaire basée sur des formes normales

Le comportement des systèmes oscillatoires à dynamiques couplées non-linéaires ne
peut pas être traités par des modes normaux linéaires car des propriétés non-linéaires
seraient perdues. On propose la notion de �Mode non-linéaire� qui conserve variété
invariante de l'espace des phases [17�19]. Tous les modes non-linéaires sont �les
formes normales� d'un système oscillatoire, calculés en une seule opération basée
sur la théorie des formes normales [17�19]. Validé par l'expérimentation, les modes
non-linéaires prédisent plus exactement le comportement dynamique non linéaire
d'un système mécanique.

Ce que nous proposons dans cette thèse

Dans cette thèse, des méthodes des formes normales sont propoées par deux ap-
proches.

Dans une première approche, nous avons employé la méthode des champs vectoriels.
L'équation d'un système est sous la forme comme suit:

ẋ = f(x) (6)

L'expérimentation est réalisée dans l'étude de cas: IEEE 2-area 4-machine système
(�g. 3). Le travail suscite un intérêt et une collaboration au niveau international:
HIROYUKI Amano (Japonais) et MESSINA Arturo Roman (Mexicain). Une pub-
lication est acceptée par une revue internationale IEEE Transactions on Power

Systems.

Dans une deuxième approche, nous avons modi�é les modes non-linéaire normaux
pour étudier le dynamique d'un système électromécanique tell que convertisseurs
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interconnectés. L'équation d'un système est sous la forme de celle d'un oscilla-
teur comme (7) a�n d'obtenir une meilleur compréhension physique par rapport
à la méthode des champs vectorielles. Une publication dans revue est en cours de
rédaction.

M q̈ +Dq̇ +Kq + fnl(q) = 0 (7)

En réalisant ce travail, nous considérons la généralisation de l'étude du comporte-
ment dynamique non-linéaire du système électromécanique comme suit :

1. de l'analyse à la commande et à la conception: A partir des résultats fournis
par les analyses nonlinéaire, il est possible de d�développer ensuite des méthodes
pour améliorer la performance dynamique du systéme de puissance, par exem-
ple, l'emplacement optimal de PSS (power system stabilizer) selon les résultats
de l'analyse des formes normales [20], étudier l'in�uences de paramètres prin-
cipaux pour le réglage de contrôleurs [16] et la conception des grands réseaux
électriques [21].

Ailleurs, des explorations très originales dans la commande des entraînements
électriques utilisant des formes normales ont été e�ectuées. Ces approches
consistent à découpler le systéme non-linéaire à sous-systèmes qui peut être
contrôlé de façon indépendante.

2. de la théorie à la pratique: comment faire l'analyse et la commande du sys-
tème industriel? Ra�ner la méthodologie prenant en compte des apports
industriels, par exemple, appliquer les méthodologies sur le système à grande
échelle.

Objectif, organisation et position de cette recherche de

doctorat

Objectif et la tâche

L'objectif de cette thèse est de:

• élaborer une méthodologie systématique pour analyser et contrôler les sys-
tèmes à entrées multiples non linéaires avec une dynamique couplée basée sur
des méthodes de formes normales à l'ordre 3;

• appliquer la méthodologie systématique pour étudier le comportement dy-
namique non linéaire des grands réseaux électriques;

• analyser les facteurs que in�uencent la performance de la méthodologie pro-
posée et comprendre ses limites et la façon de l'améliorer;
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• tirer de conclusions générales pour l'analyse de systèmes dynamiques non-
linéaires et développer la stratégie de commande pour améliorer leur perfor-
mances dynamiques;

La réalisation des objectifs se compose de:

• le développement des méthodes des formes normales (MNF) jusqu'à l'ordre 3;

• la mise en ÷uvre de programmes génériques de MNF applicables aux systèmes
dynamiques avec des dimensions arbitraires;

• la modélisation mathématique des grands réseaux électriques sous forme de
série Taylor jusqu'à l'ordre 3;

• l'application des méthode proposée pour étudier les oscillations des modes
interrégionaux et la stabilité des grands réseaux électriques.

L2EP et LSIS

Cette thèse est issu d'une collaboration entre deux laboratoires, le L2EP (Labora-
toire d'Electrotechnique et d'Electronique de Puissance de Lille) et le LSIS-INSM
(Laboratoire des Sciences de l'Information et des Systèmes-Ingénierie Numérique
des Systèmes Mécaniques) de l'ENSAM sur le campus à Lille. Le directeur de thèse
est Xavier KESTELYN (L2EP) et le co-directeur est Olivier THOMAS (LSIS), dont
tous les deux sont professeurs à l'ENSAM-Lille. Il s'agit également d'une collabo-
ration entre les domaines électriques et les domains mécaniques ainsi qu'une collab-
oration entre le commande et l'analyse, et tous s'appartiennent à mathématiques
appliqués.

Cette thèse est basée sur certaines compétences et expertises déjà accumulées à
l'intérieur du laboratoire L2EP et LSIS. L2EP a e�ectué beaucoup de pratiques
du contrôle non-linéaire dans le domaine électrique. LSIS-INSM a déjà accumulé
beaucoup d'expertise dans l'analyse non-linéaire des structures �exibles et de la
validation expérimentale.

Une application de la théorie des formes normales dans l'analyse des structures dans
le domaine mécanique consiste à tirer de les modes normals non-linéaire (nonlinear
normal mode, NNM) pour le cas spéci�que où des systèmes vibratoires présentant
des non-linéarités de type polynomial. NNM est un outil théorique utilisé pour
réduire le système de degrés �nis en un seul degré tout en conservant la propriété
essentielle du système et prédire son comportement sous excitation.

Dans l'analyse de la dynamique du système, les principaux avantages bien connus
et largement utilisés des modes normaux sont: 1). Les modes et les fréquences
naturelles résultent de la résolution (théorique ou numérique) d'un problème des
valeurs propres (fréquences) et des vecteurs propres (modes) qui peuvent simultané-
ment indiquer les oscillations modales ainsi que la stabilité ou l'instabilité asympto-
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tique. 2). Le modèle peut être réduit pour ne considérer que les modes dominants,
ce qui peut largement simpli�er l'analyse et le calcul.

LSIS: Analyse en mécanique des structures basée sur la théorie des
formes normales

Notion de mode normal

Pour un système oscillatoire à plusieurs degrés de liberté, un mode normal ou mode
propre d'oscillation est une forme spatiale selon laquelle un système excitable (micro
ou macroscopique) peut osciller après avoir été perturbé au voisinage de son état
d'équilibre stable; une fréquence naturelle de vibration est alors associée à cette
forme. Tout objet physique, comme une corde vibrante, un pont, un bâtiment ou
encore une molécule possède un certain nombre, parfois in�ni, de modes normaux de
vibration qui dépendent de sa structure, de ses constituants ainsi que des conditions
aux limites qui lui sont imposées. Le nombre de modes normaux est égal à celui des
degrés de liberté du système.

Le mouvement le plus général d'un système est une superposition de modes nor-
maux. Le terme "normal" indique que chacun de ces modes peut vibrer indépen-
damment des autres, c'est-à-dire que l'excitation du système dans un mode donné
ne provoquera pas l'excitation des autres modes. En d'autres termes, la décompo-
sition en modes normaux de vibration permet de considérer le système comme un
ensemble d'oscillateurs harmoniques indépendants dans l'étude de son mouvement
au voisinage de sa position d'équilibre stable.

Mode non-linéaire basée sur des formes normales

Le comportement des systèmes oscillatoires à dynamiques couplées non-linéaires ne
peut pas être traités par des modes normaux linéaires car des propriétés non-linéaires
seraient perdues. On propose la notion de �Mode non-linéaire� qui conserve variété
invariante de l'espace des phases [17�19]. Tous les modes non-linéaires sont �les
formes normales� d'un système oscillatoire, calculés en une seule opération basée
sur la théorie des formes normales [17�19]. Validé par l'expérimentation, les modes
non-linéaires prédisent plus exactement le comportement dynamique non linéaire
d'un système mécanique.

L2EP: laboratoire se concentre sur le système électrique à multiple en-
trées ayant dynamiques couplées

L2EP a accumulé beaucoup d'expertise dans la modélisation, l'analyse des systèmes
de puissance (mais principalement en fonction de l'analyse linéaire des petits sig-
naux) et du contrôle basé sur le modèle. Cela contribue à la modélisation et aux
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éléments de contrôle dans le développement d'une méthodologie pour analyser et
contrôler le système non linéaire.

Contributions scienti�ques

Des contributions scienti�ques de cette thèse sont résumés comme suit:

• Du point de vue des domaines disciplinaires: cette thèse est multidisciplinaire,
associée aux mathématiques appliquées, à la dynamique non-linéaire, au genie
mécanique et au genie mécanique électrique. Et il s'e�orce de tirer des pro-
priétés non-linéaires essentielles, qui sont communes aux systèmes dynamiques
non-linéaires ayant le type particulier de dynamique couplée, quel que soit le
système mécanique ou le système électrique. Par exemple, le phénomène où
la fréquence varie avec l'amplitude des oscillations libres est courant pour une
structure mécanique [17] et des grands réseaux électriques [22]. Les résultats
présentés dans cette theèse peuvent être utilisés pour interpréter la dynamique
non-linéaire des autres systèmes.

• Du point de vue des recherches sur le système dynamique:

1. il a e�ectué l'analyse non linéaire sur l'oscillation libre ainsi que sur
l'oscillation forcée;

2. il s'e�orce de prendre l'analyse ainsi que le contrôle du système dy-
namique non-linéaire, qui relie l'écart entre l'analyse non-linéaire et le
contrôle non-linéaire. Il propose le contrôle non linéaire basé sur l'analyse
et le contrôle de la base de découplage.

• Du point de vue de l'application:

1. c'est la première fois que toutes les méthodes existantes des formulaires
normaux jusqu'au l'ordre 3 ont été résumées et que leurs performances
ont été évaluées;

2. c'est la première fois qu'une méthode des formes normales en forme de
modes normaux est appliquée pour étudier la stabilité transitoire du sys-
tème;

3. c'est la première fois que la modélisation mathématiques du système de
puissance dans la série Taylor est fournie;

4. c'est la première fois que les programmes génériques des méthodes des
formes normales présentées dans cette thèse sont partagés en ligne pour
faciliter les futurs chercheurs. Ces programmes sont applicables à des
systèmes à dimension arbitraire.
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Corps de la thèse

Cette thèse est composée de 6 chapitres:

• Chapitre 1 Dans ce chapitre, le sujet de cette dissertation est introduit avec
des exemples concrets, sans utilisant de mots di�ciles ou complexes pour fa-
ciliter la compréhension. Il commence à partir des concepts et de la théorie
classiques et bien connus. Ensuite, il utilise des mathématiques simples et
des exemples très concrets et réalistes pour montrer les limites des méth-
odes conventionnelles et introduit graduellement la problématique. Les ap-
proches dans la littérature sont examinée est pour expliquer la nécessité de
proposer de nouvelles méthodologies et ce qu'on peut attendre de cette nou-
velle méthodologie. Il explique également pourquoi il s'agit de la méthode
des formes normales qui devrait être utilisée, plutôt que d'autres méthodes
analytiques, telles que les méthodes de la série-modale et les méthodes Shaw-
Pierre. L'objectif, l'organisation et le positionnement du travail de doctorat
sont également indiqués.

• Chapitre 2 Dans ce chapitre, deux méthode sont proposées avec des pro-
grammes génériques qui sont applicables aux systèmes dynamiques avec des
dimensions arbitraires.

• Chapitre 3-4 Ce chapitre présente l'application des méthode proposée (méth-
ode 3-3-3 et méthode NNM) pour étudier les oscillations des modes interré-
gionaux et évaluer la stabilité transitoire grands réseaux électriques avec des
modélisation mathématiques sous forme de série Taylor jusqu'à l'ordre 3. Les
méthodes sont validée sur le réseau test étudié (réseau multimachines inter-
connecté).

• Chapitre 5 Ce chapitre tire des conclusions générales sur l'analyse de la
dynamique non-linéaire du systéme et se propose d'améliorer la performance
dynamique par deux approches:

1. le réglage des paramètres du contrôleur ou l'emplacement de PSS basée
sur l'analyse le modèle non-linéaire du système;

2. la commande des entraînements électriques utilisant des formes normales

Les recherches sont encore loin d'être �nalisées dans 3 trois sans, mais ils
identi�ent de problèmes intéressants qui peut devenir les sujets d'autres dis-
sertations.

•

• Chapitre 6 Les conclusions et perspectives sont présentées dans ce chapitre.



Chapter 1

Introductions

In this chapter, the topic of this dissertation is introduced with basic de�nition and

daily examples, without using di�cult or complex words to facilitate comprehension.

It introduces the problems and the conventional linear methods. Then it uses simple

mathematics and very concrete and realistic examples from the experimental tests

to show the limitations of the conventional methods and the call for nonlinear tools.

A state-of-art of nonlinear tools then explain the need to propose new methodologies

and what should be expected from this new methodology. It also explains why it is the

method of Normal Forms that should be used, rather than other analytical nonlinear

methods, such as the Modal Series Methods and Shaw-Pierre Methods. The objective,

organization and positioning of the PhD work is also stated.

Keywords: Power System Stability, Rotor Angle Stability, Small-signal
Stability, Transient Stability, Methods of Normal Forms, Modal Series
Methods
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1.1 General Context

1.1.1 Multiple Input System with Coupled Dynamics

High-performance industrial electromechanical systems are often composed of a col-
lection of interconnected subsystems working in collaboration, to increase the �exi-
bility and reliability. Several daily examples are shown in Fig. 1.1.

Fig. 1.1 (a) shows an interconnected power system composed of numerous wind-
turbine generators to capture the maximum wind energy and the generators are
electrically coupled. Since the wind energy captured by each generator varies drasti-
cally in a day, using a collection of generators can smooth the output power. Fig. 1.1
(b) shows a popular European project��more electric aircrafts� that involves more
and more electric motors in the aircrafts which are either electrically coupled or me-
chanically coupled. Those motors work in collaboration to increase the autonomy
of the aircrafts and the comfort of the �ight. Fig. 1.1 (c) shows a submarine that is
driven by multi-phase electrical drives where the phases are coupled magnetically.
When there is fault in one phase, the electrical drive can still work. Fig. 1.1 (d)
shows a electric vehicle where the drives are coupled energetically, to give higher
�exibility and reliability in driving.

• Interconnected renewable energy generators, Fig.1 (a)

• More electric aircrafts, Fig.1 (b)

• Multi-phase electrical drives, Fig.1 (c)

• Electric vehicles, Fig.1 (d)

(a) Wind Farm (b) More Electric Aircrafts
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(c)Submarine (d) Electric vehicles

Figure 1.1: Examples of Multiple-input with Coupled Dynamics

From the perspective of dynamical systems, those electromechanical systems can
be generalized as �multiple input system with coupled systems dynamics�, which
is omnipresent in all aspects of our daily life and the analysis and control of its
dynamic performance are of great concern.

1.1.2 Background and Collaborations of this PhD Research Work

This PhD research work based on two national laboratories, L2EP (Laboratoire
d'Electrotechnique et d'Electronique de Puissance de Lille) and LSIS-INSM (Lab-
oratoire des Sciences de l'Information et des Systèmes - Ingénierie Numérique des
Systèmes Mécaniques) in the campus of ENSAM in Lille. The director of this PhD
thesis is Xavier KESTELYN (L2EP) and the co-director is Olivier THOMAS(LSIS),
both of whom are professors at ENSAM-Lille. This PhD topic is multidisciplinary.
It is also a collaboration of people working in electrical and mechanical domains
and a collaboration between control and analysis. The common foundation is the
applied mathematics and the essential physical properties of system dynamics.

This PhD topic � �Analysis and Control of Nonlinear Multiple Input Systems with
Coupled dynamics� is proposed to solve the common problems encountered by L2EP
and LSIS. L2EP has performed a lot of nonlinear control practices in electrical
domain. LSIS-INSM has already accumulated a lot of expertise in nonlinear analysis
of �exible structures and experimental validation.

1.1.2.1 LSIS: Expertise in Normal Form Analysis of Mechanical Struc-
tures

An application of Normal Form Theory in structural analysis in mechanical domain
is to derive Nonlinear Normal Mode (NNM) for the speci�c case of vibratory systems
displaying a polynomial type of nonlinearities. NNM is a theoretical tool used to
reduce the �nite-degree system into single-degree while keeping the essential physical
property of the system and predict its behaviour under excitation.
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Nonlinear normal mode is to extend the notion of linear normal mode. In the linear
analysis, the system dynamics is a composition of independent modes, which are
named as normal modes. And the NNM proposed by Touzé are invariant modes. It
is invariant because when the motion is only initialized in one mode j, other modes
will keep zero, and the system dynamics are only contained in the mode j.

In the mechanical domain, it is used to reduce the model, and the system dynam-
ical behaviour can be characterized by a single NNM. Experiments show that a
single NNM based on NF predicts the correct type of nonlinearity (hardening/soft-
ening behaviour) [17], whereas single linear mode truncation may give erroneous
result. Another application is focused on how all the linear modal damping terms
are gathered together in order to de�ne a precise decay of energy onto the invariant
manifolds, also de�ned as nonlinear normal modes (NNMs) [18].

1.1.2.2 L2EP and EMR

L2EP is a Laboratory working on multiple input electrical system with coupled
dynamics. It has accumulated a lot of expertise in power system modelling and
analysis (though mainly based on the linear small signal analysis) [Team: Réseau];
and control of multiple input electrical system with coupled dynamics, such as the
electric vehicles, multiphase electrical machines [Team: Commande] and etc.

Although those researches proposed various methodologies to solve the practical
problems, most of their researches are based on the Energetic Macroscopic Repre-
sentation (EMR) and Inversion-Based Control (IBC) Strategy.

Proposed by Prof. Alain BOUSCAYROL, the leader of the control team of lab
L2EP, EMR contributes to modelling and control of multi-inputs system with highly
coupled dynamics.

EMR is a multi-physical graphical description based on the interaction principle
(systemic) and the causality principle (energy), by Prof. Alain BOUSCAYROL. It
highlights the relations between the subsystems as actions and reactions decided
by the inputs and outputs �owing between each other. It classi�es subsystems
into sources, accumulation,conversion and distribution elements by their energetic
functions. It uses blocks in di�erent colour and shapes to represent subsystems with
di�erent functions correspondingly.

A real system, having multiple inputs and strong energetic couplings, can be mod-
elled by a set of decoupled �ctitious single-input systems. The control structure,
which is deduced from the model, facilitates the control of stored energies, helps to
run the system in fault mode and makes it possible to use simple and easy-to-tune
controllers, since each of them is assigned to a unique objective.

The EMR classi�es the subsystems according to their energetic function in the sys-
tem dynamics into 4 categories: source, accumulation, conversion, and coupling.
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Source elements are terminal elements which deliver or receive energy; they are de-
picted by green oval pictographs, as in Fig. 1.2 (a). Accumulation elements store
energy, e.g. a capacitor, a �ywheel, an inductance, etc.; they are depicted by or-
ange rectangular pictogram with an oblique bar inside, Fig. 1.2 (b). Conversion
elements transform energy without accumulating it, e.g. an inverter, a lever, a gear-
box, etc.; they are depicted by an orange square for a mono-physical conversion, e.g.
electrical-electrical; or by an orange circle if the conversion is multi-physical, e.g.
electrical-mechanical; as shown in Fig. 1.2 (c). Finally, coupling elements allow dis-
tributing energy among subsystems; they are depicted by interleaved orange squares
for a mono-physical coupling and by interleaved orange circles for a multi-physical
coupling, see Fig. 1.2 (d).

Figure 1.2: EMR elements: (a) source, (b) accumulation, (c) conversion, and (d)
coupling

The objective of a control structure is to de�ne an adapted input so to produce the
expected output, see Fig. 1.3. In fact, the control has to express the tuning input
utun(t) as a function of the output set-point yref (t). In consequence, the control
can be de�ned as the inverse of the approximate behavior model describing the
relationships between the inputs and outputs.

The e�ectiveness of EMR and IBC has been proved through many practices of the
control team members.

Numerous applications of the proposed methodology have been experimented on
prototype test benches, which are equipped with electromechanical systems having
multiple inputs and having strong magnetic couplings (e.g multiphase synchronous
machines), electric couplings (e.g multi-leg voltage source inverters) and mechanical
couplings (e.g multi-actuated positioning gantry systems).

Previously, EMR and IBC are used for linear system, in this PhD research work, it
has been extended to the modelling and the control parts in developing methodology
to analyze and control the nonlinear system.
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Figure 1.3: Illustration of the Inversion-Based Control Strategy

1.1.2.3 International Collaboration from Japan and Mexico

This PhD research work has also gained international collaboration from Japan and
Mexico.

• Hiroyuki Amano, Japanese, Tokyo University, Tokyo, who �rstly proposed
Method 3-2-3S;

• Arturo Roman Messina, Mexican, Centre for Research and Advanced Studies
of the National Polytechnic Institute Mexico City, Mexico, who has achieve-
ments in the application of Method 2-2-1, Method 3-3-1

1.1.3 What has been achieved in this PhD research ?

In this PhD thesis, a systematic methodology for the general topic �Analysis and
Control of Nonlinear Multiple-Input System with Coupled Dynamics� has been pro-
posed, which casts insights on nonlinear dynamical behaviours of a large class of the
multiple-input systems, as shown in Fig. 1.1. This PhD research is multidisciplinary
and the proposed systematic methodology can analyze and control the nonlinear sys-
tems by simplifying the nonlinearities based on the normal form theory. In this PhD
dissertation, applications of the proposed methodology are presented on the nonlin-
ear modal interaction and stability assessment of interconnected power system.
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1.2 Introduction to the Analysis and Control of Dynam-

ics of Interconnected Power Systems

1.2.1 Why interconnecting power systems ?

The analysis of the dynamics of today's electric power systems is a challenging and
computationally intensive problem that exhibits many interesting and yet to be
explained phenomena.

This is due in part to the fact that individual electric utilities are no longer islands
of independent generation and control. The interconnections of large regions and
the heavy use of these interconnections present to the power system engineer with a
large, stressed, nonlinear system to analyse and operate. The physical indicators of
stress include the heavy loading of transmission lines, generators working to real or
reactive power limits, and the separation of generation and loads by long distances.

Interconnecting the power systems can optimize the exploit of energetic sources and
can provide us the electricity with :

• Better generation;

• Better transmission;

• Better distribution.

For example, nowadays, more and more renewable energy has been included in the
power grids. The energy is generated in remote sites and then transferred to the
urban areas through long transmission lines. Those energy sites are interconnected
with each others, as the super grid, which receives more and more attention in the
world, as shown in Fig. 1.4. Imagine that we can use the electricity generated in the

Figure 1.4: Super-grid� Transferring the Renewable Energy from Remote Sites to
the Cities

remote areas by the renewable energies in the North Europe, while we are in our
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comfortable home in France ! What's more, as shown in Fig. 1.4, an area bene�ts
from the electricity transferred from several electrical sites, therefore, to have a
better distribution and more secured electricity supply.

1.2.2 Why do we study the interconnected power system ?

• Its own value: studying the system dynamics of interconnected power system
can serve

• Its value as a reference to other systems:

1.2.3 The Questions to be Solved

To analyze and control the dynamic performance, it is to answer two questions:

• Q1: In the microscopic view: How system components interact

with each other ? � Modal Interaction

• Q2: In the macroscopic view: Will the system come to the

steady state ? � Stability Assessment

Q1 focuses on the details of the system dynamics, such as the source of oscillations
(oscillation is a motion that occurs often in system dynamics and normally harmful
for system operation). The answer to Q1 can aid us to damp the oscillations (or
even to use the oscillations in some cases).

Q2 focuses on the global tendency of the dynamical behaviour of the system. The
answer to Q2 can aid us to enhance the stability and to exploit the working capacity
of the system.

Normally, to study the system dynamics, there are both the numerical or experimen-
tal approach and the analytical approach. By the step-by-step numerical simulation
or the experimental measurements, we can observe the system dynamics such as
the waveforms of the oscillations, but we cannot identify the sources of the oscilla-
tions and predict the stability. And thereby we cannot develop the control strategy
to enhance the stability or damp the oscillations. Therefore, analytical analysis
tools based on the mathematical model are needed to give physical insights of the
oscillations.

If the system is linear or can be linearized, those two questions have been already
solved by small-signal (linear modal) analysis.

However, the nonlinearities and couplings in power system make the small-signal
(linear modal) analysis fails to study the system dynamics when the system work
in a bigger range. Where do the nonlinearities and couplings come from ? To
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understand the nonlinearities and couplings, we should �rst understand the principle
of electricity generation.

1.2.4 The Principle of Electricity Generation

The nonlinearities and couplings originate from the electricity generation. The elec-
tricity is generated due to the interaction between the stator magnetic �eld and the
rotor magnetic �eld. A generator is composed of stator and rotor. The stator is
composed of windings and the rotor is equivalent to a magnet. The currents induce
magnetic �elds, and the alternating currents in the stator windings induce a rotating
stator magnetic �eld. If we put the rotor (which is equivalent to a magnet) in the
stator magnetic �eld. The interaction between the stator magnetic �eld and rotor
magnetic �eld will generate electro-magnetic torque. The rotor is driven by the
electro-magnetic torque and the mechanical torque, therefore, the mechanical en-
ergy is converted into electricity (generator) or inversely (motor). Fig. 1.5 indicates
the interaction between the stator and rotor magnetic �elds.

Figure 1.5: The magnetic �eld of rotor and stator

where ~BS is the vector representing stator magnetic �eld and ~BR is the vector
reprenting rotor magnetic �eld. Therefore, the electrical power is a vector cross
product of the stator and rotor magnetic �eld as Eq. (1.1). If the angular displace-
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ment between the stator magnetic �eld and rotor magnetic �eld is de�ned as Rotor
Angle with the symbol �δ�. Then the electric power is a nonlinear function of δ, as
indicated by Eq. (1.1).


Pe = k ~BS × ~BR = kBSBRsin δ

δ̇ = ωsω

ω̇ = (Pm − Pe −Dω(ω − 1))/(2H)

(1.1)

To study the power dynamics, we focus on the dynamics of rotor angles. Next, we
illustrate the nonlinearities and couplings in the dynamics. To start, we introduce
our focus on the rotor angle dynamics and basic assumptions.

1.2.5 The Focus on the Rotor Angle Dynamics

If we connect the stator to the great grid (which is often modelled as the in�nite bus),
the electricity then can be transferred to the users. The power can be transferred
smoothly when the rotor angle is constant. However, when a disturbance occurs on
the transmission line, the rotor angle will have oscillations. And its dynamics are
shown in Fig. 1.7.

E′ 6 δ
V∞ = 16 0◦
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Figure 1.6: A Disturbance Occurs On the Transmission Line
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Figure 1.7: The Trajectory of Dynamics

As shown in Fig. 1.7, the disturbance will make the rotor leave the steady-state and
cause oscillations. It will then reach to a steady state or become unstable. What we
study �rst is the system dynamics after the fault is cleared, i.e the postdisturbance
stage. From the point view of study of dynamical systems, what we focus �rst is
the free-oscillation. In the Chapter 5, we talk about the system dynamics of forced
oscillations.

1.2.6 Assumptions to Study the Rotor Angle Dynamics in this
PhD dissertation

Several assumptions and simpli�cations are made in modelling the system dynamics
to study the rotor angle dynamics with acceptable complexity and accuracy.

1. Steady-State Operating Condition: in the steady state operating condi-
tion, we assume that all the state-variables keep constant or change periodi-
cally. Though power systems are in fact continually experiencing �uctuations
of small magnitudes, for assessing stability when subjected to a speci�ed dis-
turbance, it is usually valid to assume that the system is initially in a true
steady-state operating condition.

2. Disturbance: the disturbance occurs on the transmission lines, in the form
of three-phase short circuit fault. The fault is supposed to be cleared, with or
without the line tripped o�.

3. Voltage Stability: large volume capacitor is installed to avoid the voltage
collapse.

4. Frequency Stability: the generation and load are balanced to avoid the
frequency instability, the load is assumed as constant impedance during the
fault.

In the next two subsections, we will �rst introduce the linear analysis and to show
that linear analysis fails to study the system dynamics when there exists nonlin-
earities and couplings in power system dynamics. Based on which, we illustrate
the necessities to develop nonlinear analysis tools and why we choose methods of
Normal Forms.

1.3 A Brief Review of the Conventional Small-singal

(Linear Modal) Analysis and its Limitations

The system dynamics of rotor angle in the interconnected power system when there
is a disturbance in the transmission line are usually caracterized by oscillations.
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The numerical simulation tools such as EMTP, Maltab or the monitoring measure-
ments have been widely used to obtain a picture of the system dynamics, especially
the oscillations in the interconnected system. However, those tools fail to predict
the system dynamical behaviour and identify the sources of oscillations.

Small signal analysis is always an important tool in power system research to
study the modal interaction and to assess the stability.

To give the reader an idea of the small-signal analysis, Kundur's 4 machine 2 area
system is taken as an example of interconnected power systems, with a tie line power
�ow from Area 1 to Area 2, as shown in Fig. 1.8. All the generators are equipped
with exciters (Automatic Voltage Regulators, VARs) and large capacitance banks
to avoid voltage collapose.

Example Case 1

Figure 1.8: Kundur's 2 Area 4 Machine System

When there is a disturbance in Bus 7, all the generators as well as their exciters
are involved. For example, if there is a three-phase fault at bus 7 and cleared after
0.15s, oscillations can occur in the rotors of generators, shown by the black curve
in Fig. 1.9, coming from the time-domain step-by-step numerical simulation of the
validated demo pss_Power (no PSS is equipped). Data for the system and the
selected case are provided in the Appendix section.
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Figure 1.9: Example Case 1: Linear Small Signal Analysis Under Small Disturbance

Since the corresponding mathematical model is a set of high-dimensional nonlinear
di�erential equations, whose analytical solution is not available in most cases, a
common practice is to linearize this system around the equilibrium point and to use
the linearized model to approximate the system dynamics. This is the principle of
the conventional small-signal analysis, or linear small-signal analysis. With the lin-
earized system, the eigenvalue analysis can be computed. Each eigenvalue indicates
a mode of oscillation that the system can exhibit in the dynamics, and the system
dynamics is a superposition of those modes; local stability properties are given by
the eigenvalues of the linearized system at each equilibrium point.

A brief review is given here, starting by the dynamical system modeled as:

x = f(x) (1.2)

Linearizing (1.2), it leads:
4ẋ = A4x (1.3)

with A collects all the coe�cients of �rst-order terms in Taylor series: Aij = ∂fi
xj

and
apply the eigen analysis, which is started by the similarity transformation x = Uy,
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it leads to:
ẏj = λjyj (1.4)

λj = σj + jω is the jth eigenvalue of matrix A, U and V are the matrices of the
right and left eigenvectors of matrix A, respectively.

1.3.1 Small-Signal Stability

In the sense of small-signal stability, the stability of mode j can be predicted by σj
for j = 1, 2, · · · , n: if the sign of σj is negative, it is stable; if possitive, it is unstable.
And the stability margin is decided by the eigenvalue closet to the imaginary axis,
which is normally named as the critical eigenvalue. One method to improve the
system dynamic performance is to tune the controller parameter to obtain the best
critical values.

1.3.2 Participation Factor and Linear Modal Interaction

The eigenvectors transform the original system into jordan form, while the linear
part is decoupled into independent modes characterized as eigenvalues. Therefore
the eigenvectors contain the information that can be used to quantify the contribu-
tion of state-values to the modes. The contribution of k-th state variable to the i-th
mode can be quanti�ed as participation factor pki, which is de�ned as [1]:

pki = ukivik (1.5)

The matrix P with pki in the k-th row and i-th column is the participation matrix.
Normally, the column vectors of pki are scaled to have the largest element equals to
1 or are normalized to have a sum of 1 to provide more intuitive physical meanings.

The small-signal stability and the linear modal interaction are the fundamentals of
conventional small-signal analysis, by which the frequency of the oscillation and the
participation of state-variables keep to the modes can be identi�ed. Based on the
participation of state-variables keep, the oscillations fall into four broad categories,
which will help us to understand the complex dynamics in power system oscillations.

1. Local mode oscillations: these oscillations generally involve nearby power
plants in which coherent groups of machines within an area swing against
each other. The frequency of oscillations are in the range of 1 to 2 Hz. The
dominant state-variables keep are the rotor angle and rotor angular speeds of
nearby power plants.

2. Inter-area mode oscillations: these oscillations usually involve combina-
tions of many synchronous machines on one part of a power system swinging
against machines on another part of the system. Inter-area oscillations are
normally of a much lower frequency than local machine system oscillations in
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the range of 0.1 to 1 Hz. These modes normally have wide spread e�ects and
are di�cult to control;

3. Control modes oscillations: these oscillations are associated with generat-
ing units and other controls. Poorly tuned exciters, speed governors, HVDC
converters and static var compensators are the usual causes of instability of
these modes, the frequency is normally higher than 4 Hz;

4. Torsional modes oscillations: these oscillations are associated with the
turbine-generator shaft system rotational components. Instability of torsional
modes may be caused by interaction with excitation controls, speed governors,
HVDC controls and series-capacitor-compensated lines, the frequency is also
higher than 4 Hz.

Those modes of oscillations can be again illustrated by the example of Kundur's 2
area 4 machine system with the dynamics as shown in Fig. 1.9. The generators are
modelled using a two-axis fourth-order model and a thyristor exciter with a Transient
Gain Reduction. Loads L1 and L2 are modeled as constant impedances and no Power
System Stabilizer is used. The eigenvalues and eigenvectors are calculated by the
open source Matlab toolbox PSAT [23] v1.2.10, and all the oscillatory modes are
listed in Tab. 1.1.

Table 1.1: Oscillatory Modes: Example Case 1

Mode Eigenvalue Pseudo-Freq Damping Time Constant Dominant
# (Hz) Ratio (%) t = 1

ζωn
States

5,6 −4.04± j92.09 14.7 4.39 0.247 E
′
q1, E

′
q2, E

′
q3, E

′
q4

7,8 −6.53± j87.132 13.9 7.5 0.153 Control unit G2
9,10 −18.59± j61.621 10.2 28.9 0.054 Control unit (G3,G4)
11,12 −17.64± j63.67 10.5 26.7 0.057 Control unit G1(δ1, δ2, ω1, ω2)
13,14 −2.08± j6.74 1.12 29.5 0.481 Local, Area 2(δ3, δ3, ω4, ω4)
15,16 −2.39± j6.53 1.11 34.4 0.418 Local, Area 1(δ1, δ2, ω1, ω2)
17,18 −0.54± j2.83 0.45 18.7 1.85 Inter�area (δ1, δ2, δ3, δ4)

As observed from Tab. 1.1, the system dynamics may contain the local mode oscil-
lation, interarea mode oscillation, and control mode oscillation. By the small signal
analysis, it can be identi�ed that the system dynamics in Fig. 1.9 exhibit interarea
oscillations at the moment.

By small-signal analysis, the system dynamics can be predicted and quanti�ed with-
out performing the step-by-step time-domain numerical simulation. For example, it
can be deduced from the 2nd row in the Tab. 1.1 that, when there is disturbance in
the controller, such as the parameter variation, it will cause a control mode oscil-
lation at the frequency around 13.9Hz. By small-signal analysis, it can also found
out that the electromechanical oscillations (whose modes are dominated by the rotor
angle and rotor angular speed) are either local mode oscillations or interarea oscil-
lations. Among them, the interarea oscillation is a unique phenomenon presented
in interconnected power systems, leading to global problems and having widespread
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e�ects. Their characteristics are very complex and signi�cantly di�er from those of
local plant mode oscillations.

The eigenvalues and eigenvectors obtained by the linear small signal analysis can
provide quantitative results and have several applications as follows.

• Describing the system's response: The eigenvalues of the system, indicate
the decaying speed and frequencies that may be observed in the oscillations of
system variables. For a given initial condition, the linearized system's response
can be expressed in a closed form using the eigenvalues and eigenvectors of the
system. The eigenvalues are also a tool to analyse the stability of linearized
systems. Even the system dynamics can be very complex when several modes
are excited under disturbance, it can be approximated by the superposition of
the dynamics of several modes. Thus linear analysis completely describes the
linearized system's response with reduced complexity.

• Aiding in the location and design of controls: When it comes to inter-
connected power systems, one would like to �gure out the interactions between
the system components, which are often referred to as modal interactions in
some literatures. Moreover, although the number of inertial modes is equal
to the number of system states (2[n − l]), typically only a few modes domi-
nate the system response. Under stressed conditions, modes related to groups
of machines from di�erent regions begin to dominate. The participation and
dominance of some modes will in�uence the performance of controls, the infor-
mation being contained in the eigenvectors. The eigenvectors themselves have
been used to aid in location of controls [24], and various forms of participation
factors [25�27] (which are derived using the eigenvectors) have been used to
determine the e�ectiveness of controls on the system modes. This is referred
as modal analysis [1, 24�27], and control techniques such as observability and
controllability are well developed. Since 1980s, linear modal analysis has been
extensively applied to the power system participation factors and measures of
modal dominances and are used extensively to characterize linearized power
system behaviour.

1.3.3 Linear analysis fails to study the system dynamics when it
exhibits Nonlinear Dynamical Behavior

Although the linear analysis can provide answers to modal interaction and stability
assessment and therefore we can improve the system dynamic performance. How-
ever, it fails to study the system dynamics when it exhibits nonlinear dynamical
behavior. We can illustrate this using a SMIB system that has presented in the
previous sections.

When the disturbance is small, the oscillations are almost linear as shown in Fig. 1.10
and linear analysis can well approximate the system dynamics.
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Figure 1.10: Linear Oscillations after Small Disturbance

What happens if the disturbance is bigger ?

When the disturbance is bigger, as shown in Fig. 1.11, the oscillations are predom-
inantly nonlinear, which is unsymmetrical and the frequency doesn't coincide with
the imaginary part of the eigenvalue.

t(s)
0 0.5 1 1.5 2 2.5

δ
(r
a
d
)
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0

1

2

Exact Linear Equilibrium Point

Figure 1.11: Linear analysis fails to approximate the nonlinear dynamics

When the disturbance is even bigger, as shown in Fig. 1.12, the system dynamics
indicated by the black curve is unstable, while the linear analysis still predicts a
small-signal stability.

This is because that the electric power Pe is a nonlinear function of δ as Eq. 1.6.

Pe =
E′V0
X

sin δ (1.6)
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Figure 1.12: Linear analysis fails to predict the stability

When the disturbance is small : sin δ ≈ δ and 4ẋ = A4x. The system dynamics
can be studied by linear analysis. When the disturbance is bigger, the higher-order
terms in Taylor series should be taken into account.

1.3.4 How many nonlinear terms should be considered ?

If nonlinear terms should be kept, then, how many ?

Since Taylor's expansion of sin δ around the stable equilibrium point (SEP):δsep is :

sin δ = sin δsep + cos δsep(δ − δsep) (1.7)

− sin δsep
2

(δ − δsep)2 −
cos δsep

6
(δ − δsep)3 + · · ·

If we plot the power VS rotor angle in Fig. 1.13, we can observe :

• To exploit the power transfer, system has to work in the nonlinear region;

• System dynamics such as the stability should be accurately studied by con-
sidering Taylor series terms up to order 3.

1.3.5 Linear Analysis Fails to Predict the Nonlinear Modal Inter-
action

Linear small signal analysis is accurate in the neighborhood of the equilibrium, but
the size of this neighbourhood is not well de�ned. There is also evidence that the
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Figure 1.13: Di�erent Order Analysis and the Operational Region of the Power
System

nonlinear interactions of the inertial modes increase under stressed conditions [28].
With the emergence of the interarea mode and other problems not explained by
linear analysis, there is a need to extend the analysis to include at least some of
the e�ects of the nonlinearities. For example, when for a poorly damped case of the
Kundur's 2 area 4 machine system, the linear small-signal analysis fails to approxi-
mate the interarea oscillations, as shown in Fig. 1.14, and frequency of oscillations
do not corroborate with the results obtained by the linear small-signal analysis as
shown in Fig. 1.15.

Example Case 2

The interarea oscillations occur as two groups of generators, in di�erent regions, os-
cillate with respect to each other. Under a large disturbance (nonlinearities cannot
be ignored), interarea-mode response can be described as follows: initially following
the large disturbance, generators closed to the disturbance are accelerated; as the
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Figure 1.14: Example Case 2: Linear Small Signal Analysis of Stressed Power System
Under Large Disturbance
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transient continues, other generators, which may be far from the disturbance, also
become adversely a�ected. This system wide response involving a large number of
generators is in contrast with the more local response, involving only a few gener-
ators and typical of unstressed power systems. In addition, these interarea-mode
oscillations may cause cascaded instabilities that occur at some time after the initial
swing caused by the fault.

In a word, the interrearea oscillations are due to the interactions between the system
components. Understanding the interarea oscillations is to understand the interac-
tions between the system components which is of great signi�cance in optimizing the
operation of the whole system. As shown in Fig. 1.14, when the system is stressed,
the linear analysis fails to approximates the system dynamics. As observed from
Fig. 1.15, there are components at higher-order frequencies. And those higher-order
frequency components correspond to nonlinear modal interactions that fails to be
captured by linear small-signal analysis.

1.4 Reiteration of the Problems

1.4.1 Need for Nonlinear Analysis Tools

Therefore, considering the nonlinearities and couplings and in the power system,
the questions of Modal Interaction and Stability Assessment are essentially:

• Nonlinear Modal Interaction: how the system components interact with each
other nonlinearly ?

• Nonlinear Stability Assessment: how the nonlinearities in�uence the stability
of the system dynamics ?

Since the linear analysis fails to do

1.4.2 Perspective of Nonlinear Analysis

The answers needed to improve the system dynamic performance, i.e to develop the
metho

• Nonlinear Modal Interaction =⇒ Damp the oscillations;

• Nonlinear Stability Assessment =⇒ Enhance the system stability or increase
the power transfer limit.

To give the reader a clear idea of how the control strategy can be implemented, sev-
eral examples in the linear control are introduced and this PhD work will point that
how those applications can also be used to improve the system dynamic performance
when it works in the nonlinear region.
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1. Aiding in the location and design of controls.

2. Tuning Controller Parameters.

3. Optimizing the Power Transfer.

1.4.2.1 Aid in the Location and Design of Controls

When it comes to interconnected power systems, one would like to �gure out the
interactions between the system components, which is often referred as modal in-
teractions in some literatures. Moreover, although the number of inertial modes is
equal to the number of system states (2[N − l]), typically only a few modes dom-
inate the system response. Under stressed conditions, modes related to groups of
machines from di�erent regions begin to dominate. The participation and domi-
nance will in�uence the performance of controls. The information is contained in
the eigenvectors. The eigenvectors themselves have been used to aid in location of
controls [24], and various forms of participation factors [25�27] (which are derived
using the eigenvectors) have been used to determine the e�ectiveness of controls
on the system modes. This is referred as modal analysis [1, 25�27], and control
techniques such as observability and controllability are well developed. Since 1980s,
linear modal analysis has been extensively applied to power system participation
factors and measures of modal dominances, are used extensively to characterize
linearised power system behaviour.

1.4.2.2 Automatic Tuning Controller Parameters

Sensibility method based on the small-signal analysis make possible to automati-
cally tuning the controller parameters. The objective is to enhance the small-signal
stability. Numerous examples can be found. A recent example can be found in
the voltage source converters controlled by strategy of virtual synchronous machine
(VSM), where three controller loops are employed and the frequency domain design
(appropriate for a maximum number of 2 loops) [29].

1.4.2.3 Optimizing the Power Transfer

Once the power transfer limit of each generator can be �gured out, a global op-
timization of power transfer in the power grid is possible and we can obtain the
maximum economic bene�ts from the whole power grid.

The applications are not con�ned to the above examples.
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1.4.3 The Di�culties in Developing a Nonlinear Analysis Tool

As pointed out in Section 1.3.4, we should consider nonlinear terms in Taylor series
up to order 3 to be accurate enough. Therefore, for a N -dimensional system, the
nonlinear terms should be in the scale of N4. How to deal with such an enormous
quantity of nonlinear terms ?

1.5 A Solution: Methods of Normal Forms

Extending the small-signal analysis to the nonlinear domain by including the higher
order polynomial terms in Taylor series may lead to cumbersome computational
burden, since analytical results for nonlinear di�erential equations are not ensured.
And the strong couplings in the nonlinear terms make it di�cult to extract useful
informations about how the components interact with each other.

One solution is to simplify the nonlinear terms, to obtain �a simplest form� of the
system dynamics where system property is maintained with reduced complexity.
This �simplest form� is called as �the normal forms�, as �rstly proposed by Poincaré
in 1899. To solve the problem, the �rst step is to have the mathematical formulation
of the system dynamics as Fig. 1.8

ẋ = f(x,u) (1.8)

Doing the Taylor's expansion around the Stable Equilibrium Point (SEP):

4ẋ = A4x+ f2(4x2) + f3(4x3) (1.9)

If linear analysis uses a linear change of state variables (linear transformation) to
simplify the linear terms:

4̇x = A4x 4x=Uy
=====⇒ ẏj = λjyj (1.10)

As indicated by Fig. 1.16, if the system dynamics are nonlinear, after decoupling
the linear part, the system of equation is as Eq.(a) with decoupled linear part and
coupled nonlinear part. What if we add a nonlinear change of variables(nonlinear
transformation) as Eq.(b)? Will we obtain an equation with simplied nonlinearities
as Eq.(c) ?
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ẏj = λjyj + F2j(y2) + F3j(y3) + · · · (a)

żj = λjzj + simpler nonlinearities+ · · · (c)

y = z + h2(z2) + h3(z3) + · · · (b)

Figure 1.16: An idea: using nonlinear change of variables to simplify the nonlinear-
ities

The answer is YES. And it is answered by H. Poincaré in 1899 in his book �New
Methods of Celestial Mechanics�. And the equation of simplied nonlinearities is
called as �normal form�(des formes normales).

Poincaré introduced a mathematical technique for studying systems of nonlinear, dif-
ferential equations using their normal forms [30]. The method provides the means by
which a di�erential equation may be transformed into a simpler form (higher-order
terms are eliminated). It also provides the conditions under which the transforma-
tion is possible. Although the normal form of a vector �eld or di�erential equation
may be expressed using a number of forms, the polynomial form is selected because
of its natural relationship to the Taylor series. The polynomial normal form of a
system of equations contains a limited number of nonlinear terms, which are present
due to resonances of system eigenvalues. This normal form is obtained via a non-
linear change of variable (nonlinear transformation) performed on Taylor series of
the power system's nonlinear, di�erential equations. The nonlinear transformation
is derived by cancelling a maximum of nonlinearities in the normal forms.

Once the normal form is obtained, the quantitative measures can be used to answer
the modal interaction and assess the stability.

1.5.1 Several Remarkable Works on Methods of Normal Forms

During the last decades, there are several remarkable works on methods of normal
forms in both electrical engineering and mechanical engineering. Those methods
will be reviewed in this PhD dissertation.

Electrical Engineering:

Method 2-2-1 [Vittal et all, 1991] [28]; Method 3-3-1 [Martinez, 2004 [31];Huang,
2009 [32]]; Method 3-2-3S [Amano, 2006] [5].
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Figure 1.17: The People Working on Methods of Normal Forms

Mechanical Engineering : Method NNM [Jezequel et Lamarque,1991 [33]; Touzé et
Thomas, 2004 [17]]

1.5.2 Why choosing normal form methods ?

The existing analytical and statistical tools for nonlinear system dynamics are re-
viewed in this Section to show the previlege of methods of normal forms.

1.5.2.1 Modal Series Methods for Modal Interaction

Other methods, such as the Modal Series (MS) [34�36], and the Perturbation Tech-
nique (PT) [37] have been used to study the power system dynamic performance.
These papers have concluded that in the stressed power systems, the possibility of
nonlinear interactions is increased, and thereby the performance of power system
controllers will be deteriorated. As concluded in [37], the PT and MS method are
identical. And as concluded in [35, 38], the MS method exhibits some advantages
over the normal form method. Its validity region is independent of the modes res-
onance, does not require nonlinear transformation, and it can be easily applied on
large power systems, leading the MS method once more popular in recent years.

The principle of the MS method is to approximate the system dynamics by a non-
linear combination of linear modes: 1) all the higher-order terms are kept; 2) the
stability is predicted by the linear modes.

Therefore, the MS method 1) is not appropriate for nonlinear stability analysis; 2)
the complexity increases largely as the order of the nonlinear terms increase.
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1.5.2.2 Shaw-Pierre Method

Another method, Shaw-Pierre method, which originated from the center-manifold
theory, is popular in studying the nonlinear dynamics of mechanical systems [39].
In [40] nonlinear normal mode is formulated by SP method to study the nonlinear
dynamics of interconnected power system. However, the nonlinearities studied is
only up to 2nd order, and this approach itself has some drawbacks, making it only
applicable in very few cases.

Detailed discussion on MS method and on SP method with mathematical formula-
tion can be found in Chapter 2 (Section 2.3.9).

1.5.2.3 Methods for Transient Stability Assessment for Power Systems

Among all the methods, the direct methods arouse the biggest interest, since it pro-
vides the analytical results which quanti�es the stability margin. Direct Methods
These approaches are also referred to as the transient energy function (TEF) meth-
ods. The idea is to replace the numerical integration by stability criteria. The value
of a suitably designed Lyapunov function V is calculated at the instant of the last
switching in the system and compared to a previously determined critical value Vcr.
If V is smaller than Vcr, the postfault transient process is stable (Ribbens-Pavella
and Evans, 1985 [41]). In practice, there are still some unresolved problems and
drawbacks of this approach. The e�ciency of this method depends on the chosen
simpli�cations of the system variables keep. The integration of the fault on system
equations is needed to obtain the critical value for assessing stability. It is di�cult to
construct the appropriate Lyapunov function to re�ect the internal characteristics
of the system. The method is rigorous only when the operating point is within the
estimated stability region.

Probabilistic Method (Anderson and Bose, 1983 [42]) With these methods,
stability analysis is viewed as a probabilistic rather than a deterministic problem
because the disturbance factors (type and location of the fault) and the condition of
the system (loading and con�guration) are probabilistic in nature. Therefore, this
method attempts to determine the probability distributions for power system sta-
bility. It assesses the probability that the system remains stable should the speci�ed
disturbance occur. A large number of faults are considered at di�erent locations and
with di�erent clearing schemes. In order to have statistically meaningful results, a
large amount of computation time is required (Patton, 1974 [43]). Therefore, this
method is more appropriate for planning. Combined with pattern recognition tech-
niques, it may be of value for on-line application.

Expert System Methods (Akimoto, 1989 [44]) In this approach, the expert
knowledge is encoded in a rule-based program. An expert system is composed of
two parts: a knowledge base and a set of inference rules. Typically, the expertise
for the knowledge base is derived from operators with extensive experience on a
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particular system. Still, information obtained o�-line from stability analyses could
be used to supplement this knowledge.

The primary advantage of this approach is that it re�ects the actual operation of
power systems, which is largely heuristic based on experience. The obvious drawback
is that it has become increasingly di�cult to understand the limits of systems under
today's market conditions characterized by historically high numbers of transactions.

Database or Pattern Recognition Methods The goal of these methods is to
establish a functional relationship between the selected features and the location of
system state relative to the boundary of the region of stability (Patton, 1974 [43];
Hakim, 1992 [45]; Wehenkel, 1998 [46]). This method uses two stages to classify
the system security: (a) feature extraction and (b) classi�cation. The �rst stage
includes o�-line generation of a training set of stable and unstable operation states
and a space transformation process that reduces the high dimensionality of the initial
system description. The second stage is the determination of the classi�er function
(decision rule) using a training set of labeled patterns. This function is used to
classify the actual operating state for a given contingency. Typically, the classi�er
part of this approach is implemented using arti�cial neural networks (ANNs).

1.5.2.4 Limitations of the Above Methods

Although there are other methods that can provide analytical solution, they have
some limitations.

• Modal Series: nonlinearities are not simpli�ed;

• Shaw-Pierre Method: only for system with non-positive eigenvalues;

• Direct Methods based on Lyapunov theory and other existing methods for
TSA: only for stability assessment, not for nonlinear modal interaction.

1.5.2.5 Advantages of Methods of Normal Forms

• It keeps the concept of �modes� for a better understanding of nonlinear modal
interaction;

• It is for both stable and unstable system, for not only the nonlinear modal
interaction, but also stability assessment;

• The nonlinearities are simpli�ed in the mathematical model, which may con-
tribute to the control.
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1.6 A Brief Introduction to Methods of Normal Forms

The principle of methods of normal forms is to obtain the normal forms. The
procedures are shown in Fig. 1.18.

ẋ = f(x,u)
Original System
x is a vector of
state variables

4ẋ = A4x+ f2(4x2) + f3(4x3) + · · ·

Expansion by Taylor series

Perturbation
model

ẏj = λjyj + F2j(y2) + F3j(y3) + · · ·

Linear change of state-variables
4x = Uy

Linear decoupling
j = 1, 2, · · · , N
Linear Modes
with all Nonlin-
earities

żj = λjzj + gj2(z
2) + gj3(z

3)

Nonlinear change of state-variables
yj = zj +hj2(zkzl) +hj3(zpzqzr) + · · ·

Nonlinear Modes
with simpli�ed
nonlinearities

Figure 1.18: Procedures to Obtain the Normal Forms

The goal of methods of normal forms is to carefully choose the coe�cients of the
nonlinear transformation h2,h3,· · · , to simplify the nonlinearities in the normal form
as much as possible. The most ideal condition is that all the nonlinearities are
cancelled. However, nonlinear terms that satisfy the resonance must be kept. The
resonance occurs if the nonlinear term has a frequency equivalent to the frequency
of the dominant modes.

1.6.1 Resonant Terms

For the weakly damped modes, λj = σj + jωj , σj ≈ 0, the resonance occurs when
the terms have the same frequency of the dominant mode j,

∑N
k=1 ωk = ωj . For

mode j :

zkzl : ωj = ωk + ωl, ωj = 2ωk (2nd Order Resonance)

zpzqzr : ωj = ωp + ωq + ωr, ωj = 3ωk (3nd Order Resonance)

terms zkzl and zpzqzr are resonant terms.
In this PhD dissertation, the focus is not on resonant terms, and resonances are
avoided when selecting the case studies. However, there is a type of resonance that
cannot be avoided.
Special Case� trivially resonant terms
If there are conjugate pairs λ2k−1 = λ∗2k,ω2k−1+ω2k = 0. then ω2k+ω2k−1+ωj ≡ ωj
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For mode j, terms zjz2kz2k−1 are trivially resonant terms, which intrinsic and inde-
pendent of the oscillatory frequencies.
Trivially resonant terms must be kept

1.6.2 How can the methods of normal forms answer the questions
?

Normal forms = Linear mode + resonant terms:

żj = λjzj +
N∑

ωk,ωl

N∑
∈R2

gj2klzkzl +
N∑

ωp,ωq ,ωr

N∑
∈R3

gj3pqrzpzqzr (1.11)

• Stability Assessment of mode j can be indicated by λj , g
j
2, g

j
3

The system dynamics is to add a nonlinear combination of modes to the linear
modes:

yj = zj + hj2(zkzl) + hj3(zpzqzr) (1.12)

• Nonlinear Modal Interaction indicated by h2 and h3
Normal form is a simplest form with the most information !

1.6.3 Classi�cation of the Methods of Normal Forms

Di�erent methods of rnormal forms are proposed in the last decades to cater for
di�erent requirements. To make their di�erences obvious, we can classify and name
them by the order of Taylor series � order of nonlinear transformation � order of
nonlinear terms in normal forms � whether nonlinear terms in the normal forms are
simpli�ed (S) or not.

3rd order of Taylor series keeping all terms in normal forms

Fn hn gn S or /

order of Nonlinear transformation order of normal forms

1.7 Current Developments by Methods of Normal

Forms: Small-Signal Analysis taking into account

nonlinearities

Conventionally, the study of small-signal stability employs small-signal analysis
where the power system is not stressed and the disturbance is small. And assess-
ment of transient employs transient analysis where the power system experiences
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large disturbance. However, small-signal analysis are not isolated from the transient
analysis. For example, the interarea oscillations, which is a big concern in the small
signal analysis, is �rstly observed in the transient analysis (when there is a three
phase short circuit fault in the transmission line of the interconnected power sys-
tem, and cleared without tripping o� the line), but its property is studied by the
small-signal analysis. Also, as nowadays, the power system is a more stressed sys-
tem exhibiting predominantly nonlinear dynamics compared to before. When the
system experiences large disturbances, not only the transfer limits are concerned,
but also the sources and frequencies of oscillations should be studied. For this issue,
the small-signal analysis is more appropriate.
Therefore, in this PhD work, the small-signal stability is extended to the nonlin-
ear domain, to study the nonlinear oscillations in the interconnected power system
when the system experiences large disturbance (which is conventionally studied by
transient analysis).
Therefore, it essentially leads to:
• Small-signal analysis taking into account nonlinearities;

1.7.1 Inclusion of 2nd Order Terms and Application in Nonlinear
Modal Interaction

• Taylor Series: ẏj = λjyj + F2j(y2)

• Nonlinear Transformation: y = z + h2(z2)

• Normal Form: żj = λjzj

2nd order of Taylor series keeping all �rst-order terms in normal forms

2 2 1 /

2rd order Nonlinear transformation 1st order normal forms

Gradually established and advocated by investigators from Iowa State University in
the period 1996 to 2001 [6�15], it opens the era to apply 2nd Order Normal Forms
analysis in studying nonlinear dynamics in power system. Its e�ectiveness has been
shown in many examples [6,9�12,14,15,20,47] to approximate the stability boundary
[9], to investigate the strength of the interaction between oscillation modes [6,10,47];
to dealt with a control design [11,12]; to analyze a vulnerable region over parameter
space and resonance conditions [14, 15] and to optimally place the controllers [20].
This method is well summarized by [48] which demonstrated the importance of
nonlinear modal interactions in the dynamic response of a power system and the
ability of inclusion of 2nd order terms.
In all the referred researches, the general power-system natural response (linear or
nonlinear) is often considered to be a combination of the many natural modes of
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oscillation present in the system. The linear modes (eigenvalues) represent these
basic frequencies that appear in the motions of the system's machines. Even for
large disturbances when nonlinearities are signi�cant, the linear modes play an im-
portant role in determining the dynamic response of the machine variables. The
nonlinear e�ects should be considered as additions to the linear-modal picture, not
as replacements for it [10].
In another word, those referred researches mainly employ the information of 2nd
order modal interactions to better describe or improve the system dynamic per-
formance. This is the main advancement of method 2-2-1 compared to the linear
analysis.
For the stability, it predicts a small-signal stability as the linear analysis.

1.7.2 Inclusion of 3rd Order Terms

Later, the researchers found that inclusion of nonlinear terms only up to order 2
fails to explain some phenomenon. Therefore, explorations are done in inclusion of
3rd order terms in the small-signal analysis.

1.7.2.1 Method 3-3-1: to study the 3rd order modal interaction

• Taylor Series: ẏj = λjyj + F2j(y2) + F3j(y3)

• Nonlinear Transformation: y = z + h2(z2) + h3(z3)

• Normal Form: żj = λjzj + simpler nonlinearities
3rd order of Taylor series keeping all �rst-order terms in normal forms

3 3 1 /

3rd order Nonlinear transformation 1st order normal forms

The mathematical formulation of method 3-3-1 is �rstly proposed by Martínez in
2004 and then by Huang in 2009 [32] the nonlinear indexes are proposed to quantify
the 3rd order modal interaction.

1.7.2.2 Method 3-2-3S: to study the nonlinear stability

• Taylor Series: ẏj = λjyj + F2j(y2) + F3j(y3)

• Nonlinear Transformation: y = z + h2(z2) + h3(z3)

• Normal Form: żj = λjzj + trivially resonant terms for oscillatory modes
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3rd order of Taylor series 3rd order terms are simpli�ed in normal forms

3 2 3 S

2nd order Nonlinear transformation 3rd order normal forms

This method is proposed by H.Amano in 2007 [16]. It keeps the trivially resonant
terms in the normal forms to study the contribution of the nonlinearities to the
system stability. A nonlinear index called stability bound is proposed based on
the normal forms which serves as a criteria to tune the controller parameters to
improve the system dynamic performance.

1.7.3 What is needed ?

We need a method to include nonlinear terms up to order 3 to study both the
nonlinear modal interaction and nonlinear stability.

1.8 Objective and Ful�lment of this PhD Dissertation

1.8.1 Objective and the Task

The objective of this PhD research work can be spreci�ed as:
• Develop a systematic methodology to analyze and control nonlinear multiple-
input systems with coupled dynamics based on methods of normal forms up
to 3rd order;
• Apply the systematic methodology to study the nonlinear dynamical be-
haviour of interconnected power systems;
• Analyze the factors in�uencing the performance of the proposed methodology
and �gure out its limitations and the way to improve it, laying the foundation
for future researches.

The ful�lment of the objectives is composed of:
• Derivation of methods of normal forms (MNFs) up to order 3;
• Implementation of generic programs of MNFs applicable for dynamical systems
with arbitrary dimensions where;
• Mathematical modelling of interconnected power system in the form of Taylor
series up to 3rd order;
• Application of MNFs to study the inter-area oscillations and assess the tran-
sient stability of interconnected power system;
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1.9 A Brief Introduction to the Achievements of PhD

Work with A Simple Example

To give the reader a clear idea of the methods of normal forms and the proposed
method 3-3-3 and method NNM we use a concrete example to illustrate those meth-
ods.

1.9.1 An example of Two Machines Connected to the In�nite Bus

G1 δ1

G2 δ2

jX12
jXe

��ZZPe

In�nite Bus

E

Figure 1.19: A system of Two Machines that are Interconnected and Connected to
the In�nite Bus 

Pe1 = V1V2
X12

sin(δ1 − δ2) + V1V∞
Xe

Xe sin δ1
ω̇1 = (Pm1 − Pe1 −D(ω1 − 1))/(2H)

δ̇1 = ωs(ω1 − 1)

Pe2 = V1V2
X12

sin(δ2 − δ1) + V2V∞
Xe

Xe sin δ2
ω̇2 = (Pm2 − Pe2 −D(ω2 − 1))/(2H)

δ̇2 = ωs(ω2 − 1)

(1.13)

4 state-variables x = [δ1, δ2, ω1, ω2]

Taylor series around equilibrium point

4ẋ = A4x+ a2x
2 + a3x

3 (1.14)

Decoupling the linear part, it leads j = 1, 2, 3, 4

ẏj = λjyj +
4∑

k=1

4∑
l=1

ykyl +
4∑
p=1

4∑
q=1

4∑
r=1

ypyqyr (1.15)

It has at least 28 nonlinear terms, how to solve it ?

1.9.2 The proposed method 3-3-3

Adding a nonlinear transformation : yj = zj + hj2(z
2) + hj3(z

3)

Since the maximum number of conjugate pairs are two, λ1, λ2 and λ3, λ4.
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A total maximum of 8 nonlinear terms in the normal forms.

żj = λjzj + g3jj12zjz1z2 + g3jj34zjz3z4

Trivially resonant terms

(1.16)

3rd order of Taylor series 3rd order terms are simpli�ed in normal forms

3 2 3 S

2nd order Nonlinear transformation 3rd order normal forms

Figure 1.20: Meaning of the name of method 3-3-3

1.9.3 Theoretical Improvements of Method 3-3-3 Compared to ex-
isting methods

Tab. 1.2 lists the nonlinear transformations and the normal forms of each method.

Table 1.2: Theoretical Improvements of Method 3-3-3 Compared to existing methods

j=1,2 yj = zj + hj2(z
2) yj = zj + hj2(z

2) + hj3(z
3)

żj = λjzj method 2-2-1 method 3-3-1
żj = λjzj + gj3zjz1z2 method 3-2-3S method 3-3-3

+gj3zjz3z4

As observed from Tab. 1.2, only method 3-3-3 has both two characteristics as below:
• Method 3-3-3 is up to 3rd order;
• Trivially resonant terms are kept in method 3-3-3.

Having both the two characteristics render method 3-3-3 a better performance in
study of system dynamics compared to the existing methods.

1.9.4 Performance of Method 3-3-3 in Approximating the System
Dynamics Compared to the Existing Methods

As shown in Fig. 1.21, method 3-3-3 approximates best the system dynamics com-
pared to the existing methods.
By method 3-3-3 Nonlinear terms are reduced from 28 to 8, while keeping all non-
linear properties.
Therefore, we can say:
Method 3-3-3 accurately and largely simpli�es the system !
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Figure 1.21: Method 3-3-3 approximates best the system dynamics

1.9.5 The Proposed Method NNM

Other than method 3-3-3, another method is proposed, which deals with directly
of system modelled by second-order equations. It decouple a N -dimensional system
composed of coupled second-order oscillators into a series of second-order oscillators.
Its principle can be illustrated by EMR as following.
A N -dimensional system with coupled dynamics can be modelled by second-order
di�erential equations and represented as Fig. 1.22.

Figure 1.22: N-dimensional System modeled Second-order Di�erential Equations

If system dynamics are linear, it can be decoupled by a linear transformation as
shown in Fig. 1.23.
If system dynamics are nonlinear, it can be approximately decoupled by a nonlinear
transformation, as shown in Fig. 1.24.
By Method NNM, the nonlinear system dynamics can be decomposed into two
nonlinear modes, as shown in Fig. 1.25.
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Figure 1.23: Linear system dynamics can be decoupled by linear transformation.

Figure 1.24: Nonlinear system dynamics can be approximately decoupled by non-
linear transformation.

1.9.6 Applications of the Proposed Methods

In this PhD work, it has shown how method 3-3-3 and method NNM can be used
in nonlinear modal interaction and stability assessment. The method 3-3-3 can
quantify the 3rd order nonlinear modal interaction. And by taking into account the
trivially resonant terms, it provides a more accurate stability assessment by which
the transfer limit can be further exploited. The method NNM (a simpli�ed NNM)
has shown its ability to extract the nonlinear properties and predict the stability
limit.
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Figure 1.25: System dynamics are approximately decoupled into two modes.

1.10 Scienti�c Contribution of this PhD Research

In this PhD work, inclusion of 3rd order terms in small-signal analysis is made
possible by the proposed method of normal forms. The quanti�cation of 3rd order
modal interactions and nonlinear stability assessment is guaranteed by the proposed
nonlinear indexes based on normal forms. These points are detailed in Chapter 2
and Chapter 3.

1.10.1 Contribution to Small Signal Analysis

The increased stress in power system has brought about the need for a better un-
derstanding of nonlinearities in power-system dynamic behaviour. The higher-order
approximation of the system of equations contain signi�cantly more information
than the traditionally-used, linear approximation.
However, taking into higher-order terms is extremely complex due to couplings be-
tween the terms. It therein desires a methodology to simplify the analysis while
providing the most accurate result, leading to:

1. Analytical solution is needed to explain the qualitative properties;
2. Quantitative measures of interactions and nonlinear e�ects (e.g stability

boundary, amplitude-dependent frequency-shift) within the system compo-
nents are needed;

3. Stability analysis.
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1.10.2 Contribution to Transient Stability Assessment

For transient stability analysis, this PhD work studies on the power swing and
proposes a stability criterion, which is based on the .

1.10.3 Contribution to Nonlinear Control

As pointed out in the previous sections, the anaylsis of system dynamics can help us
�nd out the essentials of system physical properties. Once a clear picture of system
dynamics is obtained, control strategies can be proposed to improve the

1.10.4 Contribution to the Nonlinear Dynamical Systems

Power system dynamics is similar to dynamics of other interconnected system, and
has fundamental mathematical underpinnings.
Detailed mathematical models have been derived and concrete applications are
demonstrated to show the physical insights rendered by the proposed methodol-
ogy. Therefore, the signi�cance of this PhD dissertation is not con�ned in power
system stability analysis and control, but can also be used for multiple-input system
with di�erentiable nonlinearities in the mathematical model.

1.10.5 A Summary of the Scienti�c Contributions

To the author's knowledge, its scienti�c contributions can be summarized as:
• From the aspect of academic disciplines: this PhD research is multi-
discplinary, associated to applied mathematics, nonlinear dynamics, mechan-
ical engineering and electrical enigneering. And it endeavours to extract the
essential nonlinear properties, which are common for nonlinear dynamical sys-
tems having the particular type of coupled dynamics, whatever the mechan-
ical system or electrical system. For example, the phenomenon where the
frequency varies with the amplitude in free-oscillations is common for a me-
chanical structure [17] and interconnected power systems [22]. The results pre-
sented in this PhD research can be used to interpret the nonlinear dynamics
of other dynamical systems inside or out of the �eld of electrical engineering.
• From the aspect of researches on dynamical system:

1. It conducts the nonlinear analysis on both the free-oscillation and the
forced-oscillation;

2. It endeavours to take the analysis and control of nonlinear dynamical
system as a whole, which bridges the gap between nonlinear analysis and
nonlinear control. It proposes the analysis-based nonlinear control and
the decoupling basis control.

• From the aspect of application and implementation:
1. It is for the �rst time that all the existing methods of normal forms up to

3rd order in power system have been summarized and their performances
have been evaluated;
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2. It is for the �rst time that a real-form normal form method is applied to
study the transient stability of electric power system;

3. It is for the �rst time that the mathematical modelling of interconnected
Power System in Taylor series is provided, from which the origins of the
nonlinearities of the system are detected;

4. It is for the �rst time that the generic programs of the presented methods
of normal forms are shared on-line to facilitate the future researchers.
Those programs are applicable for systems with arbitrary dimensions.

• From the theoretical part:
• It summarizes the existing MNFs and propose methods of both vector �elds
and nonlinear normal modes;
• It deduces the normal forms under forced-oscillation and proposes the direction
to do the normal forms of the control system (see Chapter 5).

1.11 The Format of the Dissertation

This PhD dissertation is composed of 6 Chapters. In Chapter 2, a general introduc-
tion to Normal Form theory is made and two methods are proposed: a novel method
3-3-3 and method NNM. In Chapter 3, method 3-3-3 has been applied to study the
nonlinear modal interaction and to predict the nonlinear stability of the intercon-
nected power system. In Chapter 4, method NNM, which is Nonlinear Normal-Mode
based approach, is applied to study the transient stability analysis.
Chapter 6 concludes on the nonlinear analysis and points out two approaches to
do the nonlinear control: one is the nonlinear analysis based control, the other one
is the control on nonlinear model decoupling basis� nonlinear modal control. The
Chapter 6 contributes mainly in the study of dynamical system and Normal Form
theory.
To make this PhD dissertation as pedagogical as possible, each chapter has an
abstract in its front page.
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Chapter 2

The Methods of Normal Forms
and the Proposed Methodologies

This chapter is composed of 4 parts:

Part I: the Normal Form theory, with its basic de�nitions and general procedures to

derive the normal forms are introduced in Section 2.1 & 2.2;

Part II: 3rd order normal forms of vector �elds (method 3-3-3) in Section 2.3 and

its nonlinear indexes in Section 2.4;

Part III: 3rd order normal forms of nonlinear normal modes (method NNM) in

Section 2.5 and its nonlinear indexes in Section 2.6;

Part IV: Practical issues of implementing the methods of normal forms (MNF) are

dealt with in Section 2.8. The comparisons on vector �elds approach and normal

modes approach are conducted in Section 2.9.

Based on the Normal Forms and Normal Form transformation coe�cients, non-

linear indexes are proposed in Section 2.4 and Section 2.6, which can be used to

study the nonlinear modal interaction and to assess the nonlinear stability, as well

as predict and quantify the parameters' in�uences on the amplitude-dependent fre-

quency shift and the predominance of the nonlinearity in the system dynamics. The

programming procedures and computational techniques are also documented in Ap-

pendix. To explain why MNFs are chosen to develop the tools to analyse and control

the dynamical systems, the competitors� Modal Series (MS) method and Shaw-Pierre

(SP) method are reviewed with mathematical formulation in Sections 2.3.9, 2.5.9

and their limitations are pointed out.

This chapter lays the theoretical foundation of the applications presented in Chap-

ter 3 and Chapter 4. The proposed methodologies can also be generally applied to

multiple-input systems with nonlinear coupled dynamics. Unlike the previous liter-

atures focused on the bifurcation analysis, this chapter focuses on the analysis of

nonlinear modal interaction and nonlinear stability. All the nonlinear indexes are

at the �rst time proposed by this PhD work.

Keywords: Methods of Normal Forms, System of First-order Equations,
System of Second-order Equations, Nonlinear Indexes, Nonlinear Modal
Interaction, Nonlinear Stability Assessment
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2.1 General Introduction to NF Methods

The methods of normal forms can be applied to �nd out the �simplest form� of a
nonlinear system, making it possible to predict accurately the dynamic behaviour,
where a complete linearization will lose the nonlinear properties.

2.1.1 Normal Form Theory and Basic De�nitions

Normal form theory is a classical tool in the analysis of dynamical systems, and
general introductions can be found in many textbooks, see e.g. [30], mainly in the
mechanical domain. It is mainly applied in bifurcation analysis [49], to analyze
the qualitative in�uence of parameters on system properties. (Bifurcation analysis
comes from the phenomenon that the system properties may be totally di�erent
when there is a only small change of parameters at the point of bifurcation.)
It is based on Poincaré-Dulac theorem which provides a way of transformation of
a dynamical system into the simplest possible form, which is called �Normal Form�
(�formes normales� in French [50]). A normal form of a mathematical object, broadly
speaking, is a simpli�ed form of the object obtained by applying a transformation
(often a change of coordinates) that is considered to preserve the essential features
of the object. For instance, a matrix can be brought into Jordan normal form by
applying a similarity transformation. This PhD research focuses on Normal Form
for non-linear autonomous systems of di�erential equations (�rst-order equation on
vector �elds and second-order equations in form of modes) near an equilibrium point.
The starting point is a smooth system of di�erential equations with an equilibrium
(rest point) at the origin, expanded as a power series

ẋ = Ax+ a2(x) + a3(x) + · · · (2.1)

where x ∈ Rn or Cn, A is an n×n real or complex matrix, and aj(x) is a homogeneous
polynomial of degree j (for instance, a2(x) is quadratic). The expansion is taken to
some �nite order k and truncated there, or else is taken to in�nity but is treated
formally (the convergence or divergence of the series is ignored). The purpose is
to obtain an approximation to the (unknown) solution of the original system, that
will be valid over an extended range in time. The linear term Ax is assumed to be
already in the desired normal form, usually the Jordan or a real canonical form.

2.1.1.1 Normal Form Transformation

A transformation to new variables y is applied, which is referred to as Normal
Form Transformation, and has the form

x = y + h2(y) + h3(y) + · · · (2.2)

where hj is homogeneous of degree j. This transformation can also be done suc-
cessively, such x = y + h2(y), y = z + h3(z), z = w + h4(w) · · · to render the



2.1. General Introduction to NF Methods 61

same normal forms. Up to order 3, the coe�cients of one-step transformation and
sucessive transformation will be the same, a short proof is given as follows:

x = y + h2(y)

= z + h3(z) + h2(z + h3(z)) (2.3)

= [z + h2(z)] + h3(z) +Dh2(z)h3(z)

= z + h2(z) + h3(z) + (O)(4)

2.1.1.2 Normal Form

This results in a new system as, which is referred to asNormal Form in this thesis.

ẏ = λy + g2(y) + g3(y) + · · · , (2.4)

having the same general form as the original system. The goal is to make a careful
choice of the hj , so that the gj are �simpler� in some sense than the aj . �Simpler�
may mean only that some terms have been eliminated, but in the best cases one
hopes to achieve a system that has additional symmetries that were not present in
the original system. (If the normal form possesses a symmetry to all orders, then
the original system had a hidden approximate symmetry with transcendentally small
error.)

2.1.1.3 Resonant Terms

Resonant terms cannot be cancelled in Normal Form.
If (2.4) has N state-variables, and λj = σj + jωj for the , resonance occurs when∑N

k=1 ωk = ωj . For example, for the 2nd order and 3rd order resonance.

ωk + ωl − ωj = 0 (2nd Order Resonance)

ωp + ωq + ωr − ωj = 0 (3nd Order Resonance)

terms ykyl and ypyqyr are resonant terms.

2.1.1.4 Normal Dynamics

The solution to the Normal Form (2.4) is normal dynamics. By (2.2), we can
reconstruct the solution of x, i.e the original system dynamics.

2.1.1.5 Reconstruction of the System Dynamics from the Normal Dy-
namics

The system dynamics can be reconstructed from the normal dynamics by x =

h2(y) + h3(y) + · · · . This is a method to verify if the normal dynamics contain
the invariance property.
However, this is not an e�cient manner to use the Normal Forms. In the engineering
practice, indexes can be proposed based on the Normal Forms and Normal Form
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transformation to predict, interpret and quantify the system dynamics.

2.1.2 Damping and Applicability of Normal Form Theory

The normal forms are initially proposed for undamped system, i.e σj = 0. And the
resonant terms is de�ned if only σi = 0 [30, 50], the no- damped case. However, we
can still extend it to weakly-damped case as:

λj = −ξjωj ± jωj
√

1− ξ2j
≈ ±jωj − ξjωj +O(ξ2j ) (2.5)

(2.5) shows that the in�uence of damping on the oscillatory frequency is at least
a second-order e�ect. For computing the normal form, the general formalism can
be adopted, excepting that now the eigenvalues are complex number with real and
imaginary parts. Physical experiments in [19] proved that approximation of (2.5)
when ξ < 0.4. In fact, the oscillations of interest in electric power system is ξ ≤ 0.1,
therefore, Normal Form theory can be extended to study the dynamics of electric
power system.

2.1.3 Illustrative Examples

2.1.3.1 Linear System

In fact, the eigenvalue matrix is the simplest Normal Form. For a linear system, as
before

ẋ = Ax (2.6)

We can use x = Uy to simplify the equation into

y = Λy (2.7)

where Λ is a diagonal matrix, and the jth equation reads:

ẏj = λjyj (2.8)

This is the simplest form, and the Normal Dynamic of (2.8) y(t) = y0j e
λjt. There-

fore, transformation x = Uy renders the system in the simplest form: a linear
Normal Form.

2.1.3.2 Nonlinear System

Let us consider a dynamical system [19]:

Ẋ = sX + a2X
2 + a3X

3 + · · · = sX +
∑
p>1

apX
p (2.9)
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where X ∈ R (phase space of dimension n = 1). X = 0 is a hyperbolic point as
long as s 6= 0, otherwise a marginal case is at hand (bifurcation point).
Let us introduce a Normal Form transformation

X = Y + α2Y
2 (2.10)

where α2 is introduced in order to cancel the quadratic monom of the original system,
i.e. a2X

2 in (2.9). Here Y is the new variable, and the goal of the transformation
is to obtain a dynamical system for the new unknown Y that is simpler than the
original one. Di�erentiating (2.10) with respect to time and substituting in (2.9)
gives:

(1 + 2α2Y )Ẏ = sY + (sα2 + a2)Y
2 +O(Y 3) (2.11)

All the calculation are realized in the vicinity of the �xed point. One can multiply
both sides by:

(1 + 2α2Y )−1 =
+∞∑
p=0

(−2)pαp2Y
p (2.12)

Rearranging the terms by increasing orders �nally leads to as:

Ẏ = sY + (a2 − sα2)Y
2 +O(Y 3) (2.13)

From that equation, it appears clearly that the quadratic terms can be cancelled by
selecting:

α2 =
a2
s

(2.14)

which is possible as long as s 6= 0.
It leads to the Normal Form:

Ẏ = sY +O(Y 3) (2.15)

Compared to (2.9), (2.15) is simpler in the sense that the nonlinearity has been
repelled to order three. And the terms O(Y 3) arise from the cancellation of 2nd
order terms and the 3rd order terms of the original system. According to the speci�c
requirements, all the terms or some terms of O(Y 3) will be neglected. And it renders
a simpler form for which the analytical solution is available or numerical simulation
has less computational burden.
Continuing this process, it is possible to propel the nonlinearity to the fourth order.
The reader who is curious can be addressed to the reference [51], where Normal
Form of a dynamical system is deduced up to order 11.
However, the computational burden increases extraordinarily. Therefore, the Nor-
mal Form are always kept up to order 2 or order 3 in practice. And only 2nd Order
and 3rd Order Normal Form Transformation will be introduced and deduced in this
thesis for , for higher order Normal Form, interested readers may refer to some
references as [17,18,51] or deduce it by oneself similar to order 2 or order 3.
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2.2 General Derivations of Normal Forms for System

Containing Polynomial Nonlinearities

Although the methods of normal forms can be applied to system with di�erent
types of continuous and di�erentiable nonlinearities, its applications are primarily in
systems containing polynomial nonlinearities, or nonlinearities can be approximated
by polynomials after Taylor series expansion. In this PhD work, we focus on system
with polynomials up to order 3, and the proposed methodology can be extended to
system with higher-order polynomials.
In this section, the general derivations of normal forms up to order 3 will be deduced,
which lays the basis for the next two sections, where normal forms are derived for
two particular types of systems: system of �rst order di�erential equations on vector
�elds and system of second-order equations on modal space.

2.2.1 Introduction

If the system dynamics can be formalized as:

u̇ = Au+ εF2(u) + ε2F3(u) + ... (2.16)

where u and Fm are column vectors of length n, A is an n × n constant matrix,
and ε is a small nondimensional parameter, which is just a bookkeeping device
and set equal to unity in the �nal result. In this PhD dissertation, it functions as
bookkeeping device to separate terms into di�erent degrees. In the literature, the
normalization is usually carried out in terms of the degree of the polynomials in the
nonlinear terms [31,32,48]. However, some concepts are confused and befuddled in
their works [31,32]. By introducing the bookkeeping device ε, their mistakes can be
deviled.

2.2.2 Linear Transformation

A linear transformation u = Px is �rst introduced, where P is a non-singular or
invertible matrix, in (2.16) and it obtains:

P ẋ = APx+ εF2(Px) + ε2F3(Px) + · · · (2.17)

Multiplying (2.17) by P−1, the inverse of P , it reads:

ẋ = Λx+ εf2(x) + ε2f3(x) + · · · (2.18)

where
Λ = P−1AP and fm(x) = P−1Fm(Px)

To assure the accuracy of following transformation P should be chosen so that Λ

has a simple real form [30] or pure imaginary form [33]. If A is in complex-valued
form, extra procedures should be applied to separate the real parts and imaginary
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parts [33]. However, to make it as simple as possible, in the previous researches in
power system nonlinear analysis, A is always treated as pure imaginary even if it is
complex-valued and the researches focus on the oscillatory characteristics brought
by the complex conjugate pairs. However, as separating real parts and imaginary
parts is technically di�cult at present, the previous researches deduced the formula
in the assumption that A is in pure imaginary form. This will de�nitely lead to
unexpected errors when try to balance the right side and left side when deducing
the normal form transformation coe�cients. This issue associated to A has been
discussed deeply by the literature in mechanic domain, and will not be addressed
in this dissertation (Dumortier,1977 [52]; Guckenheimer and Holemes, 1983 [53]).
The practice of this PhD work, is to assume that A is pure imaginary (as assumed
in [31,32,48]), and pointed out the limitations.

2.2.3 General Normal Forms for Equations Containing Nonlinear-
ities in Multiple Degrees

In our analysis, both quadratic and cubic nonlinearities are concerned. It is proved
that a single transformation and successive transformations can produce the same
results both theoretically [30] and experimentally on power system [32] up to order
3.
Thus, instead of using a sequence of transformations, a single normal form transfor-
mation

x = y + εh2(y) + ε2h3(y) + · · ·+ εk−1hk(y) + · · · (2.19)

is introduced into (2.18) and it leads to the so-called normal form (2.20).

ẏ = Λy + εg2(y) + ε2g3(y) + · · ·+ εk−1gk(y) + · · · (2.20)

hm is chosen so that gm takes the simplest possible form. The minimum terms kept
in gm are the resonant terms. In the best case (no resonance occurs), gn is null and
(2.20) turns into ẏ = Λy whose solution is ready at hand. Otherwise, gn is referred
to as resonance and near-resonance terms.
Substituting (2.19) into (2.18) yields

[I+D(εh2(y)) +D(ε2h3(y)) + · · · ]ẏ (2.21)

=Λy + εΛh2(y) + ε2Λh3(y) + · · ·
+ εf2[y + εh2(y) + ε2h3(y) + · · · ]
+ ε2f3[y + εh2(y) + ε2h3(y) + · · · ] + · · ·

Where Taylor series can be applied

εk−1fk[y + εh2(y) + ε2h3(y) + · · · ] (2.22)

= εk−1fk(y) + εkDfk(y)h2(y) + εk+1Dfk(y)h3(y) + · · ·
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and

[I+D(εh2(y)) +D(ε2h3(y)) + · · · ]−1 (2.23)

= I−
[
D(εh2(y)) +D(ε2h3(y)) + · · ·

]
+
[
D(εh2(y)) +D(ε2h3(y)) + · · ·

]2
+ · · ·

Substituting (2.22) on the right side of (2.21), multiplying (2.23) on both two
sides of (2.21), and equating coe�cients of like powers of ε with the aid of (2.22),
it satis�es

ε0 : ẏ = Λy (2.24)

ε1 : g2(y) +Dh2(y)Λy − Λh2(y) = f2(y) (2.25)

ε2 : g3(y) +Dh3(y)Λy − Λh3(y) = f3(y) (2.26)

+Df2(y)h2(y)−Dh2(y)g2(y)

...

εk−1 : gk(y) +Dhk(y)Λy − Λhk(y) = fk−1(y) (2.27)

+

k∑
l=2

[Dfl(y)hk+1−l(y)−Dhl(y)gk+1−l(y)]

where terms
∑k

l=2[Dfl(y)hk+1−l(y)−Dhl(y)gk+1−l(y)] arise from the cancella-
tion of terms lower than order k. hm is chosen so that normal dynamics of y will be
in the simplest form. Normally, hm is chosen so that gm only contain the resonant
terms which cannot be cancelled by Normal Form transformations.
It is seen from (2.25) that the transformation at degree ε will add terms to degree ε2:
Df2(y)h2(y), Dh2(y)g2(y), which are important terms obviated in the previous
researches in deducing 3rd order normal forms [32,54].
We would like to remind the reader that it is the degree of nonlinearity rather than
the order of nonlinear terms that matters in the normal form transformation.1

2.2.4 Summary analysis of the di�erent methods reviewed and pro-
posed in the work

Based on Normal Form theory, di�erent Normal Form methods are developed, de-
pending on hn� the order of Normal Form Transformation, fn� the order of terms
in Taylor series, and gn�the order of the Normal Form. As some or all terms of n-th
order will be neglected in gn, it can be speci�ed as �Full (F)�, meaning that all the
terms are kept, and �Simpli�ed(S)�, meaning that some terms are neglected.
The methods proposed in this work can be compared on four features. Each method

1Note: we would like to notify the di�erence between the order of terms and the degrees of
nonlinearities, which is not always the same. For example, if a system of equations only contain
cubic nonlinear terms and no quadratic nonlinear terms, its degree of nonlinearity is ε, when
equating the cubic terms, it is (2.25) instead of (2.26) should be employed.



2.2. General Derivations of Normal Forms for System Containing
Polynomial Nonlinearities 67

is then labeled using three digits and one optional letter where:
1. The �rst digit gives the order of the Taylor expansion of the system's dynamic,

i.e the order of fn;
2. The second digit gives the order of the Normal Form transformation used, i.e,

the order of hn;
3. The third digit gives the order of the Normal Forms, i.e the order of g(n);
4. The optional letter indicates the fact that some terms have not been taken

into account in g(n) (S, for Simpli�ed)
In this chapter, Normal Forms are deduced by two approaches, the vector �eld ap-
proach for system of �rst-order equations, and the normal mode approach for system
of second-order equations. All the methods are listed in Tab. 2.1 and Tab. 2.1.
In this PhD dissertation, the vector �eld methods are labelled as 2-2-1, 3-2-3S and
etc. To avoid the ambiguity, the normal mode methods are labelled as LNM, NM2,
FNNM, NNM instead of 1-1-1, 2-2-1, 3-3-3 and 3-3-3S.
Tab. 2.1 lists of the four vector �eld Normal Forms methods proposed in this work.

Table 2.1: List of Existing and Proposed MNFs with Vector Fields Approach
Method Taylor NF Normal nth order Related Cited

series Trans. Form NF Terms Equation Reference
2-2-1 2nd order order 2 order 1 / (2.41) [48]
3-2-3S 3rd order order 2 order 3 S (2.56) [5, 16]
3-3-1 3rd order order 3 order 1 / (2.58) [31,32]
3-3-3 3rd order order 3 order 3 / (2.51)(2.52)

A summary of the existing and proposed normal modes approaches can be found
in Tab. 2.2. Since all those methods are the �rst time to be used in interconnected
power system, therefore all those methods are assessed in the Section 2.7 on inter-
connected VSCs to to give the reader a concrete example.

2.2.5 General Procedures of Applying the Method of Normal
Forms in Power System

As illustrated in the previous sections, the Normal Form theory is de�ned for equa-
tion ẋ = f(x), however, in the engineering, the x will be constrained by algebraic
equations, and normally the di�erential algebraic equations (DAEs) are formed. By

Table 2.2: List of Existing and Proposed MNFs with Normal Modes Approach
Method Taylor NF Normal nth order Related Cited

series Trans. Form NF Terms Equation Reference
LNM (1-1-1) 1st order order 1 order 1 / (2.92) [55]
NM2 (2-1-1) 2nd order order 2 order 1 / (2.105) [56]
FNNM (3-3-3) 3rd order order 3 order 3 / (2.123) [17,18]
NNM (3-3-3S) 3rd order order 3 order 3 S (2.126) [21,22]
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expanding the equation around the stable equilibrium point (SEP) into Taylor se-
ries and substituting by x− xSEP by 4x, a disturbance model can be formed as
4ẋ = A4x + Higher-order Terms. The DAE formalism will be discussed further
in Section 2.8.3.
The general procedures is well documented in [30, 51] and can be adapted to the
power system analysis consisting of eight major steps:

1. Building the di�erential algebraic equations (DAEs) of the power system� the
di�erential equations and the power �ow constraints;

2. Solving the power �ow to obtain the stable equilibrium point (SEP) for the
post-fault system, i.e the operating point;

3. Expanding the system of equations around the SEP into Taylor series up to
third-order;

4. Simplifying the linear part of the system by the use of a linear transformation;
5. Simplifying the non-resonant terms of higher-order terms by successive Normal

Form (NF) transformations.
6. Simplifying the Normal Forms by neglecting (if possible) some resonant terms

that can not be annihilated by NF transformations;
7. Reconstructing the original system's dynamic from the Normal Forms' dynam-

ics in order to determine the order of the Taylor series and the NF transfor-
mations to be selected according to the expected accuracy;

8. Using the chosen Normal Forms for dynamic and stability analysis.
Following the procedures above, the Normal Form formula are deduced in the next
sections. Those sections can be roughly divided into two parts. The �rst part is
dedicated to system represented by a set of �rst order equations, the second part is
dedicated to system represented by a set of second-order equations� the oscillators.

2.3 Derivations of the Normal Forms of Vector Fields for

System of First Order Equations

The vector �elds is a mapping where the dynamics of the system are characterized
by a set of �rst order dynamical equations.

2.3.1 Class of First-Order Equation that can be studied by Normal
Form methods

The class of systems that can be studied by MNF are usually modeled using Di�er-
ential Algebraic Equations (DAEs) [1]. By subsituting the algebraic equations into
the di�erential ones, one transforms those DAEs in a dynamical system, which can
be written:

ẋ = f(x,u), (2.28)

where x is the state-variables vector, u is the system's inputs vector and f is
a nonlinear vector �eld. Expanding this system in Taylor series around a stable
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equilibrium point (SEP), u = uSEP , x = xSEP , one obtains:

4ẋ = H1(4x) +
1

2!
H2(4x) +

1

3!
H3(4x) +O(4) (2.29)

where Hq gathers the qth-order partial derivatives of f . i.e., for j = 1, 2, · · · , n,
H1jk = ∂fj/∂xk, H2jkl =

[
∂2fj/∂xk∂xl

]
, H3jklm =

[
∂3fj/∂xk∂xl∂xm

]
and O(4) are

terms of order 4 and higher.

2.3.2 Step1:Simplifying the linear terms

The linear part of (2.29) is simpli�ed using its Jordan form:

ẏ = Λy + F2(y) + F3(y) + · · · (2.30)

supposed here to be diagonal, where the jth equation of (2.32) is:

ẏj = λjyj +
N∑
k=1

N∑
l=1

F2jklykyl +
N∑
p=1

N∑
q=1

N∑
r=1

F3jpqrypyqyr + · · · (2.31)

λj is the jth eigenvalue of matrixH1 , and j = 1, 2, · · · , n. U and V are the matri-
ces of the right and left eigenvectors of matrix H1, respectively: UV = I; F2j =
1
2

∑N
i=1 vji

[
UThj3U

]
. F3jpqr = 1

6

∑N
i=1 vji

∑N
k=1

∑N
k=1

∑N
m=1H3ikLNMu

l
pu
m
q u

N
r , vji

is the element at j-th row and i-th colomn of Matrix V . ulp is the element at the
p-th row and l-th column of matrix U .
The fundamentals of linear small-signal analysis uses the sign of the real parts σj
of the eigenvalues λj = σj + jωj to estimate the system stability. U is used to
indicate how each mode yj contribute to the state-variable x, and V indicates how
the state-variables of x are associated to each mode yj .

2.3.3 Step 2: Simplifying the nonlinear terms

After the linear transformation to decouple the linear part and obtain the Eigen
Matrix, the system equation reads:

y = Λy + F (y) (2.32)

Λ is the Eigen Matrix, and F (y) gathers the higher-order terms of Taylor series
after the linear transformation.

2.3.3.1 Method 2-2-1: Cancelling all the 2nd Order Terms

When only 2nd order terms are kept in the Taylor series of the system's dynamics,
(2.32) becomes:

ẏ = Λy + F2(y) (2.33)
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where the jth equation of (2.33) writes:

ẏj = λjyj +
N∑
k=1

N∑
l=1

F2jklykyl (2.34)

To eliminate the second-order terms in (2.33), the following second-order transfor-
mation is applied:

y = z + h2(z) (2.35)

The jth equation of (2.35) being:

yj = zj +
N∑
k=1

N∑
l=1

h2jklzkzl (2.36)

Applying (2.35) to (2.33), it leads to:

ż + ˙h2(z) = Λz + Λh2(z) + F2(z + h2(z)) (2.37)

ż(I +Dh2(z)) = Λz + Λh2(z) + F2(z) +DF2(z)h2(z) +HF2(z)(h2(z))2

ż = (I +Dh2(z))−1(Λz + Λh2(z) + F2(z) +DF2(z)h2(z) +HF2(z)(h2(z))2)

ż = (I −Dh2(z) + (Dh2(z))2 +O(3))(Λz + Λh2(z) + F2(z) +DF2(z)h2(z) +O(4))

Expanding the equation, it obtains:

ż = Λz (order 1)

− (Dh2(z)Λz − Λh2(z)− F2(z)) (order 2)

+Dh2(z)(Dh2(z)Λz − Λh2(z)− F2(z)) +DF2(z)h2(z) (order 3)

+ (Dh2(z))2(Λh2(z) + F2(z))−Dh2(z)DF2(z)h2(z) +O(4) (order 4)

+ (Dh2(z))2DF2(z)h2(z) (order 5)

and keeping terms up to the second order leads to:

ż = Λz −Dh2(z)Λz + Λh2(z) + F2(z) (2.38)

where Dh2 is the Jacobin matrix of h2. In order to eliminate the second-order terms
from (2.38), transformation (2.35) must satisfy the following equation:

Dh2(z)Λz − Λh2(z) = F2(z) (2.39)

If no internal resonance occurs, h2jkl is given by [48]:

h2jkl =
F2jkl

λk + λl − λj
(2.40)

Neglecting all terms with order superior to 2, the transformed equation is a set of
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decoupled �rst-order linear di�erential equations:

ż = Λz +DF2(z)h2(z) +O(4) (2.41)

= Λz +O(3)

= Λz

2.3.3.2 Method 3-2-3S: Keeping some third order terms

Although the second-order method gives a more accurate picture than the linear
small-signal analysis, keeping some third-order terms in the Normal Dynamics after
the 2nd-order Normal Form transformation can improve the stability analysis [5]
and serve as a new criteria to design the system controllers in order to improve the
transfer limit [16].
Keeping 3rd order terms in the Taylor series, the j-th state equation of (2.32)
becomes:

ẏj = λjyj +

N∑
k=1

N∑
l=1

F2jklykyl +

N∑
p=1

N∑
q=1

N∑
r=1

F3jpqrypyqyr (2.42)

Applying the 2nd Order NF transformation y = z + h2(z) to (2.42),it leads to:

ż + ˙h2(z) = Λz + Λh2(z) + F2(z + h2(z) (2.43)

ż(I +Dh2(z)) = Λz + Λh2(z) + F2(z) +DF2(z)h2(z) +HF2(z)(h2(z))2

ż = (I +Dh2(z))−1(Λz + Λh2(z) + F2(z) +DF2(z)h2(z)

+HF2(z)(h2(z))2 + F3(z) +DF3zh2(z))

ż = (I −Dh2(z) + (Dh2(z))2 +O(3))(Λz + Λh2(z) + F2(z)

+DF2(z)h2(z) + F3(z) +O(4))

Expanding (2.43), it leads:

ż = Λz (order 1)

− (Dh2(z)Λz − Λh2(z)− F2(z)) (order 2)

+Dh2(z)(Dh2(z)Λz − Λh2(z)− F2(z)) +DF2(z)h2(z) + F3(z) (order 3)

+ (Dh2(z))2(Λh2(z) + F2(z))−Dh2(z)F3(z)−Dh2(z)DF2(z)h2(z) +O(4)

(order 4)

+ (Dh2(z))2(DF2(z)h2(z) + F3(z)) (order 5)

As order 2 has been deleted by the 2nd NF transformation andDh2(z)Λz−Λh2(z)−
F2(z) = 0. keeping terms to order 3, (2.43) reduces to:

ż = Λz +DF2(z)h2(z) + F3(z) +O(4) (2.44)
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where:
• DF2(z)h2(z) are third order terms coming from the 2nd Order NF transfor-
mation used to cancel the 2nd order terms;
• F3(z) are the original 3rd order terms from the system (2.42).

For the jth variable, it reads:

żj =λjzj (2.45)

+

N∑
p=1

N∑
q=1

N∑
r=1

(
N∑
l=1

(F2jpl + F2jlp)h2pqr + F3jpqr

)
zpzqzr

=λjzj +
N∑
p=1

N∑
q=1

N∑
r=1

Cjpqrzpzqzr

where Cjpqr =
∑N

l=1(F2jpl + F2jlp)h2pqr + F3jpqr

2.3.3.3 Method 3-3-3: Elimination of a maximum of third-order terms

To simplify as much as possible the third order terms without neglecting important
terms as [16] did, the following third-order NF transformation can be applied to
(2.44) [31]:

z = w + h3(w) (2.46)

where h3 is a polynomial of w containing only 3rd-order terms. Applying transfor-
mation (2.46) to (2.44), it leads to:

ẇ + ˙h3(w) = Λw + Λh3(w) +DF2(w + h3(w))h2(w + h3(w)) + F3(w + h3(w))

(2.47)

ẇ(I +Dh3(w)) = Λw + Λh3(w) + (DF2(w)h2(w) +O(5)) + (F3(w) +O(5))

ẇ =(I +Dh3(w))−1(Λz + Λh3(w) +DF2(w)h2w + F3(w) +O(5))

ẇ =(I −Dh3(w) + (Dh3(w))2

+O(5))(Λw + Λh3(w) +DF2(w)h2(w) + F3(w) +O(5))

Expanding the equation, it obtains:

ẇ = Λw (order 1)

+DF2(w)h2(w) + Λh3(w)−Dh3(w)Λw + F3(w) (order 3)

−Dh3(w)(DF2(w)h2(w) + Λh3(w)−Dh3(w)Λw + F3(w)) +O(5)

(order 5)

and keeping only terms up to order 3, it leads to the Normal Dynamics:

ẇ =Λw +DF2(w)h2(w) (2.48)

+ Λh3(w)−Dh3(w)Λw + F3(w) +O(5)
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It should be emphasized that there are neither terms of order 2 nor terms of order
4 in (2.48), and that the terms of order 3 are:
• DF2(w)h2(w) that comes from the 2nd-order NF transformation used to
cancel the 2nd-order terms
• Λh3(w) −Dh3(w)Λw that comes from the use of transformation (2.46) in
order to cancel the 3rd-order terms
• F3(w), the original 3rd order terms of system (2.42).

For the j-th variable, (2.48) can be written as:

ẇj =λjwj

+

N∑
p=1

N∑
q=1

N∑
r=1

[Cjpqr − (λp + λq + λr − λj)h3jpqr]wpwqwr

+O(5) (2.49)

The next step is dedicated to the elimination of a maximum number of 3rd-order
terms. The elimination of third-order terms deserves careful attention because res-
onant terms are systematically present when the system exhibits undamped (or
weakly damped) oscillating modes (pairs of complex eigenvalues close the the real
axis). (2.49) shows that third order terms can not be eliminated if the condition
λp + λq + λr − λj ≈ 0 holds. If we consider a weak-damped oscillating mode, com-
posed of two conjugated poles λ2l and λ2l−1, the necessary condition for eliminating
the associated third-order term w2kw2lw2l−1 will not be met for j = 2k. Indeed, in
that case, λj = λ2k and the condition ω2l + ω2l−1 ≈ 0 holds leading to the impos-
sibility of computing the coe�cient h32k2k2l2l−1.As a consequence, term w2kw2lw2l−1
cannot then be eliminated and must be kept in the normal dynamics [51,57].
If we consider that the system possesses M weakly-damped oscillatory
modes, M third-order terms can thus not be eliminated from the Normal
Dynamics of the jth variable (j ∈ M). Apart from internal resonances due to
commensurability relationships between eigenvalues, as for example when ω1 = 3ω2,
ω1 = 2ω2 + ω3 or ω1 = ω2 + ω3 + ω4, all the other third-order terms are eliminated
by third-order transformation (2.46) where coe�cients h3jpqr are computed by:

h3jpqr =
F3jpqr +

∑N
l=1(F2jpl + F2jlp)h2pqr

λp + λq + λr − λj
(2.50)

The normal dynamics of a system composed ofM weakly-damped oscillatory modes
are then:

ẇj = λjwj +

M∑
l=1

cj2lwjw2lw2l−1 +O(5), 2k ∈M (2.51)

ẇj = λjwj +O(5), j /∈M (2.52)
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where w2l−1 is the complex conjugate of w2l, and coe�cients cj2l are de�ned as for
k 6= l :

cj=2k
2l =C2k

(2k)(2l)(2l−1) + C2k
(2k)(2l−1)(2l) + C2k

(2l)(2k)(2l−1)

+ C2k
(2l)(2l−1)(2k) + C2k

(2l−1)(2l)(2k) + C2k
(2l−1)(2k)(2l)

cj=2k
2k =C2k

(2k)(2k)(2k−1) + C2j
(2k)(2k−1)(2k) + C2k

(2k−1)(2k)(2k) (2.53)

cj=2k−1
2l =C2k−1

(2k−1)(2l)(2l−1) + C2k
(2k−1)(2l−1)(2l) + C2k−1

(2l)(2k−1)(2l−1)

+ C2k−1
(2l)(2l−1)(2k−1) + C2k

(2l−1)(2l)(2k−1) + C2k−1
(2l−1)(2k−1)(2l)

cj=2k−1
2k =C2k−1

(2k−1)(2k)(2k−1) + C2j
(2k)(2k−1)(2k−1) + C2k

(2k−1)(2k−1)(2k) (2.54)

(2.51) shows that considering third-order terms in the Normal Dynamic changes
the way of making the stability analysis. As shown in [5, 16], the third order terms
can have a stabilizing or a destabilizing e�ect and the inspection of the sign of the
eigenvalue real parts is not su�cient to predict the stability of the system.

2.3.4 Analysis of the Normal Dynamics using z variables

To evaluate the gain a�orded by the 3rd order method over the 2nd order method,
the Normal Dynamics (2.51) and (2.52) have to be reconstructed with the z coordi-
nates. The change of variables gives:

zj =wj +

N∑
p=1

N∑
q=1

N∑
r=1

h3jpqrwpwqwr, j /∈M (2.55)

It can be seen from this reconstruction that 3rd order terms are separated into two
sets, one set is wj whose stability is in�uenced be coe�cients c2k2l in 2.51 that can
be used for stability analysis [5,16] and the other set with coe�cients h32kpqr that can
be used to quantify the 3rd order modal interaction [32].
The most important issue of Normal Form methods is how they contribute to the
approximation of system dynamics, which will be compared with a brief introduction
of other works in the next Section 2.3.5.

2.3.5 Other Works Considering Third Order Terms � Summary of
all the Normal Form Methods

In [5] and [16], third-order terms are present in the Taylor series but only the
second-order transformation is used. Some 3rd order terms are kept on the Normal
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Dynamics and leads for the oscillatory modes to :

ż(j=2k) = λ2kz2k +
M∑
l=1

c2k2l z2kz2lz2l−1 +O(3), 2k ∈M (2.56)

where z2l−1 is the complex conjugate of z2l.
For non-oscillatory modes, the Normal Dynamics keeps the same as expressed by
(2.41). Compared to the proposed Normal Dynamics using the third order transfor-
mation, only terms with frequency ωm+n are involved in the zj=2k expression, and
3rd-order modal interaction can not be studied.
In [31] and [32], a 3rd order NF transformation is proposed where the terms
DF2(w)h2(w) of (2.48) are not taken into account, leading to coe�cients given
by:

h3jpqr =
F3jpqr

λp + λq + λr − λj
(2.57)

Since some 3rd order terms are omitted, the accuracy of the proposed normal dynam-
ics is worse than the one proposed by the dynamic deduced with using coe�cients
given by (2.50).
Moreover, the considered Normal Dynamics are:

ẇj = λjwj +O(3) (2.58)

and since all resonant terms in (2.58) are neglected, it fails to give more information
about the system stability than the linearized small-signal stability analysis.

2.3.6 Interpretation the Normal Form Methods by Reconstruction
of Normal Dynamics into System Dynamics

2.3.6.1 2-2-1 and 3-2-3S

The reconstruction for 2-2-1 and 3-2-3S is the same, as only the 2nd NF transfor-
mation is done.

y = z + h2(z) (2.59)

As indicated in [48], the initial condition of z and coe�cients h2jkl can be used
to develop nonlinear indexes to quantify the second-order modal interaction. The
application can be found in the placement of stabilizers [20].
For 2-2-1:

yj = zj︸︷︷︸
ωj

+

N∑
k=1

N∑
l=1

h2iklzkzl︸ ︷︷ ︸
ωk + ωl

+O(3) (2.60)

For 3-2-3S

yj = zj︸︷︷︸
ωj

+

N∑
k=1

N∑
l=1

h2jklzkzl︸ ︷︷ ︸
ωk + ωl

+O(3) (2.61)
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2.3.6.2 3-3-3 and 3-3-1

In fact successive transformation is equivalent to one-step transformation to the
same order. Transformation y = z + h2(z), z = w + h3(w), is equivalent to
y = w + h2(w) + h3(w). As:

y =Λw + h2(z) (2.62)

Λw + h3(w) + h2(w + h3(w))

=Λw + h3(w) + h2(w)

+Dh2(w)h3(w) +Hh2(w)(h3(w))2 + · · ·
=Λw + h2(w) + h3(w) +O(4)

Therefore the reconstruction can be simpli�ed as:

y = w + h2(w) + h3(w) (2.63)

For 3-3-1

yj = wj︸︷︷︸
ωj

+
N∑
k=1

N∑
l=1

h2jklwkwl︸ ︷︷ ︸
ωk + ωl

+
N∑
p=1

N∑
q=1

N∑
r=1

h3jpqrwpwqwr︸ ︷︷ ︸
ωp + ωq + ωr

(2.64)

For 3-3-3:

yj = wj︸︷︷︸
ωj

+

N∑
k=1

N∑
l=1

h2jklwkwl︸ ︷︷ ︸
ωk + ωl

+

N∑
p=1

N∑
q=1

N∑
r=1

h3jpqrwpwqwr︸ ︷︷ ︸
ωp + ωq + ωr

(2.65)

(2.65) indicates that for the oscillatory modes, the assumed �linear modes� will be
changed by cj2l. This violates the assumption in 2-2-1 and 3-3-1 that, taking into
nonlinearities by NF will just add nonlinear modes on the linear modes obtained by
the small signal analysis.
Stability and Higher-order Interaction
Method 3-2-3S can be used to suggest more information of system stability, both λj
and cj2l will contribute to the stability of oscillatory mode j ∈M and therefore the
stability of the whole system [5,16].
Method 3-3-1 can be used to quantify the 3rd order interaction (if the coe�cient
h3M has enough resolution) [32]
Method 3-3-3 can do both jobs: the stability analysis by c2k2l ; and the 3rd order modal
interaction by h3jpqr. The insight of physical properties of the system dynamics can
be exploited more deeply. And in both aspects, it has a resolution up to 5, while
both
Accuracy
Indicated by Eqs. (2.61), (2.64), the accuracy of both method 3-2-3s and 3-3-1 is
up to order 3 since some 3rd order terms are neglected in the Normal Dynamics.
And the method 3-3-3 is up to order 5.
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2.3.7 The signi�cance to do 3-3-3

The discussed methods for systems of �rst equations in this dissertation are: Linear,
2-2-1, 3-2-3S, 3-3-1, 3-3-3.
Their performances can be evaluated from three theoretical aspects.

1. Describing the power system dynamics with less computational burden com-
pared to the full numerical simulation.

2. Modal interaction: linear modal interaction and nonlinear modal interaction,
to see how the system components interact with each other, important for
placement of stabilizers.

3. Transient Stability analysis: to predict the stability of the power system, ex-
ploit the power transfer capacity and maximize the economical bene�ts.

Table 2.3: Performance Evaluation of the Reviewed and Proposed MNFs
Method Accuracy Order of Modal Transient Applicability to

Interaction Stability 3rd Order Modes
Linear O(2) 1st Linear None
2-2-1 O(3) 2nd Linear None
3-2-3S O(3) 2nd Non-linear Oscillatory
3-3-1 O(3) 3rd Linear Non-oscillatory
3-3-3 O(5) 3rd Non-linear All

2.3.8 Another Way to Derive the Normal Forms

In some literature [30,58],another way to deduce the NF transformation is presented,
though less rigorous in mathematics.
Instead of inverting (I +Dh2(z)) by (I +Dh2(z))−1 = I −Dh2(z) + (Dh2(z))2, it
takes:

(̇z + h2(z)) = ż +Dh2(z)ż = ż +Dh2(z)Λz (2.66)

Therefore, there is no need to inverse the nonlinear transformation. However, (2.66)
is wrong because it will cause error in the deducing Normal Forms higher than 2nd
order.

2.3.9 Comparison to the Modal Series Methods

Despite the Methods of Normal Forms (MNF), several other methods are used by the
researchers to study the nonlinear dynamics of interconnected power system, such
as Perturbation Techniques (PT) and Modal Series (MS) Methods (As concluded
in [37], the PT techniques and MS methods are identical). Having proposed by
Shanechi in 2003 [35], the 2nd MS method has declared a better method than
MNF [35,37,38,59,60] since it can suggest the closed form solution when resonance
occurs. The reader may have a question:
Why MNF, rather than MS is used to study the 3rd order nonlin-
earities?
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As it is di�cult to �nd a satisfying answer in the literatures, the author will answer
this question by deducing the 3rd order MS methods.

2.3.9.1 A Brief Review of the MS Methods

Let's start by a brief review of the MS methods. The princple of MS method is to
approximate the solution of the nonlinear di�erential equation by power series.
Let the solution of (2.42), for initial condition y0, be yj(y0, t). Let ψ denote the
convergence domain of Maclaurin expansion of yj(y0, t) in term of y0 for all t ∈
[0, T ] ⊂ R. µ ∈ Cn is the convergence domain of y when expanding the Taylor
series. If θ = µ∩ψ is nonempty, then the solution of (2.42) for y0 ∈ θ and for some
interval t ∈ [0, T ] ⊂ R is:

yj(t) = f1j (t) + f2j (t) + f3j (t) + · · · (2.67)

where the right hand side of (2.67) can be found by solving the following series of
di�erential equations with initial conditions, f1(0) = [f11 (0), f12 (0), · · · , f1N (0)]T =

y0 and fkj (0) = 0 for each j ∈ 1, 2, · · · , N .

ḟ1j = λjf
1
j (2.68)

ḟ2j = λjf
2
j +

N∑
k=1

N∑
l=1

Cjklf
1
kf

1
l (2.69)

ḟ3j = λjf
3
j +

N∑
k=1

N∑
l=1

Cjkl(f
1
kf

2
l + f2kf

1
l ) +

N∑
k=1

N∑
l=1

N∑
k=1

Dj
pqrf

1
p f

1
q f

1
r (2.70)

...

The solution of (2.68) can be easily found as:

f1j (t) = y0j e
λjt (2.71)

Substituting (2.71) into (2.69) reads:

ḟ2j = λjf
2
j +

N∑
k=1

N∑
l=1

Cjkly
0
ky

0
l e

(k+l)t (2.72)

By Multi-dimensional Laplace Transform,

f2j (s1, s2) =

N∑
k=1

N∑
l=1

Cjkl
1

s1 + s2 − λj
f1k (s1)f

1
l (s2) (2.73)
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the solution of f2j can be found as:

f2j =
N∑

k=1

N∑
l=1

Cjklf
1
k (0)f1l (0)Sjkl(t) (2.74)

=
N∑

k=1

N∑
l=1

Cjkly
0
ky

0
l S

j
kl(t)

where,

Sjkl(t) =
1

λk + λl − λj
(e(λk+λl)t − eλjt)

Sjkl(t) = teλjt, for (k, l, j) ∈ R2

and the set R2 contains all the 2nd order resonances.
As observed from (2.74), the solution of f2j is a polynomial series of e(λj)t, e(λk+λl)t.
Similarly, substituting (2.72) into (2.70), using three-dimensional Laplace transform:

f3j (s1, s2, s3) =
N∑

k=1

N∑
l=1

Cjkl
1

s1 + s2 + s3 − λj
(f2k (s1 + s2)f

1
l (s3) + f1k (s1)f

2
l (s2 + s3))+

(2.75)
N∑

k=1

N∑
l=1

N∑
r=1

Dj
pqr

1

s1 + s2 + s3 − λj
f1p (s1)f

1
q (s2)f

1
r (s3)

Substituting (2.73) into (2.75), it leads:

f3j (s1, s2, s3) =

N∑
k=1

N∑
l=1

Cjkl
1

s1 + s2 + s3 − λj

[
N∑

k=1

N∑
l=1

Cjkl
1

s1 + s2 − λj
f1k (s1)f

1
l (s2)

]
f1l (s3)

(2.76)

+ f1k (s1)

[
N∑

k=1

N∑
l=1

Cjkl
1

s1 + s2 − λj
f1k (s2)f

1
l (s3)

]

+
N∑

k=1

N∑
l=1

N∑
r=1

Dj
pqr

1

s1 + s2 + s3 − λj
f1p (s1)f

1
q (s2)f

1
r (s3)

As observed from the (2.72) and (2.75), the solution of f3j will be a polynomial series
of eλjt, e(λk+λl)t and e(λp+λq+λr)t.
Continuing the above procedures to order n, the solution of yj(t) is a polynomial
series of eλjt, e(λk+λl)t and eλp+λq+λr ,...e(λ1+λ2+···+λn)t.
As observed from the procedures above, it can be concluded that:

1. The solution is a linear combination of eλjt, e(λk+λl)t, e(λp+λq+λr)t,...; or, equiv-
alently speaking, it is a nonlinear combination of linear modes since the basic
component is e(λi)t with constant eigenvalue. Therefore, the nonlinearities will
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not change the decaying speed and oscillatory frequency of the fundamental
modes.

2. For each mode j, all the nonlinear terms are taken into account when solving
the equations, in the scale of (Cj)2.

3. Closed form results are always available.

2.3.9.2 Advantages and Disadvantages

Therefore, compared to MS method, the MNF is preferred since:
1. the MNF can take the minimum nonlinear terms while the MS method has

to keep all the nonlinear terms, since for N -dimensional system, the scalabil-
ity for 2nd order nonlinear terms is N3, and for 3rd order modal series N5

(N × dim(Cj)2), this makes the MS method nonapplicable for large-scale sys-
tem; while MNF is more capable for study of large-scale problem and can be
extended to take into account higher-order nonlinear terms;

2. the MNF can predict the system's behaviour without o�ering closed-form re-
sults, therefore, o�ering the closed form results when resonance occurs is not
a privilege of MS method;

3. the Normal Forms makes possible to assess the nonlinear stability, while the
MS methods only work on the convergence domain.

Though nonlinear indexes can be proposed without solving the modal series based
on Cjkl and Dj

kl and etc, they can only quantify the nonlinear modal interaction,
and cannot perform the nonlinear stability assessment.

2.4 Nonlinear Indexes Based on the 3rd order Normal

Forms of Vector Fields

The objective of NF methods is to quantify modal interaction and to predict the
system stability. To evaluate the gain obtained by the 3rd order method over the
2nd order method, normal dynamics (2.51) and (2.52) have to be reconstructed with
the z coordinates as:

zj = wj +
N∑
p=1

N∑
q=1

N∑
r=1

h3jpqrwpwqwr (2.77)

with |λj − λp − λq − λr| � 0.
It can be seen from the reconstruction that zj is separated into two sets; a �rst set
with coe�cients h3jpqr that can be used to quantify the 3rd order modal interactions
[32]; a second set is wj which may be in�uenced by cj2l that can be used for stability
analysis [5, 16].
Based on the Normal Forms and h3jpqr, c

j
2l, nonlinear indexes are proposed to quan-

tify the 3rd order modal interaction and nonlinear stability margin.
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2.4.1 3rd Order Modal Interaction Index

As observed from (2.55), the 3rd order oscillation is caused by h3jpqrwpwqwr. Then
the third order Modal Interaction index MI3jpqr can be de�ned as:

MI3jpqr =
|h3jpqrw0

pw
0
qw

0
r |

|w0
j |

(2.78)

which indicates the participation of 3rd order modal interaction with the frequency
ωp+ωq+ωr in the mode j. IntroducingMI3jpqr leads to a more clear picture of how
the system components interact with each other, and a more precise identi�cation of
the source of the oscillations. Those additional informations are crucial, especially
when some fundamental modal interaction, 2nd order modal interactions and 3rd
order modal interactions may exhibit the same oscillatory frequency (as indicated in
the Chapter 3, the 16 machine 5 area test system), and it is di�cult to identify the
order of modal interaction from the FFT analysis frequency spectrum, let alone to
identify the source of oscillation. NF analysis plays a role more than that of time-
domain simulation plus signal processing, in the sense that FFT can only identify
the oscillatory frequency of the frequency spectrum, while NF analysis can also
identify the source of oscillatory frequency.

2.4.2 Stability Index

Since the stability of oscillatory modes in (2.29) is consistent with (2.51) (2.52), the
stability can be assessed without performing the time-domain simulation assessment.
For the non-oscillatory modes, ẇj = λjwj , the stability is determined by λj . And
for the oscillatory modes j ∈M :

ẇj = λjwj +

M∑
l=1

cj2lwjw2lw2l−1, (2.79)

= (λj +
M∑
l=1

cj2l|w2l|2)wj

(2.80)

where |w2l| is the magnitude of w2l.
A stability interaction index can be de�ned as:

SIIj2l = cj2l|w
0
2l|2, j ∈M (2.81)

Since

λj +
M∑
l=1

cj2l|w2l|2 = σj + real(
M∑
l=1

SIIj2l) + j(ωj + imag(
M∑
l=1

SIIj2l)) (2.82)
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the real part of SII will contribute to the stability of the mode and the imaginary
part of SII will contribute to the fundamental frequency.

2.4.3 Nonlinear Modal Persistence Index

The nonlinear indexes proposed in the previous sections just indicate the nonlinear
interaction at the point when the disturbance is cleared. To quantify the 3rd order
modal interaction in the overall dynamics, a persistence index is de�ned to indicate
how long a nonlinear interaction will in�uence the dominant modes. Similar to (23),
(24) in [48], the Tr3 is the ratio of the time constants to the combination modes
and the dominant mode.

Tr3 =
Time constant for combination mode(λp + λq + λr)

Time constant for dominant mode(λj)
(2.83)

A small Tr3 indicates a signi�cant presence of the combination mode. For example,
if Tr3 = 1, it means that the nonlinear interactions decay at the same speed as the
dominant mode. if Tr3 is very large, it means that the in�uence of combination
mode (p, q, r) decays too quickly compared to the dominant mode. A relatively high
value of the product SII×Tr3,MI3×Tr3 tends to reveal a condition of persistent
modal interaction.

2.4.4 Stability Assessment

As indicated from (2.79), it is both the eigenvalues λj and the stability indexes
SIIj2l contribute to the system stability. However, λj will keep constant during
the system dynamics, while SIIj2l will decay as time goes by with time constant of
Tr3jj(2l−1)(2l). If the SII

j
2l is large, but SII

j
2l × Tr

j
j(2l)(2l−1) is small, the 3rd-order

terms may stabilize the system at the beginning, but leaves a long-term instability.
This will lead to a wrong stability assessment. Therefore, the time constant of
SIIj2l must be taken into account when assessing the overall stability; and an index
of stability assessment can be de�ned as:

SIj = σj +
M∑
l=1

Re(SIIj2l)× Tr
j
j(2l−1)(2l), j ∈M (2.84)

with σ coming from λj = σj + jωj . It immediately follows from this de�nition, that

{ SIj > 0, unstable
SIj < 0, stable

(2.85)

when SIj = 0 the system may stay in limit cycles, or switch between the stable and
the unstable phase. Di�erent cases should be discussed and further investigations
should be made.
Inversely, letting SIj ≥ 0, ∀j ∈M , a set of equation will be formed, with the stability
bound |wj |,∀j ∈M as the variables, solving this set of equation, the stability bound
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can be obtained.
Compared to [5], this proposed method is more accurate as: 1) it takes into account
the time pertinence; 2) it is appropriate to case where σj = 0.

2.5 Derivations of Normal Forms of Nonlinear Nor-

mal Modes for System of Second-Order Di�erential

Equations

In the previous section, derivation of normal forms for �rst-order equations has
been performed. A drawback of this method is that the state variables may have
complex form values in the normal form coordinates and lose the physical meanings.
For example, the displacement x is naturally a real form number, however, by the
normal form transformations, it may be in complex form, fails to direct correspond
to physical phenoma.
In this section, derivation of normal forms for second-order equations will be per-
formed. The normal forms for second-order equations have been found in nonlinear
structure analysis [17�19], and will be applied to transient analysis of power system
in Chapter 4.
This approach is mainly used to deduce the nonlinear normal modes in the mechan-
ical engineering, and it can be referred to as Normal Mode approach. Or, it can
also be referred to as normal mode approach, since in the normal transformations,
the state-variables always have real form values.

2.5.1 Class of Second-Order Equations that can be studied by
Methods of Normal Forms

The nonlinear electromechanical oscillations in interconnected power system can be
modeled as second-order coupled oscillators. If the variables of the power system,
around a given equilibrium point, are gathers in a N dimensional vector q, the basic
model under study writes:

Mq̈ +Dq̇ +Kq + fnl(q) = 0 (2.86)

In the above equation, M and D are constant symmetric inertia and damping
matrix, whose values depend on the physical parameters of the power system and
controller parameters. K and fnl indicate the coupling between the variables, where
K is a constant matrix, including the linear terms and fnl gathers the nonlinear
terms.
If fnl is developed in a Taylor series up to the third order, it comes:

fpnl(q) =
N∑

i=1,j≥i
f2pijqiqj +

N∑
i=1,j≥i,k≥j

f3pijkqiqjqk (2.87)
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where fpij and fpijk (i, j, k, p = 1 . . . N) are coe�cients of the quadratic and cubic
terms. Components of K and fnl depend on the chosen equilibrium point and the
system structure, for example, the network connectivity of the power grids.
It is seen that (2.86) is a N -dimensional nonlinear dynamical problem.

2.5.2 Linear Transformation

Viewed from (2.86), the dynamics physical property (oscillatory frequency, damp-
ing, friction, etc) is obscured by the mathematical model.
In order to decouple the equation into second-order oscillators, a linear transforma-
tion 4q(t) = Φx(t) can be used. To obtain Φ is to solve the following eigen-value
problem. (

KS − Ω2M
)
Φ = 0 (2.88)

where Ω2 is a diagonal matrix collecting the natural frequency of the oscillators.
After decoupling the linear terms, the system dynamics is therefore characterized
by a group of oscillators with coupled nonlinearities.

Ẍp+2ξpωpẊp + ω2
pXp (2.89)

+
N∑
i=1

N∑
j≥i

gpijXiXj +
N∑
i=1

N∑
j≥i

N∑
k≥j

hpijkXiXjXk = 0

where ξp is the p-th modal damping ratio. And gpij and h
p
ijk are quadratic and cubic

nonlinearities coming from decoupling of KS , which are given as:

[gp] =

N∑
i=1

Φ−1pi (ΦTKp
2SΦ)

Φ−1i MiΦ
[Φ−1MΦ]pp (2.90)

hpijk =

N∑
i=1

Φ−1pi (

N∑
P=1

N∑
Q=1

N∑
R=1

Kp
3SijkΦiPΦjQΦkR)/[Φ−1MΦ]pp (2.91)

Φpi is the element of p-th row and i-th column of matrix Φ.

2.5.3 Normal Modes and Nonlinear Normal Modes

Neglecting all the nonlinearities, the (2.89) reads a Linear Normal Mode (LNM):

Ẍp + 2ξpωpẊp + ω2
pXp = 0 (2.92)

The physical meaning and physical properties of normal mode :
• The basic particular solution of the motion of oscillations of system, and the
system dynamics is a combination of normal modes.
• The free motion described by the linear normal modes takes place at the �xed
frequencies. These �xed frequencies of the normal modes of a system are
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known as its natural frequencies;
• All the normal modes are orthogonal to each other, i.e, when the motion is
initialized at one normal mode, its motion will always contains in that mode.

The most general motion of a linear system is a superposition of its normal modes.
The modes are normal in the sense that they can move independently, that is to
say that an excitation of one mode will never cause motion of a di�erent mode.
In mathematical terms, normal modes are orthogonal to each other. By normal
modes, the complex system dynamics are decomposed into normal modes with �xed
frequency.
However, in oscillations with large amplitudes, the system dynamics are predomi-
nantly nonlinear where the theorem of supposition of normal modes fails and the
nonlinear property of system dynamics cannot be extracted from the normal modes.
In order to extend the physical insights of normal modes to nonlinear domain, the
concept of �nonlinear normal modes� are proposed [61, 62]. Rosenberg [61] �rstly
de�ne �nonlinear normal modes� as speci�c periodic solutions in which the modal
coordinates exhibit particular features. Using center manifold theory, Shaw and
Pierre [62] de�ne a NNM as an invariant manifold in phase space, tangent at the
origin to their linear counterpart. This de�nition is used in this PhD thesis. The
derivation of nonlinear normal modes by normal form theory are based the works
[17�19], which have been technically veri�ed within the mechanical context for an
assembly of nonlinear oscillators thanks to a real formulation of the normal form.

2.5.4 Second-Order Normal Form Transformation

Taking into account of the quadratic nonlinearities of (2.89), it reads:

Ẍp + 2ξpωpẊp + ω2
pXp +

N∑
i=1

N∑
j≥i

gpijXiXj = 0 (2.93)

which can be rewritten as:

Ẋp = Yp (2.94)

Ẏp = −2ξpωXp − ω2Xp −
N∑
i=1

N∑
j≥i

gpijXiXj (2.95)

(the mention: ∀p = 1 · · ·N will be omitted when not confusing).
The �rst step consists of de�ning a second-order polynom with 2N variables (N
pairs displacement-velocity). It is chosen tangent to the identity, and is written:

X = U + ε(a(U2) + b(V 2) + c(U,V ))

Y = V + ε(α(U2) + β(V 2) + γ(U,V ))

(2.96)
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where ε is a small nondimensional parameter, which is just a bookkeeping device to
equal the terms in the same degree in the normal form transformation. For example,
polynomial terms with ε are in the same polynomial degree, and polynomial terms
with ε2 indicate a higher polynomial degree.
∀p = 1 . . . N, Yp = Ẋp,then

Xp = Up +
N∑
i=1

N∑
j≥i

(apijUiUj + bpijViVj) +
N∑
i=1

N∑
j=1

cijUiVj

Yp = Vp +
N∑
i=1

N∑
j≥i

(αpijUiUj + βpijViVj) +
N∑
i=1

N∑
j=1

γijUiVj (2.97)

(Up, Vp) are the new variables. The polynoms (2.97) are written in this form to take
commuting and non-commuting terms into account.
The unknown of the problem are now the 2N2(2N + 1) coe�cients{
apij , b

p
ij , c

p
ij , α

p
ij , β

p
ij , γ

p
ij

}
. They are determined by introducing (2.97) to (2.93). This

generates terms of the form U̇iUj , V̇iVj , U̇iVj , which can be remedied by observing
that, at lower order:

U̇j = Vj +O(U2
i , V

2
i ) (2.98)

V̇j = −ω2
jUj +O(U2

i , V
2
i ) (2.99)

It therefore renders:

D(apijUiUj) = apijUiU̇j + apijU̇iUj = (apij + apji)UiVj +O(U3
i , V

3
i ) (2.100)

D(bpijViVj) = bpijViV̇j + bpij V̇iVj = −ω2
j (b

p
ij + bpji)UiVj

D(cpijUiVj) = cpijUiV̇j + cpijU̇iVj = −ω2
j c
p
ijUiUj + cpijViVj

D(αpijUiUj) = αpijUiU̇j + αpijU̇iUj = (αpij + αpji)UiVj + ViUj +O(U3
i , V

3
i )

D(βpijViVj) = βpijViV̇j + βpij V̇iVj = −ω2
j (β

p
ij + βpji)UiVj

D(γpijUiVj) = γpijUiV̇j + γpijU̇iVj = γpijUi(−ω
2
jUj) + γpijViVj

They are cumbersome for the identi�cation of the di�erent monomials, because
involving the derivative of a variable against time. This is remedied by observing
that, at lower order:
Letting Vp = U̇p,Equating the 2nd order terms, there is:

D(a+ b+ c) = α+ β + γ (2.101)

D(α+ β + γ) + 2ξωD(a+ b+ c) (2.102)

= −ω2(a+ b+ c)− g(U2)
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To degree ε1: 
Da(U2)− ω2Db(V 2) = γ (UV )

Dc(UV )V = α (U2)

Dc(UV )U = β (V 2)

(2.103)


Dα(U2)− ω2Dβ(V 2) = −2ξωDa(U2) + 2ξω3Db(V 2)− ω2c(UV ) (UV )

−ω2Dγ(UV )V = 2ξω3Dc(UV )V − ω2a(U2)− g(U2) (U2)

Dγ(UV )U = −ω2b(V 2)− 2ξωc(UV )U (V 2)

(2.104)
where Dc(UV )V indicates ∂c(UV )

∂V There are six equations with six variables, solv-

ing (2.103)(2.104),
{
apij , b

p
ij , c

p
ij , α

p
ij , β

p
ij , γ

p
ij

}
can be solved. The coe�cients are listed

in the Appendix for case where no resonance occurs. When there occurs internal
resonance occurs, i.e ωk + ωl 6= ωj , the corresponding second-order terms will be
kept in the normal forms, and corresponding coe�cients will be zero.
If all the 2nd-order terms can be cancelled, then the Normal Forms is:

Üp + 2ξpωpU̇p + ω2
pUp +O(3) = 0 (2.105)

with

O =
N∑
i=1

N∑
j≥1

N∑
k≥j

(Hp
ijk +Apijk)UiUjUk (2.106)

+
N∑
i=1

N∑
j≥i

N∑
k≥j

Bp
ijkUiU̇jU̇k +

N∑
i=1

N∑
j≥i

N∑
k≥j

CpijkU̇iUjUk

Apijk, Bp
ijk, Cpijk are coe�cients of terms DG(U)a(U), DG(U)b(U, V ) and

DG(U)c(V ), arising from the cancellation of 2nd order terms.

Apijk =

N∑
l≥i

gpila
l
jk +

∑
l≤i

gplia
l
jk (2.107)

Bp
ijk =

N∑
l≥i

gpilb
l
jk +

∑
l≤i

gplib
l
jk (2.108)

Cpijk =

N∑
l≥i

gpilc
l
jk +

∑
l≤i

gplic
l
jk (2.109)
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Therefore, by cancelling the quadratic nonlinearities and neglecting all the cubic
nonlinearities, the normal dynamics is obtained in the 2nd order normal mode
(2.105) is labelled as NM2.

2.5.5 Third-order Normal Form Transformation

However, when the disturbance is predominantly nonlinear, a second approximation
is not su�cient, O(3) can contain terms that contribute to the nonlinear stability
of the system dynamics. In Refs [17, 18, 21, 22] a 3rd order NF transformation
is proposed, by which the state-variables are transformed into Nonlinear Normal
Modes represented as RS.

U = R+ ε2(r(R3) + s(S3) + t(R2, S) + u(R,S2))

V = S + ε2(λ(R3) + µ(S3) + ν(R2, S) + ζ(R,S2))

(2.110)

Equating the terms at di�erent degrees by assuming Ṙ = S, Ṡ = −2ξωṘ− ω2R+

O(2), the expressions for the coe�cients can be obtained.
To cancel the 3rd order terms, there is:

D(r + s+ t+ u) = λ+ µ+ ν + ζ (2.111)

D(λ+ µ+ ν + ζ) + 2ξωD(r + s+ t+ u) (2.112)

= −ω2(r + s+ t+ u) +Dg(R2)(a+ b+ c)− h(R3)

To degree ε2: 

DrR − ω2Dus = ν (R2, S)

−ω2DsS + 2DtR = ζ (R,S2)

−ω2DtS = λ (R3)

DuR = µ (S3)

(2.113)



DλR − ω2DζS = −2ξω(DrR − ω2DuS − ω2t+Dg(R2)c (R2, S)

−ω2DµS +DvR = −2ξω(−ω2DsS +DtR)− ω2u+Dg(R2)b (R,S2)

−ω2DνS = −2ξω(−ω2DtS)− ω2r +Dg(R2)a− h(R)3 (R3)

DζR = −2ξω(−ω2DuR)− ω2s (S3)

(2.114)
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There are 8 coe�cients described by 8 di�erent equations, and the coe�cients can
be solved by symbolic programming with the coe�cients of trivially resonant terms
set as zero:

∀p = 1 · · ·N :

rpppp = spppp = tpppp = upppp = 0

λpppp = µpppp = νpppp = ζpppp = 0

∀j ≥ p · · ·N :

rppjj = sppjj = tpjpj = tppjj = uppjj = upjpj = 0

λppjj = µppjj = vppjj = vpjpj = ζppjj = ζpjpj = 0

∀i ≤ p :

rpiip = spiip = tpiip = tppii = upiip = uppii = 0

λpiip = µpiip = vpiip = vppii = ζpiip = ζppii = 0

(2.115)

The detailed calculation of the coe�cients and their values can be found in [18, 19]
and are listed in Appendix.

2.5.6 Eliminating the Maximum Nonlinear Terms

To eliminate the maximum nonlinear terms, the issue is to identify the resonant
terms.

2.5.6.1 Internal Resonance

Like the approach for systems of �rst order equations, all the terms can be eliminated
when there is no internal resonances between the eigenfrequencies of the system.
For example, order-two internal resonances reads, for arbitrary(p, i, j):

ωp = ωi + ωj , ωp = 2ωi (2.116)

while third-order (linked to cubic nonlinear coupling terms) writes, (p, i, j, k)

ωp = ωi + ωj ± ωk, ωp = 2ωi ± ωj , ωp = 3ωi (2.117)

There are also two characteristics of internal resonant terms: 1)dependent of the
oscillatory frequency;2)can be brought by either the quadratic terms or cubic terms
or both.
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2.5.6.2 Trivial Resonance Introduced by Conjugate Pairs

Indeed, if only one oscillator equation is considered, the one can always ful�ll the
following relationship between the two complex conjugate eigenvalues+iω,−iω.

+iω = +iω + iω − iω (2.118)

i.e a relationship of the form (2.89) with order p = 3. Coming back to the oscillator
equation, this means that the Du�ng equation:

Ẍ + ω2X + αX3 = 0 (2.119)

is under its normal form, the cubic terms (monom associated with the resonance
relation (2.118)) cannot be canceled through a nonlinear transform. On a physical
viewpoint, this stands as a good news. Indeed one of the most important observed
feature in nonlinear oscillations is the frequency dependence upon oscillation am-
plitude. If the system could be linearized, this would mean that the underlying
dynamics is linear, hence the frequency should not change with the amplitude. And
this will violate the well-established common-sense in mechanical dynamics that the
solution of (2.119) is X(t) = a cos(ωNLt+ φ) +O(a2)

Neglecting the trivially resonant terms, the proposed Normal Transform renders the
equations too simple to contain the basic characteristics of nonlinear dynamics, it
is useless.
In fact, the normal dynamics contain the trivially resonant terms which exist what-
ever the values of the frequencies of the studied structures are.
In the general case, whereN oscillator-equations are considered, numerous resonance
relationships of the form

+iωp = +iωp + iωk − iωk (2.120)

are possible, for arbitrary p, k ∈ [1, N ]2. This means that the original system can be
simpli�ed, but numerous terms will remain at the end of the process, in the normal
form, following Poincarè-Dulac theorem. However, as it will be shown next, this
e�ort is worthy as numerous important terms will be canceled and also because the
remaining terms can be easily interpreted.
The resonance relationships put forward through the (2.118), (2.119), (2.120) are
denoted as trivial and there are two characteristics: 1) independent of the values of
the frequencies of the studied oscillations; 2) only for the cubic terms.

2.5.6.3 Damping and Resonance

The internal resonance is �rstly de�ned for conservative oscillation, i.e ∀p =

1, 2, · · ·N, ξp = 0. However, they can be extended to case with viscous damping
as the oscillatory frequency writes [18,19]

λ±p = −ξpωp ± iωp
√

1− ξ2p (2.121)
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Besides the real part of (2.121) which controls the decay rate of energy along the
pth linear eigenspace, the imaginary part shows that the damping also have an e�ect
on the oscillation frequency. However, in the oscillatory case we study, the damping
ratio ξp is always very small compared to ωp, so that the assumption of a lightly
damped system could be considered. In that case, a �rst-order development of
(2.121) shows that:

λ±p = ±iωp − ξpωp +O(ξ2p) (2.122)

Therefore, the de�nition of internal resonance and trivial resonance relationship can
be extended to damped oscillators.

2.5.7 Invariance Property

Like the case of system of �rst-order equations, all the higher-order terms are ne-
glected in the previous researches [30] when no internal resonance occurs. And the
normal dynamics are depicted by linear di�erential equations. However, the non-
linear terms contain qualitative e�ect of the original nonlinear dynamics, such as
the amplitude-dependent frequency shift, which cannot be represented by the linear
equations. In fact, there exists resonant terms that cannot be neglected in normal
normals and an complete linearization is impossible.
In fact, the normal dynamics contain the trivially resonant terms which exist what-
ever the values of the frequencies of the studied structures are. By keeping the
trivially resonant terms, the invariance property is conserved.
If no internal resonances are present in the eigen spectrum, this nonlinear transfor-
mation weakens the couplings by shifting all the nonlinearities to the cubic terms,
The new dynamical system writes, for all p = 1, . . . N :

R̈p+2ξpωpṘp + ω2
pRp (2.123)

+ (hpppp +Apppp)R
3
p +Bp

pppRpṘ
2
p + CppppR

2
pṘp

+RpP(2)(Ri, Ṙj) + ṘpQ(2)(Ri, Ṙj) = 0

where P(2) and Q(2) are second order polynomials in Rj and Ṙj , j 6= p, j 6= p and
write:

P(2) =

N∑
j≥p

[
(hppjj +Appjj +Apjpj)R

2
j +Bp

pjjṘ
2
j + (Cppjj + Cpjpj)RjṘj

]
(2.124)

+
∑
i≤p

[
(hpiip +Apiip +Appii)R

2
i +Bp

piiṘ
2
i + (Cppii + Cpipi)RiṘi

]

Q(2) =

N∑
j≥p

(Bp
jpjRjṘj + CpjjpR

2
j ) +

N∑
i≤p

(Bp
iipRiṘi + CpiipR

2
i ) (2.125)

and the coe�cients (Apijk, B
p
ijk, C

p
ijk) arise from the cancellation of the quadratic
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terms [17, 18] and are de�ned in (2.109). This model can be called as full NNM
(FNNM).
Compared to (2.89), all the oscillators are invariants in the new dynamical FNNM
system (2.123).
Observed from (2.123), all the nonlinear terms can be classi�ed into two types: cross-
coupling nonlinearities (terms with P(2) and Q(2)) and self-coupling nonlinearities
(the other nonlinear terms with coe�cients: hpppp +Apppp, B

p
ppp, C

p
ppp).

If the dynamics is initiated on a given mode (say the p-th., Xj = ẋj = 0, ∀j 6= p at
t = 0), the system dynamics will only be in�uenced by this given mode, the system
oscillates as an invariant second-order oscillator . Equivalently speaking, in this
case, P(2) and Q(2) are null, leading to the property of invariance.
For the cases where several modes have non zero initial conditions, cross-coupling
nonlinearities are not zero. However, their e�ect on the dynamics can be weak com-
pared to the any self-coupling nonlinearities. Thus a series of decoupled subsystem
is obtained, which can be generally expressed as:

R̈p+2ξpωpṘp + ω2
pRp (2.126)

+ (hpppp +Apppp)R
3
p +Bp

pppRpṘ
2
p + CppppR

2
pṘp = 0

Model ((2.126)) is labelled as NNM, and can be viewed as a type of nonlinear normal
mode, as all the modes are decoupled and nonlinear . The solution of each mode
can be approximated by an analytical perturbation method.

2.5.8 One-Step Transformation of Coordinates from XY to RS

As indicated in Section 2.2, sequential transformations render the same results as
one-step transformation, therefore, once the coe�cients are calculated the normal
forms in RS coordinates can be obtained by:

Xp = Rp +

N∑
i=1

N∑
j≥i

(apijRiRj + bpijRiRj) +

N∑
i=1

N∑
j=1

cijRiSj

+
N∑
i=1

N∑
j≥i

N∑
k≥j

(rpijkRiRjRk + sNijkSiSjSk)

+

N∑
i=1

N∑
j≥i

N∑
k≥j

(tpijkSiRjRk + upijkSiSjRk)
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Yp = Sp +
N∑
i=1

N∑
j≥i

(αpijRiRj + βpijSiSj) +
2∑
i=1

2∑
j=1

γijRiSj

+

N∑
i=1

N∑
j≥i

N∑
k≥j

(λpijkRiRjRk + µpijkSiSjSk)

+
N∑
i=1

N∑
j≥i

N∑
k≥j

(νpijkSiRjRk + ζpijkSiSjRk) (2.127)

2.5.9 Comparison with Shaw-Pierre Method where Nonlinear Nor-
mal Modes are Formed

Another method to form nonlinear normal mode is the Shaw-Pierre method, �rstly
proposed by Shaw & Pierre [39] and applied in both structural analysis in mechanical
engineering [39] and power system analysis in electrical engineering [40].
This method originates from the master-slave coordinates transformation of the Cen-
ter Manifold method. However, it only works for slave-coordinates where Re(λs) < 0

i.e the linearized system must be stable.
Its principle is to reduce the N -dimensional nonlinear system with N variables x
into Nc dimensional systems with Nc variables xc. And the other Ns variables xs

expressed as static functions of xs = f(xc), Ns + Nc = N . With the SP method,
some dynamics of xs are lost.
To illustrate such a point, a simple example of a 2-dimensional nonlinear system is
presented [63]:  ẋ

ẏ

 =

 µ 0

0 −1


 x

y

+

 xy + cx3

bx2

 (2.128)

where the µ is a parameter dependent of the point at which the system dynamics
would be studied the �critical point�. For example, in power system dynamics, µ
depends on �operating point�.
If the critical point, critical state variable and stable coordinates are as:

µc = 0, xc = x, xs = y (2.129)

The equation of center manifold is y = h(x, µ), substituting it into ẏ = −y + bx2

and equating like power terms, it leads to:

y = bx2 + (|x, µ|3) (2.130)
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and (2.128) can be reduced into the bifurcation equation:

ẋ = µx+ (b+ c)x3 (2.131)

As observed from (2.131), the system dynamic is dominated by state-variable x,
and the dynamics of y is under the slave of x. Therefore, the coordinates of x is
also referred to as master coordinates, and y is also referred to as slave coordinates.
As observed in (2.131), the dynamics of y totally depend on the x. y is the passive
state-variables and x the active state-variables. (2.131) fails to study the case when

y is excited, or matrix

 µ 0

0 −1

 has positive eigenvalues.

Center manifold theorem has been successfully applied to bifurcation analysis [49]
where only a few of critical state-variables are concerned in the mechanical systems
[39]. However, in power system dynamic analysis, it is di�cult to decide which one is
the critical state-variable, as all state-variables can be excited simultaneously in some
scenario, and positive eigenvalue may exist even when the system is stable [5, 16].
Therefore, the SP method which originates from center-manifold method is not
applicable for a lot of cases. In [40], nonlinear normal modes are formed to study
the inter-area oscillations in power system when only one inter-area mode is excited,
however, in interconnected power systems, several inter-area modes can be excited
simultaneously even when only one system component is disturbed [64]. In those
cases, the center-manifold method is not that e�cient.

2.5.10 Possible Extension of the Normal Mode Approach

Compared to (2.29) from a mathematical view, some generalities are lost in (2.86),
for example, nonlinear couplings such as YiXj and YiYj are not considered. However,
the similar normal form transformations can be applied to deduce the normal forms.

2.5.11 A Summary of the Existing and Proposed MNFs Based on
Normal Mode Approaches

The reviewed and proposed normal-mode-based MNFs are summarized in Tab. 2.4,
which are assessed on an example of interconnected VSCs in Section 2.7.

2.6 Nonlinear Indexes Based on Nonlinear Normal

Modes

From the normal forms, several nonlinear properties can be extracted, such as the
amplitude-dependent frequency-shift [21,22] and the stability assessment.
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Table 2.4: A Summary of the Presented Normal-Mode-Based MNFs

Method Transformation Decoupled/Invariant Normal Dynamics Related Equation

LNM [55] linear decoupled linear (2.92)

NM2 [48] order 2 decoupled linear (2.105)

FNNM [18] order 3 invariant order 3 (2.123)

NNM ( [21,22] order 3 decoupled order 3 (2.126)

2.6.1 Amplitude Dependent Frequency-Shift of the Oscillatory
Modes

Rp(t) = Cpe
−σpt cos(ωnlp t+ ϕ) = a cos(ωnlp t+ ϕ) (2.132)

Where, the parameter Cp represents the amplitudes of the nonlinear oscillations
respectively, which is a function of the initial conditions R0

p, S
0
p [18]. And R0

p, S
0
p

satis�es X0
p = R0

p +R(3)(R0
i , S

0
i ), Y 0

p = S0
p + S(3)(R0

i , S
0
i ).

ωnlp is the damped natural frequency of the oscillation. Compared to the previous
research [40], it is not a constant value but amplitude-dependent, which reads,

ωnlp = ωp

(
1 +

3(Apppp + hpppp) + ω2
pB

p
ppp

8ω2
p

a2

)
(2.133)

The frequency-shift is an important property of the nonlinear dynamical system.
(2.132) (2.133) indicate how the nonlinear interactions between the state variables
brought by nonlinear couplings in�uence both the amplitude and frequency of the
Rp. Unlike the previous researches, where all the coupling terms are canceled after
normal from transformation, the NNM approach concentrates nonlinearities into
the self-coupling terms while weakens the cross-coupling terms. This simpli�es the
system while reserving the nonlinear essence to the maximum.

2.6.2 Stability Bound

On the stability bound, the amplitude of Rp reaches the maximum, and Ṙp = 0,
therefore, (2.126) reads:

R̈p = −ω2
pRp + (hpppp +Apppp)R

3
p

= −
[
ω2
p + (hpppp +Apppp)R

2
p

]
Rp (2.134)

Therefore, for the p-th mode, to ensure the stability the Rp should meet

ω2
p + (hpppp +Apppp)R

2
p ≥ 0 (2.135)
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with

Rp ≤

√
−

ω2
p

hpppp +Apppp
(2.136)

As Rp is the nonlinear projection of Xp in the Normal-Mode coordinate, we should
calculate the bound in the physical coordinate taking into account of the scaling of
the coordinates.
To predict the stability bound in the physical coordinate, the scaling problem in-
troduced by the nonlinear transformation should be considered.
Strictly speaking, the stability bound in XY coordinates is a nonlinear mapping of
that in RS coordinates.
Since there is no �an inverse nonlinear transformation�, a nonlinear factor is intro-
duced to facilitate the calculation, which is as follows.
Since, when only p-th mode is excited, Ri 6= 0, Rj 6= 0 when, i 6= 0, j 6= 0.

Xp = Rp +R3
p + apppR

2
p + rppppR

3
p (2.137)

The nonlinear can be calculated as Xp/Rp when assuming Rp = 1 which reads:

Knl =
Rp
Xp

=
1

1 + apppp + rpppp
(2.138)

Therefore, the proposed stability bound (PSB) can be de�ned as:

PSB = RpKnlΦ + qSEP (2.139)

2.6.3 Analysis of Nonlinear Interaction Based on Closed-form Re-
sults

The di�erence between the nonlinear approach and linear approach are demon-
strated in two aspects.
• Vibration amplitudes;
• Amplitude-dependent frequency-shift.

Thus, when analyzing the nonlinear interaction in the system, nonlinear index should
be de�ned both for vibration amplitude and vibration frequency. Compared to the
previous research, which assumes that there is no frequency-shift, the proposed
method is more accurate in predicting nonlinear dynamics.
Based on the work of [59, 65], the nonlinear index for vibration amplitude can be
de�ned as (2.140).

NIp =

√∑N
k=1

∑N
j=1

∣∣∣Rp0 + apijRi0Rj0 −Xp0

∣∣∣2
|Xp0|

(2.140)

Where Rp0, Xp0 is the initial value of LNM and NNM correspondingly, which can
be calculated algebraically.



2.7. The Performance of Method NNM Tested by Case Study 97

NIp can measure the biggest error caused by the linear approach to study the
nonlinear dynamics with respect to the nonlinear vibration amplitudes. In fact, the
de�nition of NIp is based on the assumption that the vibration frequency captured
by Xp and Rp is the same. Thus, when there is a big frequency-shift in the nonlinear
dynamics, NIp may lead to wrong predictions.
As the nonlinear frequency of each mode is indicated in (2.133) [18], the frequency-
shift index of each mode p is therefore de�ned, which writes:

FSp =
3(Apppp + hpppp) + ω2

pB
p
ppp

16πωp
(2.141)

If the cubic terms in (2.126) are neglected, it reads a �linear� equation, which
fails to capture the amplitude-dependent frequency-shift in nonlinear dynamics. In
the previous researches, the nonlinearities are truncated in the equations after the
normal form transformation [59,65], which is correct only when FSp is small.
The impacts of parameters on the nonlinear interaction can be studied analytically,
in avoidance of time-consuming and high-cost numerical simulations. When the
nonlinear indices are small, it means that linear analysis is not that far from being
accurate, whose technique is more mature and simple .

2.7 The Performance of Method NNM Tested by Case

Study

A small example of the interconnected VSCs is used to show the physical insights
brought by the NNM and the proposed nonlinear indexes.

2.7.1 Interconnected VSCs

The interconnection of power systems and injection of wind energy into the trans-
mission grid are realized by large capacity Voltage Source Converters (VSCs). The
proposed case study is composed of two VSCs, V SC1 and V SC2, which are inter-
connected by a short connection line with the reactance X12 and are both connected
to the transmission grid by long transmission lines with reactance X1, X2, as shown
in Fig. 2.1.
To study the nonlinear interactions of the power angle δ1, δ2 under disturbances, the
detailed mathematical model is �rst made, which consists of the physical structure
as well as the current, voltage and power loops. To design the power loop, since
the conventional PLL controller can cause synchronization problems when facing
connections using long transmission lines [66], the Virtual Synchronous Machine
(VSM) control strategy is adopted [29].
Linear stability analysis shows that this system works well under di�erent operating
points. However, when there is a large disturbance, the linear analysis tools fail to
o�er satisfying results.
The overall control is composed of three cascaded loops, where only the power loop
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Figure 2.1: The Interconnected VSCs

is considered since voltage and current loops dynamics decays to steady state rapidly
compared to the power loops. After reducing the model,the system can be expressed
as (2.142). The procedures to reduce the model and all the parameters can be found
in Appendix.

J1
d2δ1
dt2

+D1(δ̇1 − ωg) +
V1Vg
L1

sin δ1 + V1V2
L12

sin(δ1 − δ2) = P ∗1

J2
d2δ1
dt2

+D2(δ̇2 − ωg) +
V2Vg
L2

sin δ2 + V1V2
L12

sin(δ2 − δ1) = P ∗2

(2.142)

Where J1, D1, J2, D2 are the controller parameters of the power loop, δ1, δ2 are
the power angles, V1, V2 are the voltages, P ∗1 , P

∗
2 are the references values of the

power of the two VSCs. ωg is the angular frequency of the grid, and L1, L2 is the
impedance of the cable connecting VSC to the grid, and L12 is the impedance of
the transmission line connecting the two VSCs to each other. L1, L2 is very high
(0.7pu), leading a very big power angle of VSC to transfer the electricity. L12 is
very low due to high voltage of the transmission system, leading to strong coupling
between the two VSCs. When there is a large disturbance on one VSC, there will
be drastic nonlinear oscillations between the two VSCs.
Perturbing (2.142) around the stable equilibrium point (SEP) and applying the
transformations of coordinates, it reads in RS coordinates:
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R̈1 + 2ξ1ω1Ṙ1 + ω2
1R1 + (h1111 +A1

111)R3
1 +B1

111R1Ṙ1
2

+ C1
111R

2
1Ṙ1

+R1((A1
212 +A1

122 + h1122)R2
2 +B1

122Ṙ2
2

+ (C1
122 + C1

212)R2Ṙ2) + Ṙ1(B1
212R2Ṙ2 + C1

221R
2
2) = 0

R̈2 + 2ξ2ω2Ṙ2 + ω2
2R2 + (h2222 +A2

222)R3
2 +B2

222R2Ṙ2
2

+ C2
222R

2
2Ṙ2

+R2((A2
112 +A2

211 + h2112)R2
2 +B2

211Ṙ1
2

+ (C2
211 + C2

121)R1Ṙ1)) + Ṙ2(B2
112R1Ṙ2 + C2

112R
2
2) = 0

(2.143)

(2.143) appears longer on the page than (2.89), but it is much simpler in essence.
To analyze the relation between the two modes, we can rewrite the equation into
the form as (2.144), where Q̃2

p, P̃
2
p represent quadratic polynomials.

R̈1 + 2ξ1ω1Ṙ1 + ω2
1R1 + (h1

111 +A1
111)R

3
1 +B1

111R1Ṙ1
2
+ C1

111R
2
1Ṙ1 +R2P̃

(2)
1 (Ri, Ṙi) + Ṙ2Q̃

(2)
1 (Ri, Ṙi) = 0

R̈2 + 2ξ2ω2Ṙ2 + ω2
2R2 + (h2

222 +A2
222)R

3
2 +B2

222R2Ṙ2
2
+ C2

222R
2
2Ṙ2 +R1P̃

(2)
2 (Ri, Ṙi) + Ṙ1Q̃

(2)
2 (Ri, Ṙi) = 0

(2.144)

(2.144) highlights the couplings between R1 and R2. Although this equation still
has nonlinear coupling, it puts all the nonlinearities to cubic terms, and the strength
of coupling is largely reduced. What is more, when only one mode is excited, for
example R1 6= 0 but R2 = 0, Ṙ2 = 0, there will be no couplings.
This is shown in (2.145).

R̈1 + 2ξ1ω1Ṙ1 + ω2
1R1 + (h1111 +A1

111)R
3
1 +B1

111R1Ṙ1
2

+ C1
111R

2
1Ṙ1 = 0

(2.145)

Now the dynamic of the system will just exhibit vibration under one single mode.
The complex dynamics are decomposed. This is the invariance. In the (2.89), even
when X2 = 0, Ẋ2 at t = 0, the motion of X1 will de�nitely in�uence the value of
X2, Ẋ2,making it impossible to analyze and control X1, X2 independently.
Also, if we make some approximations when R1 6= 0, R2 6= 0,Equation ((2.143)) will
be:

R̈1 + 2ξ1ω1Ṙ1 + ω2
1R1 + (h1111 +A1

111)R
3
1 +B1

111R1Ṙ1
2

+ C1
111R

2
1Ṙ1 = 0

R̈2 + 2ξ2ω2Ṙ2 + ω2
2R2 + (h2222 +A2

222)R
3
2 +B2

222R2Ṙ2
2

+ C2
222R

2
2Ṙ2 = 0

(2.146)

Now, we can see that the system is decoupled. Although it has some quantitative
error compared to the original equation, it represents the nonlinear behavior of the
system with great accuracy and can be used to decompose the complex dynamics
for analysis and decouple the system for control.
The 2-dimension second-order problem is reduced to 1-dimension second-order prob-
lem. The complexity of the problem is largely reduced. We can solve these two inde-
pendent nonlinear equations by numerical integration with much lower complexity,
or perturbation methods to obtain analytical results of R1, R2. And then by (2.127),
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the system dynamics can be obtained.
Then, in our case, the dynamics of R1, R2can be studied independently and analyti-
cal results can be obtained by perturbation method. Thus the nonlinear behavior can
be predicted by the analytical results (discussed in Section 2.7.5) and the dynamics
are decomposed (Section 2.7.4) and it is possible to analyze the nonlinear in�uences
of parameters to suggest the analysis based control (discussed in Section 2.7.6 and
Chapter 6).

2.7.2 Analysis based on EMT Simulations

The proposed system is simulated using a EMT (Electromagnetic transient) soft-
ware. The test consists in experiencing at t = 0 a large disturbance in the power
angle of VSC2. Before the disturbance, the two VSCs are working under di�erent
operating points.
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Figure 2.2: Comparison of LNM and NNM models with the exact system (EX): Full
dynamics (left) and Detail (right)

The nonlinear dynamics of the system are shown in Fig. 2.2, where the Exact Model
(named EX and based on (2.86)) is compared to the LNM and NMM models. It
shows that the large disturbance imposed on only one VSC causes drastic power an-
gle oscillations in both VSCs. This shows the signi�cance of studying the nonlinear
oscillations caused by the interconnection of VSCs in weak grid conditions. More-
over, the NNM model match the exact model much more better than the LNM,
not only on the vibration amplitudes but also on the frequency shift due to the
nonlinearities.

2.7.3 Coupling E�ects and Nonlinearity

The accuracies of Model FNNM (2.123), NNM (2.126) and NM2 (2.105) to the exact
model are compared in Fig. 2.3 to study the coupling e�ect and nonlinear essence of
the studied system. It seen that NNM is almost as good as FNNM, convincing that
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Figure 2.3: The E�ect of the Cubic and Coupling Terms in the Nonlinear Modal
Model

the coupling can be neglected. The LNM cannot track the nonlinear dynamics,
because the cubic terms are neglected, which are responsible of the amplitude-
dependent frequency-shifts [17]. The present NNM method appears very accurate
and keep the advantage of linear normal modes as it approximately decomposes the
dynamics into independent (nonlinear) oscillators.

2.7.4 Mode Decomposition and Reconstruction

As NNM method makes possible to model the nonlinear dynamics by decomposing
the model into two independent nonlinear modes R1, R2 whose nonlinear dynamics
are described by (2.126), the complex dynamics can be viewed as two independent
modes. Fig. 2.4 shows those two modes projected on the generalized coordinates
δ1 and δ2. As with linear modes that decompose a N -dimensional linear system
into a linear sum of 1-dimensional linear systems, nonlinear modes make possible
to decompose a N -dimensional nonlinear system into a nonlinear sum of nonlinear
1-dimensional nonlinear system.

2.7.5 Amplitude-dependent Frequency-shift

Another important characteristic in nonlinear dynamics is the amplitude-dependent
frequency-shift, shown in Fig. 2.2, not captured by Model LNM and NM2, nor even
by FFT analysis. The natural frequencies of the two linear modes (X1, X2) are
extracted as ω1 = 11.4rad/s, ω2 = 137.4rad/s at the equilibrium point. There is
slight frequency-shift in the mode frequency according to the vibration amplitudes.
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Figure 2.4: Mode Decomposition: An Approximate Decoupling of Nonlinear System

Based on (2.133), it can be predicted that if nonlinear modal frequency ω2 is almost
constant, frequency ω1 experiences variations around 1 rad/s, as shown by Fig. 2.5.

2.7.6 Analytical Investigation on the Parameters

In our case, the nonlinear interaction is mainly determined by the reactances of
transmission and connection lines. It is seen from Fig. 2.6 that the reactances
of transmission lines X1, X2 mainly in�uence the nonlinear vibration amplitudes.
While the reactance of connection line is more responsible for the frequency-shift of
the modes, shown in Fig. 2.7.
Furthermore, it is also seen from Fig. 2.6 that Mode − 1 is more sensitive to the
reactance of the transmission lines than Mode − 2. This corresponds to the fact
shown in Fig. 2.4 that the vibration amplitude is decided by Mode− 1.
It is seen from Fig. 2.7 thatNIp keeps aLNMost constant, while Mode−2 shows great
variance in the frequency-shift indicated by FS2. When only NIp is considered, this
characteristic cannot be captured and this will lead to great error.

2.7.6.1 Veri�cation by EMT

The predictions of nonlinear dynamics by nonlinear indices are veri�ed by the EMT
simulation. Both the dynamics and errors are plotted out, shown in Fig. 2.8 and
Fig. 2.9. To make the plots more clear and with the limitation of space, the dynamics
are just shown for an interval 0.2s, while the errors are plotted out in a longer
interval: 1s, to give more information in comparing the performance of nonlinear
analysis and its linear counterpart.
Plots in Fig. 2.8 and Fig. 2.9 verify the predictions made by the nonlinear indexes.
As NIp indicates, the performance of linear analysis in cases of X12 = 0.001 and
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Figure 2.8: Dynamics Veri�ed by EMT, when X12 keeps 0.01



2.7. The Performance of Method NNM Tested by Case Study 105

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

δ
1
(r
a
d
)

Dynamics

 

 

EX
NNM
LNM

0 0.05 0.1 0.15 0.2
−1

0

1

2

t(s)

δ
2
(r
a
d
)

 

 

(a) X12 = 0.001

0 0.05 0.1 0.15 0.2
0

0.5

1

1.5

δ
1
(r
a
d
)

Dynamics

 

 

EX
NNM
LNM

0 0.05 0.1 0.15 0.2
−1

0

1

2

t(s)

δ
2
(r
a
d
)

 

 

(b) X12 = 0.1

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

E
r
r
o
r
in

δ
1
(
r
a
d
)

Error

 

 

NNM
LNM

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

E
r
r
o
r
in

δ
2
(
r
a
d
)

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

E
r
r
o
r
in

δ
1
(
r
a
d
)

Error

 

 

NNM
LNM

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

E
r
r
o
r
in

δ
2
(
r
a
d
)

Figure 2.9: Dynamics Veri�ed by EMT, when X1, X2 keeps 0.7
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X12 = 0.1 should be same. However, it is seen from Fig. 2.9 the error of linear
analysis in case of X12 = 0.001 can be as big as 0.5, while in case of X12 = 0.1,
the error is less than 0.1. Compared to the methodology proposed in the previous
research, it is convinced that our method is more accurate by considering both
vibration amplitudes and frequency-shift.

2.7.7 Closed Remarks

Veri�ed by EMT simulation, this example shows that the NNM has a good perfor-
mance in approximating the nonlinear dynamics of the system. And it weakens the
nonlinear couplings by normal form transformations and approximately decouples
the nonlinear system, reducing the complexity of the system.
Third-order based analytical investigation on the in�uence of the parameters on
the nonlinear dynamics taking into accounts of both vibration amplitudes and
frequency-shift, in avoidance of numerical simulations. In recent works [59, 65],
nonlinear index is de�ned as the criteria to quantify the in�uence of controller
parameters on nonlinear interaction. However, failing to take into account the
frequency-shift, their prediction can be wrong in some cases. Thus, in this PhD
work, nonlinear indices are for the �rst time de�ned both for the vibration ampli-
tude and the frequency-shift, rendering the nonlinear predictions more precise.

2.8 Issues Concerned with the Methods of Normal

Forms in Practice

The methods of normal forms are �rstly proposed by Poincaré in 1899, its application
in analysis of system dynamics . Though the methods of normal forms theoretically
render a �simplest form� of nonlinear dynamical systems, several issues are concerned
in the practice.

2.8.1 Searching for Initial Condition in the Normal Form Coordi-
nates

The analytical expression of normal form transformation, normal forms and nonlin-
ear indexes are derived in the previous sections. However, the analytical expressions
of the initial condition in the normal form coordinates are not available.
Since there is no analytical inverse of the normal form transformation, the numerical
solution is obtained by formulating a nonlinear system of equations of the form.

f(z) = z − y0 + h(z) = 0 (2.147)

The solution z (which is w for method 3-3-1 and method 3-3-3, respectively) to the
above equation (2.147) provides the initial condition z0. This system of equations
is directly related to the nature of the second-order nonlinear terms and/or third-
order nonlinear terms. And it describes how the z-variable di�er from y0 as a result
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of the nature of the higher-order terms. The numerical solution of these equations
is complicated. It requires a robust algorithm and is sensitive to the choice of the
initial conditions for the solution.
The most popular algorithm is the Newton-Raphson method, which is adopted in
this PhD work. A more robust algorithm is proposed in [47] to circumvent some
disadvantages of NR method, which can be adopted also for the 3rd order NF
methods.
It is recommended that y0 be selected as the choice of the initial condition, based on
the nature of the system of (2.147) where the variables z di�er from y0 according to
the higher-order nonlinear terms, i.e, z0 = y0 where there is no higher-order term.
From the analysis on a variety of test systems, the choice of z0 = y0 provides the
most robust results. The pseudo-code of searching for the initial condition of 3rd
order normal form methods is listed as follows, which is an extension of the search
algorithm for method 2-2-1 [48].

2.8.1.1 The Search Algorithm of Initial Condition for method 3-3-3

The algorithm begins:
1. x0: x0 is the initial condition of the system dynamics at the end of the distur-
bance, e.g, when the fault is cleared in the power system, this value can be obtained
from measurement or time-domain simulation.

2. y0: y0 = U−1x0, the initial condition in the Jordan coordinate.

3. z0: the system of (2.147) is solved for z0 using the Newton-raphson method as
follows:

a: formulate a nonlinear solution problem of the form j = 1, 2, · · · , N :

fj(w) = wj +
N∑
k=1

N∑
l=1

h2jklh2jklwkwl +
N∑
p=1

N∑
q=1

N∑
r

h3jpqrh3jpqrwpwqwr = 0

;

b. choose y0 as the initial estimate for w0. Initialize the iteration counter:s = 0;

c. compute the mismatch function for iteration s, j = 1, 2, · · · , N :

fj(w
(s)) = w

(s)
j +

N∑
k=1

N∑
l=1

h2jklh2jklw
(s)
k w

(s)
l +

N∑
p=1

N∑
q=1

N∑
r

h3jpqrh3jpqrw
(s)
p w(s)

q w(s)
r = 0,

;
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d.compute the Jacobian of f(z) at w(s):

[A(ws)] =

[
∂f

∂w

]
w=w(s)

;

e.compute the Jacobian of f(z) at w(s):

4w(s) = − [A(ws)]−1 f(w(s))

;

f. determine the optimal step length ρ using cubic interpolation or any other ap-
propriate procedure and compute:

w(s+1) = w(s) + ρ4w(s)

;

g. continue the iterative process until a speci�ed tolerance is met. The value of ws

when the tolerance is met provides the solution w0.

The algorithm ends.

2.8.1.2 Search for Initial Condition of the Normal Mode Approach

When it comes to the normal mode approach, the search for initial condition is
the same except the nonlinear solution problem should be formulated as: ∀p =

1, 2, · · · , N

fp = Rp +
N∑
i=1

N∑
j≥i

apijRiRj +
N∑
i=1

N∑
j≥i

N∑
k≥j

rpijkRiRjRk −X
p (2.148)

with Y 0 = 0, S0 = 0.
In fact, there are well validated Newton-Raphson software package on line [67] which
can determine the optimal step length to avoid the non-convergence, and what is
needed in practice is just formulate the nonlinear solution problem in the form of
(2.147).The codes for all the methods presented in this PhD thesis can be found in
the Appendix.
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2.8.2 The Scalability Problem in Applying Methods of Normal
Forms on Very Large-Scale System

One concern of the methods of normal forms is the scalability problem when is
applied on the large-scale system or huge dimensional system. One solution is to
reduce the model by focusing on only the critical modes, which will be illustrated
in details in Chapter 3.

2.8.3 The Di�erential Algebraic Equation Formalism

In practice, the dynamic power �ow models are often formulated as DAE with
nonlinear algebraic part (for instance due to constant power loads with small time
constants). And generalizations of normal form approach that would be applicable
to these systems are available.
In fact, the di�erential equations ẋ = f(x) of system dynamics essentially comes
from a set of DAE equation composed of the di�erential equations representing the
machine dynamics and the algebraic equations representing the network connectivity
and power �ow constraints. Using the power �ow analysis, the stable equilibrium
point (SEP) is obtained, and the di�erential equation is the DAE perturbed around
the SEP.
There is an alternate formalism in [54], which transforms DAEs into an explicit set
of di�erential equations by adding an appropriate singularly perturbed dynamics.
It points out the interests to take DAE into normal form methods as:

1. Sparsity can be taken into account;
2. DAE models are compatible with current small signal stability commercial

software, i.e PSSE, DSAT tolos, etc.
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2.9 Comparisons on the two Approaches

2.9.1 Similarity and Di�erence in the Formalism

For methods of normal mode approach, (2.89) can be rewritten into an equivalent
�rst-order form with state-variables [Xp Yp]:


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Xp

Yp

...

XN

YN



+



g(X1) + h(X1)

0

...

g(Xp) + h(Xp)

0

...

g(XN) + h(XN)

0


(2.149)

2.9.1.1 Linear Transformation

As observed from (2.149), the linear matrix is composed with N [2×2] blocks at the
principle diagonal. In such a way, Xp are independent of Xj(j 6= p), but dependent
of Yp.
Diagonalizing the linear matrix, the diagonal element may have complex conjugate
values and Xp will be independent of Yj , which is exactly the vector �eld approach.
As observed from (2.149) and (2.30), the di�erence between the two approaches
lays in the linear transformation, i.e the way to decouple the linear terms.
In the vector �eld approach, the basic unit is di�erential equations of each state-
variable yp: yp is linearly uncoupled with yj , j 6= p; in the normal mode approach,
the basic unit is di�erential equations of the state-variable pair [Up, Vp]: [Up, Vp] is
linearly uncoupled with [Up, Vp], but Up are coupled with Vp.
As indicated in Section 2.9.1.1, since the simpli�ed linear matrix should have a
simple real form [30] or pure imaginary form [33] to ensure the accuracy, the vector
�eld approach which involves the complex form numbers, is less accurate than the
normal mode approach.

2.9.1.2 Normal Form Transformation

The essentials of the normal form transformation of those two approaches are equat-
ing the like power systems, as generalized in Eqs. (2.19) to (2.27).
The di�erence in the normal form transformation is that: in the vector �eld ap-
proach, ẏj is canceled by the replacement ẏj = λjyj +

∑N
k=1

∑N
l=1 F2jklykyl +∑N

p=1

∑N
q=1

∑N
r=1 F3jpqrypyqyr + · · · , the equating of like power terms involves only
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the state-variable yp;in the normal mode approach, U̇p is canceled by letting U̇p = Vp,
and V̇p is canceled by letting V̇p = −ω2

pUp−2ξpωpVp, the equating of like power terms
involves the state-variable pair [Up, Vp].

2.9.2 Applicability Range and Model Dependence

Second-order (or order higher than 2nd order) equations de�nitely have equivalent
�rst-order equations, but the equivalent second-order (or order higher than 2nd
order) equations of �rst-order equations are not guaranteed. From the mathematical
view, the applicability range of the normal mode approach is a subset of that of the
vector �eld approach.
However, from the engineering view, the normal mode approach may do a better job
since it represents better the physical properties of inter-oscillations and highlights
the relations between the state variables. Also, the complex-form will cause some
error in the computation compared to the normal mode approach, which will be
illustrated by case studies in Chapter 4.
The vector �eld approach is the most widely used approach in analysis and control of
nonlinear dynamical systems and aLNMost applicable for all types of power system
models with di�erentiable nonlinearities. First applied and advocated by investiga-
tors from Iowa State University in the period 1996 to 2001 [6�15], it opens the era
to apply Normal Forms analysis in studying nonlinear dynamics in power system.
Its e�ectiveness has been shown in many examples [6, 9�12,14,15,20,31,47,54].
The normal mode approach proposed in this PhD work is found mostly in me-
chanical engineering [17�19,56], and can be adopted to study the electromechanical
oscillations in interconnected power system, which will be illustrated in Chapter 4.

2.9.3 Computational Burden

When comes to the issue of computational burden, the normal mode approach is
advantaged over the vector �eld approach, since calculating the complex-form values
is much heavier than that of the real-form values when:

1. Formulating the nonlinear matrices: calculating F2, F3 may be quite laborious
compared to calculation of H2, H3 by both two possible approaches:
• approach 1: �rstly calculating the matrix H2, H3, (H2, H3 are cal-
culated by doing the Hessian matrix and 3rd order di�erentiation of

f(x)), secondly calculating F2, F3 by F2j = 1
2

∑N
i=1 vji

[
UThj3U

]
.

F3jpqr = 1
6

∑N
i=1 vji

∑N
k=1

∑N
k=1

∑N
m=1H3ikLNMu

l
pu
m
q u

N
r ;

• approach 2: �rstly calculating the nonlinear equation F (y) on the vector
�elds by F (y) = U−1f(Uy), secondly doing the Hessian matrix and
3rd order di�erentiation of F (y) to obtain F2(y), F3(y).

Both those two approaches involve complex-form matrix multiplication, lead-
ing to heavy computational burden.

2. Searching for the initial conditions: The state-variables x0 are real-form values,
and the state-variables y0 contain complex-form values as far as there exists
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oscillations in the system dynamics, and the terms h2, h3 are in complex-form,
therefore the mismatch function contain complex-values, this will add to the
computational burden in searching for the initial conditions.

2.9.4 Possible Extension of the Methods

As indicated in Section 2.2, both method 3-3-3 and method NNM can be extended
to include terms higher than 3rd order.
The method NNMmay be also extended to system with state-variable pair consisting
ofM state-variables [q1, q2, · · · , qM ],M > 2 i.e, system of higher-order equations. In
such a case, when represented by �rst-order equations, the linear matrix is composed
of [M ×M ] blocks at the principle diagonal.

2.10 Conclusions and Originality

In this chapter, two approaches are proposed to deduce the normal forms of system
of nonlinear di�erential equations. One is the most classical vector-�eld approach,
method 3-3-3, working for system of �rst-order equations. The other approach
is the normal mode approach, method NNM, working for system of second-order
equations.
Method 3-3-3 makes possible the quanti�cation of 3rd order modal interaction and
the assessment of nonlinear stability, and will be applied to the interconnected power
system in Chapter 3.
By method NNM, nonlinear interaction can be described by a N -dimensional cou-
pled second-order problem, which involves highly computational numerical simu-
lation and analytical results are rare. In this chapter, a methodology is proposed
to solve this problem by decoupling it into a series of 1-dimensional independent
second-order problems whose analytical solutions are available and by which com-
plex dynamics are decomposed into several simpler ones. Moreover, nonlinear be-
havior can be accurately predicted by the de�ned nonlinear indexes in avoidance of
numerical simulation. The application of this method may be:

1. Providing information in designing system parameters by quantifying their
in�uence on the nonlinearities of the system with the nonlinear indexes; as
shown in Section 2.7;

2. Transient stability analysis of interconnected power systems, which will be
illustrated in Chapter 4.

The similarities and di�erences between the vector-�eld approach and normal mode
approach have been made, to go further in illustrating the principle of normal form
theory. And possible extensions of method 3-3-3 and method NNM have been
pointed out, to cater for further demands in future researches.
All the nonlinear properties can be predicted by one approach can be revealed by
the other, which are summarized in Tab. 2.5 for mode j.
What's more, the competitors of methods of normal forms (MNF) has been reviewed,
such as the MS method in the vector �eld approach and Shaw-Pierre (SP) method in
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Table 2.5: The Nonlinear Properties Quanti�ed by Method 3-3-3 and Method NNM

Properties Nonlinear Modal Amplitude-dependent Nonlinear

Interaction Frequency-shift Stability

3-3-3 h2jkl, h3jpqr Im(SIIj) SIj

NNM aj , bj , cj , · · · FS PSB

forming the NNM. As it is di�cult to �nd literature comparing MNF to MS method
and SP method, we hope that the comparisons made in this PhD thesis bridge a bit
the gaps in the literature.
Concerning the originality, it is for the �rst time that method 3-3-3 is proposed to
study the system dynamics. And for method NNM, though its FNNM has been
proposed in mechanical domain, it is mainly for bifurcation analysis. The nonlinear
properties extracted from the method NNM, such as the amplitude-frequency shift
and nonlinear mode decomposition are �rstly found in power system. What's more,
all the nonlinear indexes are at the �rst time proposed by this PhD work.
In the previous researches, the methods of normal forms are conventionally used for
bifurcation analysis [49]. And their derivations of normal forms focus more on the
variation of parameters, i.e., the parameters can be viewed as state-variables, but
in di�erent-scales with the physical state-variables of the system. In this chapter,
we focus on the in�uence of physical state-variables on the system dynamics.
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Chapter 3

Application of Method 3-3-3:
Nonlinear Modal Interaction and

Stability Analysis of
Interconnected Power Systems

The inclusion of higher-order terms in Small-Signal (Modal) analysis has been an

intensive research topic in nonlinear power system analysis. Inclusion of 2nd or-

der terms with the Method of Normal Forms (MNF) has been well developed and

investigated, overcoming the linear conventional small-signal methods used in the

power system stability analysis and control. However, application of the MNF has

not yet been extended to include 3rd order terms in a mathematically accurate form

to account for nonlinear dynamic stability and dynamic modal interactions. Due to

the emergence of larger networks and long transmission line with high impedance,

modern grids exhibit predominant nonlinear oscillations and existing tools have to

be upgraded to cope with this new situation.

In this chapter, the proposed method 3-3-3 is applied to a standard test system, the

IEEE 2-area 4-generator system, and results given by the conventional linear small-

signal analysis and existing MNFs are compared to the proposed approach. The

applicability of the proposed MNF to larger networks with more complex models has

been evaluated on the New England New York 16 machine 5 area system.

Keywords: Interconnected Power System, Power System Dynamic, Non-
linear Modal interaction, Stability, Methods of Normal Forms
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3.1 Introduction

Today's standard electrical grids are composed of several generators working in
parallel to supply a common load. An important problem associated with intercon-
nected power systems is the presence of oscillations that could have dangerous e�ects
on the system. The multiplication of distributed generation units, usually composed
of renewable-energy-based-generators, and the increase of energy exchanges through
long distance lead to highly stressed power systems. Due to the large amount of
power �owing through the lines, the low-frequency oscillations, called in classical
power system studies electromechanical oscillations, exhibit predominant nonlin-
ear behaviors. Since these oscillations are essentially caused by modal interactions
between the system components after small or large disturbances, they are called
nonlinear modal oscillations, higher order modes or higher order modal interactions,
inaccurately modelled by the linear analysis based on a linearized model.
Although intensive research has been conducted on the analytical analysis of non-
linear modal oscillations based on the Normal Form Theory with inclusion of 2nd
order terms in the system's dynamics, this chapter proposes to show that in certain
stressed conditions, as modern grids experience more and more, inclusion of 3rd
order terms o�er some indubitable advantages over existing methods.
The Method of Normal Forms (MNF) being based on successive transformations of
increasing orders, the proposed 3rd order-based method inherits the bene�ts of the
linear and the 2nd order-based methods, i.e.:

1. Analytical expressions of decoupled (or invariant) normal dynamics;
2. Physical insights keeping the use of modes to study the contribution of system

components to inter-area oscillations;
3. Stability analysis based on the evaluation of the system parameters.

3.1.1 Need for inclusion of higher-order terms

Small-signal analysis is the conventional analysis tool for studying electromechani-
cal oscillations that appear in interconnected power systems. It linearizes the power
system's equations around an operating point by including only the �rst-order terms
of the Taylor series of the system's dynamics. The eigenanalysis is made to obtain
analytical expressions of the system's dynamic performances and the stability anal-
ysis is realized on the basis of the �rst Lyapunov Method (Analysis of the real parts
of the poles). Besides, modal analysis uses the eigenvectors to give an insight of
the modal structure of a power system, showing how the components of the power
system interact. Thanks to modal analysis, power system stabilizers can be placed
at the optimal location in order to stabilize the whole system, ensuring then a
small-signal stability [1].
Later, researchers suggested that in certain cases, such as when the system is severely
stressed, linear analysis techniques might not provide an accurate picture of the
power system modal characteristics. From 1996 to 2005, numerous papers [6�15]
have been published proving that higher order modal interactions must be studied
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in case of certain stressed conditions. MNF with the inclusion of 2nd order terms
shows its great potential in power system stability analysis and control design. Those
achievements are well summarized in the Task-force committee report [48], whose
formalism is referred to as the method 2-2-1 in Chapter 2.
The existing 2nd-order-based method gives a better picture of the dynamic perfor-
mance and the mode interactions than the classical linear modal analysis. However,
it fails to take bene�t of the system's nonlinearities for studying the stability where
the conventional small-signal stability analysis fails. Based on this, [5] proposed to
keep a second order transformation but with including some of the third-order terms
in order to improve the system stability analysis.
The emergence of renewable energy (unbalanced energy generation and weak grid)
and fast control devices [59] increases the nonlinearity, and inclusion of 3rd order
terms is demanded.
Finally, some 3rd-order-based MNFs have been proposed in [31,32] but have not been
fully developed yet, not leading to a more useful tool than the ones using linear-based
and second-order-based methods. For nonlinear mechanical systems, that often
include lightly damped oscillatory modes and possible internal resonances, Normal
Forms up to third order are widely used, either to classify the generic families of
bifurcations in dynamical systems [53,68] or to de�ne Nonlinear Modes of vibration
and to build reduced-order models [17,18,33].
Taking into account the 3rd order nonlinearities will increase the expected model
accuracy in most cases while keeping the overall complexity at a relatively low
level. This can be illustrated by a simple example. Primitive as the example is, it
visualizes the need of inclusion of higher-order terms and the increased stress due
to the increased power transferred.
As an illustration of the gains a�orded by inclusion of higher-order-terms, the
transferred active power through a power grid as a function of the power angle
δ: P = V 2

X sin δ is analyzed in steady state. Considering the voltage V at the ter-
minals and the reactance X of the line both constant, the transmitted power can
be simpli�ed as P = k sin δ, k = constant. The exact system (Exact) and its Taylor
series, up to the �rst order (Linear), up to the second order (Tayl(2)) and up to
the third order (Tayl(3)) are plotted in Fig. 3.1. Depending on the power angle
values, inclusion of higher-order terms by nonlinear analysis, especially up to 3rd
order terms, is necessary to maximize the transfer capacity of the modern power
system with ever-increasing stress.
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Figure 3.1: The Need of Inclusion of Higher-Order Terms
The Chapter 3 is organized as follows. A brief review of the existing normal forms
on vector �eld and proposed method 3-3-3 is conducted in Section 3.2. The test
benches are presented in Section 3.3 with mathematical modelling. The applications
of method 3-3-3 will be conducted on interconnected power systems in Section 3.4
and Section 3.5, where the performance of reviewed and proposed MNFs on vector
�elds will be assessed. And the bene�ts promised in Chapter 2 will be demonstrated.
Section 3.6 discusses the factors in�uencing the Normal Form analysis. Section 3.7
proposes some conclusions and possible applications of the proposed method are
suggested.

3.2 A Brief Review of the existing Normal Forms of Vec-

tor Fields and the Method 3-3-3

The Methods of Normal Forms (MNF) was initially developed by Poincaré [50] to
simplify the system dynamics of nonlinear systems by successive use of near-identity
changes of coordinates. The transformations are chosen in such a way as to eliminate
the nonresonant terms of a corresponding order. The principle is to transform the
system dynamics into invariant normal dynamics. The word invariant means that
quali�ed property is the same in the system dynamics and normal dynamics. It was
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proved by Poincaré that linear invariants are eigenvalues and nonlinear invariants
are the homogeneous resonant terms [69].
In Chapter 2, the existing methods: linear small-signal analysis, method 2-2-1,
method 3-2-3S, method 3-3-1, and the proposed method 3-3-3 have already illus-
trated with detailed derivations. In this section, for the compactness, a simple
review is made, and the assessment of those methods is performed in the following
sections.

3.2.1 Modeling of the System Dynamics

The class of systems that can be studied by MNF are usually modeled by Di�erential
Algebraic Equations (DAEs) [1]. By subsituting the algebraic equations into the
di�erential ones, one transforms those DAEs in a dynamical system, which can be
written:

ẋ = f(x,u), (3.1)

where x is the state-variables vector, u is the system's inputs vector and f is
a nonlinear vector �eld. Expanding this system in Taylor series around a stable
equilibrium point (SEP), u = uSEP , x = xSEP , one obtains:

4ẋ = H1(4x) +
1

2!
H2(4x) +

1

3!
H3(4x) +O(4) (3.2)

where Hq gathers the qth-order partial derivatives of f . i.e., for j = 1, 2, · · · , n,
H1jk = ∂fj/∂xk, H2jkl =

[
∂2fj/∂xk∂xl

]
, H3jklm =

[
∂3fj/∂xk∂xl∂xm

]
and O(4) are

terms of order 4 and higher.

3.2.1.1 The Linear Small Signal Analysis

The linear part of (3.2) is simpli�ed into its Jordan form:

ẏ = Λy + F2(y) + F3(y) + · · · (3.3)

supposed here to be diagonal, where the jth equation of (3.3) is:

ẏj = λjyj +

N∑
k=1

N∑
l=1

F2jklykyl +

N∑
p=1

N∑
q=1

N∑
r=1

F3jpqrypyqyr + · · · (3.4)

λj is the jth eigenvalue of matrixH1 , and j = 1, 2, · · · , n. U and V are the matri-
ces of the right and left eigenvectors of matrix H1, respectively: UV = I; F2j =
1
2

∑N
i=1 vji

[
UThj3U

]
. F3jpqr = 1

6

∑N
i=1 vji

∑N
k=1

∑N
k=1

∑N
m=1H3iklmu

l
pu
m
q u

n
r , vji is

the element at j-th row and i-th colomn of Matrix V . ulp is the element at the p-th
row and l-th column of matrix U .
The fundamentals of linear small-signal analysis uses the sign of the real parts σj
of the eigenvalues λj = σj + jωj to estimate the system stability. U is used to
indicate how each mode yj contribute to the state-variable x, and V indicates how
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the state-variables of x are associated to each mode yj .

x = Uy ⇒ ẏj = λjyy +O(2) (3.5)

3.2.2 Method 2-2-1

Gradually established and advocated by investigators from Iowa State University,
the period 1996 to 2001 [6�15] opens the era to apply Normal Forms analysis in
studying nonlinear dynamics in power system. This method is labelled 2-2-1 ac-
cording to our classi�cation.
Its e�ectiveness has been shown in many examples [6, 9�12, 14, 15, 20, 47], to ap-
proximate the stability boundary [9], to investigate the strength of the interaction
between oscillation modes [6,10,47], to dealt with a control design [11,12], to analyze
a vulnerable region over parameter space and resonance conditions [14, 15] and to
optimally place controllers [20].
This method is well summarized in [48], which demonstrated the importance of
nonlinear modal interactions in the dynamic response of a power system and the
utility of including 2nd order terms. Reference [70] propose an extension of the
method to deal with resonant cases. It has become a mature computational tool
and other applications have been developed [36,54], or are still emerging [71].
Method 2-2-1 can be summarized as:

yj = zj + h2jklzkzl ⇒ żj = λjzj +O(3) (3.6)

with h2jkl =
F2jkl

λk+λl−λj where O(3) = (DF2)h2 + F3.
It is very important to note that the normal dynamics given by (3.6) uses the linear
modes of the linearized system. The nonlinearities are then taken into account
only through the nonlinear 2nd-order transform y = z + h2(z) and results in a
quadratic combination of linear modes, leading to 2nd-order modal interactions.
Then, the stability analyses conducted using this linear normal dynamics give the
same conclusion than the analysis that can be conducted using the linear dynamics.

3.2.3 Method 3-2-3S

Although the second-order-based method gives a more accurate picture of the sys-
tem's dynamics than the linear small-signal analysis, keeping some of the 3rd order
terms in (DF2)h2 + F3 contributes some important features to the method. As
examples, improvements in the stability analysis have been proved in [5] and new
criteria to design the system controllers in order to improve the transfer capacity of
transmissions lines have been established in [16], where some 3rd order terms are
kept in (3.7).
The normal forms of a system composed ofM weakly-damped oscillatory modes are
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then:

y = z + h2(z)⇒


żj = λjwj +

∑M
l=1 c

j
2lwjw2lw2l−1 +O(5), j ∈M

ẇj = λjwj +O(5), j /∈M

(3.7)

where cj2l is the sum of coe�cients associated with term wjw2lw2l−1 of DF2h2+F3,
more details are found in Chapter 2.
It should be noted that the normal dynamics given by (3.7) is nonlinear, contributed
by the third-order terms cj2lwjw2lw2l−1, depending on oscillatory amplitude |w2l|.
Therefore, 3rd order terms contain the nonlinear property such as the stability
bound [5, 5] and amplitude-frequency dependent [21, 22, 55]. However, it is not the
�simplest form� up to order 3.

3.2.4 Method 3-3-1

Later, to study the 3rd order modal interaction, method 3-3-1 has been proposed
[31,32] and 3rd order indexes are proposed [32].

y = w + h2(w) + h3(w)⇒ ẇj = λjwj (3.8)

where h3jpqr =
F3jpqr

λp+λq+λr−λj
However, it is not an accurate 3rd order normal form, since 1) it neglects the term
DF2h2 and may lead to a big error in quantifying the 3rd order modal interaction;
2) it fails to study the oscillatory interaction between oscillatory modes, and may
lead to strong resonance.

3.2.5 Method 3-3-3

To overcome those disadvantages, the proposed method 3-3-3, takes into account
both the M oscillatory modes and N −M non-oscillatory modes.

y = w + h2(w) + h3(w)⇒


ẇj = λjwj +

∑M
l=1 c

j
2lwjw2lw2l−1 +O(5), j ∈M

ẇj = λjwj +O(5), j /∈M
(3.9)

As observed from (3.9), method 3-3-3 approximates the system dynamics by a
nonlinear combination of nonlinear modes. Based on the normal forms, nonlinear
indexes MI3 and SI are proposed to quantify the 3rd order modal interaction and
assess the stability of the system dynamics.
In this chapter, all the presented methods have been assessed on the IEEE standard
test systems.
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3.3 Chosen Test Benches and Power System Modeling

In this PhD work, two IEEE standard test systems are chosen, the �rst is the
Kundur's 4-machine 2-area system, whose mechanism is easy to understand and
which serves as a classic example for small-signal analysis and modal analysis. It
serves as a didactic example to show how the proposed method 3-3-3 does a better
job in quantifying the nonlinear modal interaction and assessing the stability of
system dynamics than the existing methods. The second test bench is the New
England New York 16 machine 5 area system, used to assess the applicability of the
proposed method 3-3-3 to large scale power system.
For both two test benches, the chosen mathematical model is built with reasonable
simpli�cation and is well validated. Power systems are nonlinear dynamic systems,
whose behaviors are usually modelled by di�erential-algebraic equations(DAEs).

Figure 3.2: The Relationships Between the Generator, Exciter and PSS

The study of a general power system model might be di�cult and unnecessary, since
the time constants of di�erent dynamic elements are quite di�erent, ranging from
10−3s, e.g. the switching time constant of power electronic devices like FACTS,
voltage source converters (VSCs). to 10s. e.g, the governor system for controlling
the active power input to generators. Thus, for a speci�c study purpose, a com-
mon handling is to consider the fast and slow dynamics separately, which means
only part of the dynamic equations corresponding to the elements with interest-
ing behaviors will be remained. In particular, for studying the electromechanical
oscillation and angle stability of a power system, which decides the overall power
transfer limit, equations associated with the generator, exciter and power system
stabilizer models are usually remained, while the amplitude of terminal voltages and
the network parameters are assumed as constant. The generator which is the source
of the electro-mechanical oscillations, the exciter, which largely contributes to the
transient and sub-transient process in the system dynamics, and the power system
stabilizer (PSS) which is used to stabilize the electromechanical oscillations. Their
relationships are shown in Fig. 3.2.
For any stable interconnected power system, the rotor angles of all generators are
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kept still to each other but constantly changing at a certain synchronized speed/fre-
quency which is slightly �oating around 60Hz/50Hz. Since the electromechanical
oscillation will last for tens of seconds, which is caused by the relative motions among
di�erent power angles of concern, a rotating coordinate system with d and q axes
at the synchronized speed/frequency is commonly used to represent the generator
equations, where the rotor is placed at the d axis.
For power �ow analysis, the model used in this work is a phasor model, where
the voltages and currents are placed in the synchronization frame with x axes and
y axes. This simpli�es the power �ow analysis and facilitates the analysis of the
system dynamics.
For the 4 machine system, the transient generator model is adopted, and for the
16 machine system, the sub-transient generator model is adopted. The transient
generator model and sub-transient generator model are among the most widely
used generator models with a relatively high accuracy and low complexity.

3.4 Assessing the Proposed Methodology on IEEE Stan-

dard Test system 1: Kundur's 4 machine 2 area Sys-

tem

The chosen test system to assess the proposed method is a well known IEEE standard
system, the Kundur's 2�area 4�machine system shown in Fig. 3.3. It is a classical
system suitable for the analysis of modal oscillations for the validation of small-signal
analysis [1], and for the validation of 2nd order Normal Form analysis [48].

Figure 3.3: IEEE 4 machine test system: Kundur's 2-Area 4-Machine System

The generators are modelled using a two-axis fourth-order model and a thyristor
exciter with a Transient Gain Reduction. Loads L1 and L2 are modeled as constant
impedances and no Power System Stabilizer (PSS) are used. To make the system
robust, each area is equipped with large capacitor banks to avoid a voltage collapse.
The data for the system and the selected case are provided in the Appendix section.
The full numerical time domain simulation is used to assess the performance of the
MNFs in approximating the nonlinear system dynamics, based on the well validated
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demo power_PSS in Matlab 2015a.
The test case is modeled as a 27th order system with the rotor angle of G4 taken
as the reference.

3.4.1 Modelling of Mutli-Machine Multi-Area Interconnected
Power System

The di�culty in modelling of Multi-Machine Multi-Area interconnected power sys-
tem lays in the need of unifying the angle reference frame.
For each generator, the rotating frame is di�erent, therefore, a common reference
frame with xy orthogonal axes is demanded to do the power �ow analysis. The
di�culty lays in the transformation between the common reference frame with xy
orthogonal axes and the rotating frame ,shown as Fig. 3.4, which consists of the i-th
dq rotating frame for generator i, the dq rotating frame for generator k, and the
common reference frame xy. All those three frames rotate at the synchronization
speed ωs.
There are di�erent dq rotating frames and depending on which the expression of
transient and sub-transient models are established. In this chapter, two most widely
used common reference frames are introduced. One is presented with the 4 machine
case, and other other is presented with the 16 machine case.

di

qi

x

y

dk

qk

δi
δk

ωs

Figure 3.4: The Rotating Frame and the Common Reference Frame of 4 Machine
System
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3.4.1.1 Transient Generator Model

Exciters (automatic voltage regulators ) are considered for the IEEE 4 machine
system to represent the industrial situation to the maximum. Therefore, the classical
generator model is not appropriate and the 4th order generator model is introduced,
along with the 3th order exciter model containing the voltage regulator.
The 4th order generator model in i-th dq rotating frame reads:

δ̇i = ωsωk

ω̇i = 1
2Hi

(Pmi − Pei −Diωi)

˙e
′
qi = 1

T
′
d0i

(Efqi − (Xdi −X
′
di)idi − e

′
qi)

˙e
′
di = 1

T
′
q0i

((Xqi −X
′
qi)iqi − e

′
di)

(3.10)

where δi,ωi,e
′
qi and e

′
di are the rotor angle, rotor speed, transient voltages along q

and d axes respectively of generator i. They are state-variables for each generator,
which are crucial in the transient analysis and rotor angle stability. Pmi is the
mechanical power of generator and ωs is the synchronized frequency of the system.
Then the transformation matrix 4i

dq−xy from i-th dq rotating frame to the common
reference frame and its inverse can be de�ned as:

4i
dq−xy =

 sin δi cos δi

− cos δi sin δi

 4i
xy−dq =

sin δi − cos δi

cos δi sin δi

 (3.11)

with 4i
dq−xy = (4i

xy−dq)
T . The generator parameters consist of Hi, Di, T

′
d0,T

′
q0.

Hi and Di are inertia and damping coe�cient of generator. T
′
q0 and T

′
d0 are the

open-circuit time constants, Xd and Xq are the synchronous reactance, X
′
d and X

′
q

are the transient reactance respectively for d and q axes of generator i.
The power �ows are indicated by Pei, idi and iqi, which are the electric power, stator
currents of d and q axes respectively of generator i, which depend on both the state
variables of i-th generator, as well as the rotor angle of other generators and the
network connectivity.

3.4.1.2 Modelling of Exciter (Automatic Voltage Regulators)

To enhance the stability of power system, exciter, which serves as Automatic Voltage
Regulator (AVR) is added, as shown as Fig. 3.5. Efqi becomes a state variable
described by the di�erential equation associated with the exciter. And the voltage
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1
1+sTR

× 1+sTC
1+sTB

KA
1+sTA

VT

+

Vref

−
XE1 XE2 Efd

Figure 3.5: Control Diagram of Exciter with AVR

regulators will add up to the exciter model, which reads:

˙Efdi = KAiXE2i
TAi

− 1
TAi

Efdi

˙XE1i = − 1
TRi

XE1i + 1
TRi

VTi

˙XE2i = 1
TBi

(TCi
TRi
− 1)XE1i − 1

TBi
XE2i − TCi

TBiTRi
VT i + 1

TBi
Vrefi

(3.12)

where,
VT : generator terminal voltage. VT is given by

VT i =
√

(e′qi +X ′diidi)
2 + (e′di −X

′
qiiqi)

2, i = 1, 2, · · · ,m (3.13)

Vref : exciter reference voltage

3.4.1.3 Modelling of the Whole System

As indicated in Chapter 1, the power angle stability of the interconnected power
system which is composed of generators equivalently means the synchronism of the
rotor angles of the generators. And lacking of in�nite bus in the multi-machine sys-
tem leads to zero eigenvalue. In the conventional small signal analysis, the solution
is to neglect the zero eigenvalues or taking the rotor angle of one generator as the
However, when taking into account the nonlinearities, the zero eigenvalues can not be
neglected, since the �zero eigenvalues� may have non-zero nonlinearities and become
saddle points.
Therefore, we choose the new state-variables δiN = δi− δN with the N -th generator
as reference instead of δi.
And the equation of the rotor angle is:

δiN = ωs(ωi − ωN ); (3.14)

For a detailed model considering the transient voltages and in�uence of
exciter and voltage regulators, the i-th generator has 7 state-variables,[
δiN , ωi, e

′
d, e

′
q, Efdi, XE1i, XE2i

]
.
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3.4.1.4 Possibility to Add Other Components

As the time constant of turbo governor is much larger than the electro-mechanical
time constants, the model of turbo governor is not included. However, it can be
added by taken into account the di�erential equations related to Tm.

3.4.2 Network Connectivity and Nonlinear Matrix

Although the dynamics are described by (3.10) (3.12), it is still far from forming a
multi-machine dynamic system for interconnected power system.
The question is:
how the interconnections in�uence the dynamics?
The answer lays in the network connectivity and the reference frame of the genera-
tors. The biggest challenge in dealing with the interconnected power system is the
network connectivity
To calculate Pei, a common reference frame (with synchronous speed) is used, where
voltages and currents are placed in the x− y frame.
The expressions of Pei, idi and iqi are a system having n generators are [72]:

e′xi
e
′
yi

 = 4i
dq−xy

e′di
e
′
qi


It = Y

[
e
′
x1, e

′
y1, · · · , e

′
xn, e

′
yn

]T
(denote)It = [ix1, iy1, · · · , ixn, ixn]

Pei = e
′
xiixi + e

′
yiiyi

(3.15)

where e
′
qi, e

′
qi are the transient internal bus voltages of generator i. e

′
xi, e

′
yi are

their projections in the common reference frame. Y is the admittance matrix of the
reduced network to the internal bus of each generator i, including source impedances
of generators and constant-impedance loads. It is the terminal current of generators.
Viewed from all the equations above, assume that all the parameters are constant,
the nonlinearities of the power system comes from sin δ,cos δ.
(3.15) indicates the network constraints of the 4th order generator model, for which
the key point is to derive the admittance matrix Y .
The calculation of Y is in next Section, with programming procedures. Even with all
the equations above, the modelling for the power system is not ready for computer-
based analysis, since the matrix Y still needs a lot of work and the terms Taylor
polinomial terms H1(x), H2(x), H3(x) in (3.1) are not available.
Since it is di�cult to �nd a reference to present the details in modelling the inter-
connected power system with nonlinearities by a systematic procedures (although
insightful mathematical modellings are presented in Refs. [1, 73], some technique
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details are not su�ciently illustrated ), this job is done in this PhD book.

3.4.2.1 Calculation of Y Matrix

Calculation of Y matrix is composed of two steps:
• Step1: Calculate Yt from Ybus, reducing the bus admittance matrix to the
terminals of the generators;
• Step2: Calculate Y from Yt, reducing the terminal admittance to the internal
bus of generators.

Step1: from Ybus to Yt
If a system has m + n nodes among which, n nodes are terminals of generators,
Ybus is a [(m+ n)× (m+ n)] matrix describing the relation between the currents
and voltages at each node, and Yt is a [n× n] matrix describing the Current-Voltage
relation at each terminal.
Ybus is de�ned by node voltage equation, using the ground potential as reference
gives:

Ibus = YbusVbus (3.16)

I1

I2

...

Im

Im+1

...

Im+n



=



Y11 · · · Y1m Y1(m+1) · · · Y1(n+m)

Y21 · · · Y2m Y2(m+1) · · · Y2(n+m)

...
. . .

...
...

. . .
...

Ym1 · · · Y2m Ym(m+1) · · · Y2(n+m)

Y(m+1)1 · · · Y(m+1)m Y(m+1)(m+1) · · · Y(m+1)(m+n)

...
. . .

...
...

. . .
...

Y(m+n)1 · · · Y(m+n)m Y(m+n)(m+1) · · · Y(m+n)(m+n)





V1

V2

...

Vm

Vm+1

...

Vm+n


(3.17)

where Ibus is the vector of the injected bus currents; Vbus is the vector of bus voltages
measured from the reference node; Ybus is the bus admittance matrix: Yii (diagonal
element) is the sum of admittances connected to bus i; Yij (o�-diagonal element)
equals the negative of the admittance between bus i and j.
The admittance matrix depicts the relation between the injected currents and the
node voltage. The injected bus currents may come from the generators, loads,
batteries, etc. Taking the load at node k as constant impedance, it adds the shunt
impedance to the element Ykk.
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Since only the generators inject currents into the grid, rewriting (3.16) into (3.18),
then all nodes other than the generator terminal nodes are eliminated as follows: 0

In

 =

 Ymm Ymn

Ynm Ynn


 Vm

Vt,n

 (3.18)

Therefore, from (3.18), it obtains

In =
[
Ynn − YnmY −1mmYmn

]
Vt,n (3.19)

Then, the admittance matrix of the reduced network to the terminal bus of generator
is de�ned as:

Yt =
[
Ynn − YnmY −1mmYmn

]
(3.20)

However, Yt is not appropriate for computer-aided calculation as Yt is a complex
matrix and Vt is also a complex matrix.

As It,i = ixi + jiyi =
N∑
j=1

Yt,ijej =
N∑
j=1

(Gtij + jBt
ij)(exi + jeyi) =

N∑
j=1

[
(Gtijexi −Bt

ijeyi) + j(Bt
ijexi +Gtijeyi)

]
we can therefore de�ne a [(2N)× (2N)] matrix Yr as:

Yr =



Gt11 −Bt
11

Bt
11 Gt11

 · · ·

Gt1n −Bt
1n

Bt
1n Gt1n


...

. . .
...Gtn1 −Bt

n1

Bt
n1 Gtn1

 · · ·

Gtnn −Bt
nn

Bt
nn Gtnn




(3.21)

By Yt we calculate It once the Vt,n = [e1, e2, · · · , en] is known.

However, as in the dynamics, the state variables are
[
e
′
1, e

′
2, · · · , e

′
n

]
, an admittance

matrix Y is needed which de�nes as

It = Yr [exi, eyi, · · · , exn, eyn] = Y
[
e
′
xi, e

′
yi, · · · , e

′
xn, e

′
yn

]
(3.22)

Step2: Obtaining Y from Yt
Therefore, to obtain Y , the transformation between [exi, eyi, · · · , exn, eyn],[
e
′
xi, e

′
yi, · · · , e

′
xn, e

′
yn

]
should be found at �rst.
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Since edi
eqi

 =

e′di
e
′
qi

−
Rai −X ′qi
X
′
di Rai


idi
iqi

 =

e′di
e
′
qi

− Zi
idi
iqi

 (3.23)

multiplying both sides by the matrix 4i
dq−xy

4i
dq−xy

edi
eqi

 = 4i
dq−xy

e′di
e
′
qi

−4i
dq−xyZk

idi
iqi

 (3.24)

it therefore leads: exi
eyi

 =

e′xi
e
′
yi

−4i
dq−xyZk4i

xy−dq

ixi
iyi

 (3.25)

De�ning T1 = diag
[
41
dq−xy,42

dq−xy, · · · ,4i
dq−xy, · · · ,4n

dq−xy

]
, T2 =

diag [Z1, Z2, · · · , Zi, · · · , Zn], and using (3.22), it leads to:

ex1

ey1

ex2

ey2

...

exn

eyn



=



e
′
x1

e
′
y1

e
′
x2

e
′
y2

...

e
′
xn

e
′
yn



− T1T2T−11



ix1

iy1

ix2

iy2

...

ixn

iyn



=⇒ Y −1r



ix1

iy1

ix2

iy2

...

ixn

iyn



= Y −1



ix1

iy1

ix2

iy2

...

ixn

iyn



− T1T2T−11



ix1

iy1

ix2

iy2

...

ixn

iyn


(3.26)

=⇒ Y −1r + T1T2T
−1
1 = Y −1

Therefore, it obtains:
Y = (Y −1r + T1T2T

−1
1 )−1 (3.27)

If X
′
q = X

′
d, then 4i

dq−xyZi = Zi4i
dq−xy, then T1T2 = T2T1, so

Y = (Y −1r + T2)
−1 (3.28)
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In our test systems, X
′
di = X

′
qi for simplicity, and the calculation of matrix Y is as

(3.28).

3.4.2.2 Calculating the Nonlinear Matrix

The next step is to calculate the nonlinear matrix H1, H2, H3 in (3.2).
Since Y is obtained, the function of Idq = [id1, iq1, · · · , idn, iqn] on e

′
=[

e
′
d1, e

′
q1, · · · , e

′
dn, e

′
qn

]
can be obtained as:

[
id1, iq1 · · · , idi, iqi, · · · , idn, iqn

]T
= T−11 Y T1

[
e
′
d1, e

′
q1, · · · , e

′
di, e

qi, · · · , e′dn, e
′
qn

]T
(3.29)

Therefore Yδ is de�ned as
Yδ = T−11 Y T1 (3.30)

, where Yδ is a nonlinear matrix and is time-variant in the system dynamics, as
sin δi, cos δi varies as the rotor oscillates. In (3.29), only state-variables will exist in
(3.10) (3.12). And the system can be formed as:

δ̇i = ωs(ωk − 1)

ω̇i = 1
2Hi

(Pmi − Pei −Diωi)

ė′qi = 1

T
′
d0i

(Efqi − (Xdi −X
′
di)idi − e

′
qi)

ė′di = 1

T
′
q0i

((Xqi −X
′
qi)iqi − e

′
di)

˙Efdi = KAiXE2i
TAi

− 1
TAi

Efdi

˙XE1i = − 1
TRi

XE1i + 1
TRi

VT i

˙XE2i = 1
TBi

(TCi
TRi
− 1)XE1i − 1

TBi
XE2i − TCi

TBiTRi
VT i + 1

TBi
Vrefi

(3.31)
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which can be rewritten as (3.31)



δ̇i

ω̇i

ė′qi

ė′di

˙Efdi

˙XE1i

˙XE2i
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when there is no disturbance in the voltage reference and power reference.

As [Idq] = Yδ

[
e′dq

]
, are nonlinear functions of δi, e′di, e
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qi, (3.31) can be rewritten as:
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Therefore, the whole system can be written as:
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ẋ = Agx+N(x) + U (3.35)

where Ni(x) is the ith row of N(x), which can be calculated by (3.29).
Therefore, doing the Taylor series with the stable equilibrium point (SEP) as the
point of expansion. The SEP is calculated by the power �ow analysis.
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Free Oscillation
If free oscillation is studied (i.e U = 0) (3.35) becomes:

4ẋ = Ag4x+N1(4x) +
1

2!
N2(4x) +

1

3!
N3(4x) (3.36)

where N1,N2,N3 are �rst-order, second order and third-order derivative of N(x).
Then, for the de�nition in (3.2), the nonlinear coe�cients can be extracted as:

H1 = Ag +N1, H2 = N2, H3 = N3 (3.37)

As observed from (3.37), the linearization matrix is Ag+N1 for the multi-machine
system instead of Ag for the single machine system. N1 counts for the in�uence of
power �ows between the generators on the eigenvalue analysis. N2, N3 account for
the second order nonlinear interactions and third order nonlinear interactions.
Therefore, all the procedures of Normal From transformations can be followed.

3.4.3 Programming Procedures for Normal Form Methods

3.4.3.1 How to Initialize the Normal Form Methods Calculation

1. Forming the system dynamic equation: it is a 28th model.
• For each generator station: it is 4th for generator, 3 for the AVR and
Thyristor Exciter.
• For the network: the systems of equations of 4 generator are concatenated
by the Bus voltage and Flow currents in the network.

2. Equilibrium Points: Doing the Power Flow Analysis for the steady state, and
obtaining the equilibrium points xeq to calculate all the normal form coe�-
cients. (Software: PSAT)

3. Perturbation Condition: Recording all the disturbances of the state-variables
when the generator power angle reaches the maximum xinit.

3.4.3.2 Programming Steps of the Normal Form Methods

The steps can be detailed as:
1. Forming the system of equations with the �rst Taylor polynomial term, 2nd

Taylor polynomial term F2jkl and 3rd Taylor polynomial term F3jpqr calculated
with the equilibrium point;

2. Calculate Eigen-matrix Λ.
3. Normal Form Coe�cients Calculation: h2jkl and h3jpqr.
4. Using xinit search the initial values for zinit,winit by Newton-Raphson Method.
5. Calculating the Normal Dynamics by Runge-Kutta Method.
6. Reconstruction the system using dynamic coe�cients h2jkl and h3jpqr.

3.4.3.3 The Procedures of Calculating the Matrices

1. Initialize the parameters and input the matrix Ybus
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2. Calculate Ybus → Yt → Y , by Eqs. (3.20) (3.28)
3. Calculate Ydelta from (3.30).
4. Calculate N(x) from Ag from (3.34)
5. Calculate N1(x), N2(X), N3(x) from (3.36)
6. Calculate coe�cients H1,H2,H3 from (3.37)

3.4.4 Cases Selected and Small Signal Analysis

The oscillatory modes for the selected cases are listed in Tab. 3.1 and 3.2 with the
associated pseudo frequency, time-constant and dominate states. It gives a clear
picture of the physical property of the system dynamics by small-signal analysis.
Some stable real modes are not listed for the sake of compactness.
The cases analyzed in this section have been selected to highlight information pro-
vided by the 3rd order Normal Form analysis. The selected system operating condi-
tions for the study are highly stressed cases where the system is close to the voltage
collapse, characterized by a tie line �ow of 420MW from Area1 to Area2. To con-
sider the emergence of renewable energy based generators, some modi�cations are
made compared to the conventional small-signal and 2nd-order-based NF analysis
that have been already conducted on the same test case. The powers generated by
generators G1 and G2 in Area1 are unbalanced to consider the production of energy
from distant renewable energy based generators in large areas.
The results of conventional small-signal analysis are shown in Tab. 3.1 and Tab. 3.2,
where the damping, frequency, time-constant and the dominant states of the oscil-
latory modes are listed.
Those results come from two cases that are considered:

1. Case 1: This case represents a poorly damped situation, where the damping
ratio of the inter-area mode is only 5.9% and the system is at its limit of
stability according to a linear analysis. A three phase short-circuited fault is
applied at Bus 7 and after 0.41s, line B and line C are tripped. The exciter
gain Ka is set as 150 for all generators.

2. Case 2: This case represents a situation where the damping ratio of two os-
cillatory modes is negative (modes (5,6) and (7,8), as indicated in Tab. 3.2).
The negative damping is introduced by changing the gain of the 4 thyristor
exciters by a higher value (Ka = 240). A three phase short-circuited fault is
applied at Bus 7 and after 0.10s, line B and line C are tripped.

The transient analysis of the overall system based on the NF analysis is presented
in the next section, where G1 and G2 exhibit predominant electromechanical oscil-
lations.
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Table 3.1: Oscillatory Modes: Case 1

Mode Eigenvalue Pseudo-Freq Damping Time Constant Dominant

# (Hz) Ratio (%) t = 1
ζωn

States

5,6 −3.46± j93.2 14.8 3.17 0.289 E
′
q1, E

′
q2, E

′
q3, E

′
q4

7,8 −5.94± j88.3 14.0 6.71 0.168 Control unit G2

9,10 −18.1± j62.8 9.99 27.7 0.055 Control unit (G3,G4)

11,12 −17.3± j64.5 10.3 25.9 0.057 Control unit G1

13,14 −1.51± j6.73 1.07 21.9 0.662 Local, Area 2(δ1, δ2, ω1, ω2)

15,16 −1.69± j6.51 1.03 25.1 0.593 Local, Area 1(δ1, δ2, ω1, ω2)

17,18 −0.135± j2.28 0.36 5.9 7.41 Inter�area (δ1, δ2, δ3, δ4)

Table 3.2: Oscillatory Modes: Case 2

Mode Eigenvalue Pseudo-Freq Damping Time Constant Dominant

# (Hz) Ratio (%) t = 1
ζωn

States

5,6 3.61± j107.9 17.2 -3.34 -0.277 E
′
q1, E

′
q2, E

′
q3, E

′
q4

7,8 1.73± j104.1 16.6 -1.66 -5.79 Control unit G2

9,10 −11.4± j77.8 12.4 14.5 0.088 Control unit (G3,G4)

11,12 −10.3± j79.9 12.7 12.8 0.097 Control unit G1

13,14 −1.56± j6.64 1.05 22.9 0.641 Local, Area 2(δ1, δ2, ω1, ω2)

15,16 −1.72± j6.44 1.02 25.8 0.581 Local, Area 1(δ1, δ2, ω1, ω2)

17,18 −0.132± j2.23 0.36 5.92 7.55 Inter�area (δ1, δ2, δ3, δ4)
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3.4.5 Case 1-2: Bene�ts of using 3rd order approximation for
modal interactions and stability analysis
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Figure 3.6: Comparison of di�erent NF approximations: Case 1
When the system is close to its limits of stability as depicted by Case 1, Fig.3.6 shows
that the linear analysis gives wrong predictions concerning the dynamic behavior of
the system. 2nd-order and 3rd-order Normal Form approximations can both better
model the system dynamic response than the Linear Method.
The proposed third-order approximation, called 3-3-3, is superior over the other
methods since it makes possible to model the interactions of oscillatory of non-
oscillatory modes up to order 3, contributing to a better modeling of the frequency
variation of the oscillations as recently formulated in [4], [74].
Concerning Case 2, the system is such that the linear analysis leads to the compu-
tation of two oscillatory modes with a negative damping (See modes (5,6) and (7,8)
given by Tab. 3.2). According to the conventional small-signal stability analysis,
the overall system is then considered as unstable. However, as shown in Fig. 3.8,
the system's nonlinearities contribute to the overall stability of the system [5]. The
comparison of the di�erent NF approximations shows that only methods keeping
3rd-order terms in the normal dynamics are able to predict the stability of the
system (3-2-3S and proposed 3-3-3 approximations).
The inear analysis predicts that Gen 1 loses its synchronization (the power angle
reaches 180◦), at around 19s. In the physical meaning, it indicates that the synchro-
nization torque is weak if only its linear part is considered. From the eigineering
view, considering that the power system works in the nonlinear domain, its working
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Figure 3.7: FFT Analysis of di�erent NF approximations: Case 1
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capacity can be exploited to the maximum.
Although 2-2-1 and 3-3-1 have done a better job in considering the higher-order
modal participation, they cannot predict the stability as their Normal Dynamic is
linear and the stability only depends on the eigenvalues.
By keeping trivially resonant 3rd order terms in the Normal Dynamics, 3-2-3S and
3-3-3 can better predict the stability of the system. Shown in all the cases, method
3-3-3 is more accurate and the results are more realistic.
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Figure 3.9: Dynamics of Dominant State Variables Associated to Positive Eigenvalue
Pairs: Case 2

The dynamic responses by numerical simulation of the state-variables associated
with the modes having a negative damping are shown in Fig. 3.9 (the left for
E′q1, E

′
q2, E

′
q3, E

′
q4 and the right for the Control Unit of Gen2). Even if some eigen-

values have a negative real part, the damping a�orded by the nonlinearities have to
be taken into account for a correct stability analysis.

3.4.6 Nonlinear Analysis Based on Normal Forms

It has been validated by the time-domain simulation in the previous section that the
normal dynamics well approximate the system dynamics. In this section, the MNF
is used to make quantitative analyses of the system dynamics using the nonlinear
indexes.

3.4.6.1 Initial Condition and Magnitude at Fundamental Frequency

The initial conditions in the Jordan form (y0) and for methods 2-2-1 (z0221), 3-3-1
(z0331) and 3-3-3 (z0333) are listed in Tab. 3.3. It has to be noticed that method
3-2-3S has the same initial conditions as method 2-2-1, i.e. z0323 = z0221. From
the initial condition, it can be seen that the magnitude of the ratio of y017, z022117,
z033117, z033317 over z033317 is respectively equals to 124%, 107.8%, 107.7% and
100%, which approximately matches the ratios at the fundamental frequency of the
di�erent curves in Fig. 3.7.
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Table 3.3: Initial Conditions

j y0 z0221 z0331 z0333

5 5.14 + j2.93 3.89 + j2.38 3.88 + j2.38 0.3105 + j0.3263

7 −6.36− j2.73 −3.24− j0.95i −3.24− j0.95 −0.36− j2.49

9 −1.35− j1.39 0.48− j3.14 0.58− j2.3 0.75− j1.59

11 −9.84− j4.25 −6.07− j4.58 −6.27− j4.58 −0.54− j3.84

13 −0.25− j0.21 −0.27− j0.08 −0.226− j0.085 −0.20− 0.22i

15 0.32 + j0.10 0.04− 0.0012i 0.05− j0.0012 0.072 + j0.05

17 0.87 + j2.52 0.82 + j2.16 0.84 + j2.10 1.70 + j1.31i

Table 3.4: 3rd Order Coe�cients for Mode (17, 18)

p, q, r (DF2h2)jpqr F3jpqr h3jpqr

(17,17,17) 0.046− j0.118 0.029 + j0.034 0.017− j0.019

MI3jpqr h31717,17,17 MI3jpqr Tr3

0.1220 0.0068 + j0.008 0.0560 0.33

3.4.6.2 Distribution of the Frequency Spectrum

The third order spectrum can be found by MI3jpqr. Among all the MI3jpqr,
MI317(17)(17)(17) and MI318(18)(18)(18) contribute most to the 3rd order spectrum of
the rotor angle oscillations. The 3rd order coe�cients for mode (17, 18) are listed

in Tab. 3.4, with MI3jpqr calculated by h3jpqr.
Comparing results of Tab. 3.4 with data extracted frm Fig. 3.7, it is seen that: 1)
MI31717,17,17 = 0.11 = 11% approximately matches the magnitude ratio of the 3rd

order component at approximately 1Hz; 2) ignoringDF2h2, h3jpqr is small and leads

to a too modest prediction of the 3rd order interaction MI3jpqr = 0.056 = 5.6%.
A deeper analysis can be made using NF methods compared to FFT analysis. For
example, MI31717,26,27 = 0.45 indicates a strong nonlinear interaction, however, since
Tr = 6.7341 × 10−4 and MI3 × Tr = 3.03 × 10−4 such a short duration will be
di�cult to be captured by FFT analysis.

3.4.6.3 Frequency Shift of the Fundamental Component

It can be also noted that there is a shift in the fundamental frequency. As already
mentioned, it is indicated by the imaginary part of index SIIj2l. Among all those co-
e�cients, coe�cients SIIj18 are predominant and Tr3 indicates a long-time in�uence
as listed in Tab. 3.5. Although the real part of SIIj18 are too small to contribute
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to the stability compared to λj , its imaginary part indicates that the there is a
frequency shift added to the eigen-frequency.

Table 3.5: Resonant Terms associated with Mode (17, 18)

j SIIj18 λj + λ2l + λ2l−1 Tr3

5 −1.30− j2.59 −3.73 + j93.2 0.93

7 0.48 + j0.96 −6.21 + j88.3 0.96

9 0.0117 + j0.17 −18.37 + j62.8 0.98

11 −0.51− j1.52 −17.57 + j64.5 0.98

13 0.074− j0.25 −1.78 + j6.73 0.85

15 0.89 + j0.532 −1.96 + j6.51 0.86

17 0.12− j0.678 −0.405 + j2.28 0.33

This analysis corroborates with the analysis of the frequency spectrum in Fig. 3.7.
If there are no resonant terms in the normal forms, the fundamental frequency of
the system oscillatory dynamics will be exactly as ωj .

3.4.6.4 Stability Assessment

Seen from Tab. 3.6, the nonlinear interactions can enhance (e.gMI355,5,6) or weaken

the stability (e.g MI3j7,17,18). Only taking into account one speci�c MI3 without
considering its time pertinence will lead to a wrong prediction. In this sense, the
stability assessment proposed by method 3-3-3 is more rigorous and comprehensive
than method 3-2-3. As SI5 � 0, SI7 � 0, modes (5,6) and (7,8) are essentially
stable, as validated by the time domain analysis, as shown in Fig. 3.8.
The proposed nonlinear stability indicators make possible to better use the power
transfer capability of the power grid. For example, in the studied case, the high-gain
exciter can improve the system response to a fault, which is not shown using the
conventional eigen-analysis.

3.5 Applicability to Larger Networks with More Com-

plex Power System Models

For larger networks with more complex models, method 3-3-3 is more demanding
since the modeling of modal interactions is more complex, such as for the case of the
New England New York 16 machine 5 area system [75], whose typology is shown in



3.5. Applicability to Larger Networks with More Complex Power
System Models 141

Table 3.6: Stability Indexes of Mode (5, 6),(7, 8)

2l − 1 SII52l Tr3 real(SII)× Tr35

5 −53.54− j109.77 0.33 -17.6682

9 −3.37− j6.34 −0.18 −0.63

13 −3.06− j7.56 7.50 −22.95

15 −6.5− j11.7 22.50 −146.25

17 −1.60− j4.15 1.08 −1.72

SI5 = 3.61− 17.6682− 0.63 + 22.95− 146.25− 1.72 = −185.6082

2l − 1 SII72l Tr3 real(SII)× Tr37

5 −105.3− j221.7 0.2 −21.06

9 −5.0− j8.94 0.0821 −0.41

13 −3.21− j8.81 1.24 −3.99

15 −4.57− j8.67 1.01 −4.62

17 0.29 + j1.31 1.1801 0.34

SI7 = 1.73− 21.06− 0.41− 3.99− 4.62 + 0.34 = −28.01

Fig. 3.10. It is composed of �ve geographical regions out of which NETS and NYPS
are represented by a group of generators whereas, the power import from each of the
three other neighboring areas are approximated by equivalent generator models (G14
to G16). G13 also represents a small sub-area within NYPS. Generators G1 to G8
and G10 to G12 have DC excitation systems (DC4B); G9 has a fast static excitation
(ST1A), while the rest of the generators (G13 to G16) have manual excitation as
they are area equivalents instead of being physical generators [75]. The realistic
parameters and well validated Simulink models can be found in [75, 76], where the
generators are modeled with the sub-transient models with four equivalent rotor
coils. There are 15 pairs of electromechanical modes, among which there are 4 inter-
area modes. This system is unstable when no PSS or only one PSS is installed [75].
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Figure 3.10: New England New York 16-Machine 5-Area Test System [75]

3.5.1 Modelling of the System of Equations

3.5.1.1 The Sub-transient Generator Model

A frequently used generator model is the sub-transient model with four equivalent
rotor coils as per the IEEE convention. The slow dyanmics of the governors are
ignored, and the mechanical orques to the generators are taken as constant inputs.
Standard notations are followed in the following di�erential equations which repre-
sent the dynamic behavior of the ith generator [77]:

dδi
dt = ωs(ωi − 1) = ωsSmi

2Hi
Smi
dt = (Tmi − Tei)−DiSmi

T
′
q0i

dE
′
di
dt = −E′di + (Xqi −X

′
qi){−Iqi +

(X
′
qi−X

′′
qi)

(X
′
qi−Xlsi)2

((X
′
qi −Xlsi)Iqi − E

′
di − ψ2qi)}

T
′
d0i

dE
′
qi

dt = Efdi − E
′
qi + (Xdi −X

′
di){Idi +

(X
′
di−X

′′
di)

(X
′
di−Xlsi)2

(ψ1di + (X
′
di −Xlsi)Idi − E

′
qi)}

T
′′
d0i

dψ1di
dt = E

′
qi + (X

′
di −Xlsi)Idi − ψ

′
1di)}

T
′′
q0i

dψ2qi

dt = −E′di + (X
′
qi −Xlsi)Iqi − ψ

′
2qi)}

Tci
dE
′
dci
dt = Iqi(X

′′
di −X

′′
qi)− E

′
dci

(3.38)
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where, Tei = E
′
diIdi

(X
′′
qi−Xlsi)

(X
′
qi−Xlsi)

+ E
′
qiIqi

(X
′′
di−Xlsi)

(X
′
di−Xlsi)

− IdiIqi(X
′′
di − X

′′
qi) +

ψ1diIqi
(X
′′
di−X

′′
di)

(X
′
di−Xlsi)

− ψ2qiIdi
(X
′′
qi−X

′′
qi)

(X
′
qi−Xlsi)

and Iqi+jIdi = 1/(Rai+jX
′′
di){E

′
qi

(X
′′
di−Xlsi)

(X
′
di−Xlsi)

+ψ
′
1di

(X
′
di−X

′′
di)

(X
′
di−Xlsi)

−Vqi+j[E
′
di

(X
′′
qi−Xlsi)

(X
′
qi−Xlsi)

−

ψ
′
2qi

(X
′
qi−X

′′
qi)

(X
′
qi−Xlsi)

− Vdi + E
′
dci]}

qi

di

x

y

qk

dk

δi
δk

ωs

Figure 3.11: The Rotating Frame and the Common Reference Frame of 16 Machine
System

The reference frame transformation from the DQ frame to dq frame is

I = Iq + jId = ejδi(Ix + Iy);Vg = Vx + jVy = ejδi(Vqi + jVdi);

3.5.1.2 Excitation Systems (AVRs)

Two types of automatic voltage regulators (AVRs) are used for the excitation of
the generators. The �rst type is an IEEE standard DC exciter (DC4B) (shown in
Fig. 3.12) and the second type is the standard static exciter (ST1A).
The di�erential equations governing the operation of the IEEE-DC4B excitation
system are given by (3.39), while for the IEEE-ST1A are given by (3.40):

Te
dEfd

dt = Va − (KeEfd + EfdAexe
BexEfd)

Ta
dVa
dt = KaVPID − Va

VPID = (Vref + Vss − Vr −
Kf

Tf
(Efd − Vf ))(Kp + Ki

s + sKd
Td+1)

Tr
dVr
dt = Vt − Vr

Tf
dVf
dt = Efd − Vf

(3.39)
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where Efdmin ≤ Va ≤ Efdmax;Efdmin/Ka ≤ VPID ≤ Efdmax/Ka.

Figure 3.12: Exciter of Type DC4B [78]

Efd = KA(Vref + Vss − Vr)

Tr
dVr
dt = Vt − Vr

(3.40)

where Efdmin ≤ Efd ≤ Efdmax.
Here, Efd is the �eld excitation voltage, Ke is the exciter gain, Te is the exciter time
constant, Tr is the input �lter time constant, Vr is the input �lter emf, Kf is the
stabilizer gain, Tf is the stabilizer time constant, Vf is the stabilizer emf, Aex and
Bex are the saturation constants, Ka is the dc regulator gain, Ta is the regulator
time constant, Va is the regulator emf, Kp, Ki, Kd and Td are the PID-controller
parameters, KA is the static regulator gain, Vref is the reference voltage and Vss is
output reference voltage from the PSS.

3.5.1.3 Modeling of Power System Stabilizers (PSSs)

Besides, the excitation control of generators, we use PSSs as suppelements to damp
the local modes. The feedback signal to a PSS may be the rotor speed (or slip),
terminal voltage of the generator, real power or reactive power generated etc. Signal
is chosen which has maximum controllability and observability in the local mode.
If the rotor slip Sm is used as the feedback signal then the dynamic equation of the
PSS is given by (3.41)

Vss = Kpss
sTw

1 + sTw

(1 + sT11)

(1 + sT12)

(1 + sT21)

(1 + sT22)

(1 + sT31)

(1 + sT32)
Sm (3.41)
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Here Kpss is the PSS gain, Tw is the washout time constant, Ti1 and Ti2 are the ith

stage lead and lag time constants respectively.

3.5.2 Case-study and Results

Using (3.14) to avoid the zero eigenvalues and neglecting the zero eigenvalues caused
by the exciter and PSS controller parameters (the time constant of exciter and PSS
controller are much more smaller than that of the electromechanical modes), the
eigenvalue analysis shows that this system has 15 pairs of electromechanical modes
among which there are 4 inter-area modes, as shown in Tab. 3.13 and Tab. 3.14 .

Figure 3.13: The Electromechanical Modes of the 16 Machine System When No PSS
is Equipped [75]

No. Damping Frequency State Participation State Participation State Participation State Participation

Ratio(%) (Hz) State Factor Factor State Factor State Factor

1 -0.438 0.404 δ(13) 1 ω(13) 0.741 ω(15) 0.556 ω(14) 0.524

2 0.937 0.526 δ(14) 1 ω(16) 0.738 ω(14) 0.5 δ(13) 0.114

3 -3.855 0.61 δ(13) 1 ω(13) 0.83 δ(12) 0.137 ω(6) 0.136

4 3321 0.779 δ(15) 1 ω(15) 0.755 ω(14) 0.305 δ(14) 0.149

5 0.256 0.998 δ(2) 1 ω(2) 0.992 δ(3) 0.913 ω(3) 0.905

6 3.032 1.073 δ(12) 1 ω(12) 0.985 ω(13) 0.193 δ(13) 0.179

7 -1.803 1.093 δ(9) 1 ω(9) 0.996 δ(1) 0.337 ω(1) 0.333

8 3.716 1.158 δ(5) 1 ω(5) 1 ω(6) 0.959 δ(6) 0.958

9 3.588 1.185 ω(2) 1 δ(2) 1 δ(3) 0.928 ω(3) 0.928

10 0.762 1.217 δ(10) 1 ω(10) 0.991 ω(9) 0.426 δ(9) 0.42

11 1.347 1.26 ω(1) 1 δ(1) 0.996 δ(10) 0.761 ω(10) 0.756

12 6.487 1.471 δ(8) 1 ω(8) 1 ω(1) 0.435 δ(1) 0.435

13 7.033 1.487 δ(4) 1 ω(4) 1 ω(5) 0.483 δ(5) 0.483

14 6.799 1.503 δ(7) 1 ω(7) 1 ω(6) 0.557 δ(6) 0.557

15 3.904 1.753 δ(11) 1 ω(11) 0.993 Ψ1d(11) 0.056 ω(10) 0.033

Figure 3.14: The Electromechanical Modes of the 16 Machine System When all 12
PSSs are Equipped [75]
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No. Damping Frequency State Participation State Participation State Participation State Participation

Ratio (%) (Hz) Factor Factor State Factor State Factor

1 33.537 0.314 ω(15) 1 ω(16) 0.982 δ(7) 0.884 δ(4) 0.857

2 3.621 0.52 δ(14) 1 ω(16) 0.645 ω(14) 0.521 δ(15) 0.149

3 9.625 0.591 δ(13) 1 ω(13) 0.83 ω(16) 0.111 ω(12) 0.096

4 3.381 0.779 δ(15) 1 ω(15) 0.755 ω(14) 0.304 δ(14) 0.148

5 27.136 0.972 ω(3) 1 δ(3) 0.962 ω(2) 0.924 δ(2) 0.849

6 18.566 1.08 ω(12) 1 δ(12) 0.931 E
′
q(12) 0.335 PSS4(11) 0.196

7 23.607 0.939 δ(9) 1 ω(9) 0.684 PSS3(9) 0.231 PSS2(9) 0.231

8 30.111 1.078 δ(5) 1 ω(5) 0.928 ω(6) 0.909 δ(6) 0.883

9 28.306 1.136 ω(2) 1 δ(2) 0.961 δ(3) 0.798 ω(3) 0.777

10 13.426 1.278 ω(1) 1 δ(1) 0.969 E
′
q(1) 0.135 ω(8) 0.111

11 18.83 1.188 δ(10) 1 ω(10) 0.994 E
′
q(10) 0.324 PSS3(10) 0.19

12 32.062 1.292 δ(8) 1 ω(8) 0.935 E
′
q(8) 0.61 PSS2(8) 0.422

13 39.542 1.288 δ(4) 1 ω(4) 0.888 E
′
q(4) 0.706 PSS4(4) 0.537

14 33.119 1.367 δ(7) 1 ω(7) 0.909 δ(6) 0.653 ω(6) 0.612

15 23.87 5.075 ω(11) 1 E
′
q(11) 0.916 Ψ1d(11) 0.641 PSS4(10) 0.464

This system is unstable with positive eigenvalues of electromechanical modes as
shown in Tab. 3.13. And the PSS is therefore used to stabilise this system. When
placing PSSs on G1 to G12 (the maximum number of possible PSSs), all the local
modes are damped, and 3 inter-modes are poorly damped, as shown in Tab. 3.14.
No more information is available from the linear analysis to damp the inter-area
modes [75]. When a three-phase fault is applied to G13 and cleared in 0.25s, the
machines exhibit nonlinear inter-area oscillations and �nally damp out to a steady-
state equilibrium in 50s, as shown by the frequency spectrum in Fig. 3.15. As all
the local-modes are well damped, the components at frequency higher than 1Hz are
expected as nonlinear interactions.
When placing PSSs only on G6 and G9 (the minimum number of PSSs to ensure
the stability of the system), all inter-area modes are poorly damped as listed in
Tab. 3.7. When there is a three-phase short circuit fault applied near the end of
G13, generators in all the 5 areas exhibit poorly damped electromechanical oscilla-
tions and �nally damp out to a steady-state equilibrium in a large time. Since the
linear participation factor of G13 is [0.0075 0.7997 0.0214 0.6871] on the inter-
area modes 1-4, only Mode 2 and Mode 4 will be e�ectively excited, while Mode 1
and Mode 3 are trivially excited. However, as observed from the frequency spectrum
in Fig. 3.16, there are signi�cant components at 0.5Hz (G14, the fundamental fre-
quency of Mode 3), at 0.8Hz (G15, the fundamental frequency of Mode 1), around
1.0Hz (G6,G9,G13,G14,G15, the frequency is not corroborated with any inter-area
mode). Therefore, SII and MI3 are expected to give additional information to
identify the modal interactions.
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Figure 3.15: FFT Analysis of Generator Rotor Angles' Dynamics when G1 to G12
are equipped with PSSs

Table 3.7: Inter-area Modes of the 16 Machine 5 Area System with PSSs Present
on G6 and G9

Mode 1 2 3 4

damping ratio 3.35% 0.55% 1.58% 2.76%

frequency (Hz) 0.7788 0.6073 0.5226 0.3929
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Figure 3.16: FFT Analysis of Generator Rotor Angles' Dynamics when G1 to G12
are equipped with PSSs
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Table 3.8: Search for Initial Conditions in the NF Coordinates

Method Case 1 Case 2

Iterations Resolution Iterations Resolutions

3-3-3 12 1.294e-12 17 1.954e-6

2-2-1/3-2-3 3 1.799e-11 6 1.838e-06

3-3-1 7 1.187e-09 11 7.786e-09

In this case, method 3-3-3 may provide more information to: 1) reduce the number
of PSSs; 2) damp the inter-area modes. The siting of PSSs based on NF analysis is
not the issue to be dealt with in this chapter, and it can be found in [20].

3.6 Factors In�uencing Normal Form Analysis

3.6.1 Computational Burden

The essence of NF analysis is to calculate the nonlinear indexes to predict the
modal interactions and to give information on the parameters in�uencing the system
stability, which is composed of two phases of computations:

1. the SEP Initialization in order to obtain the eigen matrix λ and matrices F2

and F3, which depends on the post-fault SEP;
2. the Disturbance Initialization in order to obtain the initial points in the NF

coordinates, which depend on the disturbances the system experiences.
The values of nonlinear indexes depend both on the SEP and the disturbances. Item
2 has been discussed in detail in [47, 48] while Item 1 is somewhat neglected in the
literature.

3.6.1.1 Search for the Initial Conditions

In this chapter, the search for the initial conditions is performed using the Newton-
Raphson (NR) method [67], the starting search point is y0, and it converges in several
iterations, as shown in Tab. 3.8. This is because the normal coe�cients h2 and h3

are small in size. When these coe�cient are large in size (near strong resonance
case), the search for z0, w0 can be extremely slow and even fails to converge.
A more robust algorithm is proposed in [47] to circumvent some disadvantages of
NR method, which can be adopted also for the 3rd order NF methods.
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3.6.1.2 SEP Initialization

If the power load changes, the SEP initialization must be restarted. The calculation
of the nonlinear matrices F2 and F3 can be extremely tedious. The problem is
that matrices F2 and F3 are composed of complex values. Using the same Matlab
function to calculate matrices A, H2, H3,Λ, F2 and F3 for the IEEE 4 machine case
it leads to di�erences from 200s to 2000s. Reducing the time needed to multiply
complex matrix can be a direction to optimize the program.
Once the perturbation model around the SEP is established in Jordan form, calcu-
lation of nonlinear indexes can be computed in a short time.

3.6.2 Strong Resonance and Model Dependence

Validated using 4th order or higher order generator models, the proposed method 3-
3-3 also inherits the applicability to systems modeled by 2nd order generator models
as method 3-3-1 used in [54], and 3rd order generator as method 3-2-3S used in [5].
The technique works where method 3-3-1 is not applicable. For example, using clas-
sical models with zero mechanical dampings, the eigenvalues will be pure imaginary,

i.e σj=0. In this case, method 3-3-1 fails to be applied, since h3jj2l−12l =∞, (Mode
(2l-1,2l) being a conjugate pair that leads to a strong resonance).
In addition, as the eigenvalues are purely imaginary, the stability boundary proposed
in [5,16] (see Eqs.(13) and (22)) will be wrongly predicted, as the stability boundary

will be calculated as Rj =

√
− real(λj)

real(cj=2k
2k )

= 0.

Method 3-3-3 is more complete, as it can make possible to predict both the impor-
tance of modal interactions and to proposes nonlinear stability indexes for a broader
ranges of implemented models.

3.7 Conclusion of the Reviewed and Proposed Methods

3.7.1 Signi�cance of the Proposed Research

With the nonlinear indexes, the proposed method 3-3-3 makes possible to quantify
the third-order modal interactions and o�ers some pertinent information for stability
analysis, providing a better tool compared to the linear or other existing normal
forms methods. The indication given by the nonlinear indexes are validated by
time-domain simulation and FFT analysis.Factors in�uencing NF analysis, such are
the computational burden and the model dependency are discussed.
Besides, this chapter gives a good review of existing MNFs along with a performance
evaluation of the di�erent NF approximations studied in this work (see Tab. 3.9).

3.7.2 Future Works and Possible Applications of Method 3-3-3

Based on the proposed 3rd-order NF approximations, potential applications could
be emerged such as:
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Table 3.9: Performance evaluation of the studied NF approximations

Method Resolution Order of Modal Transient Applicability to

Interaction Stability 3rd Order Modes

Linear O(2) 1st Linear None

2-2-1 O(3) 2nd Linear None

3-2-3S O(3) 2nd Non-linear Oscillatory

3-3-1 O(3) 3rd Linear Non-oscillatory

3-3-3 O(5) 3rd Non-linear All

1. Methods to �nd the optimal location of Power System Stabilizers;
2. Sensibility analysis based on the higher-order participation factors to aid in

the design of the power system structure and controller's parameters tuning;
3. Nonlinear stability analysis to better predict the power transfer limits of the

system. Transferring as much as possible power with an existing grid is of
major interest.



Chapter 4

Application of Method NNM:
Transient Stability Assessment

Transient stability assessment, is one of the most important issue for power sys-

tems composed of generators. The existing popular tools are either the time-domain

simulation or direct methods. Time-domain simulation stability analysis is time-

consuming and therefore makes the on-line assessment impossible. The current direct

methods involving the energy function formulation to calculate the energy threshold

of rotor angle is di�cult to implement due to the quadratic nonlinearities. In this

chapter, analytical stability bound is provided by method NNM for transient stability

assessment. Taking into account the 3rd order nonlinearities from the Taylor series,

the proposed method NNM cancels the quadratic nonlinearities and conserves only

the self-conserving cubic nonlinearities in the nonlinear normal modes by nonlinear

transformations, leading to a conservative prediction of the stability bound.

The proposed stability bound has been assessed in SMIB system and Kundur's 2 area

4 machine system. Conclusions and Perspectives are given.

Keywords: Analytical Transient Stability Analysis, Stability Bound, 3rd
Normal Forms, Nonlinear Normal Mode
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4.1 Introduction

Nowadays the electricity is transferred and distributed in a more smart way, leading
to interconnected power grid which is a complex and large-scale system with rich
nonlinear dynamics. Local instabilities arising in such a power network can trigger
cascading failures and ultimately result in wide-spread blackouts.
The detection and rejection of such instabilities will be one of the major challenges
faced by the future �smart power grid�. The envisioned future power generation will
rely increasingly on renewable energies such as wind and solar power. Since these
renewable power sources are highly stochastic, there will be an increasing number of
transient disturbances acting on an increasingly complex power grid. Thus, an im-
portant issue of power network stability is the so-called transient stability, which is
the ability of a power system to remain in synchronism when subjected to large tran-
sient disturbances (event disturbances) such as faults or loss of system components
or severe �uctuations in generation or load.
The power system under such a large disturbance can be considered as going through
changes in con�guration in three stages: from prefault, to fault-on, and then to
postfault systems. The prefault system is usually in a stable equilibrium point
(SEP). The fault occurs (e.g a short circuit), and the system is then in the fault-on
condition before it is cleared by the protective system operation. Stability analysis
is the study of whether the postfault trajectory will converge (tend) to an acceptable
steady-state as time passes [3].
Transient stability has become a major operating constraint of the interconnected
power system. The existing practical tools for transient stability analysis are either
time-domain simulation or direct methods based on energy-function and Lyapounov
direct method. For other tools, a literature review can be found in Section 1.5.2.

4.2 Study of Transient Stability Assessment and Trans-

fer Limit

The transient stability analysis focus more on the electromechanical oscillations
caused by large disturbances. The classical models of generators that are used in
that case are:

δ̇ = ω (4.1)

2Hω̇ = Tm − Te −D(ω − ωs)

In alternating current (AC) systems, the generators must all operate in synchronism
in steady state. When a fault occurs on the system, the electrical power output of
some generators Te (usually those near the fault) will tend to decrease. Since the
turbine power input Tm does not change instantaneously to match this, these gen-
erators will accelerate above the nominal synchronous speed. At the same time,
the electrical power output of other generators may increase, resulting in decelera-
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Figure 4.1: The Spring Mass System for the Illustration of the Transient Process
When the System Experiences Large Disturbances

tion below the nominal synchronous speed. As a fundamental property of rotating
equipment, the generators must all reverse their trends before the energy imbalances
become so large that return to synchronous operation is impossible.
Transient stability analysis focuses on this phenomenon, which is analogues to the
experience with a spring-mass system, as shown in Fig. 4.1.
When we pull the mass away from its equilibrium point x = 0, the spring will give

a resistance that once we lease it, it will be pulled back, shown as Fig. 4.1. c©; the

further it deviates from the equilibrium point, the bigger the resistance. When it

returns back to the equilibrium, the force is zero, but the speed ẋ is not zero, there-

fore, the mass continues to move, and the spring gives it a resistance to decrease

ẋ until ẋ = 0, shown as Fig. 4.1.b. When ẋ = 0, the resistance reaches to the

maximum, and it pushes the mass to move from Fig. 4.1. b© to Fig. 4.1. c©. If there

is a damping, after several oscillations, the mass will stop at the equilibrium after

several oscillations, and the spring-mass system comes to steady state. If there is

no damping, the spring-mass system will continue the periodic oscillation. Both the

damped oscillation and the periodic oscillation indicate a transient stability. How-

ever, when the displacement x is too much big, the mass will not go back to the

equilibrium point, and the system is not stable anymore. In the power system, the
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Figure 4.2: Typical Swing Curves [79]

resistance is the synchronizing torque, and the damping is equivalent to mechanical

damping, damping winding, etc. The objective is to �gure out the stability bound of

x, which is the transfer limit of the interconnected power system.

When generators accelerate or decelerate with respect to each other, their speed
deviations (and the corresponding angle deviations) constitute swings. If two or
more generators swing apart in speed and then reverse, their return to synchronism
could be considered ��rst-swing stable� if the analysis concludes at the point of
return. The transient stability and the �the �rst-swing unstable� is illustrated in
Fig. 4.2. (However, it happens that the system becomes unstable after the �rst
swing [3], as shown in Fig. 4.3 and Fig. 4.4, which is di�cult to explain. This may
be explained by the proposed stability assessment index and time pertinance index.)

A time domain simulation is performed on the well validated matlab simulink model
[76] to assess the transient stability. When there is a three-phase short circuit
fault applied on Bus 13 and cleared in 0.30s, generators in all the 5 areas exhibit
oscillations, with the dynamics of rotor angles shown in Fig. 4.4. The oscillations
�rstly damp, and nearly converge to the steady state in 32s, but then they begin to
dissipate later. For such a case, it is di�cult to decide when to stop the simulation
and analytical tools are needed.
Compared to the nonlinear analysis conducted the Chapter 3, the biggest di�erence
between the small-signal analysis and the transient analysis is that:
The nonlinearity in the small signal analysis is mainly contributed by
xSEP , and the nonlinearity in the transient analysis is mainly contributed
by 4x
Example Case 3
Taking the single-machine in�nite-bus (SMIB) system as an example with classical
model as (4.2):

δ̇ = ωsω (4.2)

ω̇ = (Pm − Pe −Dω(ω − 1))/(2H)
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Figure 4.3: New England and New York 16-Machine 5-Area Test System [75]
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Figure 4.4: Example Case 4: Simulation of Rotor Angles' Dynamics of the New
England New York 16-Machine 5-Area System
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Figure 4.5: Representative Example of SMIB System

with

Pmax =
E′qE0

X
,Pe = Pmax sin δ , Pm = Pmax sin δep (4.3)

where Pm is the mechanical input in the machine, Pe is the electrical power supplied
by the machine, δep is the equilibrium point. Dω is the damping on the rotor speed.
The parameters are set as E0 = 1, E′q = 1.7, X = 1, 2H = 3, D = 0.
When there is a three-phase short circuit fault applied on the transmission line, as
observed from Fig. 4.6, the system behavior is predominantly nonlinear that the
linear analysis fails to approximate, though this system is unstressed. When the
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Figure 4.6: Example Case 3: The Unstressed SMIB System under Large Disturbance

disturbance is big enough, the system will be unstable. The objective of Transient
Stability Assessment (TSA) is to predict the maximum disturbance that the system
can experience while maintaining the stability.

4.2.1 Existing Practical Tools

4.2.1.1 Time-domain simulation tools

Until recently, transient stability analysis has been performed in power companies
mainly by means of numerical integrations to calculate generator behaviours rela-
tive to a given disturbance. EMTP software such as PSCAD, phasor-type software
such as Matlab/SymPower have to be used. By those time-domain simulation pro-
grams, a clear picture of the post-fault trajectory can be obtained. The time-domain
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simulation is advantaged in the sense that:
1. it is directly applicable to any level of detail of power system models;
2. all the information of state variables during transient process as well as steady-

state is available;
3. the results are visual and can be directly interpreted by system operators.

However, the main disadvantages are that:
1. it is time-consuming;
2. it fails to o�er analytical results, i.e., it tells whether the system is stable, but

fails to tell the degrees of the stability, e.g the stable margin [3] which is crucial
to exploit the power transfer limit and maximize the economic opportunities.

Therefore analytical methods are required to do the on-line stability assessment and
serve as a preventive tool.

4.2.1.2 Direct Methods(Ribbens-Pavella and Evans, 1985 [41]; Chiang,
1995 [3])

An alternative approach is the direct methods employing the energy functions (Lya-
pounov's second method for stability). It avoids the step-by-step time-domain sta-
bility analysis of the post-fault system, and also provides a quantitative measure
of the degree of system stability to provide guide in the power system planing and
operating.
There are three main steps needed for direct methods:

1. Constructing an energy function for the post-fault system, say V (δ, ω)

2. Computing the critical energy value Vcr for a given fault-on trajectory (say,
based on the controlling u.e.p method).

3. Comparing the energy value of the state when the fault is cleared, say
V (δcl, ωcl), with the critical energy value Vcr. If V (δcl, δcl) < Vcr, the postfault
trajectory will be stable. Otherwise, it may be unstable.

By direct methods, conservative transient stability is found.
For the single-machine in�nite-bus(SMIB) direct methods are easy to be imple-
mented, one method is named the equal-area (E-A) criterion [1] with good visual-
ization and good interpretation.
However, for the high-dimension systems (a multi-swing case, which is widespread
in the inter-area oscillations in the interconnected large-scale problem), formulating
the energy function (multi-variable function) is a challenging work, demanding very
skilful interpretors and operators.
What's more, the Lyapounov second method for stability analysis requires the equi-
librium point hyperbolic (there is no eigenvalue having zero-real part), making it not
appropriate for the weakly-damping or zero-damping case.
Those drawbacks make the direct methods academically prospective but impractical
for industry until 1990s.
After 1990s, with the development of computing algorithms, the applicability range
of direct methods is enlarged. However, the computing development bene�ts more
the time-domain simulation tools than the direct methods tools. The current market
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is still a: small-signal analysis + time-domain analysis.
However, it is also di�cult to interpret the results obtained by direct methods, as
the physical meanings are obscured by the energy concept. The recently proposed
tool such as the F-A curve [4] is an e�ort to make the direct method visual by
using the direct methods to establish the one-to-one mapping between the oscillation
amplitude and frequency. However, it is based on the assumption that the nonlinear
behaviour of the global system is the sum of the individual behaviour of each system
component, which is not mathematically proved, and far from our experience with
the physical systems.
When interpreting the physical motion by energy concept, the direct methods are
not that �direct�.

4.2.1.3 Problem Formulating

In essence, the problem of transient stability analysis can be translated into the
following: given a set of non-linear equation with an initial condition, determine
whether or not the ensuing trajectories will settle down to a desired steady-state.
In this sense, time-domain simulation is too time-consuming in providing unneces-
sary details and direct-methods employing the energy functions not to highlight the
physical motion of the power dynamics.
Let's go to the fundamentals and we will note that: the couplings in the nonlinear-
ities make the analytical solutions unavailable. To settle this problem, a method
based on Normal Form (NF) Theory is proposed to simplify the nonlinearities by
the use of nonlinear transformations. The procedure is well documented in [30, 51]
and consists of 4 major steps:

1. Simplifying the linear part of a system by the use of a linear transformation;
2. Simplifying the nonresonant terms of higher-order terms by successive Normal

Form (NF) transformations.
3. Simplifying the Normal Dynamics by neglecting (if possible) some resonant

terms that can not be annihilated by NF transformations;
4. Using the chosen Normal Dynamics for dynamic and stability analysis.

4.2.1.4 Existing Normal Form Methods

In [5,16,48] the formulas of di�erent NF methods are derived, the normal dynamics
are in the Jordan form where complex numbers are involved. For [48], the normal
dynamics are linear and the stability analysis is a linear analysis plus higher-order
�uctuations. In [5, 16], some 3rd order terms are kept to render a more accurate
prediction of the nonlinear stability based on which the stability bound is proposed.
However, as the stability bound is the threshold of the rotor angle, which is a
real number, extra e�ort is made to transform the complex number to the real
number, leading to additional computational errors. Those methods are summarized
as methods on vector �elds in Chapter 2.
Another approach is to keep the di�erential equation in the second-order form, and
to decouple the linear matrix in [2× 2] blocks to avoid the computation of complex
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numbers. It originates from the Touzé's method to formulate the nonlinear normal
mode [17]. The nonlinear normal mode (NNM) is the basic particular solution of
the nonlinear dynamics. By studying NNM, the nonlinear properties of the system
dynamics are revealed and quanti�ed.
In [40], it also formulates the nonlinear normal mode to study the power system
dynamics. However, it is based on the Shaw-Pierre method, and fails to suggest
accurately the nonlinear system stability. Discussions on SP method can be found
in Section 2.5.9.
The comparisons between the time-domain simulation, direct methods employing
energy functions and the proposed NF method are listed in Tab. 4.1. The advantages
and disadvantages of each method are summarized in the Sections. 4.2.2, 4.2.3.

4.2.2 Advantages of the Presented Methods

4.2.2.1 Advantages of Time-domain Simulations

1. it is directly applicable to any type of power system models;
2. all the information of state variables during transient as well as steady-state

is available;
3. the results are visual and can be directly interpreted by system operators.

4.2.2.2 Advantages of TEF Methods

1. It avoids time-consuming numerical integration of a postfault power system.
2. It makes quantitative measure of the degree of system stability available

• It provides information to designing network con�guration plans to push
the power system to its operating limits
• The derivation of preventive control actions

4.2.2.3 Advantages of Methods of Normal Forms

1. Analytical conservative stability bound is predicted;
2. It provides clear physical insights: notion of modes is kept in the normal dy-

namics, which is better to predict the motion compared to the energy equation
based methods.

3. It is easy to be implemented with clear physical meanings that anyone who
has knowledge with nonlinear di�erential equations can implement it.

4. It is applicable for high-dimensional system: the complexity does not increase
drastically with the high-dimensional systems.

4.2.3 Challenges for the Presented Methods

4.2.3.1 Challenges for Time domain simulations

1. It is di�cult to be applied for large-dimensional system;
2. It is di�cult to decide when to stop the simulation.
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Table 4.1: Comparisons of the Presented Methods

Methods Time-domain
Step-by-step
Integration

Direct Methods
employing energy
functions

NF methods em-
ploying Normal
Modes

Principle The post-fault
trajectory ob-
tained by step-by-
step simulation
tells the stability

The potential en-
ergy decides the
stability

The Normal
Forms of the
system (obtained
by nonlinear
transformation
conserving the
�invariance prop-
erty�) tells the
stability

Trajectories and
dynamics

Prefault trajec-
tory, fault-on
trajectory, post-
fault trajectory

trajectory is un-
known

postfault tra-
jectory of elec-
tromechanical
oscillations

State-variables rotor angle, cur-
rents, voltages...

Energy: V (δcl) Rotor angle: δ

Computation
1. Numerical,

o�-line
2. Step-by-

step inte-
gration

3. The com-
putational
time is
typically
between
10-30s

4. Qualitative
stability
assessment

1. Mostly-
Numerical

2. No integra-
tion of post-
fault trajec-
tory but

3.
computational
time: mil-
liseconds

4. Calculation
of
V (cr), V (X(t+cl)),
if
V (X(t+cl)) <
Vcr,then
x(t) is
stable;
otherwise,
unstable.

1. Explicitly
analytical
results

2. Systematic
procedure

3. stability
bound can
be system-
atically
calculated
out in mi-
croseconds.
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4.2.3.2 Challenges for TEF Methods

1. The modelling: not every (post-fault) transient stability model admits an
energy function, e.g the model contains the quadratic nonlinearities;

2. The function: only applicable to �rst swing stability analysis of power system
transient stability models described by pure di�erential equations;

3. The reliability: the reliability of a computational method in computing the
controlling UEP for every study contingency.

4.2.3.3 Challenges for Methods of Normal Forms

1. The modelling: real-form approach is just for network-reduction model,vector-
�eld approach can cover network-preserving model [48]

2. The function:only applicable to �rst swing stability analysis
3. The reliability:the reliability of a computational method in computing the

controlling UEP for every study contingency

4.2.4 A Brief Review of the Proposed Tool: Method NNM

The nonlinear electromechanical oscillations in interconnected power system can be
modelled as second-order coupled oscillators. If the variables of the power system,
around a given equilibrium point, are gathers in a N dimensional vector q, the basic
model under study writes:

Mq̈ +Dq̇ +Kq + fnl(q) = 0 (4.4)

In the above equation, M and D are constant symmetric inertia and damping
matrix, whose values depend on the physical parameters of the power system and
controller parameters. K and fnl indicate the coupling between the variables, where
K is a constant matrix, including the linear terms and fnl gathers the nonlinear
terms.
If fnl is developed in a Taylor series up to the third order, it comes:

fpnl(q) =

N∑
i=1,j≥i

f2pijqiqj +

N∑
i=1,j≥i,k≥j

f3pijkqiqjqk (4.5)

where fpij and fpijk (i, j, k, p = 1 . . . N) are coe�cients of the quadratic and cubic
terms. Components of K and fnl depend on the chosen equilibrium point and the
system structure, for example, the network connectivity of the power grids.
It is seen that (4.4) is a N -dimensional nonlinear dynamical problem.

4.2.4.1 LNM

As viewed from (2.86), the dynamics physical property (oscillatory frequency, damp-
ing, friction, etc) is obscured by the mathematical model.
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In order to decouple the equation into second-order oscillators, a linear transforma-
tion 4q(t) = Φx(t) can be used.
After decoupling the linear terms, the system dynamics is therefore characterized
by a group of oscillators with coupled nonlinearities.

Ẍp+2ξpωpẊp + ω2
pXp (4.6)

+

N∑
i=1

N∑
j≥i

gpijXiXj +

N∑
i=1

N∑
j≥i

N∑
k≥j

hpijkXiXjXk = 0

where ξp is the p-th modal damping ratio. And gpij and h
p
ijk are quadratic and cubic

nonlinearities coming from decoupling of KS , which are given in Chapter 2.
Neglecting all the nonlinearities, the (4.6) reads a Linear Normal Mode (LNM):

Ẍp + 2ξpωpẊp + ω2
pXp = 0 (4.7)

4.2.4.2 NM2

Using a second order NF transformation to cancel all the 2nd-order terms, the
Normal Forms in the new coordinate U − V is:

Üp + 2ξpωpU̇p + ω2
pUp +O(3) = 0 (4.8)

4.2.4.3 NNM

Using a 3rd order NF transformation to cancel all the 2nd-order terms and the
non-resonant 3rd order terms, the Normal Forms in the new coordinate R− S is:

R̈p+2ξpωpṘp + ω2
pRp (4.9)

+ (hpppp +Apppp)R
3
p +Bp

pppRpṘ
2
p + CppppR

2
pṘp = 0

with the coe�cients (Apijk, B
p
ijk, C

p
ijk) arise from the cancellation of the quadratic

terms [17,18] and are de�ned in (2.109).

4.2.4.4 Analytical Stability Bound for Transient Stability Assessment

Since the bound of Rp indicates the bound the Xp, in Section 2.6.2, the proposed
stability bound (PSB) is de�ned as:

PSB = RpKnlΦ + qSEP (4.10)

with

Rp ≤

√
−

ω2
p

hpppp +Apppp
(4.11)
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and Knl is de�ned to consider the nonlinear scaling bround by the NF transforma-
tion:

Knl =
Rp
Xp

=
1

1 + apppp + rpppp
(4.12)

4.2.5 Technical Contribution of the Method NNM

The proposed method NNM uses nonlinear transformation up to 3rd order to cancel
all the 2nd order and part of 3rd order nonlinearities in the normal dynamics.
It deals with the second-order equation directly, the complex numbers are avoided,
and the computational burden is reduced while better physical meanings are pre-
served. Compared to the reviewed methods, it has the advantages as:

1. it provides analytical conservative stability bound;
2. it keeps the notion of modes, which is better to predict the motion compared

to the energy equation based methods;
3. it is easy to be implemented with clear physical meanings, anyone who has

knowledge with nonlinear di�erential equations can implement it;
4. its complexity does not increase drastically with the high-dimensional systems.

4.2.6 Structure of this Chapter

In Section 4.1, an introduction to the problematic is made with a bibliographical
review of the existing practical tools.
The mathematical modelling of test systems are established in Section 4.3.
In Section 4.4, it shows how the normal-mode based MNFs can work on the transient
stability assessment of interconnected power systems.
The conclusions and perspectives are made in Section 4.5.

4.3 Network Reduction Modelling of the Power System

4.3.1 Modelling of SMIB System

The classic electro-mechanical model of one single machine connected to the grid
with voltage V0 (as shown in Fig. 4.7), with constant amplitude e.m.f E′q and the
state variables are δ and ω, which can be descibed by the di�erential equations are
as follows:

δ̇ = ωsω (4.13)

ω̇ = (Pm − Pe −Dω(ω − 1))/(2H) (4.14)

with

Pmax =
E′qV0
Xe

, Pe = Pmax sin δ , Pm = Pmax sin δep (4.15)

where Pm is the mechanical input in the machine, Pe is the electrical power supplied
by the machine, δep is the equilibrium point. Dω is the damping coe�cient on the
rotor speed.
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Figure 4.7: Representative Example of SMIB System

4.3.2 Modeling of Multi-Machine System

By reducing the network, the interconnected power system exhibiting oscillations
can be essentially characterized as a multi-machine model.

2Hi

ωb
δ̈i = Pmi − Pei −

Dωi

ωb
δ̇i (4.16)

where

Pei = E2
iGgii +

N∑
k=1
k 6=i

EiEk [Ggik cos δik +Bgik sin δik] (4.17)

Ei is the terminal voltage of the i-th machine and Ggik is the conductance between
machine i and k, Bgik is the susceptance between machine i and k.

4.3.3 Taylor Series Around the Equilibrium Point

For a perturbation around the equilibrium point (δ0i ), the state-variable is changed
into 4δ = δ − δ0,4ω = ω − ω0. As in the free-oscillation case, ω0 = 1. (4.16)
can therefore be written as (4.4).

4.3.3.1 Synchronization Torque for SMIB System

The synchronization torque is given as the �rst, second and third derivative of Pe.

KS = cos δep ,K2S = −sin δep
2

,K3S = −cos δep
6

(4.18)

4.3.3.2 Synchronization Torque for Multi-Machine System

[KSij ] =
∂Pei
∂δj

=


∑N

k=1
k 6=i

EiEj
[
−Ggik sin δ0ik +Bgik cos δ0ik

]
, j = i

EiEj
[
Ggik sin δ0ik −Bgik cos δ0ik

]
, j 6= i

(4.19)
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For i-th machine, Ki
2Sij ] = 1

2
∂2Pei
∂δiδj

reads:

Ki
2Sii = −

∑N
k=1
k 6=i

EiEk
[
Ggik cos δ0ik +Bgik sin δ0ik

]
Ki

2Sij = EiEj

[
Ggij cos δ0ij +Bgij sin δ0ij

]
, j 6= i

Ki
2Sjj = −EiEj

[
Ggij cos δ0ij +Bgij sin δ0ij

]
, j 6= i

(4.20)

For i-th machine, Ki
3Sijk = 1

6
∂3Pei
∂δiδjδk

, it reads:



Ki
3Siii = 1

6

∑N
k=1
k 6=i

EiEk
[
Ggik sin δ0ik −Bgik cos δ0ik

]
Ki

3Siij = −1
2EiEj

[
Ggij sin δ0ij −Bgij cos δ0ij

]
, j 6= i

Ki
3Sijj = 1

2EiEj

[
Ggij sin δ0ij −Bgij cos δ0ij

]
, j 6= i

Ki
3Sjjj = −1

6EiEj

[
Ggij sin δ0ij −Bgij cos δ0ij

]
(4.21)

4.3.4 Reducing the State-Variables to Avoid the Zero Eigenvalue

In the multi-machine system composed of N generators, if no in�nite bus exists,
there is zero-eigenvalue, in such a case, the proposed Stability Bound is not e�cient.
In another word, if all the variables δi,δj , ∀i, j ∈ N are unstable, the global system
can still be stable if δij is stable. i.e., the stability is ensured once the synchronization
is ensured.
To avoid the zero-eigenvalue, we can use δin, δjn instead of δi, δj , therefore δij =

δin − δjn.
Starting from the di�erential equations:

2Hi

ωb
δi −

Dwi

ωb
δ̇i = Pmi − Pei (4.22)

2Hn

ωb
δn −

Dwn

ωb
δ̇n = Pmn − Pen (4.23)

When Hi = Hj = H, Di = Dj = D, Eq. (4.22)-Eq. (4.23) leads to

2H

ωb
(δ̈i − δ̈n)−D(δ̇i − δ̇n) = Pmi − Pmn − (Pei − Pen) (4.24)

Calculating Taylor series around the equilibrium point, ∀i = 1, 2, · · · , n− 1:

2H

ωb
4δ̈N +

D

ωb
4 ˙δN +K′S4δN +K′2S4δ2N +K′3S4δ3N = 0 (4.25)



166
Chapter 4. Application of Method NNM: Transient Stability

Assessment

where4δN = 4δi−4δn, and4δ2N contains the quadratic terms such as4δiN4δjN
and 4δ3N contains the cubic terms such as 4δiN4δjN4δkN
Then the coe�cients KS ,K2S ,K3S are replaced as:

K ′Sij =
∂(Pei − Pen)

∂δjN
= KSij + EnEi

[
Ggni sin δ0ni −Bgni cos δ0ni

]
(4.26)

For i-th machine, K
′i
2Sij ] = 1

2
∂2(Pei−Pen)
∂δiN δjN

reads:

K
′i
2Sii = Ki

2Sii + EnEi
[
Ggni cos δ0ik +Bgik sin δ0ik

]
K
′i
2Sij = Ki

2Sijj 6= i

Ki
2Sjj = Ki

2Sjj + EnEj

[
Ggnj cos δ0nj +Bgnj sin δ0nj

]
j 6= i

(4.27)

For i-th machine, Ki
3Sijk = 1

6
∂3Pei
∂δiδjδk

, it reads:

K
′i
3Siii = Ki

3Siii + EnEi
[
Ggni sin δ0ni −Bgni cos δ0ni

]
K
′i
3Siij = Ki

3Siij , j 6= i

K
′i
3Sijj = Ki

3Sijj , j 6= i

K
′i
3Sjjj = Ki

3Sjjj + 1
6EnEj

[
Ggnj sin δ0nj −Bgnj cos δ0nj

]
(4.28)

4.4 Case-studies

4.4.1 SMIB Test System

4.4.1.1 Nonlinearity and Asymmetry

Fig. 4.8 and Fig. 4.9 show how the di�erent methods approximate the rotor an-
gle dynamics in the transient process, where the NNM captures the two nonlinear
properties of the electromechanical oscillations: 1)asymmetry; 2)amplitude depen-
dent frequency-shift [4, 21,22].
In all the �gures, the curve LNM is symmetric, as it is in the linear case.
For δSEP = π

2.4 , the oscillatory frequency is f = 0.836hZ, and the nonlinear oscil-
latory frequency calculated by (2.133) is f = 0.78hZ is closer to the exact system
dynamics.
For δSEP = π

12 , the oscillatory frequency is f = 1.62hZ, and the nonlinear oscilla-
tory frequency calculated by (2.133) is f = 1.24hZ is closer to the exact system
dynamics.
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Figure 4.8: A Case Where the System Works to its limit: δSEP = π
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Figure 4.9: A Case Where the System Works to its limit: δSEP = π
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4.4.1.2 Analytical Stability Bound for Transient Stability Assessment

More results are listed in Tab. 4.2, where the stability bound predicted by the
method NNM is labeled as �PSB� and the stability bound predicted by the E-A
criteria is labelled as �EAB�. To illustrate the in�uence of the nonlinear scaling
factor Knl, the stability bound predicted in the R − S coordinates by Rp is also
listed.
As observed from Tab. 4.2, the PSB is smaller than EAB, while R1max can be
bigger than EAB. Therefore, by considering the nonlinear scaling, the prediction of
stability bound is conservative and more accurate. The stability bound predicted
by PSB is veri�ed by time-domain simulation as shown in Fig. 4.10 and Fig. 4.11.
Fig. 4.10 shows that when the δ goes beyond the boundary, NNM can predict the
instability in the system dynamics, while LNM and NM2 fails. Fig. 4.11 shows that
when the δ reaches the stability bound predicted by EAB, the rotor angles keeps still
and the frequency of oscillations is zero; PSB indicates that the system is unstable,
while LNM and NM2 indicates that the system is still stable.
Therefore, corroborated with the EAB and the time-domain simulations, the PSB
conducts a conservative transient stability assessment for the SMIB system.
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Table 4.2: The Proposed Stability Bound, E-A Bound and Bound without Consid-
ering the Nonlinear Scaling Factor

δ0 R1max PSB EAB Error1 Error2

+δ0 Bound Rbound+δ0−EAB
EAB

PSB−EAB
EAB

π
2 1.5708 1.5708 1.5708 0 0
π
2.1 1.6790 1.6380 1.6456 2.03% -0.46%
π
2.2 1.7766 1. 6985 1.7136 3.68% -0.88%
π
2.3 1.8643 1.7526 1.7757 4.99% -1.30%
π
2.4 1.9430 1.8010 1.8326 6.02% -1.73%
π
2.5 2.0136 1.8440 1.8850 6.82% -2.17%
π
2.6 2.0769 1.8823 1.9333 7.43% -2.64%
π
2.7 2.1337 1.9164 1.9780 7.87% -3.12%
π
2.8 2.1848 1.9467 2.0196 8.18% -3.61%
π
2.9 2.2307 1.9763 2.0583 8.38% -4.11%
π
3 2.2719 1.9976 2.0944 8.48% -4.62%
π
4 2.5174 2.2700 2.3562 6.84% -3.66%
π
5 2.6100 2.3960 2.5133 3.85% -4.67%
π
6 2.6449 2.4587 2.6180 1.03% -6.08%
π
7 2.6557 2.4917 2.6928 -1.38% -7.47%
π
8 2.6557 2.5096 2.7489 -3.39% -8.71%
π
9 2.6508 2.5192 2.7925 -5.07% -9.79%
π
10 2.6438 2.5241 2.8274 -6.50% -10.73%
π
11 2.6359 2.5262 2.8560 -7.71% -11.55%
π
12 2.6278 2.5267 2.8798 -8.75% -12.26%
π
13 2.6200 2.5261 2.8999 -9.65% -12.89%

4.4.2 Multi-Machine Multi-Area Case: IEEE 4 Machine Test Sys-
tem

In the multi-machine case, the E-A criterion doesn't work any more. However, the
PSB still works.
The test system selected for this work is a well known IEEE standard system,
Kundur's 2�area 4�machine system, shown in Fig. 4.12.
It is a classical system suitable for the analysis of modal oscillations for the validation
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Figure 4.10: When the oscillation amplitude is beyond the bound, δmax = 2.9798
for δep = π
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Figure 4.11: When the oscillation amplitude is beyond the bound, δmax = 2.9798
for δep = π
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of small-signal analysis [1], and for the validation of 2nd order Normal Form analysis
[48]. In the renewable energy generation case, the power generated by G1 and G2 is
unbalanced due to the uni�ed distribution of wind energy. And there is a power �ow
around 415MW through the tie line between Area 1 and Area 2. The mechanical
damping is weak to obtain the fast response to capture the maximum wind energy.
The generators are modelled using classical model [73], assuming that the excitation
voltage is constant. The loads L1 and L2 are modelled as constant impedance, and
no PSS is equipped. The data for the system and selected case are provided in
Appendix. Open source Matlab toolbox PSAT v1.2.10 is used to do the eigen
analysis and the full numerical time domain simulation, based on the well validated
demo d_kundur1.
As indicated before, dynamics of state-variable δi can not reveal the stability prop-
erty of the whole system. Because there is no in�nite bus, it is the synchronization
determines the stability, i.e., the relative motion between δi and δj .
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Figure 4.12: IEEE 4 machine test system

In this sense, rotor angle of the 4th generator is served as the reference. And the
stability is decided δ14, δ24, δ34. It is a weakly damped and highly stressed large-scale
interconnected power system. It has one inter-area mode and two local modes.
The case of concern is interarea oscillations.

Case: There is a three-phase short-circuit fault at Bus 5, after a certain
time, the fault is cleared, the rotor angles are measured as δmax. In this
case, only the inter-area mode is excited.

Fig. 4.13 shows that when the interarea oscillations are under the stability bound,
among all the methods, NNM approximates the system dynamics (`EX') to the best.
As observed from Figs. 4.14, 4.15 and 4.16, the PSB predicts a conservative
stability bound.

4.5 Conclusion and Future Work

4.5.1 Signi�cance of this Research

The PSB can suggest a conservative stability bound for both the SMIB system and
the interconnected system, i.e., this proposed method can be used to study not only
the case where the fault is caused by loss of a machine but also the loss of one area.

4.5.2 On-going Work

Two things are due to done to complete the tests:
• Testing the PSB on larger networks, e.g, the New England New York 16 Ma-
chine 5 Area System;
• Comparing the performance of method NNM with the TEF methods.
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4.5.3 Originality and Perspective

It is for the �rst time that the transient stability is assessed by taking the nonlin-
earities simpli�ed by normal form transformations. In the sense of �simplest form�
(the principle of MNFs), it makes possible to calculate a minimum of nonlinearities
and therefore develop a tool more applicable for larger networks composed with
more generators. The current work is to test the applicability of the proposed tool
on larger networks and to work in the engineering part. The perspective of this
research task is to make possible:
On-Line Transient Stability Assessment of Large Interconnected Power
Systems
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Chapter 5

From Analysis to Control and
Explorations on Forced

Oscillations

In previous chapter, nonlinear analysis using the proposed methodologies are made

with investigations on the advantages and limitations. The objective of nonlinear

analysis is to have a clear picture of the system dynamics.

The next step is to improve the system dynamic performances, i.e, to the control

techniques to enhance the system stability. Concerning nonlinear control, two ap-

proaches are proposed. One is the nonlinear analysis based control, the other is the

nonlinear model decoupling basis control.

The �rst approach is to improve the system dynamic response based on the extra

information o�ered by the nonlinear analysis, which is recently popular. The prin-

ciple of the second approach is to decouple the nonlinear system and is named as

�Nonlinear Modal Control�. The second approach is for the �rst time proposed in

this PhD work and it is very original and innovative

Besides the explorations on the control, analytical investigations on the forced os-

cillations are conducted, which is the �rst step to implement the nonlinear modal

control. And the derivation of Normal Forms under forced oscillations illustrates

further the philosophy of normal form theory.

For both approaches, a literature review of similar works are conducted, to show the

necessity and expected scienti�c contribution of the proposals.

As several novel concepts concerning the nonlinear modal control are proposed in this

chapter and in order to facilitate the reader's comprehension, their linear counterpart

are �rstly illustrated and then extended to the nonlinear domain. This PhD research

may kick the door for future researches or another couple of PhD dissertations.

In the �nal section, it also provides an innovative proposal in research of normal

form theory� the derivation of the control form of normal form.

Keywords: Conclusion of Nonlinear Analysis, On-going Works, Nonlinear
Modal Control
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5.1 From Nonlinear Analysis to Nonlinear Control

This PhD research works on the very fundamental problems concerning nonlin-
ear systems having multiple input with coupled dynamics. Multiple input system
with coupled dynamics almost cover all the modern industrial systems, since high-
performance industrial electromechanical systems are often composed of a collection
of interconnected subsystems working in collaboration. These dynamical systems
can be found everywhere and contribute largely to our daily life, to the national
economy and global development.
In the previous chapters of this PhD dissertation, methodologies to analyze the dy-
namics of some types of multiple input systems with coupled dynamics are proposed
and validated with case-studies of interconnected power systems.
However, the more important thing in this work, is to point out the way to use the
information obtained from the analysis to improve the dynamic performance of the
system, such as enhancing the system stability, damping the interarea oscillations
and etc. This can be partly done by designing the parameters of the system using
the analysis results as a reference, partly done by controlling the existing system.
In Chapter 2 with the case study of interconnected VSCs, method NNM has already
shown its ability to quantify the in�uence of physical parameters the nonlinearity
in the system. Therefore, a rather simple but rude way is to design the physical
parameters such that the system can work in a region where it can be viewed as
a linear system. Then all the advantages of linear systems would be granted. (Of
course, method 3-3-3 can do a similar job.)
However, it is very di�cult or expensive to design parameters in such a way, or
impossible, especially for the electric power system. Therefore, the main technique
to improve the system dynamics is to control it.
Based on EMR + IBC (which is introduced in Chapter 1), once the system's be-
haviours can be quanti�ed by the analytical analysis, the control strategies can
be developed to improve the system dynamic performance, since the relationship
between control and analysis can be described as Fig. 5.1:

Figure 5.1: Control and Analysis
• For the analysis, it is to predict the �output� from the given �input�;
• For the control, it is Analysis + Feedback.
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where the �output� is system dynamic performance, such as the motion, the oscil-
lation and etc; and the �input� can be the design parameter of the physical system,
such as the parameters of the controller, the placement of the stabilizers,..., and the
external force.

5.2 Two Approaches to Propose the Control Strategies

There are innumerable approaches to develop the control strategies to improve the
system dynamic performances. Based on the accumulated experience in linear con-
trol, there are two typical approaches:
• Analysis based control strategy: the principle of this type of control strategy
is to obtain the best analysis results. Examples can be found in tuning the
controller parameters. The mathematical model of the system including the
controllers is �rstly formed, and secondly the indexes quantifying the system
dynamics are calculated, thirdly the search algorithm is lanced to search to
optimizes the indexes to ensure a best dynamic performance. Examples of
linear control can be found in tuning the controllers and aid in the location of
controllers.
• Decoupling basis control strategy: the principle of this type of control strategy
is to decouple the multiple input system with coupled dynamics into inde-
pendent subsystems, and control strategies are proposed to control those sub-
systems independently by imposing the command force. The command force
are calculated by inverse the mathematical model of the system dynamics and
plus the compensation. Examples of linear control strategies belonging to this
type can be found in vector control, and modal space control.

In this chapter, the linear control is extended to the nonlinear domain. To illustrate
this, the concerned linear control strategies are reviewed and then the methods to
extend the linear controls to the nonlinear domain are outlined.

5.3 Approach I: Analysis Based Control Strategy

5.3.0.1 Tuning the controllers:

a. Tuning the controller or stabilizers by linear small signal analysis:
In the linear analysis and control, analysis-based control strategies are widely used
to tune the controller parameters, such as tuning the controller parameters based
on sensitivity-analysis. The model is based on x = Ax, since the eigenvalues of A
decides the stability of the system and the time needed to reach steady state, the
objective is to obtain the wanted eigenvalues. This method is especially e�cient for
automatic tuning of controller composed of cascaded loops, as shown in Fig. 5.2.
Fig. 5.2 indicates an example coming from the Virtual Synchronous Machine control
of voltage source converter (VSC) [29]. The objective is to reduce the time constant
of the critical eigenvalues (the eigenvalues with the biggest time constant), therefore
the system will have fastest possible dynamic response. It is a heuristic process
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to tune the parameters with the highest sensibility factor (i.e the parameters that
contribute the most to the critical eigenvalues), as shown in Fig. 5.3. More details
can be found in [29,80].

Figure 5.2: The Controller Composed of Cascaded Loops

b. Tuning the controllers or stabilizers based on the nonlinear indexes: As
indicated in the previous sections, the stability and the oscillation of the nonlinear
systems can be quanti�ed by the nonlinear indexes. And it is the nonlinear indexes
such as SI and MI3 that predict accurately the system dynamic performance (
such as stability and modal oscillations), rather than the eigenvalues. Therefore,
the principle to tune the controller parameters taking into account the nonlinear
properties is to obtain the desired nonlinear indexes. To enhance the stability is
to reduce the real part of SI, and to damp the oscillation is to reduce MI3. An
example can be found in [16], where the parameters of PSS are tuned to obtain the
best nonlinear stability performance.
The nonlinear sensitivity-analysis based algorithm for tuning the controllers is shown
in Fig. 5.4

5.3.0.2 Aid in the Location of Stabilizers:

The stabilizer can damp the oscillations in the dynamical system, such as the Power
System Stabilizer (PSS) for power systems. However, the stabilizers can be expen-
sive and di�cult to be equipped. An important issue in power system is to damp the
oscillations to the maximum with a minimum number of PSSs. One choice to place
the stabilizer on the symtem component that contributes the most to the oscillations
in the system dynamics. And the principle of this type of control strategies is to
damp the oscillations by locating the stabilizer on the system component containing
the states that have largest participation factors.
a. Locating the stabilizer using linear participation factor We take New
England New York 16 machine 5 area system as an example, which is presented in
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Figure 5.3: The Sensitivity-Analysis Based Algorithm of Tuning the Controllers
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Figure 5.4: The Proposed Nonlinear Sensitivity-Analysis Based Algorithm for Tun-
ing the Controllers
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Chapter 1 & Chapter 3. The PSSs are equipped on the generators with the highest
participation factor in the oscillations. As in Chapter 3, by locating the PSSs on
the G6 and G9 (whose electromechanical states contributes much to the oscillations
in the interconnected power system).
b. Locating the stabilizer based on the nonlinear indexes Since the nonlinear
oscillations can be quanti�ed by analytical nonlinear sollutions, nonlinear partici-
pation factor can be proposed. And the nonlinear oscillations can be damped to
the maximum by placing the stabilizers on the system component with the highest
nonlinear participation factor.
Second participation factors have been proposed by several literatures [32, 48, 58].
And the third participation factors can be similarly proposed. For sake of compact-
ness, the third participation factors are not listed in this PhD dissertation, and the
reader can easily deduce them under the light of [48,58].

5.3.0.3 Assigning the Power Generation

Indicated by Chapter 3 & Chapter 4, the power transfer limit can be predicted
more accurately by taking into account of the nonlinearities. In the interconnected
power system, there may be numerous generators or electric sources which work in
collaboration to deliver the load. Knowing the power transfer limit can help us to
optimize the power generation assignments, to exploit the system's working capacity
to the maximum, which is crucial for optimal operation and planning processes of
modern power systems. This problem is more economical than technical.

5.4 Approach II: the Nonlinear Modal Control

The �rst approach is almost an o�-line approach, is there an approach to do the

5.4.1 State-of-Art: The Applied Nonlinear Control

In the milestone book �Applied Nonlinear Control�, whose �rst edition is published
in 1991 by Slotine,a professor in MIT, the nonlinear control strategies in practice
are reviewed [81] and can be classi�ed into three groups [82].

1. The most common control method is to ignore the nonlinearities and assume
their e�ects are negligible relative to the linear approximation and then design
a control law based on the linear model. Despite numerous other methods de-
vised for �nding �equivalent� linear systems, the most popular procedure is the
Taylor series of the equations of motion around the stable equilibrium point
and abandoning the nonlinear terms. It is the most common method, since
it is the simplest method to be implemented and can be applied to systems
with large numbers of degrees of freedom. However, as Nayfeh and Mook men-
tioned, a number of detrimental e�ects can be over looked when nonlinearities
are ignored [55]. �von Kármán observed that certain parts of an airplane can
be violently excited by an engine running at an angular speed much larger
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than their natural frequencies, and Lefschetz described a commercial aircraft
in which the propellers induced a subharmonic vibration in the wings which
in turn induced a subharmonic vibration in the rudder. The oscillations were
violent enough to cause tragic consequences.�

2. The second most common control method is to apply linearizing control to
the system such that the system acts as if it is linear. By changing the state
variables and/or applying a control which linearizes the system, the nonlinear
equations of motion are transformed into an equivalent set of linear equations
of motion, such as the feedback linearization control. The main bene�ts of lin-
earizing control are that the full range of powerful linear control methodologies
can be applied. However, major limitations exist for linearizing control [83].
Firstly, it cannot be used for all systems. Secondly, strict controllability and
observability conditions must be met. And �nally, robustness of the controlled
system is not guaranteed in the presence of parameter uncertainty. Any error
in the nonlinear part of the model will prevent the linearizing control from
linearizing the dynamics of the structure.

3. A third method is to apply robust control, such as H∞, and include the nonlin-
earities as uncertainties. Although this will lead to robust stability, it will not
provide robust performance. Clearly the best control law should come from
design using all of the available model information, which is not applicable in
industry practice [82].

5.4.2 The Limitations

Although the development of computation technology and microprocessors brought
numerous new methods to deal with nonlinear control, their principles still belong
to the above three groups.
As concluded from the their principles, these control methods either neglect the
nonlinearities or only add some compensations in the amplitudes. And they all
fail to consider the qualitative aspect of the non-linear behaviour accurately but
just endeavor increase the quantitative resolution. Those applied controls were
very practical, because at the moment when those nonlinear control strategies were
proposed, the analytical analysis results hadn't been available.
However, nowadays by the nonlinear analysis, nonlinear properties are exacted such
as the amplitude-dependent frequency-shift (which will in�uence the frequency of the
oscillations), the higher-order modal interaction and the nonlinear stability (which
will in�unce the decaying of the oscillations) . Therefore, control techniques may
be proposed to accurately take into account the nonlinearities.

5.4.3 Decoupling Basis Control

The decoupling basis control methods are very popular since they decompose the
complex multiple-input system having coupled dynamics into decoupled single input
single output (SISO) subsystems. One then needs only to control the SISO system,
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which is a solved problem. The techniques are easy to comprehend since it has clear
physical meanings.

5.4.3.1 Vector Control in Electrical Domain

Among the decoupling basis control methods, one famous example is the dq decou-
pling vector control based on the Park transformation proposed in 1929 by Robert
H. Park. It is �rstly applied to analyze the dynamics of electric drives by decompos-
ing the physical state variables into dq components, where d component contributes
to the magnetic �ux of the motor, the q component contributes the torque. By inde-
pendently controlling the dq components, the dynamic performance of electric drives
have been largely improved. Nowadays it has been generally applied in modelling,
analyzing and controlling of electrical systems, such as electrical drives, generators,
power electronics and etc. Even in this PhD dissertation, the test systems are mod-
elled in the dq synchronous frame, such as indicated by the equations in Chapter 3.
And another example can be found in Fig. 5.2. The vector control is almost the
most popular, classic and well konwn control method in electrical engineering.
In the vector control, the N -dimensional dynamical system are decoupled into �rst-
order 1-dimensional di�erential equations and the control strategies are implemented
independently based on each equation.

5.4.3.2 Modal Space Control in Mechanical Engineering

Similar to the analysis part, there are decoupling control methods for system mod-
elled as second-order di�erential equations, which are implemented in the modal
space.
Modal space control is very popular in the mechanical engineering, which can be
classi�ed into Independent Modal Space Control and Dependent Modal Space Con-
trol(DMSC). The modal approach has a more clear physical meaning, as it decouples
the N dimensional system (the original system) into N 1-dimensional subsystem,
and then all the subsystems are second-order oscillators. The solution in the modal
form can indicates the physical motion of the system, which is called as normal
mode. The modes are normal in the sense that they can move independently, that
is to say that an excitation of one mode will never cause motion of a di�erent mode.
In mathematical terms, linear normal modes are orthogonal to each other. The most
general motion of a linear system is a superposition of its normal modes. Therefore
the original N -dimensional problem is reduced to a series of 1-dimensional problems.
The problem complexity is largely reduced.
Inversely speaking, when each mode can be independently studied, the contribution
of each input to the dynamics of this system can be �gured out, and by imposing
di�erent inputs, desired response of the system can be obtained. The precision of
positioning control is largely increased. This is the principle of modal control. To the
author's knowledge, the linear modal control is �rstly realized by Balas in 1978 [84].
And the idea of �decoupling� and the concept �independent modal space control�
was �rst proposed by [85]. After that, linear modal control has been widely studied
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and applied. Normally, there are two types of linear modal control, Independent
Modal Space Control (IMSC) and Dependent Modal Space Control (DMSC) [86].
Both of them belong to linear modal control.
Compared to vector control, the advantage of modal space control is that it can be
implemented with fewer controllers and fewer loops. Controlling a system composed
of one second-order equation, two control loops should be implemented if vector
control is adopted; however, only one PID controller may be needed if modal space
control is adopted.
In this PhD dissertation, some explorations are made to generalize the linear modal
control into the nonlinear modal control.

5.4.4 A Linear Example of Independent Modal Space Control
Strategy

An example can be found in [87], whose principle can be shown in Fig. 5.5.

Figure 5.5: The Topology of the Linear Modal Control

It decouples the system under excitation represented by (5.1):

M q̈ +Dq̇ +Kq = F (5.1)

into a set of 1-dimensional second-order equations as (5.2).

Ẍj + 2ξjωjẊj + ω2
jXj =

ΦT
j Fj

Mj
(5.2)

Therefore, by intelligently choosing the Fj , the dynamics of Xj will be controlled as
desired. To compensate the time-delay and uncertainties in the system dynamics,
the feedfoward and feedback controllers are implemented to improve the control
performance [87]. Those technical details will not be addressed here and the reader
can refer to [87].
As shown in Fig. 5.6, the IMSC, which is based on the equation of the dynamical
system is a linear version of the equation studied in Chapter 2 and Chapter 4.
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Therefore, it can be generalized to nonlinear domain.

5.4.5 Nonlinear Modal Control

A schema of the proposed nonlinear modal control can be found in Fig. 5.6. The
principle is to decouple the nonlinear system into several nonlinear subsystems, and
independently control those subsystems or damp the desired modes.

Figure 5.6: The Topology of the Nonlinear Modal Control

5.4.6 How to do the nonlinear modal control ?

As shown in Fig. 5.6, we control the system dynamics by imposing the nonlinear
modal force. To implement the nonlinear modal control, there are two questions to
answer:
• What is the nonlinear modal force for each decoupled nonlinear mode ?
• How to impose the force ?

To answer the �rst question, we need to investigate the system dynamics under the
excitation. This is the �rst step.
To answer the second question, we use the inversion-based control (IBC) strategy.
This is the second step.

5.5 Step I: Analytical Investigation of Nonlinear Power

System Dynamics under Excitation

As presented in the Chapter 4, we essentially study the system dynamics modelled
by Eq. (5.3).

Mq̈ +Cq̇ +Kq + fnl(q) = 0 (5.3)
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Table 5.1: Comparison of Existing and Proposed Normal Form Approximations

Method Transformation Decoupled/Invariant Normal Dynamics Free Oscillations / Excited systems

LNM [55] linear decoupled linear free and forced

NNM [21,22] order 3 decoupled order 3 free

FDNF3 order 3 decoupled order 3 free and forced

with M and D are constant symmetric inertia and damping matrix, whose values
depend on the physical parameters of the power system and controller parameters.
K and fnl indicate the coupling between the variables, where K is a constant
matrix, including the linear terms and fnl gathers the nonlinear terms.
As observed from (6.2) and (5.3), the input is null. Therefore, the methodologies
presented in Chapters 2, 3, 4 focus on the case that the system is not excited, or the
excitation is constant. Or speaking from the perspective of mechanical engineering,
what we studied before are free-oscillations.
If we want to in�uence the system's nonlinear dynamics by imposing the force,
analytical investigation should be conducted on system dynamics under excitation.

5.5.1 Limitations and Challenges to Study the System Dynamics
under Excitation

Nonlinear analysis can replace the linear analysis as it does a better job in all
the three issues: describing the dynamic response, modal interactions and stability
analysis. However, the existing nonlinear analysis tools only deal with the case of
free oscillations (e.g the post-fault case after the fault is cleared), and not with
excited systems ( i.e the oscillations caused by variable power references or variable
loads). This largely limits the scope of the NF analysis. This is a big disadvantage
compared to the linear analysis, which can deal with the case when there are changes
in the input (voltage reference, power reference, load, etc) as well as when there are
no excitation (free oscillations).
The challenge is to take into account the force vector when doing the normal form
transformations. A methodology is proposed in Section 5.5 to overcome such a
challenge.

5.5.2 Originality

In this PhD work, a method is introduced to study the power system nonlinear forced
oscillations. To the author's knowledge, it is for the �rst time that an analytical
analysis tool based on NF theory is proposed to analyze the nonlinear power system
dynamic under excitation. This enlarges the scope of NF analysis and lays the
foundation for the lately proposed nonlinear modal control.
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5.5.3 Theoretical Formulation

The oscillatory modes of power system can be modeled by (5.4). If the variables of
the system are gathers in a N dimensional vector q, the motion equation writes as:

Mq̈ +Cq̇ +Kq + fnl(q) = F (5.4)

where M ,C are constant diagonal inertia and damping matrices, whose values
depend on the physical and controller parameters of the system. K and fnl indicate
the coupling between the variables, whereK is a constant matrix including the linear
terms and fnl gathers the nonlinear terms coming from the 2nd and 3rd order terms
of the Taylor series. F is the excitation vector.

5.5.4 Linear Transformation: Modal Expansion

A modal expansion q(t) = ΦTx(t) can transform (5.4) into modal coordinates with
decoupled linear part [55].

Ẍp+2ξpωpẊp + ω2
pXp (5.5)

+

N∑
i=1

N∑
j≥i

gpijXiXj +

N∑
i=1

N∑
j≥i

N∑
k≥j

hpijkXiXjXk = Fp

where ξp is the p-th modal damping ratio, and gpij and h
p
ijk are quadratic and cubic

nonlinearities coming from fnl in Taylor series. Neglecting the nonlinear terms in
(5.5), a linear model called LNM [55] is obtained and can be used both for analysis
and control of multi-input systems.

5.5.5 Normal Form Transformation in Modal Coordinates

A normal form transformation is proposed in [17,19], which reads, ∀p = 1 . . . N :

Xp = Rp +R(2)(Ri, Si) +R(3)(Ri, Si), Yp = Sp + S(2)(Ri, Si) + S(3)(Ri, Si),
(5.6)

where Yp = Ẋp, Sp = Ṙp and R(3),S(3) and R(3),S(3) are second order polynomials
and third order polynomials in Ri ans Si respectively, fully de�ned in [17, 19] and
are functions of the gpij and h

p
ijk coe�cients present in (5.5).

5.5.5.1 Normal Dynamics

Up to order 3 and keeping all the terms after the transformation, it leads to a set
of invariant oscillators (if no internal resonance occurs) de�ned as FNNM [17, 19].
FNNM separates the nonlinear terms into cross-coupling terms and self-coupling
terms. Neglecting the cross-coupling terms, the equations de�ning the normal dy-
namics are decoupled and de�ned as NNM and FDNF3.
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5.5.5.2 NNM

Free-damped Oscillations

R̈p+2ξpωpṘp + ω2
pRp (5.7)

+ (hpppp +Apppp)R
3
p +Bp

pppRpṘ
2
p + CppppR

2
pṘp = 0

5.5.5.3 FDNF3

Systems under excitation

Ṙp =Sp − 2bpppSpFp − cpppFpRp (5.8)

Ṡp =− ω2
pRp − 2ξpωpṘp

− (hpppp +Apppp)R
3
p −Bp

pppRpṘ
2
p − CppppR2

pṘp

+ Fp − 2βpppSpFp − 2γpppFpRp

It is shown that, when F is zero, (5.8) becomes (5.7). In other words, (5.7) is a
speci�c case of (5.8) or (5.8) is a generalization of (5.7). (5.8) shows that trans-
forming variables expressed in X − Y coordinates into R − S coordinates will add
coupling terms in the excitation vector F ( 2βpppSpFp − 2γpppFpRp terms). The NF
approximation decouples the state-variables but adds some coupling terms in the
excitation vector components.

5.5.5.4 Reconstructing the Results for the Original System

Multi-scale calculating methods can be used to compute an approximate analytical
solution of (5.7) and (5.8). From Rp, Sp variables, Xp, Yp can be reconstructed using
transformations (5.6). The e�ciency of FDNF3 is validated by a case-study based
on interconnected VSCs and compared to the classical linear analysis tool LNM.

5.5.6 Case�Study: interconnected VSCs under Excitation

5.5.6.1 Test System

Modern girds are more and more composed of renewable-energy-based power gen-
erators that can be interconnected to the grid through long transmission lines [88].
This weak grid con�guration can lead to nonlinear oscillations [22, 89]. To illus-
trate this particular case, a test case composed of two interconnected VSCs to a
transmission grid as been chosen, as shown in Fig. 5.7.
V SC1 and V SC2 are interconnected by a short connection line having a reactance
X12 and are both connected to the transmission grid by long transmission lines
having reactances X1, X2.
To study the nonlinear interactions under disturbances or variable references or
loads, a detailed mathematical model is �rsly made, which consists of the physical
structure as well as the current, voltage and power loops. To design the power
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Figure 5.7: Test System Composed of interconnected VSCs

loop, since the conventional PLL controller can cause synchronization problems
when facing connections using long transmission lines [66], the Virtual Synchronous
Machine (VSM) control strategy is adopted [29].
For the chosen test case, the equivalent switching frequency of VSCs is set as 1700Hz

and the control loops are tuned with time constants as Tcurrent = 5ms, Tvoltage =

60ms, Tpower = 1.47s. Large Volume Capacitor is installed to avoid the voltage
collapse.
The electromagnetic model of one VSC is a set of 13th order equations [29], and
the order of the overall system model can be higher than 26. Considering that the
current and voltage loops are linear and that the time constants of the three loops
respect Tpower � Tvoltage � Tcurrent, the voltage V1 and V2 at the Point of Common
Couplings (PCC) of VSCs are assumed sinusoidal with constant amplitudes and
power �ows are represented by dynamics in power angles. Thus, a reduced model to
study the nonlinear interactions of the system presented in Fig. 5.7, can be described
as (5.4). A 4th order model is then chosen to govern the nonlinear dynamics of the
system.

M1
d2δ1
dt2

+D1
dδ1
dt +

V1Vg
X1

sin δ1 + V1V2
X12

sin(δ1 − δ2) = P ∗1

M2
d2δ2
dt2

+D2
dδ2
dt +

V2Vg
X2

sin δ2 + V1V2
X12

sin(δ2 − δ1) = P ∗2

(5.9)

In (5.3), δ1 and δ2 represent the power angles. X1 and X2 are the reactances of the
transmission lines which connect the two VSCs to the transmission grid. X12 is the
reactance of the line interconnecting the two VSCs. V1, V2, Vg are the RMS voltages
at the PCC of the VSCs and at the grid. Finally, P ∗1 and P ∗2 are the active power
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Figure 5.8: System Dynamics under Step Excitation

references, which are set according to the expected operating points.

5.5.6.2 Selected Case Study

A case is selected to test the proposed method. Step Excitation in the Power
Reference: V SC1 and V SC2 respectively transfer an amount of power as 0.68pu

and 0.28pu. It is supposed that there is an increase in the wind energy supply,
which implies a step in the power reference of 0.2pu for both VSCs. The system
experiences then oscillations due to excitation.
The time-domain simulation is done by using a EMT software to assess the perfor-
mance of the proposed method.

5.5.6.3 Original Results

The dynamics in the power angles of the VSCs, δ1 and δ2 are shown in Fig. 5.8.
The step excitation in P ∗1 = P ∗ equal to 0.2pu happens at the time t = 0.5.
Fig. 5.9 shows that, as proposed by the classical linear analysis, the system dynamic
can be decoupled into 2 simpler ones Ex ≈ Sub1 + Sub2, making it possible to
identify that Sub1 has a lower frequency and Sub2 has a much higher frequency.
As a generalization of NNM, FDNF3 has the property of decomposing a N -
dimensional nonlinear system into a nonlinear sum of nonlinear 1-dimensional non-
linear systems, analogous to linear analysis that decompose a N -dimensional linear
system into a linear sum of 1-dimensional linear systems. In this way, the complex
power dynamics can be reviewed as the combination simpler ones.
It is shown in Fig. 5.8 that FDNF3 can describe the system dynamic response
much more accurately than the linear analysis LNM, especially the overshoot, which
corresponds to the limit cycles [55] or the stability bound of system's nonlinear
dynamics [5].
Also, as shown in Fig. 5.10, even both VSCs are excited, only one nonlinear mode
is excited in R − S coordinates. Therefore, inversely, by controlling R1, R2 we can
make the decoupling control of V SC1 and V SC2 possible even if they work in the
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nonlinear region. It could be one way to overcome the di�culty on how to control
VSCs independently when they work in nonlinear regions.

5.5.7 Signi�cance of the Proposed Method

Transforming the original system dynamic into its normal dynamics, it gives a clear
picture on how the excitation in�uences the system dynamics. Compared to the
classical linear analysis LNM and the NNM, the advantages of FDNF3 approach
can be summarized as:

1. Describing more exactly the power system dynamics under disturbances or un-
der excitation by decomposition of the complex system dynamics into simpler
ones;

2. Making possible to independently control interconnected systems even if there
are working in highly nonlinear regions.

In this PhD work, to the author's knowledge, it is the �rst time that Normal Form
theory is applied to study the power system dynamics under excitation (i.e. with
variable references or loads). The proposed method is validated by comparing results
with time-domain simulations based on an EMT software. For the sake of simplicity,
only the results under the case N = 2 are presented, but the possibility of working
with large-scale problems will be investigated by the methodology suggested in this
dissertation.
Although the chosen test case is composed of inteconnected VSCs, since the sys-
tem model is the same as groups of generators working in parallel, the proposed
methodology can be applied for studying the modal oscillations between classical
generators working in parallel.
The proposed method only shows its ability to describe the power system response
by decomposing the complex dynamics. Further applications may be found in modal
structural analysis under excitation or stability analysis. This lays the foundation
of the future work that:

5.5.7.1 Analysis of Dynamical System under Excitation

The proposed FDNF3 gives the normal forms of the dynamical system under ex-
citation. It makes possible to do stability analysis when there is a change in the
input (such as an increase of load or power generation). Also, when measuring the
system's oscillations with experiments, it is important to impose the �correct� force.
Previously, the nonlinear analysis under excitation is conducted by imposing the
force on the free-oscillation Normal Forms:

R̈p+2ξpωpṘp + ω2
pRp (5.10)

+ (hpppp +Apppp)R
3
p +Bp

pppRpṘ
2
p + CppppR

2
pṘp = F

Comparing (5.10) with (5.8), (5.10) fails to take into account the couplings in
the F . For the experimental measurements, this will cause large error, since other
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modes than p may also excited imposing Fp, i.e, the energy is not only injected into
mode p and the invariance is broken.

5.5.7.2 Signi�cance in the Control of Dynamical System

The decomposition of nonlinear system makes it possible to control the two VSCs
independently in the nonlinear R − S coordinates to reduce the oscillations in the
system dynamics. However, this is a open-loop control. To increase the resolution
and compensate for the uncertainties, closed-loop control should be implemented.

5.6 Step II: Implementing Nonlinear Modal Control by

EMR+IBC

Presented in the previous section, the nonlinear transformation can approximately
decouple the system dynamics into nonlinear modes that can be independently con-
trolled by imposing the nonlinear modal force. The next step is to implement the
control strategy, which can be realized by EMR+IBC.

5.6.1 The Control Schema Implemented by Inversion-Based Con-
trol Strategy

If we represent the decoupling process of the system dynamic model by Energetic
Macroscopic Representation (EMR), we can then develop the control schema by
inversion-based control (IBC) strategy.
The topology of the nonlinear modal control is shown as Fig. 5.11, considering the
nonlinearities up to 3rd order. The linear transformation decouples the linear trans-
formations, and the nonlinear transformation weakens the linear coupling rendering:

Figure 5.11: The Control Schema of the Nonlinear Modal Control Implemented by
Inversion-Based Control Strategy
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As observed from the Fig. 5.11, by decomposing the nonlinear system into 1 di-
mensional subsystems, the nonlinear modal force needed to excite the desired mode
can be calculated. Then the force should be imposed on the system is a nonlinear
combination of the nonlinear modal force obtained using the Normal Form trans-
formation.

5.6.2 Primitive Results

The exploration of nonlinear modal control is conducted on a gantry system, as
shown in Fig. 5.12.

Figure 5.12: An Example of Gantry System

which can be simpli�ed as Fig. 5.13.
For such a system, closed loop control strategy is proposed, as shown in Fig. 5.14 [90].

However, the nonlinear modal control implemented in this way doesn't ensure a good
performance, even for nonlinear modal control up to 2nd order where the normal
form is a linear system controlled by PID controller. More investigations should be
conducted.
The bottle neck may lay in:



5.6. Step II: Implementing Nonlinear Modal Control by EMR+IBC195

Figure 5.13: The Simpli�ed System of the Gantry System

Figure 5.14: The Topology of the Nonlinear Modal Control
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• the inverse nonlinear transformation. The way to do the inverse nonlinear
transformation has been attached in the Appendix B, for the future researches;
• the validity region of normal form transformations;
• the way to implement the PID controller for the decoupled subsystems.

5.7 Exploration in the Control Form of Normal Forms

If NF can simplify the analysis by transforming the variables into the normal form
coordinates, is it possible to simplify the control by the same principle?
This question gives birth to the Normal Form control, for which Poincaré didn't
give out any theory or mathematical expressions.

5.7.1 A Literature Review

It is well-known that a state space description of a controllable linear system can be
transformed to controllable or controller form by a linear change of state variables.
In the sense of being transformed into a �simpler� form, it would be referred to as
Linear Controller Normal Form [91].
If a nonlinear control system admits a controller normal form, it can be transformed
into a linear system by a change of coordinates and feedback. Therefore, the design
of a locally stabilizing state feedback control low is a straightforward task. In such a
case, we say the system is feedback linearizable. On the other hand, most nonlinear
systems do not admit a controller normal form under change of coordinates and in-
vertible state feedback. The nonlinear generalization of the linear controller normal
forms, which can be referred to as Nonlinear Controller Normal Form (NCNF) has
been systematically studied since 1980's by Krener [91]. This approach was extended
to control systems in continuous-time by Kang and Krener ( [92], see also [93] for
a survey) and Tall and Respondek ( [94], see [95] for a survey), and by Monaco et
all [96] and Hamzi [97] et al. in discretetime. However, this approach mainly focuses
on single input system. NCNF for multi-input system is awaited to be developed to
cater for the studied case in this thesis.
On another side, the emphasis is on the reduction of the number of monomials in
the Taylor expansion, one of the main reasons for the success of normal forms lies
in the fact that it allows to analyze a dynamical system based on a simpler form
and a simpler form doesn't necessarily mean to remove the maximum number of
terms in the Taylor series expansion. This observation, led to introduce the so-
called �inner-product normal forms� in [92]. They are based on properly choosing
an inner product that allows to simplify the computations. This inner-product will
characterize the space overwhich one performs the Taylor series expansion.
The methods reviewed brought several mathematical achievements while their ap-
plicability are limited mainly in system having controllable linearization, and in
adding the feedback linearization nonlinear control.
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5.7.2 A Nouvel Proposed Methodology to Deduce the Normal
Form of Control System

In fact, all those methods referred to in the above focus on the generalization of
linear controller normal form to the nonlinear domain, the objective is to render
a linear normal form by the normal form transformation to aid in the feedback
linearization control. However, as shown in Chapter 2, Chapter 3 and Chapter 4, a
linear normal form is not ensured for all the cases. And taking into the 3rd order
nonlinear terms in the normal forms can suggest more information in the analysis
of both the nonlinear modal interaction and nonlinear stability.
Therefore, inspired by the normal form analysis, another approach is proposed to
derive the control forms of normal forms, i.e, similar to the analysis, we take the
control form:

ẋ = f(x,u) (5.11)

the dimension of the system T ∈ Rn ×Rm and u ∈ Rm representing the control
And by the cloased-loop control, the u can be represented by

u = fc(x) (5.12)

Therefore, the control system can be rewritten as:

ẋ = f(x, fc(x)) (5.13)

5.8 Conclusion

In this chapter, explorations from nonlinear analysis to nonlinear control are con-
ducted. Two approaches and three proposals are illustrated and investigated. Due
to the time limit of the PhD, the control strategy is not fully implemented yet.
However, those proposal are very innovative and can inspire further investigations.
It lays the foundations for future researches. What's more, to the author's knowl-
edge, analytical investigations of nonlinear system dynamics under excitation are
conducted for the �rst time on the power systems.
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Chapter 6

Conclusions and Perspectives

In this chapter, conclusions on achievements of nonlinear analysis and

The assumptions of methods of normal forms are discussed and investigated. The

classes of the

Unfortunately, the author doesn't have enough time to fully develop the methodology

of nonlinear modal control during the 3 years' PhD period. This PhD research may

kick the door for future researches or another couple of PhD dissertations.

Keywords: Nonlinear Analysis, Nonlinear Modal Control, Multiple Input
System with Coupled Dynamics
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6.1 A Summary of the Achievements

This PhD research works on the very fundamental problems concerning nonlin-
ear systems having multiple input with coupled dynamics. Multiple input system
with coupled dynamics almost cover all the modern industrial systems, since high-
performance industrial electromechanical systems are often composed of a collection
of interconnected subsystems working in collaboration. These dynamical systems
can be found everywhere and contribute largely to our daily life, to the national
economy and global development.
Having made some achievements in the nonlinear analysis to have a clear picture of
the system dynamics, several proposals of nonlinear control are investigated which
kicks the door for the future investigations.
The achievements can be summarized below, and more detailed discussions are put
in the following sections.
• Practical (Application): study of the nonlinear modal interaction and
the stability assessment of interconnected power systems. This solved a
long-time existing problem and explained some nonlinear phenomenon.
In the previous chapters of this PhD dissertation, methodologies to analyze
the stability of some types of multiple input systems with coupled dynamics
are proposed and validated with case-studies based on interconnected power
systems.

• Foundation for control:
2 innovative approaches are proposed, investigated and discussed. It opens
the way for further developments in both application and normal form theory.

• Theoretical (Methodology): A systematic methodology is proposed, which is
innovative and general for nonlinear dynamical systems.
� development of mathematically accurate normal forms up to 3rd order
for analysis and control of nonlinear dynamical systems with coupled
dynamics by both the PoincarÃ c©'s approach and TouzÃ c©'s ap-
proach.

� nonlinear indexes are proposed to quantify the nonlinear properties

6.2 Conclusions of Analysis of Power System Dynamics

The applications of this PhD work are to study the rotor angle dynamics of inter-
connected power systems when there is disturbance in the transmission line. The
methodologies are established in Chapter 2 and are applied to study the interarea
oscillations in Chapter 3 and assess the transient stability in Chapters 3 & 4.
Some achievements are made in this PhD research, and a transaction paper has
submitted with revision and another transaction is going to be proposed.
Some conclusions are made in this chapter as follows.
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6.2.1 Analysis of Nonlinear Interarea Oscillation

Nowadays power systems are composed of a collection of interconnected subsystems
working in collaboration to supply a common load, such as groups of generators [1]
or interconnected Voltage Sources Converters working in parallel [21,22,98]. One of
the most important issue in large-scale interconnected power systems under stress
is the oscillations in the power system dynamics [28].
As the oscillations are essentially caused by the modal interactions between the sys-
tem components, they are called �Modal Oscillations�. The complexity of analyzing
such oscillations lays in the strong couplings between the components of the system.
Understanding of the essence of such oscillations is necessary to help stabilizing and
controlling power systems.
To cater for the above demands, analytical analysis tools are developed in this PhD
work for:

1. Dynamic performance analysis: suggesting approximate analytical solutions;
2. Modal analysis: describing and quantifying how the system components inter-

act with each other;
3. Nonlinear Stability analysis: predicting the stability of the nonlinear system

by taking into account the nonlinear terms in the Taylor series.

6.2.2 Transient Stability Assessment

Transient stability has become a major operating constraint of the interconnected
power system. The existing practical tools for transient stability analysis are either
time-domain simulations, or direct methods based on energy-function and Lyapunov
direct method� the methods of Transient Energy Function (TEF). Though there are
numerous meticulous researches on TEF, this method is di�cult to implement with
large system.
In this PhD research, the stability is assessed by using nonlinear indexes based on
3rd order Normal Forms.
The Transient stability assessment can be done either by the vector �eld approach,
or by the normal mode approach.
The Poincaré's approach (vector �eld approach) using the nonlinear index SI has
the applicability for all generator models whose dynamics can be formulated as
x = f(x). Unlike the TEF method, it is an easy-to-implement tool with systematic
procedures that doesn't need further discussions in the implementation.
Developed in this PhD work, the Touzé's approach (normal mode approach) using
the index PSB has been presented to be e�cient on the classical models and also
possible to be extended to work with more complex models. Since it is rather easy
to implement, it can be expected to solve the TSA problem with bright perspectives.
One would like to ask a question:

What are the di�erences between the stability assessments made by the two
approaches ? Are they essentially the same ?

In fact, the SI is more accurate than PSB since SI takes into accunt both the
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coupled nonlinearities and decoupled nonlinearities and PSB neglects the coupled
nonlinearities in the normal forms. SI is based on method 3-3-3, PSB is based on
method NNM which is somewhat equivalent to method 3-3-3(S).
However, for the applications, PSB is more adept for multi-machine systems, since
it has a much less computational burden and much easier to be calculated.

6.2.3 A Summary of the Procedures

For both methodologies, the procedures of analyzing the power system can be sum-
marized as the �owchart in Fig. 6.1.
To do the Normal Form analysis of electric power systems, there are two stages.
The �rst stage is to formulate the di�erential equations containing polynomial non-
linearities by perturbing the system around the stable equilibrium point (SEP) by
Taylor series, which is labelled as �SEP Initialization�; once the perturbation model
is �xed, the Normal Form coe�cients are �xed.
After the �SEP Initialization�, the second stage is to calculate the initial conditions
in the Normal Form coordinates, which is labelled as �Disturbance Initialization�.
It depends on the disturbance which the system experiences.

6.2.4 Issues Concerned with the Methods of Normal Forms in
Practice

To make the methodologies practical for the readers (mathematicians, engineers...),
the issues to implement the Normal Form analysis are discussed in Section 2.8
and Section 3.6, such as the search for initial conditions, computational burden,
model dependence and etc. The scalability problem and applicability to large-scale
systems are also discussed in Section 3.5. Also, the help the readers to implement
the methodologies, programs and simulation �les are made available online. More
details can be found in the appendixes.

6.3 Conclusions of the Control Proposals

In this PhD dissertation, it points out two approaches to implement the nonlinear
control in Chapter 5.
The �rst is automatic tuning the controller parameters to obtain the desired non-
linear dynamic performance quanti�ed by the nonlinear indexes, which is named as
the analysis based approach.
The second is imposing the nonlinear modal force on the approximately decoupled
nonlinear modes, which is named as the decoupling-basis approach.
Due to the time limit of the PhD, those control proposals are not fully implemented
yet, however, the presented investigations and discussions lay the foundation of
future researches.
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6.4 Conclusions of the Existing and Proposed Method-

ologies

The most important achievements of this PhD research work is the proposed
methodologies. The proposed methodologies in this PhD work has been success-
fully applied to nonlinear analysis of interconnected power system. However, the
applicability of the proposed methodologies is not limited in electrical domain. As
presented in Chapter 2, the proposed method 3-3-3 and method NNM are general
methodologies for study of dynamical systems and the extracted nonlinear proper-
ties are universal in multiple input system with nonlinear coupled dynamics.
However, to use the proposed

6.4.1 Validity region

One important concern of methods of normal forms is the validity region. From the
numerical results, it can be concluded that the methods of normal forms are valid
in the entire working regions of the power system.
For other systems, we can employ the methodology proposed in [51] to investigate
the validity region of the methods of normal forms.
It should be noted that if the amplitudes of the state-variables go beyond the validity
region, then the information extracted from the normal forms is NONSENSE.

6.4.2 Resonance

In this PhD work, when deducing the normal forms, internal resonances due to the
coincidences of the eigenvalue frequencies are not considered. If there exists internal
resonance other than the trivially resonant terms, the normal form may include more
2nd-order and 3rd-order terms, and therefore the stability assessment will become
di�cult. However, the quanti�cation of the nonlinear modal interaction will not
become more di�cult. Investigations should be done on the resonant cases.

6.4.3 Possibility to do the Physical Experiments

Since the researches in power systems are mainly validated by numerical simulations,
one question may arise:

Is it possible to validate the proposed methodologies by physical

experiments?
Conducting physical experiments on interconnected power systems is much more
expensive then conducting experiments on mechanical systems. However, since the
electromechanical oscillations can be measured from the rotor which may contain
nonlinear modal interactions. It is possible to validate the conclusions drawn in this
PhD dissertation by physical experiments.
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6.5 Multiple Input Systems with Coupled Dynamics

In this PhD research dissertation, we only focus on system with coupled dynamics
on the state-variables. However, there can be other type of coupled dynamics.

6.5.1 Classes of Multiple-input Systems with Coupled Dynamics
Studied by the Proposed Methodologies

Two approaches are established, which cover the studies of a large number of non-
linear dynamical systems composed of interconnected subsystems working in collab-
oration, as far as their dynamics can be modelled by either (6.1) or (5.3).

6.5.1.1 Class of System Studied by Poincaré's Approach

ẋ = f(x,u) (6.1)

where x is the state-variables vector, u is the system's inputs vector and f is a
di�erentiable nonlinear vector �eld. Expanding this system in Taylor series around
a stable equilibrium point (SEP), u = uSEP , x = xSEP , one obtains:

4ẋ = H1(4x) +
1

2!
H2(4x) +

1

3!
H3(4x) +O(4) (6.2)

where Hq gathers the qth-order partial derivatives of f . i.e., for j = 1, 2, · · · , n,
H1jk = ∂fj/∂xk, H2jkl =

[
∂2fj/∂xk∂xl

]
, H3jklm =

[
∂3fj/∂xk∂xl∂xm

]
and O(4) are

terms of order 4 and higher.

6.5.1.2 Class of System Studied by Touzé's Approach

Mq̈ +Cq̇ +Kq + fnl(q) = F (6.3)

where M ,C are constant diagonal inertia and damping matrices, whose values
depend on the physical and controller parameters of the system. K and fnl indicate
the coupling between the variables, whereK is a constant matrix including the linear
terms and fnl gathers the nonlinear terms coming from the 2nd and 3rd order terms
of the Taylor series. F is the excitation vector.

6.5.2 System with Coupled Dynamics in the First-Order Di�eren-
tial of State-Variables of System

If there is a system with coupled dynamics in the �rst-order di�erential of state-
variables of systems, as modelled by Eq. (6.4)

ẋ = f(x, ẋ) (6.4)

or Eq. (6.5)

Mq̈ +Cnl(q̇) +Kq + fq = F (6.5)
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we can also endeavour to study the system dynamics by methods of normal forms.
By Poincaré's approach, one solution is to de�ne the auxiliary state variables as
ẋ = xs. However, this may lead to zero eigenvalues in the Jordan form. If λj = 0,
trivial resonance may occur in second-order nonlinear terms, since the conjugate
pairs (λ2k, λ2k−1) satisfy ωj = ω2k +ω2k−1 and therefore the second-order nonlinear
terms must be kept in the normal forms. Its normal forms are more complicated and
the stability assessment may be di�erent than what we have proposed. However, the
study of nonlinear modal interaction can employ the procedures and the nonlinear
indexes will be in the similar form.
By Touzé's approach, we can still try to use the procedures proposed in previous
Chapters to decouple the system dynamics. This may take another 3 years' PhD
work. However, it deserves that. Such type of coupled dynamics can be found in
electrical machine which are electromagnetically coupled, and for a long time, no
analytical investigation is available to study its nonlinear dynamics according to
the author's knowledge. Solving such a system can overcome a great ever-existing
problem in electrical engineering.

6.5.3 System with Coupled Dynamics in the Second-Order Di�er-
ential of State-Variables of System

If there is a system with coupled dynamics in the �rst-order di�erential of state-
variables of systems, as modelled by Eq. (6.6):

ẋ = f(x, ẍ) (6.6)

or Eq. (6.7)

Mclq̈ +C(q̇) +Kq + fq = F (6.7)

I hold the similar opinions as in the last section. However, investigations should be
conducted to make a more rigorous conclusion.

6.6 The End, or a new Start ?

In this chapter, achievements are summarized. Also, due to the limited time of the
PhD and the limited talents of the PhD student, there are still a lot things to do to
complete the theory and enlarge the range of applications.
More questions are asked then answered. For the questions that are not answered,
this PhD dissertation has pointed out the possible way to answer them. It is the
end of this PhD dissertation, but it is a new start of more interesting researches.



Appendix A

Interconnected VSCs

This part of appendix is dedicated to the interconnected VSCs.
Section A.1 illustrates how the reduced 4th order model is formulated.
In this part of Appendix, the crucial �les are presented to facilitate the reader's
comprehension of the PhD dissertation.
All the programs and �les associated with interconnected VSCs can be found in:
https://drive.google.com/drive/folders/0B2onGI-yt3FwRVZQbUFkcGl5enc?

usp=sharing

A.1 Reduced Model of the Interconnected VSCs

As stated in Chapter 1, nonlinear oscillations are predominant in stressed power
system, such as the weak grid with long transmission line.
Therefore, to test the proposed methodologies, a renewable energy transmission
system is chosen, where predominant nonlinear oscillations are involved. It is of
practical signi�cance to study such a case, as renewable energy is our future source,
environmentally friendly and sustainable and has a very bright prospect. European
Community has proposed to reach 20% energy share in 2020, while the US proposed
22%. With 35%, policies in Asia and Paci�c countries rank as the most encouraging.

A.1.1 A Renewable Transmission System

Among all the renewable energy sources, wind energy takes a large part in the
market. A typical o�-shore wind farm is shown as Fig. A.1, the generators are
situated in remote areas, convert the mechanical energy into electricity integrated
into the great grid by voltage source converters (VSC) and transferred by long
cables.To improve the reliability, the generators are interconnected.Because when
the cables are long, it is likely to be broken, that means, the fault level is low.
Moreover, unlike the coral energy,which is always constant, the uncertainty and
variability of wind and solar generation can pose challenges for grid operators. And
the reliability of both the generation and transmission of renewable energy should
be enforced. One solution is to connect the di�erent VSCs together. The e�ective
interaction between the VSCs reduce peak and �ll valley of the generation and
ensure the power stability even if one cable is cut-o�.
This topology e�ectively solves the transmission problem and enforces the reliability
of power supply, but it leads to nonlinear oscillations. Because a) the long cables
connecting the generators to the great grid has very high impedance,make the power
system very weak, called �weak grid�, meaning that it is very sensitive to the dis-
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Figure A.1: Renewable Distributed Energy Located in Remote Areas [99]

turbance in the power system; b) the line connecting generators to each other has a
very low impedance in the high voltage transmission system, this will cause strong
coupling of the generators when there is some large disturbance.
To study the oscillations in power system, a popular method is to linearizing the
system around the equilibrium point and study its eigenmodes [1]. That is, assume
the system to exhibit linear oscillation under small disturbance. In our case, the
conventional small disturbance method is not applicable any more. Nonlinear modal
analysis should be done.

A.1.1.1 The Basic Unit

As the generator can be modeled as DC
source, so the simplest unit of such a sys-
tem can be modeled two grid-connected
voltage source converters interconnected
to each other, shown as Figure A.2. As
Voltage Source Converters can be used to
control the voltage, currents as well as
power �ows, this topology can represent
the principle functions of the orignal large-
scale system.

Figure A.2: The Basic Unit to Study the
Inter-oscillations in Weak Grid

A.1.2 Methodology

The steps of this methodology can be summarized as below.
1. Model the System(Section A.1.3): it contains three parts:
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a). Establish the mathematical model of the studied system by EMR, develop
inversion-based control strategy correspondingly, use linear modal analysis to
tune linear controllers;
b). Reduce the model to focus on nonlinear behavior;
c). Make the disturbance model to study the damped free vibration around
the equilibrium under large disturbance.

2. Modal Analysis: Do linear modal analysis, then nonlinear modal analysis
based on nonlinear normal modes(NNM) to decouple the N-dimensional Equa-
tion into 1-dimensional Equations (decouple the linear and nonlinear cou-
pling).

3. Solve the 1-dimensional problem: by numerical integration to obtain numerical
results or use perturbation method to obtain analytical results.

A.1.3 Modeling the System

A.1.3.1 The Detailed Model

To start the case study, a single classic VSC is modeled and controlled.
Fig. A.3 [29] presents a classical physical con�guration of grid-connected VSC, and
the currents and voltages as well as power injected into the grid should be controlled.
There are two crucial issues concerning the control of the grid-connected VSC.First
problem is the low frequency resonances that can interact with the vector control.
Second problem is due to the PLL dynamics when the power converter is synchro-
nized to a weak grid. To handle the �rst issue, the controller parameters will be
tuned by iterative tuning based on linear modal analysis [80].To handle the second
issue, the virtual synchronous machine power control will be adopted [29].

Figure A.3: Grid-side-VSC Con�guration [29]

According to Figure A.3, the equations of the components can be written as Equation
(A.1)(A.2)(A.3)(A.4). For simplicity,all the varialbes and parameters are expressed
in per unit.
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AC Load/Source

lg
ωb
· s · io,d = vo,d − rg · io,d + ωg · lg · io,q − vg,d

lg
ωb
· s · io,q = vo,q − rg · io,q − ωg · lg · io,d − vg,q

(A.1)
LC Filter Filter L:

l1
ωb
· s · ic,d = vo,d − r1.ic,d + ωg.l1.ic,q − vo,d

l1
ωb
· s · ic,q = vo,q − r1.ic,q − ωg.l1.ic,d − vo,q

(A.2)

Filter C:

c1
ωb
· s · vo,d = ic,d + ωg · c1 · vo,q − io,d

c1
ωb
· s · vo,q = ic,q − ωg · c1 · vo,d − io,q

(A.3)
Power Estimation:(Neglecting the resistance rg of the grid impedance)

Pg =
vg,d · vo,q
lg · ωg

Qg =
vg,d · (vo,q − vg,d)

lg · ωg
(A.4)

To model and decide the control structure, Energetic Macroscopic Representa-
tion(EMR) is used. EMR is multi-physical graphical description based on the in-
teraction principle (systemic) and the causality principle (energy). It vivi�es the
relations between the subsystems as action and reaction decided by the inputs and
outputs �owing between each other. It classi�es subsystems into source, accumula-
tion, conversion and distribution by their energetic functions [100]. It uses blocks
in di�erent color and shapes to represent subsystems with di�erent functions corre-
spondingly.
From the con�guration and the equations, we can see that the LC �lter and the
AC source are energetic accumulation systems.For the inductance of LC �lter, the
inputs are the voltages vo, vc imposed by c1 and the converter,and the output is ic.
For the capacitance,the inputs are the currentsic, io injected from l1 and the grid.
For the AC source/load, it is similar to the inductance of LC �lter, the inputs are
the voltages vg, vo while the output is io.
The converter is a conversion block,of which the inputs are tunable. The grid voltage
source and the DC-link Bus serve as the sources to the system.
Thus, the representation of the physical system is accomplished, shown as the Fig-
ure.A.4. The output of the converter is vc and the variables to be controlled are
vo, io as well as the power injected into the grid. There are di�erent ways to estimate
the power, leading to di�erent inversion-based control strategies. According to the
inversion-based control theory [100], the reference voltagevcref to the converter is
produced by current loop via inversion the equation of inductance component of the
LC �lter, the reference currenti∗c to the current loop can be calculated by inverting
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Figure A.4: EMR and Inversion Based Control Strategy

Figure A.5: The cascaded control loops [29]

the equation of the capacitance component of the LC �lter, the power is controlled
by estimator virtual synchronous machine (VSM), avoiding the unsynchronization.
Then the cascaded control loops are decided, shown in Figure A.5 [29].
To tune the control parameters, the whole system is tuned by sensitivity analysis
based on linear modal analysis,where the whole system is expressed in statespace,
and controller parameters are tuned to obtain desired eigenvalues(corresponding to
linear modes) [29] [80].
This section illustrates the analysis and control of a single VSC, and it also serves
as an example to the application of linear modal analysis. However, seen from this
section, we can see the control structure is complex enough and the whole system
is 13th-order. If we use such analytical model to study two VSCs interconnected to
each other, the complexity will be at least twice, and it is impossible to use such
a complex model to study the system. One would like to reduce the model to just
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focus on the nonlinearities.

A.1.3.2 The Reduced Model

One way to reduce the model is to reduce the voltage loop and current loop as,
V ∗o,d = Vo,d, V

∗
o,d = Vo,d, i

∗
o,d = io,d, i

∗
o,q = io,q, as the time constants of the current

loop, voltage loop and power loop verify that Tpower � Tvoltage � Tcurrent. This is
done by simplifying the loops one by one, �rst the current loop, secondly the voltage
loop. The process to reduce the model is illustrated in Figure A.6, where the loops
are the mathematics expression of io,d, vo,d is demonstrated to analyze the system
dynamics.
One should note that, the process to reduce the model is not a simple deleting out
the loops and poles. The eigenvalues of the current loop and voltage loop can be
complex; the eigenvalues of the power loop are real.
It is based on two important pre-conditions: a)there are big gaps between the time
constant of the three loops; b)the voltage loop and the current loop are conservative
and linear; c)the nonlinearities must be reserved. After reducing the model,the
system can be expressed as Equation (A.5).

J1
d2δ1
dt2

+D1(ω1 − ωg) +
V1Vg
L1

sin δ1 + V1V2
L12

sin(δ1 − δ2) = P ∗1

J2
d2δ1
dt2

+D2(ω2 − ωg) +
V2Vg
L2

sin δ2 + V1V2
L12

sin(δ2 − δ1) = P ∗2

(A.5)

Where J1, D1, J2, D2 are the controller parameters of the power loop, δ1,δ2 are the
power angles,V1, V2 are the voltages, P ∗1 , P

∗
2 are the references values of the power,

ω1,ω2 are angular frequencies of the two VSCs. ωg is the angular frequency of the
grid, and L1, L2 is the impedance of the cable connecting VSC to the grid, and L12

is the impedance of the transmission line connecting the two VSCs to each other.
L1, L2 is very high (0.7pu), leading a very big power angle of VSC to transfer the
electricity. L12 is very low due to high voltage of the transmission system, leading
to strong coupling between the two VSCs. When there is a large disturbance on
one VSC, there will be drastic nonlinear oscillations between the two VSCs, which
is veri�ed by the simulation results.

A.1.4 The Disturbance Model

As stated before, we would like to study the nonlinear oscillations of the studied
case under large disturbance. So, we need a disturbance model. This is done by
making Taylor's Series Expansion around the equilibrium point. Assume:
V1 = const, V2 = const, Vg = const, ωg = const

The equilibrium point: ω10, ω20, δ10, δ20 As ωg = ω10 = ω20 = const so ω1 = ω̃1 +

ω10, ω2 = ω̃2+ω20
dω1
dt =

d(ω1−ωg)
dt , dω2

dt =
d(ω2−ωg)

dt θ1−θg = δ1, θ2−θg = δ2, θ1−θ2 =

δ1 − δ2 = δ12 = δ̃1 + δ10 − δ̃2 + δ20 = δ̃1 − δ̃2 + δ120
dω1
dt = d(ω̃1+ω10)

dt = dω̃1
dt ,

dω2
dt =

d(ω̃2+ω20)
dt = dω̃2

dt ,
dδ1
dt = d(δ̃1+δ10)

dt = dδ̃1
dt = ωbω̃1,

dδ2
dt = d(δ̃2+δ20)

dt = dδ̃2
dt = ωbω̃2 And, as
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Figure A.6: How the three-loops system can be reduced to one-loop
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Table A.1: The parameters of the Interconnected VSCs

J1 16 L1(pu) 0.7 V1 1

J2 16 L2(pu) 0.7 V2 1

D1 10 L12(pu) 0.01 Vg 1

D2 10 wb 314

the system operates at the equilibrium point,there will be:

P ∗1 =
V1Vg
L1

sin δ10 +
V1V2
L12

sin δ120, P
∗
2 =

V1Vg
L2

sin δ20 +
V1V2
L12

sin δ210

Therefore the system can be expressed as Equation(A.6).

J1
ωb

d2δ̃1
dt2

+ D1
ωb

dδ̃1
dt +

V1Vg
L1

(sin(δ̃1 + δ10)− sin δ10) + V1V2
L12

(sin(δ̃1 − δ̃2 + δ120)− sin δ120) = 0

J2
ωb

d2δ̃2
dt2

+ D2
ωb

dδ̃2
dt +

V2Vg
L2

(sin(δ̃2 + δ20)− sin δ10) + V1V2
L12

(sin(δ̃2 − δ̃1 + δ210)− sin δ210) = 0

(A.6)
To simulate the system under a large disturbance, and then damped to the equilib-
rium point, we need to expand the power in the expression of: sin(δ̃ + δ0)− sin(δ0)

There are two methods to do the Taylor's Series Expansion around the equilibrium:δ0
• a)Just keep the linear term:

sin(δ̃ + δ0)− sin δ0 = cos δ0δ̃

• b)Keep the quadratic and cubic terms:
sin(δ̃ + δ0)− sin δ0 = cos δ0δ̃ − sin δ0

2 δ̃2 − cos δ0
6 δ̃3;

In our study, we keep the nonlinearities to the cubic order. In the previous re-
searches concerning power system,only quadratic terms are considered. The type of
nonlinearities(quadratic or cubic) depends on the initial state, δ10, δ20. So,by setting
di�erent values for δ10, δ20, we can study the impacts of the nonlinearities on the
system dynamics. The results of the disturbance model is put in next section for
modal analysis.

A.2 Parameters and Programs

A.2.1 Parameters of Interconnected VSCs

A.2.2 Initial File for Interconnected VSCs

delta10=input('Type in the stable equibrium point: delta10 ');

delta20=input('Type in the stable equilibrium point: delta20 ');

disturbance1=input('Type in the disturbance around the equilibrium point: disturbance1 ');
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disturbance2=input('Type in the disturbance around the equilibrium point: disturbance2 ');

J1=0.2*16;D1=20;J2=0.2*16;D2=20;w_b=100*3.14;

g1=J1/w_b;

g2=J2/w_b;

d1=D1/w_b;

d2=D2/w_b;

%syms g1 g2 d1 d2;

%syms w_b delta10 delta20 P1 P2;

delta120=delta10-delta20;

delta210=-delta120;

L1=0.7;L2=0.7;L12=0.01;wg=1;w_b=50*2*3.14;

%AC source/load parameters

V1=1;V2=1;Vg=1;w10=1;w20=1;

k1=V1*Vg/L1;k2=V2*Vg/L2;k12=V1*V2/L12;

%compensation of springs efforts

%%

%Natural frequencies

M=[g1 0;0 g2];

K=[k1*cos(delta10)+k12*cos(delta120) -k12*cos(delta120);

-k12*cos(delta120) k2*cos(delta20)+k12*cos(delta210)];

D=[d1 0;0 d2];

%modal matrix and eigenvalues matrix

[Tr,E]=eig(inv(M)*K);

%natural frequencies matrix

OMEGA=[sqrt(E(1,1)) sqrt(E(2,2))];

%Normalisation of T

Tr=Tr/det(Tr);

leg=sqrt(sum(Tr.^2));

Tr=Tr./leg(ones(1,2),:);

%%

%normalization

%[ Tn]=normalization(T);

%modal matrices

Mm=Tr.'*M*Tr;

Dm=Tr.'*D*Tr;

Km=Tr.'*K*Tr;

T11=Tr(1,1);

T12=Tr(1,2);

T21=Tr(2,1);

T22=Tr(2,2);

%division by Mm
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Dm_div=inv(Mm)*Dm;

OMEGA=double(OMEGA);

for i=1:2

xi(i)=0.5*Dm_div(i,i)/OMEGA(i);

end

TEQ(1,1,1)=k1*(-sin(delta10)/2)+k12*(-sin(delta120)/2);

TEQ(1,1,2)=k12*sin(delta120);

TEQ(1,2,2)=k12*(-sin(delta120)/2);

TEQ(2,1,1)=k12*(-sin(delta210)/2);

TEQ(2,1,2)=k12*sin(delta210);

TEQ(2,2,2)=k2*(-sin(delta20)/2)+k12*(-sin(delta210)/2);

TEC(1,1,1,1)=k1*(-cos(delta10)/6)+k12*(-cos(delta120)/6);

TEC(1,1,1,2)=k12*(cos(delta120)/2);

TEC(1,1,2,2)=k12*(-cos(delta120)/2);

TEC(1,2,2,2)=k12*(cos(delta120)/6);

TEC(2,1,1,1)=k12*(cos(delta210)/6);

TEC(2,1,1,2)=k12*(-cos(delta210)/2);

TEC(2,1,2,2)=k12*(cos(delta210)/2);

TEC(2,2,2,2)=k2*(-cos(delta20)/6)+k12*(-cos(delta210)/6);

%%Auxilliary tensors of quadratic and cubic coefficients

Gg=zeros(2,2,2,2);

Gg(1,1,1)=TEQ(1,1,1)*T11^2+TEQ(1,1,2)*T11*T21+TEQ(1,2,2)*T21^2;

Gg(1,1,2)=TEQ(1,1,1)*2*T11*T12+TEQ(1,1,2)*(T11*T22+ T12*T21)+TEQ(1,2,2)*2*T21*T22;

Gg(1,2,2)=TEQ(1,1,1)*T12^2+TEQ(1,1,2)*T12*T22+TEQ(1,2,2)*T22^2;

Hg(1,1,1,1)=TEC(1,1,1,1)*T11^3+TEC(1,1,1,2)*T21*T11^2+...

TEC(1,1,2,2)*T11*T21^2+TEC(1,2,2,2)*T21^3;

Hg(1,1,1,2)=TEC(1,1,1,1)*3*T11^2*T12+TEC(1,1,1,2)*(T22*T11^2+2*T21*T11*T12)+...

TEC(1,1,2,2)*(T12*T21^2+2*T11*T21*T22)+TEC(1,2,2,2)*3*T21^2*T22;

Hg(1,1,2,2)=TEC(1,1,1,1)*3*T11*T12^2+TEC(1,1,1,2)*(2*T22*T11*T12+T21*T12^2)+...

TEC(1,1,2,2)*(2*T12*T21*T22+T11*T22^2)+TEC(1,2,2,2)*3*T21*T22^2;

Hg(1,2,2,2)=TEC(1,1,1,1)*T12^3+TEC(1,1,1,2)*T22*T12^2+...

TEC(1,1,2,2)*T12*T22^2+TEC(1,2,2,2)*T22^3;

%%

Gg(2,1,1)=TEQ(2,1,1)*T11^2+TEQ(2,1,2)*T11*T21+TEQ(2,2,2)*T21^2;

Gg(2,1,2)=TEQ(2,1,1)*2*T11*T12+TEQ(2,1,2)*(T11*T22+ T12*T21)+TEQ(2,2,2)*2*T21*T22;

Gg(2,2,2)=TEQ(2,1,1)*T12^2+TEQ(2,1,2)*T12*T22+TEQ(2,2,2)*T22^2;

Hg(2,1,1,1)=TEC(2,1,1,1)*T11^3+TEC(2,1,1,2)*T21*T11^2+TEC(2,1,2,2)*T11*T21^2+...

TEC(2,2,2,2)*T21^3;

Hg(2,1,1,2)=TEC(2,1,1,1)*3*T11^2*T12+TEC(2,1,1,2)*(T22*T11^2+2*T21*T11*T12)+...

TEC(2,1,2,2)*(T12*T21^2+2*T11*T21*T22)+TEC(2,2,2,2)*3*T21^2*T22;

Hg(2,1,2,2)=TEC(2,1,1,1)*3*T11*T12^2+TEC(2,1,1,2)*(2*T22*T11*T12+T21*T12^2)+...

TEC(2,1,2,2)*(2*T12*T21*T22+T11*T22^2)+TEC(2,2,2,2)*3*T21*T22^2;
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Hg(2,2,2,2)=TEC(2,1,1,1)*T12^3+TEC(2,1,1,2)*T22*T12^2+TEC(2,1,2,2)*T12*T22^2+...

TEC(2,2,2,2)*T22^3;

%%

%%G: tensor of quadratic coefficients

%%H: tensor of cubic coefficients

G=zeros(2,2,2);

H=zeros(2,2,2,2);

%G(1,1,1)=(T11*Gg(1,1,1)*T21*Gg(2,1,1))/Mm(1,1);

%G(1,1,2)=(T11*Gg(1,1,2)*T21*Gg(2,1,2))/Mm(1,1);

%G(1,2,2)=(T11*Gg(1,2,2)*T21*Gg(2,2,2))/Mm(1,1);

%G(2,1,1)=(T12*Gg(2,1,1)*T22*Gg(2,1,1))/Mm(2,2);

%G(2,1,2)=(T12*Gg(2,1,2)*T22*Gg(2,1,2))/Mm(2,2);

%G(2,2,2)=(T12*Gg(2,2,2)*T22*Gg(2,2,2))/Mm(2,2);

for p=1:2

for k=1:2

for j=k:2

G(p,k,j)=(Tr(1,p)*Gg(1,k,j)+Tr(2,p)*Gg(2,k,j))/Mm(p,p);

++j;

end

++k;

end

++p;

end

for p=1:2

for i=1:2

for k=i:2

for j=k:2

H(p,i,k,j)=(Tr(1,p)*Hg(1,i,k,j)+Tr(2,p)*Hg(2,i,k,j))/Mm(p,p);

++j;

end

++k;

end

++i;

end

++p;

end

H=zeros(2,2,2,2);

c1=[G(1,1,1) G(1,1,2) G(1,2,2) H(1,1,1,1) H(1,1,1,2) H(1,1,2,2) H(1,2,2,2)];

c2=[G(2,1,1) G(2,1,2) G(2,2,2) H(2,1,1,1) H(2,1,1,2) H(2,1,2,2) H(2,2,2,2)];

[A,B,C,ALPHA,BETA,GAMMA,AA,BB,CC,R,S,T,U,LAMBDA,MU,NU,ZETA]=forcedcoef(OMEGA,G,H,xi);

sim('Damped_free_vibration_interconnectedVSCs');
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A.2.3 M-�le to Calculate the Coef

%File calculating the coefs of the NNM considering a linear damping of the

%system

%/calling/system_parameters.m: OMEGA xi G H

%calculating A,B,C,ALPHA,BETA,GAMMA,AA,BB,CC,R,S,T,U,LAMBDA,MU,NU,ZETA

%Created the 07/05 by Ghofrane BH using coefdirect_dampc_XK_forcee.m

function [A,B,C,ALPHA,BETA,GAMMA,AA,BB,CC,R,S,T,U,LAMBDA,MU,NU,ZETA]=...

forcedcoef(OMEGA,G,H,xi);

N=length(OMEGA);

correction=1;

%%

%quadratic coefs

A=zeros(N,N,N);

B=zeros(N,N,N);

C=zeros(N,N,N);

ALPHA=zeros(N,N,N);

BETA=zeros(N,N,N);

GAMMA=zeros(N,N,N);

for p=1:N

for i=1:N

A(p,i,i) = -(64*OMEGA(i)^4*xi(i)^4+8*OMEGA(i)^4-...

96*OMEGA(i)^3*xi(i)^3*xi(p)*OMEGA(p)-8*OMEGA(i)^3*xi(p)*OMEGA(p)*xi(i)

...+20*xi(i)^2*OMEGA(i)^2*OMEGA(p)^2+32*OMEGA(i)^2*xi(i)^2*xi(p)^2*OMEGA(p)^2-...

6*OMEGA(i)^2*OMEGA(p)^2+8*xi(p)^2*OMEGA(p)^2*OMEGA(i)^2-12*xi(p)*OMEGA(p)^3*...

xi(i)*OMEGA(i)+OMEGA(p)^4)*G(p,i,i)/(64*OMEGA(i)^6*xi(i)^2-32*OMEGA(i)^4*xi(i)^2*...

OMEGA(p)^2+64*xi(i)^4*OMEGA(i)^4*OMEGA(p)^2+20*xi(i)^2*OMEGA(i)^2*OMEGA(p)^4+...

16*OMEGA(i)^2*OMEGA(p)^4*xi(p)^2+16*OMEGA(i)^4*OMEGA(p)^2-8*OMEGA(i)^2*OMEGA(p)^4

+OMEGA(p)^6-128*OMEGA(i)^5*xi(i)^3*xi(p)*OMEGA(p)+192*OMEGA(i)^4*xi(i)^2*...

xi(p)^2*OMEGA(p)^2-96*xi(i)^3*OMEGA(i)^3*OMEGA(p)^3*xi(p)-12*xi(i)*OMEGA(i)*...

OMEGA(p)^5*xi(p)+32*xi(i)^2*OMEGA(i)^2*OMEGA(p)^4*xi(p)^2-64*OMEGA(i)^5*...

xi(p)*OMEGA(p)*xi(i)-64*OMEGA(i)^3*xi(p)^3*OMEGA(p)^3*xi(i));

B(p,i,i) = -2*G(p,i,i)*(4*OMEGA(i)^2+8*xi(i)^2*OMEGA(i)^2-OMEGA(p)^2-12*...

xi(p)*OMEGA(p)*xi(i)*OMEGA(i)+4*xi(p)^2*OMEGA(p)^2)/(64*OMEGA(i)^6*xi(i)^2-...

32*OMEGA(i)^4*xi(i)^2*OMEGA(p)^2+64*xi(i)^4*OMEGA(i)^4*OMEGA(p)^2+20*...

xi(i)^2*OMEGA(i)^2*OMEGA(p)^4+16*OMEGA(i)^2*OMEGA(p)^4*xi(p)^2+16*...

OMEGA(i)^4*OMEGA(p)^2-8*OMEGA(i)^2*OMEGA(p)^4+OMEGA(p)^6-128*OMEGA(i)^5*...

xi(i)^3*xi(p)*OMEGA(p)+192*OMEGA(i)^4*xi(i)^2*xi(p)^2*OMEGA(p)^2-96*xi(i)^3*...

OMEGA(i)^3*OMEGA(p)^3*xi(p)-12*xi(i)*OMEGA(i)*OMEGA(p)^5*xi(p)+32*xi(i)^2*...

OMEGA(i)^2*OMEGA(p)^4*xi(p)^2-64*OMEGA(i)^5*xi(p)*OMEGA(p)*xi(i)-64*...
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OMEGA(i)^3*xi(p)^3*OMEGA(p)^3*xi(i));

C(p,i,i) = -4*G(p,i,i)*(4*OMEGA(i)^3*xi(i)+16*xi(i)^3*OMEGA(i)^3-24*xi(i)^2*...

OMEGA(i)^2*xi(p)*OMEGA(p)+xi(i)*OMEGA(i)*OMEGA(p)^2-xi(p)*OMEGA(p)^3+...

8*xi(p)^2*OMEGA(p)^2*xi(i)*OMEGA(i))/(64*OMEGA(i)^6*xi(i)^2-32*OMEGA(i)^4*...

xi(i)^2*OMEGA(p)^2+64*xi(i)^4*OMEGA(i)^4*OMEGA(p)^2+20*xi(i)^2*OMEGA(i)^2*...

OMEGA(p)^4+16*OMEGA(i)^2*OMEGA(p)^4*xi(p)^2+16*OMEGA(i)^4*OMEGA(p)^2-...

8*OMEGA(i)^2*OMEGA(p)^4+OMEGA(p)^6-128*OMEGA(i)^5*xi(i)^3*xi(p)*OMEGA(p)+...

192*OMEGA(i)^4*xi(i)^2*xi(p)^2*OMEGA(p)^2-96*xi(i)^3*OMEGA(i)^3*OMEGA(p)^3*...

xi(p)-12*xi(i)*OMEGA(i)*OMEGA(p)^5*xi(p)+32*xi(i)^2*OMEGA(i)^2*OMEGA(p)^4*...

xi(p)^2-64*OMEGA(i)^5*xi(p)*OMEGA(p)*xi(i)-64*OMEGA(i)^3*xi(p)^3*OMEGA(p)^3*...

xi(i));

GAMMA(p,i,i)=2*(A(p,i,i) - OMEGA(i)^2*B(p,i,i)) -2*xi(i)*OMEGA(i)*C(p,i,i);

ALPHA(p,i,i) = -OMEGA(i)^2*C(p,i,i);

BETA(p,i,i) = -4*xi(i)*OMEGA(i)*B(p,i,i) + C(p,i,i);

end

end

for p=1:N

for i=1:N

for j=i+1:N

D=(OMEGA(i) + OMEGA(j) - OMEGA(p))*(OMEGA(i) + OMEGA(j) + OMEGA(p))*...

(OMEGA(i)- OMEGA(j) + OMEGA(p))*(OMEGA(i) - OMEGA(j) - OMEGA(p));

if abs(D) < 1e-12

A(p,i,j)=0;

B(p,i,j)=0;

C(p,i,j)=0;

C(p,j,i)=0;

ALPHA(p,i,j)=0;

BETA(p,i,j)=0;

GAMMA(p,i,j)=0;

GAMMA(p,j,i)=0;

else

A2=[OMEGA(j)^2+OMEGA(i)^2-OMEGA(p)^2, -2*OMEGA(j)^2*OMEGA(i)^2, -2*OMEGA(j)^3*...

xi(j)+2*xi(p)*OMEGA(p)*OMEGA(j)^2, -2*OMEGA(i)^3*xi(i)+2*xi(p)*OMEGA(p)*...

OMEGA(i)^2 ; -2, -4*xi(i)^2*OMEGA(i)^2-8*xi(i)*OMEGA(i)*xi(j)*OMEGA(j)-4*...

xi(j)^2*OMEGA(j)^2+OMEGA(i)^2+OMEGA(j)^2-OMEGA(p)^2+4*xi(p)*OMEGA(p)*...

xi(i)*OMEGA(i)+4*xi(p)*OMEGA(p)*xi(j)*OMEGA(j), 2*xi(i)*OMEGA(i)+...

4*xi(j)*OMEGA(j)-2*xi(p)*OMEGA(p), 4*xi(i)*OMEGA(i)+2*xi(j)*OMEGA(j)-2*...

xi(p)*OMEGA(p) ; 2*xi(j)*OMEGA(j)-2*xi(p)*OMEGA(p), -2*OMEGA(i)^3*xi(i)-...
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4*OMEGA(i)^2*xi(j)*OMEGA(j)+2*xi(p)*OMEGA(p)*OMEGA(i)^2, OMEGA(j)^2+OMEGA(i)^2-...

4*xi(j)^2*OMEGA(j)^2-OMEGA(p)^2+4*xi(p)*OMEGA(p)*xi(j)*OMEGA(j), 2*OMEGA(i)^2 ;

2*xi(i)*OMEGA(i)-2*xi(p)*OMEGA(p), -4*OMEGA(j)^2*xi(i)*OMEGA(i)-2*OMEGA(j)^3*...

xi(j)+2*xi(p)*OMEGA(p)*OMEGA(j)^2, 2*OMEGA(j)^2, OMEGA(i)^2+OMEGA(j)^2-...

4*xi(i)^2*OMEGA(i)^2-OMEGA(p)^2+4*xi(p)*OMEGA(p)*xi(i)*OMEGA(i)];

B2=[G(p,i,j) ; 0 ; 0; 0];

%solabcij=inv(A2)*B2;

solabcij=A2\B2;

A(p,i,j)=solabcij(1);

B(p,i,j)=solabcij(2);

C(p,i,j)=solabcij(3);

C(p,j,i)=solabcij(4);

ALPHA(p,i,j) = -C(p,i,j)*OMEGA(j)^2 - C(p,j,i)*OMEGA(i)^2;

BETA(p,i,j) = -2*(xi(i)*OMEGA(i) + xi(j)*OMEGA(j))*B(p,i,j)+ C(p,i,j) + C(p,j,i);

GAMMA(p,i,j) = A(p,i,j) - OMEGA(i)^2*B(p,i,j) - 2*xi(j)*OMEGA(j)*C(p,i,j);

GAMMA(p,j,i) = A(p,i,j) - OMEGA(j)^2*B(p,i,j) - 2*xi(i)*OMEGA(i)*C(p,j,i);

end

end

end

end

%%

%Calcul interm\'ediaire : AA, BB et CC

AA=zeros(N,N,N,N);

BB=zeros(N,N,N,N);

CC=zeros(N,N,N,N);

AA2=zeros(N,N,N,N);

BB2=zeros(N,N,N,N);

CC2=zeros(N,N,N,N);

for p=1:N

for i=1:N

for j=1:N

for k=1:N

V1=squeeze(G(p,i,i:N));

V2=squeeze(A(i:N,j,k));

V3=squeeze(G(p,1:i,i));

V4=squeeze(A(1:i,j,k));

AA(p,i,j,k)=V1'*V2 + V3*V4;

V5=squeeze(G(p,i,i:N));

V6=squeeze(B(i:N,j,k));

V7=squeeze(G(p,1:i,i));
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V8=squeeze(B(1:i,j,k));

BB(p,i,j,k)=V5'*V6 + V7*V8;

V9=squeeze(G(p,i,i:N));

V10=squeeze(C(i:N,j,k));

V11=squeeze(G(p,1:i,i));

V12=squeeze(C(1:i,j,k));

CC(p,i,j,k)=V9'*V10 + V11*V12;

end

end

end

end

%%

%cubic coefs

R=zeros(N,N,N,N);

S=zeros(N,N,N,N);

T=zeros(N,N,N,N);

U=zeros(N,N,N,N);

LAMBDA=zeros(N,N,N,N);

MU=zeros(N,N,N,N);

NU=zeros(N,N,N,N);

ZETA=zeros(N,N,N,N);

%treated in different loops to express all the particular cases

for p=1:N

for i=1:N

if i~=p

D1=(OMEGA(p)^2-OMEGA(i)^2)*(OMEGA(p)^2-9*OMEGA(i)^2);

if abs(D1) < 1e-12

R(p,i,i,i)=0;

S(p,i,i,i)=0;

T(p,i,i,i)=0;

U(p,i,i,i)=0;

LAMBDA(p,i,i,i)=0;

MU(p,i,i,i)=0;

NU(p,i,i,i)=0;

ZETA(p,i,i,i)=0;

else

A3iii=[-OMEGA(p)^2+3*OMEGA(i)^2, 0, 2*xi(p)*OMEGA(p)*OMEGA(i)^2-...

2*OMEGA(i)^3*xi(i), -2*OMEGA(i)^4 ; 0, -OMEGA(p)^2+12*xi(p)*OMEGA(p)*...
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xi(i)*OMEGA(i)+ 3*OMEGA(i)^2-36*xi(i)^2*OMEGA(i)^2, -2, -2*xi(p)*OMEGA(p)+...

10*xi(i)*OMEGA(i) ; -6*xi(p)*OMEGA(p)+6*xi(i)*OMEGA(i), -6*OMEGA(i)^4, ...

-OMEGA(p)^2+4*xi(p)*OMEGA(p)*xi(i)*OMEGA(i)+7*OMEGA(i)^2-4*xi(i)^2*OMEGA(i)^2,...

4*xi(p)*OMEGA(p)*OMEGA(i)^2-12*OMEGA(i)^3*xi(i) ; -6, 6*xi(p)*OMEGA(p)*...

OMEGA(i)^2-30*OMEGA(i)^3*xi(i), -4*xi(p)*OMEGA(p)+12*xi(i)*OMEGA(i),...

-OMEGA(p)^2+8*xi(p)*OMEGA(p)*xi(i)*OMEGA(i)+7*OMEGA(i)^2-16*xi(i)^2*OMEGA(i)^2];

B3iii=[H(p,i,i,i)+AA(p,i,i,i) ; 0 ; CC(p,i,i,i) ; BB(p,i,i,i)];

%sol3iii=inv(A3iii)*B3iii;

sol3iii=A3iii\B3iii;

R(p,i,i,i)=sol3iii(1);

S(p,i,i,i)=sol3iii(2);

T(p,i,i,i)=sol3iii(3);

U(p,i,i,i)=sol3iii(4);

LAMBDA(p,i,i,i) = -OMEGA(i)^2*T(p,i,i,i);

MU(p,i,i,i) = U(p,i,i,i) -6*xi(i)*OMEGA(i)*S(p,i,i,i);

NU(p,i,i,i)=3*R(p,i,i,i)-2*xi(i)*OMEGA(i)*T(p,i,i,i)-2*OMEGA(i)^2*U(p,i,i,i);

ZETA(p,i,i,i)= -3*OMEGA(i)^2*S(p,i,i,i)+2*T(p,i,i,i)-4*xi(i)*OMEGA(i)*U(p,i,i,i);

end

end

end

end

for p=1:N

for i=1:N-1

if i~=p

for j=i+1:N

D2=(OMEGA(p)+OMEGA(i)-2*OMEGA(j))*(OMEGA(p)+OMEGA(i)+2*OMEGA(j))*...

(-OMEGA(p)+OMEGA(i)+2*OMEGA(j))*(-OMEGA(p)+OMEGA(i)-2*OMEGA(j));

if ((abs(D2) < 1e-12) | (abs(OMEGA(i)^2-OMEGA(p)^2)<1e-12))

R(p,i,j,j) = 0;

S(p,i,j,j) = 0;

T(p,i,j,j) = 0;

T(p,j,i,j) = 0;

U(p,i,j,j) = 0;

U(p,j,i,j) = 0;

LAMBDA(p,i,j,j)=0;

MU(p,i,j,j) = 0;

NU(p,i,j,j) =0;

NU(p,j,i,j) =0;

ZETA(p,i,j,j) = 0;

%b 21n132

ZETA(p,j,i,j) = 0;

else
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Aip=[-OMEGA(p)^2+2*OMEGA(j)^2+OMEGA(i)^2, 0,2*xi(p)*OMEGA(p)*OMEGA(i)^2-...

2*OMEGA(i)^3*xi(i), 2*xi(p)*OMEGA(p)*OMEGA(j)^2-2*OMEGA(j)^3*xi(j), ...

-2*OMEGA(j)^4, -2*OMEGA(j)^2*OMEGA(i)^2 ; 0, -OMEGA(p)^2+4*xi(p)*...

OMEGA(p)*xi(i)*OMEGA(i)+8*xi(p)*OMEGA(p)*xi(j)*OMEGA(j)+2*OMEGA(j)^2+...

OMEGA(i)^2-4*xi(i)^2*OMEGA(i)^2-16*xi(i)*OMEGA(i)*xi(j)*OMEGA(j)-...

16*xi(j)^2*OMEGA(j)^2, -2, -2, -2*xi(p)*OMEGA(p)+8*xi(j)*OMEGA(j)+2*...

xi(i)*OMEGA(i), -2*xi(p)*OMEGA(p)+4*xi(i)*OMEGA(i)+6*xi(j)*OMEGA(j) ;

-2*xi(p)*OMEGA(p)+2*xi(i)*OMEGA(i), -2*OMEGA(j)^4, -OMEGA(p)^2+4*xi(p)*...

OMEGA(p)*xi(i)*OMEGA(i)+OMEGA(i)^2+2*OMEGA(j)^2-4*xi(i)^2*OMEGA(i)^2,

2*OMEGA(j)^2, 0, 2*xi(p)*OMEGA(p)*OMEGA(j)^2-4*OMEGA(j)^2*xi(i)*OMEGA(i)-...

2*OMEGA(j)^3*xi(j) ; -4*xi(p)*OMEGA(p)+4*xi(j)*OMEGA(j), -4*OMEGA(j)^2*...

OMEGA(i)^2, 4*OMEGA(i)^2, -OMEGA(p)^2+4*xi(p)*OMEGA(p)*xi(j)*OMEGA(j)+...

4*OMEGA(j)^2-4*xi(j)^2*OMEGA(j)^2+OMEGA(i)^2, 4*xi(p)*OMEGA(p)*...

OMEGA(j)^2-12*OMEGA(j)^3*xi(j), 2*xi(p)*OMEGA(p)*OMEGA(i)^2-4*OMEGA(i)^2*...

xi(j)*OMEGA(j)-2*OMEGA(i)^3*xi(i) ; -2, 2*xi(p)*OMEGA(p)*OMEGA(i)^2-...

2*OMEGA(i)^3*xi(i)-8*OMEGA(i)^2*xi(j)*OMEGA(j), 0, -2*xi(p)*OMEGA(p)+...

6*xi(j)*OMEGA(j), -OMEGA(p)^2+8*xi(p)*OMEGA(p)*xi(j)*OMEGA(j)+OMEGA(i)^2+...

2*OMEGA(j)^2-16*xi(j)^2*OMEGA(j)^2, 2*OMEGA(i)^2 ; -4, -12*OMEGA(j)^3*...

xi(j)+4*xi(p)*OMEGA(p)*OMEGA(j)^2-8*OMEGA(j)^2*xi(i)*OMEGA(i), 8*xi(i)*...

OMEGA(i)+4*xi(j)*OMEGA(j)-4*xi(p)*OMEGA(p), 4*xi(j)*OMEGA(j)-2*xi(p)*...

OMEGA(p)+2*xi(i)*OMEGA(i), 4*OMEGA(j)^2, -OMEGA(p)^2-4*xi(j)^2*...

OMEGA(j)^2+OMEGA(i)^2+4*OMEGA(j)^2-8*xi(i)*OMEGA(i)*xi(j)*OMEGA(j)-...

4*xi(i)^2*OMEGA(i)^2+4*xi(p)*OMEGA(p)*xi(i)*OMEGA(i)+4*xi(p)*OMEGA(p)*...

xi(j)*OMEGA(j)];

Bip=[H(p,i,j,j)+AA(p,i,j,j)+AA(p,j,i,j) ;0; CC(p,j,j,i) ;CC(p,j,i,j)+...

CC(p,i,j,j) ;BB(p,i,j,j) ; BB(p,j,i,j)];

%solrstuip=inv(Aip)*Bip;

solrstuip=Aip\Bip;

R(p,i,j,j) = solrstuip(1);

S(p,i,j,j) = solrstuip(2);

T(p,i,j,j) = solrstuip(3);

T(p,j,i,j) = solrstuip(4);

U(p,i,j,j) = solrstuip(5);

U(p,j,i,j) = solrstuip(6);

LAMBDA(p,i,j,j) = -OMEGA(j)^2*T(p,j,i,j)-OMEGA(i)^2*T(p,i,j,j);

ZETA(p,i,j,j) = -OMEGA(i)^2*S(p,i,j,j)+T(p,j,i,j)-4*xi(j)*OMEGA(j)*U(p,i,j,j);

NU(p,i,j,j) = R(p,i,j,j)-OMEGA(j)^2*U(p,j,i,j)-2*xi(i)*OMEGA(i)*T(p,i,j,j);

MU(p,i,j,j) = U(p,j,i,j)+U(p,i,j,j)-2*xi(i)*OMEGA(i)*S(p,i,j,j)-...

4*xi(j)*OMEGA(j)*S(p,i,j,j);

NU(p,j,i,j) = 2*R(p,i,j,j)-2*xi(j)*OMEGA(j)*T(p,j,i,j)-OMEGA(i)^2*U(p,j,i,j)-...

2*OMEGA(j)^2*U(p,i,j,j);
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ZETA(p,j,i,j) = -2*OMEGA(j)^2*S(p,i,j,j)+2*T(p,i,j,j)+T(p,j,i,j)-...

2*xi(i)*OMEGA(i)*U(p,j,i,j)-2*xi(j)*OMEGA(j)*U(p,j,i,j);

end

end

end

end

end

for p=1:N

for i=1:N-1

for j=(i+1):N

if j~=p

D3= (OMEGA(p)+2*OMEGA(i)-OMEGA(j))*(OMEGA(p)+2*OMEGA(i)+OMEGA(j))*...

(-OMEGA(p)+2*OMEGA(i)+OMEGA(j))*(-OMEGA(p)+2*OMEGA(i)-OMEGA(j));

if ((abs(D3) < 1e-12) | (abs(OMEGA(p)^2 -OMEGA(j)^2)<1e-12))

R(p,i,i,j) =0;

S(p,i,i,j) =0;

T(p,j,i,i) =0;

T(p,i,i,j) =0;

U(p,j,i,i) =0;

U(p,i,i,j) =0;

LAMBDA(p,i,i,j)=0;

NU(p,j,i,i) =0;

NU(p,i,i,j) =0;

MU(p,i,i,j) =0;

ZETA(p,j,i,i) =0;

ZETA(p,i,i,j) =0;

else

Ajpp=[-OMEGA(p)^2+OMEGA(j)^2+2*OMEGA(i)^2, 0, 2*xi(p)*OMEGA(p)*OMEGA(i)^2-...

2*OMEGA(i)^3*xi(i), 2*xi(p)*OMEGA(p)*OMEGA(j)^2-2*OMEGA(j)^3*xi(j), ...

-2*OMEGA(j)^2*OMEGA(i)^2, -2*OMEGA(i)^4 ; 0, -OMEGA(p)^2+8*xi(p)*OMEGA(p)*...

xi(i)*OMEGA(i)+4*xi(p)*OMEGA(p)*xi(j)*OMEGA(j)+OMEGA(j)^2+2*OMEGA(i)^2-...

16*xi(i)^2*OMEGA(i)^2-16*xi(i)*OMEGA(i)*xi(j)*OMEGA(j)-4*xi(j)^2*OMEGA(j)^2,...

-2, -2, -2*xi(p)*OMEGA(p)+6*xi(i)*OMEGA(i)+4*xi(j)*OMEGA(j), ...

-2*xi(p)*OMEGA(p)+8*xi(i)*OMEGA(i)+2*xi(j)*OMEGA(j) ;

-4*xi(p)*OMEGA(p)+4*xi(i)*OMEGA(i), -4*OMEGA(j)^2*OMEGA(i)^2, -OMEGA(p)^2+...

4*xi(p)*OMEGA(p)*xi(i)*OMEGA(i)+4*OMEGA(i)^2-4*xi(i)^2*OMEGA(i)^2+OMEGA(j)^2,

4*OMEGA(j)^2, 2*xi(p)*OMEGA(p)*OMEGA(j)^2-4*OMEGA(j)^2*xi(i)*OMEGA(i)-...

2*OMEGA(j)^3*xi(j), 4*xi(p)*OMEGA(p)*OMEGA(i)^2-12*OMEGA(i)^3*xi(i) ;

-2*xi(p)*OMEGA(p)+2*xi(j)*OMEGA(j), -2*OMEGA(i)^4, 2*OMEGA(i)^2, -OMEGA(p)^2+...

4*xi(p)*OMEGA(p)*xi(j)*OMEGA(j)+OMEGA(j)^2-4*xi(j)^2*OMEGA(j)^2+2*OMEGA(i)^2,

2*xi(p)*OMEGA(p)*OMEGA(i)^2-4*OMEGA(i)^2*xi(j)*OMEGA(j)-2*OMEGA(i)^3*xi(i), 0 ;

-4, -12*OMEGA(i)^3*xi(i)+4*xi(p)*OMEGA(p)*OMEGA(i)^2-8*OMEGA(i)^2*xi(j)*OMEGA(j),

4*xi(i)*OMEGA(i)+2*xi(j)*OMEGA(j)-2*xi(p)*OMEGA(p), 8*xi(j)*OMEGA(j)+4*xi(i)*OMEGA(i)
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-4*xi(p)*OMEGA(p), -OMEGA(p)^2+OMEGA(j)^2+4*OMEGA(i)^2-4*xi(j)^2*OMEGA(j)^2-...

4*xi(i)^2*OMEGA(i)^2+4*xi(p)*OMEGA(p)*xi(i)*OMEGA(i)+4*xi(p)*OMEGA(p)*...

xi(j)*OMEGA(j)-8*xi(i)*OMEGA(i)*xi(j)*OMEGA(j), 4*OMEGA(i)^2 ; -2,

2*xi(p)*OMEGA(p)*OMEGA(j)^2-8*OMEGA(j)^2*xi(i)*OMEGA(i)-2*OMEGA(j)^3*xi(j),

-2*xi(p)*OMEGA(p)+6*xi(i)*OMEGA(i), 0, 2*OMEGA(j)^2, -OMEGA(p)^2+8*xi(p)*...

OMEGA(p)*xi(i)*OMEGA(i)+OMEGA(j)^2+2*OMEGA(i)^2-16*xi(i)^2*OMEGA(i)^2];

Bjpp=[H(p,i,i,j)+AA(p,i,i,j)+AA(p,j,i,i) ; 0; CC(p,j,i,i)+CC(p,i,j,i); CC(p,i,i,j);

BB(p,i,i,j); BB(p,j,i,i)];

%solrstujpp=inv(Ajpp)*Bjpp;

solrstujpp=Ajpp\Bjpp;

R(p,i,i,j) =solrstujpp(1);

S(p,i,i,j) =solrstujpp(2);

T(p,i,i,j) =solrstujpp(3);

T(p,j,i,i) =solrstujpp(4);

U(p,i,i,j) =solrstujpp(5);

U(p,j,i,i) =solrstujpp(6);

NU(p,j,i,i) = R(p,i,i,j)-2*xi(j)*OMEGA(j)*T(p,j,i,i)-OMEGA(i)^2*U(p,i,i,j);

ZETA(p,j,i,i) = -OMEGA(j)^2*S(p,i,i,j)+T(p,i,i,j)-4*xi(i)*OMEGA(i)*U(p,j,i,i);

LAMBDA(p,i,i,j) = -OMEGA(j)^2*T(p,j,i,i)-OMEGA(i)^2*T(p,i,i,j);

MU(p,i,i,j) = U(p,j,i,i)+U(p,i,i,j)-4*xi(i)*OMEGA(i)*S(p,i,i,j)-...

2*xi(j)*OMEGA(j)*S(p,i,i,j);

NU(p,i,i,j) = 2*R(p,i,i,j)-2*xi(i)*OMEGA(i)*T(p,i,i,j)-2*OMEGA(i)^2*U(p,j,i,i)-...

OMEGA(j)^2*U(p,i,i,j);

ZETA(p,i,i,j) = -2*OMEGA(i)^2*S(p,i,i,j)+2*T(p,j,i,i)+T(p,i,i,j)-...

2*xi(i)*OMEGA(i)*U(p,i,i,j)-2*xi(j)*OMEGA(j)*U(p,i,i,j);

end

end

end

end

end

for p=1:N

for i=1:N-2

for j=(i+1):N-1

for k=(j+1):N

D4=(OMEGA(p)+OMEGA(j)+OMEGA(k)-OMEGA(i))*(-OMEGA(p)+OMEGA(j)-OMEGA(k)+...

OMEGA(i))*(OMEGA(p)+OMEGA(j)+OMEGA(k)+OMEGA(i))*(-OMEGA(p)+OMEGA(j)-...

OMEGA(k)-OMEGA(i))*(OMEGA(p)+OMEGA(j)-OMEGA(k)-OMEGA(i))*(-OMEGA(p)+OMEGA(j)+...

OMEGA(k)+OMEGA(i))*(OMEGA(p)+OMEGA(j)-OMEGA(k)+OMEGA(i))*(-OMEGA(p)+OMEGA(j)+...

OMEGA(k)-OMEGA(i));

if abs(D4) < 1e-12

U(p,i,j,k) =0;
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U(p,j,i,k) =0;

U(p,k,i,j) =0;

R(p,i,j,k) =0;

MU(p,i,j,k) =0;

NU(p,k,i,j) =0;

NU(p,j,i,k) =0;

NU(p,i,j,k) =0;

else

Alastijkp=[-OMEGA(p)^2+OMEGA(k)^2+OMEGA(j)^2+OMEGA(i)^2, 0, 2*xi(p)*...

OMEGA(p)*OMEGA(i)^2-2*OMEGA(i)^3*xi(i), 2*xi(p)*OMEGA(p)*OMEGA(j)^2-...

2*OMEGA(j)^3*xi(j), 2*xi(p)*OMEGA(p)*OMEGA(k)^2-2*OMEGA(k)^3*xi(k), ...

-2*OMEGA(k)^2*OMEGA(j)^2, -2*OMEGA(k)^2*OMEGA(i)^2,-2*OMEGA(j)^2*OMEGA(i)^2;

0, OMEGA(i)^2+ OMEGA(j)^2-OMEGA(p)^2+OMEGA(k)^2+4*xi(p)*OMEGA(p)*...

xi(i)*OMEGA(i)+4*xi(p)*OMEGA(p)*xi(j)*OMEGA(j)+4*xi(p)*OMEGA(p)*xi(k)*...

OMEGA(k)-4*xi(i)^2*OMEGA(i)^2-4*xi(j)^2*OMEGA(j)^2-4*xi(k)^2*OMEGA(k)^2-...

8*xi(i)*OMEGA(i)*xi(j)*OMEGA(j)-8*xi(i)*OMEGA(i)*xi(k)*OMEGA(k)-8*xi(j)*...

OMEGA(j)*xi(k)*OMEGA(k), -2, -2, -2, 4*xi(j)*OMEGA(j)+4*xi(k)*OMEGA(k)-...

2*xi(p)*OMEGA(p)+2*xi(i)*OMEGA(i), 4*xi(i)*OMEGA(i)+4*xi(k)*OMEGA(k)-...

2*xi(p)*OMEGA(p)+2*xi(j)*OMEGA(j), 4*xi(i)*OMEGA(i)+4*xi(j)*OMEGA(j)-...

2*xi(p)*OMEGA(p)+2*xi(k)*OMEGA(k) ; -2*xi(p)*OMEGA(p)+2*xi(i)*OMEGA(i), ...

-2*OMEGA(k)^2*OMEGA(j)^2, -OMEGA(p)^2+4*xi(p)*OMEGA(p)*xi(i)*OMEGA(i)+...

OMEGA(i)^2-4*xi(i)^2*OMEGA(i)^2+OMEGA(j)^2+OMEGA(k)^2, 2*OMEGA(j)^2, ...

2*OMEGA(k)^2, 0, 2*xi(p)*OMEGA(p)*OMEGA(k)^2-4*xi(i)*OMEGA(i)*OMEGA(k)^2-...

2*OMEGA(k)^3*xi(k), 2*xi(p)*OMEGA(p)*OMEGA(j)^2-4*xi(i)*OMEGA(i)*...

OMEGA(j)^2-2*OMEGA(j)^3*xi(j) ; -2*xi(p)*OMEGA(p)+2*xi(j)*OMEGA(j),

-2*OMEGA(k)^2*OMEGA(i)^2, 2*OMEGA(i)^2, -OMEGA(p)^2+4*xi(p)*OMEGA(p)*...

xi(j)*OMEGA(j)+OMEGA(j)^2-4*xi(j)^2*OMEGA(j)^2+OMEGA(i)^2+OMEGA(k)^2,

2*OMEGA(k)^2, 2*xi(p)*OMEGA(p)*OMEGA(k)^2-4*xi(j)*OMEGA(j)*OMEGA(k)^2-...

2*OMEGA(k)^3*xi(k), 0, 2*xi(p)*OMEGA(p)*OMEGA(i)^2-4*xi(j)*OMEGA(j)*...

OMEGA(i)^2-2*OMEGA(i)^3*xi(i) ; -2*xi(p)*OMEGA(p)+2*xi(k)*OMEGA(k),

-2*OMEGA(j)^2*OMEGA(i)^2, 2*OMEGA(i)^2, 2*OMEGA(j)^2, -OMEGA(p)^2+4*...

xi(p)*OMEGA(p)*xi(k)*OMEGA(k)+OMEGA(k)^2-4*xi(k)^2*OMEGA(k)^2+...

OMEGA(i)^2+OMEGA(j)^2, 2*xi(p)*OMEGA(p)*OMEGA(j)^2-4*xi(k)*OMEGA(k)*...

OMEGA(j)^2-2*OMEGA(j)^3*xi(j), 2*xi(p)*OMEGA(p)*OMEGA(i)^2-4*xi(k)*...

OMEGA(k)*OMEGA(i)^2-2*OMEGA(i)^3*xi(i), 0 ; -2, 2*xi(p)*OMEGA(p)*...

OMEGA(i)^2-2*OMEGA(i)^3*xi(i)-4*xi(j)*OMEGA(j)*OMEGA(i)^2-4*xi(k)*...

OMEGA(k)*OMEGA(i)^2, 0, -2*xi(p)*OMEGA(p)+4*xi(j)*OMEGA(j)+2*xi(k)*...

OMEGA(k), -2*xi(p)*OMEGA(p)+4*xi(k)*OMEGA(k)+2*xi(j)*OMEGA(j), -OMEGA(p)^2+...

4*xi(p)*OMEGA(p)*xi(j)*OMEGA(j)+4*xi(p)*OMEGA(p)*xi(k)*OMEGA(k)+OMEGA(i)^2+...

OMEGA(j)^2+OMEGA(k)^2-4*xi(j)^2*OMEGA(j)^2-8*xi(j)*OMEGA(j)*xi(k)*OMEGA(k)-...

4*xi(k)^2*OMEGA(k)^2, 2*OMEGA(i)^2, 2*OMEGA(i)^2 ; -2, 2*xi(p)*OMEGA(p)*...

OMEGA(j)^2-4*xi(i)*OMEGA(i)*OMEGA(j)^2-2*OMEGA(j)^3*xi(j)-4*xi(k)*...

OMEGA(k)*OMEGA(j)^2, -2*xi(p)*OMEGA(p)+4*xi(i)*OMEGA(i)+2*xi(k)*OMEGA(k),

0, -2*xi(p)*OMEGA(p)+4*xi(k)*OMEGA(k)+2*xi(i)*OMEGA(i), 2*OMEGA(j)^2, ...
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-OMEGA(p)^2+4*xi(p)*OMEGA(p)*xi(i)*OMEGA(i)+4*xi(p)*OMEGA(p)*xi(k)*...

OMEGA(k)+OMEGA(j)^2+OMEGA(i)^2+OMEGA(k)^2-4*xi(i)^2*OMEGA(i)^2-8*xi(i)*...

OMEGA(i)*xi(k)*OMEGA(k)-4*xi(k)^2*OMEGA(k)^2, 2*OMEGA(j)^2 ; -2, ...

2*xi(p)*OMEGA(p)*OMEGA(k)^2-4*xi(i)*OMEGA(i)*OMEGA(k)^2-4*xi(j)*...

OMEGA(j)*OMEGA(k)^2-2*OMEGA(k)^3*xi(k), -2*xi(p)*OMEGA(p)+4*xi(i)*OMEGA(i)+...

2*xi(j)*OMEGA(j), -2*xi(p)*OMEGA(p)+4*xi(j)*OMEGA(j)+2*xi(i)*OMEGA(i), 0,

2*OMEGA(k)^2, 2*OMEGA(k)^2, -OMEGA(p)^2+4*xi(p)*OMEGA(p)*xi(i)*OMEGA(i)+...

4*xi(p)*OMEGA(p)*xi(j)*OMEGA(j)+OMEGA(k)^2+OMEGA(i)^2+OMEGA(j)^2-...

4*xi(i)^2*OMEGA(i)^2-8*xi(i)*OMEGA(i)*xi(j)*OMEGA(j)-4*xi(j)^2*OMEGA(j)^2];

Blastijkp=[H(p,i,j,k)+AA(p,i,j,k)+AA(p,k,i,j)+AA(p,j,i,k) ; 0 ;

CC(p,k,j,i)+CC(p,j,k,i) ; CC(p,k,i,j)+CC(p,i,k,j) ;

CC(p,j,i,k)+CC(p,i,j,k) ; BB(p,i,j,k) ; BB(p,j,i,k) ; BB(p,k,i,j)];

%Am1=inv(Alastijkp);

solrstu=Alastijkp\Blastijkp;

R(p,i,j,k)=solrstu(1);

S(p,i,j,k)=solrstu(2);

T(p,i,j,k)=solrstu(3);

T(p,j,i,k)=solrstu(4);

T(p,k,i,j)=solrstu(5);

U(p,i,j,k)=solrstu(6);

U(p,j,i,k)=solrstu(7);

U(p,k,i,j)=solrstu(8);

NU(p,k,i,j)= R(p,i,j,k)-2*xi(k)*OMEGA(k)*T(p,k,i,j)-OMEGA(i)^2*U(p,j,i,k)-...

OMEGA(j)^2*U(p,i,j,k);

ZETA(p,k,i,j)= -OMEGA(k)^2*S(p,i,j,k)+T(p,j,i,k)+T(p,i,j,k)-...

2*(xi(i)*OMEGA(i)+xi(j)*OMEGA(j))*U(p,k,i,j);

LAMBDA(p,i,j,k)=-OMEGA(k)^2*T(p,k,i,j)-OMEGA(j)^2*T(p,j,i,k)-...

OMEGA(i)^2*T(p,i,j,k);

MU(p,i,j,k)=U(p,k,i,j)+U(p,j,i,k)+U(p,i,j,k)-2*(xi(i)*OMEGA(i)+xi(j)*...

OMEGA(j)+xi(k)*OMEGA(k))*S(p,i,j,k);

NU(p,j,i,k)=R(p,i,j,k)-2*xi(j)*OMEGA(j)*T(p,j,i,k)-OMEGA(i)^2*U(p,k,i,j)-...

OMEGA(k)^2*U(p,i,j,k);

NU(p,i,j,k)=R(p,i,j,k)-2*xi(i)*OMEGA(i)*T(p,i,j,k)-OMEGA(j)^2*U(p,k,i,j)-...

OMEGA(k)^2*U(p,j,i,k);

ZETA(p,j,i,k)=-OMEGA(j)^2*S(p,i,j,k)+T(p,k,i,j)+T(p,i,j,k)-2*(xi(i)*OMEGA(i)+...

xi(k)*OMEGA(k))*U(p,j,i,k);
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ZETA(p,i,j,k)=-OMEGA(i)^2*S(p,i,j,k)+T(p,k,i,j)+T(p,j,i,k)-2*(xi(j)*OMEGA(j)+...

xi(k)*OMEGA(k))*U(p,i,j,k);

end

end

end

end

end

disp('end')

A.3 Simulation Files

The simulation �les can be found in https://drive.google.com/open?id=

0B2onGI-yt3FwRVZQbUFkcGl5enc with:
1. �Damped_free_vibration_interconnectedVSCs.mdl� to study the free oscilla-

tions;
2. �Forced_damped_vibration_interconnectedVSCs.mdl� to study the forced

oscillations.

https://drive.google.com/open?id=0B2onGI-yt3FwRVZQbUFkcGl5enc
https://drive.google.com/open?id=0B2onGI-yt3FwRVZQbUFkcGl5enc


Appendix B

Inverse Nonlinear Transformation
on Real-time

This part is dedicated to illustrate the real-time algorithm of inverting nonlinear
transformation

B.1 Theoretical Formulation

A nonlinear transformation is proposed to obtain the Normal Forms of the system
of equations, which is proposed to render the simplest Normal Forms and reads:

Xp = Rp +

N∑
i=1

N∑
j≥i

(apijRiRj + bpijSiSj) +

N∑
i=1

N∑
j=1

cpijRiSj

+

N∑
i=1

N∑
j≥i

N∑
k≥j

(rpijkRiRjRk + spijkSiSjSk)

+

N∑
i=1

N∑
j=1

N∑
k≥j

(tpijkSiRjRk + up
ijkRiSjSk)

Yp = Sp +

N∑
i=1

N∑
j≥i

(αp
ijRiRj + βp

ijSiSj) +

N∑
i=1

N∑
j=1

γp
ijRiSj

+

N∑
i=1

N∑
j≥i

N∑
k≥j

(λp
ijkRiRjRk + µp

ijkSiSjSk)

+

N∑
i=1

N∑
j=1

N∑
k≥j

(νpijkSiRjRk + ζpijkRiSjSk)

The di�culty to implement in inverting the matrix is the nonlinearities. However,
in real-time, in each step, the Rp and Sp increase slightly. Thus, the real-time (RT)
values can be approximated with great accuracy as XRT

p = Xinit
p + 4Xp, Y

RT
p =

Y init
p +4Yp, RRTp = Rinitp +4Rp, SRTp = Sinitp +4Sp. Keeping terms up to degree
4, and neglect terms with higher degrees, Eq. (B.1) leads a linearization of the
nonlinear transformation.

229
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B.2 Linearization of the Nonlinear Transformation

The linearization of the nonlinear transformation can be done as (B.1).

4Xp = 4Rp +
N∑
i=1

PR(1)pi4Ri +
N∑
i=1

PS(1)pi4Si

N∑
i=1

PR(R2)pi4Ri +
N∑
i=1

PS(S2)pi4Si

N∑
i=1

PR(S2)pi4Ri +

N∑
i=1

PS(R2)pi4Si

4Yp = 4Sp +
N∑
i=1

QR(1)pi4Ri +
N∑
i=1

QS(1)pi4Si

N∑
i=1

QR(R2)pi4Ri +
N∑
i=1

QS(S2)pi4Si

N∑
i=1

QR(S2)pi4Ri +

N∑
i=1

QS(R2)pi4Si

with

PR(1)pi =
i∑

j=1

apjiRj +
N∑
j≥i

apijRj +
N∑
j=1

cpijSj (B.1)

PS(1)pi =
i∑

j=1

bpjiSj +
N∑
j≥i

bpijSj +
N∑
j=1

cpjiRj

PR(R2)pi =

i∑
j=1

i∑
k≥j

rpkjiRjRk +

i∑
j=1

N∑
k≥i

rpjikRjRk +

N∑
j≥i

N∑
k≥j

rpijkRjRk

PS(S2)pi =

i∑
j=1

i∑
k≥j

spkjiSjSk +

i∑
j=1

N∑
k≥i

spjikSjSk +

N∑
j≥i

N∑
k≥j

spijkSjSk

PR(S2)pi =
N∑
j=1

i∑
k=1

tpjkiSjRk +
N∑
j=1

N∑
k≥i

tpjikSjRk +
N∑
j=1

N∑
k≥j

upijkSjSk

PS(R2)pi =

N∑
j=1

i∑
k=1

upjkiRjSk +

N∑
j=1

N∑
k≥i

upjikRjSk +

N∑
j=1

N∑
k≥j

tpijkRjRk
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QR(1)pi =
i∑

j=1

αpjiRj +
N∑
j≥i

αpijRj +
N∑
j=1

γpijSj (B.2)

QS(1)pi =

i∑
j=1

βpjiSj +

N∑
j≥i

βpijSj +

N∑
j=1

γpjiRj

QR(R2)pi =

i∑
j=1

j∑
k≥j

λpkjiRjRk +

i∑
j=1

N∑
k≥i

λpjikRjRk +

N∑
j≥i

N∑
k≥j

λpijkRjRk

QS(S2)pi =
i∑

j=1

i∑
k≥j

µpkjiSjSk +
i∑

j=1

N∑
k≥i

µpjikSjSk +
N∑
j≥i

N∑
k≥j

µpijkSjSk

QR(S2)pi =
N∑
j=1

i∑
k=1

νpjkiSjRk +
N∑
j=1

N∑
k≥i

νpjikSjRk +
N∑
j=1

N∑
k≥j

ζpijkSjSk

QS(R2)pi =

N∑
j=1

i∑
k=1

ζpjkiRjSk +

N∑
j=1

N∑
k≥i

ζpjikRjSk +

N∑
j=1

N∑
k≥j

νpijkRjRk

Let

XR = PR(1) + PR(R2) + PR(S2) XS = PS(1) + PS(R2) + PS(S2)

Y R = QR(1) +QR(R2) +QR(S2) Y S = QS(1) +QS(R2) +QS(S2)

(B.3)

Then we obtain  4X

4Y

 =

 I +XR XS

Y R Y S


 4R

4S

 (B.4)

and  4R

4S

 =

 I +XR XS

Y R Y S


−1  4X

4Y

 =

[
NLRT

]−1

 4X

4Y

 (B.5)

The initial values can be searched o�-line, which will need dozen's of steps. And after
that, the change in the variable 4R,4S can be calculated from 4X,4Y at real-
time. And after the calculation, matrix NLRT will be updated for the calculation
at next sampling time.
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Appendix C

Kundur's 4 Machine 2 Area
System

C.1 Parameters of Kundur's Two Area Four Machine

System

Table C.1: Generator Data in PU on Machine Base

Parameter Value Parameter Value

Ra 0.0025 xl 0.002

xd 1.80 τ
′
d0 8.0

xq 1.70 τ
′
q0 0.40

x
′
d 0.3 τ

′′
d0 0.0

x
′
q 0.3 τ

′′
d0 0.0

x
′′
d 0.0 MVAbase 900

x
′′
q 0.0 H 6.5

Table C.2: Power Flow Data for Case 1 and Case 2 in Steady State after the fault
is cleared: Load

Load Voltage Zshunt

Bus (pu/230kv)

B5 1.029 6 19.75◦ P = 665.84MW , Q = −350.82Mvar

B6 0.987 6 − 47.37◦ P = 1443.38MW , Q = −350.02Mvar
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Table C.3: Power Flow Data for Case 1 and Case 2 in Steady State after the fault
is cleared:Generator

Generator Bus Terminal Voltage P Q

Type (pu/20kv) (MW) (Mvar)

G1 PV 1.006 14.02◦ 747.50 49.94

G2 swingbus 1.0006 0.0◦ 406.50 140.74

G3 PV 1.006 − 58.17◦ 539.25 113.99

G4 PV 1.006 − 66.11◦ 525.00 143.14

Table C.4: Mechanical Damping and Exciter Gain of Generators for case 1, case 2
and case 3

Generator
Mechanical Damping Exciter Gain

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Gen 1 15 3.5 3.5 150 150 240

Gen 2 15 3.5 3.5 150 150 240

Gen 3 11 2 2 150 150 240

Gen 4 10 2 2 150 150 240

C.2 Programs and Simulation Files

This part of appendix is dedicated to the interconnected VSCs.
Section A.1 illustrates how the reduced 4th order model is formulated.
In this part of Appendix, the crucial �les are presented to facilitate the reader's
comprehension of the PhD dissertation.
All the programs and �les associated with interconnected VSCs can be found in:
https://drive.google.com/open?id=0B2onGI-yt3FwdnBZQnJ6SUQ1UHM

C.2.1 SEP Initialization

--file Reduce27thOrderEquation.m --

%% Created by Tian TIAN, PhD in EE, 07/09/16

%% This is a symboic program of IEEE 4 machine system composed of :

https://drive.google.com/open?id=0B2onGI-yt3FwdnBZQnJ6SUQ1UHM
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%% the 4th order generator model+ 3rd oder Exciter model with AVR

clear all;

close all

%% Load the system.

%% The admittance matrix

% clear all

%% This program is used to calculate the interconnected power system with

%% a number of Gn generators.

%% Define the system

Gn=4 %% This is the 4 generator case.

omega_s=120*pi;

delta_Syn_1=1.8477; delta_Syn_2=1.2081; delta_Syn_3=0.78541; delta_Syn_4=0.53684;

omega_Syn_1=1;omega_Syn_2=1;omega_Syn_3=1; omega_Syn_4=1;

elq_Syn_1=0.8652; elq_Syn_2=1.0067; elq_Syn_3=0.88605;elq_Syn_4=0.91746;

eld_Syn_1=0.6477; eld_Syn_2=0.33037; eld_Syn_3=0.5998; eld_Syn_4=0.52695;

vm_Exc_1=1.03; vr3_Exc_1=0; vf_Exc_1=1.8658;

vm_Exc_2=1.01; vr3_Exc_2=0; vf_Exc_2=1.4058;

vm_Exc_3=1.03; vr3_Exc_3=0; vf_Exc_3=1.6747;

vm_Exc_4=1.03; vr3_Exc_4=0; vf_Exc_4=1.5975;

Yt=[3.9604-39.5821i -3.9604+39.6040i 0.0000+0.0000i 0.0000+0.0000i;

-3.9604+39.6040i 10.3914-42.4178i 0.0000+0.0000i 0.4578+4.1671i;

0.0000+0.0000i 0.0000+0.0000i 3.9604-39.5821i -3.9604+39.6040i;

0.0000+0.0000i 0.4578+4.1671i -3.9604+39.6040i 18.2758-43.1388i];

Gt=real(Yt);

Bt=imag(Yt);

%% The admittance matrix of the network reduced to the

%% internal bus of the generators

%%Parameters for mechanical part of generators

H=[6.5;6.5;6.5;6.5];%% Inertial constant

D=[3.5;3.5;2;2];%% Mechanical damping

%%Parameters for electrical part of generators in steady state
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Ra=ones(4,1)*0; Xd=ones(4,1)*1.80; Xq=ones(4,1)*1.70;

%% Stator resist ance, Equivalent reactance in the d axis,

%% Equivalent reactance in the q axis

%%Parameters for electromagentic transient process

Tld0=ones(4,1)*8.0;%% Transient time constant in the d axis

Tlq0=ones(4,1)*0.40;%% Transient time constant in the q axis

Xld=ones(4,1)*0.3;%% Equivalent transient reactance in the d axis

Xlq=ones(4,1)*0.3;%% Equivalent transient reactance in the q axis

%% Parameters for the exciters equipped with AVR(automatic voltage regulator)

K_A=[150;150;150;150];%% Exciter gain

T_e=ones(4,1)*0.01;

T_1=ones(4,1)*10;

T_2=ones(4,1)*1;

T_r=ones(4,1)*0.01;%% Delay for sampling of Vt

%% Define the variables for each generator:

%% $\delta_{i}$, $\omega_{i}$, $e'q$,e'd,Efd,XE1,XE2

deltaG = sym('deltaG', [Gn-1 1]);

delta=[deltaG;0]+delta_Syn_4*ones(Gn,1);

omega= sym('omega', [Gn 1]);

elq= sym('elq', [Gn 1]);

eld= sym('eld', [Gn 1]);

Vf= sym('Vf', [Gn 1]);

Vm= sym('Vm', [Gn 1]);

Vr= sym('Vr', [Gn 1]);

Yr=zeros(2*Gn,2*Gn);

for l=1:Gn

for m=1:Gn

Yr(2*l-1,2*m-1)=Gt(l,m);

Yr(2*l-1,2*m)=-Bt(l,m);

Yr(2*l,2*m-1)=Bt(l,m);

Yr(2*l,2*m)=Gt(l,m);

end

end
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%% Transformation matrices

%% T1: from the $dq_{i}$ reference frame to the common reference frame

%% T2: from the bus terminal to the generator transient axes

%% T1 and T2 are defined in Chapter 3

for l=1:Gn

T1(2*l-1,2*l-1)=sin(delta(l)); T1(2*l-1,2*l)=cos(delta(l));

T1(2*l,2*l-1)=-cos(delta(l)); T1(2*l,2*l)=sin(delta(l));

T2(2*l-1,2*l-1)=Ra(l); T2(2*l-1,2*l)=-Xlq(l);

T2(2*l,2*l-1)=Xld(l); T2(2*l,2*l)=Ra(l);

end

Y=inv(inv(Yr)+T2/9);

for l=1:Gn

for m=1:Gn

G1(l,m)=Y(2*l-1,2*m-1);

B1(l,m)=-Y(2*l-1,2*m);

B1(l,m)=Y(2*l,2*m-1);

G1(1,m)=Y(2*l,2*m);

end

end

Ydelta=inv(T1)*Y*T1;

for j=1:Gn

eldq(2*j-1)=eld(j);

eldq(2*j)=elq(j);

end

Idq=Ydelta*eldq.';

%% Auxiliary variable--id,iq

for j=1:Gn

id(j)=Idq(2*j-1);

iq(j)=Idq(2*j);

end

for j=1:Gn

Vt(j)=sqrt((elq(j)-Xld(j)*id(j)/9)^2+(eld(j)+Xlq(j)*iq(j)/9)^2);

Pe(j)=eld(j)*id(j)+elq(j)*iq(j);

elx(j)=sin(delta(j))*eld(j)+cos(delta(j))*elq(j);

ely(j)=-cos(delta(j))*eld(j)+sin(delta(j))*elq(j);

end

for j=1:Gn
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elxy(2*j-1,1)=elx(j);

elxy(2*j,1)=ely(j);

end

Ixy=Y*elxy;

%%Initial conditions of the physical state variables

vf_Syn_1=1.8658; pm_Syn_1=7.4911; p_Syn_1=7.4911; q_Syn_1=0.71811;

vf_Syn_2=1.4058; pm_Syn_2=2.9291; p_Syn_2=2.9291; q_Syn_2=1.3674;

vf_Syn_3=1.6747; pm_Syn_3=6.2548; p_Syn_3=6.2548; q_Syn_3=0.63815;

vf_Syn_4=1.5975; pm_Syn_4=5.258; p_Syn_4=5.258; q_Syn_4=1.0209;

Pm=[pm_Syn_1;pm_Syn_2;pm_Syn_3;pm_Syn_4];

Pe0=[p_Syn_1;p_Syn_2;p_Syn_3;p_Syn_4];

Qe0=[q_Syn_1;q_Syn_2;q_Syn_3;q_Syn_4];

Vref=zeros(Gn,1);

Vref_Exc_1=1.03;

Vref_Exc_2=1.01;

Vref_Exc_3=1.03;

Vref_Exc_4=1.01;

Vref=[Vref_Exc_1;Vref_Exc_2;Vref_Exc_3;Vref_Exc_4];

delta0=[delta_Syn_1-delta_Syn_4;delta_Syn_2-delta_Syn_4;delta_Syn_3-delta_Syn_4];

omega0=[omega_Syn_1;omega_Syn_2;omega_Syn_3;omega_Syn_4];

elq0=[elq_Syn_1;elq_Syn_2;elq_Syn_3;elq_Syn_4];

eld0=[eld_Syn_1;eld_Syn_2;eld_Syn_3;eld_Syn_4];

Vm0=[vm_Exc_1;vm_Exc_2;vm_Exc_3;vm_Exc_4];

Vr0=[vr3_Exc_1;vr3_Exc_2;vr3_Exc_3;vr3_Exc_4];

Vf0=[vf_Exc_1;vf_Exc_2;vf_Exc_3;vf_Exc_4];

for j=1:Gn-1

ddelta_Gn(j)=omega_s*(omega(j)-omega(Gn));

domega(j)=1/(2*H(j))*(Pm(j)/9-Pe(j)/9-D(j)*(omega(j)-1));

delq(j)=1/Tld0(j)*(Vf(j)-(Xd(j)-Xld(j))*id(j)/9-elq(j));

deld(j)=1/Tlq0(j)*((Xq(j)-Xlq(j))/9*iq(j)-eld(j));

dVm(j)=(Vt(j)-Vm(j))/T_r(j);

dVr(j)=(K_A(j)*(1-T_1(j)/T_2(j))*(Vref(j)-Vm(j))-Vr(j))/T_2(j);

dVf(j)=(Vr(j)+K_A(j)*T_1(j)/T_2(j)*(Vref(j)-Vm(j))+Vf0(j)-Vf(j))/T_e(j);

end

for j=Gn

domega(j)=1/(2*H(j))*(Pm(j)/9-Pe(j)/9-D(j)*(omega(j)-1));

delq(j)=1/Tld0(j)*(Vf(j)-(Xd(j)-Xld(j))*id(j)/9-elq(j));

deld(j)=1/Tlq0(j)*((Xq(j)-Xlq(j))/9*iq(j)-eld(j));
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dVm(j)=(Vt(j)-Vm(j))/T_r(j);

dVr(j)=(K_A(j)*(1-T_1(j)/T_2(j))*(Vref(j)-Vm(j))-Vr(j))/T_2(j);

dVf(j)=(Vr(j)+K_A(j)*T_1(j)/T_2(j)*(Vref(j)-Vm(j))+Vf0(j)-Vf(j))/T_e(j);

end

for j=1:Gn-1

X27(7*j-6:7*j)=[deltaG(j),omega(j),elq(j),eld(j),Vm(j),Vr(j),Vf(j)];

F27(7*j-6:7*j)=[ddelta_Gn(j),domega(j),delq(j),deld(j),dVm(j),dVr(j),dVf(j)];

end

for j=Gn

X27(7*j-6:7*j-1)=[omega(j),elq(j),eld(j),Vm(j),Vr(j),Vf(j)];

F27(7*j-6:7*j-1)=[domega(j),delq(j),deld(j),dVm(j),dVr(j),dVf(j)];

end

%%%---- Input of the operating point obtained from the power flow analysis

%% run by the software PSAT ----------

for j=1:Gn-1

x027(7*j-6:7*j)=[delta0(j),omega0(j),elq0(j),eld0(j),Vm0(j),Vr0(j),Vf0(j)];

end

for j=Gn

x027(7*j-6:7*j-1)=[omega0(j),elq0(j),eld0(j),Vm0(j),Vr0(j),Vf0(j)];

end

x027=x027.';

Fv_R=vpa(F27);

FvS_R=simplify(Fv_R);

TS_R=taylor(FvS_R,X27,x027,'Order',4);

%TStest=subs(TS,X,X+x0);

%x0test=zeros(28,1);

[F1t_R,F2t_R,F3t_R]=EqNl2Matrix(TS_R,X27,x027.');

%[F1t,F2t,F3t]=EqNl2Matrix(F27,X27,x027.');

EIV_R=eig(F1t_R);

[Tu,Lambda,F2N_R,F3N_R]=NLcoefJordan(F1t_R,F2t_R,F3t_R);

C.2.1.1 Doing the Taylor's Expansion Series

----function [F1,F2,F3]=EqNl2Matrix(F,X,x0)----

%% Created by Tian TIAN, PhD in EE, ENSAM, Lille, 2017
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function [F1,F2,F3]=EqNl2Matrix(F,X,x0)

%% This functions is used to do the taylor's expansion of

%% a set of nonlinear functions of multi-variables

%% X=[x1,x2,...,xn] around the Equilibrium Point x0=[x10,x20,...,xn0]

%% i.e

%% F(x)=F(x0)+F1*(X-x0)+F2*(X-x0)^{2}+F3*(X-x0)^{3}+terms higher than 3rd-order

%% Input: the nonlinear equations--F, the variable vector--X, the equilibrium point-- x0

%% Output: first-order derivative matrix--F1,

%% second derivative matrix-- F2 (0.5*Hessin matrix),

%% third-order derivative matrix-- F3(1/6 H3 matrix),

%% In fact, this function can be extended to calculate the Taylor's series

%% coefficients matrix to order higher than 3, such as n+1th order

%% What is needed is to derivate the matrix n-th order derivative matrix

%% repetitively until to the expected order

%% i.e H(n+1)(p,q,r,...n,:)=jacobian(H(n)(p,q,r,...,n),X)

%TS3=taylor(F,X,x0,'Order',3);

L=length(X);%% Get the length of the matrix

J = jacobian(F,X);%% Jocobian matrix, obtaining the first-order derivative

N1 = double(subs(J,X,x0)); %% Obtain the matrix F1 at the equilibirum point x0

for p=1:L

H2(p,:,:) = hessian(F(p),X);

end

for p=1:L

for k=1:L

H3(p,k,:,:)=hessian(J(p,k),X);

end

end

N2=double(subs(H2,X,x0));

N3=double(subs(H3,X,x0));

F1=N1;

F2=0.5*N2; %% Return the 0.5 Hessian Matrix

F3=1/6*N3; %% Return the 1/6 Tensor Matrix

C.2.1.2 Calculating the Nonlinear Matrices in Jordan Form

%% Created by Tian TIAN, PhD in EE, ENSAM, Lille, 2017

function [Tu,Lambda,F2,F3]=NLcoefJordan(A,N2,N3)
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%% This function is used to change the nonlinear matrix of

%% the original system dynamics in the jordan coordinate

%% i.e form \dot{x}=Ax+N2(x)+N3(x)

%% to \dot{y}=\lambda y+F2(y)+F3(y)

L=length(A);%%get the dimension of the system of equations.

[Tu,Lambda]=eig(A);

%Tu=Tu/(det(Tu))^(1/27);

invTu=inv(Tu);

%% Calculate F2

F21=zeros(L,L,L);

F2=zeros(L,L,L);

for p=1:L

%F2(p,:,:)=invTu.'*(Tu.'*squeeze(N2(p,:,:))*Tu);

F21(p,:,:)=Tu.'*squeeze(N2(p,:,:))*Tu;

end

for p=1:L

for j=1:L

for k=1:L

F2(p,j,k)=invTu(p,:)*F21(:,j,k);

end

end

end

%% Calculate F3

F31=zeros(L,L,L,L);

F3=zeros(L,L,L,L);

for j=1:L

for p=1:L

for q=1:L

for r=1:L

for l=1:L

for m=1:L

for n=1:L

F31(j,p,q,r)=F31(j,p,q,r)+N3(j,l,m,n)*Tu(l,p)*Tu(m,q)*Tu(n,r);

end

end

end

end

end

end
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end

for j=1:L

for p=1:L

for q=1:L

for r=1:L

F3(j,p,q,r)=invTu(j,:)*F31(:,p,q,r);

end

end

end

end

C.3 Calculation of Normal Form Coe�cients

C.3.1 Calculating the NF Coe�cients h2jkl of Method 2-2-1

%% Created by Tian TIAN, PhD in EE, ENSAM, Lille, 2017

function h2=classic_coef(EIV,CG)

%File calculating the coefs of the normal from transformation (VF)

N=length(EIV);

%%

%quadratic coefs

Cla=zeros(N,N,N);

for p=1:N

for j=1:N

for k=1:N

Cla(p,j,k) = CG(p,j,k)/(EIV(j) + EIV(k)-EIV(p));

end

end

end

disp('end to find the coefficients ')

end

\subsection{Finding the Oscillatory Modes}

\begin{verbatim}

%% Created by Tian TIAN, PhD in EE, ENSAM, Lille, 2017

function ModeNumber=OsciModeNO(EIV)

%% This function is to get the numerical order of oscillatory modes from

%% the eigenvalue vector.

ModeNumber=[];

%% This vector is used to record the numerical order



C.3. Calculation of Normal Form Coe�cients 243

%% of the oscillatory modes

m=0;

ModeSize=length(EIV);

for j=1:ModeSize

if abs(imag(EIV(j)))>1e-3

m=m+1;

ModeNumber(m)=j;

end

end

C.3.2 Calculation the NF Coe�cients of Method 3-3-3

function [h2 h3 C3 F2H2 c3]=NF_coef333R(EIV,F2,F3,ModeNumber)

%File calculating the coefs of the normal from transformation (VF)

L=length(EIV);

M=length(ModeNumber);

MN=ModeNumber;

N1718=0;

xdot=zeros(L,1);

c3=zeros(L,L);

term_3=zeros(L,1);

F2H2=zeros(L,L,L,L);

F2c=zeros(L,L);

C3=zeros(L,L,L,L);

h2=zeros(L,L,L);

h3=zeros(L,L,L,L);

for p=1:M

for l=1:M

for m=1:M

for n=1:M

h2(MN(p),MN(l),MN(m))= F2(MN(p),MN(l),MN(m))/(EIV(MN(l))+EIV(MN(m))-EIV(MN(p)));

end

end

end

end

for p=1:L

for l=1:L

for k=1:L
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F2c(p,l)=F2c(p,l)+F2(p,l,k)+F2(p,k,l);

end

for m=1:L

for n=1:L

F2H2(p,l,m,n)=F2c(p,l)*h2(p,m,n);

C3(p,l,m,n)=F2H2(p,l,m,n)+F3(p,l,m,n);

end

end

end

end

for i=1:(M/2)

for j=1:(M/2)

if j~=i

c3(MN(2*i),MN(2*j))=C3(MN(2*i),MN(2*i),MN(2*j),MN(2*j-1))+...

C3(MN(2*i),MN(2*j),MN(2*i),MN(2*j-1))+...

C3(MN(2*i),MN(2*j),MN(2*j-1),MN(2*i))+...

C3(MN(2*i),MN(2*i),MN(2*j-1),MN(2*j))+...

C3(MN(2*i),MN(2*j-1),MN(2*i),MN(2*j))+...

C3(MN(2*i),MN(2*j-1),MN(2*j),MN(2*i));

c3(MN(2*i-1),MN(2*j))=C3(MN(2*i-1),MN(2*i)-1,MN(2*j),MN(2*j-1))+...

C3(MN(2*i-1),MN(2*j),MN(2*i-1),MN(2*j-1))+...

C3(MN(2*i-1),MN(2*j),MN(2*j-1),MN(2*i-1))+...

C3(MN(2*i-1),MN(2*i-1),MN(2*j-1),MN(2*j))+...

C3(MN(2*i-1),MN(2*j-1),MN(2*i-1),MN(2*j))+...

C3(MN(2*i-1),MN(2*j-1),MN(2*j),MN(2*i-1));

else

c3(MN(2*i),MN(2*i))=C3(MN(2*i),MN(2*i),MN(2*i),MN(2*i-1))+...

C3(MN(2*i),MN(2*i),MN(2*i-1),MN(2*i))+...

C3(MN(2*i),MN(2*i-1),MN(2*i),MN(2*i));

c3(MN(2*i-1),MN(2*i))=C3(MN(2*i-1),MN(2*i-1),MN(2*i),MN(2*i-1))+...

C3(MN(2*i-1),MN(2*i-1),MN(2*i-1),MN(2*i))+...

C3(MN(2*i-1),MN(2*i),MN(2*i-1),MN(2*i-1));

%xdot(2*i-1)=conj(x(2*i));

end

end

end

for p=1:M

for l=1:M

for m=1:M

for n=1:M
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h3(MN(p),MN(l),MN(m),MN(n))= C3(MN(p),MN(l),MN(m),MN(n))/...

(EIV(MN(l))+EIV(MN(m))+EIV(MN(n))-EIV(MN(p)));

end

end

end

end

for k=1:(M/2)

for l=1:(M/2)

for m=1:(M/2)

for n=1:(M/2)

if l~=k

h3(MN(2*k),MN(2*k),MN(2*l),MN(2*l-1))=0;h3(MN(2*k),MN(2*l),MN(2*k),MN(2*l-1))=0;

h3(MN(2*k),MN(2*l),MN(2*l-1),MN(2*k))=0;h3(MN(2*k),MN(2*k),MN(2*l-1),MN(2*l))=0;

h3(MN(2*k),MN(2*l-1),MN(2*k),MN(2*l))=0;h3(MN(2*k),MN(2*l-1),MN(2*l),MN(2*k))=0;

h3(MN(2*k-1),MN(2*k-1),MN(2*l),MN(2*l-1))=0;

h3(MN(2*k-1),MN(2*l),MN(2*k-1),MN(2*l-1))=0;

h3(MN(2*k-1),MN(2*l),MN(2*l-1),MN(2*k-1))=0;

h3(MN(2*k-1),MN(2*k-1),MN(2*l-1),MN(2*l))=0;

h3(MN(2*k-1),MN(2*l-1),MN(2*k-1),MN(2*l))=0;

h3(MN(2*k-1),MN(2*l-1),MN(2*l),MN(2*k-1))=0;

else

h3(MN(2*k),MN(2*k),MN(2*k),MN(2*k-1))=0;

h3(MN(2*k),MN(2*k),MN(2*k-1),MN(2*k))=0;

h3(MN(2*k),MN(2*k-1),MN(2*k),MN(2*k))=0;

h3(MN(2*k-1),MN(2*k-1),MN(2*k),MN(2*k-1))=0;

h3(MN(2*k-1),MN(2*k),MN(2*k-1),MN(2*k-1))=0;

h3(MN(2*k-1),MN(2*k-1),MN(2*k-1),MN(2*k))=0;

end

end

end

end

end

disp('-------------------------End to find the coefficients for method 3-3-3------------------------')

end

C.3.3 Calculation of Nonlinear Indexes MI3

--file calculationnonlinearindexes.m--
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%% Created by Tian TIAN, 30/01/2017

%% This file is used to calculate the files for h2, h3 in the proposed 3-3-3 method

%function [h2,h3,C3,F2H2,c3]=NonlinearIndex(EIV,F2,F3,ModeNumber)

%File calculating the coefs of the normal from transformation (VF)

L=length(EIV_R);%%The number of modes

M=length(ModeNumber);%%The number of oscillatory modes

MN=ModeNumber;

M=L/2;

EIV=EIV_R;

w=imag(EIV);

sigma=real(EIV);

F2=F2N_R;

F3=F3N_R;

%quadratic coefs

h3=h3test_R;

for j=1:L

for p=1:L

h3(j,p,p,p)=h3(j,p,p,p);

for q=(p+1):L

h3(j,p,q,q)=h3(j,p,q,q)+h3(j,q,p,q)+h3(j,q,q,p);

for r=(q+1):L

h3(j,p,q,r)=h3(j,p,q,r)+h3(j,p,r,q)+h3(j,r,p,q)+h3(j,q,p,r)+...

h3(j,q,r,p)+h3(j,r,q,p);

end

end

end

end

for j=1:L

for p=1:L

for q=1:L

for r=1:L

MI333(j,p,q,r)=abs(h3(j,p,q,r)*z0333(p)*z0333(q)*z0333(r))/abs(z0333(j));

end

end

end

end

MaxMI333=zeros(27,7);

for j=1:L

[Ch3,Ih3] = max(MI333(j,:));

[Ih3_1,Ih3_2,Ih3_3] = ind2sub([27 27 27],Ih3);

MaxMI333(j,:)=[j,Ih3_1,Ih3_2,Ih3_3,EIV_R(j),(EIV_R(Ih3_1)+EIV_R(Ih3_2)+EIV_R(Ih3_3)),...
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MI3(j,Ih3_1,Ih3_2,Ih3_3)];

end

disp('-----------End to calculate the nonlinear indexes for method 3-3-3

------------------------')

C.3.4 Normal Dynamics

Solving the Normal Dynamics, the solution of the normal forms will be obtained,
which contains the properties of the system in the normal form coordinates and
whose reconstruction by the NF transformation can approximate the original system
dynamics.

C.3.4.1 Normal Dynamics for method 3-2-3S and method 3-3-3

%% Created by Tian TIAN, PhD in EE, ENSAM, Lille, 2017

function xdot=NF_333(t,x,CE,c3)

L=length(CE);

xdot=zeros(L,1);

term_3=zeros(L,1);

%% Cam=zeros(4,2);

F2H2=zeros(L,L,L,L);

F2c=zeros(L,L);

C3=zeros(L,L,L,L);

for i=1:(L/2)

for j=1:(L/2)

term_3(2*i)=term_3(2*i)+c3(2*i,j)*x(2*i)*x(2*j)*x(2*j-1);

term_3(2*i-1)=term_3(2*i-1)+c3(2*i-1,j)*x(2*i-1)*x(2*j)*x(2*j-1);

%xdot(2*i-1)=conj(x(2*i));

end

end

for p=1:L

xdot(p)=CE(p,p)*x(p)+term_3(p);

end

end

C.3.4.2 Normal Dynamics for method 3-3-1 and 2-2-1

function xdot=NF_1(t,x,CE)
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L=length(CE);

xdot=zeros(L,1);

for p=1:L

xdot(p)=CE(p,p)*x(p);

end

end

C.3.5 Search for Initial Conditions

C.3.5.1 Newton Raphson's Method [67]

function [x, resnorm, F, exitflag, output, jacob] = newtonraphson(fun,x0,options)

% NEWTONRAPHSON Solve set of non-linear equations using Newton-Raphson method.

%

% [X, RESNORM, F, EXITFLAG, OUTPUT, JACOB] = NEWTONRAPHSON(FUN, X0, OPTIONS)

% FUN is a function handle that returns a vector of residuals equations, F,

% and takes a vector, x, as its only argument. When the equations are

% solved by x, then F(x) == zeros(size(F(:), 1)).

%

% Optionally FUN may return the Jacobian, Jij = dFi/dxj, as an additional

% output. The Jacobian must have the same number of rows as F and the same

% number of columns as x. The columns of the Jacobians correspond to d/dxj and

% the rows correspond to dFi/d.

%

% EG: J23 = dF2/dx3 is the 2nd row ad 3rd column.

%

% If FUN only returns one output, then J is estimated using a center

% difference approximation,

%

% Jij = dFi/dxj = (Fi(xj + dx) - Fi(xj - dx))/2/dx.

%

% NOTE: If the Jacobian is not square the system is either over or under

% constrained.

%

% X0 is a vector of initial guesses.

%

% OPTIONS is a structure of solver options created using OPTIMSET.

% EG: options = optimset('TolX', 0.001).

%

% The following options can be set:

% * OPTIONS.TOLFUN is the maximum tolerance of the norm of the residuals.

% [1e-6]



C.3. Calculation of Normal Form Coe�cients 249

% * OPTIONS.TOLX is the minimum tolerance of the relative maximum stepsize.

% [1e-6]

% * OPTIONS.MAXITER is the maximum number of iterations before giving up.

% [100]

% * OPTIONS.DISPLAY sets the level of display: {'off', 'iter'}.

% ['iter']

%

% X is the solution that solves the set of equations within the given tolerance.

% RESNORM is norm(F) and F is F(X). EXITFLAG is an integer that corresponds to

% the output conditions, OUTPUT is a structure containing the number of

% iterations, the final stepsize and exitflag message and JACOB is the J(X).

%

% See also OPTIMSET, OPTIMGET, FMINSEARCH, FZERO, FMINBND, FSOLVE, LSQNONLIN

%

% References:

% * http://en.wikipedia.org/wiki/Newton's_method

% * http://en.wikipedia.org/wiki/Newton's_method_in_optimization

% * 9.7 Globally Convergent Methods for Nonlinear Systems of Equations 383,

% Numerical Recipes in C, Second Edition (1992),

% http://www.nrbook.com/a/bookcpdf.php

% Version 0.5

% * allow sparse matrices, replace cond() with condest()

% * check if Jstar has NaN or Inf, return NaN or Inf for cond() and return

% exitflag: -1, matrix is singular.

% * fix bug: max iteration detection and exitflag reporting typos

% Version 0.4

% * allow lsq curve fitting type problems, IE non-square matrices

% * exit if J is singular or if dx is NaN or Inf

% Version 0.3

% * Display RCOND each step.

% * Replace nargout checking in funwrapper with ducktypin.

% * Remove Ftyp and F scaling b/c F(typx)->0 & F/Ftyp->Inf!

% * User Numerical Recipies minimum Newton step, backtracking line search

% with alpha = 1e-4, min_lambda = 0.1 and max_lambda = 0.5.

% * Output messages, exitflag and min relative step.

% Version 0.2

% * Remove `options.FinDiffRelStep` and `options.TypicalX` since not in MATLAB.

% * Set `dx = eps^(1/3)` in `jacobian` function.

% * Remove `options` argument from `funwrapper` & `jacobian` functions

% since no longer needed.

% * Set typx = x0; typx(x0==0) = 1; % use initial guess as typx, if 0 use 1.

% * Replace `feval` with `evalf` since `feval` is builtin.
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%% initialize

% There are no argument checks!

x0 = x0(:); % needs to be a column vector

% set default options

oldopts = optimset( ...

'TolX', 1e-8, 'TolFun', 1e-5, 'MaxIter', 2000, 'Display', 'iter');

if nargin<3

options = oldopts; % use defaults

else

options = optimset(oldopts, options); % update default with user options

end

FUN = @(x)funwrapper(fun, x); % wrap FUN so it always returns J

%% get options

TOLX = optimget(options, 'TolX'); % relative max step tolerance

TOLFUN = optimget(options, 'TolFun'); % function tolerance

MAXITER = optimget(options, 'MaxIter'); % max number of iterations

DISPLAY = strcmpi('iter', optimget(options, 'Display')); % display iterations

TYPX = max(abs(x0), 1); % x scaling value, remove zeros

ALPHA = 1e-4; % criteria for decrease

MIN_LAMBDA = 0.1; % min lambda

MAX_LAMBDA = 0.5; % max lambda

%% set scaling values

% TODO: let user set weights

weight = ones(numel(FUN(x0)),1);

J0 = weight*(1./TYPX'); % Jacobian scaling matrix

%% set display

if DISPLAY

fprintf('\n%10s %10s %10s %10s %10s %12s\n', 'Niter', 'resnorm', 'stepnorm', ...

'lambda', 'rcond', 'convergence')

for n = 1:67,fprintf('-'),end,fprintf('\n')

fmtstr = '%10d %10.4g %10.4g %10.4g %10.4g %12.4g\n';

printout = @(n, r, s, l, rc, c)fprintf(fmtstr, n, r, s, l, rc, c);

end

%% check initial guess

x = x0; % initial guess

[F, J] = FUN(x); % evaluate initial guess

Jstar = J./J0; % scale Jacobian

if any(isnan(Jstar(:))) || any(isinf(Jstar(:)))

exitflag = -1; % matrix may be singular

else

exitflag = 1; % normal exit

end

if issparse(Jstar)

rc = 1/condest(Jstar);
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else

if any(isnan(Jstar(:)))

rc = NaN;

elseif any(isinf(Jstar(:)))

rc = Inf;

else

rc = 1/cond(Jstar); % reciprocal condition

end

end

resnorm = norm(F); % calculate norm of the residuals

dx = zeros(size(x0));convergence = Inf; % dummy values

%% solver

Niter = 0; % start counter

lambda = 1; % backtracking

if DISPLAY,printout(Niter, resnorm, norm(dx), lambda, rc, convergence);end

while (resnorm>TOLFUN || lambda<1) && exitflag>=0 && Niter<=MAXITER

if lambda==1

%% Newton-Raphson solver

Niter = Niter+1; % increment counter

dx_star = -Jstar\F; % calculate Newton step

% NOTE: use isnan(f) || isinf(f) instead of STPMAX

dx = dx_star.*TYPX; % rescale x

g = F'*Jstar; % gradient of resnorm

slope = g*dx_star; % slope of gradient

fold = F'*F; % objective function

xold = x; % initial value

lambda_min = TOLX/max(abs(dx)./max(abs(xold), 1));

end

if lambda<lambda_min

exitflag = 2; % x is too close to XOLD

break

elseif any(isnan(dx)) || any(isinf(dx))

exitflag = -1; % matrix may be singular

break

end

x = xold+dx*lambda; % next guess

[F, J] = FUN(x); % evaluate next residuals

Jstar = J./J0; % scale next Jacobian

f = F'*F; % new objective function

%% check for convergence

lambda1 = lambda; % save previous lambda

if f>fold+ALPHA*lambda*slope

if lambda==1

lambda = -slope/2/(f-fold-slope); % calculate lambda
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else

A = 1/(lambda1 - lambda2);

B = [1/lambda1^2,-1/lambda2^2;-lambda2/lambda1^2,lambda1/lambda2^2];

C = [f-fold-lambda1*slope;f2-fold-lambda2*slope];

coeff = num2cell(A*B*C);

[a,b] = coeff{:};

if a==0

lambda = -slope/2/b;

else

discriminant = b^2 - 3*a*slope;

if discriminant<0

lambda = MAX_LAMBDA*lambda1;

elseif b<=0

lambda = (-b+sqrt(discriminant))/3/a;

else

lambda = -slope/(b+sqrt(discriminant));

end

end

lambda = min(lambda,MAX_LAMBDA*lambda1); % minimum step length

end

elseif isnan(f) || isinf(f)

% limit undefined evaluation or overflow

lambda = MAX_LAMBDA*lambda1;

else

lambda = 1; % fraction of Newton step

end

if lambda<1

lambda2 = lambda1;f2 = f; % save 2nd most previous value

lambda = max(lambda,MIN_LAMBDA*lambda1); % minimum step length

continue

end

%% display

resnorm0 = resnorm; % old resnorm

resnorm = norm(F); % calculate new resnorm

convergence = log(resnorm0/resnorm); % calculate convergence rate

stepnorm = norm(dx); % norm of the step

if any(isnan(Jstar(:))) || any(isinf(Jstar(:)))

exitflag = -1; % matrix may be singular

break

end

if issparse(Jstar)

rc = 1/condest(Jstar);

else

rc = 1/cond(Jstar); % reciprocal condition
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end

if DISPLAY,printout(Niter, resnorm, stepnorm, lambda1, rc, convergence);end

end

%% output

output.iterations = Niter; % final number of iterations

output.stepsize = dx; % final stepsize

output.lambda = lambda; % final lambda

if Niter>=MAXITER

exitflag = 0;

output.message = 'Number of iterations exceeded OPTIONS.MAXITER.';

elseif exitflag==2

output.message = 'May have converged, but X is too close to XOLD.';

elseif exitflag==-1

output.message = 'Matrix may be singular. Step was NaN or Inf.';

else

output.message = 'Normal exit.';

end

jacob = J;

end

function [F, J] = funwrapper(fun, x)

% if nargout<2 use finite differences to estimate J

try

[F, J] = fun(x);

catch

F = fun(x);

J = jacobian(fun, x); % evaluate center diff if no Jacobian

end

F = F(:); % needs to be a column vector

end

function J = jacobian(fun, x)

% estimate J

dx = eps^(1/3); % finite difference delta

nx = numel(x); % degrees of freedom

nf = numel(fun(x)); % number of functions

J = zeros(nf,nx); % matrix of zeros

for n = 1:nx

% create a vector of deltas, change delta_n by dx

delta = zeros(nx, 1); delta(n) = delta(n)+dx;

dF = fun(x+delta)-fun(x-delta); % delta F

J(:, n) = dF(:)/dx/2; % derivatives dF/d_n

end

end
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C.3.5.2 Mismatch function for Method 3-3-3 and Method 3-3-1

%% Created by Tian TIAN, PhD in EE, ENSAM, Lille

function f=fzinit3(z,h2,h3,y0)

%% Reconstruction the system dynamics(SD) from the normal dynamics(ND).

%% From the z coordinate to the x coordinate.

%% dynamics=linear system+second order dynamics+non-resonant 3rd order dynamics+...

%% resonant 3rd order dynamics

%%from z to y: y=z+h2(z)+h3(z)+c3(z); for y to x: x=U*y

%% The input is the solution in the time-series,

%% the time length of data(discretation):tt;

%% N=length(tt);

L=length(y0);

ynl=zeros(L,1);

ynl3=zeros(L,1);

H3=zeros(L,1);

for l=1:L

for p=1:L

for q=1:L

for r=1:L

H3(l)=H3(l)+h3(1,p,q,r)*z(p)*z(q)*z(r);

end

end

end

end

for l=1:L

ynl3(l)=z(l)+z.'*squeeze(h2(l,:,:))*z+H3(l);

end

f=ynl3-y0;

C.3.5.3 Mismatch Equation for method 2-2-1 and 3-2-3S

%% Created by Tian TIAN, PhD in EE, ENSAM, Lille, 2017

function f=fzinit2(z,h2,y0)

%% Reconstruction the system dynamics(SD) from the normal dynamics(ND).

%% From the z coordinate to the x coordinate.

%% dynamics=linear system+second order dynamics+non-resonant 3rd order dynamics+...

%% resonant 3rd order dynamics

%%from z to y: y=z+h2(z)+h3(z)+c3(z); for y to x: x=U*y

%% The input is the solution in the time-series,

%% the time length of data(discretation):tt;

%% N=length(tt);
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L=length(y0);

ynl=zeros(L,1);

ynl3=zeros(L,1);

for l=1:L

ynl3(l)=z(l)+z.'*squeeze(h2(l,:,:))*z;

end

f=ynl3-y0;

C.4 Simulation �les

The simulation �les can be found in https://drive.google.com/open?id=

0B2onGI-yt3FwdnBZQnJ6SUQ1UHM with:
• �power_PSS3_unbalanced.slx� to assess the performance of the pre-
sented methods by numerical step-by-step integration based on the demo
�power_PSS�.

https://drive.google.com/open?id=0B2onGI-yt3FwdnBZQnJ6SUQ1UHM
https://drive.google.com/open?id=0B2onGI-yt3FwdnBZQnJ6SUQ1UHM
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Appendix D

New England New York 16
Machine 5 Area System

This part of appendix is dedicated to New England New York 16 Machine 5 Area
System.
In this part of Appendix, the crucial �les are presented to facilitate the reader's
comprehension of the PhD dissertation.
All the programs and �les associated with interconnected VSCs can be found in:
https://drive.google.com/open?id=0B2onGI-yt3FwdnBZQnJ6SUQ1UHM

D.1 Programs

�Initial File of New England New York 16 Machine 5 Area System �
--Init_16m_NFanalysis.m --

% This is the initi alization and modal analysis file for

% the 68-Bus Benchmark system with 16-machines and

% 86-lines. It requires following files to successfully run:

% 1. calc.m

% 2. chq_lim.m

% 3. data16m_benchmark.m

% 4. form_jac.m

% 5. loadflow.m

% 6. y_sparse.m

% 7. Benchmark_IEEE_standard.mdl

% Version: 3.3

% Authors: Abhinav Kumar Singh, Bikash C. Pal

% Affiliation: Imperial College London

% Date: December 2013

%% Largely modified by Tian TIAN, PhD in EE, ENSAM, Lille, 2017

%% to obtain the nonlinear matrices in Jordan Form, in preparation

%% for the Normal Form Analysis

clear all;

clc;

MVA_Base=100.0;

f=60.0;

deg_rad = pi/180.0; % degree to radian,

257

https://drive.google.com/open?id=0B2onGI-yt3FwdnBZQnJ6SUQ1UHM
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rad_deg = 180.0/pi; % radian to degree.

j=sqrt(-1);

%%%%%%%%%%Load Data%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

data16m_benchmark;

N_Machine=size(mac_con,1);

N_Bus=size(bus,1);

N_Line=size(line,1);

%%%%%%%%%%Loading Data Ends%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Run Load Flow%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tol = 1e-12;iter_max = 50; vmin = 0.5; vmax = 1.5; acc = 1.0;

disply='y';flag = 2;

svolt = bus(:,2); stheta = bus(:,3)*deg_rad;

bus_type = round(bus(:,10));

swing_index=find(bus_type==1);

[bus_sol,line_sol,line_flow,Y1,y,tps,chrg] = ...

loadflow(bus,line,tol,iter_max,acc,disply,flag);

clc;

display('Running..');

%%%%%%%%%%Load Flow End%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%Initialize Machine Variables%%%%%%%%%%%%%%%%%%

BM=mac_con(:,3)/MVA_Base;%uniform base conversion matrix

xls=mac_con(:,4)./BM;

Ra=mac_con(:,5)./BM;

xd=mac_con(:,6)./BM;

xdd=mac_con(:,7)./BM;

xddd=mac_con(:,8)./BM;

Td0d=mac_con(:,9);

Td0dd=mac_con(:,10);

xq=mac_con(:,11)./BM;

xqd=mac_con(:,12)./BM;

xqdd=mac_con(:,13)./BM;

Tq0d=mac_con(:,14);

Tq0dd=mac_con(:,15);

H=mac_con(:,16).*BM;

D=mac_con(:,17).*BM;

M=2*H;

wB=2*pi*f;

Tc=0.01*ones(N_Machine,1);

Vs=0.0*ones(N_Machine,1);

if xddd~=0 %#ok<BDSCI>

Zg= Ra + j*xddd;%Zg for sub-transient model
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else

Zg= Ra + j*xdd;

end

Yg=1./Zg;

%%%%%%%%%%Machine Variables initialization ends%%%%%%%%%

%%%%%%%%%%%%%%%%AVR Initialization%%%%%%%%%%%%%%%%%%%%%%%

Tr=ones(N_Machine,1);

KA=zeros(N_Machine,1);

Kp=zeros(N_Machine,1);

Ki=zeros(N_Machine,1);

Kd=zeros(N_Machine,1);

Td=ones(N_Machine,1);

Ka=ones(N_Machine,1);

Kad=zeros(N_Machine,1);%for DC4B Efd0 initialization

Ta=ones(N_Machine,1);

Ke=ones(N_Machine,1);

Aex=zeros(N_Machine,1);

Bex=zeros(N_Machine,1);

Te=ones(N_Machine,1);

Kf=zeros(N_Machine,1);

Tf=ones(N_Machine,1);

Efdmin=zeros(N_Machine,1);

Efdmax=zeros(N_Machine,1);

Efdmin_dc=zeros(N_Machine,1);

Efdmax_dc=zeros(N_Machine,1);

len_exc=size(exc_con);

Vref_Manual=ones(N_Machine,1);

for i=1:1:len_exc(1)

Exc_m_indx=exc_con(i,2);%present machine index

Vref_Manual(Exc_m_indx)=0;

if(exc_con(i,3)~=0)

Tr(Exc_m_indx)=exc_con(i,3);

end;

if(exc_con(i,5)~=0)

Ta(Exc_m_indx)=exc_con(i,5);

end;

if(exc_con(i,1)==1)

Kp(Exc_m_indx)=exc_con(i,16);

Kd(Exc_m_indx)=exc_con(i,17);

Ki(Exc_m_indx)=exc_con(i,18);

Td(Exc_m_indx)=exc_con(i,19);

Ke(Exc_m_indx)=exc_con(i,8);

Te(Exc_m_indx)=exc_con(i,9);
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Kf(Exc_m_indx)=exc_con(i,14);

Tf(Exc_m_indx)=exc_con(i,15);

Bex(Exc_m_indx)=log(exc_con(i,11)/exc_con(i,13))/(exc_con(i,10)-exc_con(i,12));

Aex(Exc_m_indx)=exc_con(i,11)*exp(-Bex(Exc_m_indx)*exc_con(i,10));

Ka(Exc_m_indx)=exc_con(i,4);

Kad(Exc_m_indx)=1;

Efdmin_dc(Exc_m_indx)=exc_con(i,7);

Efdmax_dc(Exc_m_indx)=exc_con(i,6);

else

KA(Exc_m_indx)=exc_con(i,4);

Efdmin(Exc_m_indx)=exc_con(i,7);

Efdmax(Exc_m_indx)=exc_con(i,6);

end;

end;

%%%%%%%%%%%%%%%%AVR initialization ends%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%PSS initialization%%%%%%%%%%%%%%%%%

Ks=zeros(N_Machine,1);

Tw=ones(N_Machine,1);

T11=ones(N_Machine,1);

T12=ones(N_Machine,1);

T21=ones(N_Machine,1);

T22=ones(N_Machine,1);

T31=ones(N_Machine,1);

T32=ones(N_Machine,1);

Vs_max=zeros(N_Machine,1);

Vs_min=zeros(N_Machine,1);

len_pss=size(pss_con);

for i=1:1:len_pss(1)

Pss_m_indx=pss_con(i,2);%present machine index

Ks(Pss_m_indx)=pss_con(i,3);%pssgain

Tw(Pss_m_indx)=pss_con(i,4);%washout time constant

T11(Pss_m_indx)=pss_con(i,5);%first lead time constant

T12(Pss_m_indx)=pss_con(i,6);%first lag time constant

T21(Pss_m_indx)=pss_con(i,7);%second lead time constant

T22(Pss_m_indx)=pss_con(i,8);%second lag time constant

T31(Pss_m_indx)=pss_con(i,9);%third lead time constant

T32(Pss_m_indx)=pss_con(i,10);%third lag time constant

Vs_max(Pss_m_indx)=pss_con(i,11);%maximum output limit

Vs_min(Pss_m_indx)=pss_con(i,12);%minimum output limit

end

%%%%%%%%%%%%%%%%%%%%PSS initialization ends%%%%%%%%%%%%%

%%%%%%%%%%Initialize Network Variables%%%%%%%%%%%%%%%%%%



D.1. Programs 261

Y=full(Y1);%sparse to full matrix

MM=zeros(N_Bus,N_Machine,'double');

%Multiplying matrix to convert Ig into vector of correct length

for i=1:1:N_Machine

MM(mac_con(i,2),mac_con(i,1))=1;

end

YG=MM*Yg;

YG=diag(YG);

V=bus_sol(:,2);

theta=bus_sol(:,3)*pi/180;

YL=diag((bus(:,6)-j*bus(:,7))./V.^2);%Constant Impedence Load model

Y_Aug=Y+YL+YG;

Z=inv(Y_Aug);%%% It=

Y_Aug_dash=Y_Aug;

%%%%%%%%%%Network Variables initialization ends%%%%%%%%

%%%%%%%%%%%%%%%%%%Initial Conditions%%%%%%%%%%%%%%%%%%%

Vg=MM'*V;thg=MM'*theta;

P=MM'*bus_sol(:,4);Q=MM'*bus_sol(:,5);

mp=2;

mq=2;

kp=bus_sol(:,6)./V.^mp;

kq=bus_sol(:,7)./V.^mq;

V0=V.*(cos(theta)+ j*sin(theta));

y_dash=y;

from_bus = line(:,1);

to_bus = line(:,2);

MW_s = V0(from_bus).*conj((V0(from_bus) - tps.*V0(to_bus)).*y_dash ...

+ V0(from_bus).*(j*chrg/2))./(tps.*conj(tps));

P_s = real(MW_s); % active power sent out by from_bus

Q_s = imag(MW_s);

voltage = Vg.*(cos(thg) + j*sin(thg));

current = conj((P+j*Q)./voltage);

Eq0 = voltage + (Ra+j.*xq).*current;

id0 = -abs(current) .* (sin(angle(Eq0) - angle(current)));

iq0 = abs(current) .* cos(angle(Eq0) - angle(current));

vd0 = -abs(voltage) .* (sin(angle(Eq0) - angle(voltage)));

vq0 = abs(voltage) .* cos(angle(Eq0) - angle(voltage));

Efd0 = abs(Eq0) - (xd-xq).*id0;

Eq_dash0 = Efd0 + (xd - xdd) .* id0;

Ed_dash0 = -(xq-xqd) .* iq0;

Psi1d0=Eq_dash0+(xdd-xls).*id0;

Psi2q0=-Ed_dash0+(xqd-xls).*iq0;

Edc_dash0=(xddd-xqdd).*iq0;
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Te0 = Eq_dash0.*iq0.*(xddd-xls)./(xdd-xls) + Ed_dash0.*id0.*(xqdd-xls)./...

(xqd-xls)+(xddd-xqdd).*id0.*iq0 - Psi2q0.*id0.*(xqd-xqdd)./(xqd-xls) +...

Psi1d0.*iq0.*(xdd-xddd)./(xdd-xls);

delta0 = angle(Eq0);

IG0 = (Yg.*(vq0+j.*vd0)+ (iq0+j.*id0)).*exp(j.*delta0);%% The sum of currents.

IQ0 = real((iq0+j.*id0).*exp(j.*delta0));

ID0 = imag((iq0+j.*id0).*exp(j.*delta0));

VDQ=MM'*(Y_Aug_dash\(MM*IG0));

VD0=imag(VDQ);

VQ0=real(VDQ);

Vref=Efd0;

V_Ka0=zeros(N_Machine,1);

V_Ki0=zeros(N_Machine,1);

for i=1:1:len_exc(1)

Exc_m_indx=exc_con(i,2);

if(exc_con(i,1)==1)

V_Ka0(Exc_m_indx)=...

Efd0(Exc_m_indx)*(Ke(Exc_m_indx)+Aex(Exc_m_indx)*exp(Efd0(Exc_m_indx)*Bex(Exc_m_indx)));

V_Ki0(Exc_m_indx)=V_Ka0(Exc_m_indx)/Ka(Exc_m_indx);

Vref(Exc_m_indx)=Vg(Exc_m_indx);

else

Vref(Exc_m_indx)=(Efd0(Exc_m_indx)/KA(Exc_m_indx))+Vg(Exc_m_indx);

end

end

Tm0=Te0;

Pm0=Tm0;

Sm0=0.0*ones(N_Machine,1);

Gn=16;

delta = sym('delta', [Gn 1]);

%delta=[deltaG;0]+delta_Syn_16*ones(Gn,1);

Sm= sym('Sm', [Gn 1]);

Eq_dash=sym('Eq_dash',[N_Machine 1]);

Ed_dash=sym('Ed_dash',[N_Machine 1]);

Eq_dash=sym('Eq_dash',[N_Machine 1]);

Edc_dash=sym('Edc_dash',[N_Machine 1]);

Psi1d=sym('Psi1d',[N_Machine 1]);

Psi2q=sym('Psi2q',[N_Machine 1]);
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Efd=sym('Efd',[N_Machine 1]);

PSS1=sym('PSS1',[N_Machine 1]);

PSS2=sym('PSS2',[N_Machine 1]);

PSS3=sym('PSS3',[N_Machine 1]);

PSS4=sym('PSS4',[N_Machine 1]);

V_r=sym('V_f',[N_Machine 1]);

V_Ki=sym('V_Ki',[N_Machine 1]);

V_Kd=sym('V_Kd',[N_Machine 1]);

V_a=sym('V_a',[N_Machine 1]);

V_f=sym('V_f',[N_Machine 1]);

Efdd2=sym('Efdd2',[N_Machine 1]);

ig=(Eq_dash.*(xddd-xls)./(xdd-xls)+Psi1d.*(xdd-xddd)./(xdd-xls)+...

1i*(Ed_dash.*(xqdd-xls)./(xqd-xls)-...

Psi2q.*(xqd-xqdd)./(xqd-xls)+Edc_dash)).*Yg;

Vdq=MM'*Z*(MM*(ig.*exp(j*delta))).*exp(-j*delta);

Vq=real(Vdq);

Vd=imag(Vdq);

idq=(Eq_dash.*(xddd-xls)./(xdd-xls)+Psi1d.*(xdd-xddd)./(xdd-xls)+...

1i*(Ed_dash.*(xqdd-xls)./(xqd-xls)-Psi2q.*(xqd-xqdd)./(xqd-xls)+Edc_dash)-(Vq+1i*Vd)).*Yg;

iq=real(idq);

id=imag(idq);

TeG=Eq_dash.*iq.*(xddd-xls)./(xdd-xls)+Ed_dash.*id.*(xqdd-xls)./(xqd-xls)+...

(xddd-xqdd).*id.*iq-Psi2q.*id.*(xqd-xqdd)./(xqd-xls)+Psi1d.*iq.*(xdd-xddd)./(xdd-xls);

%%% Differential Equations of the Electromechanical Part

ddelta=wB*Sm;

dSm=1./(2*H).*(Tm0-TeG-D.*Sm);

dEd_dash=1./Tq0d.*(-Ed_dash+(xq-xqd).*(-iq+(xqd-xqdd)./(xqd-xls).^2.*((xqd-xls).*id-...

Ed_dash-Psi2q)));

dEdc_dash=1./Tc.*(iq.*(xddd-xqdd)-Edc_dash);

dEq_dash=1./Td0d.*(Efd-Eq_dash+(xd-xdd).*(id+(xdd-xddd)./(xdd-xls).^2....
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*(Psi1d-(xdd-xls).*id-Eq_dash)));

dPsi1d=1./Td0dd.*(Eq_dash+(xdd-xls).*id-Psi1d);

dPsi2q=1./Tq0dd.*(-Ed_dash+(xqd-xls).*iq-Psi2q);

%ddelta_Gn(Gn)=[];

%% Differential Equations of the PSS

KPSS1=(T11-T12)./T12; KPSS3=(T21-T22)./T22; KPSS6=(T31-T32)./T32;

PSS_in1=Ks.*Sm-PSS1;

PSS_in2=PSS_in1+(PSS_in1-PSS2).*KPSS1;

%PSS_in3=PSS_in2+(PSS_in2-PSS3).*KPSS3;

PSS_in3=PSS_in2+(PSS_in2-PSS3).*KPSS3;

Vs=PSS_in3+(PSS_in3-PSS4).*KPSS6;

N_PSS=[]; %% This vector records the numer of machines on which the PSSs are equipped.

for i=1:1:len_pss(1)

Pss_m_indx=pss_con(i,2);%present machine index

dPSS1(Pss_m_indx)=1/Tw(Pss_m_indx)*(Sm(Pss_m_indx)*Ks(Pss_m_indx)-PSS1(Pss_m_indx));

dPSS2(Pss_m_indx)=1/T12(Pss_m_indx)*(PSS_in1(Pss_m_indx)-PSS2(Pss_m_indx));

dPSS3(Pss_m_indx)=1/T22(Pss_m_indx)*(PSS_in2(Pss_m_indx)-PSS3(Pss_m_indx));

%dPSS3(i)=1/T22(i)*(((Ks*Sm-PSS1)*T11./T12-PSS2(i))*(T11(i)-T12(i))/T12(i)-PSS3(i));

dPSS4(Pss_m_indx)=1/T32(Pss_m_indx)*(PSS_in3(Pss_m_indx)-PSS4(Pss_m_indx));

N_PSS=[N_PSS i];

end

Vt=sqrt(Vd.^2+Vq.^2);

%% Differential Equations of the Exciter.

N_ST1A=[];%% This vector record the number of machines equipped with exciter type ST1A

N_DC4B=[];%% Tihs vector record the number of machines equipped with exciter type DC4B

for i=1:1:len_exc(1)

Exc_m_indx=exc_con(i,2);

if(exc_con(i,1)==1)%% The differential equations for exciter type DC4B

DC4B_in1(Exc_m_indx)=Vs(Exc_m_indx)+Vref(Exc_m_indx)-V_r(Exc_m_indx)-...

Kf(Exc_m_indx)/Tf(Exc_m_indx)*(Efd(Exc_m_indx)-V_f(Exc_m_indx));

DC4B_in2(Exc_m_indx)=DC4B_in1(Exc_m_indx)*Kp(Exc_m_indx)+V_Ki(Exc_m_indx)+...

DC4B_in1(Exc_m_indx)*Kd(Exc_m_indx)/Td(Exc_m_indx)-V_Kd(Exc_m_indx);

dEfd(Exc_m_indx)=1/Te(Exc_m_indx)*(V_a(Exc_m_indx)-(Ke(Exc_m_indx)*Efd(Exc_m_indx)+...

Efd(Exc_m_indx)*Aex(Exc_m_indx)*exp(Bex(Exc_m_indx)*Efd(Exc_m_indx))));
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dV_r(Exc_m_indx)=1/Tr(Exc_m_indx)*(Vt(Exc_m_indx)-V_r(Exc_m_indx));

dV_Ki(Exc_m_indx)=DC4B_in1(Exc_m_indx)*Ki(Exc_m_indx );

dV_Kd(Exc_m_indx)=(DC4B_in1(Exc_m_indx)*Kd(Exc_m_indx)/Td(Exc_m_indx)-...

V_Kd(Exc_m_indx))*1/Td(Exc_m_indx);

dV_a(Exc_m_indx)=(DC4B_in2(Exc_m_indx)*Ka(Exc_m_indx)-...

V_a(Exc_m_indx))*1/Ta(Exc_m_indx);

dV_f(Exc_m_indx)=(Efd(Exc_m_indx)-V_f(Exc_m_indx))*1/Tf(Exc_m_indx);

N_DC4B=[N_DC4B Exc_m_indx];

else

dEfdd2(Exc_m_indx)=(Vt(Exc_m_indx)-Efdd2(Exc_m_indx))*1/Tr(Exc_m_indx);

Efd(Exc_m_indx)=KA(Exc_m_indx)*(Vs(Exc_m_indx)+Vref(Exc_m_indx)-Efdd2(Exc_m_indx));

N_ST1A=[N_ST1A Exc_m_indx];

end

end

V_r0=Vg; V_f0=Efd0.*Kad; V_Kd0=zeros(N_Machine,1);

Efdd20=Vg;PSS10=zeros(N_Machine,1); PSS20=zeros(N_Machine,1);

PSS30=zeros(N_Machine,1); PSS40=zeros(N_Machine,1);

%Cla2=classic_coef(EIV,CG,CH);

F=[ddelta;dSm;dEd_dash;dEdc_dash;dEq_dash;dPsi1d;dPsi2q;dEfd(N_DC4B).';

dV_r(N_DC4B).';dV_Ki(N_DC4B).';dV_Kd(N_DC4B).';dV_a(N_DC4B).';dV_f(N_DC4B).';

dEfdd2(N_ST1A).';dPSS1(N_PSS).';dPSS2(N_PSS).';dPSS3(N_PSS).';dPSS4(N_PSS).'];

X=[delta;Sm;Ed_dash;Edc_dash;Eq_dash;Psi1d;Psi2q;Efd(N_DC4B);V_r(N_DC4B);

V_Ki(N_DC4B);V_Kd(N_DC4B);V_a(N_DC4B);V_f(N_DC4B);Efdd2(N_ST1A);PSS1(N_PSS);

PSS2(N_PSS);PSS3(N_PSS);PSS4(N_PSS)];

x0=[delta0;Sm0;Ed_dash0;Edc_dash0;Eq_dash0;Psi1d0;Psi2q0;Efd0(N_DC4B);

V_r0(N_DC4B);V_Ki0(N_DC4B);V_Kd0(N_DC4B);V_Ka0(N_DC4B);V_f0(N_DC4B);

Efdd20(N_ST1A);PSS10(N_PSS);PSS20(N_PSS);PSS30(N_PSS);PSS40(N_PSS)];

EIV=eig(F1t);

[Tu,Lambda,F2N,F3N]=NLcoefJordan(F1t,F2t,F3t);

damping_ratioP=-real(EIV)./abs(EIV);

N_State=size(EIV,1);

for i=1:1:N_State

if(abs(EIV(i))<=1e-10)
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damping_ratioP(i)=1;

end

end

[DrP,IdxP]=sort(damping_ratioP*100);%% value calculated by the m-file

--clac.m--

function [delP,delQ,P,Q,conv_flag] = ...

calc(V,ang,Y,Pg,Qg,Pl,Ql,sw_bno,g_bno,tol)

% Syntax: [delP,delQ,P,Q,conv_flag] =

% calc(V,ang,Y,Pg,Qg,Pl,Ql,sw_bno,g_bno,tol)

%

% Purpose: calculates power mismatch and checks convergence

% also determines the values of P and Q based on the

% supplied values of voltage magnitude and angle

% Version: 2.0 eliminates do loop

% Input: nbus - total number of buses

% bus_type - load_bus(3), gen_bus(2), swing_bus(1)

% V - magnitude of bus voltage

% ang - angle(rad) of bus voltage

% Y - admittance matrix

% Pg - real power of generation

% Qg - reactive power of generation

% Pl - real power of load

% Ql - reactive power of load

% sw_bno - a vector having zeros at all swing_bus locations ones otherwise

% g_bno - a vector having zeros at all generator bus locations ones otherwise

% tol - a tolerance of computational error

%

% Output: delP - real power mismatch

% delQ - reactive power mismatch

% P - calculated real power

% Q - calculated reactive power

% conv_flag - 0, converged

% 1, not yet converged

%

% See also:

%

% Calls:

%

% Called By: loadflow

% (c) Copyright 1991 Joe H. Chow - All Rights Reserved

%

% History (in reverse chronological order)
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% Version: 2.0

% Author: Graham Rogers

% Date: July 1994

%

% Version: 1.0

% Author: Kwok W. Cheung, Joe H. Chow

% Date: March 1991

%

% ************************************************************

jay = sqrt(-1);

swing_bus = 1;

gen_bus = 2;

load_bus = 3;

% voltage in rectangular coordinate

V_rect = V.*exp(jay*ang);

% bus current injection

cur_inj = Y*V_rect;

% power output based on voltages

S = V_rect.*conj(cur_inj);

P = real(S); Q = imag(S);

delP = Pg - Pl - P;

delQ = Qg - Ql - Q;

% zero out mismatches on swing bus and generation bus

delP=delP.*sw_bno;

delQ=delQ.*sw_bno;

delQ=delQ.*g_bno;

% total mismatch

[pmis,ip]=max(abs(delP));

[qmis,iq]=max(abs(delQ));

mism = pmis+qmis;

if mism > tol,

conv_flag = 1;

else

conv_flag = 0;

end

return

--chq_lim.m--

function f = chq_lim(qg_max,qg_min)

%Syntax:

% f = chq_lim(qg_max,qg_min)

% function for detecting generator vars outside limit

% sets Qg to zero if limit exceded, sets Ql to negative of limit

% sets bus_type to 3, and recalculates ang_red and volt_red
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% changes generator bus_type to type 3

% recalculates the generator index

% inputs: qg_max and qg_min are the last two clumns of the bus matrix

% outputs:f is set to zero if no limit reached, or to 1 if a limit is reached

% Version: 1.1

% Author: Graham Rogers

% Date: May 1997

% Purpose: Addition of var limit index

% Version: 1.0

% Author: Graham Rogers

% Date: October 1996

%

% (c) copyright Joe Chow 1996

global Qg bus_type g_bno PQV_no PQ_no ang_red volt_red

global Ql

global gen_chg_idx

% gen_chg_idx indicates those generators changed to PQ buses

% gen_cgq_idx = ones(n of bus,1) if no gen at vars limits

% = 0 at the corresponding bus if generator at var limit

f = 0;

lim_flag = 0;% indicates whether limit has been reached

gen_idx = find(bus_type ==2);

qg_max_idx = find(Qg(gen_idx)>qg_max(gen_idx));

qg_min_idx = find(Qg(gen_idx)<qg_min(gen_idx));

if ~isempty(qg_max_idx)

%some q excedes maximum

%set Qg to zero

Qg(gen_idx(qg_max_idx)) = zeros(length(qg_max_idx),1);

% modify Ql

Ql(gen_idx(qg_max_idx)) = Ql(gen_idx(qg_max_idx))...

- qg_max(gen_idx(qg_max_idx));

% modify bus_type to PQ bus

bus_type(gen_idx(qg_max_idx)) = 3*ones(length(qg_max_idx),1);

gen_chg_idx(gen_idx(qg_max_idx)) = zeros(length(qg_max_idx),1);

lim_flag = 1;

end

if ~isempty(qg_min_idx)

%some q less than minimum

%set Qg to zero

Qg(gen_idx(qg_min_idx)) = zeros(length(qg_min_idx),1);

% modify Ql

Ql(gen_idx(qg_min_idx)) = Ql(gen_idx(qg_min_idx))...

- qg_min(gen_idx(qg_min_idx));
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% modify bus_type to PQ bus

bus_type(gen_idx(qg_min_idx)) = 3*ones(length(qg_min_idx),1);

gen_chg_idx(gen_idx(qg_min_idx)) = zeros(length(qg_min_idx),1);

lim_flag = 1;

end

if lim_flag == 1

%recalculate g_bno

nbus = length(bus_type);

g_bno = ones(nbus,1);

bus_zeros=zeros(nbus,1);

bus_index=(1:1:nbus)';

PQV_no=find(bus_type >=2);

PQ_no=find(bus_type==3);

gen_index=find(bus_type==2);

g_bno(gen_index)=bus_zeros(gen_index);

% construct sparse angle reduction matrix

il = length(PQV_no);

ii = (1:1:il)';

ang_red = sparse(ii,PQV_no,ones(il,1),il,nbus);

% construct sparse voltage reduction matrix

il = length(PQ_no);

ii = (1:1:il)';

volt_red = sparse(ii,PQ_no,ones(il,1),il,nbus);

end

f = lim_flag;

return

--Benchmark_IEEE_standard.m--

% This is the data file for the 68-Bus Benchmark system with 16-machines

% and 86-lines. The data is partially taken from the book "Robust Control

% in Power Systems" by B. Pal and B. Chaudhuri, with some of the parameters

% modified to account for a more realistic model.

% Version: 3.3

% Authors: Abhinav Kumar Singh, Bikash C. Pal

% Affiliation: Imperial College London

% Date: December 2013

%************************ BUS DATA STARTS *********************************

% bus data format

% bus: number, voltage(pu), angle(degree), p_gen(pu), q_gen(pu),

% p_load(pu), q_load(pu),G-shunt (p.u), B shunt (p.u); bus_type

% bus_type - 1, swing bus

% - 2, generator bus (PV bus)

% - 3, load bus (PQ bus)

system_base_mva = 100.0;
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bus = [...

01 1.045 0.00 2.50 0.00 0.00 0.00 0.00 0.00 2 999 -999;

02 0.98 0.00 5.45 0.00 0.00 0.00 0.00 0.00 2 999 -999;

03 0.983 0.00 6.50 0.00 0.00 0.00 0.00 0.00 2 999 -999;

04 0.997 0.00 6.32 0.00 0.00 0.00 0.00 0.00 2 999 -999;

05 1.011 0.00 5.05 0.00 0.00 0.00 0.00 0.00 2 999 -999;

06 1.050 0.00 7.00 0.00 0.00 0.00 0.00 0.00 2 999 -999;

07 1.063 0.00 5.60 0.00 0.00 0.00 0.00 0.00 2 999 -999;

08 1.03 0.00 5.40 0.00 0.00 0.00 0.00 0.00 2 999 -999;

09 1.025 0.00 8.00 0.00 0.00 0.00 0.00 0.00 2 999 -999;

10 1.010 0.00 5.00 0.00 0.00 0.00 0.00 0.00 2 999 -999;

11 1.000 0.00 10.000 0.00 0.00 0.00 0.00 0.00 2 999 -999;

12 1.0156 0.00 13.50 0.00 0.00 0.00 0.00 0.00 2 999 -999;

13 1.011 0.00 35.91 0.00 0.00 0.00 0.00 0.00 2 999 -999;

14 1.00 0.00 17.85 0.00 0.00 0.00 0.00 0.00 2 999 -999;

15 1.000 0.00 10.00 0.00 0.00 0.00 0.00 0.00 2 999 -999;

16 1.000 0.00 40.00 0.00 0.00 0.00 0.00 0.00 1 0 0;

17 1.00 0.00 0.00 0.00 60.00 3.00 0.00 0.00 3 0 0;

18 1.00 0.00 0.00 0.00 24.70 1.23 0.00 0.00 3 0 0;

19 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 0 0;

20 1.00 0.00 0.00 0.00 6.800 1.03 0.00 0.00 3 0 0;

21 1.00 0.00 0.00 0.00 2.740 1.15 0.00 0.00 3 0 0;

22 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 0 0;

23 1.00 0.00 0.00 0.00 2.480 0.85 0.00 0.00 3 0 0;

24 1.00 0.00 0.00 0.00 3.09 -0.92 0.00 0.00 3 0 0;

25 1.00 0.00 0.00 0.00 2.24 0.47 0.00 0.00 3 0 0;

26 1.00 0.00 0.00 0.00 1.39 0.17 0.00 0.00 3 0 0;

27 1.00 0.00 0.00 0.00 2.810 0.76 0.00 0.00 3 0 0;

28 1.00 0.00 0.00 0.00 2.060 0.28 0.00 0.00 3 0 0;

29 1.00 0.00 0.00 0.00 2.840 0.27 0.00 0.00 3 0 0;

30 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 0 0;

31 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 0 0;

32 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 0 0;

33 1.00 0.00 0.00 0.00 1.12 0.00 0.00 0.00 3 0 0;

34 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 0 0;

35 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 0 0;

36 1.00 0.00 0.00 0.00 1.02 -0.1946 0.00 0.00 3 0 0;

37 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 0 0;

38 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 0 0;

39 1.00 0.00 0.00 0.00 2.67 0.126 0.00 0.00 3 0 0;

40 1.00 0.00 0.00 0.00 0.6563 0.2353 0.00 0.00 3 0 0;

41 1.00 0.00 0.00 0.00 10.00 2.50 0.00 0.00 3 0 0;

42 1.00 0.00 0.00 0.00 11.50 2.50 0.00 0.00 3 0 0;

43 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 0 0;
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44 1.00 0.00 0.00 0.00 2.6755 0.0484 0.00 0.00 3 0 0;

45 1.00 0.00 0.00 0.00 2.08 0.21 0.00 0.00 3 0 0;

46 1.00 0.00 0.00 0.00 1.507 0.285 0.00 0.00 3 0 0;

47 1.00 0.00 0.00 0.00 2.0312 0.3259 0.00 0.00 3 0 0;

48 1.00 0.00 0.00 0.00 2.4120 0.022 0.00 0.00 3 0 0;

49 1.00 0.00 0.00 0.00 1.6400 0.29 0.00 0.00 3 0 0;

50 1.00 0.00 0.00 0.00 1.00 -1.47 0.00 0.00 3 0 0;

51 1.00 0.00 0.00 0.00 3.37 -1.22 0.00 0.00 3 0 0;

52 1.00 0.00 0.00 0.00 1.58 0.30 0.00 0.00 3 0 0;

53 1.00 0.00 0.00 0.00 2.527 1.1856 0.00 0.00 3 0 0;

54 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 0 0;

55 1.00 0.00 0.00 0.00 3.22 0.02 0.00 0.00 3 0 0;

56 1.00 0.00 0.00 0.00 2.00 0.736 0.00 0.00 3 0 0;

57 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 0 0;

58 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 0 0;

59 1.00 0.00 0.00 0.00 2.34 0.84 0.00 0.00 3 0 0;

60 1.00 0.00 0.00 0.00 2.088 0.708 0.00 0.00 3 0 0;

61 1.00 0.00 0.00 0.00 1.04 1.25 0.00 0.00 3 0 0;

62 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 0 0;

63 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 0 0;

64 1.00 0.00 0.00 0.00 0.09 0.88 0.00 0.00 3 0 0;

65 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 0 0;

66 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3 0 0;

67 1.00 0.00 0.00 0.00 3.200 1.5300 0.00 0.00 3 0 0;

68 1.00 0.00 0.00 0.00 3.290 0.32 0.00 0.00 3 0 0

];

%************************ BUS DATA ENDS *********************************

%************************ LINE DATA STARTS *******************************

line =[...

01 54 0 0.0181 0 1.0250 0;

02 58 0 0.0250 0 1.0700 0;

03 62 0 0.0200 0 1.0700 0;

04 19 0.0007 0.0142 0 1.0700 0;

05 20 0.0009 0.0180 0 1.0090 0;

06 22 0 0.0143 0 1.0250 0;

07 23 0.0005 0.0272 0 0 0;

08 25 0.0006 0.0232 0 1.0250 0;

09 29 0.0008 0.0156 0 1.0250 0;

10 31 0 0.0260 0 1.0400 0;

11 32 0 0.0130 0 1.0400 0;

12 36 0 0.0075 0 1.0400 0;

13 17 0 0.0033 0 1.0400 0;

14 41 0 0.0015 0 1.0000 0;
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15 42 0 0.0015 0 1.0000 0;

16 18 0 0.0030 0 1.0000 0;

17 36 0.0005 0.0045 0.3200 0 0;

18 49 0.0076 0.1141 1.1600 0 0;

18 50 0.0012 0.0288 2.0600 0 0;

19 68 0.0016 0.0195 0.3040 0 0;

20 19 0.0007 0.0138 0 1.0600 0;

21 68 0.0008 0.0135 0.2548 0 0;

22 21 0.0008 0.0140 0.2565 0 0;

23 22 0.0006 0.0096 0.1846 0 0;

24 23 0.0022 0.0350 0.3610 0 0;

24 68 0.0003 0.0059 0.0680 0 0;

25 54 0.0070 0.0086 0.1460 0 0;

26 25 0.0032 0.0323 0.5310 0 0;

27 37 0.0013 0.0173 0.3216 0 0;

27 26 0.0014 0.0147 0.2396 0 0;

28 26 0.0043 0.0474 0.7802 0 0;

29 26 0.0057 0.0625 1.0290 0 0;

29 28 0.0014 0.0151 0.2490 0 0;

30 53 0.0008 0.0074 0.4800 0 0;

30 61 0.00095 0.00915 0.5800 0 0;

31 30 0.0013 0.0187 0.3330 0 0;

31 53 0.0016 0.0163 0.2500 0 0;

32 30 0.0024 0.0288 0.4880 0 0;

33 32 0.0008 0.0099 0.1680 0 0;

34 33 0.0011 0.0157 0.2020 0 0;

34 35 0.0001 0.0074 0 0.9460 0;

36 34 0.0033 0.0111 1.4500 0 0;

36 61 0.0011 0.0098 0.6800 0 0;

37 68 0.0007 0.0089 0.1342 0 0;

38 31 0.0011 0.0147 0.2470 0 0;

38 33 0.0036 0.0444 0.6930 0 0;

40 41 0.0060 0.0840 3.1500 0 0;

40 48 0.0020 0.0220 1.2800 0 0;

41 42 0.0040 0.0600 2.2500 0 0;

42 18 0.0040 0.0600 2.2500 0 0;

43 17 0.0005 0.0276 0 0 0;

44 39 0 0.0411 0 0 0;

44 43 0.0001 0.0011 0 0 0;

45 35 0.0007 0.0175 1.3900 0 0;

45 39 0 0.0839 0 0 0;

45 44 0.0025 0.0730 0 0 0;

46 38 0.0022 0.0284 0.4300 0 0;
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47 53 0.0013 0.0188 1.3100 0 0;

48 47 0.00125 0.0134 0.8000 0 0;

49 46 0.0018 0.0274 0.2700 0 0;

51 45 0.0004 0.0105 0.7200 0 0;

51 50 0.0009 0.0221 1.6200 0 0;

52 37 0.0007 0.0082 0.1319 0 0;

52 55 0.0011 0.0133 0.2138 0 0;

54 53 0.0035 0.0411 0.6987 0 0;

55 54 0.0013 0.0151 0.2572 0 0;

56 55 0.0013 0.0213 0.2214 0 0;

57 56 0.0008 0.0128 0.1342 0 0;

58 57 0.0002 0.0026 0.0434 0 0;

59 58 0.0006 0.0092 0.1130 0 0;

60 57 0.0008 0.0112 0.1476 0 0;

60 59 0.0004 0.0046 0.0780 0 0;

61 60 0.0023 0.0363 0.3804 0 0;

63 58 0.0007 0.0082 0.1389 0 0;

63 62 0.0004 0.0043 0.0729 0 0;

63 64 0.0016 0.0435 0 1.0600 0;

65 62 0.0004 0.0043 0.0729 0 0;

65 64 0.0016 0.0435 0 1.0600 0;

66 56 0.0008 0.0129 0.1382 0 0;

66 65 0.0009 0.0101 0.1723 0 0;

67 66 0.0018 0.0217 0.3660 0 0;

68 67 0.0009 0.0094 0.1710 0 0;

27 53 0.0320 0.3200 0.4100 0 0;

];

%************************ LINE DATA ENDS *******************************

% *********************** MACHINE DATA STARTS ***************************

% Machine data format

% 1. machine number,

% 2. bus number,

% 3. base mva,

% 4. leakage reactance x_l(pu),

% 5. resistance r_a(pu),

% 6. d-axis sychronous reactance x_d(pu),

% 7. d-axis transient reactance x'_d(pu),

% 8. d-axis subtransient reactance x"_d(pu),

% 9. d-axis open-circuit time constant T'_do(sec),

% 10. d-axis open-circuit subtransient time constant

% T"_do(sec),
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% 11. q-axis sychronous reactance x_q(pu),

% 12. q-axis transient reactance x'_q(pu),

% 13. q-axis subtransient reactance x"_q(pu),

% 14. q-axis open-circuit time constant T'_qo(sec),

% 15. q-axis open circuit subtransient time constant

% T"_qo(sec),

% 16. inertia constant H(sec),

% 17. damping coefficient d_o(pu),

% 18. dampling coefficient d_1(pu),

% 19. bus number

% 20. saturation factor S(1.0)

% 21. saturation factor S(1.2)

% note: all the following machines use subtransient reactance model

mac_con = [

01 01 100 0.0125 0.0 0.1 0.031 0.025 10.2 0.05 0.069 0.0416667 0.025 1.5

0.035 42. 0 0 01 0 0;

02 02 100 0.035 0.0 0.295 0.0697 0.05 6.56 0.05 0.282 0.0933333 0.05 1.5

0.035 30.2 0 0 02 0 0;

03 03 100 0.0304 0.0 0.2495 0.0531 0.045 5.7 0.05 0.237 0.0714286 0.045 1.5

0.035 35.8 0 0 03 0 0

04 04 100 0.0295 0.0 0.262 0.0436 0.035 5.69 0.05 0.258 0.0585714 0.035 1.5

0.035 28.6 0 0 04 0 0;

05 05 100 0.027 0.0 0.33 0.066 0.05 5.4 0.05 0.31 0.0883333 0.05 0.44

0.035 26. 0 0 05 0 0;

06 06 100 0.0224 0.0 0.254 0.05 0.04 7.3 0.05 0.241 0.0675000 0.04 0.4

0.035 34.8 0 0 06 0 0;

07 07 100 0.0322 0.0 0.295 0.049 0.04 5.66 0.05 0.292 0.0666667 0.04 1.5

0.035 26.4 0 0 07 0 0;

08 08 100 0.028 0.0 0.29 0.057 0.045 6.7 0.05 0.280 0.0766667 0.045 0.41

0.035 24.3 0 0 08 0 0;

09 09 100 0.0298 0.0 0.2106 0.057 0.045 4.79 0.05 0.205 0.0766667 0.045 1.96

0.035 34.5 0 0 09 0 0;

10 10 100 0.0199 0.0 0.169 0.0457 0.04 9.37 0.05 0.115 0.0615385 0.04 1.

0.035 31.0 0 0 10 0 0;
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11 11 100 0.0103 0.0 0.128 0.018 0.012 4.1 0.05 0.123 0.0241176 0.012 1.5 0.035 28.2 0 0 11 0 0;

12 12 100 0.022 0.0 0.101 0.031 0.025 7.4 0.05 0.095 0.0420000 0.025 1.5 0.035 92.3 0 0 12 0 0;

13 13 200 0.0030 0.0 0.0296 0.0055 0.004 5.9 0.05 0.0286 0.0074000 0.004 1.5 0.035 248.0 0 0 13 0 0;

14 14 100 0.0017 0.0 0.018 0.00285 0.0023 4.1 0.05 0.0173 0.0037931 0.0023 1.5 0.035 300.0 0 0 14 0 0;

15 15 100 0.0017 0.0 0.018 0.00285 0.0023 4.1 0.05 0.0173 0.0037931 0.0023 1.5 0.035 300.0 0 0 15 0 0;

16 16 200 0.0041 0.0 0.0356 0.0071 0.0055 7.8 0.05 0.0334 0.0095000 0.0055 1.5 0.035 225.0 0 0 16 0 0;

] ;

% *********************** MACHINE DATA ENDS ***************************

% ************************ EXCITER DATA STARTS ************************

% Description of Exciter data starts

% exciter data DC4B,ST1A model

% 1 - exciter type (1 for DC4B, 0 for ST1A)

% 2 - machine number

% 3 - input filter time constant T_R

% 4 - voltage regulator gain K_A

% 5 - voltage regulator time constant T_A

% 6 - maximum voltage regulator output V_Rmax

% 7 - minimum voltage regulator output V_Rmin

% 8 - exciter constant K_E

% 9 - exciter time constant T_E

% 10 - E_1

% 11 - S(E_1)

% 12 - E_2

% 13 - S(E_2)

% 14 - stabilizer gain K_F

% 15 - stabilizer time constant T_F

% 16 - K_P

% 17 - K_I

% 18 - K_D

% 19 - T_D

%% 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 %% 18 19

exc_con = [...

1 1 0.01 1. 0.02 10. -10. 1.0 .785 3.9267 0.070 5.2356 0.910 0.030 1.0 200 50 50

.01;

1 2 0.01 1. 0.02 10. -10. 1.0 .785 3.9267 0.070 5.2356 0.910 0.030 1.0 200 50 50

.01;
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1 3 0.01 1. 0.02 10. -10. 1.0 .785 3.9267 0.070 5.2356 0.910 0.030 1.0 200 50 50

.01;

1 4 0.01 1. 0.02 10. -10. 1.0 .785 3.9267 0.070 5.2356 0.910 0.030 1.0 200 50 50

.01;

1 5 0.01 1. 0.02 10. -10. 1.0 .785 3.9267 0.070 5.2356 0.910 0.030 1.0 200 50 50

.01;

1 6 0.01 1. 0.02 10. -10. 1.0 .785 3.9267 0.070 5.2356 0.910 0.030 1.0 200 50 50

.01;

1 7 0.01 1. 0.02 10. -10. 1.0 .785 3.9267 0.070 5.2356 0.910 0.030 1.0 200 50 50

.01;

1 8 0.01 1. 0.02 10. -10. 1.0 .785 3.9267 0.070 5.2356 0.910 0.030 1.0 200 50 50

.01;

0 9 0.01 200 0.00 5.0 -5.0 0.0 0 0 0 0 0 0 0 0 0 0

0;

1 10 0.01 1. 0.02 10. -10. 1.0 .785 3.9267 0.070 5.2356 0.910 0.030 1.0 200 50 50

.01;

1 11 0.01 1. 0.02 10. -10. 1.0 .785 3.9267 0.070 5.2356 0.910 0.030 1.0 200 50 50

.01;

1 12 0.01 1. 0.02 10. -10. 1.0 .785 3.9267 0.070 5.2356 0.910 0.030 1.0 200 50 50

.01;

];

%************************ EXCITER DATA ENDS ************************

% ************************ PSS DATA STARTS ************************

%1-S. No.

%2-present machine index

%3-pssgain

%4-washout time constant

%5-first lead time constant

%6-first lag time constant

%7-second lead time constant

%8-second lag time constant

%9-third lead time constant

%10-third lag time constant

%11-maximum output limit

%12-minimum output limit

pss_con = [

1 1 12 10 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 ;

2 2 20 15 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 ;

3 3 20 15 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 ;

4 4 20 15 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 ;

5 5 12 10 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 ;

6 6 12 10 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 ;

7 7 20 15 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 ;
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8 8 20 15 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 ;

%9 9 12 10 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 ;

9 9 15 10 0.09 0.02 0.09 0.02 1 1 0.2 -0.05 ;

10 10 20 15 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 ;

11 11 20 15 0.15 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 ;

12 12 20 15 0.09 0.04 0.15 0.04 0.15 0.04 0.2 -0.05 ;

];

%************************ PSS DATA ENDS ************************

--file: form_jac.m--

function [Jac11,Jac12,Jac21,Jac22]=form_jac(V,ang,Y,ang_red,volt_red)

% Syntax: [Jac] = form_jac(V,ang,Y,ang_red,volt_red)

% [Jac11,Jac12,Jac21,Jac22] = form_jac(V,ang,Y,...

% ang_red,volt_red)

%

% Purpose: form the Jacobian matrix using sparse matrix techniques

%

% Input: V - magnitude of bus voltage

% ang - angle(rad) of bus voltage

% Y - admittance matrix

% ang_red - matrix to eliminate swing bus voltage magnitude and angle

% entries

% volt_red - matrix to eliminate generator bus voltage magnitude

% entries

% Output: Jac - jacobian matrix

% Jac11,Jac12,Jac21,Jac22 - submatrices of

% jacobian matrix

% See also:

%

% Calls:

%

% Called By: vsdemo loadflow

% (c) Copyright 1991-1996 Joe H. Chow - All Rights Reserved

%

% History (in reverse chronological order)

% Version: 2.0

% Author: Graham Rogers

% Date: March 1994

% Purpose: eliminated do loops to improve speed

% Version: 1.0

% Author: Kwok W. Cheung, Joe H. Chow

% Date: March 1991
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%

% ***********************************************************

jay = sqrt(-1);

exp_ang = exp(jay*ang);

% Voltage rectangular coordinates

V_rect = V.*exp_ang;

CV_rect=conj(V_rect);

Y_con = conj(Y);

%vector of conjugate currents

i_c=Y_con*CV_rect;

% complex power vector

S=V_rect.*i_c;

S=sparse(diag(S));

Vdia=sparse(diag(V_rect));

CVdia=conj(Vdia);

Vmag=sparse(diag(abs(V)));

S1=Vdia*Y_con*CVdia;

t1=((S+S1)/Vmag)*volt_red';

t2=(S-S1)*ang_red';

J11=-ang_red*imag(t2);

J12=ang_red*real(t1);

J21=volt_red*real(t2);

J22=volt_red*imag(t1);

if nargout > 3

Jac11 = J11; clear J11

Jac12 = J12; clear J12

Jac21 = J21; clear J21

Jac22 = J22; clear J22

else

Jac11 = [J11 J12;

J21 J22];

end

--loadflow.m--

function [bus_sol,line_sol,line_flow,Y,y,tps,chrg] = ...

loadflow(bus,line,tol,iter_max,acc,display,flag)

% Syntax: [bus_sol,line_sol,line_flow] =

% loadflow(bus,line,tol,iter_max,acc,display,flag)

% 8/12/97

% Purpose: solve the load-flow equations of power systems

% modified to eliminate do loops and improve the use

% sparse matices

% Input: bus - bus data
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% line - line data

% tol - tolerance for convergence

% iter_max - maximum number of iterations

% acc - acceleration factor

% display - 'y', generate load-flow study report

% else, no load-flow study report

% flag - 1, form new Jacobian every iteration

% 2, form new Jacobian every other

% iteration

%

% Output: bus_sol - bus solution (see report for the

% solution format)

% line_sol - modified line matrix

% line_flow - line flow solution (see report)

%

% See also:

%

% Algorithm: Newton-Raphson method using the polar form of

% the equations for P(real power) and Q(reactive power).

%

% Calls: Y_sparse, calc, form_jac chq_lim

%

%

% (c) Copyright 1991 Joe H. Chow - All Rights Reserved

%

% History (in reverse chronological order)

% Modification to correct generator var error on output

% Graham Rogers November 1997

% Version: 2.1

% Author: Graham Rogers

% Date: October 1996

% Purpose: To add generator var limits and on-load tap changers

% Version: 2.0

% Author: Graham Rogers

% Date: March 1994

% Version: 1.0

% Authors: Kwok W. Cheung, Joe H. Chow

% Date: March 1991

%

% ***********************************************************

global bus_int

global Qg bus_type g_bno PQV_no PQ_no ang_red volt_red

global Q Ql

global gen_chg_idx



280 Appendix D. New England New York 16 Machine 5 Area System

global ac_line n_dcl

tt = clock; % start the total time clock

jay = sqrt(-1);

load_bus = 3;

gen_bus = 2;

swing_bus = 1;

if exist('flag') == 0

flag = 1;

end

lf_flag = 1;

% set solution defaults

if isempty(tol);tol = 1e-9;end

if isempty(iter_max);iter_max = 30;end

if isempty(acc);acc = 1.0; end;

if isempty(display);display = 'n';end;

if flag <1 || flag > 2

error('LOADFLOW: flag not recognized')

end

[nline nlc] = size(line); % number of lines and no of line cols

[nbus ncol] = size(bus); % number of buses and number of col

% set defaults

% bus data defaults

if ncol<15

% set generator var limits

if ncol<12

bus(:,11) = 9999*ones(nbus,1);

bus(:,12) = -9999*ones(nbus,1);

end

if ncol<13;bus(:,13) = ones(nbus,1);end

bus(:,14) = 1.5*ones(nbus,1);

bus(:,15) = 0.5*ones(nbus,1);

volt_min = bus(:,15);

volt_max = bus(:,14);

else

volt_min = bus(:,15);

volt_max = bus(:,14);

end

no_vmin_idx = find(volt_min==0);

if ~isempty(no_vmin_idx)

volt_min(no_vmin_idx) = 0.5*ones(length(no_vmin_idx),1);

end

no_vmax_idx = find(volt_max==0);

if ~isempty(no_vmax_idx)
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volt_max(no_vmax_idx) = 1.5*ones(length(no_vmax_idx),1);

end

no_mxv = find(bus(:,11)==0);

no_mnv = find(bus(:,12)==0);

if ~isempty(no_mxv);bus(no_mxv,11)=9999*ones(length(no_mxv),1);end

if ~isempty(no_mnv);bus(no_mnv,12) = -9999*ones(length(no_mnv),1);end

no_vrate = find(bus(:,13)==0);

if ~isempty(no_vrate);bus(no_vrate,13) = ones(length(no_vrate),1);end

tap_it = 0;

tap_it_max = 10;

no_taps = 0;

% line data defaults, sets all tap ranges to zero - this fixes taps

if nlc < 10

line(:,7:10) = zeros(nline,4);

no_taps = 1;

% disable tap changing

end

% outer loop for on-load tap changers

mm_chk=1;

while (tap_it<tap_it_max&&mm_chk)

tap_it = tap_it+1;

% build admittance matrix Y

[Y,nSW,nPV,nPQ,SB] = y_sparse(bus,line);

% process bus data

bus_no = bus(:,1);

V = bus(:,2);

ang = bus(:,3)*pi/180;

Pg = bus(:,4);

Qg = bus(:,5);

Pl = bus(:,6);

Ql = bus(:,7);

Gb = bus(:,8);

Bb = bus(:,9);

bus_type = round(bus(:,10));

qg_max = bus(:,11);

qg_min = bus(:,12);

sw_bno=ones(nbus,1);

g_bno=sw_bno;

% set up index for Jacobian calculation

%% form PQV_no and PQ_no

bus_zeros=zeros(nbus,1);

swing_index=find(bus_type==1);
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sw_bno(swing_index)=bus_zeros(swing_index);

PQV_no=find(bus_type >=2);

PQ_no=find(bus_type==3);

gen_index=find(bus_type==2);

g_bno(gen_index)=bus_zeros(gen_index);

%sw_bno is a vector having ones everywhere but the swing bus locations

%g_bno is a vector having ones everywhere but the generator bus locations

% construct sparse angle reduction matrix

il = length(PQV_no);

ii = (1:1:il)';

ang_red = sparse(ii,PQV_no,ones(il,1),il,nbus);

% construct sparse voltage reduction matrix

il = length(PQ_no);

ii = (1:1:il)';

volt_red = sparse(ii,PQ_no,ones(il,1),il,nbus);

iter = 0; % initialize iteration counter

% calculate the power mismatch and check convergence

[delP,delQ,P,Q,conv_flag] =...

calc(V,ang,Y,Pg,Qg,Pl,Ql,sw_bno,g_bno,tol);

st = clock; % start the iteration time clock

%% start iteration process for main Newton_Raphson solution

while (conv_flag == 1 && iter < iter_max)

iter = iter + 1;

% Form the Jacobean matrix

clear Jac

Jac=form_jac(V,ang,Y,ang_red,volt_red);

% reduced real and reactive power mismatch vectors

red_delP = ang_red*delP;

red_delQ = volt_red*delQ;

clear delP delQ

% solve for voltage magnitude and phase angle increments

temp = Jac\[red_delP; red_delQ];

% expand solution vectors to all buses

delAng = ang_red'*temp(1:length(PQV_no),:);

delV = volt_red'*temp(length(PQV_no)+1:length(PQV_no)+length(PQ_no),:);

% update voltage magnitude and phase angle

V = V + acc*delV;



D.1. Programs 283

V = max(V,volt_min); % voltage higher than minimum

V = min(V,volt_max); % voltage lower than maximum

ang = ang + acc*delAng;

% calculate the power mismatch and check convergence

[delP,delQ,P,Q,conv_flag] =...

calc(V,ang,Y,Pg,Qg,Pl,Ql,sw_bno,g_bno,tol);

% check if Qg is outside limits

gen_index=find(bus_type==2);

Qg(gen_index) = Q(gen_index) + Ql(gen_index);

lim_flag = chq_lim(qg_max,qg_min);

if lim_flag == 1;

disp('Qg at var limit');

end

end

if iter == iter_max

imstr = int2str(iter_max);

disp(['inner ac load flow failed to converge after ', imstr,' iterations'])

tistr = int2str(tap_it);

disp(['at tap iteration number ' tistr])

else

disp('inner load flow iterations')

disp(iter)

end

if no_taps == 0

lftap

else

mm_chk = 0;

end

end

if tap_it >= tap_it_max

titstr = int2str(tap_it_max);

disp(['tap iteration failed to converge after',titstr,' iterations'])

else

disp(' tap iterations ')

disp(tap_it)

end

ste = clock; % end the iteration time clock

vmx_idx = find(V==volt_max);

vmn_idx = find(V==volt_min);

if ~isempty(vmx_idx)

disp('voltages at')

bus(vmx_idx,1)'

disp('are at the max limit')

end
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if ~isempty(vmn_idx)

disp('voltages at')

bus(vmn_idx,1)'

disp('are at the min limit');

end

gen_index=find(bus_type==2);

load_index = find(bus_type==3);

Pg(gen_index) = P(gen_index) + Pl(gen_index);

Qg(gen_index) = Q(gen_index) + Ql(gen_index);

gend_idx = find((bus(:,10)==2)&(bus_type~=2));

if ~isempty(gend_idx)

disp('the following generators are at their var limits')

disp(' bus# Qg')

disp([bus(gend_idx,1) Q(gend_idx)])

Qlg = Ql(gend_idx)-bus(gend_idx,7);% the generator var part of the load

Qg(gend_idx)=Qg(gend_idx)-Qlg;% restore the generator vars

Ql(gend_idx)=bus(gend_idx,7);% restore the original load vars

end

Pl(load_index) = Pg(load_index) - P(load_index);

Ql(load_index) = Qg(load_index) - Q(load_index);

Pg(SB) = P(SB) + Pl(SB); Qg(SB) = Q(SB) + Ql(SB);

VV = V.*exp(jay*ang); % solution voltage

% calculate the line flows and power losses

tap_index = find(abs(line(:,6))>0);

tap_ratio = ones(nline,1);

tap_ratio(tap_index)=line(tap_index,6);

phase_shift(:,1) = line(:,7);

tps = tap_ratio.*exp(jay*phase_shift*pi/180);

from_bus = line(:,1);

from_int = bus_int(round(from_bus));

to_bus = line(:,2);

to_int = bus_int(round(to_bus));

r = line(:,3);

rx = line(:,4);

chrg = line(:,5);

z = r + jay*rx;

y = ones(nline,1)./z;

MW_s = VV(from_int).*conj((VV(from_int) - tps.*VV(to_int)).*y ...

+ VV(from_int).*(jay*chrg/2))./(tps.*conj(tps));

P_s = real(MW_s); % active power sent out by from_bus

% to to_bus
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Q_s = imag(MW_s); % reactive power sent out by

% from_bus to to_bus

MW_r = VV(to_int).*conj((VV(to_int) ...

- VV(from_int)./tps).*y ...

+ VV(to_int).*(jay*chrg/2));

P_r = real(MW_r); % active power received by to_bus

% from from_bus

Q_r = imag(MW_r); % reactive power received by

% to_bus from from_bus

iline = (1:1:nline)';

line_ffrom = [iline from_bus to_bus P_s Q_s];

line_fto = [iline to_bus from_bus P_r Q_r];

% keyboard

P_loss = sum(P_s) + sum(P_r) ;

Q_loss = sum(Q_s) + sum(Q_r) ;

bus_sol=[bus_no V ang*180/pi Pg Qg Pl Ql Gb Bb...

bus_type qg_max qg_min bus(:,13) volt_max volt_min];

line_sol = line;

line_flow(1:nline, :) =[iline from_bus to_bus P_s Q_s];

line_flow(1+nline:2*nline,:) = [iline to_bus from_bus P_r Q_r];

% Give warning of non-convergence

if conv_flag == 1

disp('ac load flow failed to converge')

error('stop')

end

% display results

if display == 'y',

clc

disp(' LOAD-FLOW STUDY')

disp(' REPORT OF POWER FLOW CALCULATIONS ')

disp(' ')

disp(date)

fprintf('SWING BUS : BUS %g \n', SB)

fprintf('NUMBER OF ITERATIONS : %g \n', iter)

fprintf('SOLUTION TIME : %g sec.\n',etime(ste,st))

fprintf('TOTAL TIME : %g sec.\n',etime(clock,tt))

fprintf('TOTAL REAL POWER LOSSES : %g.\n',P_loss)

fprintf('TOTAL REACTIVE POWER LOSSES: %g.\n\n',Q_loss)

if conv_flag == 0,

disp(' GENERATION LOAD')

disp(' BUS VOLTS ANGLE REAL REACTIVE REAL REACTIVE ')

disp(bus_sol(:,1:7))
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disp(' LINE FLOWS ')

disp(' LINE FROM BUS TO BUS REAL REACTIVE ')

disp(line_ffrom)

disp(line_fto)

end

end; %

if iter > iter_max,

disp('Note: Solution did not converge in %g iterations.\n', iter_max)

lf_flag = 0

end

return

--file: y_sparse.m--

function [Y,nSW,nPV,nPQ,SB] = y_sparse(bus,line)

% Syntax: [Y,nSW,nPV,nPQ,SB] = y_sparse(bus,line)

%

% Purpose: build sparse admittance matrix Y from the line data

%

% Input: bus - bus data

% line - line data

%

% Output: Y - admittance matrix

% nSW - total number of swing buses

% nPV - total number generator buses

% nPQ - total number of load buses

% SB - internal bus numbers of swing bus

%

% See also:

%

% Calls:

%

% Called By: loadflow, form_j, calc

% (c) Copyright 1994-1996 Joe Chow - All Rights Reserved

%

% History (in reverse chronological order)

%

% Version: 2.0

% Author: Graham Rogers

% Date: April 1994

% Version: 1.0

% Author: Kwok W. Cheung, Joe H. Chow
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% Date: March 1991

%

% ************************************************************

global bus_int

jay = sqrt(-1);

swing_bus = 1;

gen_bus = 2;

load_bus = 3;

nline = length(line(:,1)); % number of lines

nbus = length(bus(:,1)); % number of buses

r=zeros(nline,1);

rx=zeros(nline,1);

chrg=zeros(nline,1);

z=zeros(nline,1);

y=zeros(nline,1);

Y = sparse(1,1,0,nbus,nbus);

% set up internal bus numbers for second indexing of buses

busmax = max(bus(:,1));

bus_int = zeros(busmax,1);

ibus = (1:nbus)';

bus_int(round(bus(:,1))) = ibus;

% process line data and build admittance matrix Y

r = line(:,3);

rx = line(:,4);

chrg =jay*sparse(diag( 0.5*line(:,5)));

z = r + jay*rx; % line impedance

y = sparse(diag(ones(nline,1)./z));

% determine connection matrices including tap changers and phase shifters

from_bus = round(line(:,1));

from_int = bus_int(from_bus);

to_bus = round(line(:,2));

to_int = bus_int(to_bus);

tap_index = find(abs(line(:,6))>0);

tap=ones(nline,1);

tap(tap_index)=1. ./line(tap_index,6);

phase_shift = line(:,7);

tap = tap.*exp(-jay*phase_shift*pi/180);
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% sparse matrix formulation

iline = [1:1:nline]';

C_from = sparse(from_int,iline,tap,nbus,nline,nline);

C_to = sparse(to_int,iline,ones(nline,1),nbus,nline,nline);

C_line = C_from - C_to;

% form Y matrix from primative line ys and connection matrices

Y=C_from*chrg*C_from' + C_to*chrg*C_to' ;

Y = Y + C_line*y*C_line';

Gb = bus(:,8); % bus conductance

Bb = bus(:,9); % bus susceptance

% add diagonal shunt admittances

Y = Y + sparse(ibus,ibus,Gb+jay*Bb,nbus,nbus);

if nargout > 1

% count buses of different types

nSW = 0;

nPV = 0;

nPQ = 0;

bus_type=round(bus(:,10));

load_index=find(bus_type==3);

gen_index=find(bus_type==2);

SB=find(bus_type==1);

nSW=length(SB);

nPV=length(gen_index);

nPQ=length(load_index);

end

return

D.2 Simulation Files

The simulation �les can be found in https://drive.google.com/open?id=

0B2onGI-yt3FwcTBQWFgwQTYwRU0 with:
• �Benchmark_IEEE_standard.mdl� to study the system dynamics by step-by-
step numerical integration;

and �Init_MultiMachine13fault.m� is the initial �le to simulate the case when there
is a fault near Generator 13.

https://drive.google.com/open?id=0B2onGI-yt3FwcTBQWFgwQTYwRU0
https://drive.google.com/open?id=0B2onGI-yt3FwcTBQWFgwQTYwRU0
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Analyse et contrôle de systèmes non linéaires à entrées multiples et à 
dynamiques couplées par la méthode des formes normales 

Les systèmes composés d’une somme de sous-systèmes interconnectés offrent les avantages  
majeurs de flexibilité d’organisation et de redondance synonyme de fiabilité accrue. Une des 
plus belles réalisations basée sur ce concept réside dans les réseaux électriques qui sont 
reconnus à ce jour comme la plus grande et la plus complexe des structures existantes jamais 
développées par l’homme. 

Les phénomènes de plus en plus  non linéaires rencontrés dans l’étude des nouveaux réseaux 
électriques amènent au développement de nouveaux outils permettant l’étude des 
interactions entre les différents éléments qui les composent. Parmi les outils d’analyse 
existants, ce mémoire présente le développement et l’application de la théorie des Formes 
Normales à l’étude des interactions présentes dans un réseau électrique. Les objectifs 
spécifiques de cette thèse concernent le développement de la méthode des Formes Normales 
jusqu’à l’ordre 3, l’application de cette méthode à l’étude des oscillations présentes dans des 
réseaux tests et l’apport de la méthode développée dans l’étude de la stabilité des réseaux. 

 

Mots clés : Non linéaire, Analyse modale, Contrôle, Modes non linéaires, réseau 
électrique, stabilité 

 

Analysis and control of nonlinear multiple-input systems with coupled 
dynamics by the method of Normal Forms 

Systems composed with a sum of interconnected sub-systems offer the advantages of a better 
flexibility and redundancy for an increased reliability. One of the largest and biggest system 
based on this concept ever devised by man is the interconnected power system. 

Phenomena encountered in the newest interconnected power systems are more and more 
nonlinear and the development of new tools for their study is od major concern. Among the 
existing tools, this PhD work presents the development and the application of the Normal 
Form theory to the study of the interactions existing on an interconnected power system. The 
specific objectives of this PhD work are the development of the Normal Form theory up to the 
third order, the application of this method to study power system interarea oscillations and 
the gain of the developed method for the study of stability of power systems. 

 
Keywords : Nonlinear, Modal analysis, Control, Nonlinear modes, power system, 
stability 
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