C. P. Maury, The emerging concept of functional amyloid, J. Intern. Med, vol.265, issue.3, pp.329-334, 2009.

A. Daskalov, Identification of a novel cell death-inducing domain reveals that fungal amyloid-controlled programmed cell death is related to necroptosis, Proc. Natl. Acad. Sci, vol.113, issue.10, pp.2720-2725, 2016.

M. T. Franze-de-fernandez, L. Eoyang, and T. August, Factor Fraction required for the Synthesis of Bacteriophage Q?-RNA, Nature, vol.219, pp.588-590, 1968.

A. Taghbalout, Q. Yang, and V. Arluison, The Escherichia coli RNA processing and degradation machinery is compartmentalized within an organized cellular network, Biochem. J, vol.458, issue.1, pp.11-22, 2014.

V. Arluison, Three-dimensional structures of fibrillar Sm proteins: Hfq and other Sm-like proteins, J. Mol. Biol, vol.356, issue.1, pp.86-96, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00090155

E. Fortas, New insight into the structure and function of Hfq C-terminus, Biosci. Rep, vol.35, issue.2, pp.1-9, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01534472

D. G. Scofield and M. Lynch, Evolutionary diversification of the Sm family of RNAassociated proteins, Mol. Biol. Evol, vol.25, issue.11, pp.2255-2267, 2008.

X. Sun, I. Zhulin, and R. M. Wartell, Predicted structure and phyletic distribution of the RNA-binding protein Hfq, Nucleic Acids Res, vol.30, issue.17, pp.3662-71, 2002.

S. Tharun, W. He, A. E. Mayes, P. Lennertz, J. D. Beggs et al., Yeast Smlike proteins function in mRNA decapping and decay, Nature, vol.404, issue.6777, pp.515-518, 2000.

A. G. Seto, A. J. Zaug, S. G. Sobel, S. L. Wolin, and T. R. Cech, Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle, Nature, vol.401, issue.6749, pp.177-180, 1999.

J. M. Moll, M. Sobti, and B. C. Mabbutt, The Lsm Proteins: Ring Architectures for RNA Capture, pp.229-248, 2011.

E. Sauer, Structure and RNA-binding properties of the bacterial LSm protein Hfq, RNA Biol, vol.10, issue.4, pp.610-618, 2013.

M. A. Schumacher, R. F. Pearson, T. M??ller, P. Valentin-hansen, and R. G. Brennan, Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: A bacterial Sm-like protein, EMBO J, vol.21, issue.13, pp.3546-3556, 2002.

C. Sauter, J. Basquin, and D. Suck, Sm-like proteins in Eubacteria: The crystal structure of the Hfq protein from Escherichia coli, Nucleic Acids Res, vol.31, issue.14, pp.4091-4098, 2003.

A. Nikulin, Structure of Pseudomonas aeruginosa Hfq protein, Acta Crystallogr. Sect. D Biol. Crystallogr, vol.61, issue.2, pp.141-146, 2005.

D. Schilling and U. Gerischer, The Acinetobacter baylyi hfq gene encodes a large protein with an unusual C terminus, J. Bacteriol, vol.191, issue.17, pp.5553-5562, 2009.

A. Sharma, The unusual glycine rich C-terminus of the Acinetobacter baumannii RNA chaperone Hfq plays an important role in bacterial physiology, J. Biol. Chem, 2018.

M. Beich-frandsen, Structural insights into the dynamics and function of the C-terminus of the E. coli RNA chaperone Hfq, Nucleic Acids Res, vol.39, issue.11, pp.4900-4915, 2011.

K. Jiang, Effects of Hfq on the conformation and compaction of DNA, Nucleic Acids Res, vol.43, issue.8, pp.4332-4341, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01534496

Z. R. Yang, R. Thomson, P. Mcneil, and R. M. Esnouf, RONN: The bio-basis function neural network technique applied to the detection of natively disordered regions in proteins, Bioinformatics, vol.21, issue.16, pp.3369-3376, 2005.

J. Kyte and R. F. Doolittle, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol, vol.157, issue.1, pp.105-132, 1982.

J. R. Feliciano, A. M. Grilo, S. I. Guerreiro, S. A. Sousa, and J. H. Leitão, Hfq: a multifaceted RNA chaperone involved in virulence, Future Microbiol, vol.11, issue.1, pp.137-151, 2016.

H. T. Tsui, H. E. Leung, and M. E. Winkler, Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12, Mol. Microbiol, vol.13, issue.1, pp.35-49, 1994.

N. Zambrano, P. P. Guichard, Y. Bi, B. Cayrol, S. Marco et al., Involvement of HFq protein in the post-transcriptional regulation of E. coli bacterial cytoskeleton and cell division proteins, Cell Cycle, vol.8, issue.15, pp.2470-2472, 2009.

B. , Riboregulation of the bacterial actin-homolog MreB by DsrA small noncoding RNA, Integr. Biol. (United Kingdom), vol.7, issue.1, pp.128-141, 2015.

B. Vecerek, I. Moll, and U. Blasi, Translational autocontrol of the Escherichia coli hfq RNA chaperone gene, Rna, vol.11, issue.6, pp.976-984, 2005.

G. M. Cech, B. Paku?a, D. Kamrowska, G. Wegrzyn, V. Arluison et al., Hfq protein deficiency in Escherichia coli affects ColE1-like but not ? plasmid DNA replication, Plasmid, vol.73, pp.10-15, 2014.

J. Vogel and B. F. Luisi, Hfq and its constellation of RNA, Nature Reviews Microbiology, vol.9, issue.8, pp.578-589, 2011.

V. Arluison, S. Hohng, R. Roy, O. Pellegrini, P. Régnier et al., Spectroscopic observation of RNA chaperone activities of Hfq in post-transcriptional regulation by a small non-coding RNA, Nucleic Acids Res, vol.35, issue.3, pp.999-1006, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00161599

A. Fender, J. Elf, K. Hampel, B. Zimmermann, and E. G. Wagner, RNAs actively cycle on the Sm-like protein Hfq, Genes Dev, vol.24, issue.23, pp.2621-2626, 2010.

W. Hwang, V. Arluison, and S. Hohng, Dynamic competition of DsrA and rpoS fragments for the proximal binding site of Hfq as a means for efficient annealing, Nucleic Acids Res, vol.39, issue.12, pp.5131-5139, 2011.

E. G. Wagner, Cycling of RNAs on Hfq, RNA Biology, vol.10, issue.4, pp.619-626, 2013.

C. K. Vanderpool and S. Gottesman, Involvement of a novel transcriptional activator and small RNA in post-transcriptional regulation of the glucose phosphoenolpyruvate phosphotransferase system, Mol. Microbiol, vol.54, issue.4, pp.1076-1089, 2004.

F. Mika, Targeting of csgD by the small regulatory RNA RprA links stationary phase, biofilm formation and cell envelope stress in Escherichia coli, Mol. Microbiol, vol.84, issue.1, pp.51-65, 2012.

K. I. Udekwu, F. Darfeuille, J. Vogel, J. Reimegård, E. Holmqvist et al., Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA, Genes Dev, vol.19, issue.19, pp.2355-2366, 2005.

E. Massé, C. K. Vanderpool, and S. Gottesman, Effect of RyhB small RNA on global iron use in Escherichia coli, J. Bacteriol, vol.187, issue.20, pp.6962-6971, 2005.

H. Aiba, Mechanism of RNA silencing by Hfq-binding small RNAs, Curr. Opin. Microbiol, vol.10, issue.2, pp.134-139, 2007.

T. Morita, K. Maki, and H. Aiba, RNase E-based ribonucleoprotein complexes: Mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs, Genes Dev, vol.19, issue.18, pp.2176-2186, 2005.

N. Majdalani, C. Cunning, D. Sledjeski, T. Elliott, and S. Gottesman, DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription, Proc. Natl. Acad. Sci, vol.95, issue.21, pp.12462-12467, 1998.

N. Majdalani, D. Hernandez, and S. Gottesman, Regulation and mode of action of the second small RNA activator of RpoS translation, RprA, Mol. Microbiol, vol.46, issue.3, pp.813-826, 2002.

I. Moll, T. Afonyushkin, O. Vytvytska, V. Kaberdin, and U. Bläsi, Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs, RNA, vol.9, issue.11, pp.1308-1314, 2003.

M. Rabhi, The Sm-like RNA chaperone Hfq mediates transcription antitermination at Rho-dependent terminators, EMBO J, vol.30, pp.2805-2816, 2011.
DOI : 10.1038/emboj.2011.192

URL : https://hal.archives-ouvertes.fr/hal-00720713

J. L. Derout, I. Boni, P. Régnier, and E. Hajnsdorf, Hfq affects mRNA levels independently of degradation, BMC Mol. Biol, vol.11, issue.17, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00459816

M. Folichon, Fate of mRNA extremities generated by intrinsic termination: Detailed analysis of reactions catalyzed by ribonuclease II and poly(A) polymerase, Biochimie, vol.87, issue.9, pp.819-826, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00114326

L. Argaman, M. Elgrably-weiss, T. Hershko, J. Vogel, and S. Altuvia, RelA protein stimulates the activity of RyhB small RNA by acting on RNA-binding protein Hfq, Proc. Natl. Acad. Sci, vol.109, issue.12, pp.4621-4626, 2012.

A. Smirnov, C. Wang, L. L. Drewry, and J. Vogel, Molecular mechanism of mRNA repression in trans by a ProQ-dependent small RNA, EMBO J, vol.36, pp.1029-1045, 2017.

V. Arluison, The C-terminal domain of Escherichia coli Hfq increases the stability of the hexamer, Eur. J. Biochem, vol.271, issue.7, pp.1258-1265, 2004.

T. M. Link, P. Valentin-hansen, and R. G. Brennan, Structure of Escherichia coli Hfq bound to polyriboadenylate RNA, Proc. Natl. Acad. Sci, vol.106, issue.46, pp.19292-19297, 2009.
DOI : 10.1073/pnas.0908744106

URL : http://www.pnas.org/content/106/46/19292.full.pdf

T. A. Geissmann and D. Touati, Hfq, a new chaperoning role: Binding to messenger RNA determines access for small RNA regulator, EMBO J, vol.23, issue.2, pp.396-405, 2004.
DOI : 10.1038/sj.emboj.7600058

URL : http://emboj.embopress.org/content/23/2/396.full.pdf

D. J. Schu, A. Zhang, S. Gottesman, and G. Storz, Alternative Hfq-sRNA interaction modes dictate alternative mRNA recognition, EMBO J, vol.34, issue.20, pp.2557-2573, 2015.
DOI : 10.15252/embj.201591569

URL : http://emboj.embopress.org/content/34/20/2557.full.pdf

M. V. Sukhodolets and S. Garges, Interaction of Escherichia coli RNA polymerase with the ribosomal protein S1 and the Sm-like ATPase Hfq, Biochemistry, vol.42, issue.26, pp.8022-8034, 2003.

E. Hajnsdorf, P. Régnier, and P. Regnier, Host factor Hfq of Escherichia coli stimulates elongation of poly(A) tails by poly(A) polymerase I, Proc. Natl. Acad. Sci. U. S. A, vol.97, issue.4, pp.1501-1505, 2000.

A. Malabirade, Compaction and condensation of DNA mediated by the Cterminal domain of Hfq, Nucleic Acids Res, vol.45, issue.12, pp.7299-7308, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01591370

G. M. Cech, The Escherichia Coli Hfq Protein: An Unattended DNATransactions Regulator, Front. Mol. Biosci, vol.3, issue.36, 2016.
DOI : 10.3389/fmolb.2016.00036

URL : https://hal.archives-ouvertes.fr/hal-01534530

C. J. Dorman, Nucleoid-Associated Proteins and Bacterial Physiology, vol.67, 2009.
DOI : 10.1016/s0065-2164(08)01002-2

T. A. Azam, A. Iwata, A. Nishimura, T. , L. I. Azam et al., Growth PhaseDependent Variation in Protein Composition of the Escherichia coli Nucleoid Growth Phase-Dependent Variation in Protein Composition of the Escherichia coli Nucleoid, J. Bac, vol.181, issue.20, p.6361, 1999.

T. A. Azam and A. Ishihama, Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity, J. Biol. Chem, vol.274, issue.46, pp.33105-33113, 1999.
DOI : 10.1074/jbc.274.46.33105

URL : http://www.jbc.org/content/274/46/33105.full.pdf

T. A. Azam, S. Hiraga, and A. Ishihama, Two types of localization of the DNAbinding proteins within the Escherichia coli nucleoid, Genes to Cells, vol.5, issue.8, pp.613-626, 2000.

A. Grove, Functional evolution of bacterial histone-like HU proteins, Curr. Issues Mol. Biol, vol.13, issue.1, pp.1-12, 2011.

C. J. Dorman, H-NS: A universal regulator for a dynamic genome, Nat. Rev. Microbiol, vol.2, issue.5, pp.391-400, 2004.
DOI : 10.1038/nrmicro883

S. T. Arold, P. G. Leonard, G. N. Parkinson, and J. E. Ladbury, H-NS forms a superhelical protein scaffold for DNA condensation, Proc. Natl. Acad. Sci. U. S. A, vol.107, issue.36, pp.15728-15760, 2010.
DOI : 10.1073/pnas.1006966107

URL : http://www.pnas.org/content/107/36/15728.full.pdf

P. A. Wiggins, R. T. Dame, M. C. Noom, and G. J. Wuite, Protein-mediated molecular bridging: A key mechanism in biopolymer organization, Biophys. J, vol.97, issue.7, 1997.
DOI : 10.1016/j.bpj.2009.06.051

URL : https://doi.org/10.1016/j.bpj.2009.06.051

B. R. Gordon, Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins, Proc. Natl. Acad. Sci, vol.108, issue.26, pp.10690-10695, 2011.
DOI : 10.1073/pnas.1102544108

URL : https://www.pnas.org/content/pnas/108/26/10690.full.pdf

X. Shi and G. N. Bennett, Plasmids bearing hfq and the hns-like gene stpA complement hns mutants in modulating arginine decarboxylase gene expression in Escherichia coli, Journal of Bacteriology, vol.176, issue.21, pp.6769-6775, 1994.
DOI : 10.1128/jb.176.21.6769-6775.1994

URL : http://jb.asm.org/content/176/21/6769.full.pdf

R. A. Lease, M. E. Cusick, and M. Belfort, Riboregulation in Escherichia coli: DsrA RNA acts by RNA:RNA interactions at multiple loci, Proc. Natl. Acad. Sci, vol.95, issue.21, pp.12456-12461, 1998.
DOI : 10.1073/pnas.95.21.12456

URL : http://www.pnas.org/content/95/21/12456.full.pdf

A. Badrinarayanan, T. B. Le, and M. T. Laub, Bacterial Chromosome Organization and Segregation, Annu. Rev. Cell Dev. Biol, vol.31, issue.1, pp.171-199, 2015.
DOI : 10.1146/annurev-cellbio-100814-125211

URL : http://europepmc.org/articles/pmc4706359?pdf=render

E. Diestra, B. Cayrol, V. Arluison, and C. Risco, Cellular electron microscopy imaging reveals the localization of the hfq protein close to the bacterial membrane, PLoS One, vol.4, issue.12, p.8301, 2009.

M. Guillier and S. Gottesman, Remodelling of the Escherichia coli outer membrane by two small regulatory RNAs, Mol. Microbiol, vol.59, issue.1, pp.231-247, 2006.

V. Arluison and A. Taghbalout, Cellular localization of RNA degradation and processing components in Escherichia coli, Methods Mol Biol, pp.87-101, 2015.

D. Partouche, Techniques to analyse sRNA protein cofactor self-assembly in vitro, Bacterial Regulatory RNA: Methods and Protocols, vol.1737, pp.321-340, 1980.
DOI : 10.1007/978-1-4939-7634-8_18

A. Malabirade, Membrane association of the bacterial riboregulator Hfq and functional perspectives, Sci. Rep, vol.7, issue.1, pp.1-12, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01591449

A. S. Olsen, J. Møller-jensen, R. G. Brennan, and P. Valentin-hansen, C-Terminally Truncated Derivatives of Escherichia coli Hfq Are Proficient in Riboregulation, J. Mol. Biol, vol.404, issue.2, pp.173-182, 2010.
DOI : 10.1016/j.jmb.2010.09.038

A. Santiago-frangos, K. Kavita, D. J. Schu, S. Gottesman, and S. A. Woodson, Cterminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA, Proc. Natl. Acad. Sci, vol.113, issue.41, pp.6089-6096, 2016.

V. N. Uversky, Intrinsically disordered proteins from A to Z, Int. J. Biochem. Cell Biol, vol.43, issue.8, pp.1090-1103, 2011.
DOI : 10.1016/j.biocel.2011.04.001

T. Zhang, E. Faraggi, Z. Li, and Y. Zhou, Intrinsically Semi-disordered State and Its Role in Induced Folding and Protein Aggregation, Cell Biochem. Biophys, vol.67, issue.3, pp.1193-1205, 2013.
DOI : 10.1007/s12013-013-9638-0

URL : https://link.springer.com/content/pdf/10.1007%2Fs12013-013-9638-0.pdf

S. Fukuchi, K. Hosoda, K. Homma, T. Gojobori, and K. Nishikawa, Binary classification of protein molecules into intrinsically disordered and ordered segments, BMC Struct. Biol, vol.11, issue.1, p.29, 2011.
DOI : 10.1186/1472-6807-11-29

URL : https://bmcstructbiol.biomedcentral.com/track/pdf/10.1186/1472-6807-11-29

G. Grateau, J. Verine, M. Delpech, and M. Ries, Les amyloses, un modèle de maladie du repliement des protéines, Medecine/Sciences, vol.21, issue.6-7, pp.627-633, 2005.
DOI : 10.1051/medsci/2005216-7627

URL : https://www.medecinesciences.org/articles/medsci/pdf/2005/06/medsci2005216-7p627.pdf

C. M. Dobson, Protein folding and misfolding, Nature, vol.426, issue.6968, pp.884-890, 2003.

F. Chiti and C. M. Dobson, Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade, Annu. Rev. Biochem, vol.86, pp.27-68, 2017.

T. P. Knowles, M. Vendruscolo, and C. M. Dobson, The amyloid state and its association with protein misfolding diseases, Nature Reviews Molecular Cell Biology, vol.15, issue.6, pp.384-396, 2014.
DOI : 10.1038/nrm3810

A. T. Petkova, A structural model for Alzheimer's ?-amyloid fibrils based on experimental constraints from solid state NMR, Proc. Natl. Acad. Sci. U. S. A, vol.99, issue.26, pp.16742-16749, 2002.
DOI : 10.1073/pnas.262663499

URL : http://www.pnas.org/content/99/26/16742.full.pdf

A. T. Petkova, W. Yau, and R. Tycko, Experimental Constraints on Quaternary Structure in Alzheimer's ?-Amyloid Fibrils, Biochemistry, vol.45, issue.2, pp.498-512, 2006.

M. Fändrich and C. M. Dobson, The behaviour of polyamino acids reveals an inverse side chain effect in amyloid structure formation, EMBO J, vol.21, issue.21, pp.5682-5690, 2002.

F. Ferrone, Analysis of protein aggregation kinetics, Methods Enzymol, vol.309, issue.1, pp.256-274, 1999.

T. R. Serio, Nucleated conformational conversion and the replication of conformational information by a prion determinant, Science (80-. ), vol.289, issue.5483, pp.1317-1321, 2000.

P. Arosio, T. P. Knowles, and S. Linse, On the lag phase in amyloid fibril formation, Phys. Chem. Chem. Phys, vol.17, issue.12, pp.7606-7618, 2015.

S. I. Cohen, Proliferation of amyloid-?42 aggregates occurs through a secondary nucleation mechanism, Proc. Natl. Acad. Sci, vol.110, pp.9758-9763, 2013.

F. S. Ruggeri, G. Longo, S. Faggiano, E. Lipiec, A. Pastore et al., Infrared nanospectroscopy characterization of oligomeric and fibrillar aggregates during amyloid formation, Nat. Commun, vol.6, pp.1-9, 2015.

J. F. Smith, T. P. Knowles, C. M. Dobson, C. E. Macphee, and M. E. Welland, Characterization of the nanoscale properties of individual amyloid fibrils, Proc. Natl. Acad. Sci. U. S. A, vol.103, issue.43, pp.15806-15811, 2006.

M. Sunde and C. Blake, The Structure of Amyloid Fibrils by Electron Microscopy and X-Ray Diffraction, Advences in protein chemistry, vol.50, pp.123-159, 1997.

E. Eanes and G. G. Glenner, X-ray diffraction studies on amyloid filaments, J. Histochem. Cytochem, vol.16, issue.11, pp.673-677, 1968.

G. Zandomeneghi, M. R. Krebs, M. G. Mccammon, and M. Fändrich, FTIR reveals structural differences between native ?-sheet proteins and amyloid fibrils, Protein Sci, vol.13, issue.12, pp.3314-3321, 2004.

W. E. Klunk, R. F. Jacob, and R. P. Mason, Quantifying amyloid by congo red spectral shift assay, Methods Enzymol, vol.309, pp.285-305, 1974.

H. Levine, Thioflavine t interaction with amyloid ?sheet structures, Amyloid, vol.2, issue.1, pp.1-6, 1995.

M. R. Nilsson, Techniques to study amyloid fibril formation in vitro, Methods, vol.34, issue.1, pp.151-160, 2004.

R. Sabate, F. Rousseau, J. Schymkowitz, C. Batlle, and S. Ventura, Amyloids or prions? That is the question, Prion, vol.9, issue.3, pp.200-206, 2015.

J. Shorter and S. Lindquist, Prions as adaptive conduits of memory and inheritance, Nat. Rev. Genet, vol.6, issue.6, pp.435-450, 2005.

V. V. Kushnirov, A. B. Vishnevskaya, I. M. Alexandrov, and M. D. Ter-avanesyan, Prion and nonprion amyloids: a comparison inspired by the yeast Sup35 protein, Prion, vol.1, issue.3, pp.179-184, 2007.

H. J. Dyson and P. E. Wright, Intrinsically unstructured proteins and their functions, Nat. Rev. Mol. Cell Biol, vol.6, issue.3, pp.197-208, 2005.

K. Namba, Roles of partly unfolded conformations in macromolecular selfassembly, Genes to Cells, vol.6, issue.1, pp.1-12, 2001.

D. M. Fowler, A. V. Koulov, W. E. Balch, and J. W. Kelly, Functional amyloidfrom bacteria to humans, Trends Biochem. Sci, vol.32, issue.5, pp.217-224, 2007.

C. P. Maury, Amyloid and the origin of life: self-replicating catalytic amyloids as prebiotic informational and protometabolic entities, Cell. Mol. Life Sci, vol.75, issue.9, pp.1499-1507, 2018.

J. Greenwald, W. Kwiatkowski, and R. Riek, Peptide Amyloids in the Origin of Life, Journal of Molecular Biology, 2018.

K. Matsuzaki and C. Horikiri, Interactions of amyloid ?-peptide (1-40) with ganglioside-containing membranes, Biochemistry, vol.38, issue.13, pp.4137-4142, 1999.

B. R. Lentz, Membrane 'fluidity' as detected by diphenylhexatriene probes, Chem. Phys. Lipids, vol.50, issue.3-4, pp.171-190, 1989.

R. Bomba, W. Kwiatkowski, R. Riek, and J. Greenwald, Cooperative induction of ordered peptide and fatty acid aggregates, p.323030, 2018.

S. Braun, C. Humphreys, E. Fraser, A. Brancale, M. Bochtler et al., Amyloid-Associated Nucleic Acid Hybridisation, PLoS One, vol.6, issue.5, p.19125, 2011.

N. Jain, Inhibition of curli assembly and Escherichia coli biofilm formation by the human systemic amyloid precursor transthyretin, Proc. Natl. Acad. Sci, vol.114, issue.46, pp.12184-12189, 2017.

J. D. Taylor and S. J. Matthews, New insight into the molecular control of bacterial functional amyloids, Front. Cell. Infect. Microbiol, vol.5, pp.1-7, 2015.

A. Ostrowski, A. Mehert, A. Prescott, T. B. Kiley, and N. R. Stanley-wall, YuaB functions synergistically with the exopolysaccharide and TasA amyloid fibers to allow biofilm formation by Bacillus subtilis, J. Bacteriol, vol.193, issue.18, pp.4821-4831, 2011.

J. Oh, Amyloidogenesis of type III-dependent harpins from plant pathogenic bacteria, J. Biol. Chem, vol.282, issue.18, pp.13601-13609, 2007.

P. Aguilera, Identification of key amino acid residues modulating intracellular and in vitro Microcin E492 amyloid formation, Front. Microbiol, vol.7, issue.35, 2016.

I. Pallarès and S. Ventura, The Transcription Terminator Rho : A First Bacterial Prion, Trends Microbiol, vol.25, issue.6, pp.434-437, 2017.

E. , Bacterial chaperones CsgE and CsgC differentially modulate human ?-Synuclein amyloid formation via transient contacts, PLoS One, vol.10, issue.10, p.140194, 2015.

A. Frydman-marom, R. Shaltiel-karyo, S. Moshe, and E. Gazit, The generic amyloid formation inhibition effect of a designed small aromatic ?-breaking peptide, Amyloid, vol.18, issue.3, pp.119-127, 2011.

E. Gazit, A possible role for ?-stacking in the self-assembly of amyloid fibrils, FASEB J, vol.16, issue.1, pp.77-83, 2002.

S. Brahmachari, A. Paul, D. Segal, and E. Gazit, Inhibition of amyloid oligomerization into different supramolecular architectures by small molecules: Mechanistic insights and design rules, Future Med. Chem, vol.9, issue.8, pp.797-810, 2017.

K. Fosgerau and T. Hoffmann, Peptide therapeutics: Current status and future directions, Drug Discov. Today, vol.20, issue.1, pp.122-128, 2015.

C. Soto, E. M. Sigurdsson, L. Morelli, R. A. Kumar, E. M. Castaño et al., ?-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: Implications for Alzheimer's therapy, Nat. Med, vol.4, issue.7, pp.822-826, 1998.

T. Ziehm, Increase of Positive Net Charge and Conformational Rigidity Enhances the Efficacy of d-Enantiomeric Peptides Designed to Eliminate Cytotoxic A? Species, ACS Chem. Neurosci, vol.7, issue.8, pp.1088-1096, 2016.

A. A. Reinke and J. E. Gestwicki, Structure-activity relationships of amyloid betaaggregation inhibitors based on curcumin: Influence of linker length and flexibility, Chem. Biol. Drug Des, vol.70, issue.3, pp.206-215, 2007.

K. Ono, K. Hasegawa, H. Naiki, and M. Yamada, Curcumin Has Potent AntiAmyloidogenic Effects for Alzheimer's ?-Amyloid Fibrils In Vitro, J. Neurosci. Res, vol.75, issue.6, pp.742-750, 2004.
DOI : 10.1002/jnr.20025

J. Bieschke, EGCG remodels mature ?-synuclein and amyloid-? fibrils and reduces cellular toxicity, Proc. Natl. Acad. Sci, vol.107, pp.7710-7715, 2010.
DOI : 10.1073/pnas.0910723107

URL : http://www.pnas.org/content/107/17/7710.full.pdf

H. A. Lashuel, D. M. Hartley, D. Balakhaneh, A. Aggarwal, S. Teichberg et al., New class of inhibitors of amyloid-? fibril formation: Implications for the mechanism of pathogenesis in Alzheimer's disease, J. Biol. Chem, vol.277, issue.45, pp.42881-42890, 2002.

J. A. Mclaurin, R. Golomb, A. Jurewicz, J. P. Antel, and P. E. Fraser, Inositol stereoisomers stabilize an oligomeric aggregate of alzheimer amyloid ? peptide and inhibit A?-induced toxicity, J. Biol. Chem, vol.275, issue.24, pp.18495-18502, 2000.

A. Sood, Disassembly of preformed amyloid beta fibrils by small organofluorine molecules, Bioorganic Med. Chem. Lett, vol.21, issue.7, pp.2044-2047, 2011.
DOI : 10.1016/j.bmcl.2011.02.012

URL : http://europepmc.org/articles/pmc3056901?pdf=render

M. Török, M. Abid, S. C. Mhadgut, and B. Török, Organofluorine inhibitors of amyloid fibrillogenesis, Biochemistry, vol.45, issue.16, pp.5377-5383, 2006.

H. Gong, Effects of several quinones on insulin aggregation, Sci. Rep, vol.4, issue.5648, 2014.
DOI : 10.1038/srep05648

URL : https://www.nature.com/articles/srep05648.pdf

A. Barth, Infrared spectroscopy of proteins, Biochim. Biophys. Acta-Bioenerg, vol.1767, issue.9, pp.1073-1101, 2007.

W. D. Perkins, Fourier transform infrared spectroscopy. Part III. Advantages of FTIR, J. Chem. Educ, vol.64, issue.11, pp.296-305, 1987.

W. D. Perkins, Fourier transform-infrared spectroscopy: Part l. Instrumentation, J. Chem. Educ, vol.63, issue.1, p.5, 1986.
DOI : 10.1021/ed063pa5

L. Servant, G. Le-bourdon, and T. Buffeteau, Comprendre la spectroscopie infrarouge : principes et mise en oeuvre, vol.53, pp.68-73, 2011.
DOI : 10.1051/photon/20115368

URL : https://www.photoniques.com/articles/photon/pdf/2011/03/photon201153p68.pdf

. Shimadzu-france-www.shimadzu and . Fr, Livre Blanc Spectroscopie infrarouge Un guide pour tout savoir sur la spectroscopie InfraRouge, p.27, 2015.

P. Dumas, G. L. Carr, and G. P. Williams, Enhancing the lateral resolution in infrared microspectrometry by using synchrotron radiation: applications and perspectives, Analusis, vol.28, issue.1, pp.68-68, 2000.
DOI : 10.1051/analusis:2000280068

URL : http://analusis.edpsciences.org/articles/analusis/pdf/2000/01/dumas.pdf

P. Lasch and D. Naumann, Spatial resolution in infrared microspectroscopic imaging of tissues, vol.1758, pp.814-829, 2006.

E. C. Mattson, Toward optimal spatial and spectral quality in widefield infrared spectromicroscopy of IR labelled single cells, Analyst, vol.138, issue.19, p.5610, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00841517

M. J. Nasse, High-resolution Fourier-transform infrared chemical imaging with multiple synchrotron beams, Nat. Methods, vol.8, issue.5, pp.413-416, 2011.
DOI : 10.1038/nmeth.1585

URL : http://europepmc.org/articles/pmc3877692?pdf=render

M. Minsky, Memoir on inventing the confocal scanning microscope, Scanning, vol.10, issue.4, pp.128-138, 1988.
DOI : 10.1002/sca.4950100403

G. L. Carr, Resolution limits for infrared microspectroscopy explored with synchrotron radiation, Rev. Sci. Instrum, vol.72, issue.3, pp.1613-1619, 2001.
DOI : 10.1063/1.1347965

G. Binnig and H. Rohrer, Scanning tunneling microscopy, Surf. Sci, vol.126, issue.126, pp.236-244, 1982.

B. Gerd and R. Heinrich, The Scanning Tunneling Microscope, Sci. Am, vol.253, pp.50-58, 1985.

G. Binnig and C. F. Quate, Atomic Force Microscope, Phys. Rev. Lett, vol.56, issue.9, pp.930-933, 1986.

Y. Martin, C. C. Williams, and H. K. Wickramasinghe, Atomic force microscopeforce mapping and profiling on a sub 100-Å scale, J. Appl. Phys, vol.61, issue.10, pp.4723-4729, 1987.

T. R. Albrecht, P. Grütter, D. Horne, and D. Rugar, Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity, J. Appl. Phys, vol.69, issue.2, pp.668-673, 1991.

L. Bozec, A. Hammiche, M. J. Tobin, J. M. Chalmers, N. J. Everall et al., Near-field photothermal Fourier transform infrared spectroscopy using synchrotron radiation, Meas. Sci. Technol, vol.13, issue.8, pp.1217-1222, 2002.

A. Hammiche, H. M. Pollock, M. Song, and D. J. Hourston, Photothermal FT-IR Spectroscopy: A Step Towards FT-IR Microscopy at a Resolution Better Than the Diffraction Limit, Meas. Sci. Technol, vol.53, issue.7, pp.810-815, 1999.

A. Hammiche, Mid-infrared microspectroscopy of difficult samples using nearfield photothermal microspectroscopy, Spectroscopy, vol.19, issue.2, pp.20-30, 2004.

A. Dazzi and C. B. Prater, AFM-IR: Technology and applications in nanoscale infrared spectroscopy and chemical imaging, Chem. Rev, vol.117, issue.7, pp.5146-5173, 2017.

A. Dazzi, F. Glotin, and R. Carminati, Theory of infrared nanospectroscopy by photothermal induced resonance, Artic. J. Appl. Phys, 2010.

F. Lu and M. A. Belkin, Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers, Opt. Express, vol.19, issue.21, 2011.

F. Lu, M. Jin, and M. A. Belkin, Tip-enhanced infrared nanospectroscopy via molecular expansion force detection, Nat. Photonics, vol.8, issue.4, pp.307-312, 2014.

A. Dazzi, R. Prazeres, F. Glotin, and J. M. Ortega, Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor, Opt. Lett, vol.30, issue.18, p.2388, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00116803

J. L. Arrondo, J. Muga, F. M. Castresana, and . Goñi, Quantitative studies of the structure of proteins in solution by Fourier-transform infrared spectroscopy, Prog. Biophys. Mol. Biol, vol.59, issue.1, pp.23-56, 1993.

J. A. Hering, P. R. Innocent, and P. I. Haris, Towards developing a protein infrared spectra databank (PISD) for proteomics research, Proteomics, vol.4, issue.8, pp.2310-2319, 2004.

P. B. Tooke, Fourier self-deconvolution in IR spectroscopy, Trends Anal. Chem, vol.7, issue.4, pp.130-136, 1988.

D. M. Byler and H. Susi, Examination of the secondary structure of proteins by deconvolved FTIR spectra, Biopolymers, vol.25, issue.3, pp.469-487, 1986.

J. L. Arrondo and F. M. Goñi, Structure and dynamics of membrane proteins as studied by infrared spectroscopy, Progress in Biophysics and Molecular Biology, vol.72, issue.4, pp.367-405, 1999.

R. Sarroukh, E. Goormaghtigh, J. M. Ruysschaert, and V. Raussens, ATR-FTIR: A 'rejuvenated' tool to investigate amyloid proteins, Biochim. Biophys. ActaBiomembr, vol.1828, issue.10, pp.2328-2338, 2013.

D. Partouche, Techniques to analyze sRNA protein cofactor self-assembly in vitro, Methods in Molecular Biology, vol.1737, pp.321-340, 2018.

V. Militello, C. Casarino, A. Emanuele, A. Giostra, F. Pullara et al., Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering, Biophys. Chem, vol.107, issue.2, pp.175-187, 2004.

S. Englander and N. R. Kallenbach, Hydrogen exchange and structural dynamics of proteins and nucleic acids, Q. Rev. Biophys, vol.16, issue.4, pp.521-655, 2018.

T. M. Raschke and S. Marqusee, Hydrogen exchange studies of protein structure, Curr. Opin. Biotechnol, vol.9, pp.80-86, 1998.

S. Cai and B. R. Singh, A Distinct Utility of the Amide III Infrared Band for Secondary Structure Estimation of Aqueous Protein Solutions Using Partial Least Squares Methods, Biochemistry, vol.43, issue.9, pp.2541-2549, 2004.

A. Dessombz, D. Bazin, P. Dumas, C. Sandt, J. Sule-suso et al., Shedding Light on the Chemical Diversity of Ectopic Calcifications in Kidney Tissues: Diagnostic and Research Aspects, PLoS One, vol.6, issue.11, 2011.

F. and L. Naour, Quantitative assessment of liver steatosis on tissue section using infrared spectroscopy, Gastroenterology, vol.148, issue.2, pp.295-297, 2015.

M. Jackson and H. H. Mantsch, Infrared Spectroscopy, Ex Vivo Tissue Analysis by, Encycl. Anal. Chem, pp.1-26, 2006.

C. Sandt, C. Nadaradjane, R. Richards, P. Dumas, and V. Sée, Use of infrared microspectroscopy to elucidate a specific chemical signature associated with hypoxia levels found in glioblastoma, Analyst, vol.141, issue.3, pp.870-883, 2016.

R. and A. Shaw, Infrared spectroscopy of biofluids in clinical chemistry and medical diagnostics, Biomedical Vibrational Spectroscopy, pp.79-104, 2008.

D. Helm, H. Labischinski, G. Schallehn, and D. Naumann, Classification and identification of bacteria by Fourier-transform infrared spectroscopy, J. Gen. Microbiol, issue.137, pp.69-79, 1991.

C. Sandt, FT-IR microspectroscopy for early identification of some clinically relevant pathogens, J. Appl. Microbiol, vol.101, issue.4, pp.785-797, 2006.

D. Naumann, Infrared Spectroscopy in Microbiology, Encyclopedia of Analytical Chemistry, pp.102-131, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00532243

D. Ami, L. Bonecchi, S. Calì, G. Orsini, G. Tonon et al., FT-IR study of heterologous protein expression in recombinant Escherichia coli strains, Biochim. Biophys. Acta-Gen. Subj, vol.1624, issue.1-3, pp.6-10, 2003.

A. C. Mcgovern, R. Ernill, B. Kara, D. B. Kell, and R. Goodacre, Rapid analysis of the expression of heterologous proteins in Escherichia coli using pyrolysis mass spectrometry and Fourier transform infrared spectroscopy with chemometrics: application to alpha 2-interferon production, J. Biotechnol, vol.72, issue.3, pp.157-67, 1999.

D. Ami, A. Natalello, P. Gatti-lafranconi, M. Lotti, and S. M. Doglia, Kinetics of inclusion body formation studied in intact cells by FT-IR spectroscopy, FEBS Lett, vol.579, issue.16, pp.3433-3436, 2005.

M. Santos, E. Gerbino, E. Tymczyszyn, and A. Gomez-zavaglia, Applications of Infrared and Raman Spectroscopies to Probiotic Investigation, vol.4, pp.283-305, 2015.

B. A. Wallace, Protein characterisation by synchrotron radiation circular dichroism spectroscopy, Q. Rev. Biophys, vol.4, issue.42, pp.317-370, 2009.

R. M. Pagni, Circular Dichroism and Linear Dichroism (Rodger, Alison; Norden, Bengt), J. Chem. Educ, vol.75, issue.9, p.1095, 1998.

J. D. Hirst, K. Colella, and A. T. Gilbert, Electronic Circular Dichroism of Proteins from First-Principles Calculations, pp.11813-11819, 2003.

S. M. Kelly and N. C. Price, The use of circular dichroism in the investigation of protein structure and function, Curr. Protein Pept. Sci, vol.1, issue.4, pp.349-84, 2000.

A. Micsonai, Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy, Proc Natl Acad Sci U S A, issue.112, pp.3095-3103, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01485547

V. I. Dodero, Z. B. Quirolo, and M. A. Sequeira, Biomolecular studies by circular dichroism, Front. Biosci, vol.16, issue.1, p.61, 2011.

J. Kypr, I. Kejnovská, D. R. Iuk, and M. Vorlí?, Circular dichroism and conformational polymorphism of DNA, Nucleic Acids Res, vol.37, issue.6, pp.1713-1725, 2009.

J. Jaumot, R. Eritja, S. Navea, and R. Gargallo, Classification of nucleic acids structures by means of the chemometric analysis of circular dichroism spectra, Anal. Chim. Acta, vol.642, issue.1-2, pp.117-126, 2009.

D. Sirohi, The 3.8 Å resolution cryo-EM structure of Zika virus, Science (80. ), vol.352, issue.6284, pp.467-470, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439629

L. Gremer, Fibril structure of amyloid-b (1-42) by cryo-electron microscopy, Science (80-. ), vol.358, pp.116-119, 2017.

T. Bizien, D. Durand, P. Roblina, T. Aurélien, P. Vachette et al., A Brief Survey of State-of-the-Art BioSAXS, Protein Pept. Lett, vol.23, issue.3, pp.217-231, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01461929

F. T. Chan, D. Pinotsi, G. S. Schierle, and C. F. Kaminski, Structure-Specific Intrinsic Fluorescence of Protein Amyloids Used to Study their Kinetics of Aggregation, Bio-nanoimaging: Protein Misfolding & Aggregation, pp.147-156, 2014.

W. Chen, Fluorescence Self-Quenching from Reporter Dyes Informs on the Structural Properties of Amyloid Clusters Formed in Vitro and in Cells, Nano Lett, vol.17, pp.143-149, 2017.

T. Härd and C. Lendel, Inhibition of amyloid formation, J. Mol. Biol, vol.421, issue.4-5, pp.441-465, 2012.

M. Biancalana and S. Koide, Molecular mechanism of Thioflavin-T binding to amyloid fibrils, Biochim. Biophys. Acta-Proteins Proteomics, vol.1804, issue.7, pp.1405-1412, 2010.

O. N. Murashko and S. Lin-chao, Escherichia coli responds to environmental changes using enolasic degradosomes and stabilized DicF sRNA to alter cellular morphology, 2017.

K. A. Obregon, C. T. Hoch, and M. V. Sukhodolets, Sm-like protein Hfq: Composition of the native complex, modifications, and interactions, Biochim. Biophys. Acta-Proteins Proteomics, vol.1854, issue.8, pp.950-966, 2015.

T. C. Jackson and M. Sukhodolets, Functional analyses of putative PalS (Palindromic Self-recognition) motifs in bacterial Hfq, Biochem. Biophys. Res. Commun, vol.486, issue.4, pp.1048-1054, 2017.

P. Thévenaz and M. Unser, User-Friendly Semiautomated Assembly of Accurate Image Mosaics in Microscopy, Microsc. Res. Tech, vol.70, pp.135-146, 2007.

R. Giraldo, Defined DNA sequences promote the assembly of a bacterial protein into distinct amyloid nanostructures, Proc. Natl. Acad. Sci. USA, vol.104, pp.17388-93, 2007.

F. L. Palhano, J. Lee, N. P. Grimster, and J. W. Kelly, Toward the molecular mechanism(s) by which EGCG treatment remodels mature amyloid fibrils, J. Am. Chem. Soc, vol.135, issue.20, pp.7503-7513, 2013.

F. Meng, The Sulfated Triphenyl Methane Derivative Acid Fuchsin Is a Potent Inhibitor of Amyloid Formation by Human Islet Amyloid Polypeptide and Protects against the Toxic Effects of Amyloid Formation, J. Mol. Biol, vol.400, issue.3, pp.555-566, 2010.

B. Cheng, Coffee components inhibit amyloid formation of human islet amyloid polypeptide in vitro: Possible link between coffee consumption and diabetes mellitus, J. Agric. Food Chem, vol.59, issue.24, pp.13147-13155, 2011.

F. Yang, Curcumin inhibits formation of amyloid ? oligomers and fibrils, binds plaques, and reduces amyloid in vivo, J. Biol. Chem, vol.280, issue.7, pp.5892-5901, 2005.

B. Cheng, Silibinin inhibits the toxic aggregation of human islet amyloid polypeptide, Biochem. Biophys. Res. Commun, vol.419, issue.3, pp.495-499, 2012.

A. T. Petkova, R. D. Leapman, Z. Guo, W. Yau, M. P. Mattson et al., Self-Propagating, Molecular-Level Polymorphism in Alzheimer's b-Amyloid Fibrils, Cold Spring Harb. Monogr. Ser, vol.408, issue.5, p.4842, 2000.

D. O. Serra, F. Mika, A. M. Richter, and R. Hengge, The green tea polyphenol EGCG inhibits E. coli biofilm formation by impairing amyloid curli fibre assembly and downregulating the biofilm regulator CsgD via the ?E-dependent sRNA RybB, Mol. Microbiol, vol.101, issue.1, pp.136-151, 2016.

A. Diz-muñoz, D. A. Fletcher, and O. D. Weiner, Use the force: Membrane tension as an organizer of cell shape and motility, Trends in Cell Biology, vol.23, issue.2, pp.47-53, 2013.

M. G. Haugh, C. M. Murphy, R. C. Mckiernan, C. Altenbuchner, and F. J. O'brien, Crosslinking and Mechanical Properties Significantly Influence Cell Attachment, Proliferation, and Migration Within Collagen Glycosaminoglycan Scaffolds, Tissue Eng. Part A, vol.17, issue.9, pp.1201-1208, 2011.
DOI : 10.1089/ten.tea.2010.0590

URL : http://www.tara.tcd.ie/bitstream/2262/55329/1/Crosslinking%20and%20mechanical%20properties%20significantly%20influence%20cell%20attachment%2c%20proliferation%2c%20and%20migration%20within%20collagen%20glycosaminoglycan%20scaffolds.pdf

O. Chaudhuri and D. J. Mooney, Stem-cell differentiation: Anchoring cell-fate cues, Nat. Mater, vol.11, issue.7, pp.568-569, 2012.
DOI : 10.1038/nmat3366

M. Lekka, Cancer cell detection in tissue sections using AFM, Arch. Biochem. Biophys, vol.518, issue.2, pp.151-156, 2012.
DOI : 10.1016/j.abb.2011.12.013

T. Ohashi, M. Hagiwara, D. L. Bader, and M. M. Knight, Intracellular mechanics and mechanotransduction associated with chondrocyte deformation during pipette aspiration, Biorheology, vol.43, issue.3-4, pp.201-215, 2006.

T. G. Kuznetsova, M. N. Starodubtseva, N. I. Yegorenkov, S. A. Chizhik, and R. I. Zhdanov, Atomic force microscopy probing of cell elasticity, Micron, vol.38, issue.8, pp.824-833, 2007.
DOI : 10.1016/j.micron.2007.06.011

E. C. Faria, Measurement of elastic properties of prostate cancer cells using AFM, Analyst, vol.133, issue.11, pp.1498-1500, 2008.

Y. Ding, G. K. Xu, and G. F. Wang, On the determination of elastic moduli of cells by AFM based indentation, Sci. Rep, vol.7, p.45575, 2017.

J. F. Berret, Local viscoelasticity of living cells measured by rotational magnetic spectroscopy, Nat. Commun, vol.7, issue.10134, 2016.
DOI : 10.1038/ncomms10134

URL : https://hal.archives-ouvertes.fr/hal-01375067

L. Chevry, N. K. Sampathkumar, A. Cebers, and J. F. Berret, Magnetic wire-based sensors for the microrheology of complex fluids, Phys. Rev. E-Stat. Nonlinear, Soft Matter Phys, vol.88, issue.6, pp.1-8, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00913575

F. Loosli, for her help in liquid AFM control measurements and for many fruitful discussions. We thank Dr, ChemPhysChem, vol.17, issue.24, pp.4134-4143, 2016.

M. Moreno-del-Álamo, S. M. De-la-espina, M. E. Fernández-tresguerres, and R. Giraldo, Pre-amyloid oligomers of the proteotoxic RepA-WH1 prionoid assemble at the bacterial nucleoid, Sci. Rep, vol.5, pp.1-12, 2015.

D. Partouche, Techniques to Analyze sRNA Protein Cofactor Self-Assembly In Vitro, Methods Mol. Biol, vol.1737, pp.321-340, 2018.
DOI : 10.1007/978-1-4939-7634-8_18

A. Hermelink, Towards a correlative approach for characterising single virus particles by transmission electron microscopy and nanoscale Raman spectroscopy, Analyst, vol.142, pp.1342-1349, 2017.
DOI : 10.1039/c6an02151d

A. Dazzi and C. B. Prater, AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging, Chem. Rev. acs.chemrev, pp.6-00448, 2016.
DOI : 10.1021/acs.chemrev.6b00448

G. M. Cech, The Escherichia Coli Hfq Protein: An Unattended DNATransactions Regulator, Front. Mol. Biosci, vol.3, 2016.
DOI : 10.3389/fmolb.2016.00036

URL : https://hal.archives-ouvertes.fr/hal-01534530

V. Arluison, Three-dimensional Structures of Fibrillar Sm Proteins: Hfq and Other Sm-like Proteins, J. Mol. Biol, vol.356, pp.86-96, 2006.
DOI : 10.1016/j.jmb.2005.11.010

URL : https://hal.archives-ouvertes.fr/hal-00090155

E. Fortas, New insight into the structure and function of Hfq C-terminus, Biosci. Rep, vol.35, pp.1-9, 2015.
DOI : 10.1042/bsr20140128

URL : https://hal.archives-ouvertes.fr/hal-01534472

A. Malabirade, Membrane association of the bacterial riboregulator Hfq and functional perspectives, Sci. Rep, vol.7, pp.1-12, 2017.
DOI : 10.1038/s41598-017-11157-5

URL : https://hal.archives-ouvertes.fr/cea-01591449

A. Malabirade, Compaction and condensation of DNA mediated by the Cterminal domain of Hfq, Nucleic Acids Res, vol.45, pp.7299-7308, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02342492

V. Militello, Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering, Biophys. Chem, vol.107, pp.175-187, 2004.

G. Zandomeneghi, M. R. Krebs, M. G. Mccammon, and M. Fändrich, FTIR reveals structural differences between native beta-sheet proteins and amyloid fibrils, Protein Sci, vol.13, pp.3314-3335, 2004.

H. Hiramatsu and T. Kitagawa, FT-IR approaches on amyloid fibril structure, Biochim. Biophys. Acta-Proteins Proteomics, vol.1753, pp.100-107, 2005.

G. Hoffner, W. André, C. Sandt, and P. Djian, Synchrotron-based infrared spectroscopy brings to light the structure of protein aggregates in neurodegenerative disease, Rev. Anal. Chem, vol.33, pp.231-243, 2014.

G. Latour, Correlative nonlinear optical microscopy and infrared nanoscopy reveals collagen degradation in altered parchments, Sci. Rep, vol.6, p.26344, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01321012

F. Ay and A. Aydinli, Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides, Opt. Mater. (Amst), vol.26, pp.33-46, 2004.

A. Dazzi, R. Prazeres, F. Glotin, and J. M. Ortega, Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor, Opt. Lett, vol.30, pp.2388-2390, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00116803

A. Dazzi, F. Glotin, and R. Carminati, Theory of infrared nanospectroscopy by photothermal induced resonance, J. Appl. Phys, vol.107, p.124519, 2010.

J. R. Felts, Atomic force microscope infrared spectroscopy on 15 nm scale polymer nanostructures, Rev. Sci. Instrum, vol.84, 2013.

F. Lu and M. A. Belkin, Infrared absorption nano-spectroscopy using sample photoexpansion induced by tunable quantum cascade lasers, Opt. Express, vol.19, p.19942, 2011.

F. S. Ruggeri, Nanoscale studies link amyloid maturity with polyglutamine diseases onset, Sci. Rep, vol.6, p.31155, 2016.

F. Lu, M. Jin, and M. A. Belkin, Tip-enhanced infrared nanospectroscopy via molecular expansion force detection, Nat. Photonics, vol.8, pp.307-312, 2014.

M. H. Xiong, Y. Bao, X. Z. Yang, Y. H. Zhu, and J. Wang, Delivery of antibiotics with polymeric particles, Adv. Drug Deliv. Rev, vol.78, pp.63-76, 2014.

F. S. Ruggeri, Infrared nanospectroscopy characterization of oligomeric and fibrillar aggregates during amyloid formation, Nat. Commun, vol.6, p.7831, 2015.

A. V. Purkina, B. Z. Volchek, and C. Bureau, , pp.1051-1052, 1971.

R. L. Redington and K. C. Lin, Infrared spectra of trifluoroacetic acid and trifluoroacetic anhydride, Spectrochim. Acta Part A Mol. Spectrosc, vol.27, pp.2445-2460, 1971.

H. Ftouni, Specific heat measurement of thin suspended SiN membrane from 8 K to 300 K using the 3?-Völklein method, Rev. Sci. Instrum, vol.84, 2013.

H. Ftouni, Thermal conductivity of silicon nitride membranes is not sensitive to stress, Phys. Rev. B-Condens. Matter Mater. Phys, vol.92, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01231839

G. Chen and P. Hui, Thermal conductivities of evaporated gold films on silicon and glass, Appl. Phys. Lett, vol.74, pp.2942-2944, 1999.

M. Asghari-khiavi, Exploring the origin of tip-enhanced Raman scattering; Preparation of efficient TERS probes with high yield, J. Raman Spectrosc, vol.43, pp.173-180, 2012.

A. Barth, Infrared spectroscopy of proteins, Biochim. Biophys. Acta-Bioenerg, vol.1767, pp.1073-1101, 2007.

P. Thévenaz and M. Unser, User-friendly semiautomated assembly of accurate image mosaics in microscopy, Microsc. Res. Tech, vol.70, pp.135-146

M. D. Abràmofff, P. J. Magalhães, and S. J. Ram, Image processing with, ImageJ Part II. Biophotonics Int, vol.11, pp.36-43, 2005.

, Revised role for Hfq bacterial regulator on DNA topology

, Thomas Bizien, vol.2

L. Laboratoire-léon-brillouin, C. , and C. Umr12,

S. Synchrotron and L. 'orme-des-merisiers, Saint Aubin BP48, vol.91192

, CNRS, IBDM

. Unité-de-biologie-fonctionnelle, C. Adaptative, and . Umr8251, , p.75013

M. T. Franze-de-fernandez, W. S. Hayward, and J. T. August, Bacterial proteins required for replication of phage Qb ribonucleic acid, J. Biol. Chem, vol.247, pp.824-821, 1972.

H. C. Tsui, H. C. Leung, and M. E. Winkler, Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K-12

. Microbiol, , vol.13, pp.35-49, 1994.

H. C. Tsui, G. Feng, and M. E. Winkler, Negative regulation of mutS and mutH repair gene expression by the Hfq and RpoS global regulators of Escherichia coli K-12, J. Bacteriol, vol.179, pp.7476-7487, 1997.

S. Gottesman and G. Storz, RNA reflections: converging on Hfq, RNA, vol.21, pp.511-512, 2015.

S. Gottesman, Small RNA regulators and the bacterial response to stress

, Cold Spring Harb Symp Quant Biol, vol.71, pp.1-11, 2006.

H. Aiba, Mechanism of RNA silencing by Hfq-binding small RNAs, Curr Opin Microbiol, vol.10, pp.134-139, 2007.

N. Majdalani, C. Cunning, D. Sledjeski, T. Elliott, and S. Gottesman, DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription, Proc Natl Acad Sci U S A, vol.95, pp.12462-12467, 1998.

R. A. Lease and M. Belfort, A trans-acting RNA as a control switch in Escherichia coli: DsrA modulates function by forming alternative structures, Proc Natl Acad Sci U S A, vol.97, pp.9919-9924, 2000.

B. Cayrol, Riboregulation of the bacterial actin-homolog MreB by DsrA small noncoding RNA, Integrative biology : quantitative biosciences from nano to macro, vol.7, pp.128-141, 2015.

T. A. Azam and A. Ishihama, Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity, J Biol Chem, vol.274, pp.33105-33113, 1999.

T. B. Updegrove, J. J. Correia, R. Galletto, W. Bujalowski, and R. M. Wartell,

E. , DNA associated with isolated Hfq interacts with Hfq's distal surface and C-terminal domain, Biochim Biophys Acta, vol.1799, pp.588-596, 2010.

F. Geinguenaud, Conformational transition of DNA bound to Hfq probed by infrared spectroscopy, Phys Chem Chem Phys, vol.13, pp.1222-1229, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00720605

G. M. Cech, The Escherichia Coli Hfq Protein: An Unattended DNA
URL : https://hal.archives-ouvertes.fr/hal-01534530

, Transactions Regulator. Front Mol Biosci, vol.3, 2016.

T. A. Azam, S. Hiraga, and A. Ishihama, Two types of localization of the DNAbinding proteins within the Escherichia coli nucleoid, Genes Cells, vol.5, pp.613-626, 2000.

E. Diestra, B. Cayrol, V. Arluison, and C. Risco, Cellular electron microscopy imaging reveals the localization of the Hfq protein close to the bacterial membrane, PLoS One, vol.4, p.8301, 2009.

C. J. Wilusz and J. Wilusz, Eukaryotic Lsm proteins: lessons from bacteria, Nat Struct Mol Biol, vol.12, pp.1031-1036, 2005.

C. J. Wilusz and J. Wilusz, Lsm proteins and Hfq: Life at the 3' end, RNA Biol, vol.10, pp.592-601, 2013.

R. G. Brennan and T. M. Link, Hfq structure, function and ligand binding, Curr Opin Microbiol, vol.10, pp.125-133, 2007.

J. Vogel and B. F. Luisi, Hfq and its constellation of RNA, Nat Rev Microbiol, vol.9, pp.578-589, 2011.

T. M. Link, P. Valentin-hansen, and R. G. Brennan, Structure of Escherichia coli

, Hfq bound to polyriboadenylate RNA, Proc Natl Acad Sci U S A, vol.106, pp.19292-19297, 2009.

M. A. Schumacher, R. F. Pearson, T. Moller, P. Valentin-hansen, and . Brennan,

R. G. , Structures of the pleiotropic translational regulator Hfq and an Hfq-RNA complex: a bacterial Sm-like protein, Embo J, vol.21, pp.3546-3556, 2002.

D. Dimastrogiovanni, Recognition of the small regulatory RNA RydC by the bacterial Hfq protein, vol.3, 2014.

K. Jiang, Effects of Hfq on the conformation and compaction of DNA
URL : https://hal.archives-ouvertes.fr/hal-01534496

, Nucleic Acids Res, vol.43, pp.4332-4341, 2015.

A. Malabirade, Compaction and condensation of DNA mediated by the Cterminal domain of Hfq, Nucleic Acids Res, vol.45, pp.7299-7308, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01591370

M. Joyeux, Compaction of bacterial genomic DNA: clarifying the concepts

, Phys Condens Matter, vol.27, 2015.

L. Dai, Y. Mu, L. Nordenskiold, and J. R. Van-der-maarel, Molecular dynamics simulation of multivalent-ion mediated attraction between DNA molecules, Phys Rev Lett, vol.100, 2008.

C. Sauter, J. Basquin, and D. Suck, Sm-like proteins in Eubacteria: the crystal structure of the Hfq protein from Escherichia coli, Nucleic Acids Res, vol.31, pp.4091-4098, 2003.

A. Nikulin, Structure of Pseudomonas aeruginosa Hfq protein

, Crystallogr D Biol Crystallogr, vol.61, pp.141-146, 2005.

E. Sauer and O. Weichenrieder, Structural basis for RNA 3'-end recognition by

. Hfq, Proc Natl Acad Sci U S A, vol.108, pp.13065-13070, 2011.

K. A. Stanek, J. Patterson-west, P. S. Randolph, and C. Mura, Crystal structure and RNA-binding properties of an Hfq homolog from the deep-branching Aquificae: conservation of the lateral RNA-binding mode, Acta Crystallogr D Struct Biol, vol.73, pp.294-315, 2017.

V. Arluison, Three-dimensional Structures of Fibrillar Sm Proteins: Hfq and Other Sm-like Proteins, J Mol Biol, vol.356, pp.86-96, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00090155

M. Beich-frandsen, Structural insights into the dynamics and function of the C-terminus of the E. coli RNA chaperone Hfq, Nucleic Acids Res, vol.39, pp.4900-4915, 2011.

E. Fortas, New insight into the structure and function of Hfq C-terminus
URL : https://hal.archives-ouvertes.fr/hal-01534472

, Biosci Rep, vol.35, 2015.

D. Partouche, Techniques to Analyze sRNA Protein Cofactor Self

, Assembly In Vitro. Methods Mol Biol, vol.1737, pp.321-340, 2018.

A. Malabirade, Membrane association of the bacterial riboregulator Hfq and functional perspectives, Sci Rep, vol.7, p.10724, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01591449

A. Taghbalout, Q. Yang, and V. Arluison, The Escherichia coli RNA processing and degradation machinery is compartmentalized within an organized cellular network

, Biochem J, vol.458, pp.11-22, 2014.

G. M. Cech, Hfq protein deficiency in Escherichia coli affects ColE1-like but not lambda plasmid DNA replication, Plasmid, vol.73, pp.10-15, 2014.

M. V. Sukhodolets and S. Garges, Interaction of Escherichia coli RNA polymerase with the ribosomal protein S1 and the Sm-like ATPase Hfq, Biochemistry, vol.42, pp.8022-8034, 2003.

L. Derout, J. Boni, I. V. Regnier, P. Hajnsdorf, and E. , Hfq affects mRNA levels independently of degradation, BMC Mol Biol, vol.11, pp.1471-2199, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00459816

M. Rabhi, The Sm-like RNA chaperone Hfq mediates transcription antitermination at Rho-dependent terminators, EMBO J, vol.30, pp.2805-2816, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00720713

D. J. Lindberg, E. Wesen, J. Bjorkeroth, S. Rocha, and E. K. Esbjorner, Lipid membranes catalyse the fibril formation of the amyloid-beta (1-42) peptide through lipidfibril interactions that reinforce secondary pathways, Biochim Biophys Acta, vol.1859, pp.1921-1929, 2017.

F. Gobeaux and F. Wien, Reversible assembly of a drug peptide into amyloid fibrils: a dynamic circular dichroism study, Langmuir : the ACS journal of surfaces and colloids, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01797038

D. M. Byler and H. Susi, Examination of the secondary structure of proteins by deconvolved FTIR spectra, Biopolymers, vol.25, pp.469-487, 1986.

F. Piccirilli, Sequential dissociation of insulin amyloids probed by high pressure Fourier transform infrared spectroscopy Soft mater 8, pp.11863-11870, 2012.

A. E. Tupper, The chromatin-associated protein H-NS alters DNA topology in vitro, EMBO J, vol.13, pp.258-268, 1994.

T. R. Strick, J. F. Allemand, D. Bensimon, A. Bensimon, and V. Croquette, The elasticity of a single supercoiled DNA molecule, Science, vol.271, pp.1835-1837, 1996.

J. F. Marko, E. D. Siggia, and D. Stretching, Macromolecules, vol.28, pp.8759-8770, 1995.

J. F. Marko, Torque and dynamics of linking number relaxation in stretched supercoiled DNA, Phys Rev E Stat Nonlin Soft Matter Phys, vol.76, p.21926, 2007.

K. H. Johnson, D. M. Gray, and J. C. Sutherland, Vacuum UV CD spectra of homopolymer duplexes and triplexes containing A.T or A.U base pairs, Nucleic Acids Res, vol.19, pp.2275-2280, 1991.

J. Aymami, M. Coll, C. A. Frederick, A. H. Wang, and A. Rich, The propeller DNA conformation of poly(dA).poly(dT), Nucleic Acids Res, vol.17, pp.3229-3245, 1989.

R. Janissen, Global DNA Compaction in Stationary-Phase Bacteria Does Not Affect Transcription, Cell, vol.174, p.1114, 2018.

R. Giraldo, Defined DNA sequences promote the assembly of a bacterial protein into distinct amyloid nanostructures, Proc Natl Acad Sci U S A, vol.104, pp.17388-17393, 2007.

L. Molina-garcia, Functional amyloids as inhibitors of plasmid DNA replication, Sci Rep, vol.6, p.25425, 2016.

M. Kajitani, A. Kato, A. Wada, Y. Inokuchi, and A. Ishihama,

, Escherichia coli hfq gene encoding the host factor for phage Q beta, J Bacteriol, vol.176, pp.531-534, 1994.

C. D. Hardy and N. R. Cozzarelli, A genetic selection for supercoiling mutants of

, Escherichia coli reveals proteins implicated in chromosome structure, Mol Microbiol, vol.57, pp.1636-1652, 2005.

R. A. Lease, M. E. Cusick, and M. Belfort,

, DsrA RNA acts by RNA:RNA interactions at multiple loci, Proc Natl Acad Sci U S A, vol.95, pp.12456-12461, 1998.

R. A. Lease, D. Smith, K. Mcdonough, and M. Belfort, The small noncoding

, DsrA RNA is an acid resistance regulator in Escherichia coli, J Bacteriol, vol.186, pp.6179-6185, 2004.

S. T. Arold, P. G. Leonard, G. N. Parkinson, and J. E. Ladbury, H-NS forms a superhelical protein scaffold for DNA condensation, Proc Natl Acad Sci U S A, vol.107, pp.15728-15732, 2010.

R. T. Dame, M. C. Noom, and G. J. Wuite,

, H-NS protein unravelled using dual DNA manipulation, Nature, vol.444, pp.387-390, 2006.

R. T. Dame, C. Wyman, and N. Goosen, H-NS mediated compaction of DNA visualised by atomic force microscopy, Nucleic Acids Res, vol.28, pp.3504-3510, 2000.

K. Singh, J. N. Milstein, and W. W. Navarre, Xenogeneic Silencing and Its Impact on Bacterial Genomes, Annu Rev Microbiol, vol.70, pp.199-213, 2016.

R. S. Winardhi and J. Yan, Applications of Magnetic Tweezers to Studies of NAPs, Methods Mol Biol, vol.1624, pp.173-191, 2017.

P. A. Wiggins, R. T. Dame, M. C. Noom, and G. J. Wuite, Protein-mediated molecular bridging: a key mechanism in biopolymer organization, Biophys J, vol.97, 1997.

T. A. Owen-hughes, The chromatin-associated protein H-NS interacts with curved DNA to influence DNA topology and gene expression, Cell, vol.71, pp.255-265, 1992.

A. Japaridze, Spatial organization of DNA sequences directs the assembly of bacterial chromatin by a nucleoid-associated protein, J Biol Chem, vol.292, pp.7607-7618, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02001350

B. R. Gordon, Structural basis for recognition of AT-rich DNA by unrelated xenogeneic silencing proteins, Proc Natl Acad Sci U S A, vol.108, pp.10690-10695, 2011.

X. Shi and G. N. Bennett, Plasmids bearing hfq and the hns-like gene stpA complement hns mutants in modulating arginine decarboxylase gene expression in Escherichia coli, J Bacteriol, vol.176, pp.6769-6775, 1994.

V. F. Scolari, B. Bassetti, B. Sclavi, and M. C. Lagomarsino, Gene clusters reflecting macrodomain structure respond to nucleoid perturbations, Mol Biosyst, vol.7, pp.878-888, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01589017

Y. Liu, H. Chen, L. J. Kenney, and J. Yan, A divalent switch drives H-NS/DNAbinding conformations between stiffening and bridging modes, Genes Dev, vol.24, pp.339-344, 2010.

G. Del-solar, R. Giraldo, M. J. Ruiz-echevarria, M. Espinosa, and . Diaz-orejas,

R. , Replication and control of circular bacterial plasmids, Microbiol Mol Biol Rev, vol.62, pp.434-464, 1998.

S. Brantl, Plasmid Replication Control by Antisense RNAs. Microbiol Spectr, vol.2, 2014.

D. Primo and C. , Real time analysis of the RNAI-RNAII-Rop complex by surface plasmon resonance: from a decaying surface to a standard kinetic analysis, J Mol Recognit, vol.21, pp.37-45, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00298029

S. Brantl, Encyclopedia of Microbiology, vol.5, pp.409-437, 2009.

E. L. Zechiedrich and N. R. Cozzarelli, Roles of topoisomerase IV and DNA gyrase in DNA unlinking during replication in Escherichia coli, Genes Dev, vol.9, pp.2859-2869, 1995.

J. Goers, Nuclear localization of alpha-synuclein and its interaction with histones, Biochemistry, vol.42, pp.8465-8471, 2003.

A. Siddiqui, Selective binding of nuclear alpha-synuclein to the PGC1alpha promoter under conditions of oxidative stress may contribute to losses in mitochondrial function: implications for Parkinson's disease, Free Radic Biol Med, vol.53, pp.993-1003, 2012.

H. Yu, J. Ren, and X. Qu, Time-dependent DNA condensation induced by amyloid beta-peptide, Biophys J, vol.92, pp.185-191, 2007.

J. F. Hopkins, S. Panja, S. A. Mcneil, and S. A. Woodson, Effect of salt and RNA structure on annealing and strand displacement by Hfq, Nucleic Acids Res, vol.37, pp.6205-6213, 2009.

M. Refregiers, DISCO synchrotron-radiation circular-dichroism endstation at SOLEIL, J Synchrotron Radiat, vol.19, pp.831-835, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01480932

F. Wien and B. A. Wallace, Calcium fluoride micro cells for synchrotron radiation circular dichroism spectroscopy, Appl Spectrosc, vol.59, pp.1109-1113, 2005.

G. David, J. Perez, and . Perez, Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the Synchrotron SOLEIL SWING beamline, Journal of Applied Crystallography, vol.42, pp.892-900, 2009.

K. A. Datsenko and B. L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proc Natl Acad Sci U S A, vol.97, pp.6640-6645, 2000.

V. Militello, Aggregation kinetics of bovine serum albumin studied by FTIR spectroscopy and light scattering, Biophys Chem, vol.107, pp.175-187, 2004.

H. T. Steely, . Jr, D. M. Gray, and R. L. Ratliff, CD of homopolymer DNA-RNA hybrid duplexes and triplexes containing A-T or A-U base pairs, Nucleic Acids Res, vol.14, pp.10071-10090, 1986.

, indicated by arrows and horizontal bars, respectively; dotted line symbolizes Peptidoglycan (PG) between outer (OM) and inner (IM) membranes

C. Lei, Y. Shin, J. K. Magnuson, G. Fryxell, L. L. Lasure et al., Characterization of Functionalized Nanoporous Supports for Protein Confinement, Nanotechnology, vol.17, issue.1, pp.5531-5538, 2006.

J. M. Devoisselle, Inclusion of Ibuprofen in Mesoporous Templated Silica: Drug Loading and Release Property, Eur. J. Pharm. Biopharm, vol.57, issue.3, pp.533-540, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00360282

V. B. Cashin, D. S. Eldridge, A. Yu, D. Zhao, G. Dosseh et al., Surface Functionalization and Manipulation of Mesoporous Silica Adsorbents for Improved Removal of Pollutants: A Review, Environ. Sci. Water Res. Technol, vol.2018, issue.2, pp.6445-6453, 2003.

T. Azaïs, G. Laurent, K. Panesar, A. Nossov, F. Guenneau et al., Implication of Water Molecules at the Silica-Ibuprofen Interface in Silica-Based Drug Delivery Systems Obtained through Incipient Wetness Impregnation, Z. Für Phys. Chem, vol.2017, issue.48, pp.1127-1146, 2018.

Q. Wu, X. Hu, P. L. Yue, X. S. Zhao, and G. Q. Lu, Copper/MCM-41 as Catalyst for the Wet Oxidation of Phenol, Appl. Catal. B Environ, vol.32, pp.151-156, 2001.

A. Marcilla-gomis, ) Mbaraka, I.; Shanks, B. Design of Multifunctionalized Mesoporous Silicas for Esterification of Fatty Acid, Am. J. Chem. Eng, vol.2015, issue.1, pp.365-373, 2005.

S. Roy, T. Chatterjee, M. Pramanik, A. S. Roy, A. Bhaumik et al.,

S. Cu-;-rostamnia, E. Doustkhah, I. Jlalia, F. Gallier, N. Brodie-linder et al., Nanoporous Silica-Supported Organocatalyst: A Heterogeneous and Green Hybrid Catalyst for Organic Transformations, Anchored Functionalized Mesoporous SBA-15: An Efficient and Recyclable, vol.386, pp.28238-28248, 2014.

. Copper, SBA-15: A Reusable Catalyst for Azide-Alkyne Cycloaddition, J. Mol. Catal. Chem, vol.393, pp.56-61, 2014.

X. Wang, K. S. Lin, J. C. Chan, S. Cheng, T. Yokoi et al., ) Macquarrie, D. J. Direct Preparation of Organically Modified MCM-Type Materials. Preparation and Characterisation of Aminopropyl-MCM and 2-CyanoethylMCM, Microporous Mesoporous Mater, vol.109, issue.14, pp.1769-1770, 1961.

T. V. Khamova, C. Ian??i, L. S?c?rescu, Z. M. Mitróová, . Silica et al., Phase Transition of Silica in the TMB-P123-H2O-TEOS Quadru-Component System: A Feasible Route to Different Mesostructured Materials, Alkaline Medium, vol.424, pp.518-525, 1996.

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190