J. Bibliography, . Deforges, M. Sylvain-de-breyne, N. Ameur, N. Ulryck et al., Two ribosome recruitment sites direct multiple translation events within HIV1 Gag open reading frame, Nucleic Acids Research, 2017.

P. Cordero, W. Kladwang, C. Christopher, R. Vanlang, and . Das, Quantitative Dimethyl Sulfate Mapping for Automated RNA Secondary Structure Inference, Biochemistry, 2012.

B. Peter, T. A. Moore, and . Steitz, The roles of RNA in the synthesis of protein, Cold Spring Harbor Perspectives in Biology, vol.3, issue.11, 2011.

A. Serganov and E. Nudler, A decade of riboswitches, Cell, vol.152, issue.1-2, pp.17-24, 2013.

J. Nowakowski and . Tinoco, RNA structure and stability, Seminars in Virology, vol.8, issue.3, pp.153-165, 1997.

B. L. Golden, Preparation and crystallization of RNA, Methods in Molecular Biology, 2007.

B. Houck-loomis, M. A. Durney, C. Salguero, N. Shankar, J. M. Nagle et al., An equilibrium-dependent retroviral mRNA switch regulates translational recoding, Nature, vol.480, issue.7378, pp.561-564, 2011.

J. Santalucia and D. Turner, Measuring the thermodynamics of RNA secondary structure formation, Biopolymers, vol.44, issue.3, pp.309-319, 1997.

M. Zuker and P. Stiegler, Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information, Nucleic Acids Research, 1981.

H. David and . Mathews, Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization, RNA, 2004.

J. Mccaskill, The equilibrium partition function and base pair binding probabilities for RNA secondary structure, Biopolymers, vol.29, issue.6-7, pp.1105-1119, 1990.

S. Wuchty, W. Fontana, L. Ivo, P. Hofacker, and . Schuster, Complete suboptimal folding of RNA and the stability of secondary structures, 1999.

Y. Ding and C. E. Lawrence, A statistical sampling algorithm for RNA secondary structure prediction, Nucleic Acids Research, vol.31, issue.24, pp.7280-7301, 2003.

L. Ivo, M. Hofacker, P. F. Fekete, and . Stadler, Secondary structure prediction for aligned RNA sequences, Journal of Molecular Biology, vol.319, issue.5, pp.1059-1066, 2002.

D. Gautheret and R. R. Gutell, Inferring the conformation of RNA base pairs and triples from patterns of sequence variation, Nucleic Acids Research, 1997.

E. J. Merino, K. A. Wilkinson, J. L. Coughlan, and K. M. Weeks, RNA structure analysis at single nucleotide resolution by Selective 2'-Hydroxyl Acylation and Primer Extension (SHAPE), Journal of the American Chemical Society, 2005.

M. Kertesz, Y. Wan, E. Mazor, J. L. Rinn, R. C. Nutter et al., Genomewide measurement of RNA secondary structure in yeast, Nature, 2010.

K. E. Deigan, T. W. Li, D. H. Mathews, and K. M. Weeks, Accurate SHAPE-directed RNA structure determination, Proceedings of the National Academy of Sciences, 2009.

S. Washietl, L. Ivo, P. F. Hofacker, M. Stadler, and . Kellis, RNA folding with soft constraints: Reconciliation of probing data and thermodynamic secondary structure prediction, Nucleic Acids Research, 2012.

K. Zarringhalam, M. M. Meyer, I. Dotu, J. H. Chuang, and P. Clote, Integrating Chemical Footprinting Data into RNA Secondary Structure Prediction, PLoS ONE, 2012.

J. Cruz, M. F. Blanchet, M. Boniecki, J. M. Bujnicki, S. Shi-jie-chen et al., RNA-Puzzles: A CASP-like evaluation of RNA three-dimensional structure prediction, Parin Sripakdeevong, Irina Tuszynska, 2012.

B. Rune, . Lyngsø, . Christian, and . Pedersen, Rna pseudoknot prediction in energy-based models, Journal of computational biology, vol.7, issue.3-4, pp.409-427, 2000.

S. Sheikh, R. Backofen, and Y. Ponty, Impact of the energy model on the complexity of rna folding with pseudoknots, Annual Symposium on Combinatorial Pattern Matching, pp.321-333, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00670232

M. S. Waterman and T. F. Smith, RNA secondary structure: a complete mathematical analysis. Mathematical Biosciences, pp.90099-90107, 1978.

R. Nussinov, G. Pieczenik, J. R. Griggs, and D. J. Kleitman, Algorithms for Loop Matchings, SIAM Journal on Applied Mathematics, 1978.

M. Zuker, On finding all suboptimal foldings of an RNA molecule, Science, 1989.

D. Ivo-l-hofacker-;-andreas and . Baxevanis, RNA secondary structure analysis using the Vienna RNA package. Current protocols in bioinformatics / editoral board, 2009.

Y. Ponty, Efficient sampling of rna secondary structures from the boltzmann ensemble of low-energy: the boustrophedon method, Journal of mathematical biology, vol.56, pp.107-127, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00548863

J. Michálik, Y. Héì-ene-touzet, and . Ponty, Efficient approximations of RNA kinetics landscape using non-redundant sampling, Bioinformatics, 2017.

Z. Lu, J. W. Gloor, and D. Mathews, Improved RNA secondary structure prediction by maximizing expected pair accuracy, RNA, issue.10, pp.1805-1813, 2009.

M. Hamada, H. Kiryu, K. Sato, T. Mituyama, and K. Asai, Prediction of RNA secondary structure using generalized centroid estimators, Bioinformatics, 2009.

M. Zuker, Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Research, 2003.

J. S. Reuter and D. H. Mathews, RNAstructure: Software for RNA secondary structure prediction and analysis, BMC Bioinformatics, 2010.

G. Xiao-chen-bai, . Mcmullan, H. W. Sjors, and . Scheres, How cryo-EM is revolutionizing structural biology, 2015.

G. Lincoln, M. Scott, and . Hennig, RNA structure determination by NMR, Methods in molecular biology, 2008.

J. Linhui, M. Su, A. M. Brenowitz, and . Pyle, An alternative route for the folding of large RNAs: Apparent two-state folding by a group II intron ribozyme, Journal of Molecular Biology, 2003.

M. Manosas and F. Ritort, Thermodynamic and kinetic aspects of RNA pulling experiments, Biophysical Journal, 2005.
DOI : 10.1529/biophysj.104.045344

URL : https://doi.org/10.1529/biophysj.104.045344

S. Ingle, R. N. Azad, S. S. Jain, and T. D. Tullius, Chemical probing of RNA with the hydroxyl radical at single-atom resolution, Nucleic acids research, 2014.

D. Thomas, J. A. Tullius, and . Greenbaum, Mapping nucleic acid structure by hydroxyl radical cleavage, 2005.

Y. Wan, K. Qu, Z. Ouyang, and H. Y. Chang, Genome-wide mapping of RNA structure using nuclease digestion and high-throughput sequencing, Nature Protocols, 2013.

Y. Peng, T. J. Soper, and S. A. Woodson, Rnase footprinting of protein binding sites on an mRNA target of small RNAs, Methods in Molecular Biology, 2012.

A. William, D. R. Ziehler, and . Engelke, Probing RNA Structure with Chemical Reagents and Enzymes, Current Protocols in Nucleic Acid Chemistry, 2000.

L. Lempereur, M. Nicoloso, N. Riehl, C. Ehresmann, B. Ehresmann et al., Conformation of yeast 18S rRNA. Direct chemical probing of the 5' domain in ribosomal subunits and in deproteinized RNA by reverse transcriptase mapping of dimethyl sulfate-accessible sites, Nucleic Acids Research, 1985.

P. Burgstaller, M. Kochoyan, and M. Famulok, Structural probing and damage selection of citrullineand arginine-specific RNA aptamers identify base positions required for binding, Nucleic Acids Research, 1995.
DOI : 10.1093/nar/23.23.4769

URL : http://europepmc.org/articles/pmc307463?pdf=render

P. Zarrinkar and W. , Kinetic intermediates in RNA folding, Science, 1994.
DOI : 10.1126/science.8052848

A. Garrett, R. R. Soukup, and . Breaker, Relationship between internucleotide linkage geometry and the stability of RNA, RNA, 1999.

S. A. Mortimer and K. M. Weeks, A fast-acting reagent for accurate analysis of RNA secondary and tertiary structure by SHAPE chemistry, Journal of the American Chemical Society, 2007.

J. L. Mcginnis, J. A. Dunkle, J. H. Cate, and K. M. Weeks, The mechanisms of RNA SHAPE chemistry, Journal of the American Chemical Society, 2012.

K. A. Wilkinson, S. M. Vasa, K. E. Deigan, S. A. Mortimer, M. C. Giddings et al., Influence of nucleotide identity on ribose 2'-hydroxyl reactivity in RNA, RNA, 2009.

M. Costin, Z. Gherghe, K. A. Shajani, G. Wilkinson, K. M. Varani et al., Strong correlation between SHAPE chemistry and the generalized NMR order parameter (S2) in RNA, Journal of the American Chemical Society, 2008.

S. A. Mortimer and K. M. Weeks, Time-resolved RNA SHAPE chemistry: Quantitative RNA structure analysis in one-second snapshots and at single-nucleotide resolution, Nature Protocols, 2009.
DOI : 10.1038/nprot.2009.126

URL : http://europepmc.org/articles/pmc4950915?pdf=render

J. Lee, W. Kladwang, M. Lee, D. Cantu, M. Azizyan et al., RNA design rules from a massive open laboratory, Proceedings of the National Academy of Sciences, 2014.
DOI : 10.1073/pnas.1313039111

URL : http://europepmc.org/articles/pmc3926058?pdf=render

R. Turner, K. Shefer, and M. Ares, Safer one-pot synthesis of the 'SHAPE' reagent 1-methyl-7-nitroisatoic anhydride (1m7), RNA, 2013.
DOI : 10.1261/rna.042374.113

URL : http://rnajournal.cshlp.org/content/19/12/1857.full.pdf

R. C. Spitale, P. Crisalli, R. A. Flynn, E. A. Torre, E. T. Kool et al., RNA SHAPE analysis in living cells, Nature Chemical Biology, 2013.

W. Kladwang, C. C. Vanlang, P. Cordero, and R. Das, A two-dimensional mutate-and-map strategy for non-coding RNA structure, Nature Chemistry, 2011.

C. M. Duarte, L. M. Wadley, and A. M. Pyle, RNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space, Nucleic Acids Research, 2003.

K. A. Wilkinson, R. J. Gorelick, S. M. Vasa, N. Guex, A. Rein et al., High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states, PLoS Biology, 2008.

R. Li, Y. Li, K. Kristiansen, and J. Wang, SOAP: Short oligonucleotide alignment program, 2008.

B. Langmead, L. Steven, L. Salzberg, and . Bowtie2, Nature methods, 2013.

G. M. Rice, C. W. Leonard, and K. M. Weeks, RNA secondary structure modeling at consistent high accuracy using differential SHAPE. RNA, 2014.

A. Spasic, M. Sarah, . Assmann, C. Philip, D. Bevilacqua et al., Modeling RNA secondary structure folding ensembles using SHAPE mapping data, Nucleic Acids Research, vol.46, issue.1, pp.314-323, 2018.

R. Christopher-a-lavender, G. Lorenz, R. Zhang, . Tamayo, L. Ivo et al., Model-Free RNA Sequence and Structure Alignment Informed by SHAPE Probing Reveals a Conserved Alternate Secondary Structure for 16S rRNA, Plos Computational Biology, 2015.

M. Katrina, A. Kutchko, and . Laederach, Transcending the prediction paradigm: novel applications of SHAPE to RNA function and evolution. Wiley Interdisciplinary Reviews RNA, 2017.

V. Reinharz, Y. Ponty, and J. Waldispühl, Combining structure probing data on RNA mutants with evolutionary information reveals RNA-binding interfaces, Nucleic Acids Research, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01291754

Y. Clarence, W. Cheng, . Kladwang, R. Joseph-d-yesselman, and . Das, RNA structure inference through chemical mapping after accidental or intentional mutations, Proceedings of the National Academy of Sciences of the United States of America, vol.114, issue.37, pp.9876-9881, 2017.

S. Mitra, I. V. Shcherbakova, R. B. Altman, M. Brenowitz, and A. Laederach, High-throughput single-nucleotide structural mapping by capillary automated footprinting analysis, Nucleic Acids Research, 2008.

F. Karabiber, J. L. Mcginnis, O. V. Favorov, and K. M. Weeks, QuShape: rapid, accurate, and best-practices quantification of nucleic acid probing information, resolved by capillary electrophoresis, RNA, vol.19, issue.1, pp.63-73, 2013.

M. J. Smola, G. M. Rice, S. Busan, N. A. Siegfried, and K. M. Weeks, Selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis, Nature Protocols, 2015.

H. Li and R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, 2009.

D. Sculley, Web-scale k-means clustering, Proceedings of the 19th international conference on World wide web WWW 10, p.1177, 2010.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00650905

A. Christopher, A. Mattson, and . Messac, Pareto frontier based concept selection under uncertainty, with visualization, Optimization and Engineering, vol.6, issue.1, pp.85-115, 2005.

C. E. Hajdin, S. Bellaousov, W. Huggins, C. W. Leonard, D. H. Mathews et al., Accurate SHAPE-directed RNA secondary structure modeling, including pseudoknots, Proceedings of the National Academy of Sciences, 2013.

C. Ségoì-ene-caboche, Y. Audebert, D. Lemoine, and . Hot, Comparison of mapping algorithms used in high-throughput sequencing: Application to Ion Torrent data, BMC Genomics, 2014.

M. Andronescu, V. Bereg, H. Holger, A. Hoos, and . Condon, RNA STRAND: The RNA secondary structure and statistical analysis database, BMC Bioinformatics, 2008.
DOI : 10.1186/1471-2105-9-340

URL : https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-9-340

F. Wickelmaier, ;. .. {{}{, and . }{}}, An introduction to MDS. Reports from the Sound Quality Research Unit, p.26, 2003.

, {%}7B{%}25{%}7D7B{%}7B{ ~ }{%}7D{%}7B{%}25{%}7D7DArnaud/indexation/mds03.pdf

D. Lai, J. R. Proctor, J. Yun, A. Zhu, and I. M. Meyer, R-CHIE: A web server and R package for visualizing RNA secondary structures, Nucleic Acids Research, 2012.
DOI : 10.1093/nar/gks241

URL : https://academic.oup.com/nar/article-pdf/40/12/e95/25343427/gks241.pdf

K. Yusim, H. Yoon, B. Foley, S. Feng, J. Macke et al., Integrated sequence and immunology filovirus database at Los Alamos. Database : the journal of biological databases and curation, 2016.
DOI : 10.1093/database/baw047

URL : https://academic.oup.com/database/article-pdf/doi/10.1093/database/baw047/17473759/baw047.pdf

, Gareth Stockwell. PyMOL tutorial. Biochemistry, 2003.

K. Darty, A. Denise, and Y. Ponty, VARNA: Interactive drawing and editing of the RNA secondary structure, Bioinformatics, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00432548

S. Busan and K. M. Weeks, Accurate detection of chemical modifications in RNA by mutational profiling (MaP) with ShapeMapper 2. RNA, 2018.

K. Brauburger, Y. Boehmann, V. Krähling, and E. Mühlberger, Transcriptional Regulation in Ebola Virus: Effects of Gene Border Structure and Regulatory Elements on Gene Expression and Polymerase Scanning Behavior, 1993.

E. Rivas, J. Clements, and S. R. Eddy, A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs, Nature Methods, 2016.

M. Ledda and S. Aviran, PATTERNA: transcriptome-wide search for functional RNA elements via structural data signatures, Genome Biology, vol.19, issue.1, p.28, 2018.
DOI : 10.1186/s13059-018-1399-z

URL : https://genomebiology.biomedcentral.com/track/pdf/10.1186/s13059-018-1399-z

A. N. Sexton, P. Y. Wang, M. Rutenberg-schoenberg, and M. D. Simon, Interpreting Reverse Transcriptase Termination and Mutation Events for Greater Insight into the Chemical Probing of RNA, Biochemistry, 2017.

M. Angela, M. E. Yu, J. B. Evans, and . Lucks, Estimating RNA structure chemical probing reactivities from reverse transcriptase stops and mutations. bioRxiv, pp.34-37, 2018.

H. Li and S. Aviran, Statistical modeling of RNA structure profiling experiments enables parsimonious reconstruction of structure landscapes, Nature Communications, 2018.