Skip to Main content Skip to Navigation

Description des processus physiques pilotant le cycle de vie de brouillards radiatifs et des transitions brouillard–stratus basé de modèles conceptuels

Abstract : Fog causes hazards to human activity due to the reduction of visibility, especially through the risk of traffic accidents. Improving the forecasts of fog formation and dissipation is therefore an objective for research. This thesis analyses the life cycle of continental fog events occurring in the Paris area, using several ground-based remote sensing instruments deployed at the SIRTA atmospheric observatory. We focus on understanding the dissipation after sunrise and the local processes involved, assuming the fog layer is adiabatic (well-mixed). Over a 4-year period, more than 100 fog events are documented by observing cloud base (ceilometer), cloud top and clouds appearing above the fog (cloud radar), and the liquid water path (LWP) (microwave radiometer (MWR)). Most fog events dissipate by lifting of the base without a complete evaporation of the cloud, and often even without a reduction in LWP. This indicates that not only a reduction in LWP is important for fog dissipation, but also the evolution of the fog top, which together with the LWP determines whether the cloud extends down to the ground. Using the LES model DALES, we find a strong sensitivity of the vertical development of the fog top to the stratification above. By enhancing entrainment, a weak stratification at fog top can lead to earlier fog dissipation by (1) more depletion of LWP by entraining unsaturated air, especially if the air is dry, and (2) vertical development of the fog top leading to lifting of the fog base. The variability of this stratification can be observed reasonably well with the MWR temperature profile. In several cases of dissipation by lifting, the vertical profile of radar reflectivity in the fog has a max value near fog top prior to dissipation, which suggests a lack of bigger droplets in the lower levels of the fog. By observing the cloud top development, the stratification, the LWP and the profile of reflectivity, the radar and MWR provide information that has potential for anticipating fog dissipation by lifting.Radiative processes are studied using the comprehensive radiative transfer code ARTDECO. The radiative cooling at fog top can produce 40–70 g m-2 h-1 of LWP when the fog is opaque (LWP >= 30 g m-2) (production is lower for thin fog) and there are no clouds above. This cooling thus is the main process of LWP production and can renew the fog LWP in 0.5–2 h. Its variability is mainly explained by the fog temperature and the humidity profile above. Clouds above the fog will strongly reduce this production, especially low clouds: a cloud with optical depth 4 can reduce it by 30 (100) % at 10 (2) km. Loss of LWP by absorption of solar radiation by the fog is 5–15 g m-2 h-1 around midday in winter, depending on cloud thickness, but it can be enhanced by 100 % in case of important amounts of absorbing aerosols (dry AOD=0.15, SSA=0.82).Heating due to solar radiation absorbed at the surface is found to be the dominating process of LWP loss after sunrise (according to LES model simulations), but its magnitude is sensitive to the Bowen ratio. However, observations of the turbulent heat fluxes during fog are not precise enough to quantify the Bowen ratio. The importance of the Bowen ratio means that improvements of its measurement during fog should be a priority.A conceptual model which calculates the LWP budget of fog directly from observations is developed. Using 12 observed parameters and 2 from reanalysis data, it calculates the impact on LWP of terrestrial and solar radiation, surface heat fluxes, entrainment, subsidence and deposition. It is applied to 45 observed fog events dissipating after sunrise. An important variability in radiation, entrainment and subsidence between the cases is found, which can partly explain the different dissipation times. While the terms of radiation are rather robust, several other terms suffer from significant uncertainties, leaving room for improvements in the future.
Document type :
Complete list of metadata

Cited literature [174 references]  Display  Hide  Download
Contributor : ABES STAR :  Contact
Submitted on : Tuesday, December 18, 2018 - 10:53:07 AM
Last modification on : Friday, July 22, 2022 - 3:06:42 AM
Long-term archiving on: : Wednesday, March 20, 2019 - 12:02:29 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01958678, version 1


Eivind Wærsted. Description des processus physiques pilotant le cycle de vie de brouillards radiatifs et des transitions brouillard–stratus basé de modèles conceptuels. Meteorology. Université Paris Saclay (COmUE), 2018. English. ⟨NNT : 2018SACLX053⟩. ⟨tel-01958678⟩



Record views


Files downloads