N. S. Lewis and G. Crabtree, Basic research needs for solar energy utilization, 2005.

, Energy Information Administration. EIA projects 48% increase in world energy consumption by 2040, 2016.

D. B. Botkin and D. Perez, Powering the future: a scientist's guide to energy independence, 2010.

, Towards a green economy: pathways to sustainable development and poverty eradication, UNEP, 2011.

K. Tomabechi, Energy resources in the future, Energies, vol.3, pp.686-695, 2010.

H. Ibrahim, A. Ilinca, and J. Perron, Energy storage systems-Characteristics and comparisons, Renew. Sust. Energy Rev, vol.12, pp.1221-1250, 2008.

X. Luo, J. Wang, M. Dooner, and J. Clarke, Overview of current development in electrical energy storage technologies and the application potential in power system operation, Appl. Energy, vol.137, pp.511-536, 2015.

C. Liu, F. Li, L. P. Ma, and H. M. Cheng, Advanced materials for energy storage, Adv. Mater, vol.22, pp.28-62, 2010.

M. J. Pitkethly, Nanomaterials the driving force, Nano Today, vol.7, pp.20-29, 2004.

K. Candace, M. T. Mcdowell, and Y. Cui, Silicon nanowire electrodes for lithiumion battery negative electrodes, Nanomaterials for LithiumIon Batteries: Fundamentals and Applications, pp.2-62, 2014.

G. Pancaldi, On hybrid objects and their trajectories: Beddoes, Davy and the Battery, Notes Rec. R. Soc, vol.63, pp.247-262, 2009.

A. Leblanc-soreau, M. Dannot, L. Trichet, J. Rouxel, ;. Li et al., Les intercalaires A x TiS 2 et A x ZrS 2. Structure et liaisons, Cs). Mat. Res. Bull, vol.9, pp.191-198, 1974.

M. S. Whittingham, Electrical energy storage and intercalation chemistry, Science, vol.192, pp.1126-1127, 1976.

M. S. Whittingham and F. R. Gamble, The lithium intercalates of the transition metal dichalcogenides, Mat. Res. Bull, vol.10, pp.363-371, 1975.

M. Armand, L. M. Chabagno, and M. J. Duclot, Second International Meeting on Solid Electrolytes, 1978.

M. Armand and D. W. Murphy, Materials for Advanced Bateries, 1980.

M. Lazzari and B. Scrosati, A cyclable lithium organic electrolyte cell based on two intercalation electrodes, J. Electrochem. Soc, vol.127, pp.773-774, 1980.

H. Wu and Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today, vol.7, pp.414-429, 2012.

D. Linden and T. Reddy, Handbook of batteries, 2002.

J. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, vol.414, pp.359-367, 2001.
DOI : 10.1038/35104644

B. Diouf and R. Pode, Potential of lithium-ion batteries in renewable energy, Renew energ, vol.76, pp.375-380, 2015.

B. Dunn, H. Kamath, and J. M. Tarascon, Electrical energy storage for the grid: a battery of choices, Science, vol.334, pp.928-935, 2011.

B. Xu, D. Qian, Z. Wang, and S. M. Ying, Recent progress in cathode materials research for advanced lithium ion batteries, Mater. Sci. Eng., R, vol.73, pp.51-65, 2012.

K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, LixCoO 2 (0< x <-1): A new cathode material for batteries of high energy density, Mat. Res. Bull, vol.15, pp.783-789, 1980.

N. Nitta, F. Wu, J. T. Lee, and G. Yushin, Li-ion battery materials: present and future, Mater. Today, vol.18, pp.252-264, 2015.
DOI : 10.1016/j.mattod.2014.10.040

URL : https://doi.org/10.1016/j.mattod.2014.10.040

T. Ohzuku and A. Ueda, Solidstate Redox reactions of LiCoO 2 (R3m) for 4 Volt secondary lithium cells, J. Electrochem. Soc, vol.141, pp.2972-2977, 1994.

A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc, vol.144, pp.1188-1194, 1997.
DOI : 10.1149/1.1837571

URL : http://jes.ecsdl.org/content/144/4/1188.full.pdf

J. Morales, C. Pérez-vicente, and J. L. Tirado, Cation distribution and chemical deintercalation of Li 1?x Ni 1+x O 2, Mat. Res. Bull, vol.25, pp.623-630, 1990.

M. M. Thackeray, W. David, P. G. Bruce, and J. B. Goodenough, Lithium insertion into manganese spinels, Mat. Res. Bull, vol.18, pp.461-472, 1983.

J. Cho and M. M. Thackeray, Structural changes of LiMn2O4 Spinel electrodes during electrochemical cycling, J. Electrochem. Soc, vol.146, pp.3577-3581, 1999.

Y. Shin and A. Manthiram, Factors influencing the capacity fade of spinel lithium manganese oxides, J. Electrochem. Soc, vol.151, pp.204-208, 2004.

Y. Sun, K. Hong, and J. Prakash, The effect of ZnO coating on electrochemical cycling behavior of spinel LiMn 2 O 4 cathode materials at elevated temperature

, J. Electrochem. Soc, vol.150, pp.970-972, 2003.

H. Huang, S. Yin, and L. F. Nazar, Approaching theoretical capacity of LiFePO 4 at room temperature at high rates, Electrochem. Solid-State Lett, vol.4, pp.170-172, 2001.

X. Ji, K. T. Lee, and L. F. Nazar, A highly ordered nanostructured carbonsulphur cathode for lithiumsulphur batteries, Nat. Mater, vol.8, pp.500-506, 2009.

W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin et al., Lithium metal anodes for rechargeable batteries, Energy Environ. Sci, vol.7, pp.513-537, 2014.

K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev, vol.104, pp.4303-4417, 2004.

C. S. Wang, G. T. Wu, and W. Z. Li, Lithium insertion in ball-milled graphite, J. Power Sources, vol.76, pp.1-10, 1998.

D. Guerard and A. Herold, Intercalation of lithium into graphite and other carbons, Carbon, vol.13, pp.337-345, 1975.

Y. Ein-eli, A new perspective on the formation and structure of the Solid Electrolyte Interface at the graphite anode of Li-ion cells, Electrochem. Solid-State Lett, vol.2, pp.212-214, 1999.

S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure et al., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon, vol.105, pp.52-76, 2016.

T. Ohzuku, A. Ueda, and N. Yamamoto, ZeroStrain Insertion Material of

. Li, ]O 4 for rechargeable lithium cells, J. Electrochem. Soc, vol.142, pp.1431-1435, 1995.

K. Ariyoshi, R. Yamato, and T. Ohzuku, Zero-strain insertion mechanism of

. Li, for advanced lithium-ion (shuttlecock) batteries, Electrochim. Acta, vol.4, pp.1125-1129, 2005.

L. Zhao, Y. Hu, H. Li, Z. Wang, and L. Chen, Porous Li 4 Ti 5 O 12 coated with N-doped carbon from ionic liquids for Li-ion batteries, Adv. Mater, vol.23, pp.1385-1388, 2011.

Y. Ma, B. Ding, G. Ji, and J. Y. Lee, Carbon-encapsulated F-doped Li 4 Ti 5 O 12 as a high rate anode material for Li + batteries, ACS NANO, vol.7, pp.10870-10878, 2013.

K. Zaghib, M. Dontigny, A. Guerfi, J. Trottier, J. Hamel-paquet et al., An improved high-power battery with increased thermal operating range: C-LiFePO 4 //CLi 4 Ti 5 O 12, J. Power Sources, vol.216, pp.192-200, 2012.

W. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, J. Power Sources, vol.196, pp.13-24, 2011.

C. Park, J. Kim, H. Kim, and H. Sohn, Li-alloy based anode materials for Li secondary batteries, Chem. Soc. Rev, vol.39, pp.3115-3141, 2010.

R. Teki, M. Datta, R. Krishnan, T. Parker, T. Lu et al., Nanostructured silicon anodes for lithium ion rechargeable batteries, Small, vol.5, pp.2236-2242, 2009.

H. Wu, G. Zheng, N. Liu, T. Carney, Y. Yang et al., Engineering empty space between Si nanoparticles for lithium-ion battery anodes, Nano Lett, vol.12, pp.904-909, 2012.

P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. Tarascon, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, vol.407, pp.496-499, 2000.

J. Cabana, L. Monconduit, D. Larcher, and M. Palacin, Beyond intercalationbased Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions, Adv. Mater, vol.22, pp.170-192, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00528312

L. Xu and B. Lu, 3D-Frame structure NiO@CNTs for ultrafast charge slow discharge lithium ion batteries, Electrochim. Acta, vol.210, pp.456-461, 2016.

J. Goodenough and Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater, vol.22, pp.587-603, 2010.

V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review, Energy Environ. Sci, vol.4, pp.3243-3262, 2011.

Q. Li, J. Chen, L. Fan, X. Kong, and Y. Lu, Progress in electrolytes for rechargeable Li-based batteries and beyond, Green Energy & Environment, vol.1, pp.18-42, 2016.

D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt et al., On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries, Electrochim. Acta, vol.47, pp.1423-1439, 2002.

L. Chen, K. Wang, X. Xie, and J. Xie, Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries, J. Power Sources, vol.174, pp.538-543, 2007.

T. Jaumann, J. Balach, U. Langklotz, V. Sauchuk, M. Fritsch et al., Lifetime vs. rate capability: Understanding the role of FEC and VC in high energy Li-ion batteries with nano-silicon anodes, Energy Storage Materials, vol.6, pp.26-35, 2017.

N. Choi, K. Yew, K. Lee, M. Sung, H. Kim et al., Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode, J. Power Sources, vol.161, pp.1254-1259, 2006.

Y. Lin, K. Klavetter, P. Abel, N. Davy, J. Snider et al., High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries, Chem. Commun, vol.48, pp.7268-7270, 2012.

N. Angulakshmi and A. M. Stephan, Efficient electrolytes for lithium-sulfur batteries, Front. Energy Res, vol.3, p.17, 2015.

D. Aurbach, Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries, J. Power Sources, vol.89, pp.206-218, 2000.

E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systemsthe Solid Electrolyte Interphase model, J. Electrochem. Soc, vol.126, pp.2047-2051, 1979.

M. Gauthier, T. Carney, A. Grimaud, L. Giordano, N. Pour et al., ElectrodeElectrolyte Interface in Li-ion batteries: current understanding and new insights, J. Phys. Chem. Lett, vol.6, pp.4653-4672, 2015.

C. Breitkopf and K. Swider-lyons, Springer handbook of electrochemical energy, 2017.

A. H. Whitehead and M. Schreiber, Current collectors for positive electrodes of lithium-based batteries, J. Electrochem. Soc, vol.152, pp.2105-2113, 2005.

S. Myung, Y. Hitoshi, and Y. Sun, Electrochemical behavior and passivation of current collectors in lithium-ion batteries, J. Mater. Chem, vol.21, pp.9891-9911, 2011.

A. N. Dey, Electrochemical alloying of lithium in organic electrolytes, J. Electrochem. Soc, vol.118, pp.1547-1549, 1971.

S. W. Kim and K. Y. Cho, Current collectors for flexible lithium ion batteries: A review of materials, J. Electrochem. Sci. Technol, vol.6, pp.10-15, 2015.

W. Wang and P. Kumta, Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes, ACS NANO, vol.4, pp.2233-2241, 2010.

W. Wang, R. Epur, and P. Kumta, Vertically aligned silicon/carbon nanotube (VASCNT) arrays: Hierarchical anodes for lithium-ion battery, Electrochem. Commun, vol.13, pp.429-432, 2011.

A. Gohier, B. Laik, K. Kim, J. Maurice, J. Pereira-ramos et al., High-rate capability silicon decorated vertically aligned carbon nanotubes for li-ion batteries, Adv. Mater, vol.24, pp.2592-2597, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00793888

R. Epur, M. Ramanathan, M. K. Datta, D. H. Hong, P. H. Jampani et al., Scribable multi-walled carbon nanotube-silicon nanocomposite: A viable lithium-ion battery system, Nanoscale, vol.7, pp.3504-3510, 2015.

I. Lahiri and W. Choi, Carbon nanostructures in Lithium ion batteries: past, present, and future, Crit. Rev. Solid State Mater. Sci, vol.38, pp.128-166, 2013.

A. Arico, P. Bruce, B. Scrosati, J. Tarascon, and W. Van-schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater, vol.4, pp.366-377, 2005.

Y. Guo, J. Hu, and L. Wan, Nanostructured materials for electrochemical energy conversion and storage devices, Adv. Mater, vol.20, pp.2878-2887, 2008.

Y. Wang, H. Li, P. He, E. Hosono, and H. Zhou, Nano active materials for lithiumion batteries, Nanoscale, vol.2, pp.1294-1305, 2010.

P. Roy and S. K. Srivastava, Nanostructured anode materials for lithium ion batteries, J. Mater. Chem. A, vol.3, pp.2454-2484, 2015.

N. Meethong, H. S. Huang, S. A. Speakman, W. C. Carter, and Y. Chiang, Strain accommodation during phase transformations in olivine-based cathodes as a materials selection criterion for high-power rechargeable batteries, Adv. Funct. Mater, vol.17, pp.1115-1123, 2007.

K. Lee and J. Cho, Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries, Nano Today, vol.6, pp.28-41, 2011.

P. Balaya, A. J. Bhattacharyya, J. Jamnik, Y. F. Zhukovskii, E. A. Kotomin et al., Nano-ionics in the context of lithium batteries, J. Power Sources, vol.159, pp.171-178, 2006.

P. Bruce, B. Scrosati, and J. Tarascon, Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed, vol.47, pp.2930-2946, 2008.

J. Yang, M. Winter, and J. O. Besenhard, Small particle size multiphase Li-alloy anodes for lithium-ion batteries. Solid State Ion, vol.90, pp.281-287, 1996.

C. Chan, H. Peng, G. Liu, K. Mcilwrath, X. Zhang et al., High-performance lithium battery anodes using silicon nanowires, Nat. Nanotech, vol.3, pp.31-35, 2008.

A. Aqel, K. M. Abou-el-nour, R. A. Ammar, and A. Al-warthan, Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation, Arabian J. Chem, vol.5, pp.1-23, 2012.

Y. Guo and W. A. Goddard, Is carbon nitride harder than diamond? No, but its girth increases when stretched (negative Poisson ratio), Chem. Phys. Lett, vol.237, pp.72-76, 1995.

. Hugh-o-pierson, Handbook of carbon, graphite, diamond and fullerenes properties, processing and applications, 1993.

H. W. Kroto, J. Heath, S. C. O&apos;brien, R. F. Curl, and R. E. Smalley, Buckminsterfullerene. Nature, vol.60, pp.162-163, 1985.

M. Monthioux and V. L. Kuznetsov, Who should be given the credit for the discovery of carbon nanotubes? Carbon, vol.44, pp.1621-1623, 2006.

S. Iijima, ;. S. Iijima, and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.354, pp.603-605, 1991.

D. S. Bethune, C. H. Kiang, M. S. De-vries, G. Gorman, R. Savoy et al., Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, vol.363, pp.605-607, 1993.

A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami et al., Carbon nanotubes: properties, synthesis, purification, and medical applications, Nanoscale Res. Lett, vol.9, 2014.

M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Physics of carbon nanotubes. Carbon, vol.33, pp.883-891, 1995.

S. Frank, P. Poncharal, Z. L. Wang, and W. A. De-heer, Carbon nanotube quantum resistors, Science, vol.280, pp.1744-1746, 1998.

H. Chiu, V. V. Deshpande, H. W. Ch, C. N. Postma, C. Lau et al., Ballistic phonon thermal transport in multiwalled carbon nanotubes, Phys. Rev. Lett, vol.95, p.226101, 2005.

Z. Yao, C. L. Kane, and C. Dekker, High-field electrical transport in single-wall carbon nanotubes, Phys. Rev. Lett, vol.84, pp.2941-2944, 2000.

P. R. Bandaru, Electrical properties and applications of carbon nanotube structures, J. Nanosci. Nanotechnol, vol.7, pp.1239-1267, 2007.

. Ch, E. Laurent, A. Flahaut, and . Peigney, The weight and density of carbon nanotubes versus the number of walls and diameter, Carbon, vol.48, pp.2994-2996, 2010.

E. W. Wong, P. E. Sheehan, and C. M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science, vol.277, 1971.

F. Li, H. M. Cheng, S. Bai, and G. Su, Tensile strength of single-walled carbon nanotubes directly measuredfrom their macroscopic ropes, Appl. Phys. Lett, vol.77, pp.3161-3163, 2000.

S. Iijima, C. Brabec, A. Maiti, and J. Bernholc, Structural flexibility of carbon nanotubes, J. Chem. Phys, vol.104, pp.2089-2092, 1996.

S. Berber, Y. Kwon, and D. Tomanek, Unusually high thermal conductivity of carbon nanotubes, Phys. Rev. Lett, vol.84, pp.4613-4616

E. T. Thostenson, C. Li, and T. Chou, Nanocomposites in context. Compos. Sci. Technol, vol.65, pp.491-516, 2005.

B. J. Landi, M. J. Ganter, C. D. Cress, R. A. Dileo, and R. P. Raffaelle, Carbon nanotubes for lithium ion batteries, Energy Environ. Sci, vol.2, pp.638-654, 2009.

J. Zhang, C. Yang, Y. Wang, T. Feng, W. Yu et al., Improvement of the field emission of carbon nanotubes by hafnium coating and annealing, Nanotechnology, vol.17, pp.257-260, 2006.

E. Bekyarova, M. Davis, T. Burch, M. E. Itkis, B. Zhao et al., Chemically functionalized single-walled carbon nanotubes as ammonia sensors, J. Phys. Chem. B, vol.108, 2004.

F. Valentini, S. Orlanducci, E. Tamburri, M. L. Terranova, A. Curulli et al., Single-walled carbon nanotubes on tungsten wires: a new class of microelectrochemical sensors, Electroanalysis, vol.17, pp.28-37, 2005.

M. Yang, Y. Yang, Y. Liu, G. Shen, and R. Yu, Platinum nanoparticles-doped solgel/carbon nanotubes composite electrochemical sensors and biosensors, Biosens. Bioelectron, vol.21, pp.1125-1131, 2006.

C. Qiu, Z. Zhang, M. Xiao, Y. Yang, D. Zhong et al., Scaling carbon nanotube complementary transistors to 5-Nm gate lengths, Science, vol.355, pp.271-276

E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy, and F. Beguin, Electrochemical storage of lithium in multiwalled carbon nanotubes, Carbon, vol.37, pp.61-69, 1999.

Z. Xiong, Y. S. Yun, and H. Jin, Applications of carbon nanotubes for lithium ion battery anodes. materials, vol.6, pp.1138-1158, 2013.

E. Frackowiak, K. Metenier, V. Bertagna, and F. Beguin, Supercapacitor electrodes from multiwalled carbon nanotubes, Appl. Phys. Lett, vol.77, pp.2421-2423, 2000.

N. Rajalakshmi, K. S. Dhathathreyan, A. Govindaraj, and B. C. Satishkumar, lectrochemical investigation of single-walled carbon nanotubes for hydrogen storage, Electrochim. Acta, vol.45, pp.4511-4515, 2000.

M. B. Jakubinek, B. Ashrafi, Y. Zhang, Y. Martinez-rubi, C. T. Kingston et al., Single-walled carbon nanotubeepoxy composites for structural and conductive aerospace adhesives, Composites Part B, vol.69, pp.87-93, 2015.

C. Kingston, R. Zepp, A. Andrady, D. Boverhof, R. Fehir et al., Release characteristics of selected carbon nanotube polymer composites, Carbon, vol.68, pp.33-57, 2014.

B. Jin, H. Gu, W. Zhang, K. Park, and G. Sun, Effect of different carbon conductive additives on electrochemical properties of LiFePO 4-C/Li batteries, J Solid State Electrochem, vol.12, pp.1549-1554, 2008.

H. Zhang, G. Cao, Z. Wang, Y. Yang, Z. Shi et al., Carbon nanotube array anodes for high-rate Li-ion batteries, Electrochim. Acta, vol.55, pp.2873-2877, 2010.

J. Lee, J. Bae, J. Heo, I. T. Han, S. N. Cha et al., Effect of randomly networked carbon nanotubes in silicon-based anodes for lithium-ion batteries, J. Electrochem. Soc, vol.156, pp.905-910, 2009.

W. Guoping, Z. Qingtang, Y. Zuolong, and Q. Meizheng, The effect of different kinds of nano-carbon conductive additives in lithium ion batteries on the resistance and electrochemical behavior of the LiCoO 2 composite cathodes, Solid State Ion, vol.179, pp.263-268, 2008.

X. Li, F. Kang, X. Bai, and W. Shen, A novel network composite cathode of LiFePO 4 /multiwalled carbon nanotubes with high rate capability for lithium ion batteries, Electrochem. Commun, vol.9, pp.663-666, 2007.

Y. Ding, G. Huang, H. Li, H. Xie, H. Sun et al., Double carbon nano coating of LiFePO 4 cathode material for high performance of lithium ion batteries, J Nanosci Nanotechnol, vol.15, pp.9630-9635, 2015.

X. Liu, Z. Huang, S. Oh, P. Ma, P. C. Chan et al., Solgel synthesis of multiwalled carbon nanotube-LiMn 2 O 4 nanocomposites as cathode materials for Li-ion batteries, J. Power Sources, vol.195, pp.4290-4296, 2010.

B. Gao, A. Kleinhammes, X. P. Tang, C. Bower, L. Fleming et al., Electrochemical intercalation of single-walled carbon nanotubes with lithium

, Chem. Phys. Lett, vol.307, pp.153-157, 1999.

N. A. Kaskhedikar and J. Maier, Lithium storage in carbon nanostructures, Adv. Mater, vol.21, pp.2664-2680, 2009.

T. Kumar, R. Ramesh, Y. Y. Lin, and G. Fey, Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries, Electrochem. Commun, vol.6, pp.520-525, 2004.

C. De-las-casas and W. Li, A review of application of carbon nanotubes for lithium ion battery anode material, J. Power Sources, vol.208, pp.74-85, 2012.

S. Yehezkel, M. Auinat, N. Sezin, D. Starosvetsky, and Y. Ein-eli, Bundled and densified carbon nanotubes (CNT) fabrics as flexible ultra-light weight Li-ion battery anode current collectors, J. Power Sources, vol.312, pp.109-115, 2016.

K. Wang, S. Luo, Y. Wu, X. He, F. Zhao et al., Superaligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries, Adv. Funct. Mater, vol.23, pp.846-853, 2013.

E. T. Thostenson, Z. Ren, and T. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review, Compos. Sci. Technol, vol.61, pp.1899-1912, 2001.

M. Kumar, Carbon nanotube synthesis and growth mechanism, vol.6, 2010.

C. Journet, W. M. Maser, P. Bernier, A. Loiseau, M. Lamy-de-la-chapelle et al., Large-scale production of singlewalled carbon nanotubes by the electric-arc technique, Nature, vol.388, pp.756-758, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02063715

C. Journet and P. Bernier, Production of carbon nanotubes, Appl. Phys. A, vol.67, pp.1-10, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02063773

E. F. Kukovitsky, S. G. , and N. A. Sainov, VLS-growth of carbon nanotubes from the vapor, Chem. Phys. Lett, vol.317, pp.65-70, 2000.

K. Jiang, C. Feng, K. Liu, and S. Fan, A vapor-liquid-solid model for chemical vapor deposition growth of carbon nanotubes, J Nanosci Nanotechnol, vol.7, pp.1494-1504, 2007.

D. Takagi, Y. Kobayashi, and Y. Homma, Carbon nanotube growth from diamond, J. Am. Chem. Soc, vol.131, pp.6922-6923, 2009.

S. Shukrullah, N. M. Mohamed, M. S. Shaharun, and M. Y. Naz, Parametric study on vapor-solid-solid growth mechanism of multiwalled carbon nanotubes

, Chem. Phys, vol.176, pp.32-43, 2016.

M. Kumar and Y. Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production, J. Nanosci. Nanotechnol, vol.10, pp.3739-3758, 2010.

A. Castan, S. Forel, L. Catala, I. Florea, F. Fossard et al., New method for the growth of single-walled carbon nanotubes from bimetallic nanoalloy catalysts based on prussian blue analog precursors, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01572413

J. Prasek, J. Drbohlavova, J. Chamoucka, J. Hubalek, O. Jasek et al., Methods for carbon nanotubes synthesisreview, J. Mater. Chem, vol.21, pp.15872-15884, 2011.

M. C. Fiawoo, A. Bonnot, H. Amara, C. Bichara, J. Thibault-penisson et al., Evidence of correlation between catalyst particles and the single-wall carbon nanotube diameter: a first step towards chirality control, Phys. Rev. Lett, vol.108, p.195503, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01075303

S. Sakurai, M. Inaguma, D. N. Futaba, M. Yumura, and K. Hata, Diameter and density control of single-walled carbon nanotube forests by modulating ostwald ripening through decoupling the catalyst formation and growth processes, Small, vol.9, pp.3584-3592, 2013.

A. R. Harutyunyan, B. K. Pradhan, U. J. Kim, G. Chen, and P. C. Eklund, CVD synthesis of single wall carbon nanotubes under Soft conditions, Nano Lett, vol.2, pp.525-530, 2002.

M. Palizdar, R. Ahgababazadeh, A. Mirhabibi, R. Brydson, and S. Pilehvari, Investigation of Fe/MgO catalyst support precursors for the chemical vapour deposition growth of carbon nanotubes, J. Nanosci. Nanotechnol, vol.11, pp.5345-5351, 2011.

G. Zhong, S. Hofmann, F. Yan, H. Telg, J. H. Warner et al., Acetylene: a key growth precursor for singlewalled carbon nanotube forests, J. Phys. Chem. C, vol.113, pp.17321-17325, 2009.

U. Narkiewicz, M. Podsiadd-ly, R. J¸edrzejewskij¸edrzejewski, and I. Pee, Catalytic decomposition of hydrocarbons on cobalt, nickel and iron catalysts to obtain carbon nanomaterials, Appl. Catal., A, vol.384, pp.27-35, 2010.

Y. Shirazi, M. A. Tofighy, T. Mohammadi, and A. Pak, Effects of different carbon precursors on synthesis of multiwall carbon nanotubes: purification and functionalization, Appl. Surf. Sci, vol.257, pp.7359-7367, 2011.

H. Li, D. He, T. Li, M. Genestoux, and J. Bai, Chemical kinetics of catalytic chemical vapor deposition of an acetylene/xylene mixture for improved carbon nanotube production, Carbon, vol.48, pp.4330-4342, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00520202

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert et al., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chem. Phys. Lett, vol.313, pp.91-97, 1999.

C. L. Pint, N. Nicholas, S. T. Pheasant, J. G. Duque, A. N. Parra-vasquez et al., Temperature and gas pressure effects in vertically aligned carbon nanotube growth from FeMo catalyst, J. Phys. Chem

, C, vol.112, pp.14041-14051, 2008.

. Yoke-khin-yap, Growth mechanisms of vertically-aligned carbon, boron nitride, and zinc oxide nanotubes, AIP Conf. Proc. 1150, 2009.

J. Zhao, Q. Y. Gao, C. Gu, and Y. Yang, Preparation of multi-walled carbon nanotube array electrodes and its electrochemical intercalation behavior of Li ions, Chem. Phys. Lett, vol.358, pp.77-82, 2002.

D. T. Welna, L. Qu, B. E. Taylor, L. Dai, and M. F. Durstock, Vertically aligned carbon nanotube electrodes for lithium-ion batteries, J. Power Sources, vol.196, pp.1455-1460, 2011.

H. Zhou, L. Zhang, D. Zhang, S. Chen, P. R. Coxon et al., A universal synthetic route to carbon nanotube/transition metal oxide nano-composites for lithium ion batteries and electrochemical capacitors, Sci. Rep, vol.6, p.37752, 2016.

K. Kim, A. Gohier, J. E. Bourée, M. Chatelet, and C. Cojocaru, The role of catalytic nanoparticle pretreatment on the growth of vertically aligned carbon nanotubes by hot-filament chemical vapor deposition, Thin Solid Films, vol.575, pp.84-91, 2015.

T. De-los-arcos, M. G. Garnier, J. W. Seo, P. Oelhafen, V. Thommen et al., The influence of catalyst chemical state and morphology on carbon nanotube growth, J. Phys. Chem. B, vol.108, pp.7728-7734, 2004.

Q. Li, X. Zhang, R. F. Depaula, L. Zheng, Y. Zhao et al., Sustained growth of ultralong carbon nanotube arrays for fiber spinning, Adv. Mater, vol.18, pp.3160-3163, 2006.

M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes Synthesis, Structure, Properties, and Applications. Berlin, 2001.

A. Bogner, P. Jouneau, G. Thollet, D. Basset, and C. Gauthier, A history of scanning electron microscopy developments: Towards wet-STEM, imaging. Micron, vol.38, pp.390-401, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434138

D. Su, Advanced electron microscopy characterization of nanomaterials for catalysis, Green Energy & Environment, vol.2, pp.70-83, 2017.

B. Padya, K. V. Prabhakar, and P. K. Jain, Synthesis of vertically aligned carbon nanotube arrays by injection method in CVD, J Nanosci Nanotechnol, vol.10, pp.4960-4966, 2010.

T. Yamada, T. Namai, K. Hata, D. N. Futaba, K. Mizuno et al., Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts, Nat. Nanotech, vol.1, pp.131-136, 2006.

Y. Yun, V. Shanov, Y. Tu, S. Subramaniam, and M. J. Schulz, Growth mechanism of long aligned multiwall carbon nanotube arrays by water-assisted chemical vapor deposition, J. Phys. Chem. B, vol.110, pp.23920-23925, 2006.

D. Herbert and J. Ulam, Electric dry cells and storage batteries, 1962.

M. Barghamadi, A. Kapoor, and C. Wen, A review on Li-S batteries as a high efficiency rechargeable lithium battery, J. Electrochem. Soc, vol.160, pp.1256-1263, 2013.

S. S. Zhang, Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions, J. Power Sources, vol.231, pp.153-162, 2013.

Y. Choi, Y. Chung, C. Baek, K. Kim, H. Ahn et al., Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell, J. Power Sources, vol.184, pp.548-552, 2008.

R. D. Rauh, F. S. Shuker, J. M. Marston, and S. B. Brummer, Formation of lithium polysulfides in aprotic media, J. Inorg. Nucl. Chem, vol.39, pp.1761-1766, 1977.

R. D. Rauh, K. M. Abraham, G. F. Pearson, J. K. Surprenant, and S. B. Brummer, A lithium/dissolved sulfur battery with an organic electrolyte, J. Electrochem. Soc, vol.126, pp.523-527, 1979.

Y. V. Mikhaylik and J. R. Akridge, Polysulfide shuttle study in the Li/S battery system, J. Electrochem. Soc, vol.151, pp.1969-1976, 2004.

V. S. Kolosnitsyn and E. V. Karaseva, Lithium-sulfur batteries: Problems and solutions, Russ. J. Electrochem, vol.44, pp.506-509, 2008.
DOI : 10.1134/s1023193508050029

Z. W. Seh, W. Li, J. J. Cha, G. Zheng, Y. Y. et al., Sulphur-TiO 2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries, Nat. Commun, vol.4, 1331.

S. Cheon, S. Choi, J. Han, Y. Choi, B. Jung et al., Capacity fading mechanisms on cycling a high-capacity secondary sulfur cathode, J. Electrochem. Soc, vol.151, pp.2067-2073, 2004.

Y. Yin, S. Xin, Y. Guo, and L. Wan, Lithium-sulfur batteries: Electrochemistry, materials, and prospects, Angew. Chem. Int. Ed, vol.52, pp.13186-13200, 2013.

B. Zhang, C. Lai, Z. Zhou, and X. P. Gao, Preparation and electrochemical properties of sulfur-acetylene black composites as cathode materials, Electrochim. Acta, vol.54, pp.3708-3713, 2009.

J. Chen, X. Jia, Q. She, C. Wang, Q. Zhang et al., The preparation of nano-sulfur/MWCNTs and its electrochemical performance

, Electrochim. Acta, vol.55, pp.8062-8066, 2010.

C. Wang, J. Chen, Y. Shi, M. Zheng, and Q. Dong, Preparation and performance of a core-shell carbon/sulfur material for lithium/sulfur battery. Electrochim, Acta, vol.55, pp.7010-7015, 2010.

Y. Su and A. Manthiram, A facile in situ sulfur deposition route to obtain carbon-wrapped sulfur composite cathodes for lithium-sulfur batteries. Electrochim, Acta, vol.77, pp.272-278, 2012.

B. Zhang, X. Qin, G. R. Li, and X. P. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres, Energy Environ. Sci, vol.3, pp.1531-1537, 2010.

S. Xin, L. Gu, N. Zhao, Y. Yin, L. Zhou et al., Smaller sulfur molecules promise better lithium-sulfur batteries, J. Am. Chem. Soc, vol.134, pp.18510-18513, 2012.

X. Li, Y. Cao, W. Qi, L. V. Saraf, J. Xiao et al., Optimization of mesoporous carbon structures for lithium-sulfur battery applications, J. Mater. Chem, vol.21, pp.16603-16610, 2011.

X. Tao, X. Chen, Y. Xia, H. Huang, Y. Gan et al., Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium-sulfur batteries, J. Mater

, Chem. A, vol.1, pp.3295-3301, 2013.

J. Schuster, G. He, B. Mandlmeier, T. Yim, K. Lee et al., Spherical ordered mesoporous carbon nanoparticles with high porosity for lithiumsulfur batteries, Angew. Chem. Int. Ed, vol.124, pp.3651-3655, 2012.
DOI : 10.1002/anie.201107817

S. Han, M. Song, H. Lee, H. Kim, H. Ahn et al., Effect of multiwalled carbon nanotubes on electrochemical properties of lithium/sulfur rechargeable batteries, J. Electrochem. Soc, vol.150, pp.889-893, 2003.

L. Yuan, H. Yuan, X. Qiu, L. Chen, and W. Zhu, Improvement of cycle property of sulfur-coated multi-walled carbon nanotubes composite cathode for lithium/sulfur batteries, J. Power Sources, vol.189, pp.1141-1146, 2009.

W. Wei, J. Wang, L. Zhou, J. Yang, B. Schumann et al., CNT enhanced sulfur composite cathode material for high rate lithium battery, Electrochem. Commun, vol.13, pp.399-402, 2011.
DOI : 10.1016/j.elecom.2011.02.001

J. Guo, Y. Xu, and C. Wang, Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries, Nano Lett, vol.11, pp.4288-4294, 2011.
DOI : 10.1021/nl202297p

Y. Choi, K. Kim, H. Ahn, and J. Ahn, Improvement of cycle property of sulfur electrode for lithium/sulfur battery, J. Alloys Compd, vol.449, pp.313-316, 2008.

G. Zheng, Y. Y. , J. J. Cha, S. S. Hong, and Y. Cui, Hollow carbon nanofiberencapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries, Nano Lett, vol.11, pp.4462-4467, 2011.
DOI : 10.1021/nl2027684

M. Rao, X. Song, and E. J. Cairns, Nano-carbon/sulfur composite cathode materials with carbon nanofiber as electrical conductor for advanced secondary lithium/sulfur cells, J. Power Sources, vol.205, pp.474-478, 2012.

L. Ji, M. Rao, H. Zheng, L. Zhang, Y. Li et al., Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells, J. Am. Chem. Soc, vol.133, pp.18522-18525, 2011.
DOI : 10.1021/ja206955k

S. Evers and L. F. Nazar, Graphene-enveloped sulfur in a one pot reaction: a cathode with good coulombic efficiency and high practical sulfur content, Chem. Commun, vol.48, pp.1233-1235, 2012.

J. Huang, X. Liu, Q. Zhang, C. Chen, M. Zhao et al., Entrapment of sulfur in hierarchical porous graphene for lithium-sulfur batteries with high rate performance from-40 to 60 ? C, Nano Energy, vol.2, pp.314-321, 2013.

B. H. Jeon, J. H. Yeon, K. M. Kim, and I. J. Chung, Preparation and electrochemical properties of lithium-sulfur polymer batteries, J. Power Sources, vol.109, pp.89-97, 2002.

N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, and L. A. Archer, Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries
DOI : 10.1002/anie.201100637

, Chem. Int. Ed, vol.50, pp.5904-5908, 2011.

Y. Fu, Y. Su, and A. Manthiram, Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes, Angew. Chem, vol.125, pp.7068-7073, 2013.
DOI : 10.1002/anie.201301250

Y. Su and A. Manthiram, A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer, Chem. Commun, vol.48, pp.8817-8819, 2012.

S. S. Zhang and D. T. Tran, A proof-of-concept lithium/sulfur liquid battery with exceptionally high capacity density, J. Power Sources, vol.211, pp.169-172, 2012.

J. Wang, L. Lu, M. Choucair, J. A. Stride, X. Xu et al., Sulfur-graphene composite for rechargeable lithium batteries, J. Power Sources, vol.196, pp.7030-7034, 2011.
DOI : 10.1016/j.jpowsour.2010.09.106

F. Zhang, X. Zhang, Y. Dong, and L. Wang, Facile and effective synthesis of reduced graphene oxide encapsulated sulfur via oil/water system for high performance lithium sulfur cells, J. Mater. Chem, vol.22, pp.11452-11454, 2012.

Y. Cao, X. Li, I. A. Aksay, J. Lemmon, Z. Nie et al., Sandwichtype functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries, Phys. Chem. Chem. Phys, vol.13, pp.7660-7665, 2011.

B. Wang, K. Li, D. Su, H. Ahn, and G. Wang, Superior electrochemical performance of sulfur/graphene nanocomposite material for high-capacity lithium-sulfur batteries, Chem. Asian J, vol.7, pp.1637-1643, 2012.

H. Sun, G. Xu, Y. Xu, S. Sun, X. Zhang et al., A composite material of uniformly dispersed sulfur on reduced graphene oxide: Aqueous one-pot synthesis, characterization and excellent performance as the cathode in rechargeable lithium-sulfur batteries, Nano Res, vol.5, pp.726-738, 2012.

W. Ahn, K. Kim, K. Jung, K. Shin, and C. Jin, Synthesis and electrochemical properties of a sulfur-multi walled carbon nanotubes composite as a cathode material for lithium sulfur batteries, J. Power Sources, vol.202, pp.394-399, 2012.

L. Zhu, W. Zhu, X. Cheng, J. Huang, H. Peng et al., Cathode materials based on carbon nanotubes for high-energy-density lithiumsulfur batteries, Carbon, vol.75, pp.161-168, 2014.

S. Dorfler, M. Hagen, H. Althues, J. Tubke, S. Kaskel et al., High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithiumsulfur batteries, Chem. Commun, vol.48, pp.4097-4099, 2012.

J. Wang, J. Chen, K. Konstantinov, L. Zhao, S. H. Ng et al., Sulphur-polypyrrole composite positive electrode materials for rechargeable lithium batteries, Electrochim. Acta, vol.51, pp.4634-4638, 2006.

Y. Fu and A. Manthiram, Orthorhombic bipyramidal sulfur coated with polypyrrole nanolayers as a cathode material for lithium-sulfur batteries, J. Phys. Chem. C, vol.116, pp.8910-8915, 2012.

Y. Fu and A. Manthiram, Enhanced cyclability of lithium-sulfur batteries by a polymer acid-doped polypyrrole mixed Ionic-electronic conductor, Chem. Mater, vol.24, pp.3081-3087, 2012.

F. Wu, J. Chen, L. Li, T. Zhao, and R. Chen, Improvement of rate and cycle performence by rapid polyaniline coating of a MWCNT/sulfur cathode, J. Phys

. Chem, , vol.115, pp.24411-24417, 2011.

L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M. H. Engelhard et al., A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life, Adv. Mater, vol.24, pp.1176-1181, 2012.

F. Wu, S. Wu, R. Chen, J. Chen, and S. Chen, Sulfur-polythiophene composite cathode materials for rechargeable lithium batteries, Electrochem. Solid-State Lett, vol.13, pp.29-31, 2010.

F. Wu, J. Chen, R. Chen, S. Wu, L. Li et al., Sulfur/polythiophene with a core/shell structure: synthesis and electrochemical properties of the cathode for rechargeable lithium batteries, J. Phys. Chem. C, vol.115, pp.6057-6063, 2011.

W. Li, G. Zheng, Y. Yang, Z. W. Seh, N. Liu et al., High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, onestep, bottom-up approach, Proc. Natl. Acad. Sci. USA, vol.110, pp.7148-7153, 2013.

J. Wang, J. Wang, C. Wan, K. Du, J. Xie et al., Sulfur composite cathode materials for rechargeable lithium batteries, Adv. Funct. Mater, vol.13, pp.487-492, 2003.

L. Yin, J. Wang, J. Yang, and Y. Nuli, A novel pyrolyzed polyacrylonitrilesulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries, J. Mater. Chem, vol.21, pp.6807-6810, 2011.

S. H. Chung and A. Manthiram, A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithiumsulfur batteries, Adv. Mater, vol.26, pp.7352-7357, 2014.

Y. Fu, Y. Su, and A. Manthiram, Sulfur-carbon nanocomposite cathodes improved by an amphiphilic block copolymer for high-rate lithium-sulfur batteries

, ACS Appl. Mater. Interfaces, vol.4, pp.6046-6052, 2012.

M. Song, S. Han, H. Kim, J. Kim, K. Kim et al., Effects of nanosized adsorbing material on electrochemical properties of sulfur cathodes for Li/S secondary batteries, J. Electrochem. Soc, vol.151, pp.791-795, 2004.

Y. Zhang, Y. Zhao, A. Yermukhambetova, Z. Bakenov, and P. Chen, Ternary sulfur/polyacrylonitrile/Mg 0.6 Ni 0.4 O composite cathodes for high performance lithium/sulfur batteries, J. Mater. Chem. A, vol.1, pp.295-301, 2013.

Y. J. Choi, B. S. Jung, D. J. Lee, J. H. Jeong, K. W. Kim et al.,

H. B. Cho and . Gu, Electrochemical properties of sulfur electrode containing nano Al 2 O 3 for lithium/sulfur cell, Phys. Scr, vol.129, pp.62-65, 2007.

X. Ji, S. Evers, R. Black, and L. F. Nazar, Stabilizing lithium-sulphur cathodes using polysulphide reservoirs, Nat. Commun, vol.2, p.325, 2011.

S. Evers, T. Yim, and L. F. Nazar, Understanding the nature of absorption/adsorption in nanoporous polysulfide sorbents for the Li-S battery, J. Phys. Chem. C, vol.116, 2012.

Y. Yang, M. T. Mcdowell, A. Jackson, J. J. Cha, S. S. Hong et al., New nanostructured Li 2 S/silicon rechargeable battery with high specific energy, Nano Lett, vol.10, pp.1486-1491, 2010.

J. Hassoun, J. Kim, D. Lee, H. Jung, S. Lee et al., A contribution to the progress of high energy batteries: A metal-free, lithium-ion, silicon-sulfur battery, J. Power Sources, vol.202, pp.308-313, 2012.

J. Hassoun and B. Scrosati, A high-performance polymer tin sulfur lithium ion battery, Angew. Chem. Int. Ed, vol.49, pp.2371-2374, 2010.

X. Fang, X. Guo, Y. Mao, C. Hua, L. Shen et al., Mechanism of lithium storage in MoS 2 and the feasibility of using

, Li 2 S/Mo nanocomposites as cathode materials for lithium-sulfur batteries, Asian J. Chem, vol.7, pp.1013-1017, 2012.

Y. Yang, G. Zheng, S. Misra, J. Nelson, M. F. Toney et al., High-capacity micrometer-sized Li 2 S particles as cathode materials for advanced rechargeable lithium-ion batteries, J. Am. Chem. Soc, vol.134, pp.15387-15394, 2012.

W. Ruythooren, K. Attenborough, S. Beerten, P. Merken, J. Fransaer et al., Electrodeposition for the synthesis of microsystems, J. Micromech. Microeng, vol.10, pp.101-107, 2000.

A. A. Pasa and M. L. Munford, , 2006.

H. H. Lou, Y. Huang, and . Electroplating, , 2006.

F. Nasirpouri, Electrodeposition of Nanostructured Materials, 2017.

D. M. Mattox, Handbook of pysical vapor deposition (PVD) processing, 1998.

Q. Jia, S. Shan, L. Jiang, and Y. Wang, One-step synthesis of polyaniline nanofibers decorated with silver, J. Appl. Polym. Sci, vol.115, pp.26-31, 2010.

X. Zhao, H. Ahn, K. Kim, K. Cho, and J. Ahn, Polyaniline-coated mesoporous carbon/sulfur composites for advanced lithium sulfur batteries, J. Phys. Chem. C, vol.119, pp.7996-8003, 2015.

S. S. Zhang, Effect of discharge cutoff voltage on reversibility of lithium/sulfur batteries with LiNO 3-contained electrolyte, J. Electrochem. Soc, vol.159, pp.920-923, 2012.

S. S. Zhang, Role of LiNO 3 in rechargeable lithium/sulfur battery, Electrochim. Acta, vol.70, pp.344-348, 2012.

Z. Li and L. Yin, Nitrogen-doped MOF-derived micropores carbon as immobilizer for small sulfur molecules as a cathode for lithium sulfur batteries with excellent electrochemical performance, ACS Appl. Mater. Interfaces, vol.7, pp.4029-4038, 2015.

S. Zheng, F. Yi, Z. Li, Y. Zhu, Y. Xu et al., Copperstabilized sulfur-microporous carbon cathodes for LiS batteries, Adv. Funct. Mater, vol.24, pp.4156-4163, 2014.

X. Li, M. Rao, D. Chen, H. Lin, Y. Liu et al., Sulfur supported by carbon nanotubes and coated with polyaniline: Preparation and performance as cathode of lithium-sulfur cell, Electrochim. Acta, vol.166, pp.93-99, 2015.

J. Wang, J. Yang, J. Xie, and N. Xu, A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries, Adv. Mater, vol.14, pp.963-965, 2002.

Y. Yang, G. Yu, J. J. Cha, H. Wu, M. Vosgueritchian et al., Improving the performance of lithium-sulfur batteries by conductive polymer coating, ACS NANO, vol.5, pp.9187-9193, 2011.

H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li et al., Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability, Nano Lett, vol.11, pp.2644-2647, 2011.

K. T. Lee, R. Black, T. Yim, X. Ji, and L. F. Nazar, Surface-initiated growth of thin oxide coatings for Li-sulfur battery cathodes, Adv. Energy Mater, vol.2, pp.1490-1496, 2012.

H. Kim, J. T. Lee, D. Lee, A. Magasinski, G. Cho et al., Plasmaenhanced atomic layer deposition of ultrathin oxide coatings for stabilized lithiumsulfur batteries, Adv. Energy Mater, vol.3, pp.1308-1315, 2013.

J. Xu, B. Jin, H. Li, and Q. Jiang, Sulfur/alumina/polypyrrole ternary hybrid material as cathode for lithium-sulfur batteries, Int. J. Hydrog. Energy, vol.42, pp.20749-20758, 2017.

, Las Positas College. Vaccum Technology, Las Positas College Vacuum Technology 60A and 60 B, p.171, 2002.

A. Yermukhambetova, Z. Bakenov, Y. Zhang, J. A. Darr, D. J. Brett et al., Examining the effect of nanosized Mg 0.6 Ni 0.40 and Al 2 O 3 additives on S/polyaniline cathodes for lithium-sulphur batteries, J. Electroanal. Chem, vol.780, pp.407-415, 2016.

S. Zheng, P. Han, Z. Han, H. Zhang, Z. Tang et al., High performance C/S composite cathodes with conventional carbonate-based electrolytes in Li-S battery, Sci. Rep, vol.4, p.4842, 2014.

L. Qiu, S. Zhang, L. Zhang, M. Sun, and W. Wang, Preparation and enhanced electrochemical properties of nano-sulfur/poly(pyrrole-co-aniline) cathode material for lithium/sulfur batteries, Electrochim. Acta, vol.55, pp.4632-4636, 2010.

X. Yu, J. Xie, Y. Li, H. Huang, C. Lai et al., Stable-cycle and highcapacity conductive sulfur-containing cathode materials for rechargeable lithium batteries, J. Power Sources, vol.146, pp.335-339, 2005.

K. Zhang, J. Li, Q. Li, J. Fang, Z. Zhang et al., Improvement on electrochemical performance by electrodeposition of polyaniline nanowires at the top end of sulfur electrode, Appl. Surf. Sci, vol.285, pp.900-906, 2013.

C. Colliex, T. Manoubi, and O. L. Krivanek, EELS in the electron microscope: A review of present trends, J. Electron Microsc, vol.35, pp.307-313, 1986.

P. Bayle-guillemaud, G. Radtke, and M. Sennour, Electron spectroscopy imaging to study ELNES at a nanoscale, J. Microsc, vol.210, pp.66-73, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00475095

L. Roiban, L. Sorbier, C. Pichon, P. Bayle-guillemaud, J. Werckmann et al., Three-dimensional chemistry of multiphase nanomaterials by energy-filtered transmission electron microscopy tomography, Microsc. Microanal, vol.18, pp.1118-1128, 2012.

O. Ersen, I. Florea, C. Hirlimann, and C. Pham-huu, Exploring nanomaterials with 3D electron microscopy, Mater. Today, vol.18, pp.395-408, 2015.

L. Wang, T. Maxisch, and G. Ceder, A first-principles approach to studying the thermal stability of oxide cathode materials, Chem. Mater, vol.19, pp.543-552, 2007.

J. T. Richardson, R. Scates, and M. V. Twigg, X-ray diffraction study of nickel oxide reduction by hydrogen, Appl. Catal., A, vol.246, pp.137-150, 2003.

S. L. Candelaria, Y. Shao, W. Zhou, X. Li, J. Xiao et al., Nanostructured carbon for energy storage and conversion, Nano Energy, vol.1, pp.195-220, 2012.

G. Jeong, Y. Kim, H. Kim, Y. Kim, and H. Sohn, Prospective materials and applications for Li secondary batteries, Energy Environ. Sci, vol.4, 1986.

L. Ji, Z. Lin, M. Alcoutlabi, and X. Zhang, Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries, Energy Environ. Sci, vol.4, pp.2682-2699, 2011.

, The Editors of Encyclopaedia Britannica. Silicon (Si) chemical element

M. N. Obrovac and L. Christensen, Structural changes in silicon anodes during lithium insertion/extraction, Electrochem. Solid-State Lett, vol.7, pp.93-96, 2004.

J. Li and J. R. Dahn, An in Situ X-ray diffraction study of the reaction of Li with crystalline Si, J. Electrochem. Soc, vol.154, pp.156-161, 2007.

X. Xianxia, H. Liu, and J. Zhang, Lithium-ion batteries: advanced materials and technologies, 2011.

I. A. Profatilova, N. Choi, K. H. Yew, and W. Choi, The effect of ethylene carbonate on the cycling performance of a Si electrode, Solid State Ion, issue.179, pp.2399-2405, 2008.

P. Limthongkul, Y. Jang, N. J. Dudney, and Y. Chiang, Electrochemicallydriven solid-state amorphization in lithium-silicon alloys and implications for lithium storage, Acta Mater, vol.51, pp.1103-1113, 2003.

M. N. Obrovac and L. J. Krause, Reversible cycling of crystalline silicon powder, J. Electrochem. Soc, vol.154, pp.103-108, 2007.

T. D. Hatchard and J. R. Dahn, In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon, J. Electrochem. Soc, vol.151, pp.838-842, 2004.

B. Key, M. Morcrette, J. Tarascon, and C. P. Grey, Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms, J. Am. Chem. Soc, vol.133, pp.503-512, 2011.

M. T. Mcdowell, S. W. Lee, C. Wang, and Y. Cui, The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation, Nano Energy, vol.1, pp.401-410, 2012.

J. W. Wang, Y. He, F. Fan, X. H. Liu, S. Xia et al., Two-phase electrochemical lithiation in amorphous silicon, Nano Lett, vol.13, pp.709-715, 2013.

K. Peng, J. Jie, W. Zhang, and S. Lee, Silicon nanowires for rechargeable lithium-ion batteries anodes, Appl. Phys. Lett, vol.93, p.33105, 2008.

L. Cui, R. Ruffo, C. Chan, H. Peng, and Y. Cui, Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes, Nano Lett, vol.9, pp.491-495, 2009.

M. H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim et al., Silicon nanotube battery anodes, Nano Lett, vol.9, pp.3844-3847, 2009.

H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao et al., Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control, Nat. Nanotech, vol.7, pp.310-315, 2012.

Z. Wen, G. Lu, S. Mao, H. Kim, S. Cui et al., Silicon nanotube anode for lithium-ion batteries, Electrochem. Commun, vol.29, pp.67-70, 2013.

M. L. Carreon, A. K. Thapa, J. B. Jasinski, and M. K. Sunkara, The capacity and durability of amorphous silicon nanotube thin film anode for lithium ion battery applications, ECS Electrochem. Lett, vol.4, pp.124-128, 2015.

B. Zhu, Y. Jin, Y. Tan, L. Zong, Y. Hu et al., Scalable production of Si nanoparticles directly from low grade sources for lithiumion battery anode, Nano Lett, vol.15, pp.5750-5754, 2015.

H. S. Choi, S. J. Kim, H. W. Choi, C. Park, Y. J. Gao et al., Enhanced cycle stability of silicon nanoparticles coated with nitrogen-doped carbon layer for lithium-ion battery anode

, Appl. Phys, vol.17, pp.1087-1093, 2017.

T. Takamura, S. Ohara, M. Uehara, J. Suzuki, and K. Sekine, A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life, J. Power Sources, vol.129, pp.96-100, 2004.

M. Ulldemolins, F. Lecras, B. Pecquenard, V. P. Phan, L. Martin et al., Investigation on the part played by the solid electrolyte interphase on the electrochemical performances of the silicon electrode for lithium-ion batteries, J. Power Sources, vol.206, pp.245-252, 2012.
URL : https://hal.archives-ouvertes.fr/cea-00677078

Y. Chen, N. Du, H. Zhang, and D. Yang, Facile synthesis of uniform MWCNT@Si nanocomposites as high-performance anode materials for lithium-ion batteries, J. Alloys Compd, vol.622, pp.966-972, 2015.

L. Zhong, J. Guo, and L. Mangolini, A stable silicon anode based on the uniform dispersion of quantum dots in a polymer matrix, J. Power Sources, vol.273, pp.638-644, 2015.

H. Jung, M. Park, S. H. Han, H. Lim, and S. Joo, Amorphous silicon thinfilm negative electrode prepared by low pressure chemical vapor deposition for lithium-ion batteries, Solid State Commun, vol.125, pp.387-390, 2003.

V. A. Sethuraman, M. J. Chon, M. Shimshak, V. Srinivasan, and P. R. Guduru, In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation, J. Power Sources, vol.195, pp.5062-5066, 2010.

E. Biserni, N. Garino, A. Libassi, P. Bruno, and C. Gerbaldi, Mesoporous silicon nanostructures by pulsed laser deposition as Li-ion battery anodes, ECS Trans, vol.62, pp.107-115, 2014.

S. Ohara, J. Suzuki, K. Sekine, and T. Takamura, A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life, J. Power Sources, vol.136, pp.303-306, 2004.

B. Peng, F. Cheng, Z. Tao, and J. Chen, Lithium transport at silicon thin film: Barrier for high-rate capability anode, J. Chem. Phys, vol.133, p.34701, 2010.

V. A. Sethuraman, V. Srinivasan, A. F. Bower, and P. R. Guduru, In situ measurements of stress-potential coupling in lithiated silicon, J. Electrochem. Soc, vol.157, pp.1253-1261, 2010.

J. Christensen, Modeling diffusion-induced stress in Li-ion cells with porous electrodes, J. Electrochem. Soc, vol.157, pp.366-380, 2010.

H. Tokuda, K. Hayamizu, K. Ishii, M. A. Susan, and M. Watanabe, Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation, J. Phys. Chem. B, vol.109, pp.6103-6110, 2005.

F. Endres, A. P. Abott, and D. Macfarlane, Electrodeposition in ionic liquids, 2008.

D. R. Macfarlane, P. Meakin, J. Sun, N. Amini, and M. Forsyth, Pyrrolidinium imides: A new family of molten salts and conductive plastic crystal phases, J. Phys. Chem. B, vol.103, pp.4164-4170, 1999.

. Solvionic, 1-Butyl-1-Methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide

F. Endres, O. Höfft, N. Borisenko, L. H. Gasparotto, A. Prowald et al., Do solvation layers of ionic liquids influence electrochemical reactions?, Phys. Chem. Chem. Phys, vol.12, pp.1724-1732, 2010.

F. Martineau, Elaboration de nanofils et de nanotubes de silicium par ´ electrodéposition en liquide ionique et propriétés d'´ emission associées, 2011.

. Sigmaaldrich, Silicon tetrachloride

S. Zein-el-abedin, N. Borissenko, and F. Endres, Electrodeposition of nanoscale silicon in a room temperature ionic liquid, Electrochem. Commun, vol.6, pp.510-514, 2004.

A. J. Bard, L. R. Faulkner, J. Wiley, S. , and I. , Electrochemical Methods Fundamental and Applications, 2001.

Q. Xiao, Y. Fan, X. Wang, R. A. Susantyoko, and Q. Zhang, A multilayer Si/CNT coaxial nanofiber LIB anode with a high areal capacity, Energy Environ. Sci, vol.7, pp.655-661, 2014.

M. R. Zamfir, H. T. Nguyen, E. Moyen, Y. H. Lee, and D. Pribat, Silicon nanowires for Li-based battery anodes: a review, J. Mater. Chem. A, vol.1, pp.9566-9586, 2013.

X. H. Liu, J. W. Wang, S. Huang, F. Fan, X. Huang et al., In situ atomic-scale imaging of electrochemical lithiation in silicon, Nat. Nanotech, vol.7, pp.749-756, 2012.

W. O. Filtvedt, A. Holt, P. A. Ramachandran, and M. C. Melaaen, Chemical vapor deposition of silicon from silane: Review of growth mechanisms and modeling/scaleup of fluidized bed reactors, Sol. Energ. Mat. Sol. Cells, vol.107, pp.188-200, 2012.

C. Yuqin, L. Hong, W. Lie, and L. Tianhong, Irreversible capacity loss of graphite electrode in lithium-ion batteries, J. Power Sources, vol.68, pp.187-190, 1997.

A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala et al., Highperformance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater, vol.9, pp.353-358, 2010.

R. Epur, M. K. Datta, and P. Kumta, Nanoscale engineered electrochemically active silicon-CNT heterostructures-novel anodes for Li-ion application. Electrochim, Acta, vol.85, pp.680-684, 2012.

J. P. Maranchi, A. F. Hepp, and P. Kumta, High capacity, reversible silicon thin-film anodes for lithium-ion batteries, Electrochem. Solid-State Lett, vol.6, pp.198-201, 2003.

M. K. Datta and P. Kumta, In situ electrochemical synthesis of lithiated siliconcarbon based composites anode materials for lithium ion batteries, J. Power Sources, vol.194, pp.1043-1052, 2009.

Y. Oumellal, N. Delpuech, D. Mazouzi, N. Dupre, J. Gaubicher et al., The failure mechanism of nano-sized
URL : https://hal.archives-ouvertes.fr/hal-00849719

, Si-based negative electrodes for lithium ion batteries, J. Mater. Chem, vol.21, pp.6201-6208, 2011.

L. Leveau, Etude de nanofils de silicium comme matériau d'´ electrode négative de batterie lithium-ion, 2015.

D. Mazouzi, D. Reyter, M. Gauthier, P. Moreau, D. Guyomard et al., Very high surface capacity observed using Si negative electrodes embedded in copper foam as 3D current collectors, Adv. Energy Mater, vol.4, p.1301718, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01598246

J. K. Lee, C. Oh, N. Kim, J. Hwang, and Y. Sun, Rational design of siliconbased composites for high-energy storage devices, J. Mater. Chem. A, vol.4, pp.5366-5384, 2016.

J. Hassoun, Y. Sun, and B. Scrosati, Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery, J. Power Sources, vol.196, pp.343-348, 2011.

Y. Fu, C. Zu, and A. Manthiram, In Situ-formed Li 2 S in lithiated graphite electrodes for lithium-sulfur batteries, J. Am. Chem. Soc, vol.135, pp.18044-18047, 2013.

L. Wang, Y. Wang, and Y. Xia, A high performance lithium-ion sulfur battery based on a Li 2 S cathode using a dual-phase electrolyte, Energy Environ. Sci, vol.8, pp.1551-1558, 2015.

H. Jha, I. Buchberger, X. Cui, S. Meini, and H. A. Gasteiger, Li-S batteries with Li 2 S cathodes and Si/C anodes, J. Electrochem. Soc, vol.162, pp.1829-1835, 2015.

M. Kohl, J. Bruckner, I. Bauer, H. Althues, and S. Kaskel, Synthesis of highly electrochemically active Li 2 S nanoparticles for lithium-sulfur-batteries, J. Mater. Chem. A, vol.3, pp.16307-16312, 2015.

N. Liu, L. Hu, M. T. Mcdowell, A. Jackson, and Y. Cui, Prelithiated silicon nanowires as an anode for lithium-ion batteries, ACS NANO, vol.5, pp.6487-6493, 2011.

D. B. Williams and C. B. Carter, Transmission Electron Microscopy, Transmission Electron Microscopy A Textbook for Materials Science, pp.22-32, 1996.

P. J. Goodhew, J. Humphreys, and R. Beanland, Electron Microscopy and Analysis, 2000.

R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 2011.

H. Stanjek and W. Hausler, Basics of X-ray diffraction, Hyperfine Interact, vol.154, pp.107-119, 2004.

P. Dutta, Grazing incidence X-ray diffraction, Curr. Sci, vol.78, pp.1478-1483, 2000.