. , Flowchart representation of the synthesis of nuclear graphite. Boxes in yellow describe materials, boxes in green describe the different steps of the procedure

, Schematic representation of microstructural changes of the precursors of nuclear graphite with respect to temperature, p.28

, Schematic representation of a cascade of atomic displacements, vol.07

. .. ,

T. ]. , Visualization of the Stone-Thrower-Wales defect, p.31

. .. Hsmdh11], Schematic description of the fractional dimensional changes of a graphite monocrystal with respect to neutron dose parallel to c (solid lines) and perpendicular to c (dashes lines, p.31

. , Schematic representation of an interstitial accumulation (left) and a vacancy accumulation (right) leading to the creation of dislocation loops

. , Schematic representation of a) the buckle and b) the ruck and tuck defects

. , Schematic description of the dimensional change by irradiation in AGR nuclear graphite

. .. Bb06], Spectrum of the Wigner energy of graphite irradiated at 60 ? C at a neutron fluence of 1.74 ·10 20 n cm ?2 ?FG, p.34

. , Relative change of the Young's modulus of nuclear graphite with respect to neutron fluence at different irradiation temperatures. The graphite sample is quasi-isotropic polycrystalline graphite from coaltar pitch

. .. Bb06], Change of the thermal conductivity of nuclear graphite with respect to neutron fluence at different irradiation temperatures. The graphite sample is quasi-isotropic polycrystalline graphite from coaltar pitch. The thermal conductivity was measured at the irradiation temperature in the direction of extrusion, p.36

. , 22 a) 3D cartography of 35 Cl [Pet11] and b) scheme of Cl speciation and location [Vau10, Blo13] in virgin UNGG graphite, The different processes occurring when hydrogen is absorbed (or desorbed) in graphite [Ats03], p.44

. , Relative errors of a) the distance d C?C and b) the interlayer spacing d g (right) of HOPG with respect to experimental data at 4 K [BM55] for different Hamiltonians and basis sets without dispersion correction

, On the left, the calculated band structures with GTF (full lines) and PAW (dashed lines) are shown, the projected density of states on the 2s2p x 2p y AOs (PDOS sp x p y ) and on the p z AOs, p.66

. , Relative errors of the band widths with respect to the experimental data [HLR82, THR81] for different Hamiltonians and basis sets without dispersion correction

]. .. , Raman and IR spectra of HOPG obtained at the PBE-GTF-D3 level. Intensities are only schematic and obtained from MOLDRAW

, Relative errors of the frequencies with respect to the experimental data [NWS72, NLS77, NS79] for different Hamiltonians and basis sets: a) without, b) with D2, and c) with D3 dispersion correction, p.68

, Relative errors of the elastic constants with respect to the experimental data at 4 K [BM55] for different Hamiltonians and basis sets: a) without, b) with D2, and c) with D3 dispersion correction, p.68

, Optimized structures and top view of the a) (100) and b) (110) surfaces, p.74

, Top view of the two adsorption sites for hydrogen on the (001) surface. b) Top and c) side views of the chemisorption of hydrogen on the (001) surface. d) Spin density plot for the (100) surface. Each edge carbon has a localized spin. (100) surface with e) one and f) two chemisorbed hydrogen atoms. Spin density plots are omitted for better visibility, but all unsaturated edge carbons have a localized spin. g) Spin density plot for the (110) surface with one chemisorbed hydrogen. h) and i) show the (110) surface with two chemisorbed hydrogen atoms for the h) 110-2H-a and i) 110-2H-b configurations, respectively, Optimized structures obtained for different cases of hydrogen adsorption on the (001), (100) and (110) surfaces. a)

. , ) and b) (110) surface, archshaped reconstructions for c) (100) and d) (110) slab models, and for e) (100) and f) (110) bilayer models. For c)-f) the left and right pictures are their side and top views (perpendicular to the z-axis), respectively. Slab models are periodic in x-and y-directions, bilayer models only in the x-direction, Reconstructed surfaces of in-plane and arch-shaped reconstructions

. , The system within the blue lines shows the supercell used for the calculations; the replication in the a) xand y-directions and b) x-direction show the periodicity of the slab and bilayer models. c) Schematic description of the (110) surface reconstruction. Red atoms constitute the surface atom layer, red lines show the new interlayer bonds, Top view of the a) 2-D slab model and b) 1-D bilayer model of the reconstructed (100) surface

. , surface with a) one H and two H for b) configuration (100) rec-2H-a and () configuration (100) rec-2H-b. The in-plane reconstructed (110) surface with d) one H and two H for e) configuration (110) rec-2H-a and f) configuration (110) rec-2H-b. The arch-shaped reconstructed (100) surface with g) one H and two H in h) ortho and i) meta positions; the reconstructed (110) surface with j) one H, two H in k) ortho, l) meta and m) para positions. The left and right pictures for g)-m) are their side and top views, Optimized structures of different cases of hydrogen adsorption on the reconstructed (100) and (110) surfaces: The in-plane reconstructed

, count and b) defect range of displacement cascades in bulk graphite with error bars with respect to the simulation temperature, vol.136

. , Defect count with respect to the irradiation direction for a sample temperature of a) 200 ? C and b) 500 ? C

, Comparison of the averaged defect count for irradiation of the (001) surface at 200 ? C and 500 ? C with the results for bulk graphite at 200 ? C, p.138

. , Only defects as defined in section 6.1.4 are shown, graphitic carbon atoms are omitted for the sake of better visibility. The box shows the boundaries of graphite, thus the upper plane is equivalent to the surface. Carbon atoms are colored according to their coordination number: 0 neighbors (black), 1 neighbor (green), 2 neighbors (blue), 3 neighbors and defective (orange), 4 neighbors (red), Microstructural damage for a 10 keV irradiation of the (001) surface in a) direction 5 (incident angle <90 ? ) and b) direction 10 (incident angle 90 ? )

. , Histogram of the defect count with respect to bulk depth for a PKA energy of 10 keV at 200 ? C. The large image shows a fit to a Gaussian function, the small image in the upper right corner shows the raw data

, Statistical analysis for the irradiation of the (001) surface with an incident angle of 90 ? at a) 200 ? C and b) 500 ? C and a random incident

?. , The figures from top to bottom are the accumulated defect count and detached surface carbon atoms (note the different scales for the two curves), the normalized defect count distribution with respect to the bulk depth, and heat maps of defect accumulation in the xy-plane at an accumulated PKA energy of 50, 150, and 250 keV, p.142

, Snapshots of irradiation simulations of the (001) surface at 200 ? C for a) an incident angle of 90 ? and b) random incident angles. The images are cut along the xz-plane and depict a center region of 10Å10Å width with the highest damage. The energies 50 keV, 150 keV, and 250 keV refer to the accumulated PKA energies. Carbon atoms are colored according to their coordination number: 0 neighbors (black), 1 neighbor (green), 2 neighbors (blue), graphitic (gray, p.4

, Chlorine atoms are omitted for the sake of visibility, p.144

. , 145 6.20 Dimensional change in percent of the a) x-and y-directions (note that the change in x-and y-direction is given as the change of the product of the x-and y-dimensions of the system) parallel to the graphene planes and b) z-direction perpendicular to the graphene planes for, Representative microstructural damage of irradiation simulations of the (001) surface at 200 ? C for a) an incident angle of 90 ? and b) random incident angles

D. , Top view of optimized structures of hydrogen chemisorption at the graphene bilayer models. (100) surface: (a) 1 H, (b) 2H ortho, (c) 2H meta, p.2

. .. , XIV E.1 Models for the (001) surface (a), the (100) surface (b), and the (110) surface (c), meta

. , Note that the concentration of CH 4 is relatively high compared to other species due to its deliberate injection to reduce radiolytic oxidation (see section 2.3.5), Concentrations of different compounds in the cooling gas in vol.%.[Bla84]

. , Pile orientation (Orient.), total mass (m tot ) of graphite pile in tons, graphite temperature T in ? C, type of coolant, its pressure p in bar, the direction of gas flow (gas fl.), heat exchanger (Heat ex.) location (integrated into the core or not), and nuclear fuel design, Key characteristics of the UNGG reactors. Net power output P in MW

, /cm 3 of the graphite used in the different UNGG reactors. The type of coke used for the filler and the number of impregnation steps (see section 2.2) are also given

, Concentrations of impurities found in virgin UNGG graphite

. .. Iae06], Selected mechanical and thermal properties of "Grade A" nuclear graphite. ? and ? denominate properties measured parallel and perpendicular to the extrusion direction, p.26

, Exponents and coefficients of the contracted Gaussian basis set adopted in the present study for C. Only the most diffuse 211sp-1d * GTFs are given (see Ref, p.61

. , s 6 (D2) and s 8 (D3) scaling factors used for each Hamiltonian and basis set

, Monkhorst-Pack k-point meshes used for CRYSTAL calculations, vol.63

. .. , Exponents and coefficients of the contracted Gaussian basis set adopted in the present study for H. Only outer s and p GTFs are given (see Ref. [DCO + 90, CPDS93] for a complete set of data), p.70

, Exponents and coefficients of the contracted Gaussian basis set adopted in the present study for Cl. Only the most diffuse 2111sp-1d * GTFs are given (see Ref, p.72

, Surface energies (E surf in J/m 2 ) of the three studied surfaces, p.73

C. Adamo and V. Barone, Toward Reliable Density Functional Methods Without Adjustable Parameters: The PBE0 Model, J. Chem. Phys, vol.110, pp.6158-6170, 1999.

]. E. Acp-+-93, M. Apra, M. Causa, R. Prencipe, V. R. Dovesi et al., On the structural properties of NaCl: an ab initio study of the B1-B2 phase transition, Journal of Physics: Condensed Matter, vol.5, issue.18, p.2969, 1993.

A. Allouche and Y. Ferro, Dissociative adsorption of small molecules at vacancies on the graphite (0001) surface. Carbon, vol.44, pp.3320-3327, 2006.

Y. Afa-+-05]-a.-allouche, T. Ferro, C. Angot, J. Thomas, and . Layet, Hydrogen adsorption on graphite (0001) surface: A combined spectroscopy-density-functional-theory study

, J. Chem. Phys, vol.123, p.124701, 2005.

H. Atsumi and M. Iseki, Hydrogen absorption process into graphite and carbon materials, J. Nucl. Mater, pp.283-287, 2000.

H. Atsumi, M. Iseki, and T. Shikama, Hydrogen solubility and diffusivity in neutron-irradiated graphite, J. Nucl. Mater, pp.368-372, 1992.

H. Atsumi, M. Iseki, and T. Shikama, Hydrogen behavior in carbonbased materials and its neutron irradiation effect, J. Nucl. Mater, pp.1128-1132, 1996.

E. Asari, M. Kitajima, K. G. Nakamura, and T. Kawabe, Thermal relaxation of ion-irradiation damage in graphite, Phys. Rev. B, vol.47, pp.11143-11148, 1993.

A. Adjizian, C. D. Latham, S. Oberg, P. R. Briddon, M. I. Asthana et al., Investigations on the structural disordering of neutronirradiated highly oriented pyrolytic graphite by X-ray diffraction and electron microscopy, J. Appl. Crystallogr, vol.62, pp.361-367, 2005.

D. G. Anderson, Iterative Procedures for Nonlinear Integral Equations, J. ACM, vol.12, pp.547-560, 1965.

A. , Etude des scénarios de gestionàgestionà long terme des déchets de faible activité massiquè a vie longue, 2012.

A. , Projet de stockage de déchets radioactifs de faible activité massiquè a vie longue (FA-VL), 2015.

M. R. Ammar and J. Rouzaud, How to obtain a reliable structural characterization of polished graphitized carbons by Raman microspectroscopy, J. Raman Spectrosc, vol.43, pp.207-211, 2012.

L. Arnold, Windscale 1957-Anatomy of a Nuclear Accident, 1992.

M. R. Ammar, J. N. Rouzaud, C. E. Vaudey, N. Toulhoat, and N. Moncoffre, Characterization of graphite implanted with chlorine ions using combined Raman microspectrometry and transmission electron microscopy on thin sections prepared by focused ion beam, Carbon, vol.48, pp.1244-1251, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00455723

A. , , pp.2017-2028

H. Atsumi and K. Tauchi, Hydrogen absorption and transport in graphite materials, J. Alloy. Compd, pp.705-709, 2003.

H. Atsumi, S. Tokura, and M. Miyake, Absorption and desorption of deuterium on graphite at elevated temperatures, J. Nucl. Mater, pp.241-245, 1988.

]. H. Atm-+-13, Y. Atsumi, T. Takemura, T. Miyabe, T. Konishi et al., Desorption of hydrogen trapped in carbon and graphite, Journal of Nuclear Materials, vol.442, pp.746-750, 2013.

H. Atsumi, Hydrogen bulk retention in graphite and kinetics of diffusion, J. Nucl. Mater, pp.307-311, 2002.

H. Atsumi, Hydrogen retention in graphite and carbon materials under a fusion reactor environment, J. Nucl. Mater, pp.543-547, 2003.
DOI : 10.1016/s0022-3115(02)01464-2

H. Atsumi, T. Tanabe, and T. Shikama, Hydrogen behavior in carbon and graphite before and after neutron irradiation-Trapping, diffusion and the simulation of bulk retention, Journal of Nuclear Materials, vol.417, pp.633-636, 2011.

J. Averous, Le démantèlement des installations nucléaires : le nouveau panorama. DGSNR-Installations de recherche, démantèlement, sites pollués, déchets, Cour des Comptes, vol.75, 2005.

D. E. Baker, Graphite as a Neutron Moderator and Reflector Material, Nuclear Engineering and Design, vol.14, pp.413-444, 1970.
DOI : 10.1016/0029-5493(70)90160-3

R. T. Baker, Gas chemistry in nuclear reactors and large industrial plant, pp.18-25, 1980.

M. Balarin, Fokussierungsbedingung für elastische Atomstöße in Graphit, Physica status solidi (B), vol.2, pp.60-72, 1962.
DOI : 10.1002/pssb.19620020106

D. Bastien, Twenty-nine years of French experience in operating gas-cooled reactors, IAEA, 1989.

D. Bastien, RéacteurRéacteurà uranium naturel-graphite-gaz, vol.3180, pp.1-7, 1993.

D. Bastien, French activities on gas cooled reactors, IAEA, 1996.

S. F. Boys and F. Bernardi, The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors, Mol. Phys, vol.19, pp.553-566, 1970.

I. Brésard and J. Bonal, Caractérisation mécanique, chimique et radiologique du graphite des réacteurs de lafilì ere UNGG, 2000.

B. Barré and B. Bonin, Gas-cooled nuclear reactors, CEA, 2006.

B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan et al., CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, Journal of Computational Chemistry, vol.4, pp.187-217, 1983.

J. Bonal, I. Brésard, and S. Parraud, Caractérisation du graphite des réacteurs de lafilì ere UNGG, 2002.

A. Blanchard and P. Campion, Gas chemistry in nuclear reactors and large industrial plant, pp.90-97, 1980.

L. Van-brutzel and J. P. Crocombette, Classical molecular dynamics study of primary damage created by collision cascade in a ZrC matrix, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.255, pp.141-145, 2007.

. X. Bcc-+-98]-l, N. G. Benedict, M. L. Chopra, A. Cohen, S. G. Zettl et al., Microscopic Determination of the Interlayer Binding Energy in Graphite, Chem. Phys. Lett, vol.286, pp.490-496, 1998.

A. D. Becke, Density-Functional Thermochemistry. III. The Role of Exact Exchange, J. Chem. Phys, vol.98, pp.5648-5652, 1993.

. To, J. Bu?ko, S. Hafner, J. G. Lebègue, and . Angyán, Improved Description of the Structure of Molecular and Layered Crystals: Ab Initio DFT Calculations with van der Waals Corrections, J. Phys. Chem. A, vol.114, pp.11814-11824, 2010.

]. R. Bjw-+-09, B. Balog, J. Jørgensen, E. Wells, P. Laegsgaard et al., Atomic Hydrogen Adsorbate Structures on Graphene, J. Am. Chem. Soc, vol.131, pp.8744-8745, 2009.

F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, Structural Defects in Graphene, ACS Nano, vol.5, pp.26-41, 2011.

F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, Structural Defects in Graphene, ACS Nano, vol.5, pp.26-41, 2011.

D. W. Boukhvalov, M. I. Katsnelson, and A. I. Lichtenstein, Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations, Phys. Rev. B, vol.77, p.35427, 2008.

R. Blanchard, Impuretés dans le caloporteur CO 2 des centrales de Saint-Laurent, campagnes de mesures 1972-1973 et 1983-1984. Internal technical document, 1984.

A. Blondel, Effets de la température et de l'irradiation sur le comportement du chlore 37 dans le graphite nucléaire : Conséquences sur la mobilité du chlore 36 dans les graphites irradiés, 2013.

. Ph, A. Baranek, R. Lichanot, R. Orlando, and . Dovesi, Structural and Vibrational Properties of Solid Mg(OH) 2 and Ca(OH) 2-Performances of Various Hamiltonians, Chem. Phys. Lett, vol.340, pp.362-369, 2001.

Y. Baskin and L. Meyer, Lattice Constants of Graphite at Low Temperatures, Phys. Rev, vol.100, pp.544-544, 1955.

A. Blondel, N. Moncoffre, N. Toulhoat, N. Bérerd, G. Silbermann et al., New advances on the thermal behaviour of chlorine in nuclear graphite, Carbon, vol.73, pp.413-420, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00980432

M. Bonfanti, R. Martinazzo, G. F. Tantardini, and A. Ponti, Physisorption and Diffusion of Hydrogen Atoms on Graphite from Correlated Calculations on the H-Coronene Model System, The Journal of Physical Chemistry C, vol.111, pp.5825-5829, 2007.

C. Björkas and K. Nordlund, Comparative study of cascade damage in Fe simulated with recent potentials, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.259, pp.853-860, 2007.

F. J. Brown, J. D. Palmer, and P. Wood, Derivation of a radionuclide inventory for irradiated graphite-chlorine-36 inventory determination, pp.1-10, 1999.

D. Bachellerie, M. Sizun, F. Aguillon, D. Teillet-billy, N. Rougeau et al., Unrestricted study of the Eley-Rideal formation of H 2 on graphene using a new multidimensional graphene-H-H potential: role of the substrate, Phys. Chem. Chem. Phys, vol.11, pp.2715-2729, 2009.

D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni et al., A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, Journal of Physics: Condensed Matter, vol.14, issue.4, p.783, 2002.

A. Chartier and L. Van-brutzel,

A. Chartier, L. Van-brutzel, B. Pannier, and P. Baranek, Atomic scale mechanisms for the amorphisation of irradiated graphite. Carbon, vol.91, pp.395-407, 2015.

]. W. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz et al., A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules, Journal of the American Chemical Society, vol.117, pp.5179-5197, 1995.

L. Chen, A. C. Cooper, G. P. Pez, and H. Cheng, Mechanistic Study on Hydrogen Spillover onto Graphitic Carbon Materials, J. Phys. Chem. C, vol.111, pp.18995-19000, 2007.

J. Cervenka and C. F. Flipse, Structural and electronic properties of grain boundaries in graphite: Planes of periodically distributed point defects, Phys. Rev. B, vol.79, p.195429, 2009.

S. Casolo, O. M. Løvvik, R. Martinazzo, and G. F. Tantardini, Understanding adsorption of hydrogen atoms on graphene, J. Chem. Phys, vol.130, p.54704, 2009.

P. Cornuault, Modérateurs, Graphite. Techniques de l'Ingenieur [Archives] Génie nucléaire, vol.3680, 1981.

C. A. Coulson and M. D. Poole, Calculations of the formation energy of vacancies in graphite crystals, Carbon, vol.2, pp.275-279, 1964.

M. Catti, A. Pavese, R. Dovesi, and V. R. Saunders, Static Lattice and Electron Properties of MgCO 3 (magnesite) Calculated by Ab Initio Periodic Hartree-Fock Methods, Phys. Rev. B, vol.47, pp.9189-9198, 1993.

G. I. Csonka, J. P. Perdew, A. Ruzsinszky, P. H. Philipsen, S. Lebègue et al., Assessing the Performance of Recent Density Functionals for Bulk Solids, Phys. Rev. B, vol.79, p.155107, 2009.

H. J. Christie, M. Robinson, D. L. Roach, D. K. Ross, I. Suarezmartinez et al., Simulating radiation damage cascades in graphite, Carbon, vol.81, pp.105-114, 2015.

F. Costanzo, P. L. Silvestrelli, and F. Ancilotto, Physisorption, Diffusion, and Chemisorption Pathways of H 2 Molecule on Graphene and on (2,2) Carbon Nanotube by First-Principles Calculations, J. Chem. Theor. Comp, vol.8, pp.1288-1294, 2012.

B. Civalleri, C. M. Zicovich-wilson, L. Valenzano, and P. Ugliengo, B3LYP Augmented with an Empirical Dispersion Term (B3LYP-D*) as Applied to Molecular Crystals, CrystEngComm, vol.10, pp.405-410, 2008.

G. E. Davico, V. M. Bierbaum, C. H. Depuy, G. B. Ellison, and R. R. Squires, The C-H Bond Energy of Benzene, J. Am. Chem. Soc, vol.117, pp.2590-2599, 1995.

R. Dovesi, M. Causa, &. , R. Orlando, C. Roetti et al., Ab initio Approach to Molecular Crystals: A Periodic Hartree-Fock Study of Crystalline Urea, J. Chem. Phys, vol.92, pp.7402-7411, 1990.

P. Delhaes, Graphite and Precursors. World of carbon, 2000.

M. D. Ganji, S. M. Hosseini-khah, and Z. Amini-tabar, Theoretical insight into hydrogen adsorption onto graphene: A firstprinciples B3LYP-D3 study, Phys. Chem. Chem. Phys, vol.17, pp.2504-2511, 2015.

P. A. Dirac, Note on Exchange Phenomena in the Thomas Atom, Math. Proc. Cambridge Philos. Soc, vol.26, pp.376-385, 1930.

T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, The Journal of Chemical Physics, vol.90, pp.1007-1023, 1989.

A. Dyer and G. E. Moorse, The radiolysis of simple gas mixtures-I: Rates of production and destruction of methane in mixtures with carbon dioxide as a major constituent, Radiation Physics and Chemistry, vol.20, pp.315-321, 1977.

]. W. Diño, Y. Miura, H. Nakanishi, H. Kasai, T. Sugimoto et al., H 2 dissociative adsorption at the armchair edges of graphite, Solid State Commun, vol.132, pp.713-718, 2004.

W. A. Diño, H. Nakanishi, H. Kasai, T. Sugimoto, and T. Kondo, H 2 Dissociative Adsorption at the Zigzag Edges of Graphite, J. Surf. Sci. Nanotechnol, vol.2, pp.77-80, 2004.

R. Dovesi, R. Orlando, B. Civalleri, C. Roetti, V. R. Saunders et al., CRYSTAL: A Computational Tool for ab initio Study of the Electronic Properties of Crystals, DOC + 05, vol.220, pp.571-573, 2005.

K. Doll, Calculation of the work function with a local basis set, Surface Science, vol.600, pp.321-325, 2006.

, The Structures of Elements, 1974.

D. A. Dixon and K. A. Peterson, Heats of formation of CCl and CCl 2 from ab initio quantum chemistry, The Journal of Chemical Physics, vol.115, pp.6327-6329, 2001.

D. Sudipta and K. P. Swapan, Edge reconstructions induce magnetic and metallic behavior in zigzag graphene nanoribbons, Carbon, vol.48, pp.4409-4413, 2010.

I. De, P. R. Moreira, F. Illas, and R. L. Martin, Effect of Fock exchange on the Electronic Structure and Magnetic Coupling in NiO, Phys. Rev. B, vol.65, p.155102, 2002.

E. J. Duplock, M. Scheffler, and P. J. Lindan, Hallmark of Perfect Graphene, Phys. Rev. Lett, vol.92, p.225502, 2004.

R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovichwilson et al., , 2009.

. Edf, Corrosion radiolytique du graphite-Interprétation des résultats d'analyses du gaz caloporteur dans les centrales EDF 1 et EDF 2, EDF/Service d'Etudes Générales Nucléaires, 1967.

. Endf, Evaluated nuclear data file-IAEA nuclear data services, pp.2017-2027

R. M. Ferullo, N. F. Domancich, and N. J. Castellani, On the performance of van der Waals corrected-density functional theory in describing the atomic hydrogen physisorption on graphite, Chem. Phys. Lett, vol.500, pp.283-286, 2010.

Y. Ferro, F. Marinelli, and A. Allouche, Density functional theory investigation of the diffusion and recombination of H on a graphite surface, Chem. Phys. Lett, vol.368, pp.609-615, 2003.

R. L. Faircloth, K. S. Norwood, and H. A. Prior, Coolant chemistry of the advanced carbon dioxide cooled reactor, IAEA, 1980.

F. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon et al., Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements, The Journal of Chemical Physics, vol.77, pp.3654-3665, 1982.

D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 1996.

S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 elements H-Pu, J. Chem. Phys, vol.132, p.154104, 2010.

M. Gauthron, Introduction au génie nucléaire: Neutronique et matériaux. Collection Enseignement-INSTN CEA. Institut national des sciences et techniques nucléaires, 1986.

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., QUANTUM ESPRESSO: A Modular and Open-Source Software Project for Quantum Simulations of Materials, GBB + 09, vol.21, p.395502, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00717147

L. Gan, H. Du, B. Li, and F. Kang, Surface-reconstructed graphite nanofibers as a support for cathode catalysts of fuel cells, Chem. Commun, vol.47, pp.3900-3902, 2011.

M. L. Guillou, N. Moncoffre, N. Toulhoat, Y. Pipon, M. R. Ammar et al., Thermal migration of deuterium implanted in graphite: Influence of free surface proximity and structure, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.371, pp.307-311, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-02094005

Y. Gotoh, Interlayer structure changes of graphite after hydrogen ion irradiation, J. Nucl. Mater, vol.248, pp.46-51, 1997.

R. Golesorkhtabar, P. Pavone, J. Spitaler, P. Puschnig, and C. Draxl, ElaStic: A tool for Calculating Second-Order Elastic Constants from First Principles, GPS + 13, vol.184, pp.1861-1873, 2013.

S. Grimme, Accurate Description of van der Waals Complexes by Density Functional Theory Including Empirical Corrections, J. Comput. Chem, vol.25, pp.1463-1473, 2004.

S. Grimme, Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction, J. Comput. Chem, vol.27, pp.1787-1799, 2006.

S. Grimme, DFT-D3-a Dispersion Correction for Density Functionals, Hartree-Fock and Semi-Empirical Quantum Chemical Meth, 2015.

M. L. Guillou, N. Toulhoat, Y. Pipon, N. Moncoffre, N. Bérerd et al., Thermal behavior of deuterium implanted into nuclear graphite studied by NRA. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.332, pp.90-94, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-00980435

]. M. Gtp-+-15, N. Guillou, Y. Toulhoat, N. Pipon, H. Moncoffre et al., Deuterium migration in nuclear graphite: Consequences for the behavior of tritium in CO 2-cooled reactors and for the decontamination of irradiated graphite waste, Journal of Nuclear Materials, vol.461, pp.72-77, 2015.

D. R. Hamann, Semiconductor Charge Densities with Hard-Core and Soft-Core Pseudopotentials, Phys. Rev. Lett, vol.42, pp.662-665, 1979.

W. Humphrey, A. Dalke, and K. Schulten, VMD-Visual Molecular Dynamics, Journal of Molecular Graphics, vol.14, pp.33-38, 1996.

G. Hennig, The Properties of the Interstitial Compounds of Graphite. III. The Electrical Properties of the Halogen Compounds of Graphite, The Journal of Chemical Physics, vol.20, pp.1443-1447, 1952.

]. A. Halkier, T. Helgaker, P. Jørgensen, W. Klopper, H. Koch et al., Basis-set convergence in correlated calculations on Ne, N 2 , and H 2 O, Chemical Physics Letters, vol.286, pp.243-252, 1998.

J. R. Hahn and H. Kang, Vacancy and interstitial defects at graphite surfaces: Scanning tunneling microscopic study of the structure, electronic property, and yield for ion-induced defect creation, Phys. Rev. B, vol.60, pp.6007-6017, 1999.

J. R. Hahn, H. Kang, S. Song, and I. C. Jeon, Observation of charge enhancement induced by graphite atomic vacancy: A comparative STM and AFM study, Phys. Rev. B, vol.53, pp.1725-1728, 1996.

N. A. Holzwarth, S. G. Louie, and S. Rabii, X-ray Form Factors and the Electronic Structure of Graphite, Phys. Rev. B, vol.26, pp.5382-5390, 1982.

P. C. Hariharan and J. A. Pople, Theoretica chimica acta, vol.28, pp.213-222, 1973.

C. P. Herrero and R. Ramírez, Diffusion of hydrogen in graphite: a molecular dynamics simulation, Journal of Physics D: Applied Physics, vol.43, p.255402, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00569632

]. L. Hornekaer, E. Rauls, W. Xu, ?. Z. Sljivan?anin, R. Otero et al., Clustering of Chemisorbed H(D) Atoms on the Graphite (0001) Surface due to Preferential Sticking, Phys. Rev. Lett, vol.97, p.186102, 2006.

M. R. Hestenes and E. Stiefel, Methods of Conjugate Gradients for Solving Linear Systems, J. Res. Natl. Bur. Stand, vol.49, pp.409-436, 1952.

M. I. Heggie, I. Suarez-martinez, C. Davidson, G. Haffenden, ;. Hornekaer et al., Metastable Structures and Recombination Pathways for Atomic Hydrogen on the Graphite (0001) Surface, Phys. Rev. Lett, vol.413, p.156104, 2006.

Z. He, X. Yang, H. Xia, T. Z. Regier, D. K. Chevrier et al., Role of defect electronic states in the ferromagnetism in graphite, Phys. Rev. B, vol.85, p.144406, 2012.

. Iaea, Radiological charaterization of shut down nuclear reactors for decommissioning purposes, IAEA, 1998.

. Iaea, Irradiation Damage in Graphite Due to Fast Neutrons in Fission and Fusion Systems. Iaea-tecdoc-1154, IAEA, 2000.

, Treatment and Conditioning of Radioactive Graphite from Decommissioning of Nuclear Reactors. Iaea-tecdoc1521, IAEA, 2006.

G. D. Purvis-iii and R. J. Bartlett, A full coupled-cluster singles and doubles model: The inclusion of disconnected triples, The Journal of Chemical Physics, vol.76, pp.1910-1918, 1982.

J. Cervenka and C. F. Flipse, Structural and electronic properties of grain boundaries in graphite: Planes of periodically distributed point defects, Phys. Rev. B, vol.79, p.195429, 2009.

K. Izui and F. E. Fujita, Observation of Lattice Defects in Fission Fragment-irradiated Graphite, J. Phys. Soc. Jpn, vol.16, pp.1032-1033, 1961.

V. V. Ivanovskaya, A. Zobelli, D. Teillet-billy, N. Rougeau, V. Sidis et al., Hydrogen adsorption on graphene: A firstprinciples study, Eur. Phys. J. B, vol.76, pp.481-486, 2010.

V. I. Niranjan, J. A. Zimmerman, and B. M. Wong, Breaking Badly: DFT-D2 Gives Sizeable Errors for Tensile Strengths in PalladiumHydride Solids, Journal of Chemical Theory and Computation, vol.11, pp.5426-5435, 2015.

F. Jensen, Introduction to Computational Chemistry, 2006.

R. Juza, P. Jönck, and A. Schmeckenbecher, Bildung und Eigenschaften des Chlorgraphits. Zeitschrift für anorganische und allgemeine Chemie, vol.292, pp.34-45, 1957.

L. Jeloaica and V. Sidis, DFT investigation of the adsorption of atomic hydrogen on a cluster-model graphite surface, Chem. Phys. Lett, vol.300, pp.157-162, 1999.

R. A. Kendall, T. H. Dunning, and R. J. Harrison, Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions, The Journal of Chemical Physics, vol.96, pp.6796-6806, 1992.

B. T. Kelly-;-s, A. E. Kanashenko, V. N. Gorodetsky, A. V. Chernikov, A. P. Markin et al., Hydrogen adsorption on and solubility in graphites, Physics of Graphite. Applied Science, pp.1207-1212, 1981.

Y. Kim, J. Ihm, E. Yoon, and G. Lee, Dynamics and stability of divacancy defects in graphene, Phys. Rev. B, vol.84, p.75445, 2011.

J. Kerwin and B. Jackson, The sticking of H and D atoms on a graphite (0001) surface: The effects of coverage and energy dissipation, J. Chem. Phys, vol.128, p.84702, 2008.

A. V. Krasheninnikov, P. O. Lehtinen, A. S. Foster, and R. M. Nieminen, Bending the rules: Contrasting vacancy energetics and migration in graphite and carbon nanotubes, Chemical Physics Letters, vol.418, pp.132-136, 2006.

P. Koskinen, S. Malola, and H. Häkkinen, Self-Passivating Edge Reconstructions of Graphene, Phys. Rev. Lett, vol.101, p.115502, 2008.

A. V. Krasheninnikov and K. Nordlund, Ion and Electron IrradiationInduced Effects in Nanostructured Materials, J. Appl. Phys, vol.107, p.71301, 2010.

J. Kunstmann, C. Ozdo?-gan, A. Quandt, and H. Fehske, Stability of edge states and edge magnetism in graphene nanoribbons, Phys. Rev. B, vol.83, p.45414, 2011.

E. Kaxiras and K. C. Pandey, Energetics of defects and diffusion mechanisms in graphite, Phys. Rev. Lett, vol.61, pp.2693-2696, 1988.

S. Kristyán and P. Pulay, Can (semi)local Density Functional Theory Account for the London Dispersion Forces?, Chem. Phys. Lett, vol.229, pp.175-180, 1994.

F. Labat, . Ph, C. Baranek, C. Domain, C. Minot et al., Density Functional Theory Analysis of the Structural and Electronic Properties of Tio 2 Rutile and Anatase Polytypes: Performances of Different Exchange-Correlation Functionals, J. Chem. Phys, vol.126, p.154703, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01828320

C. Lechner, . Ph, H. Baranek, and . Vach, Adsorption of atomic hydrogen on defect sites of graphite: Influence of surface reconstruction and irradiation damage, Carbon, vol.127, pp.437-448, 2018.

J. H. Los and A. Fasolino, Intrinsic long-range bond-order potential for carbon: Performance in Monte Carlo simulations of graphitization, Phys. Rev. B, vol.68, p.24107, 2003.

Y. Lu and Y. P. Feng, Adsorptions of hydrogen on graphene and other forms of carbon structures: First-principles calculations, Nanoscale, vol.3, pp.2444-2453, 2011.

]. P. Lehtinen, A. S. Foster, A. V. Ma, R. M. Krasheninnikov, and . Nieminen, Irradiation-Induced Magnetism in Graphite: A Density Functional Study, Phys. Rev. Lett, vol.93, p.187202, 2004.

M. L. Guillou, Migration du deutérium dans le graphite nucléaire : conséquences sur le comportement du tritium en réacteur UNGG et sur la décontamination des graphites irradiés, 2014.

D. R. Lide, Handbook of Chemistry and Physics, vol.71, 1990.

A. Lichanot, R. Orlando, G. Mallia, M. Mérawa, and R. Dovesi, VOH center in magnesium oxide: an ab initio supercell study, Chem. Phys. Lett, vol.318, pp.240-246, 2000.

]. C. Lechner, B. Pannier, P. Baranek, N. C. Forero-martinez, and H. Vach, First-Principles Study of the Structural, Electronic, Dynamic, and Mechanical Properties of HOPG and Diamond: Influence of Exchange-Correlation Functionals and Dispersion Interactions, J. Phys. Chem. C, vol.120, pp.5083-5100, 2016.

L. Li, S. Reich, and J. Robertson, Defect energies of graphite: Density-functional calculations, Phys. Rev. B, vol.72, p.184109, 2005.

Y. R. Luo, Handbook of Bond Dissociation Energies in Organic Compounds, 2002.

Y. R. Luo, Comprehensive Handbook of Chemical Bond Energies, 2007.

G. Lee, C. Z. Wang, E. Yoon, N. Hwang, D. Kim et al., Diffusion, Coalescence, and Reconstruction of Vacancy Defects in Graphene Layers, Phys. Rev. Lett, vol.95, p.205501, 2005.

Y. Suyuan, L. Xiaowei, and R. Jean-charles, The Thermal Conductivity of Fast Neutron Irradiated Graphite, Nuclear Engineering and Design, vol.227, pp.273-280, 2004.

C. Lee, W. Yang, and R. G. Parr, Development of the Colle-Salvetti Correlation-Energy Formula Into a Functional of the Electron Density, Phys. Rev. B, vol.37, pp.785-789, 1988.

X. Y. Liu, J. M. Zhang, and K. W. Xu, Chlorine molecule adsorbed on graphene and doped graphene: A first-principle study, Physica B: Condensed Matter, vol.436, pp.54-58, 2014.

L. Mcdermott, Characterisation and Chemical Treatment of Irradiated UK Graphite Waste, 2011.

M. Perrin and B. Pnocet, Livre blanc du tritium, 2016.

. E. Mfb-+-15]-b, H. M. Mironov, A. P. Freeman, F. S. Brown, A. J. Hage et al., Brydson. Electron irradiation of nuclear graphite studied by transmission electron microscopy and electron energy loss spectroscopy, Carbon, vol.83, pp.106-117, 2015.

, Grain boundary generation in Mg, pp.2017-2028

B. J. Marsden and G. N. Hall, 11-Graphite in Gas-Cooled Reactors, Comprehensive Nuclear Materials, vol.4, pp.325-390, 2012.

H. J. Monkhorst and J. D. Pack, Special Points for Brillouin-Zone Integrations, Phys. Rev. B, vol.13, pp.5188-5192, 1976.

G. T. Miller and S. Spoolman, Living in the Environment: Principles, Connections, and Solutions. Cengage Learning, 2008.

P. C. Minshall, I. A. Sadler, and A. J. Wickham, Graphite Moderator Lifecyle Behaviour, chapter Radiolytic Graphite Oxidation Revisited. IAEA, 1995.

A. Montoya, T. N. Truong, and A. F. Sarofim, Spin Contamination in Hartree-Fock and Density Functional Theory Wavefunctions in Modeling of Adsorption on Graphite, The Journal of Physical Chemistry A, vol.104, pp.6108-6110, 2000.

G. B. Neighbour, Modelling of dimensional changes in irradiated nuclear graphites, J. Phys. D: Appl. Phys, vol.33, pp.2966-2972, 2000.

A. V. Nero, A Guidebook to Nuclear Reactors, 1979.

R. J. Nemanich, G. Lucovsky, and S. A. Solin, Infrared active optical vibrations of graphite, Solid State Commun, vol.23, pp.117-120, 1977.
DOI : 10.1016/0038-1098(77)90663-9

K. Niwase, K. Nakamura, T. Shikama, and T. Tanabe, On the amorphization of neutron-irradiated graphite, Journal of Nuclear Materials, vol.170, pp.106-108, 1990.

R. J. Nemanich and S. A. Solin, First-and second-order Raman scattering from finite-size crystals of graphite, Phys. Rev. B, vol.20, pp.392-401, 1979.
DOI : 10.1103/physrevb.20.392

R. R. Nair, M. Sepioni, I. Tsai, O. Lehtinen, J. Keinonen et al., SpinHalf Paramagnetism in Graphene induced by Point Defects, Nature Physics, vol.8, pp.199-202, 2012.
DOI : 10.1038/nphys2183

URL : https://www.nature.com/articles/nphys2183.pdf

D. J. Norfolk, R. F. Skinner, and W. J. Williams, Hydrocarbon chemistry in irradiated CO 2 /CO/CH 4 /H 2 O/H 2 mixtures-i: A survey of the initial reactions, Radiation Physics and Chemistry, vol.21, pp.307-319, 1977.

R. Nicklow, N. Wakabayashi, and H. G. Smith, Lattice Dynamics of Pyrolytic Graphite, Phys. Rev. B, vol.5, pp.4951-4962, 1972.
DOI : 10.1103/physrevb.5.4951

T. C. O&apos;connor, J. Andzelm, and M. O. Robbins, AIREBO-M: A reactive model for hydrocarbons at extreme pressures, The Journal of Chemical Physics, vol.142, p.24903, 2015.

N. Ota, N. Gorjizadeh, and Y. Kawazoe, Multiple Spin State Analysis in Radical Carbon Edge and Oxygen Edge Graphene-like Molecules, Trans. Magn. Soc. Jpn, vol.35, pp.414-419, 2011.

P. J. Ouseph, Observation of Prismatic Dislocation Loops in Graphite by Scanning Tunneling Microscope, Phys. Stat. Solidi A, vol.169, pp.25-32, 1998.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.
DOI : 10.1103/physrevlett.77.3865

]. L. Pcp-+-15, J. Petit, L. Comte, S. Petit, J. Catherin et al., Référentiel graphite-Bilan des connaissances, Technical report, 2015.

L. Petit, Lafilì ere UNGG (Uranium Naturel Graphite Gaz) & Démantèlement des UNGG et gestion des déchets graphites, Présentations EDF/R&D, 2009.

L. Petit, Le chlore 36 dans le graphite des centrales UNGG-´ etat des connaissances-Projet P10W5 lot CLT, 2011.

G. M. Psofogiannakis and G. E. Froudakis, DFT Study of the Hydrogen Spillover Mechanism on Pt-Doped Graphite, The Journal of Physical Chemistry C, vol.113, pp.14908-14915, 2009.
DOI : 10.1021/jp902987s

J. M. Pérez-jordá and A. D. Becke, A Density-Functional Study of van der Waals forces: Rare Gas Diatomics, Chem. Phys. Lett, vol.233, pp.134-137, 1995.

S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of Computational Physics, vol.117, pp.1-19, 1995.

A. Petit, C. Phalippo, and M. Brié, chapter Radiolytic Corrosion of Graphite Surveillance and Lessons Drawn From the Operation of the Bugey-1 Reactor, Proceedings of a Specialists Meeting, pp.9-12, 1991.

J. P. Perdew, A. Ruzsinszky, G. I. Csonka, O. A. Vydrov, G. E. Scuseria et al., Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces, Phys. Rev. Lett, vol.100, p.136406, 2008.

S. Patchkovskii, J. S. Tse, S. N. Yurchenko, L. Zhechkov, T. Heine et al., Graphene nanostructures as tunable storage media for molecular hydrogen, Proceedings of the National Academy of Sciences of the United States of America, vol.102, pp.10439-10444, 2005.

R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, 1989.

J. P. Perdew and A. Zunger, Self-Interaction Correction to DensityFunctional Approximations for Many-Electron Systems, Phys. Rev. B, vol.23, pp.5048-5079, 1981.

]. A. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, and W. M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, Journal of the American Chemical Society, vol.114, pp.10024-10035, 1992.

A. Ramos, I. Cameán, and A. B. García, Graphitization thermal treatment of carbon nanofibers, Carbon, vol.59, pp.2-32, 2013.

T. Roman, W. A. Diño, H. Nakanishi, H. Kasai, T. Sugimoto et al., Hydrogen pairing on graphene, Carbon, vol.45, pp.218-220, 2007.

]. P. Ruffieux, O. Gröning, M. Bielmann, P. Mauron, L. Schlapbach et al., Hydrogen adsorption on sp 2-bonded carbon: Influence of the local curvature, Phys. Rev. B, vol.66, p.245416, 2002.

M. Rubes, J. Kysilka, P. Nachtigall, and O. Bludsky, DFT/CC investigation of physical adsorption on a graphite (0001) surface, Phys. Chem. Chem. Phys, vol.12, pp.6438-6444, 2010.

M. Ropo, K. Kokko, and L. Vitos, Assessing the Perdew-BurkeErnzerhof Exchange-Correlation Density Functional Revised for Metallic Bulk and Surface Systems, Phys. Rev. B, vol.77, p.195445, 2008.

J. N. Rouzaud and A. Oberlin, Structure, Microtexture, and Optical Properties of Anthracene and Saccharose-based Carbons, Carbon, vol.27, pp.517-529, 1989.

V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, and L. A. Curtiss, 6-31G* basis set for third-row atoms, Journal of Computational Chemistry, vol.22, issue.9, pp.976-984, 2001.

S. Reich and C. Thomsen, Raman spectroscopy of graphite, vol.362, pp.2271-2288, 2004.

K. Raghavachari, G. W. Trucks, J. A. Pople, and M. Head-gordon, A fifth-order perturbation comparison of electron correlation theories, Chemical Physics Letters, vol.157, pp.479-483, 1989.

J. P. Redmond and P. L. Walker, Hydrogen sorption on graphite at elevated temperatures, J. Chem. Phys, vol.64, issue.9, pp.1093-1099, 1960.

P. J. Steinbach and B. R. Brooks, New spherical-cutoff methods for long-range forces in macromolecular simulation, Journal of Computational Chemistry, vol.15, pp.667-683, 1994.

. Gu, . Sophia, . Ph, C. Baranek, M. Sarrazin et al., First-Principles Study of the Mechanisms of the Pressure-Induced Dielectric Anomalies in Ferroelectric Perovskites, Phase Transitions, vol.86, pp.1069-1084, 2013.

H. Sahin and S. Ciraci, Chlorine Adsorption on Graphene: Chlorographene, The Journal of Physical Chemistry C, vol.116, issue.45, pp.24075-24083, 2012.

]. P. Simonis, C. Goffaux, P. A. Thiry, L. P. Biro, P. Lambin et al., STM study of a grain boundary in graphite, Surface Sci, vol.511, pp.319-322, 2002.

G. Silbermann, Temperature and irradiation effects on the behaviour of 14 C and its precursor 14 N in nuclear graphite. Study of a decontamination process using steam reforming, 2013.
URL : https://hal.archives-ouvertes.fr/tel-00954466

X. Sha and B. Jackson, First-principles study of the structural and energetic properties of H atoms on a graphite (0001) surface, Surface Science, vol.496, pp.318-330, 2002.

X. Sha and B. Jackson, The Location of Adsorbed Hydrogen in Graphite Nanostructures, J. Am. Chem. Soc, vol.126, pp.13095-13099, 2004.

I. Suarez-martinez, G. Savini, G. Haffenden, J. Campanera, and M. I. Heggie, Dislocations of Burgers vector c /2 in graphite, Phys. Stat. Solidi C, vol.4, pp.2958-2962, 2007.

A. P. Scott and L. Radom, Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Møller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors, J. Phys. Chem, vol.100, issue.41, pp.16502-16513, 1996.

E. Sljivan?anin, L. Rauls, W. Hornekaer, F. Xu, B. Besenbacher et al., Extended atomic hydrogen dimer configurations on the graphite (0001) surface, J. Chem. Phys, vol.131, p.84706, 2009.

X. Song, Y. Sun, M. Dong, C. Li, J. Wang et al., Effects of Cl adatom on Na-Decorated graphene, Journal of Physics D: Applied Physics, vol.48, p.225304, 2015.

S. J. Stuart, A. B. Tutein, and J. A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions, The Journal of Chemical Physics, vol.112, pp.6472-6486, 2000.

]. J. Skelton, D. Tiana, S. C. Parker, A. Togo, I. Tanaka et al., Influence of the Exchange-Correlation Functional on the Quasi-Harmonic Lattice Dynamics of II-VI Semiconductors, J. Chem. Phys, vol.143, p.64710, 2015.

A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Modelling and Simulation in, Materials Science and Engineering, vol.18, p.15012, 2010.

R. H. Telling, C. P. Ewels, A. A. El-barbary, and M. I. Heggie, Wigner defects bridge the graphite gap, Nat. Mater, vol.2, pp.333-337, 2003.

J. Tersoff, New empirical approach for the structure and energy of covalent systems, Phys. Rev. B, vol.37, pp.6991-7000, 1988.

R. Taylor, K. E. Gilchrist, and B. T. Kelly, The Thermal Conductivity of Fast Neutron Irradiated Graphite, J. Phys. Chem. Solids, vol.30, pp.2251-2267, 1969.

R. H. Telling and M. I. Heggie, Radiation defects in graphite. Philosophical Magazine, vol.87, pp.4797-4846, 2007.

R. C. Tatar, N. A. Holzwarth, and S. Rabii, Energy Band Structure of Three Dimensional Graphite, Synth. Met, vol.3, pp.131-138, 1981.

F. Tuinstra and J. L. Koenig, Raman Spectrum of Graphite, J. Chem. Phys, vol.53, pp.1126-1130, 1970.

]. T. Tlh-+-14, C. D. Trevethan, M. I. Latham, P. R. Heggie, M. J. Briddon et al., Vacancy diffusion and coalescence in graphene directed by defect strain fields, Nanoscale, vol.6, pp.2978-2986, 2014.

G. Teobaldi, H. Ohnishi, K. Tanimura, and A. L. Shluger, The effect of van der Waals interactions on the properties of intrinsic defects in graphite, Carbon, vol.48, pp.4145-4161, 2010.

V. Tozzini and V. Pellegrini, Reversible Hydrogen Storage by Controlled Buckling of Graphene Layers, The Journal of Physical Chemistry C, vol.115, pp.25523-25528, 2011.

P. Ugliengo, G. Borzani, and D. Viterbo, MOLDRAW-Program for the Graphical Manipulation of Molecules on Personal Computers, J. Appl. Crystallogr, vol.21, p.75, 1988.

G. Ugliengo, P. Borzani, and D. Viterbo, New Developments in the MOLDRAW Graphics Program, Z. Kristallogr, vol.185, p.712, 1988.

P. Ugliengo, D. Viterbo, and G. Chiari, MOLDRAW: Molecular Graphics on a Personal Computer, Z. Kristallogr, vol.207, pp.9-24, 1993.

P. Ugliengo, C. M. Zicovich-wilson, S. Tosoni, and B. Civalleri, Role of Dispersive Interactions in Layered Materials: A Periodic B3LYP and B3LYP-D* Study of Mg(OH) 2 , Ca(OH) 2 and Kaolinite, J. Mater. Chem, vol.19, pp.2564-2572, 2009.

E. Valembois and . La-centrale-nucléaire-du-bugey, Une production d'´ electricité au coeur de la région Rhône-Alpes, 2017.

C. E. Vaudey, Effets de la température et de la corrosion radiolytique sur le comportement du chlore dans le graphite nucléaire : conséquences pour le stockage des graphites irradiés des réacteurs UNGG, 2010.

M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma et al., NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations, Computer Physics Communications, vol.181, pp.1477-1489, 2010.

L. Vende, Nuclear graphite waste's behaviour under disposal conditions : Study of the release and repartition of organic and inorganic forms of carbon 14 and tritium in alkaline media, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00770671

C. E. Vaudey, C. Gaillard, N. Toulhoat, N. Moncoffre, M. L. Schlegel et al., Chlorine speciation in nuclear graphite studied by X-ray Absorption Near Edge Structure, Journal of Nuclear Materials, vol.418, pp.16-21, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00637268

]. C. Vaudey, N. Toulhoat, N. Moncoffre, N. Bérerd, L. Raimbault et al., Thermal behaviour of chlorine in nuclear graphite at a microscopic scale, Journal of Nuclear Materials, vol.395, pp.62-68, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00819182

C. E. Vaudey, N. Toulhoat, N. Moncoffre, and N. Bérerd, Chlorine speciation in nuclear graphite: consequences on temperature release and on leaching, Radiochimica Acta, vol.98, pp.667-673, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00663448

F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys, vol.7, pp.3297-3305, 2005.

A. J. Wickham, J. V. Best, and C. J. Wood, Recent advances in the theories of carbon dioxide radiolysis and radiolytic graphite corrosion, Radiation Physics and Chemistry, vol.10, pp.107-117, 1977.

D. E. Woon and T. H. Dunning, Gaussian basis sets for use in correlated molecular calculations. III. the atoms aluminum through argon, The Journal of Chemical Physics, vol.98, pp.1358-1371, 1993.

J. D. Watts, J. Gauss, and R. J. Bartlett, Coupled-cluster methods with noniterative triple excitations for restricted open-shell HartreeFock and other general single determinant reference functions. Energies and analytical gradients, The Journal of Chemical Physics, vol.98, pp.8718-8733, 1993.

T. O. Wehling, M. I. Katsnelson, and A. I. Lichtenstein, Impurities on graphene: Midgap states and migration barriers, Phys. Rev. B, vol.80, p.85428, 2009.

C. J. Wood, Application of radiation chemistry research to the operation of nuclear reactors, Annals of Nuclear Energy, vol.9, pp.195-208, 1982.

T. Wassmann, A. P. Seitsonen, A. M. Saitta, M. Lazzeri, and F. Mauri, Structure, Stability, Edge States, and Aromaticity of Graphene Ribbons, Phys. Rev. Lett, vol.101, p.96402, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00329638

Y. J. Xu, Y. F. Zhang, and J. Q. Li, The interaction of X 2 (X = F, Cl, and Br) with active sites of graphite, Chemical Physics Letters, vol.418, issue.4-6, pp.413-417, 2006.

M. Yvars, Caractéristiques physico-chimiques des dépôts carbonés obtenus par radiolyse de l'oxyde de carbone-Oxydation des dépôts, 1973.

]. X. Yang, H. Xia, X. Qin, W. Li, Y. Dai et al., Correlation between the vacancy defects and ferromagnetism in graphite, Carbon, vol.47, pp.1399-1406, 2009.

F. H. Yang and R. T. Yang, Ab initio molecular orbital study of adsorption of atomic hydrogen on graphite: Insight into hydrogen storage in carbon nanotubes, Carbon, vol.40, pp.437-444, 2002.

M. Yang, L. Zhou, J. Wang, Z. Liu, and Z. Liu, Evolutionary Chlorination of Graphene: From Charge-Transfer Complex to Covalent Bonding and Nonbonding, The Journal of Physical Chemistry C, vol.116, pp.844-850, 2012.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Matter, 1985.

T. Zecho, A. Güttler, X. Sha, B. Jackson, and J. Küppers, Adsorption of hydrogen and deuterium atoms on the (0001) graphite surface, J. Chem. Phys, vol.117, pp.8486-8492, 2002.

Y. Zhao and D. G. Truhlar, Density Functionals with Broad Applicability in Chemistry, Accounts of Chemical Research, vol.41, pp.157-167, 2008.

Y. Zhao and D. G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theoretical Chemistry Accounts, vol.120, pp.215-241, 2008.

R. Zacharia, H. Ulbricht, and T. Hertel, Interlayer Cohesive Energy of Graphite from Thermal Desorption of Polyaromatic Hydrocarbons, Phys. Rev. B, vol.69, p.155406, 2004.

C. M. Zicovich-wilson, LoptCG (Shell Procedure for Numerical Gradient Optimization). Instituto de Technologia Quimica, 2006.

H. Zhang, M. Zhao, X. Yang, H. Xia, . Xi et al., Diffusion and coalescence of vacancies and interstitials in graphite: A first-principles study, Diamond and Related Materials, vol.19, pp.1240-1244, 2010.

L. Zhou, L. Zhou, M. Yang, D. Wu, L. Liao et al., Free Radical Reactions in Two Dimensions: A Case Study on Photochlorination of Graphene, Small, vol.9, issue.8, p.205, 2013.