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Abstract: Modeling and Identification of the constitutive behavior of Magne-

torheological Elastomers

In this thesis, we study a class of ‘active materials’ called Magnetorheological Elastomers
(MRE) which are ferromagnetic impregnated rubbers whose mechanical properties are al-
tered by the application of external magnetic fields. With the purpose of characterizing the
behavior of MREs up to large strains and high magnetic fields, this work brings a completely
novel experimental, theoretical and numerical approach.

The first part of this study focuses on an experimental investigation of MRE where mul-
tiple microstructures (isotropic and transversely isotropic materials) and multiple particles’
volume fraction are tested. A special sample geometry is designed in order to increase the
uniformity of internal magnetic and mechanical fields measured during coupled-field experi-
ments. The interfacial adhesion between the iron fillers and the silicone matrix is investigated
and we show that when specimens are subjected to external magnetic fields, a silane primer
treatment of the particles is needed to prevent debonding at the interface particle/matrix.
Then, we present the magneto-mechanical testing setup that allows simultaneous 3D me-
chanical and magnetic measurements before discussing the results. Even if is found that
instabilities are ubiquitous in MREs, lots of useful data are collected and will be used to
compute the parameters proposed in the material model.

The second part of the thesis is dedicated to the modeling of isotropic MREs. The
continuum description proposed by Kankanala, Triantafyllidis and Danas [90, 40, 41] to
derive constitutive laws that account for finite strains is used and, in particular, the energetic
approach (that requires an energy density function) is chosen. Multiple equivalent variational
formulation alternatives (based on different choices of the independent magnetic variable used
in the energy function: B, H or M) are given and implemented into 3D finite element (FEM)
codes. Based on the use of FEM simulation in combination with least square optimization
methods, the previously collected experimental data are fitted and all three energy functions
ψ

B
, ψ

H
and ψ

M
are computed. The obtained material model proves to have excellent

predictive capabilities when compared to other experiments not used in the fitting process.
The use of numerical tools is necessary to make sure that the calculated material parameters
are not influenced by the shape of experimental specimens.

The last part of this work details the numerical implementation of the different variational
formulations. For each one of them, it is found that isoparametric elements are well suited
to simulate coupled magneto-mechanical boundary value problems. We show that special
care is needed when implementing variational formulations using the displacement vector
and the magnetic vector potential as independent variables. Indeed, ensuring the uniqueness
of the vector potential requires to numerically enforce the Coulomb gauge, which leads to
numerical complications that are addressed in this thesis. Before describing the different
patch tests that have been considered to validate the numerical codes, we show which are the
valid boundary conditions for the magnetic vector potential and how to use the symmetry
properties of a given boundary value problem to reduce its complexity and the computational
resources needed to solve it.
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Résumé: Modélisation et identification de la loi de comportement des élas-

tomères Magnéto-Rhéologiques

Ce travail de thèse porte sur une catégorie de matériaux actifs dénommés Elastomères
Magnéto-Rhéologiques (EMR). Ces derniers sont composés de particules micrométriques et
magnétisables imprégnées dans une matrice élastomère isolante. Il est possible de modifier
les propriétés mécaniques de tels matériaux en les soumettant à un champ magnétique ex-
terne. Avec pour objectif d’aboutir à une caractérisation couplée (magnéto-mécanique) du
comportement des EMRs en grandes déformations et en présence de champs magnétiques
élevés, ce travail propose une approche à la fois expérimentale, théorique et numérique.

La première partie de ce travail s’intéresse à des aspects expérimentaux où l’influence de
la microstructure (isotrope et transverse isotrope) et l’influence de la fraction volumique de
particules sont étudiées. Un échantillon dédié est développé afin d’obtenir simultanément
des champs mécaniques et magnétiques les plus homogènes possibles dans celui-ci lors d’une
caractérisation couplée. La question de l’adhésion interfaciale entre les particules de fer doux
et la matrice en silicone est également traitée et il est montré qu’un traitement chimique des
particules est nécessaire afin d’éviter toute décohésion avec la matrice lorsque le matériau est
soumis à un champ magnétique externe. Avant d’analyser les données obtenues, le dispositif
expérimental permettant d’obtenir de manière simultanée une mesure du champ de déforma-
tion en trois dimensions et une mesure des champs magnétiques internes, est décrit. Malgré
l’ensemble des difficultés expérimentales en grande partie dûes à des phénomènes d’instabilité
qui sont omniprésents chez les EMRs, de nombreuses données sont collectées et serviront à
la calibration des lois de comportement.

La seconde partie de cette thèse couvre la modélisation couplée magnéto-mécanique des
EMRs en s’appuyant sur le cadre théorique général des solides magnéto-élastiques proposé
par Kankanala, Triantafyllidis et Danas [90, 40, 41]. En particulier, la méthode énergétique
(qui s’appuie sur l’utilisation d’une fonction d’énergie libre) est préférée et des formulations
variationnelles équivalentes (qui diffèrent entre elles simplement par le choix de la variable
magnétique indépendante utilisée pour décrire le problème : B, H ou M) sont proposées
et implémentées dans des codes numériques 3D s’appuyant sur la méthode des éléments
finis. Ces outils numériques sont combinés à la méthode de minimisation des moindres carrés
afin d’obtenir l’ensemble des paramètres matériaux du modèle de comportement des EMRs.
L’utilisation de simulations numériques est nécessaire car une approche purement analytique
ne permettrait pas de modéliser ‘l’effet de forme’ observé expérimentalement. En effet, il
est primordial de modéliser ce dernier car dans le cas contraire les paramètres identifiés
dépendraient de la forme de l’échantillon expérimental et ne décriraient pas uniquement le
matériau.

La troisième partie de cette étude décrit en détail l’implémentation numérique des dif-
férentes formulations variationnelles proposées précédemment. Dans chacun des cas, il est
prouvé que l’utilisation d’éléments isoparamétriques est bien adaptée. De nombreuses diffi-
cultés numériques ont été observées dans le cas des formulations variationnelles utilisant le
champ de déplacement et le potentiel vecteur magnétique comme variables indépendantes.
L’ensemble de ces difficultés est surmonté dans ce travail. Par exemple, la minimisation de
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l’énergie potentielle sous la contrainte imposée par la jauge de Coulomb (nécessaire pour
assurer l’unicité du potentiel vecteur magnétique) est réalisée grâce à la méthode de pénali-
sation. Avant de décrire les différents problèmes tests utilisés pour s’assurer de la validité et
de la précision des codes numériques, les différentes étapes nécessaires à la simulation d’un
problème aux limites sont expliquées. Plus précisément, les questions liées aux spécificités
des conditions aux limites à appliquer sur le potentiel vecteur magnétique ou encore aux
conditions de symétries, sont traitées.
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Magnetorheological elastomers (MREs) are smart materials composed of an elastomeric
matrix filled with magnetic particles. The combination of the magnetic characteristics of the
particles and the mechanical properties of the matrix allow to obtain high level of deforma-
tions with relatively low externally applied magnetic fields. The rapid characteristic response
time and the possibility to control these deformations by adjusting the applied field make
these materials very promising for modern engineering applications [24]. For instance, one
could envision to use MREs for the following applications: novel actuators, smart sensors,
artificial muscles, sound control, shape control, product health or lifetime monitoring, etc ...
(see the review by [77]). However, the efficient design of such devices is so far very limited
since, to the best of our knowledge, there exists no full characterization of the magneto-
mechanical properties of MREs for finite strains and high magnetic fields.

In this introductory chapter, after presenting MREs and their benefits over other types
of smart materials in Section I.1, a sorting within the class of MRE is proposed in Section

9



10 Chapter I – Introduction

I.2. The main research topics, as well as some practical use cases of MREs are presented
in Section I.3. In Section I.4, we briefly present the different modeling approaches that can
be divided into two categories with either microscopic based models or phenomenological
continuum descriptions. Since the latter approach is the one used in this thesis and requires
experimental data of quality to properly compute magneto-elastic material properties, we
analyze in Section I.5 what has previously been done in terms of experiments. Finally, the
scope of the present work is presented and the organization of the manuscript is detailed to
guide the reader through the following chapters in Section I.6.

I.1 MREs among smart materials

A stimulus from a given physical domain can induce in some materials called ‘smart’, ‘in-
telligent’ or ‘active’ a response to their environment which can sometimes produce a useful
effect in another physical domain. Common materials that formally have the label of being
smart include piezo-electric materials, electro-strictive materials, magneto-strictive materi-
als, electro-rheological materials, magneto-rheological materials, thermo-responsive materi-
als, shape memory alloys, etc... The applied driving forces for smart materials can be broadly
identified as mechanical fields, electrical fields, magnetic fields, thermal fields, chemical fields,
etc... Therefore, an important feature related to smart materials is that they encompass al-
most all fields of science and engineering.

While electro-active materials usually require high voltages to obtain small deformations
[8], low magnetic fields which can be economically generated (using permanent magnets,
solenoids) are used to stimulate magneto-active materials (see [65, 64, 144, 141]). As a
branch of this kind of active materials, electro- and magneto-rheological materials consist
of an insulating or non magnetic matrix (either a fluid, a foam or an elastomer) into which
electrically or magnetically polarizable particles are embedded, respectively [77]. Among the
benefits of MREs over other types of smart materials, one can think of the absence of electric
charges, the possibility to obtain large deformations and the fact that these materials can be
bio-compatible (depending on the choice of matrix).

A brief history covering the development of magneto-rheological (MR) materials from its
early stages as MR fluids to its current state that includes a broader range of materials (foam
and elastomers) is provided in the introduction of Chapter II.

I.2 Classification within MREs

Subjecting MREs to magnetic fields during manufacturing leads to materials with differ-
ent microscopic architectures and anisotropic properties. These materials are called field-
structured MREs and it has been observed that they are anisotropic in terms of mechanical,
magnetic, electrical, and thermal properties [29]. More specifically, applying a uni-axial
magnetic field produces chain like particle structures1: for low volume fractions the particles

1 In the following, MREs structured by an externally applied, uni-axial magnetic field are termed field-
structured or transversely isotropic whereas isotropic MREs designate composites with a random distribution
of particles (where no structuring field is applied during fabrication).
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ferro-gels). Gel materials (which consist of a fluid within a three-dimensional weakly cross-
linked network) can be much softer than typical elastomers, but there are some drawbacks
associated with their use. They usually have a wet and sticky consistency, and when agitated,
these materials start to flow (thixotropy), thereby resulting in poor mechanical properties
[156, 129, 157].

A broad range of magnetic filler particles are used in MREs, among which: magneto-
strictive or magnetic shape memory particles, as well as hard or soft magnetic particles.
Quite a number of researchers employed highly magneto-strictive particles, usually Terfenol-
D [50]. This alloy made out of rare earth crystals is the most effective but a cost-intensive
magneto-strictive material, capable of generating reversible strains in the order of 10−3 in
response to a magnetic loading [73]. The use of particles with magnetic shape memory
yields both temperature and magnetic field-driven MRE composites [133]. The dispersion of
hard magnetic particles in an elastomeric matrix, magnetized during fabrication, produces
anisotropic, magnetically-poled MREs similar to a flexible permanent magnet [96]. However,
the most widely used particles in MREs fabrication (in particular spherically shaped carbonyl
iron powder (CIP), [88, 18, 44, 134]) are made of soft ferromagnetic materials such as nickel,
cobalt or iron and their alloys [6, 5]. Iron presents the benefit of having a high magnetic
susceptibility and saturation magnetization, providing high inter-particle interaction forces,
as well as a low remanent magnetization required in order to obtain a quick and reversible
behavior for MRE applications.

The size of the magnetic particles further distinguishes MREs from ferro-gels3 (as well
as ferro-fluids) that tend to include nano-sized particles which are magnetic mono-domains.
According to the definition in the review by Carlson and Jolly [29], MREs rather embed
micron-sized particles possessing a high number of magnetic domains that, overall, are harder
to magnetize [29, 105].

I.3 A brief review of existing work on MREs

Considering the large amount of possible matrix-filler combinations in the literature, a lot of
research effort is dedicated to find an optimal composition that will maximize the magneto-
mechanical coupling, as well as improving the fabrication procedure. Optical microscopy [54],
scanning electron microscopy [67, 32] or X-ray micro-tomography [16] are used to investigate
the obtained micro-structures. The processing conditions and (field-)curing mechanisms are
crucial parameters for the manufacturing of MREs. More specifically, the mixed viscosity
- a measure of the thickness of the blended composite constituents -, the temperature and
the magnetic field will determine the competition between gravitational settling and the
alignment of the particles during curing [4, 72]. Each of these parameters dictate the final
structure of the material, which complicates the comparison of experimental results in the
literature.

Furthermore, extensive studies have investigated the dynamic small strain behavior of
MREs, especially the influence of an externally applied magnetic field on mechanical prop-
erties such as storage, loss and viscoelastic moduli [139, 84, 64, 101, 88, 53, 92]. Since it has

3Ferro-gels are sometimes considered as MREs.
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as a hysteretic, saturating magnetic response further complicate the modeling of such com-
posites. Basically, the approaches used to model these materials can be partitioned into two
main categories: micro-mechanical or structural models on the one hand and continuum or
phenomenological models on the other hand. They are briefly reviewed in the following.

I.4.1 Micro-mechanically based description of MREs

The first kind of model provides a microscopic description of MREs. In most cases, the
magnetic filler particles are considered as rigid spheroids randomly distributed (to describe
isotropic materials) [17], or with a preferred alignment (to describe transversely isotropic
materials) [42, 153], within the elastomeric matrix. The magneto-mechanical interactions for
a large set of particles is then extrapolated to obtain global expressions for a body. The
powerful technique called homogenization can determine the effective macroscopic constitu-
tive model for a magneto-elastic composite based on the properties of the constituent phases
and their relative arrangement [124, 39]. The main benefit of that type of models is that
the obtained mathematical expressions can provide insight into the underlying microscopic
physical mechanisms responsible for the coupling in MREs. However, the major drawback
lies in the complexity of these expressions, even when a series of simplifications is adopted
(only the fields of closely neighboring particles or isolated evenly distributed particle chains
affect each other; see Jolly et al. [84], Yin et al. [153] for inclusions in dilute limit, Corcolle
et al. [37] using small strain Hashin-Strikman homogenized MRE model; etc...). Due to
technical difficulties associated with large kinematics, most of the micro-mechanically based
studies are in the small strain context, save for the recent work by Ponte Castañeda and
Galipeau [124, 59, 60], Lefèvre and Lopez-Pamies [100] and Danas [39]. Recently, quite a
number of computational homogenization results have been reported for rubber filled with
periodic/hexagonal arrays (Galipeau et al. [61], Javili et al. [83], Keip and Rambausek [93])
and approximately isotropic distributions (Danas [39], Kalina et al. [87]) of circular particles
in two dimensions and with periodic cubic arrays of spherical particles (Javili et al. [83],
Miehe et al. [114]) in three dimensions.

I.4.2 Phenomenological continuum modeling

The advantage with the second kind of models called continuum models is that they don’t
have to describe all the microstructural phenomena to accurately capture the material’s
behavior. Since the magnetic particles are very small in comparison to the overall size of the
investigated bodies, a continuous description of isotropic or field-structured MREs can be
assumed.

Some magneto-mechanical problems in MREs are solved within the framework of a rel-
atively simple macroscopic theory, in which the MRE composite is considered as a mag-
netizable elastic continuum, whose equations of magnetic and elastic state are uncoupled
[155, 129, 45]. Other models account for stress-induced changes in the magnetic behavior,
but without a comprehensive field theory, they are limited to one dimensional (small) de-
formations or to particular geometrical shapes [105, 157, 92]. Fully coupled non-linear field
theories for isotropic MREs [47, 90, 26, 119, 132] and field-structured magneto-elastic con-
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tinua [25, 40] have also been developed based on only one underlying continuum . To establish
the corresponding governing equations (i.e. the relations between the stress, the strain, the
displacement and the magnetic fields), use is made of equations belonging to different fields
of science, namely: global balances of linear and angular momentum, the first and second
law of thermodynamics, as well as Maxwell’s equations for electromagnetism. At the heart of
these theories (which neglect the hysteretic and dissipative behavior of MREs), a free energy
density function that depends in a coupled fashion on mechanical deformations and magnetic
fields describes the materials constitutive behavior. In this approach that is the theoretical
basis for what has been done in this thesis, the material constitutive behavior needs to be
identified with the help of magneto-mechanical experiments. Once the material parameters of
these models have been identified and implemented numerically, it will be possible to simulate
boundary-value problems in complex geometries and complex loading conditions [49, 41].

The main problem at the moment, however, is the lack of an accurate experimental
characterization. Indeed, in Section I.5, a review of the available experimental data will show
that magneto-elastic coupled behavior up to high strain and high magnetic fields has not been
well explored yet due to the difficulties encountered in experiments (due non-uniform fields
created by shape effects for instance) and fabrication (for example, we will show in this thesis
that a particle treatment is necessary to avoid debonding at the interface ‘matrix/particle’).
Hence the design of smart devices capable of high deformations has been limited so far and
very few applications allow the MRE material to deform up to 20 percent [38, 144, 141].

I.5 Difficulties associated with MRE experiments

Several difficulties need to be addressed when characterizing MREs experimentally. The
first issue lies in the fact that uniform mechanical fields within a test specimen that are
required by (standard) mechanical testing methods of elastomers [30, 116], have to be com-
bined with uniform magnetic field distribution within the same sample when subjected to
complex magneto-mechanical loading conditions. Secondly, another difficulty is linked to the
fact that completely capturing the behavior of MREs requires tests up to large strains and
under high magnetic fields. Further complicating this task, the magnetic material properties
have to be measured during sample deformation to properly account for the magneto-elastic
coupling. Last but not least, different deformation modes should be evaluated to accurately
identify the materials constitutive behavior. In the literature, one can find a large number
of tests (quasi-static, large strains, high magnetic field) for various MRE materials. Most of
these studies are oriented in a purely experimental fashion without the idea yet of a general
constitutive description in mind.

In what follows, the most significant studies are classified according to the magnetic field
generation. Unless otherwise indicated, measurements of the magnetic properties - if done at
all - are performed separately from mechanical ones (i.e. no coupling). Additionally, ‘strains’
implies nominal strain and ‘magnetic field’ designates the excitation magnetic field b0 = µ0h0

in [T], if not otherwise specified.
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• Chapter III covers the actual magneto-mechanical characterization. After introducing
the general theoretical framework for isotropic (and transversely isotropic) magneto-
elastic continua, the coupled magneto-mechanical constitutive laws for both isotropic
and field-structured MREs are derived (using the energetic approach) in order to deter-
mine the sets of material parameters to be identified. The second part of this chapter
is dedicated to the determination of these material constants for isotropic materials,
using the experimental data obtained in Chapter II.

• In Chapter IV, we explain how to implement into finite element codes the different
variational formulations discussed in Chapter III. It is to be noted that such codes are
used in Chapter III since the determination of material parameters cannot be done
analytically and requires to compare experimental data with numerical simulations as
it will be explained.

• Finally, Chapter V provides concluding remarks as well as perspectives for future work
regarding the specific subjects treated in this thesis. The numerical study of an haptic
device that has already been prototyped and experimentally tested is proposed.
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II.1 Introduction

II.1.1 Context of the study

This work pertains to the technologically important area of active materials, also commonly
named smart materials. These can be broadly defined as materials in which a stimulus from
a given physical domain (mechanical, electrical, magnetic, thermal, etc) generates a response
belonging to another domain. Piezoelectricity is a clear illustration of this concept whereby
a mechanical stimulus yields an electrical response in the form of a potential variation. As
a branch of active materials, magnetorheological materials consist of a non-magnetic matrix
into which magnetically polarizable particles are mixed [75]. The first reported magne-
torheological materials had a fluid matrix [128]. In these so-called magnetorheological fluids
(MRFs), the particles form columnar structures parallel to the externally applied uniaxial
magnetic field. As the field increases, it becomes more and more difficult for the fluid to
flow through the formed structures. This field-dependent rheological behavior, which can be
rapidly and reversibly controlled, has been exploited in a variety of vibration control or torque
transfer devices [28, 10]. However, the drawbacks of MRFs are the settling of their particles
over time and the fact that they need to remain enclosed. An answer to these drawbacks
was to use an elastomer as the matrix: magnetizable particles are mixed into the initially
fluid-like polymer blend and remain locked in place within the cross-linked network of the
cured elastomer. Hence magnetorheological elastomers (MREs) are often considered as the
solid analogs of MRFs. The first researchers who conducted preliminary tests on MREs were
Rigbi and Jilken [130]. They studied the behavior of a ferrite elastomer composite under
the combined influence of elastic stresses and magnetic fields and described the previously
unknown magneto-mechanical effects. Indeed, the soft characteristics of the matrix combined
with the magnetic properties of the particles allow these flexible composites to both deform
and alter their stiffness in response to a rather low external magnetic field. Their rapid
response, their high level of deformations and the possibility to control their deformations
by adjusting the field make these materials of special interest in a variety of advanced engi-
neering applications such as tunable damping systems, actuators, sensors, artificial muscles,
sound control or shape control (see the review by Hamrock [75] and also Bustamante [24]).
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II.1.2 Bibliographic background on MREs

Considering the variety of possible matrix-filler combinations, many experimental studies
have been dedicated to the composition and processing of MREs along with the investiga-
tion of the obtained microstructures [54, 67, 31]. Among all possible matrix materials, it
stands out that silicone rubbers are preferred due to their excellent processability, their good
thermal and aging properties, as well as their low elastic modulus that tend to facilitate
the magneto-mechanical interaction [88, 66]. As far as particles are concerned, micron-sized
iron particles are the most common since they exhibit high magnetic susceptibility and high
saturation magnetization, thus providing high inter-particle interaction forces, as well as low
remanent magnetization, a property required to obtain quick and reversible control by the
magnetic field in MRE devices [29]. Extensive studies have also been conducted to inves-
tigate the influence of an external magnetic field on the damping properties of MREs such
as storage, loss and viscoelastic moduli [84, 64, 102]. In particular, their performances as
tunable vibration absorbers and tunable stiffness devices have been analyzed and prototypes
have been developed [52, 55, 38, 109, 95, 144].

In contrast and despite a potential for slower time response applications in artificial mus-
cles or shape control, only a handful of experimental studies have focused on characterizing
the coupled magneto-mechanical behavior of MREs under low-rate loadings. One of the diffi-
culties lies in the fact that standard mechanical testing methods yielding uniform mechanical
fields within the elastomer test specimen have to be combined with externally applied mag-
netic loadings inducing a uniform magnetic field distribution inside the sample. Additionally,
in order to analyze the magneto-mechanical couplings, both magnetic and mechanical quan-
tities have to be measured during sample deformation. Since the first experimental studies
regarding MREs often approached their behavior without the prospect of a general macro-
scopic coupled constitutive description, one can find in the literature a large number of tests
(quasi-static, large strains, high magnetic field) for various MRE materials but measure-
ments of the magnetic properties, if done at all, are performed separately from mechanical
ones (i.e. no coupling). Some studies indeed focused on the deformation of MREs under
purely magnetic loading [45, 46]. Other studies explored the mechanical response of MREs
under magnetic field but performed experiments in which either the magnetic field was not
homogenous [54, 138, 105, 135, 136] and/or in which there was no access to all mechanical
quantities [20, 9, 35, 89, 40]. Additionally, an important mechanical effect arising in filled
elastomers (the Mullins effect, see Section II.2.1) is ignored in these study and may explain
some of the unexpected and unrepeatable results [71].

Finally, an important part of the literature on MREs focuses on their modeling under
monotonic loadings. The chosen approaches can be partitioned in micro-mechanical or struc-
tural models on the one hand [42, 17, 153, 124] and continuum or phenomenological models
on the other hand [24, 45, 47, 90, 119, 132]. A review of theoretical and numerical works
is beyond the scope of this article and it is only important to emphasize here that, in the
continuum approach, the material constitutive behavior include parameters that need to be
identified with the help of consistent magneto-mechanical experiments.
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II.1.3 Aim of the study and structure of the chapter

Hence there exist, to our knowledge, no precise and complete characterization of the fully-
coupled magneto-mechanical properties of MREs, thus hindering the further design of MRE-
based devices. Through this work, we therefore aim at understanding the macroscopic re-
sponse of MREs under combined magnetic and mechanical loading conditions. For this
purpose, we developed a framework for characterizing experimentally the coupled magneto-
mechanical behavior of MREs up to large strains and up to high magnetic fields, relying on
both specially designed samples and a dedicated experimental setup providing precise in-situ
coupled data. Although this is beyond the scope of this chapter, note that we will also seek
to derive coupled magneto-mechanical continuum constitutive laws, for which the obtained
coupled magneto-mechanical experimental data will be necessary.

The chapter is organized as follows: in Section II.2, a short review of physical mechanisms
arising in MREs is given in order to provide the necessary background for discussing the
results. In Section II.3, the investigated materials as well as aspects pertaining to samples
design and fabrication are presented. Section II.4 is dedicated to the experimental setup and
metrological aspects involved in the coupled magneto-mechanical characterization of MREs.
Experimental results obtained on MREs with different particle volume fractions are detailed
in Section II.5. These results provide material to discuss the underlying microstructural
mechanisms responsible for the macroscopic deformation of MREs under combined magnetic
and mechanical loading conditions. Finally, remarks regarding parameters identification of a
constitutive model and conclusions on further aspects to be studied are developed in Section
II.6.

II.2 Physical mechanisms arising in MREs

II.2.1 Mechanical behavior of MREs as particle-filled composites

Even before considering coupled magneto-mechanical aspects, purely mechanical phenomena
arise in MREs that are solely due to matrix-filler interactions. Under large deformations, a
softening and a permanent deformation between the first and the subsequent load cycles are
reported in filled rubbers and MREs [117, 118, 113, 36]. This phenomenon, which depends on
the maximum applied strain, is known as the ‘Mullins effect’ and corresponds to the breaking
of the initial bonds between the fillers and the matrix. The highest softening occurs after
the first load cycle and the hysteresis loop then decreases in area until stabilization after a
few cycles. The propensity of the Mullins effect, along with the composite stiffness, both
increase with particle content. Particle size and shape also have a significant influence on
the composite mechanical behavior [57]. Another important aspect, mainly influencing the
mechanical strength, is the interfacial adhesion between the filler particles and the matrix [57,
43]. Indeed, beyond a critical stress level, debonding acts as a distinct failure phenomenon in
a polymer containing rigid inclusions due to stress concentrations at the weak particle-matrix
interface [62]. Finally, filler networks such as the particle chains in field-structured MREs,
as well as possible aggregates due to fabrication process, can further affect the composite
mechanical behavior.
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II.2.2 Magnetic response of MREs

Important variables commonly used in the magnetics-related literature are recalled here.
In vacuum, the magnetic field b0 = µ0h0 corresponds to the externally applied field h0

multiplied by the magnetic permeability of the free space µ0 = 4π · 10−7 [N/A2]. If a finite
ferromagnetic body is exposed to the excitation field h0, the body becomes magnetized and
generates a perturbation field h̃, also known as demagnetizing field or stray field [120]. The
macroscopic magnetic constitutive relation can then be defined, following the SI system, as

b = µ0(h0 + h̃ + m) = µ0(h + m), (II.2.1)

where b = b0 + b̃ is the total magnetic field, also called magnetic induction or magnetic flux
density, expressed in Tesla [T = N/A·m] and b̃ = µ0(h̃+m) is the magnetic perturbation field.
The state of magnetic polarization within the body is described by the magnetization field
m [A/m]. h = h0+ h̃ is the total h-field, also called magnetic field intensity or magnetic field
strength, expressed in [A/m]. The nonlinear relation between h and m for a ferromagnetic
bulk material can be determined experimentally and usually takes the form of a hysteresis
loop.

In the case of micrometric iron particles usually used in MREs, remanence magnetization
(remaining magnetization when applied field vanishes) and coercive field (value of applied
field at which magnetization becomes non-zero) are small (in the order of 10−3 T) and mag-
netic hysteresis is usually neglected [105]. The dimensionless volume susceptibility χ [−]
corresponding to the initial slope of the m - h curve can then be introduced, as well as the
following linear constitutive relations

m = χh, b = µ0 (1 + χ)h = µ0 µr h = µh, (II.2.2)

where µr and µ are the relative and magnetic permeability of the body, respectively.
It has been shown that the susceptibility of MRE composites is small compared to the

bulk values of iron [134]. Moreover, it has been observed that both the initial susceptibility
and the saturation magnetization increase with increasing particle content. The saturation
magnetization is often assumed to be a linear function of the particle content and the satu-
ration magnetization of the bulk particle material [46, 105].

II.2.3 Deformation under magnetic field

Experimental studies of MREs report deformations up to 10−1 [46], and show either stretching
or contracting of MREs along the uniformly applied field [105, 40]. This deformation due
to the magnetic field is often referred to as magnetostriction. Note that since the 19th
century, the term magnetostriction has been used in physics to designate the deformation
caused by intra-granular spin-orbit interaction in crystalline ferromagnets [85]. In this case,
deformations at play are several orders of magnitude lower (10−6) than in MREs. In what
follows, the underlying mechanisms involved in MRE’s magnetostriction are clarified.

Magnetostriction (here referring to the definition used in physics) is inherently present in
the ferromagnetic filler particles of MREs. However, the magnetostriction of the individual
particles is several orders lower than the strains reported in MREs. Therefore, this mechanism
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is usually neglected in investigations of standard MREs [45] and the word magnetostriction
often used in the MRE literature solely designates the observed macroscopic effect.

Another mechanism that can arise at the microscopic scale is the rotation of the particles
due to magnetic torques. Such torques apply predominantly to particles with an elongated
shape. Because of their spherical shape, the carbonyl iron particles used in this study can-
not experience magnetic torques. However, if care is not taken during fabrication, particle
aggregates may arise in MRE materials and contribute to the occurring deformation through
torques [142].

The remaining physical mechanisms are the magneto-dipolar interactions between the
particles. To summarize, these interactions try to enhance the overall magnetic susceptibility
of the body by diminishing the magnetic part of its energy, in competition with the mechan-
ical strain energy. The deformation of a MRE sample then seems to be the result of two
contributions:

(a) On the one hand, determined by the overall geometry of the sample, the Maxwell stress
(second-order tensor describing the electromagnetic force within a magnetic volume)
at the discontinuity interface between the air and the sample can induce an elongation
of the MRE composite along the field. A significant strain of almost 5% for an MRE
sphere has been reported [46] and attributed to this so-called shape-effect. In this

case, a demagnetizing factor D relating the internal perturbation field h̃ to the uniform
magnetization m through h̃ = −Dm can be introduced [46, 105]. Diguet et al. also
reported that large aspect ratios in cylindrical or ellipsoidal samples lead to the lowest
demagnetizing energy, hence small strains.

(b) On the other hand, the sample can change its length in the direction of the field
to enhance the magnetic susceptibility determined by the local position of the parti-
cles relative to one another. A restoring force between a pair of particles subjected
to an externally applied magnetic field tends to align the particles with the field so
that they form a magnetic dipole [17]. This contribution is characteristic for MREs
(shape-independent material property) and theoretically can lead to either contraction
or elongation of the sample, depending on the sample microstructure, pre-stress and
the orientation of the field:

• In isotropic MREs, the general tendency for non pre-stressed cylindrical samples,
whose main axis is aligned with the applied magnetic field, is to elongate [63].
This effect seems to generate strains in the order of 10−3. Note that an opposite
tendency, i.e. a small contraction, has been reported in parallelepipedic samples
even with no pre-strain [105].

• In field-structured MREs, different possible magnetic and mechanical loading con-
ditions further complicate the situation. If the magnetic field is applied parallel
to the direction of particle chains, there should be no deformation effect since the
particles have reached their preferred arrangement during curing and have been
trapped as such in the matrix. However, small elongations have been reported
for non pre-stressed cylindrical samples, whose main axis and particle chains are
aligned with the applied magnetic field [40]. If an applied mechanical load disturbs
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this state of equilibrium and changes the inter-particle distances, the magnetic sus-
ceptibility decreases. For an applied pre-tension, possibly up to a certain strain
threshold, the magnetic interactions can try to restore the preferred state and
the sample tends to be compressed [105, 35, 40]. Conversely, for an applied pre-
compression, the sample usually expands [40]. Typical values of strains in this
case are in the order of 10−3. Note again that studies focused on parallelepipedic
samples reported different effects, namely compression when no pre-stress is ap-
plied [154] as well as much larger strains for this case than for the isotropic case
[105]. If the magnetic field is applied transverse to the structuring direction, the
induced deformation can even be higher. Due to the presence of the particle chains
normal to the applied field, the particles tend to move more significantly in order
to form dipole-pairs aligned with the applied field, typically leading to an overall
extension of the sample [40]. Typical values of strains here are in the order of
10−2.

Finally it is important to emphasize that when characterizing MREs, a uniform field
distribution within the sample should be achieved since field gradients can have an important
influence on the behavior of MREs. If a magnetic material is placed in a non-uniform magnetic
field, the material experiences a magnetic body force to decrease its interaction energy with
the magnetic field. When a MRE composite is placed in a gradient of external magnetic
field, these forces act on the filler particles. The particles, together with the polymer matrix
that they drag along, are therefore displaced towards the highest amplitude of the field.
Depending on both the shape of the sample and the geometrical arrangement of the filler
particles, elongation, contraction, bending or rotation can be achieved and used to create
motion [155]. In experimental MRE characterization in contrast, one has to keep in mind
that these parasite field gradients can lead to additional deformation of the material on
top of the original magnetostriction. Furthermore, even if the externally applied field h0

is perfectly uniform, the magnetized MRE sample can further create field gradients within
itself. Magneto-static field equations and the corresponding boundary conditions indeed
prescribe the field distribution within a body, which strongly depends on its geometry. Only
for ellipsoids of revolution are the magnetization m as well as the perturbation h̃ and hence
the total magnetic field b uniform within the body [120].

II.2.4 Magnetic field-dependent modulus

The field-dependent modulus is closely related to the coupled magneto-mechanical behavior
and attributed to the same physical mechanisms. The deformation exclusively due to an
externally applied magnetic field can be defined as the free deformation of the MRE material.
If such a deformation is restricted by imposed mechanical boundary conditions, additional
work has to be exerted to act upon the material, thus leading to a field-induced increase
in stiffness. This corresponds to the so-called magneto-rheological (MR) effect introduced
by many researchers. Very different results are reported about the relative MR effect: from
as low as a few dozen percent [13] up to more than a thousand percent [140]. Due to the
great variety of investigated materials, manufacturing techniques and testing conditions, it
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is difficult to compare objectively all these results. However, some tendencies regarding the
field-dependent modulus of MREs can be outlined:

• Generally speaking, the MR effect results from an overall competition between the me-
chanical stiffness of the composite and the magnetic interactions between the particles
and the field: a lower composite stiffness leads to a larger MR effect.

• The modulus usually increases with iron-filler content. An optimal proportion of par-
ticles, resulting from a competition between the stiffening of the composite and the
magnetic interactions (within the linear regime), is estimated between 20% and 30%
particle volume fraction [88, 46, 42].

• The MR effect increases with increasing magnetic field but saturates above a certain
level of applied magnetic field [88, 63] due to the saturation magnetization of the par-
ticles.

• The modulus increase tends to be highest in the small-strain region (from 0 to 5%)
while it tends to decrease in the mid-strain region (around 15%) [135, 9].

• The MR effect can be further enhanced in field-structured MREs [9, 148] thereby mean-
ing that it is affected by the microstructure of the sample.
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II.3 Samples

Due to the scarcity of coupled magneto-mechanical characterization existing in the literature,
there has been so far no typical or ideal sample specially devised for carrying a coupled
characterization. Considering this is the main goal of the present study, the crucial topic
of the sample shape is first addressed in what follows. Then, aspects pertaining to material
selection and fabrication protocols for both isotropic and transversely isotropic MRE samples
are presented

II.3.1 Sample shape for coupled magneto-mechanical testing

In order to ensure reproducibility in material testing, norms provide guidelines for sample
shape design depending on both the tested material and the type of loading. Behind a
sample’s shape for mechanical material properties evaluation lies the Saint Venant’s principle
according to which the difference between the effects of two different but statically equivalent
loads becomes very small at sufficiently large distances from the load [131]. Practically,
this means that for long tensile samples, the stress is homogeneous in the gage area of the
sample far away from the clamping. If the sample is to be shorter, stress localization at
the clamping needs to be attenuated by smooth root-corner radii from the sample’s head
to its gage area, hence yielding the well-known dog-bone (or dumbbell) shape samples for
tensile testing. For elastomers tested in tension, the corresponding (and equivalent) norms
are the American ASTM D412 and its European counterpart ISO 37. The cross-section of
the proposed samples is rectangular since, in polymer testing, samples are often punched
out of large sheets of the material of interest. However, as mentioned in Section II.2.3,
the shape of a body influences the distribution of the total magnetic field b, even when
submitted to a uniform external magnetic field b0. A numerical simulation, performed with
the Finite Element Method (FEM) software ANSYS and reported in Fig. II.1a, shows that

the magnetic perturbation field b̃ (and thus b when the sample is magnetized by a uniform
external magnetic field b0) is not homogeneous in the gage area of a dog-bone shape sample
with a rectangular cross-section.

Following common usage in tensile testing of metals (ASTM E8/ISO 6892 [51, 1]), the
same type of dog-bone shape sample, but with a circular cross-section, could be used, as it
does not affect the homogeneity of the mechanical quantities in the gage area. The dimensions
of this sample are reported in Fig. II.2a. Note that its heads are flattened rather than
cylindrical in order to adapt to the clamps of the setup used in this study. In this case,
the FEM simulation reported in Fig. II.1b shows that the magnetic perturbation field b̃ is
now homogeneous in the gage area when the sample is uniformly magnetized transverse to
its longitudinal axis. Nevertheless, this sample still exhibits a non-homogeneous magnetic
field b in its heads. As a matter of fact, only magnetic bodies of ellipsoidal (or as a subset,
spherical) shapes can exhibit a homogeneous magnetic field b throughout their whole body
[120, 21]. Though in mechanics, homogeneity is sufficient in the gage area to ensure proper
material characterization, it has to be verified experimentally whether this is also the case
when magneto-mechanical coupling is considered as the magnetization of the heads may
influence the sample’s behavior.
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Based on the design of the dog-bone shape sample with a circular cross-section (Fig.
II.2a), the sample heads are replaced by non-magnetic 3D-printed plastic insets while only
the cylindrical gage area is made of MRE and terminated at both ends by an ellipsoidal cap
(see Fig. II.2b, Fig. II.2c and further details in Section II.3.3 dedicated to fabrication). This
thus brings the body of the sample as close as possible to an ellipsoid while retaining the
homogeneity of mechanical quantities in the gage area. A FEM simulation, reported in Fig.
II.1c, confirms that the magnetic perturbation field b̃ is almost homogeneous in the nearly
ellipsoidal MRE body of this modified sample as the heads do not interact with the magnetic
field. Before looking at the impact of this modification on the magneto-mechanical coupling,
it is first checked whether it affects the mechanical response. To this end, purely mechanical
tests are performed on fully-MRE dog-bone shape samples with a circular cross-section and
on samples with a nearly ellipsoidal MRE body and plastic heads, for each particle content
considered in this study and expressed as phr (per hundred rubber, see Section II.3.2). All
the corresponding upload parts of the 3rd stabilized cycles (see Section II.4.4 for details on
the testing protocol) are presented in Fig. II.3a. The curves reveal that the mechanical
responses of the tested samples are only identical up to a certain threshold, after which the
latter sample exhibits a loss of carrying load capacity due to debonding at the interface
between the soft MRE body and the stiffer plastic heads. The threshold is the lowest for the
highest particle content but for all particle contents studied here, the fully-MRE dog-bone
shape sample with a circular cross-section and the sample with a nearly ellipsoidal MRE body
and plastic heads show the same mechanical response, within experimental error, up to a 1.4
stretch. To address the question of the magneto-mechanical coupling, the stress response
under purely magnetic loading (up to b0 = 0.8 T) is monitored for the two above-mentioned
geometries of MRE samples, in the case of the lowest particle content considered in the study
(70 phr), as they are held fixed in the uniform magnetic field, applied transversely to their
longitudinal axis, within the dedicated setup that will be described in details in Section II.4.1.
The corresponding results are reported in Fig. II.3b and show that the stress exerted by the
sample is much higher in the case of the fully MRE dog-bone shape sample with a circular
cross-section than in the case of the dog-bone shape sample with a nearly ellipsoidal MRE
body and plastic heads. This confirms the large contribution of the magnetization gradients
present within the MRE heads to the magneto-mechanical response of the sample: in such
a case, the measurements would yield the response of the whole structure rather than that
of the material. As a conclusion, in order to perform a coupled magneto-mechanical testing
of MREs, fully-MRE dog-bone shape samples with a circular cross-section will be used for
purely mechanical tests up to large stretches while samples with a nearly ellipsoidal MRE
body and plastic heads will be used for coupled experiments, provided that the overall stretch
remains below the threshold identified earlier. Note that this threshold of 1.4 nominal stretch
(40% nominal strain) is largely beyond the domain of small strains.
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Figure II.1: 3D FEM simulations in ANSYS showing the magnitude of the magnetic per-
turbation field |b̃| in different types of samples uniformly magnetized transversely to their
longitudinal axis a) Dog-bone shape sample with rectangular cross-section b) Dog-bone shape
sample with circular cross-section c) Cylinder closed with two half-ellipsoids.

Figure II.2: 2 a) Dimensions of the fully-MRE dog-bone shape sample with a circular cross-
section. b) Dimensions of the sample with a nearly ellipsoidal MRE body and non-magnetic
heads. All dimensions are in millimeters. c) Picture of the sample with a nearly ellipsoidal
MRE body and non-magnetic heads.
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Figure II.3: a) Nominal stress-stretch curve of fully-MRE dog-bone shape samples with a
circular cross-section and of samples with a nearly ellipsoidal MRE body and non-magnetic
heads, for MRE blends of different particle contents (70 phr, 140 phr and 210 phr). b)
Stress response of the two above-mentioned geometries of MRE samples, in the case of the
lowest particle content considered (70 phr), as they are held fixed in a uniform magnetic field,
applied transversely to their longitudinal axis.

II.3.2 Materials

In the perspective of obtaining a material in which the magneto-mechanical coupling is op-
timal (i.e. largest deformation produced by the smallest magnetic field), the selected matrix
material is a very soft and stretchable silicone elastomer: Ecoflex 00-20 from Smooth-On Inc.,
USA. This elastomer is a room temperature two-part addition-cured platinum-catalyzed sys-
tem (RTV-2) with a mixed density ρsil of 1, 070 kg/m3 and a mixed viscosity of 3Pa.s that
offers a good compromise between good dispersion when mixing, easy pouring and minimal
settling of particles during accelerated curing.

The filler phase is carbonyl iron powder (CIP) SM from BASF Germany. This powder
is made of spherical particles with a median diameter of 3.5µm and contains up to 99.8%
of Fe with low amounts of C, N and O. It is thus considered magnetically ‘soft’ as it does
not retain magnetization once the magnetic field is turned off. As soft iron is also known to
have a low coercitivity and a magnetic saturation µ0ms = 2.1T [79], these particles are good
candidates for MRE applications with optimal coupling. According to the manufacturer, the
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bulk density ρbulk is between 1, 500 and 2, 500 kg/m3 in the form of powder, while the density
of iron (as a solid metal) is 7, 874 kg/m3.

The above-mentioned powder bulk density takes into account the presence of air gaps
between particles when they occupy a given volume in the form of powder but this becomes
irrelevant once the particles are mixed in the viscous liquid elastomer. Hence the density
commonly considered in the MRE literature is taken as the one of iron (e.g. [134]) or slightly
lower than that of iron (e.g. [68]), probably to account for the exact chemistry of the particles.
In practice during fabrication, the different elements of the compound are weighed and one
actually works with m

CIP
, m

A
and m

B
, that correspond to the mass of CIP particles, Part

A silicone and Part B catalyzer, respectively. In the chemistry and polymer literature [33],
the particles to silicone ratio is often expressed in Parts per Hundred Rubber (phr), which
gives the mass of filler per hundred parts of raw compounded polymer mass (phr = 100 ×
m
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+m

B
)). The CIP density ρ

CIP
only comes into play to calculate the corresponding

particle volume fraction c as follows

c =

m
CIP

ρ
CIP

m
CIP

ρ
CIP

+
m

A
+m

B

ρsil

=

(
1 +

100

phr

ρ
CIP

ρsil

)−1

. (II.3.1)

The particle volume fraction c is actually preferred in the mechanics community because
it appears in the constitutive equations. However, considering the fact that it involves the
equivalent density of CIP particles once dispersed in silicone, which might be sensitive to the
type of particles used, we will compare MRE composite samples on the basis of the particles to
silicone mass ratio expressed in phr throughout this chapter. The value taken for the density
of CIP should be clearly stated if proper comparisons have to be made or if the volume
fraction is needed as input for modeling. In this study, considering ρ

CIP
= 7, 874 kg/m3, the

different MRE blends contents are 70, 140 and 210 phr, which corresponds to 8.7, 16 and
22.2% volume fraction, respectively.

As mentioned in Section II.2.1, the quality of the interfacial adhesion between the filler
particles and the matrix greatly influences the strength of composite materials, especially
under large deformations. However this topic has rarely been investigated in details in the
case of MREs. The interfacial adhesion between CIP particles and the silicone matrix used
in this manuscript was investigated for samples of different particle content submitted to a
purely mechanical loading in a previous study of Pössinger and Bodelot [126]. It was found
that a silane primer1 treatment of the particles prior to sample fabrication improved the
macroscopic mechanical behavior, in terms of ultimate load carrying capacity, by preventing
debonding of the particles from the matrix, but only above a critical stretch threshold that
depends on the particles to silicone ratio and decreases with it. Hence, in the stretch and
particles to silicone ratio ranges targeted in the present work (i.e. under a nominal stretch
of 1.8 and below 210 phr, respectively) particle treatment does not influence the mechanical
response. Nevertheless, we discovered in this study that the previous results and thresholds,

1 A silane coupling agent or primer typically consists of two different reactive groups located at either end
of the active molecule, one compatible with the filler particles and the other one with the elastomer matrix.
Applied in a thin, theoretically monomolecular layer, the primer serves as an adhesion promoter between the
two initially non-bonding surfaces.
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found for MRE samples submitted to purely uniaxial mechanical loadings, do not hold when
magnetic loadings are at play. Let us focus in Fig. II.4 on the highest particle content used
in this study (210 phr) -as this is the case for which the debonding propensity is the highest-
and consider MRE samples containing uniformly distributed particles that are either non-
treated or treated (solid lines versus dashed lines in the plots). All plots correspond to the
upload part of the 3rd stabilized cycle (see details on the testing protocol in Section II.4.4).
As mentioned above, under purely mechanical loading, such dog-bone shape samples with
cylindrical cross-section exhibit the same nominal stress-nominal stretch response as reported
in Fig. II.4a. However, such samples with a nearly ellipsoidal MRE body and non-magnetic
heads, if submitted to a uniform magnetic field perpendicular to their main axis while the force
is maintained at 0 N, exhibit different stretch reponses in all principal directions well before
the threshold found under purely mechanical loading, as highlighted in Fig. II.4b. Indeed,
treated and non treated samples start exhibiting different stretch responses for a relatively
low applied magnetic field b0 of 0.2 T while the corresponding stretch values remain very
low (a few percent strain). The debonding occuring under magnetic field can be seen more
clearly when looking at the Jacobian of the transformation J = det(λ1λ2λ3), where λ1, λ2,
λ3 are the three principal stretches of the sample. Error bars were added in these plots
to quantify the possible error committed when calculating J from the measured principal
strecthes. This error is on the order of 8 · 10−4 and confirms that reported values that are
slightly below 1 are within experimental error since J cannot theoretically be smaller than
1 (see Section II.4.2 for details on measurement error). In the case of the mechanical test
(see Fig. II.4c), the Jacobian remains around 1 with a maximum deviation of 0.003 at a 1.6
stretch whether the sample had its particles treated or not. This confirms that there is very
minute to no debonding between the non-treated particles and the matrix during mechanical
testing. However, during the application of a magnetic field on a non-treated sample, J
steadily increases with the magnetic field and already reaches a value of 1.006 for only a
1.05 stretch in the field direction. The reported increase in volume in the non-treated case
indicates that cavities are created in the MRE when the particles interact with the magnetic
field, which means that the debonding between the particles and the matrix is much stronger
under magnetic loading than under mechanical loading. As a consequence, only particles
used in MRE samples dedicated to coupled magneto-mechanical tests will be pre-treated in
this study.
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Figure II.4: Comparison of the response of 210 phr MRE samples for which particles have
been either treated (solid lines) or untreated (dashed lines). a) Mechanical nominal stress-
nominal stretch response of such dog-bone shaped samples with a cylindrical cross-section.
b) All principal stretches responses of such samples with a nearly ellipsoidal MRE body and
non-magnetic heads when submitted to a uniform magnetic field b0 perpendicular to their
main axis while the force is maintained at 0 N. c) Jacobian of the transformation during a
mechanical test on a treated and a non-treated sample. d) Jacobian of the transformation
during a magneto-mechanical test on a treated and untreated sample.

II.3.3 Fabrication procedure

As mentioned in the previous section, only particles used for MRE samples dedicated to
coupled magneto-mechanical tests are pre-treated with a silane primer. The silane primer
used in this study is vinyltrimethoxysilane 97% from Sigma-Aldrich. Particles are first rinsed:
they are soaked in a beaker filled with isopropanol and placed in an ultrasonic bath for 2 min.
The mix is then filtrated through a mesh of 3 to 5 µm porosity and the retained particles
are transferred to a second beaker. After being filled with vinyltrimethoxysilane, the beaker
is placed in an ultrasonic bath for 4 min. This mix is filtrated and the retained particles
are again transferred to a new beaker subsequently placed on a hot plate set at 60° C for 1
hour. Once fully dried, the particles are functionalized with silane and ready to use in the
remainder of the procedure.

To fabricate pure silicone material, the elastomer (Part A) and the catalyzer (Part B) are
first dispensed in a beaker in a one to one weight ratio thanks to a 10 mg-precision scale. In
the case of MRE samples, the desired mass of particles and the polymer (Part A) are blended
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and mechanically mixed for two minutes to ensure a proper dispersion of the particles among
the polymer molecular chains before starting the polymerization of the network by adding
the catalyzer (Part B). The obtained blend is then again mixed thoroughly mechanically for
three minutes. Mechanical mixing is carried out with a large wing nut mounted on a drill
rotating at 400 rpm in order to ensure a homogeneous dispersion of all constituents in the
compound. This mixed compound is degassed at 1 bar vacuum for 6 minutes to eliminate any
air entrapped during mixing and then poured by hand in a mold. The steps described above
are conducted in less than 30 minutes, which is the so-called ‘pot lifetime’ of the Ecoflex 00-20
elastomer, according to the manufacturer. Finally, curing is performed by heating the mold
up to 100° C at 10° C/min, maintaining it at this temperature for 60 minutes and letting it
cool down back to room temperature. After this, the sample can be removed from the mold.
Though this silicone can be cured at room temperature within 24 h, accelerating the curing
process via heating has two advantages: lock particles in place quickly to avoid settling down
during curing and reduce manufacturing time.

In order to fabricate a sample of the desired shape, dedicated molds were machined out of
copper2. This material was selected for its high thermal conductivity of 390 W.m−1.K−1 so
as to ensure optimized thermal exchanges through a significant thickness. For the dog-bone
sample with circular cross-section described in Fig. II.2a, the negative half imprint of the
sample was machined out of a pair of plates (each measuring 81 mm × 60 mm × 4.5 mm)
thus providing a mold when assembled together. A detachable piece located next to the
sample heads provides clearance to fill the material into the mold along the sample height
and is reattached before curing. For the sample with nearly ellipsoidal MRE body and plastic
heads (Fig. II.2b), the negative half imprint of the fully assembled sample was also machined
out of a pair of plates (81 mm × 60 mm × 5.5 mm). The lower 3D-printed plastic head
is first inserted before assembling the mold, then the MRE mixture is poured, the upper
3D-printed plastic head is inserted and the whole mold is finally closed before curing. For
this sample, the part of the plastic heads in contact with the MRE mixture is coated with
a primer (Primer 3 from ACC Silicone) to enhance adhesion between the rigid plastic heads
and the soft body of the sample.

In order to obtain a non-magnetic heating system allowing to cure the sample while the
mold is placed in an electromagnet, each the above-mentioned molds can be sandwiched
between two other copper plates (each measuring 81 mm × 60 mm × 3 mm) that bear, at
the center of their external surface, a 30W copper heating resistance encapsulated in silicon
covering an area of 76.2 mm × 41.9 mm. A non-magnetic type T thermocouple with 0.5° C
precision is inserted in one of the half imprint of each mold, close to the center of the sample,
and connected to a temperature on/off PID regulation system that delivers current to the
heating resistance following the heating schedule mentioned earlier.

2 Copper is very slightly diamagnetic (i.e. it creates a small magnetic field in opposition to the applied
field) but its susceptibility is −1 · 10−5 [79]. A relevant comparison is to be made with aluminum: it has a
thermal conductivity of 237 W.m−1.K−1 and is paramagnetic (i.e. it creates a small magnetic field in the
direction of the applied field) with a susceptibility of 2.2 ·10−5 [79]. In any case, such values of susceptibilities
are so negligible, that under the maximum magnetic field of 0.8 T that we can achieve, such a perturbation
remains lower than that of the Earth magnetic field (between 25 and 65 · 10−6 T).
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To fabricate transversely isotropic MRE samples, curing must be conducted under mag-
netic field. For curing - and the subsequent magneto-mechanical characterization - we use a
two-coil electromagnet generating a field of 0.8 T between two 90 mm-diameter poles sepa-
rated by a 82 mm-air gap. In this gap comes a removable aluminum plate maintained from
outside of the magnet by a fixed bracket. Centering pins are installed on this plate for an
easy and repeatable positioning of dedicated stands at the center of the magnetic field. These
stands permit the fabrication of samples having chains of particles of different orientations,
namely along the sample longitudinal direction so that chains are perpendicular to the field
during the tests and along the sample transverse direction so that chains are either parallel
or perpendicular to the field during the tests. The parts of the stand in contact with the
copper mold are made of tubular polyether ether ketone (PEEK) material exhibiting good
mechanical strength while having a very low thermal conductivity of 0.25 W.m−1.K−1 so that
the stand does not act as a heat sink. When curing is conducted under magnetic field, the
mold is placed within the poles before the magnetic field b0 is linearly increased from 0 to
0.8 T in 340 s. The curing schedule then starts when the maximum field is attained. Note
that raising the magnetic field faster or starting the curing before the maximum field was
attained led in our samples to either some local aggregates in the microstructure or large
zones with fewer particles. Hence the above-mentioned parameters need to be tuned and
the microstructures studied under Scanning Electron Microscope to ensure that the desired
microstructure of particle chains is actually obtained and can be so in a repeatable fashion.
Note also that only one sample at a time can be cured under magnetic field since the presence
of neighboring MRE samples in the field would compromise the uniformity of the field within
each sample.

II.4 Experimental methods

II.4.1 General setup

To obtain the macroscopic behavior of MREs under coupled magneto-mechanical loading, a
dedicated setup, whose overall schematic is given in Fig. II.5a, has been designed. It consists
of an electromagnet producing a homogeneous field within an air gap and of a tension setup
that brings the sample at the center of the magnet and allows for the application of low rate
cyclic tensile loadings while monitoring in-situ mechanical and magnetic quantities.

The electromagnet used in this study was custom-built by Bouhnik SAS and SigmaPhi,
two French companies specialized in power electronics and coils systems. The electromagnet
consists of two current conducting water-cooled copper coils mounted on a C-frame, each
bearing in their center a truncated conical iron pole 90 mm in diameter, so as to concentrate
a nearly homogeneous field across the 82 mm air gap between the two poles without induced
heating during the experiments. The electromagnet is connected to a four-quadrant bipolar
water-cooled power supply of ±70 V and ±70 A nominal voltage and intensity, respectively.
Generation of the magnetic field is current-controlled (precision ±50 mA) but can also be
field-controlled when a probe measuring the magnetic field is installed within the air gap.
The intensity delivered by the power supply can be varied either manually or through an
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analogic entry and yields a field b0 = 0.8 T at the center of the air gap for a current of
68 A. The magnetic field b0 is homogeneous in the central zone of the air gap for all three
directions (±1 mT at ±3 mm from the center). It then shows an increase in direction e1

towards the poles as well as a decrease in directions e2 and e3 away from the center (for e3:
−28 mT at +25 mm and −37 mT at −25 mm at a nominal maximum field of 0.8 T at the
center). Note that due to the shape of the frame (C-frame), there is a slight offset of 2.5 mm
in the positive direction of e3 for the point of maximum magnetic field.

Symmetric tension is applied to the samples thanks to two linear Piezo LEGS motors
from PiezoMotor installed in opposition (see Fig. II.5b). Piezoelectric materials have the
advantage to be insensitive to magnetic fields and, per the needs of our application, these
motors do not contain any ferromagnetic component that could disturb the applied magnetic
field. Classical piezoelectric actuators are well known for providing nanometric to micrometric
displacements while accommodating large loads; however, in these motors, the long-range
motion of the axis is obtained by incremental steps through friction between the axis and
piezo-operated driving legs. As a consequence, they can only bear very small loads. Hence,
the recommended operating range is between 0 and 3 N with a stall load of 6.5 N while the
maximum stroke is 80 mm. Microsteps can be as low as 40 nm but because this technology
cannot guarantee equal steps, especially under varying load, the motors have to be operated
in a closed-displacement loop. To this end, the axis of each motor is equipped with a laser-
engraved graduated glass ruler monitored by optical encoders; both provided by Renishaw
(ATOM miniature encoder system). Once integrated in a LabVIEW (National Instruments)
in-house interface program, the whole system provides a resolution of 1 µm and a precision of
±3 µm. Each Piezo LEGS motor, along with its encoding system, is mounted at the sensitive
end of a LCAE-600G single-point load cell from OMEGA. These load cells, generally used for
scales and weighing platforms, are made of aluminum and have a maximum capacity of 6 N
and a precision of ±3 mN. At the end of the motor are attached custom-designed clamps that
hold the sample during the test (see Fig. II.5b and Fig. II.6a). They consist of two aluminum
plates; the first one is permanently fixed to the motor axis while the second one is free to
slide along two vertical guiding rods fixed along the normal axis to the first plate. Once
the fully-MRE sample is installed in the clamps, the latter are pinched thanks to a spring
system made of a brass thin plate and two non-magnetic bent screws. This spring-loading
of the clamps maintains a constant gripping force on the head of the samples -that deform
appreciably due to the large deformations they experience and the incompressibility of the
material- and thus prevents slippage during tests. In the case of the samples with plastic
heads, the latter are directly attached to the second plate before installing the clamps. Finally,
this symmetric tension system is attached to an aluminum plate connected to two cylindrical
arms gliding within two dry-friction bearings installed outside of the electromagnet, as can
be seen in Fig. II.5a and Fig. II.5b. This allows taking the tension system in and out of the
electromagnet for mounting the samples outside of the electromagnet prior to testing. With
this tension system, mechanical tests can either be carried out in displacement-controlled or
force-controlled modes.
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Figure II.5: a) Overall schematic of the magneto-mechanical characterization setup. b)
Schematic of the symmetric tensile setup showing the Piezo LEGS motors, the rulers and
optical encoders, the load cells, the clamps and the sample. The setup holds a camera for
optical diagnostics and can be taken in and out of the electromagnet for mounting the samples
outside of the electromagnet prior to testing.

II.4.2 Mechanical diagnostics

Strains in the gage area of the samples are measured via non-contact video extensometry.
To this end, a stand is attached perpendicularly to an aluminum plate mounted at the other
end of the two cylindrical arms gliding within the bearings, opposite to the plate holding
the tension system (see Section II.4.1 and Fig. II.5b). A 5 Megapixels F-505B Pike CCD
camera is installed on this stand and equipped with a 0.3× telecentric lens to take images
of the sample during testing at a rate of 6.5 frames per second. In the configuration used
for the study, the working distance is 173 mm, the field of view is 16 mm × 20 mm and
the resolution is 12 µm/pixel while the depth of field is 8 mm. For telecentric lenses, the
magnification remains constant throughout the depth of field [70], hence the out-of-plane
movement of the sample due to its change in section during tension does not affect the
tracking carried out on the sample. Additionally, a mirror making a 45° angle with the
camera CCD array is positioned next to the sample and reflects an image of its side towards
the camera (see Fig. II.6a). A single image thus contains a front view of the sample as well
as a view of its side (Fig. II.6b), which gives access to the strains along the three principal
directions of the sample (Fig. II.6c). Note that once the optical components are installed and
aligned, they stay in position since both the plate holding the tensile system and mirror, on
the one hand, and the plate holding the camera, on the other hand, remain fixed in relation
to each other when the whole system glides along the bearings.

To obtain the longitudinal strains (along e3), markers -consisting in black (for pure sili-
cone samples) or white (for MRE samples) acrylic paint dots applied with a sharp tip- are
drawn 6 mm apart from the center along the vertical axis of the sample prior to testing, as
represented in Fig. II.6c. To obtain tranverse strains (along e1 and e2), one makes sure that
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the background behind the sample is of the opposite shade than that of the sample so that
there is a sharp change of shade at the interface between the sample and the background. A
tracking algorithm implemented in LabVIEW then follows in-situ the two vertical dots and
the two pairs of borders, thus giving access to the true (Eulerian) strains ǫi = ln(λi) along
direction e3, e1 and e2, respectively (see Fig. II.6). The precision obtained on the stretches
values is 2 · 10−4 for the dots tracking and 3 · 10−4 for the border tracking (maximum error
found during a rigid body motion were the stretch is expected to remain 1).

The force exerted on the sample during loading is measured by the two LCAE-600G single-
point load cells from OMEGA mentioned in Section II.4.1. The actual force is obtained by
dividing by two the sum of the voltage readings coming out of the cells (calibration was
performed by the manufacturer and was checked with calibrated weights before use).

Figure II.6: a) Picture of the setup especially showing the clamps systems holding the speci-
men and the 45° mirror. b) Schematic of the sample held at the center of the electromagnet
airgap and of the 45° mirror from the camera vantage point. c) Schematic of the tracked dots
and borders on the sample and principal stretches.

II.4.3 Magnetic diagnostics

In-situ magnetic field measurements are carried out with transversal Hall probes. A Hall
sensor consists in a thin semi-conductor. When a current is applied to the semi-conductor
and the latter is placed within a magnetic field b so that the field lines are along its thickness,
a voltage develops between the faces across the thickness. This phenomenon, known as the
Hall effect, was reported by Edwin H. Hall in 1879 [74]. Because these sensors are sensitive
to the magnetic field across their thickness, they need to be placed strictly perpendicular
to the lines of the magnetic flux to be probed. Additionally, they need to be calibrated in
reference to a known magnetic field. Two HGT-2010 Hall sensors from Lakeshore are used
in this study. The sensitive semi-conductor is a 760 µm-thick square (2.28 mm × 2.28 mm)
mounted at the end of a plastic stem. Both sensors are calibrated by placing them at the



II.4 – Experimental methods 43

center of the electromagnet where the same measurement can be done with the Hall probe
given and calibrated by the electromagnet manufacturer, and they provide a precision of
±1% at a range of ±1 T and stable temperature.

For coupled experiments, a fixed bracket placed behind the electromagnet is equipped
with displacement stages holding two extension arms carrying each a Hall probe, as depicted
in Fig. II.7a. One probe (named probe h) is located behind the sample, in its vertical mid-
plane, and can be adjusted along direction e2 to come nearly in contact with the sample
when at rest. The second probe (named probe m) is located on the side of the sample so
that its center is in the other vertical mid-plane of the sample and can be adjusted along
directions e1 and e2 to also come nearly in contact with the sample. In both cases, the
normal to the sensing element is along the applied magnetic field b0. Since the samples used
for the magnetic measurements have a nearly ellipsoidal MRE body, the perturbation field h̃

and the magnetization m, hence the total magnetic field b, all are uniform within the MRE
material. Due to the continuity of the tangential component of h at the interface between the
air and the sample, the Hall probe h placed at the back of the sample gives access to the total
field µ0 h [T] inside the material (the externally applied field h0 plus the perturbation field

h̃, measured in air), since the contribution of the magnetization m vanishes at that point.
Due to the continuity of the normal component of b at the interface between the air and
the sample, the total magnetic field b [T] inside the sample - now including the contribution
of the total h-field (measured at the back) plus the contribution of the magnetization m -
is measured by the lateral Hall probe m, which then gives access to the magnetization m

inside the sample. The distribution of the magnetic field b in the air-gap in the presence of
a magnetic sample is sketched in Fig. II.7b along with the positions of the h and m sensors
relative to the sample.

Before the test, both probes are positioned with the help of the camera to come nearly in
contact with the sample at rest however they cannot be placed exactly at the discontinuity
interface between the air and the sample due to geometrical limitations. Additionally, the
magnetic quantities also need to be measured for different levels of applied magnetic field
that yield the sample to deform and move away from the sensors. Hence measurements need
to be systematically corrected to account for the distance between the sensitive part of the
probes and sample/air interface. Fortunately, the evolutions of the e1 component of h and
b along direction e2 and along direction e1, respectively, can be derived analytically (the
equations at play in this correction are detailed in Appendix II.A). The obtained results are
plotted in Fig. II.7c, where the top curve corresponds to the evolution of the e1 component
of the h field along direction e2 and the bottom one to the evolution of the e1 component of
the b field along direction e1, with both curves covering the discontinuity interface between
the air and the sample. To link the current value measured away from the sample to the
actual value at the sample/air interface thanks to the previous curves, the distance between
the sensitive part of the probes and sample/air interface is monitored in-situ with the border
detection algorithm used in Section II.4.2 to follow the sample dimensions in the transverse
directions.
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Figure II.7: a) Stand coming from behind the electromagnet and holding the two Hall probes
h and m. b) 2D plane FEM simulation of the distribution of the magnetic field b in the
airgap of an electromagnet in the presence of a magnetic sample of circular cross-section
having a homogeneous magnetization m. View from top within the horizontal mid-plane of
the sample. c) Evolution of the e1 component of the magnetic intensity h along direction
e2 (top) and of the e1 component of the magnetic field b along direction e1 (bottom). Both
curves cover the discontinuity interface between the air and the sample.

II.4.4 Testing protocol

For all tests, a virgin sample of the material of interest is installed and aligned in the tensile
setup with the help of the camera as the system is drawn out of the electromagnet. Once
the clamps are in place, the setup is glided back inside the electromagnet and latched so that
the sample lies exactly at the center of the magnet. At that stage, the force applied on the
sample as well as the strains are zero.

In the case of the purely mechanical tests, the sample is first pre-conditioned, which
consists in submitting it to cyclic loading prior to the actual test in order to attain a stabilized
behavior after the initial cyclic softening known as Mullins effect. The pre-cycling (10 cycles)
is conducted in displacement-controlled mode, so that the relative displacement of the two
piezo-motors oscillates between 0 and 30 mm following a sinus at a frequency of 0.01 Hz.
Following the pre-conditioning, as the sample carries some residual strain, a relaxation time
of 10 minutes is allowed before the motors are displaced to get the sample straight while
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maintaining the force at 0 N. At this moment, the initial cross-section A0 = L1 L2 π/4 is
determined with the help of the camera, where L1 and L2 are the lengths of the sample
in direction e1 and e2 in the gage area, respectively. The actual cyclic test (3 cycles) is
then conducted in displacement-controlled mode, so that the relative displacement of the
piezo-motors oscillates between 0 and 30 mm following a triangle at a frequency of 0.001 Hz
(quasi-static).

In the case of the magneto-mechanical tests, either the force or the displacement can be
set and maintained at a given value during the whole test. In this case, the initial state
of the sample corresponds to its state after the application of the applied pre-stress or pre-
strain. Since the magnetic field leads to deformations within the sample, Mullins effect can
be expected. Hence a pre-conditioning is also conducted here, as in the mechanical case.
The magnetic field b0 is thus cycled between 0 and 0.8 T (by varying the current between 0
and 68 A) so as to perform 10 sinusoidal pre-cycles at a frequency of 0.001 Hz followed by a
relaxation time of 10 minutes and finally 3 triangular test cycles at a frequency of 0.001 Hz
(quasi- static).

II.5 Results and discussion

In this section, the experimental data obtained during the tests described above are presented
and discussed. The plotted quantities are the longitudianl nominal stress T, stretches λi along
the principal directions e1, e2 and e3 (λ3 being the nominal stretch), the Jacobian of the
transformation J = detF = det(λ1 λ2 λ3) as well as the magnetization m and the magnetic
field h. In particular, the nominal stress T [MPa] is obtained by dividing the measured force
F [N] by the sample initial cross-section A0 [mm2]. The stretch λ [-] corresponds to the
variation of length divided by the initial probed length. As the in-situ extensometer returns
results in true (Eulerian) strain ǫ, the following conversion is performed: λ = exp(ǫ). Finally
magnetic measurements from probes h and m both yield magnetic field data in [T].

II.5.1 Purely mechanical testing

In Fig. II.8a, we first plot the nominal stress-stretch curve of the whole test (i.e. including
the 10 pre-conditioning cycles and the subsequent 3 test cycles) for isotropic samples with
varying particle content i.e. 0, 70, 140 and 210 phr. The responses of the 140 and 210 phr
particle-filled elastomers clearly show an initial softening known as the Mullins effect while
the 70 phr sample shows much less softening and the pure silicone exhibits a steady response
throughout the whole test. For higher content particle filled-elastomers, the nominal stress-
stretch response of the first cycle differs significantly from the following cycles; the second
cycle also differs from the following ones but less significantly; then softening diminishes
with the following cycles to finally be negligible after about 6 cycles. Since the first 10
preconditioning cycles are carried out at a higher frequency, the data is noisier. Hence for
better clarity, we limit the plot in Fig. II.8b to the 3 test cycles carried out at a frequency
a decade smaller. It can be seen that after pre-conditioning, the subsequent test cycles are
very close. The stiffness of the material increases with particle content since the rigidity of
the fillers is much higher than that of the matrix material. The same trend is observed for
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the stabilized hysteresis loops since higher particle content leads to more dissipation due to
more friction and rearrangements between the particles and the host matrix. Such results
are classically observed in filled elastomers [113].

Figure II.8: Nominal stress-stretch curves obtained during purely mechanical tensile tests on
isotropic samples with varying particle content: 0, 70, 140 and 210 phr. a) Curves obtained
over the whole test, including the 10 pre-conditioning cycles and the subsequent 3 test cycles.
b) Curves obtained during the 3 test cycles.

In what follows, we plot in Fig. II.9 the mechanical response obtained during the third
test cycle (stabilized cycle) for 70 phr samples that are either isotropic or field-structured
in directions e1, e2 and e3. The minimum stiffness is obtained for the isotropic sample,
the maximum stiffness for the sample having particle chains in the loading direction, while
samples having chains in either the e1 or e2 direction exhibit an intermediate stiffness that
is nevertheless identical since the orientation of their structuration is the same from a me-
chanical standpoint. Such behavior is typically observed in fiber-reinforced composites [78].
However it is interesting to note that particle chains are not continuous like fibers. Hence
if the increase in stiffness is due to the higher load-bearing capacity of the fibers in fiber-
reinforced composites, a different mechanism is at play in field-structured MREs. In this
case, it is rather friction arising at the microscopic level that leads to the observed increase
in stiffness and it is when particles form columns in the loading direction that they impinge
the most on polymer chain motion in the loading direction, preventing them from unwinding
freely.
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Figure II.9: Stabilized stress-stretch curve obtained during purely mechanical tensile tests on
70 phr samples with different microstructures: isotropic or field-structured in directions e1,
e2 and e3.

To complete the mechanical analyses, we now plot in Fig. II.10a through Fig. II.10c the
principal stretches λ1 and λ2 as a function of λ3 during the upload part of the stabilized cycle
for 70 phr samples that are either isotropic (Fig. II.10a) or field-structured in directions e3

(Fig. II.10b) and e1 and e2 (Fig. II.10c). As expected, λ1 and λ2 are superimposed for the
axisymmetric test cases (isotropic and field-structured in direction e3). When the particle
chains are aligned transversely to the tensile direction e3 (Fig. II.10c), the λ1 response of
the sample having particle chains in the e2 direction is superimposed to the λ2 response of
the sample having particle chains in the e1 direction, and conversely, since these samples are
identical by a 90° rotation along the e3 axis. In both cases, the contraction in the particle
chain direction is smaller than along the other transverse direction since the sample exhibits
the highest stiffness along the particle alignment. However, this time, particle chains and
local friction do not primarily impinge on chain unwinding but rather on the general motion
of separated chains trying to get closer to each other.
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Figure II.10: Evolution of principal stretches λ1 and λ2 as a function of the applied stretch λ3
during the upload part of a purely mechanical tensile stabilized cycle for 70 phr MRE samples
exhibiting different microstructural structurations a) isotropic b) transversely isotropic with
chains along direction e3 c) transversely isotropic with chains either along direction e1 or
direction e2.

II.5.2 Coupled magneto-mechanical testing

Magneto-mechanical tests are now performed as the force is maintained at 0 N on 70 phr
samples exhibiting different microstructural structurations. The interest of maintaining the
force at 0 N is to impose traction free boundary conditions, thus simulating a condition where
the sample hangs free at the center of a uniform magnetic field. These tests, similar to the
purely mechanical ones, are composed of 10 pre-conditioning cycles at 0.001 Hz followed by
3 cycles at 0.001 Hz, where the varying parameter is the applied field b0.

In the case of the sample that is field-structured in direction e3, a macroscopic instability
occurs, causing the sample to bend symmetrically in the direction of the applied magnetic
field (for an applied field b0 of 120 mT), as reported in Fig. II.11a. Such an instability is
comparable to that of an elongated body subjected to a magnetic field transverse to its long
axis and that is well-known as the compass effect in magnetism [115], though the role of
the elongated body is here played by the chains of particles. In the case of the sample that
is field-structured in direction e2, a rotation of the body of the sample around the e3 axis
is observed and here too attributed to the compass effect. The angle of rotation increases
with the applied magnetic field to attain 90° at an maximum applied field b0 = 99 mT and
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remains stable thereafter, as reported in Fig. II.11b. Note that because the heads of the
sample are clamped, the generatrices of the MRE body transform into helicoïds that are
symetrical about the (e1, e2) plane as outlined on the last snapshots of Fig. II.11b.

Figure II.11: a) Macroscopic instability observed in a 70 phr MRE sample field-structured
in direction e3. b) Snapshots of the macroscopic rotation observed in a 70 phr MRE sample
field-structured in direction e2.

In the case of the 70 phr isotropic sample, the whole test mentioned above can be carried
out without the occurrence of any instability on samples that are either isotropic or field-
structured along direction e1. We can thus compare the principal stretches of an isotropic
sample (Fig. II.12a) with those of an e1 field-structured sample (Fig. II.12b) during a coupled
magneto-mechanical test as the force is maintained at 0 N, for which the 3rd stabilized cycle
is plotted.

Figure II.12: Principal stretches as a function of the applied magnetic field b0 obtained during
the 3rd stabilized cycled for 70 phr samples exhibiting different microstructural structurations
and submitted to a coupled magneto-mechanical test as the force is maintained at 0 N, a)
isotropic sample, b) sample field-structured in direction e1.
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In the isotropic case (Fig. II.12a), the maximum stretch is along the field direction (e1)
; it corresponds to an elongation in the field direction and is accompanied by a contraction
in the other two transverse directions. Note that because the sample elongates along e1 and
contracts along e2, the originally circular cross-section transforms into a quasi elliptic cross-
section. Additionally, even though the two transverse directions are of equivalent orientation
relative to the magnetic field they do not behave the same: the sample contracts more along
e1 than along e3. These deformations are macroscopic manifestation of the motions of the
particles at the microstructural scale as they try to align along the lines of the magnetic
field in order to minimize the energy of the whole sample. It also sugest that despite the
uniform magnetic field achieved within the sample, the overall response still suffers from a
shape effect though, according to [46], the demagnetizing factor of the used sample is very
low due to its high aspect ratio of 8.3. As reported in Fig. II.12b, the sample field-structured
in direction e1 exhibits its larger deformation as a contraction along direction e2 while it
shows a small elongation in the field direction e1 and also to an even lesser extent along e3.
Nevertheless, all these deformations remain very small (< 0.7%) even at saturation. It actu-
ally seems that the particles have already attained a stable equilibrium position during the
curing of the sample and that these strains are due to the fact that even though the relative
orientation sample/field was the same, the absolute orientation was different during curing
(we indeed tried to minimize the number of stands needed for fabricating field-structured
samples). These experimental observations are similar to what was observed for cylindrical
samples whose main axis was aligned along the magnetic field (see Section II.2.3), namely
we report elongation in the direction of the applied field and a stronger magnetostriction for
isotropic samples. In particular, for an applied field of 0.8 T, the magnetostriction is 10.5% in
the field direction for isotropic samples and only 0.7% for samples that are field-structured in
the magnetic field direction. Compared to other studies, the main difference here is that the
sample’s main axis is perpendicular to the magnetic field. Nevertheless, to further confirm the
previous results, a nearly ellipsoidal 70 phr isotropic MRE body with plastic heads removed
was placed in a holder (covered with oil to minimize friction) at the center of the magnetic
field with its main axis in the direction of the magnetic field and it also exhibited elongation as
the field increased. The observation was only qualitative but a short-term perspective of this
work is to adapt the setup to perform fully-coupled tests instrumented with mechanical and
magnetic in-situ diagnostics as the sample is submitted to a magnetic field along its long axis.

In parallel, it is interesting to look at the magnetization curves of the two above-mentioned
samples. They are both reported in Fig. II.13. The e1 field-structured sample magnetizes
itself much faster than the isotropic sample and attains saturation whereas the isotropic sam-
ples does not. We interpret this as follows: the e1 field-structured sample magnetizes itself
and reaches saturation fast because it stabilizes very early due to the small amount of motion
among its particles. On the other hand, in the case of the isotropic sample, magnetization
is slower, hence the overall composite is less susceptible, because the particles keep moving
locally throughout the increase of the magnetic field in order to keep minimizing the energy
of the whole sample as it deforms. As a result, samples for which the microstructure interacts
feebly with the magnetic field (because they are already in an optimal state regarding the
field) exhibit (counter-intuitively) a higher initial susceptibility and a faster saturation. On
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the contrary, samples that interacts the most with the magnetic field (because the particles
need significant rearrangement to reach an optimal state regarding the field) exhibit a lower
initial susceptibility but the microstructure is being rearranged to correct this, thus in turn
delaying the saturation in the sample. Additionally, it might be useful to recall that in both
Fig. II.12 and Fig. II.13, the part of the curves obtained as the magnetic field increases is
located at the bottom of the loops while the part obtained as the magnetic field decreases is
located above the loops, as can be observed in classical magnetization curves of ferromagnetic
bulk materials. Finally, for our samples, both the stretch and the magnetization go readily
back to 1 and 0, respectively, when the magnetic field vanishes. The latter observation indi-
cates that the MRE composite, whose fillers do not have remnant magnetization, does not
exhibit any remnant magnetization either. The former observation actually only shows that
there is no residual stretch induced by particle debonding. Note that in the case of samples
with untreated particles, the magnetization also goes back to zero but the samples exhibit
residual strains as the applied magnetic field vanishes. This confirms that the observed resid-
ual strains are not linked to remanence as initially suggested by Guan [71] but to mechanical
phenomena arising in the samples and in particular to debonding which has been shown here
to play an important role in the MREs response during coupled tests.

Figure II.13: Magnetization curves of a 70 phr isotropic sample and a 70 phr sample field-
structured in direction e1 obtained during the 3rd stabilized cycle of a coupled magneto-
mechanical test as the force is maintained at 0 N.

Since the isotropic sample exhibit the highest magnetostriction, the effect of particle con-
tent will only be studied on these samples. However the magneto-mechanical test in which
the force is maintained at 0 N suffers an instability that arises at smaller and smaller magnetic
field as the particle content increases from 70 phr (0.45 T for 140 phr and 0.3 T for 210 phr).
This instability takes the same form than the one depicted in Fig. II.11a: the sample first
starts to deform like the 70 phr sample but it eventually tries to align its whole body along
the magnetic field while its two extremities remained clamped in the tensile setup. Note that,
for all particle contents studied here, no instability was observed for the e1 field-structured
samples. In fact, the instability occuring in the isotropic samples, for which the field direc-
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tion is perpendicular to the sample’s long axis, is a topic that has been largely investigated
theoretically, mainly though in the idealized case of a rectangular block in plane strain [91].
Instability arises at a critical magnetic field threshold that is reported to increase monoton-
ically with the aspect ratio of the sample. In our case, since the aspect ratio of the sample
is high, both the demagnetizing factor and the risk of occurrence of such an instability are
lowered. Since the contribution of these two shape-related effects are minimized, the devised
experiments, more than any reported to date, approach the ideal goal of an actual material
characterization. Since this experimental study is conducted in the broader perspective of
providing data for identifying constitutive models for MREs, it is important to keep in mind
that the fitting procedure will need to be supplemented by numerical simulations to account
for the contribution of the above-mentioned shape-related effects and thus ensure that the
obtained parameters are intrinsic to the material.

Nevertheless, the influence of particle content on magnetostriction can still be studied
since the reported instabilities can be delayed or even cancelled when a sufficient pre-stress
or pre-strecth is applied on the studied samples so as to increase their aspect ratio. In order
for the only varying parameter to be the particle content, the same pre-stretch needs to be
applied to all samples so that they have the same aspect ratio when the coupled test starts.
In order to select the maximum pre-stretch that can be applied to all samples, we refer to
Fig. II.3a that gives, for each particle content, the maximum stretch that can be applied to
the sample designed for the coupled tests while ensuring that there is no debonding at the
plastic heads/MRE body interface, hence that its mechanical response is representative of
the material. This pre-stretch is 1.4 for the present study. Then, the maximum field that can
be applied without triggering an instability must be determined for an isotropic sample with
the highest particle content submitted to a pre-stretch of 1.4, that is 0.65 T here. Finally,
magneto-mechanical tests (including pre-cycling and cycling) up to a maximum field of 0.65
T can be carried out on 70 phr, 140 phr and 210 phr isotropic samples that were initially
submitted to a 1.4 pre-stretch and for which the corresponding force then remained fixed
throughout the rest of the test.

The evolution of the λ1 stretch (stretch in the field direction) as a function of the applied
magnetic field b0 during the 3rd stabilized cycle is plotted in Fig. II.14a, for isotropic samples
of 70 phr, 140 phr and 210 phr. Note that the state of the sample after the application of the
pre-stretch is considered as the reference configuration (hence the plotted λ1 starts from 1).
For all tested samples, the λ1 stretch evolution has the shape of a hysteresis loop (with again
a clear return to the initial state), whose area increases slightly with particle content. The
maximum amplitude of stretch is attained for the highest particle content, but the value of
the maximum stretch does not increase linearly with particle content. In fact, beyond a given
particle content, often called ‘optimal filling factor’ (see Section II.2.4), increasing further the
particle content would not lead to more magnetostriction as the amount of filler would render
the composite too stiff. In parallel, we plot in Fig. II.14b the magnetization curves obtained
during these tests. The initial slope or magnetic susceptibility increases with particle content,
regardless of the overall stiffness of the composite, but saturation is not reached since the
ideal stabilized state of the sample would happen post-instability. These experimental results
may thus shed some light on the macroscopic instability mechanism. As the magnetic field
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increases, particles first rearrange themselves to align along the lines of the magnetic field.
If saturation is reached at the maximum applied magnetic field, only magnetostriction is
observed. However if the sample is still far away from saturation, beyond the microscopic
rearrangement of the particles, a macrospic realignment of the whole sample through the
compass effect is needed to reach its ideal stabilized state in regard of the applied magnetic
field (that is perpendicular to the sample). Hence, because saturation increases with particle
content, the macroscopic instability in isotropic samples happens at lower magnetic field in
samples with higher particle content.

Figure II.14: a) Evolution of the λ1 stretch (stretch in the field direction) as a function of
the applied magnetic field b0 during the 3rd stabilized cycle for 70 phr, 140 phr and 210 phr
isotropic samples. These tests are all carried out after a 1.4 pre-stretch was applied on the
samples in their long axis direction and the reference configuration is taken post pre-stretch.
b) Magnetization curves of isotropic samples of a 70 phr, 140 phr and 210 phr obtained
during the 3rd stabilized cycle of a coupled magneto-mechanical test after the samples were
submitted to a 1.4 pre-stretch.

Finally, a last interesting aspect that can be clarified thanks to the specially designed
setup and samples is the effect of a pre-stretch or a pre-stress on the magnetic behavior of
MRE composites. It was indeed recently suggested [76] that MREs might exhibit a change in
their magnetic susceptibility when subjected to a mechanical stress (Villari effect or inverse
magnetostrictive effect). The reported experimental results showed indeed a little sensitivity
but the involved samples did not have their particles pre-treated. In order to investigate
experimentally the effect of pre-stress, which was predicted numerically to have no effect
on the magnetization [9], a 70 phr isotropic sample was submitted to a full coupled test
as the force was maintained at different values: 0 N, 0.1 N and 0.2 N. The corresponding
magnetization curves obtained during the 3rd stabilized cycle are plotted in Fig. II.15. They
are superimposed, thus confirming that pre-stress does not influence the magnetic response
of the sample.
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Figure II.15: Magnetization curves obtained during the 3rd stabilized cycle for a 70 phr
isotropic sample submitted to a coupled test as the force is maintained at 0 N, 0.1 N and 0.2
N.

II.6 Conclusions and perspectives

The present study proposes an experimental setup in which coupled magneto-mechanical
tests can be carried out while measuring in-situ both mechanical and magnetic quantities
with precision and without impinging on the sample deformation. Considering the multitude
of effects arising within MRE samples when submitted to a magnetic field, a special sample
was designed. Within this sample, mechanical and magnetic uniform loadings can be obtained
concurrently and known structural-dependent effects can be minimized in order to focus on
the characterization of the actual material properties of MREs.

This study of MREs was also carried out from the perspective of the mechanics of filled
polymers to ensure the reliability and repeatability of the results. In particular, MRE samples
were systematically pre-cycled, both for purely mechanical and coupled tests, to prevent the
Mullins effect from disrupting the results. It was also found that debonding between the
particles and the matrix, though less of an issue under purely mechanical tests, can lead
to significant volume change during magnetic tests and render false the incompressibility
assumption if ignored. Hence the preparation of MRE samples is crucial. It involves not only
the pre-treatment of the particles but also a careful study of the obtained microstructures
according the curing schedule and the rate of application of the magnetic field during curing.

The conducted experiments highlight that instabilities are ubiquitous in MREs. Hence low
power applications may benefit greatly from these instabilities if they are properly harnessed.
The experiments also demonstrate that, despite uniform magnetic and mechanical fields
within the sample, the latter is still affected by shape-related effects (demagnetizing factor
and macroscopic instabilities due to the compass effect). However, these effects are minimal
compared to the previous state of the art and can even be further minimized by pre-stretching
the samples before testing.

Tests conducted on MREs samples of various microstructures showed that the only sam-



II.6 – Conclusions and perspectives 55

ples remaining macroscopically stable during the experiments are the isotropic ones and the
one that are field-structured in the direction of the applied field. In fact, the field-structured
samples experience little to no magnetostriction when submitted to a magnetic field similar
to the one applied during fabrication. Only the isotropic samples exhibit significant mag-
netostriction along the direction of the applied field. The results also showed that, in these
samples, the maximal magnetostriction increases with particle content. Nevertheless, the
rate of increase is not linear and tends to saturate as the amount of filler stiffens the matrix
too much. Finally it was demonstrated that the magnetization response of the sample is
independent on the pre-stress applied on the sample prior to testing.

The reported experimental work was conducted within the broader challenge of build-
ing a dedicated framework, based on a strong experimental-numerical dialog, in order to
carefully address MRE material optimization and structural design. Further experimental
developments include significant modifications of the setup to permit the application of the
magnetic field along the main axis of the sample and study of the optimal filling factor for
varying matrix materials. The conducted experiments will also be exploited to calibrate
coupled magneto-mechanical phenomenological constitutive laws.
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II.A Correction of magnetic measurements

In this Appendix, the derivation of the formulas used to correct the magnetic measurements
are detailed. First, it is to be noted that in the range of deformation that we consider in
this study, we can show numerically that the eulerian magnetic quantities are fairly uniform
inside the sample (this will be further shown in Chapter IV). Moreover, during deformation,
the approximation of the sample’s cross-section remaining very close to an ellipse is of good
accuracy. As a result, we consider the general 2D problem where a sample with an ellipsoidal
cross section is placed within a uniform magnetic field h0 = h0e1. The objective here is to
calculate how the external magnetic field outside of the sample is influenced by the presence
of the sample. This will allow us to evaluate the field at the interface between the sample
and the air from measurements taken away from the interface.

II.A.1 Elliptical coordinate system

The elliptical coordinate system is well suited to solve problems involving ellipsoidal geome-
tries, so we will use it in what follows (see Fig. II.16).

Figure II.16: Elliptical coordinate system.

{
x = c cosh(u) cos(v)

y = c sinh(u) sin(v)
, (u, v) ∈ [0,+∞[×[0, 2π[, (II.A.1)
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with the normalized basis vectors (eu, ev) expressed in the cartesian basis (e1, e2):




eu =
cos(v) sinh(u)√
sinh2(u) + sin2(v)

e1 +
sin(v) cosh(u)√
sinh2(u) + sin2(v)

e2,

ev = − sin(v) cosh(u)√
sinh2(u) + sin2(v)

e1 +
cos(v) sinh(u)√
sinh2(u) + sin2(v)

e2.

(II.A.2)

As can be noticed, the lines of constant u describe a family of confocal ellipses (i.e. ellipses
with common foci). Indeed, from eq.(II.A.1), it is clear that:

x2

c2 cosh2(u)
+

y2

c2 sinh2(u)
= 1 ⇔ x2

a2
+
y2

b2
= 1 with

{
a = c cosh(u)

b = c sinh(u)
, (II.A.3)

which is the equation of an ellipse of:

• semi-major axis a = c cosh(u),

• semi-minor axis b = c sinh(u),

• foci F=

∣∣∣∣
±
√
a2 − b2

0
=

∣∣∣∣∣
± c

√
cosh2(u)− sinh2(u)

0
=

∣∣∣∣
± c
0

,

• aspect ratio w = b/a = tanh u.

The discontinuity interface between the air and the sample that has an ellipsoidal geom-
etry will be described as follows with the help of parameter u0 > 0:

{
x = c cosh(u0) cos(v)

y = c sinh(u0) sin(v)
, ∀v ∈ [0, 2π[. (II.A.4)

The interior of the sample is described by the set of points Cin = {(u, v) st. (u, v) ∈
[0, u0[×[0, 2π[}, whereas the exterior, i.e. the air, is described by Cout = {(u, v) st. (u, v) ∈
]u0,+∞[×[0, 2π[}.

II.A.2 Problem to solve

Since the samples used for the magneto-mechanical tests have a nearly ellipsoidal MRE body,
the hin-field, the magnetization min and the total magnetic field bin, are all nearly uniform
within the material (this approximation is accurate in the range of deformation considered
in the present study).





hin(u, v) = hine1

min(u, v) = mine1

bin(u, v) = µ0(hin + min) = µ0(hin +min)e1

, ∀(u, v) ∈ Cin, (II.A.5)
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where (hin,min) are the constants to be determined from measurements made outside of the
sample. They correspond to the total hin field (magnetic field intensity) and the magnetiza-
tion inside the sample, respectively.

Outside of the sample (i.e. ∀(u, v) ∈ Cout), magnetic quantities are indicated with the
“out” subscript and the following equations apply:

bout = µ0hout, (II.A.6)

mout = 0, (II.A.7)

∇× hout = 0, (II.A.8)

∇ · bout = 0 = ∇ · hout. (II.A.9)

Eq.(II.A.8) yields that there exists a potential ϕ such that ∀(u, v) ∈ Cout:

hout = −∇ϕ(u, v). (II.A.10)

If we substitute the previous expression in eq.(II.A.9), it comes that ∀(u, v) ∈ Cout:

∇ · hout = −∇ · (∇ϕ)(u, v) = −∇2ϕ(u, v) = 0. (II.A.11)

The problem to solve here is a boundary value problem. We first need to make sure that, far
away from the interface, the influence of the sample on the h-field vanishes:

lim
u→∞

hout = h0e1, ∀v ∈ [0, 2π[ ⇔ ϕ ∼
u→∞

−h0x = −h0c cosh(u) cos(v). (II.A.12)

Additionally, magnetostatics theory imposes the following relations to be satisfied at the
discontinuity interface between the air and the sample (i.e. ∀ (u,v) such that u = u0 and
v ∈ [0, 2π[):

n · JbK = 0 ⇔ eu · bout = eu · bin ⇔ eu · hout = (hin +min) eu · e1, (II.A.13)

n × JhK = 0 ⇔ eu × hout = eu × hin ⇔ eu × hout = hin eu × e1. (II.A.14)

If we now substitute the expression of eu from eq.(II.A.2), we can rewrite the discontinuity
interface conditions as follows: for u→ u0, and ∀v ∈ [0, 2π[

−eu · ∇ϕ(u, v) = − 1

c
√

sinh2(u) + sin2(v)

∂ϕ

∂u
= (hin +min)

cos(v) sinh(u)√
sinh2(u) + sin2(v)

, (II.A.15)

−eu ×∇ϕ(u, v) = − 1

c
√
sinh2(u) + sin2(v)

∂ϕ

∂v
e3 = −hin

cosh(u) sin(v)√
sinh2(u) + sin2(v)

e3. (II.A.16)
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Finally, the boundary value problem to be solved is the following:




∇2ϕ(u, v) = 0, ∀(u, v) ∈ Cout,

ϕ ∼
u→∞

−h0c cosh(u) cos(v), ∀v ∈ [0, 2π[,

lim
u→u0

∂ϕ

∂u
= −c(hin +min) cos(v) sinh(u0), ∀v ∈ [0, 2π[,

lim
u→u0

∂ϕ

∂v
= c hin cosh(u0) sin(v), ∀v ∈ [0, 2π[.

(II.A.17)

II.A.3 Resolution of Laplace equation

The equation to solve ∀(u, v) ∈ Cout is:

∇2ϕ = 0 ⇔ 1

c2(sinh2(u) + sin2(v))

[
∂2ϕ

∂u2
+
∂2ϕ

∂v2

]
= 0 ⇔

[
∂2ϕ

∂u2
+
∂2ϕ

∂v2

]
= 0. (II.A.18)

This equation is exactly the same as the Laplace equation in cartesian coordinates and, as a
result, can be solved using the separation of variables method. We look thus for a potential
that takes the following form:

ϕ(u, v) = U(u)V (v), ∀(u, v) ∈ Cout, (II.A.19)

V (v) being a 2π-periodic function of the variable v.
Under this condition, the general solution for both U and V is well known:

U(u) =

{
en cosh(nu) + fn sinh(nu) if n ≥ 1

e0u+ f0 if n = 0,
, (II.A.20)

V (v) =

{
gn cos(nv) + hn sin(nv) if n ≥ 1,

g0 if n = 0.
(II.A.21)

Without loss of generality, the solution of eq.(II.A.17)1 can be rewritten as:

ϕ(u, v) =(a0u+ b0) +
∞∑

n=1

[
an cosh(nu) + bn sinh(nu)

]
cos(nv)+

∞∑

n=1

[
cn cosh(nu) + dn sinh(nu)

]
sin(nv),

(II.A.22)

where (an, bn, cn, dn) are constants that need to be calculated to satisfy the boundary condi-
tions. Because the only quantity of interest is hout = −∇ϕ(u, v), we can choose to impose
b0 = 0.
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From the first boundary condition (see eq.(II.A.17)2), we get that:





a1 + b1 = −h0c,
an = −bn for n ≥ 2,
cn = −dn for n ≥ 1.

(II.A.23)

From the second boundary condition (eq.(II.A.17)3), we necessarily have:





a0 = 0,

an = bn = 0 for n ≥ 2,

cn = dn = 0 for n ≥ 1,

a1 sinh(u0) + b1 cosh(u0) = −c(hin +min) sinh(u0),

, (II.A.24)

and from the third boundary condition (eq.(II.A.17)4), we get:

a1 cosh(u0) + b1 sinh(u0) = −c hin cosh(u0). (II.A.25)

So far, with eq.(II.A.23), eq.(II.A.24) and eq.(II.A.25), we end up with the following system:





a0 = b0 = 0,

an = bn = 0 for n ≥ 2,

cn = dn = 0 for n ≥ 1,

a1 + b1 + c h0 = 0,

a1 cosh(u0) + b1 sinh(u0) + c cosh(u0)hin = 0,

a1 sinh(u0) + b1 cosh(u0) + c sinh(u0)hin + c sinh(u0)min = 0.

, (II.A.26)

In the system formed by eq.(II.A.26)4, eq.(II.A.26)5 and eq.(II.A.26)6, u0 = arctanh(w) and
c = a

√
1− w2 are known quantities since the major semi-axis a and the minor semi-axis b of

the cross-section are measured at each step of the experiment. In this system, the constants
that need to be calculated are (a1, b1, h0, hin,min). In order to solve for those unknowns, we
perform two magnetic measurements outside of the sample to get the two more equations
needed.
As reported in Fig. II.7b, the magnetic measurements are taken by Hall probes h and m,
away from the sample, along axes e2 and e1, respectively.
From what precedes, we know that ∀(u, v) ∈ Cout:

hout(u, v) =−∇ϕ(u, v)

=−

((
a1 sinh(u) + b1 cosh(u)

)
cos(v)eu −

(
a1 cosh(u) + b1 sinh(u)

)
sin(v)ev

)

c
√

sinh2(u) + sin2(v)
.

(II.A.27)
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Along the axis of interest e2 and e1, we can now easily express the magnetic intensity in
elliptical coordinates as well as in cartesian coordinates.

Outside the sample, along the e2 axis:





hout(0, y) =
−1

a
√
1− w2

(
a1 + b1

(
1 +

a2(1− w2)

y2

)−1/2
)

e1, for y > b = aw,

bout(0, y) = µ0hout(0, y), for y > b = aw.
(II.A.28)

Outside the sample, along the e1 axis:





hout(x, 0) =
−1

a
√
1− w2

(
a1 + b1

(
1− a2(1− w2)

x2

)−1/2
)

e1, for x > a,

bout(x, 0) = µ0hout(x, 0), for x > a.

(II.A.29)

So in the end the system that we have to solve is:





a1 + b1 + c h0 = 0,

a1 cosh(u0) + b1 sinh(u0) + c cosh(u0)hin = 0,

a1 sinh(u0) + b1 cosh(u0) + c sinh(u0)hin + c sinh(u0)min = 0,

, (II.A.30)

with





b1 =
−a

√
1− w2

(
hout(0, y0)− hout(x0, 0)

)

(
1 +

a2(1− w2)

y20

)−1/2

−
(
1− a2(1− w2)

x20

)−1/2
, x0 > a, y0 > b = aw,

a1 = −a
√
1− w2 hout(0, y0)− b1

(
1 +

a2(1− w2)

y20

)−1/2

, y0 > b = aw,

(II.A.31)
where (x0, 0) and (0, y0) represent the positions of Hall probes m and h respectively (those
positions are known and remain fixed during the test). And hout(0, y0) is the measurement
of the magnetic intensity by Hall probe h along the e2 axis (respectively hout(x0, 0) is the
measurement of the magnetic intensity by Hall probe m along the e1 axis). We can note that
this system is linear wih respect to the unknowns (h0, hin,min), so we can solve it very easily
and hence have access to the magnetic quantities inside the sample.
The variations of h and b along axes e2 and e1 are plotted in Fig. II.7c of the article.

To validate the correction method derived here, magnetic measurements were taken by
Hall probes h and m at increasing distances away from the sample as it was submitted to
a steady uniform magnetic field of 0.35 T. The experimental data for probes h and m are
reported, along with the theoretically derived predictions, in Fig. II.17a and Fig. II.17b,
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respectively. They both show very good agreement, with a maximum deviation of 0.1% and
0.2%, respectively.

Figure II.17: Theoretical predictions and measurements of the magnetic field evolution outside
of the sample: a) h-field and its e1 component evolution along the e2 axis, b) b-field and its
e1 component evolution along the e1 axis.
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III.1 Introduction

Magnetorheological elastomers (MRE) are soft composite materials which consist of an elas-
tomeric matrix and (sub-)micron sized magnetic inclusions. These composites are members
of a wide class of materials called ‘active materials’, in virtue of their strong magneto-elastic
coupling properties. Since the mechanical properties can be altered rapidly and reversibly
when subjected to external magnetic fields, MREs have been proposed and tested for a vari-
ety of applications in which it is desirable to continuously and controllably vary the effective
stiffness of a device under different operating conditions. In particular, MREs have been man-
ufactured and studied as adaptive engine mounts and tunable shock absorbers (see Ginder
et al. [65, 64]).

In dealing with these materials, it has been observed experimentally that the magneto-
mechanical response of an MRE specimen is mainly driven by two effects. The first is
due to the conformation of the MRE’s microstructure in the sense of inclusion distribution
(Danas et al. [40]). The second effect is due to the specimen’s shape and reveals itself
through the interaction of the specimen with its surrounding (Diguet et al. [46], Bodelot
et al. [14]). The shape effects pose a challenge for the experimental determination of the
effective material properties since the magneto-mechanical interaction of the specimen with
its environment plays a crucial role for its overall coupled response and depends on both the
properties of the material and the shape of the specimen. While this is already complicated
for undeformed specimens, the situation is even more delicate at finite strains. The existence
of shape-dependencies in the context of MREs was first addressed in the work by Diguet [46],
and attempts to use numerical simulations to develop ideas on how to design experimental
procedures for the precise characterization of MRE properties at large deformations have
been proposed by Keip and Rambausek [93, 94]. In the recent past, analytical models were
successfully fitted to experimental measurements on MRE devices. Indeed we highlight the
works of Galipeau and Ponte Castañeda [58], Danas et al. [40], Ivaneyko et al. [81], Maas
and Uhlenbusch [104] and Xin et al. [152] who adjusted analytical models to experiments on
particular specimens and applications. The fitted parameters, however, cannot be classified as
material parameters since they are strictly related to the specific MRE specimen or device.
This means, that when the design of the device is changed (for instance by modifying its
shape), the parameters have to be adjusted again. To our knowledge, Pössinger [125] and
Bodelot [14] are the only ones who tackled this issue by developing a novel, almost ellipsoidal
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MRE specimen to reduce the shape effects, and their experimental data will be used in this
study to compute the material parameters of isotropic MREs.

The above experimental studies are completed by significant theoretical achievements
(started back in the 1950s and 1960s) in the area of magneto-elasto-statics at finite strains.
Although a literature review of continuum as well as micro-mechanically based magneto-
elasticity is beyond the scope of this study, a few comments are helpful to put the present
work in perspective and motivate the particular continuum model used here. The modeling
approaches can be broadly classified into two categories. The first is the ‘direct’ method which
uses conservation laws of continuum mechanics, e.g. Truesdell and Toupin [147], Tiersten
[145], Maugin and Eringen [110, 111], Pao and Yeh [122], Pao [121]. The second method
is an energetic approach which uses the calculus of variations to extremize an appropriate
potential energy, e.g. Tiersten [146], Brown [22], Maugin and Eringen [110, 111]. Recently,
based on the work of Brown [22], Kankanala [90] proved that the direct and variational
approaches result in the same set of governing equations. At the heart of these theories is
a free energy density that depends on a magnetic variable (Kankanala [90] and Danas [40]
chose the magnetization per unit mass M, Dorfmann and Ogden [47] used the magnetic
field B). In addition to the continuum based approach, a number of micro-mechanically
based studies have recently been reported on MREs. Their purpose is to provide mean (or
homogenized) field theories for the macroscopic behavior of MREs using a wide variety of
simplifying assumptions about local strain and magnetic fields, e.g. Jolly et al. [84], Yin et
al. [153] for inclusions in dilute limit, Corcolle et al. [37] using small strain Hashin-Strikman
homogenized MRE model. Due to technical difficulties associated with large kinematics, the
previously mentioned micro-mechanically based studies are in the small strain context, save
for the recent work by Ponte Castañeda and Galipeau [124, 59, 60], Lefèvre and Lopez-Pamies
[100] and Danas [39].

Currently, we have only limited knowledge on how to determine intrinsic MRE properties.
Thus the goal of our research is to propose a complete road map to compute and validate an
energy density for isotropic MREs.

The outline of the Chapter is as follows. First, we present the experimental data (ob-
tained in Bodelot [14]) that will be used to compute the material parameters of isotropic
MREs in Section III.2. In Section III.3, the theoretical formulation using the energetic ap-
proach proposed by Kankanala [90] is extended and proposed for all three possible choices of
the magnetic independent variable. In the same section, we prove that all three formulations
are equivalent, and we propose appropriate forms for the free energies to describe the exper-
iments. Next, Section III.4 explains how to numerically implement the proposed variational
formulations, and shows which are the correct boundary conditions to impose to properly
simulate MRE boundary value problems. Lastly, in Section III.5, we use finite element sim-
ulations in combination with least square optimization algorithms to compute the material
parameters. The use of numerical tools is necessary to make sure that the shape effect seen in
experiments is taken into account in the simulation so that the material parameters proposed
are not influenced by the shape of the specimens. The proposed material model is validated
by testing its predictive capabilities on other experimental data. In Appendix, the interested
reader can find extensive discussions on the influence of the shape effect.
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III.2 Experiments

This section explains the experimental procedure used to characterize the coupled magneto-
mechanical response of magnetorheological elastomers. More specifically we describe the
tests, the samples’ design, the fabrication procedure and the measurement techniques. The
section is concluded by experimental evidence of negligible dissipation supporting the pro-
posed theoretical formulation. For a more detailed study on the experimental investigation
of these materials, the interested reader is referred to Bodelot et al. [14].

III.2.1 Tests description

The characterization of the fully coupled magneto-mechanical response of isotropic MREs
requires two different tests.

A purely mechanical uniaxial tensile test as depicted in Figure III.1a is first performed, in
which the axial displacement is controlled (i.e. λ2 is applied) and the sample is stress-free in
the directions transverse to it’s axis. The associated force F2 (and thus the nominal traction
T2) is measured as well as the principal transverse stretch ratios λ1 and λ3.

Next, a coupled magneto-mechanical test is conducted. Due to geometric constraints
imposed by the experimental equipment, we choose a purely magnetostrictive test in which
the sample is subjected to a uniform magnetic field b0 applied far from its boundaries, in a
direction transverse to it’s axis (see Figure III.1b). The axial force F2 is maintained at 0 N
to impose traction free boundary conditions, thus approximating the conditions of a freely
suspended sample in a uniform magnetic field. The perturbations caused by the sample on
the magnetic field b, the magnetic intensity h, the magnetization vector m in the sample
and the three principal stretch ratios λi are measured.

The two above described experiments (purely mechanical and purely magnetostrictive)
are sufficient to fully characterize isotropic MREs. However, more data are needed to test
the predictive capabilities of the obtained constitutive model. For this purpose, coupled
experiments similar to the purely magnetostrictive test are conducted using different axial
forces F2 (maintained constant during the test).
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(a) (b)

Figure III.1: Schematic of the two types of experiments. Purely mechanical tests are based
on a “dog bone" sample with MRE heads (a) while coupled magneto-mechanical (magne-
tostrictive) tests use cylindrical specimens with ellipsoidal ends bonded to specially designed
non-magnetizable 3D printed polymer grips (b).

III.2.2 Sample design

As one can notice in Figure III.1, the sample’s shape is specific for each test. Sample shapes
for the evaluation of purely mechanical properties are designed to achieve a uniform state of
stress in the gage area of the sample away from the heads. We hence use a dog-bone shaped
sample with a gage area of circular cross-section as shown in Figure III.1a. However, using the
same specimen (Figure III.1a) for the coupled magnetostrictive tests results in large Maxwell
stresses in the two heads, rendering impossible the stress calculations in the gage area. To
counter this, a different design for the heads is necessary. Only ellipsoidally shaped uniform
rigid bodies subjected to constant remote external magnetic fields result in uniform internal
magnetic fields (see Osborn [120] and Tejedor [143]). Hence we design magnetostriction
specimens with ellipsoidal ends, while keeping a cylindrically shaped gage area (see Figure
III.1b). This allows the accurate calculation of the stresses in the gage area. The grips which
are made by a non-magnetic 3D-printed polymer are then glued to the ellipsoidal ends of the
MRE specimen as shown in Figure III.1b. In conclusion, the dog-bone specimen of Figure
III.1a is kept for the purely mechanical tests, especially since we impose large strains that
would lead to debonding of the plastic heads of the magnetostriction sample. The ellipsoidal
head specimen of Figure III.1b is used for the coupled magneto-mechanical (magnetostrictive)
tests since the applied tractions are low enough to keep the integrity of the specimen.

III.2.3 Fabrication procedure

The MREs of interest here consist of nearly spherical carbonyl iron particles (with a median
size of 3.5µm) embedded in a soft and stretchable silicone elastomer. The particles are first
pre-treated with a silane primer in order to avoid debonding from the elastomer matrix when
subjected to a coupled magneto-mechanical loading, due to the large inter-particle axial
strains as discussed by Danas [39]. The desired quantity of particles, polymer and catalyzer
are then mixed. The final blend is degassed (to eliminate air entrapped during mixing) and
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poured in a mold of the desired shape. Finally, curing is performed by heating the mold (see
Bodelot et al. [14]).

III.2.4 Measurement techniques

A specific setup has been designed to investigate the response of MREs under large strains
and high magnetic fields. It comprises an electromagnet that produces a uniform magnetic
field, and a tension setup that brings the sample in the magnetic field (see Figures III.2a
and III.2b) and imposes either a displacement or an axial force. To avoid interference of the
strong magnetic fields, the tension setup is equiped with piezoelectric motors. The overall
deformation quantities of the sample are measured in-situ via non-contact video extensometry.
A mirror inclined at a 45° with respect to the camera’s axis is positioned next to the sample
and reflects an image of its side (see Figure III.2a and III.2b). The measurements taken
from the front and the side of the sample allow the calculation of stretch ratios in the three
principal directions. The longitudinal elongation along e2 is obtained by depositing markers
consisting of a pair of white paint dots along the sample’s vertical axis prior to testing. The
diameter changes of the initially circular section along e1 and e3 are measured using an edge
detection technique. A tracking algorithm follows in-situ the two vertical dots and the two
pairs of borders, giving access to the three principal stretch ratios λi; ratios of corresponding
final to initial lengths (see Figure III.2c). It is important to note that such macroscopic
measurements are not necessarily representative of the corresponding local values. According
to our numerical simulations discussed in Appendix III.B, nearly uniformly magnetized MRE
samples exhibit heterogeneities in their strain fields (see Figure III.17a), and hence the λi are
average stretch ratios.

The measurement of the magnetic quantities take advantage of the specimen’s ellipsoidal
heads which garantee fairly uniform internal magnetic fields and magnetization even for the
deformable magnetic bodies at hand (see Figure III.17b). The continity of the tangential
component of h, and the continuity of the normal component of b at the interface sam-
ple/air allows the measurements of the two magnetic quantities of interest using two Hall
probes positionned at the back and the side of the middle section of the specimen (see
Figure III.2c). The difference of these measurements gives the sought magnetization field
m = m1e1 = [(b1/µ0)− h1]e1. In practice the sensitive elements of the Hall probes cannot
be placed exactly at the interface due to geometrical limitations, requiring us to correct the
measurement’s systematic error. A detailed derivation of this correction based on the ana-
lytical solution of Laplace’s equation governing the h-field outside the specimen is presented
in Bodelot et al. [14].
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Figure III.2: Experimental setup and measurements. In (a) schematics of the tension setup
that allows for the imposition and measurement of the axial force F2 and the side mirror
allowing tracking of specimen borders. In (b) a picture of the tension setup and the side mir-
ror. The figure (c) illustrates average stretch ratios λi and indicates locations for measuring
b1 and h1 (the components along e1 of b and h respectively).

III.2.5 Experimental verification of negligible dissipation

The proposed continuum modeling of the isotropic MRE at hand is based on a Helmholtz
free energy where the independent variables are the deformation gradient F and the magnetic
field B (or equivalently the H-field or the magnetization m). Note that B (resp. H) is the
Lagrangian counterpart of b (resp. h). No internal variable is necessary in the theoretical
formulation in view of the absence of any rate and hysteretic phenomena in either the me-
chanical or the magnetic response of the tested isotropic MRE specimens (which contained
8.7% Fe particles in volume fraction), for loading rates up to 8.6 × 10−4 s−1 (for the purely
mechanical tests) and 4.0×10−4 T/s (for the magnetostrictive test), stretch ratios up to 1.72
(for the purely mechanical tests) and magnetic fields up to 0.8 T and constant axial forces up
to 0.2 N (in the magnetostrictive test). It should also be noted here that the particle volume
fraction of 8.7% is the highest that allows the purely magnetostrictive tests to be carried out
without the occurence of any buckling phenomena.

The results of the purely mechanical uniaxial loading/unloading tensile test under imposed
λ2 are presented in Figure III.3. The nominal stress-stretch curve for an entire cycle is
plotted in Figure III.3a, where one can notice a practically hyperelastic behavior in view
of a negligeable hysteretic loop for strain rates up to 8.6 × 10−4 s−1. As expected from
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incompressibility, the stretch ratios λ1 and λ3 in the transverse directions are almost equal
and show no hysteretic loop as seen in Figure III.3b.

(a) (b)

Figure III.3: Experimental verification of negligible dissipative phenomena in the purely
mechanical tests. The nominal traction T2 - stretch ratio λ2 in a uniaxial experiment is shown
in (a) and the lateral stretch ratios λ1, λ3 in (b). Notice the negligible difference between
loading and unloading paths in (a), and the coincidence of λ1, λ3 loading and unloading paths
in (b).

For the results of the purely magnetostrictive test, measurements under imposed b0, are
plotted in Figure III.4. The largest average stretch ratio occuring along the applied field
direction e1, and the average stretch ratios in the other two transverse directions are plotted
in Figure III.4a. Notice the negligible hysteretic loop in the loading/unloading portions
of λ2 and the small hysteretic loops in the λ1 and λ3 curves. Due to the shape effect,
λ2 6= λ3 contrary to what one could expect from isotropy in a specimen with uniform strain
fields. An almost total absence of a hysteretic loop is also observed in the magnetization
m versus remotely applied magnetic field b0 curves depicted in Figure III.4b where the
loading/unloading portions of the curve are practically coincident. It is worth noticing that
for magnetic fields up to 0.4 T the magnetization response of the MRE is linear, while
saturation is almost reached at about 0.8 T (higher magnetic fields cannot be applied due to
equipment limitations). The insert in Figure III.4b plots the magnetization m versus h-field
inside the specimen, clearly showing the initial linear range of the response (the initial slope
of the m-h curve is χ, the initial magnetic susceptibility of the MRE). Finally Figure III.4c
emphasizes the fact that the eulerian magnetic field b inside the sample must not be confused
with the magnetic field b0 applied far from its boundaries. Indeed, b0 is a loading parameter
that is controlled via the electromagnet whereas b, measured on the surface of the specimen,
accounts for the perturbation caused by the MRE sample.
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(a) (b) (c)

Figure III.4: Experimental verification of the negligible dissipative phenomena in the purely
magnetostrictive test (F2 = 0). The macroscopic stretch ratios λi as functions of the remotely
applied magnetic field b0 are presented in (a). The corresponding results for the magnetiza-
tion m1 inside the specimen are shown in (b) where the loading/unloading curves are almost
coincident. Finally in (c) we show the difference between the remotely applied field b0 and
the measured magnetic field b inside the specimen.

The above presented data provide evidence that hysteretic effects are weak. However
they are not inexistant and for both tests only half of the cycle where the loading parameter
increases will be considered in the fitting process. Nevertheless, at a first approximation
dissipative phenomena can be neglected in our model, thus explaining the adopted energy
formulation without the need of using internal variables.

III.3 Theory

This section pertains to the energy-based theoretical formulation used for solving the MRE
boundary value problem associated to our experiments. The first part presents on overview
of the governing equations in Eulerian and Lagrangian formulations. The second part gives
the three different versions, depending on the choice for the magnetic independent variables
in the energy density, of the variational formulation needed for the numerical solution of the
MRE boundary value problem. The third part shows the equivalence between the different
formulations. The fourth part presents the specific forms adopted for the energy densities
and used in FEM calculations to fit the experimental data.

III.3.1 Overview of governing equations

Although the governing equations for finite strain magnetoelasticity are known [90, 40, 47, 49,
26, 39], a brief presentation is given here for completeness of the presentation. Henceforth the
usual continuum mechanics conventions are adopted, according to which all field quantities
associated with the current configuration are denoted by small letters, while capitals are
used for their reference configuration counterparts. Moreover scalar quantities are denoted
by script symbols while bold symbols are used for vector and tensor quantities.
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Consider a 3D magnetoelastic body that occupies a region V (resp v) with boundary ∂V
(∂v) and outward normal N (n) in the undeformed reference (deformed current) configuration
as seen in Figure III.5. A material point of initial position vector X in V has a current position
vector x = x(X) = X + u(X), where u is the displacement field vector.

The deformation gradient F and its determinant J needed to quantify the mechanical
strain contribution to MRE’s free energy are defined by,

F ≡ ∇x = I +∇u, J ≡ detF > 0; ∀x ∈ v, (III.3.1)

where ∇ ≡ ∂/∂X denotes the reference configuration gradient operator and I the rank 3
identity tensor.

The reference density of the solid ρ0 is related to the current density ρ through mass
conservation by equation

ρ0 = ρJ. (III.3.2)

The mechanical quantities needed for setting the MRE boundary value problem are the total
Cauchy stress measure σ, the mechanical body force f and the mechanical traction t in the
deformed configuration (that might be imposed at a boundary/interface1). They satisfy (see
Kankanala [90] and Dorfmann [47]) the following equation and boundary/interface condition

∇ • σ + ρf = 0; ∀x ∈ v, n • JσK = t; ∀x ∈ ∂v. (III.3.3)

The magnetic quantities introduced in Section III.2 are the magnetic field b, the magnetic
intensity h also termed h-field and the magnetization vector m, and are related by

b = µ0 (h + m) , m 6= 0; ∀x ∈ v; b = µ0h, m = 0; ∀x ∈ R
3\v, (III.3.4)

where µ0 is the magnetic permeability in vacuum. The fields b and h are Eulerian fields
that satisfy the following differential equations and boundary/interface1 conditions in mag-
netostatics [90, 40, 47, 26, 39]. From the no magnetic monopole law and Gauss’s divergence
theorem, one obtains

∇ • b = 0; ∀x ∈ R
3, n • JbK = 0; ∀x ∈ ∂v, (III.3.5)

where ∇ ≡ ∂/∂x is the current configuration gradient operator, ∇• is the corresponding
divergence operator and JfK ≡ f+ − f− is the jump of any field quantity f evaluated at
either side of the solid/air interface. From Ampère’s circuit law and Stokes theorem , we can
derive the following equations in the absence of external current density

∇× h = 0; ∀x ∈ R
3, n × JhK = 0; ∀x ∈ ∂v. (III.3.6)

Since the variational formulation used here is based on the Lagrangian description of
the MRE boundary value problem, it is important to remind that both the mechanical
and the magnetic Eulerian quantities can be ‘pulled back’ from v to V to their Lagrangian

1 NOTE: The only interface that needs to be considered is the MRE solid/air interface, which coincides
with ∂v. Magnetic fields as well as Maxwell stress fields exist in both the solid and the surrounding air and
hence the boundary conditions in MRE’s are interface conditions.
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counterparts. The relation between the total Cauchy stress and the total first Piola-Kirchhoff
stress tensor Π reads

Π = Jσ • F−T . (III.3.7)

The Lagrangian counterparts of the Eulerian magnetic fields b and h, denoted by B and
H respectively are defined by (see for instance Dorfmann [47], Bustamante [26] and Danas
[39]))

B = JF−1 • b, H = FT · h. (III.3.8)

These Lagrangian variables satisfy equations and boundary/interface conditions analo-
gous to their Eulerian counterparts

∇ • Π+ ρ0f = 0; ∀X ∈ V, N • JΠK = T; ∀X ∈ ∂V , (III.3.9)

where T is the reference mechanical traction on the boundary of the solid. Hence the reference
configuration counterpart of (III.3.5) reads,

∇ • B = 0; ∀X ∈ R
3, N • JBK = 0; ∀X ∈ ∂V , (III.3.10)

and the reference configuration counterpart of (III.3.6) is

∇× H = 0; ∀X ∈ R
3, N × JHK = 0; ∀X ∈ ∂V . (III.3.11)

Moreover, as it has been mentioned in the literature (see Dorfmann [49] and Danas [39]),
the magnetization vector m is a Eulerian variable. A Lagrangian form for m would be non
unique since Eq. (III.3.4) is not invariant under current-to-reference configuration transfor-
mations.

Figure III.5: Schematic diagram of reference and current configurations with associated me-
chanical and magnetic variables.
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III.3.2 Variational formulation alternatives

In the previous section we establish the governing equations and the boundary/interface
conditions for the finitely strained magnetoelastic solid. The description of its constitutive
response is the missing link to complete the setting for the solution of the corresponding
boundary value problem. The variational formulation adopted requires an energy density for
the MRE solid. Here, unlike the mechanical contribution which is characterized by the defor-
mation gradient F, one has the possibility of different choices for the magnetic contribution,
resulting in alternative variational formulations of the boundary value problem.

As explained by Brown [22] and Kankanala [90], a Lagrangian setting is necessary to cap-
ture Maxwell stresses in the coupled variational formulation of the magnetoelastic problem.
Consequently the solid’s Helmholtz free energy ψ can depend (in addition to F) on B or H.
An additional alternative based on m is also possible. Each formulation has its own advan-
tages as discussed in length by Danas [39] and hence all three will be given here. Moreover,
the approach introduced by Brown [22] using the perturbed magnetic field is presented here,
in view of its computational advantages (see Danas [39]).

III.3.2.a Formulation using B (free energy ψ
B
(F,B))

We assume that the specific free energy density is a function of the reference configuration
magnetic field B. Consequently the total energy stored in the system (solid and surrounding
air) E

B
is the sum of the energy stored in the MRE solid (integral over V ) plus the magnetic

energy of the entire space (integral over R
3) namely

E
B
=

∫

V

ρ0ψB
(F,B) dV +

1

2µ0

∫

R3

1

J
B • C • B dV , (III.3.12)

where ψ
B
(F,B) is the MRE’s specific Helmholtz free energy for the B-formulation and C =

FT • F is the right Cauchy-Green tensor. The potential of the externally applied mechanical
loads, i.e. the body force f per unit mass in V and the surface nominal traction T per unit
reference area on ∂V is

W =

∫

V

ρ0f • u dV +

∫

∂V

T • u dS. (III.3.13)

Hence the potential energy P
B

of the system (solid plus surrounding free space) is from Eq.
(III.3.12) and Eq. (III.3.13)

P
B
= E

B
−W =

∫

V

(ρ0ψB
(F,B)− ρ0f • u) dV +

1

2µ0

∫

R3

1

J
B • C • B dV −

∫

∂V

T • u dS.

(III.3.14)
Using Eq. (III.3.8) (and dv = JdV ), the second term of the potential energy P

B
can be

rewritten as
1

2µ0

∫

R3

1

J
B • C • B dV =

1

2µ0

∫

R3

b • b dv. (III.3.15)

We decompose the magnetic field b (resp. B) as the sum of an externally applied magnetic

field b0 (resp. B0) (in the absence of the MRE solid) and a perturbation magnetic field b̃
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(resp. B̃) (created by the presence of the MRE solid), i.e. b = b0 + b̃ (resp. B = B0 + B̃)2,
thus obtaining from (III.3.15)

1

2µ0

∫

R3

b • b dv =
1

2µ0

∫

R3

b0
• b0 dv +

1

µ0

∫

R3

b0
• b̃ dv +

1

2µ0

∫

R3

b̃ • b̃ dv. (III.3.16)

The first term of Eq. (III.3.16):
1

2µ0

∫

R3

b0
• b0 dv represents the energy of the externally

applied magnetic field before the introduction of the MRE solid. This term is finite and
depends on b0, and as a constant can be omitted from the potential energy. Moreover, as

we show in Appendix III.A.1 , the second term of Eq. (III.3.16):
1

µ0

∫

R3

b0
• b̃ dv is equal

to zero, and hence from Eq. (III.3.15) and Eq. (III.3.16), the potential energy P
B

can be
rewritten as

P
B
=

∫

R3

W̃
B
(F, B̃) dV −

∫

V

ρ0f • u dV −
∫

∂V

T • u dS, (III.3.17)

where the energy density W̃
B

is defined as

W̃
B
(F, B̃) =





ρ0ψB
(F, B̃ + JF−1 • b0) +

1

2µ0J
B̃ • C • B̃; ∀X ∈ V,

1

2µ0J
B̃ • C • B̃; ∀X ∈ R

3\V.
(III.3.18)

The perturbation magnetic field b̃ is divergence free since both the total magnetic field b

and the externally applied magnetic field b0 are divergence free, according to Eq. (III.3.5),

i.e. ∇ • b̃ = 0, ∀x ∈ R
3. From Eq. (III.3.8), this differential constraint holds for the

Lagrangian magnetic fields as well (see Dorfmann [47], Bustamante [26] and Danas [39]), i.e.

∇ • B̃ = 0, ∀X ∈ R
3, and hence one can express B̃ in term of a vector potential Ã

B̃ = ∇× Ã, ∀X ∈ R
3. (III.3.19)

As the perturbation field must vanish far away from the solid, i.e.
∥∥∥B̃
∥∥∥ → 0 as ‖X‖ → ∞,

it is reasonable to choose Ã that does the same, i.e.
∥∥∥Ã
∥∥∥→ 0 as ‖X‖ → ∞.

By using Eq. (III.3.19), one can rewrite3 the potential energy P
B

in terms of independent

variables u and Ã

P
B
=

∫

R3

(
W̃

B
(F, B̃)− ρ0f • u

)
dV −

∫

∂V

T • u dS, (III.3.20)

based on the B-formulation for the Helmholtz free energy ψ
B
(F,B). Taking variations of

the above potential energy P
B
(u, Ã), with respect to its independent variables Ã and u, one

2 NOTE: A similar decomposition holds for H (resp. h): h = h0 + h̃ (resp. H = H0 + H̃).
3 NOTE: f = 0, ∀X ∈ R

3\V .



76
Chapter III – Modeling and Identification of the constitutive behavior of Magnetorheological

Elastomers

obtains two Euler-Lagrange equations respectively: Ampère’s and equilibrium, combined
with the corresponding magnetics and mechanics constitutive laws.

Indeed, by taking the variation of P
B

with respect to Ã one obtains after considerable
algebraic manipulation

P
B
,
Ã
δÃ =

∫

R3

[(
∇× ∂W̃

B

∂B̃

)
• δÃ

]
dV +

∫

∂V

[(
N ×

t
∂W̃

B

∂B̃

|)
• δÃ

]
dS = 0.

(III.3.21)
Upon comparing the resulting Euler-Lagrange equations and interface conditions with Eq.
(III.3.11) and recalling that H = H0 + H̃, one obtains

∇× H̃ = 0, ∀X ∈ R
3, N× JH̃K = 0, ∀X ∈ ∂V ; H̃ =

∂W̃
B

∂B̃
(F, B̃). (III.3.22)

Similarly by taking the variation of P
B

with respect to u one obtains after considerable
algebraic manipulation

P
B
,u δu =−

∫

R3




∇ •

(
∂W̃

B

∂F

)T

+ ρ0f


 • δu


 dV+

∫

∂V




N •

u
v
(
∂W̃

B

∂F

)T
}
~ − T


 • δu


 dS = 0.

(III.3.23)

Upon comparing the resulting Euler-Lagrange equations and interface conditions with Eq.
(III.3.9), one obtains

∇ • Π̃+ ρ0 f = 0, ∀X ∈ R
3, N • JΠ̃K = T, ∀X ∈ ∂V ; Π̃

T

=
∂W̃

B

∂F
(F, B̃).

(III.3.24)
At this point it is instructive to see how the general constitutive equations obtained from

W̃
B
, which are valid for any X ∈ R

3, can be expressed inside and outside the MRE solid
using the Helmholtz free energy ψ

B
. From Eq. (III.3.18), one gets





H̃ =ρ0
∂ψ

B

∂B̃
(F, B̃ + JF−1 • b0) +

1

µ0J
C • B̃ = ρ0

∂ψ
B

∂B

∣∣∣
F
(F,B) +

1

µ0J
C • B̃, ∀X ∈ V,

H̃ =
1

µ0J
C • B̃, ∀X ∈ R

3\V,

(III.3.25)
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



Π̃
T
= ρ0

∂ψB

∂F
(F, B̃ + JF−1 • b0)−

1

2µ0J

(
B̃ • C • B̃

)
F−T +

1

µ0J

(
F • B̃

)
B̃,

= ρ0

[
∂ψ

B

∂F

∣∣∣
B

+

{
∂ψ

B

∂B

∣∣∣
F

•
(
J F−1 • b0

)}
F−T −

(
∂ψ

B

∂B

∣∣∣
F

• F−1

)(
J F−1 • b0

)]
+

1

µ0J

(
F • B̃

)
B̃ − 1

2µ0J

(
B̃ • C • B̃

)
F−T , ∀X ∈ V,

Π̃
T
=

1

µ0J

(
F • B̃

)
B̃ − 1

2µ0J

(
B̃ • C • B̃

)
F−T , ∀X ∈ R

3\V.

(III.3.26)

These constitutive equations give the change in magnetic field and stress tensor due to the
presence of the MRE solid. To find the corresponding total magnetic intensity, one has to
add H0. In addition, one can define a total stress Π (resp. σ) which can be related to Π̃

(resp. σ̃) as explained in Appendix III.A.4. Of importance is the fact that the reference

mechanical traction T can be computed whether with Π or Π̃ (see Appendix III.A.4), i.e.

N • JΠK = N • JΠ̃K = T.

III.3.2.b Formulation using H (free energy ψ
H
(F,H))

Choosing the Lagrangian H-field as the magnetic independent variable in the specific free
energy density leads to an alternative variational formulation which is presented next.

The total energy E
H

stored in the system can still be expressed as the sum of the solid’s
energy plus the magnetic energy of the entire space (see Dorfmann [47, 49], Bustamante [27]
and Danas [39])

E
H
=

∫

V

ρ0ψH
(F,H) dV − µ0

2

∫

R3

J H • C−1 • H dV , (III.3.27)

where ψ
H
(F,H) is the MRE’s specific Helmholtz free energy for the H-formulation. Hence,

from Eq. (III.3.13) and (III.3.27), the potential energy P
H

of the system reads

P
H
= E

H
−W =

∫

V

(ρ0ψH
(F,H)− ρ0f • u) dV − µ0

2

∫

R3

J H • C−1 • H dV −
∫

∂V

T • u dS.

(III.3.28)
Using Eq. (III.3.8), we can write the second term of P

H
as

µ0

2

∫

R3

J H • C−1 • H dV =
µ0

2

∫

R3

h • h dv. (III.3.29)

Similarly to the derivation in the F-B theory, we decompose the magnetic intensity h (resp.
H) as the sum of the externally applied magnetic intensity h0 (resp. H0) (in the absence

of the magnetoelastic solid), and a perturbation magnetic intensity h̃ (resp. H̃) (created by

the presence of the MRE solid), i.e. h = h0 + h̃ (resp. H = H0 + H̃). By substituting this
decomposition into Eq. (III.3.29), one obtains

µ0

2

∫

R3

h • h dv =
µ0

2

∫

R3

h0
• h0 dv + µ0

∫

R3

h0
• h̃ dv +

µ0

2

∫

R3

h̃ • h̃ dv. (III.3.30)
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The energy of the externally applied field in the entire space:
µ0

2

∫

R3

h0
• h0 dv, can be omitted

from P
H

since it is finite and constant. The second term of Eq. (III.3.30): µ0

∫
R3 h0

• h̃ dv
is equal to zero as proved in Appendix III.A.2, and as a result, from Eq. (III.3.29) and
(III.3.30), we can rewrite the potential energy P

H
as

P
H
=

∫

R3

W̃
H
(F, H̃) dV −

∫

V

ρ0f • u dV −
∫

∂V

T • u dS, (III.3.31)

where the energy density W̃
H

is defined as

W̃
H
(F, H̃) =





ρ0ψH
(F, H̃ + FT • h0)−

Jµ0

2
H̃ • C−1 • H̃, ∀X ∈ V,

−Jµ0

2
H̃ • C−1 • H̃, ∀X ∈ R

3\V.
(III.3.32)

Since the perturbation magnetic intensity has to satisfy Eq. (III.3.11), one can express

H̃ as the gradient of a scalar potential φ̃. And as the perturbation field must vanish far from

the solid, i.e.
∥∥∥H̃
∥∥∥→ 0 as ‖X‖ → ∞, we choose φ̃ that does the same

H̃ = −∇φ̃, ∀X ∈ R
3, lim

‖X‖→+∞
φ̃ = 0. (III.3.33)

Using Eq. (III.3.33), one can rewrite3 the potential energy in terms of its independent

variables u and φ̃

P
H
=

∫

R3

(
W̃

H
(F, H̃)− ρ0f • u

)
dV −

∫

∂V

T • u dS, (III.3.34)

based on the H-formulation for the Helmholtz free energy ψ
H
(F,H). At this point, all the

machinery is in place to derive the governing equations. Taking variations of the above po-
tential energy P

H
(u, φ̃) with respect to its independent variables φ̃ and u, one obtains two

Euler-Lagrange equations respectively: divergence-free magnetic field (i.e. absence of mag-
netic monopole) and equilibrium combined with the corresponding magnetics and mechanics
constitutive laws.

Indeed, by taking the variation of P
H

with respect to φ̃, one obtains after some algebraic
manipulation

P
H
,
φ̃
δφ̃ =

∫

R3

[(
∇ •

∂W̃
H

∂H̃

)
δφ̃

]
dV +

∫

∂V

[(
N •

t
∂W̃

H

∂H̃

|)
δφ̃

]
dS = 0. (III.3.35)

If we compare the resulting Euler-Lagrange equation and interface condition with (III.3.10)

and recalling that B = B0 + B̃, we get

∇ • B̃ = 0, ∀X ∈ R
3, N • JB̃K = 0, ∀X ∈ ∂V ; B̃ = −∂W̃H

∂H̃
(F, H̃). (III.3.36)
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Similarly by taking the variation of P
H

with respect to u one obtains after some algebraic
manipulation

P
H
,u δu =−

∫

R3




∇ •

(
∂W̃

H

∂F

)T

+ ρ0f


 • δu


 dV+

∫

∂V




N •

u
v
(
∂W̃

H

∂F

)T
}
~ − T


 • δu


 dS = 0.

(III.3.37)

Upon comparing the resulting Euler-Lagrange equations and interface conditions with Eq.
(III.3.9), one obtains

∇ • Π̃+ ρ0 f = 0, ∀X ∈ R
3, N • JΠ̃K = T, ∀X ∈ ∂V ; Π̃

T

=
∂W̃

H

∂F
(F, H̃).

(III.3.38)
At this stage, it is instructive to see how the general constitutive equations obtained from

W̃
H
, which are valid for any X ∈ R

3, can be expressed inside and outside the MRE solid
using the Helmholtz free energy ψ

H
. From Eq. (III.3.32), one gets





B̃ = − ρ0
∂ψ

H

∂H̃
(F, H̃ + FT • h0) + µ0J

(
H̃ • C−1

)
,

= − ρ0
∂ψ

H

∂H

∣∣∣
F
(F,H) + µ0J

(
H̃ • C−1

)
, ∀X ∈ V,

B̃ =µ0J
(
H̃ • C−1

)
, ∀X ∈ R

3\V,

(III.3.39)





Π̃
T
= ρ0

∂ψ
H

∂F
(F, H̃ + FT • h0) + µ0J

(
F−T • H̃

)(
C−1 • H̃

)
−

µ0J

2

(
H̃ • C−1 • H̃

)
F−T ,

= ρ0

[
∂ψ

H

∂F

∣∣∣
H

+ h0

∂ψ
H

∂H

∣∣∣
F

]
+

µ0J
(
F−T • H̃

)(
C−1 • H̃

)
− µ0J

2

(
H̃ • C−1 • H̃

)
F−T , ∀X ∈ V,

Π̃
T
=µ0J

(
F−T • H̃

)(
C−1 • H̃

)
− µ0J

2

(
H̃ • C−1 • H̃

)
F−T , ∀X ∈ R

3\V.

(III.3.40)

Similarly to the B-formulation, these constitutive equations give the change in magnetic field
and stress tensor due to the presence of the MRE solid. To find the corresponding total
magnetic field, one has to add B0. Moreover, one can define a total stress Π (resp. σ) which

can be related to Π̃ (resp. σ̃) and such that N • JΠK = N • JΠ̃K = T.

III.3.2.c Formulation using M (free energy ψ
M
(F,M))

The derivation of the constitutive equations based on the m-formulation is already explained
in details in Kankanala [90]. Here, we will simply write the variational formulation following
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the same procedure used in previous sections and remind the main equations. Since it is
convenient to use the magnetization per unit mass M instead of the magnetization per unit
volume m (see Kankanala [90]) in the variational formulation of the magnetoelastic boundary
value problem, we define it here

m = ρM. (III.3.41)

The total energy E
M

stored in the system is decomposed as the sum of the solid’s energy and
the magnetic energy of the entire space such that

E
M
=

∫

V

ρ0ψM
(F,M) dV +

∫

R3

Jµ0

2
H • C−1 • H dV , (III.3.42)

where ψ
M

is the MRE’s specific Helmholtz free energy for the M-formulation. Hence from
Eq. (III.3.13) and (III.3.42), the potential energy P

M
of the system can be written as

P
M
= E

M
−W =

∫

V

(ρ0ψM
(F,M)− ρ0f • u) dV +

∫

R3

Jµ0

2
H • C−1 • H dV −

∫

∂V

T • u dS.

(III.3.43)
If we substitute Eq. (III.3.8) into the second term of P

M
, and if we use the decomposition of

the magnetic intensity introduced in previous section (i.e. h = h0 + h̃), we get

∫

R3

Jµ0

2
H • C−1 • H dV =

µ0

2

∫

R3

h0
• h0 dv + µ0

∫

R3

h̃ • h0 dv +
µ0

2

∫

R3

h̃ • h̃ dv.

(III.3.44)

Since this formulation is based on the magnetization M, we need to express h̃ as a function
of M (and b̃). From Eq. (III.3.4), if we use the decomposition of the magnetic field and
magnetic intensity introduced above and recalling the fact that b0 = µ0h0, we get

h̃ =
1

µ0

b̃ − ρM. (III.3.45)

Now, substituting Eq. (III.3.45) into Eq. (III.3.44) leads to

∫

R3

Jµ0

2
H • C−1 • H dV =

1

2µ0

∫

R3

b0
• b0 dv +

1

µ0

∫

R3

b̃ • b0 dv−
∫

R3

ρ0M • b0 dV +

∫

R3

1

2µ0J

∥∥∥F • B̃ − µ0ρ0M
∥∥∥
2

dV.

(III.3.46)

Similarly to what has been done for the previous formulations, the energy of the externally

applied magnetic field in the entire space:
1

2µ0

∫

R3

b0
• b0 dv can be omitted from P

M
since

it is finite and constant, and the second term of Eq. (III.3.46):
1

µ0

∫

R3

b̃ • b0 dv is equal to

zero (see Appendix III.A.1). Hence, from Eq. (III.3.46), the potential energy P
M

can be
rewritten as

P
M
=

∫

R3

W̃
M
(F, B̃,M) dV −

∫

V

ρ0f • u dV −
∫

∂V

T • u dS, (III.3.47)
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where the total potential W̃
M
(F, B̃,M) is defined as

W̃
M
(F, B̃,M) =





ρ0ψM
(F,M)− ρ0M • b0 +

1

2µ0J

∥∥∥F • B̃ − µ0ρ0M
∥∥∥
2

, ∀X ∈ V,

1

2µ0J

∥∥∥F • B̃

∥∥∥
2

=
1

2µ0J
B̃ • C • B̃, ∀X ∈ R

3\V.
(III.3.48)

It is interesting to note that contrary to the total potential W̃
B

(resp. W̃
H
) in the B (resp.

H) theory, W̃
M

depends on two magnetic variables instead of just one.
Now if we use Eq. (III.3.19) and similarly to what is done in Section III.3.2.a, we choose

the perturbed magnetic vector potential Ã such that
∥∥∥Ã
∥∥∥ → 0 as ‖X‖ → ∞. We can then

rewrite3 the potential energy in terms of its independent variables u, Ã and M

P
M
(u, Ã,M) =

∫

R3

(
W̃

M
(F, B̃,M)− ρ0f • u

)
dV −

∫

∂V

T • u dS. (III.3.49)

At this stage, we notice that this expression of P
M

corresponds to the one used in
Kankanala [90] and so instead of repeating the entire minimization procedure, we will just
give the corresponding magnetics and mechanics laws





µ0h = µ0

(
h0 + h̃

)
=
∂ψ

M

∂M
(F,M),

Π̃
T
=
∂W̃

M

∂F
(F, B̃,M) = ρ0

∂ψ
M

∂F
(F,M)− 1

2µ0J

∥∥∥F • B̃ − µ0ρ0M
∥∥∥
2

F−T+

1

µ0J

(
F • B̃ − µ0ρ0M

)
B̃

= J

[
ρ

(
∂ψ

M

∂F
(F,M)

)
• FT − µ0

2

(
h̃ • h̃

)
I + h̃b̃

]
• F−T .

(III.3.50)

These constitutive equations give the total magnetic intensity field and the change in stress
tensor due to the presence of the MRE solid. Similarly to the other formulations, we can
define a total stress Π which can be related to Π̃ and such that N • JΠK = N • JΠ̃K = T.
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III.3.3 Equivalence between formulations

Each variational formulation presented is admissible for the magnetoelastic problem of inter-
est. In this section, we will provide the relationships between the different energy densities
so that the variational formulations are all mathematically equivalent.

Figure III.6: Schematic representation of equivalence between different energy formulations.

Equivalence between the F-B and F-H theories

First, the equivalence between the B and the H-formulation is obtained by the following
partial Legendre’s transform on the energy densities W̃

B
and W̃

H
, namely

W̃
H
(F, H̃) = W̃

B
(F, B̃)− B̃ • H̃. (III.3.51)

Indeed, based on Eq. (III.3.51) and provided the fact that B̃, H̃ and F are all independent
variables, we retrieve the following constitutive equations (provided in Eq. (III.3.22) and Eq.
Eq. (III.3.36)) 




H̃ =
∂W̃

B

∂B̃
(F, B̃),

B̃ = −∂W̃H

∂H̃
(F, H̃).

(III.3.52)

Moreover, from Eq. (III.3.51) it is obvious to notice that Eq. (III.3.24) is just another
expression of Eq (III.3.38) (and vice versa)

Π̃
T
=
∂W̃

B

∂F
(F, B̃) =

∂W̃
H

∂F
(F, H̃). (III.3.53)

Hence, the set of constitutive equations corresponding to the B-formulation is equivalent to
the one obtained with the H-formulation provided that one uses equivalent in the sense of
partial Legendre transformed energy densities for the material at hand.
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Equivalence between the F-H and F-M theories

Secondly, we can derive a similar result between the H and the M-formulations. This time,
instead of using energy densities, the equivalence between the two formulations is proved
using once again a partial Legendre’s transform but on the Helmholtz free energies (see
Bustamante et al. [27])

ψ
H
(F,H) = φ

H
(F,h) = ψ

M
(F,M)− µ0M • h,

⇒ ψ
H
(F,H) = ψ

H
(F, H̃ + FT • h0) = ψ

M
(F,M)− µ0M •

(
F−T • H̃ + h0

)
,

(III.3.54)

where φ
H
(F,h) is the expression of the Helmholtz free energy of the H-formulation if we use

the Eulerian h-field as a variable instead of its Lagrangian counterpart. The free energies ψ
H

and φ
H

are just expressions of the same quantity (and so they are equal) but using different
independent variables. At this point, if we differentiate Eq. (III.3.54) first with respect to M

and then with respect to H̃ (provided the fact that H̃, M and F are chosen to be independent,
and h0 is externally imposed), we get

∂ψ
M

∂M
(F,M) = µ0

(
F−T • H̃ + h0

)
= µ0h, (III.3.55)

which is already provided in Eq. (III.3.50a), and

∂ψ
H

∂H̃
(F, H̃ + FT • h0) = −µ0M • F−T = −µ0F

−1 • M. (III.3.56)

From Eq. (III.3.45), we know that

M =
J

ρ0

(
1

µ0

b̃ − h̃

)
=

1

ρ0

(
1

µ0

F • B̃ − JF−T • H̃

)
. (III.3.57)

If we replace this expression of M into Eq. (III.3.56), we can retrieve Eq. (III.3.39)

B̃ = −ρ0
∂ψ

H

∂H̃
(F, H̃ + FT • h0) + µ0JC−1 • H̃. (III.3.58)

We just proved that based on Eq. (III.3.54), we can retrieve the magnetic constitutive

relations of the H̃ and M-formulations. Next step consists of taking the derivative of Eq.
(III.3.54) with respect to F

∂ψ
H

∂F
(F, H̃ + FT • h0) =

∂ψ
M

∂F
(F,M) + µ0

(
F−T • H̃

) (
F−1 • M

)
. (III.3.59)

Substituting Eq. (III.3.59) into the expression of the perturbed Piola-Kirchhoff obtained
from the H-formulation (see Eq. (III.3.40)), leads to

Π̃
T
= ρ0

∂ψ
M

∂F
(F,M) + µ0ρ0

(
F−T • H̃

) (
F−1 • M

)
−

µ0J

2

∥∥∥F−T • H̃

∥∥∥
2

F−T + µ0J
(
F−T • H̃

)(
C−1 • H̃

)
.

(III.3.60)
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At this stage, we need to replace H̃ by its expression in terms of B̃ and M (Lagrangian
counterpart of Eq. (III.3.45)), and we obtain

Π̃
T
= ρ0

∂ψ
M

∂F
(F,M)− 1

2µ0J

∥∥∥F • B̃ − µ0ρ0M
∥∥∥
2

F−T +
1

µ0J

(
F • B̃ − µ0ρ0M

)
B̃.

(III.3.61)

As one can notice, the use of Eq. (III.3.54) allows to retrieve the expression of Π̃ found in

the M-formulation (see Eq. (III.3.50b)) based on the expression of Π̃ in the H-formulation.
In the same way, it is possible to re-derive Eq. (III.3.40) based on Eq. (III.3.54) and Eq.
(III.3.50b).

Hence we prove that the set of constitutive equations corresponding to the H-formulation
is equivalent to the one obtained with the M-formulation provided the fact that the Helmholtz
free energies of the considered material in these two formulations are linked by the partial
Legendre’s transform of Eq. (III.3.54).

Equivalence between the F-M and F-B theories

Finally, eventhough the equivalence between the B and the M-formulation can be obtained
by a transitive relation based first on the fact that the B and H-formulations are equivalent
and then on the fact that the H and the M-formulations are equivalent, it is interesting to
show how the B and M-formulations are linked. No Legendre’s transform is required and we
prove here that the total potentials W̃

B
(F, B̃) and W̃

M
(F, B̃,M) simply need to be equal.

Indeed, if we substitute Eq. (III.3.54) into Eq. (III.3.51) (keeping in mind the definition of

W̃
H
(F, H̃) provided in Eq. (III.3.32)), we get

W̃
B
(F, B̃) = ρ0ψM

(F,M)− ρ0M • b0 − µ0ρ0M • F−T • H̃ − µ0J

2
H̃ • C−1 • H̃ + B̃ • H̃.

(III.3.62)

If we replace H̃ (resp. h0) by its expression in terms of M and B̃ (resp. b0), one can show
that

W̃
B
(F, B̃) = ρ0ψM

(F,M)− ρ0M • b0 +
1

2µ0J

∥∥∥F • B̃ − µ0ρ0M
∥∥∥
2

= W̃
M
(F, B̃,M).

(III.3.63)
At this stage, it is obvious to notice that provided the equality of the energy densities, we
can rewrite Eq. (III.3.24) into Eq. (III.3.50b) and vice versa

Π̃
T
=
∂W̃

B

∂F
(F, B̃) =

∂W̃
M

∂F
(F, B̃,M). (III.3.64)

Moreover, we can retrieve the magnetic constitutive relations of both formulations. Equation
(III.3.22) can be obtained using Eq. (III.3.48), and by taking the derivative of Eq. (III.3.63)

with respect to B̃ (keeping in mind that we chose F, B̃ and M to be independent variables)

∂W̃
B

∂B̃
(F, B̃) =

∂W̃
M

∂B̃
(F, B̃,M) =

1

µ0J
C • B̃ − ρ0

J
FT • M = H̃. (III.3.65)
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Similarly, Eq. (III.3.50a) can be obtained using Eq. (III.3.48), and by taking the derivative
of Eq. (III.3.63) with respect to M

∂W̃
M

∂M
(F, B̃,M) = ρ0

∂ψ
M

∂M
(F,M)− ρ0b0 −

ρ0
J

(
F • B̃

)
+
µ0ρ

2
0

J
M = 0,

⇒ ∂ψ
M

∂M
(F,M) = b0 +

1

J
F • B̃ − µ0ρM = b0 + b̃ − µ0m = µ0h.

(III.3.66)

Hence, the set of constitutive equations corresponding to the B-formulation is equivalent to
the one obtained with the M-formulation provided the fact that the energy densities of the
material in these two formulations are equal (see Eq. (III.3.63)).

III.3.4 Type of Energies considered

As mentionned above, the proposed continuum modeling relies on a Helmholtz free energy.
In this section, we present for each formulation the type of Helmholtz free energy that allows
to properly fit experimental data.

Type of Energy for the F-B formulation

First, it is important to recall that due to the properties of objectivity and material symmetry
(see Kankanala [90] and Danas [40]), the general form of the specific Helmholtz free energy
for isotropic materials in the case of the B-formulation is given by

ψ
B
= ψ

B
(C,B). (III.3.67)

Using a known result of representation theory, e.g. Green and Adkins [69], one obtains that an
isotropic scalar function which depends on one symmetric rank two tensor C and one vector
argument B can be expressed as a function of the following six independent invariants, i.e.
ψ

B
(C,B) = ψ

B
(IBi ), i ∈ 1, ...6, with

I1 = trC, I2 =
1

2

[
(trC)2 − tr

(
C2
)]
, I3 = detC = J2,

IB4 = B • B = J2 b • F−T • F−1 • b = J2 b • B−1 • b,

IB5 = B • C • B = J2 b • b,

IB6 = B • C2 • B = J2 b • F • FT • b = J2 b • B • b,

(III.3.68)

where B = F • FT , is the left Cauchy-Green strain tensor.
As a first approximation (that remains perfectly reasonable as we will see in Section III.5),

we choose not to use invariants I2 and IB4 and we propose the following form for the energy
density

ρ0ψB
= ρ0ψmech

(I1, I3) + ρ0ψ
B
coupled

(I3, I
B
5 , I

B
6 ), (III.3.69)
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where




ρ0ψmech
=

2∑

i=1

31−αi

2αi

µi [(I1 − ln I3)
αi − 3αi ] +

G′

2

(√
I3 − 1

)2
,

ρ0ψ
B
coupled

=
µ0

√
I3m

2
s

χ∗

[
β

1B
ψB

5
(I3, I

B
5 ) + (1− β

1B
)ψB

6
(I3, I

B
6 )
]
,

ψB
5
(I3, I

B
5 ) =− ln


cosh


 χ∗

µ0ms

√
IB5
I3




 ,

ψB
6
(I3, I

B
6 ) =− 1

2
ln

{
1 + β

2B

((
χ∗

µ0ms

)2
IB6
I3

)
+ (1− β

2B
) tanh

((
χ∗

µ0ms

)2
IB6
I3

)}
.

(III.3.70)

The purely mechanical contribution to the energy, i.e. ψ
mech

, is the generalization for com-
pressible materials of a hyperelastic model well suited for rubber materials that has been
proposed by Lopez-Pamies [103], and that uses as material parameters: αi, µi (

∑2
i=1 µi = G

is the shear modulus) and G′ is the Lamé constant. For the magneto-mechanical material
parameters, we consider four coefficients: ms, χ

∗, β
1B

and β
2B

. In the first part of the
magneto-mechanical free energy, we use the ‘tanh’ saturation model4 ψB

5
that has been pro-

posed by Danas [39] where ms is the magnetic saturation of the MRE per unit volume and χ∗

is another definition of the magnetic susceptibility used in literature (χ∗ is the initial slope
of the (b-µ0m) curve) that is linked to the ‘classical’ magnetic susceptibility χ (the initial
slope of the (h-m) curve) through χ∗ = χ/(1 + χ). The second part of the coupled free
energy, ψB

6
, depends on the invariant IB6 that captures the magneto-mechanical coupling.

The function ψB
6

is chosen so that for high magnetic fields (i.e. IB6 → ∞), the influence of IB6
in the governing equations saturates since there are no more magneto-mechanical coupling
after magnetic saturation (i.e. the material doesn’t deform anymore after saturation). In the
limit of small deformations and small magnetic fields, ψ

mech
linearizes properly and so does

ψB
coupled

(ψB
5

and ψB
6

are equivalent in this limit).

Type of Energy for the F-H formulation

Similarly, for the H-formulation the Helmholtz free energy can be expressed as a function of
six independent invariants

ψ
H
= ψ

H
(C,H) = ψ

H
(IHi ), i ∈ 1, ...6, (III.3.71)

4 NOTE: We could have used a Langevin model for the saturation, i.e.

ψB
5

=
1

3


ln


 3χ∗

µ0 ms

√
IB5
I3


− ln


sinh


 3χ∗

µ0ms

√
IB5
I3






. However, the ‘tanh’ model (see Eq. (III.3.70c))

suits better the experimental data since it exhibits a faster growth and reaches the saturation magnetization
faster.
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where the purely mechanical invariants (i.e. Ii, i ∈ [1, 3]) remain unchanged and where the
coupled magneto-mechanical invariants read

IH4 = H • H = h • F • FT • h = h • B • h,

IH5 = H • C−1 • H = h • h,

IH6 = H • C−2 • H = h • B−1 • h.

(III.3.72)

As a first approximation (that is sufficiently representative as shown is Section III.5), we
don’t use invariants I2 and IH6 in the expression of the Helmholtz free energy ψ

H
. For the

same reasons that have been explained above, we choose a free energy function that includes a
‘tanh’ saturation model ψH

5
and a magneto-mechanical coupling function ψH

4
whose influence

in the governing equation saturates as H keeps increasing. Since the governing equations of
the H-formulation are similar to the ones of the B-formulation, the chosen Helmholtz energy
resembles the one introduced in Eq. III.3.69 and Eq. III.3.70 and reads

ρ0ψH
= ρ0ψmech

(I1, I3) + ρ0ψ
H
coupled

(I3, I
H
4 , I

H
5 ), (III.3.73)

where ψ
mech

remains the same as in Eq. (III.3.70a) and





ρ0ψ
H
coupled

=
µ0

√
I3m

2
s

χ

[
β

1H
ψH

5
(IH5 ) + (1− β

1H
)ψH

4
(IH4 )

]
,

ψH
5
(IH5 ) = − ln

(
cosh

(
χ

ms

√
IH5

))
,

ψH
4
(IH4 ) = −1

2
ln

{
1 + β

2H

((
χ

ms

)2

IH4

)
+ (1− β

2H
) tanh

((
χ

ms

)2

IH4

)}
.

(III.3.74)

It is interesting to note that in this case we use the ‘classical’ magnetic susceptibility χ.

Type of Energy for the F-M formulation

For the M-formulation, the Helmholtz free energy ψ
M

is as well expressed as a function of
six independent invariants

ψ
M
= ψ

M
(IMi ), i ∈ 1, ...6, (III.3.75)

where the purely mechanical invariants are given in Eq. (III.3.68), and where the coupled
invariants are given by

IM4 = M • M, IM5 = M • B • M, IM6 = M • B2 • M. (III.3.76)
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As a first approximation (which is sufficiently representative to fit experimental data), we
choose not to use invariants I2 and IM6 and we propose the following free energy form





ρ0ψM
= ρ0ψmech

(I1, I3) + ρ0ψ
M
coupled

(I3, I
M
4 , I

M
5 ),

ρ0ψ
M
coupled

=
µ0 (Ms ρ0)

2

2χ
√
I3

[
ψM

4
(IM4 ) + ψM

5
(IM5 )

]
,

ψM
4
(IM4 ) = β

1M

IM4
M2

s

+ β
0M

{
1

2
ln

(
1−

(
IM4
M2

s

)2
)

+
IM4
M2

s

arctanh

(
IM4
M2

s

)}
,

ψM
5
(IM5 ) = (1− β

1M
)

{
IM5
M2

s

+ β
2M

(
IM5
M2

s

)2

+ β
3M

(
IM5
M2

s

)3
}
,

(III.3.77)

where Ms = ms/ρ0 is the magnetic saturation per unit mass. The function ψM
4

is the
counterpart of the ‘tanh’ saturation model in the M-formulation, and uses β

0M
and β

1M
as

coefficients. In terms of magneto-mechanical coupling, the influence of ψM
5

in the governing
equations doesn’t have to saturate since the independent variable M saturates by itself (i.e.
‖M‖ < Ms), and hence a polynomial form (with coefficients β

2M
and β

3M
) for ψM

5
is admis-

sible.

The type of energy densities discussed in this section are obviously not the only ones
that can be used to describe the phenomena observed in experiments but are sufficiently
representative for the purpose of this study.

III.4 Numerical Implementation

The variational formulations presented above have been implemented in finite element codes
for the purpose of simulating complex geometries submitted to complex magneto-mechanical
loadings. Indeed, except for some trivial problems, analytical solutions cannot generally
be derived due to strong non-linearities in the governing equations and non-uniformities in
mechanical and magnetic fields. In this section, we first present the special features of the
numerical implementation of the formulations based on a magnetic vector potential (i.e. the

F-B and F-M theory) which require the uniqueness of Ã. Secondly, we show how to set valid
boundary conditions for the magnetic vector potential. The last part explains on a particular
example how to use the symetries of a problem to reduce the number of degrees of freedom
and execution time to solve it.

III.4.1 Coulomb gauge for the magnetic vector potential

The numerical implementation of each of the formulations presented in Section III.3.2 re-
quires the uniqueness of the potential energy independent variables. The uniqueness of the
displacement field u will not be discussed since no additional care needs to be taken for
magneto-mechanical boundary value problems compared to purely mechanical ones.

In terms of magnetic variables, the F-B variational formulation (and in exactly the same
way the F-M variational formulation) needs an additional term to ensure the uniqueness
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of the magnetic vector potential Ã, since according to Eq. (III.3.19), it is defined up to a
gradient. Hence, we use the Coulomb gauge

∇ • Ã = 0, ∀X ∈ R
3. (III.4.1)

To numerically enforce the Coulomb gauge, we choose to add a penalty term in the total
potential energy (provided in Eq. (III.3.17)) with penalty κ5 ≪ 1, so that

P
B
=

∫

R3

W̃
B
(u, Ã;b0) dV −

∫

V

ρ0f • u dV −
∫

∂V

T • u dS, (III.4.2)

where the energy density is given by

W̃
B
(u, Ã;b0) = ρ0ψB

(F,∇× Ã + JF−1 • b0) +
1

2µ0J
(∇× Ã) • C • (∇× Ã) +

1

2µ0κ
(∇ • Ã)2.

(III.4.3)
The choice of the penalty approach is motivated by two reasons. First, the total potential
energy P

B
remains positive-definite locally. Secondly, unlike the method of Lagrange multi-

pliers, there is no need to solve for any new unknowns. The value of the penalty κ is adjusted
so that it doesn’t influence the final solution of the boundary value problem. It is impor-
tant to specify that the penalty term added must be under-integrated to avoid any ‘locking
phenomena’ (similarly to what is done in purely mechanical problems to avoid volumetric
locking).

It is interesting to note that to numerically implement the F-H theory, the variational
formulation presented in Eq. (III.3.34) remains unchanged (i.e. no additional constraint is

needed). Indeed, even if the magnetic scalar potential φ̃ is defined up to a constant, we ensure
its uniqueness by imposing boundary conditions (see Eq. (III.3.33).

III.4.2 Boundary conditions

For the magnetic vector potential

The same boundary conditions can be applied for both the F-B and F-M formulations since
no boundary conditions need to be applied for the magnetization vector M. In this section,
we focus on Ã since no additional care needs to be taken on the boundary conditions of u

compared to a purely mechanical boundary value problem.
As previously mentionned, the numerical simulation of a MRE boundary value problem

requires to simulate not only the response of the magnetoelastic solid but also the influence
of its surrounding. Indeed, since magnetic fields exist also outside of the solid V and interact
with it through Maxwell stresses at the boundary ∂V (and so there is a strong shape depen-
dence), we need to consider an entire region surrounding the MRE of interest. This system
that we simulate is at least composed of the magnetoelastic solid and the surrounding air
(see Fig. III.8). It can sometimes contain other components such as a coil that is used to

5 NOTE: The final solution of the boundary value problem shouldn’t depend on the parameter κ.
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apply magnetic loads.

Let’s consider a domain D that contains the system of interest. Generally, D is finite,
simply connected and its boundary ∂D is at least continuous.

Figure III.7: Domain D and its boundary ∂D. The closed loop C that belongs to ∂D separates
the boundary into two parts ∂D+ and ∂D−.

At this stage, we want to show that as boundary conditions, only the components of
Ã that are tangential to ∂D need to be prescribed to uniquely define the magnetic vector
potential in the entire domain D.
First, it is helpful to recall the equations verified by Ã (see Eq. (III.3.10)6, (III.3.19) and
(III.4.1)) 




∇× Ã = B̃, ∀X ∈ D,
∇ • Ã = 0, ∀X ∈ D,
(∇× Ã) • N = 0, ∀X ∈ ∂D.

(III.4.4)

Secondly, ∀X ∈ ∂D, we can decompose the magnetic vector potential as

Ã = (Ã • N)N − (Ã × N)× N, (III.4.5)

where N is the outward normal and (Ã • N)N is the normal component of Ã on ∂D. Let’s
now consider a closed loop C such that C ∈ ∂D. This closed loop separates the boundary
∂D in two parts ∂D+ and ∂D− (see Fig. III.7) such that ∂D = ∂D+ ∪ ∂D−. If we apply
Stokes theorem to the third equation of (III.4.4) on the domain ∂D+, we get

∮

C

Ã • dl = −
∮

C

[
(Ã × N)× N

]
• dl =

∫∫

∂D+

(∇× Ã) • N dS = 0. (III.4.6)

The domain ∂D+\C is an open set7 of R2 (subspace topology) and from the arbitrariness of

6 NOTE: Without loss of generality, we consider that the normal component of B̃ is equal to zero at the
boundary. In the case where we want to prescribe another boundary condition, i.e. B̃ • N = B̃a • N, then
the reasoning that is presented remains valid provided the fact that B̃ is substituted by B̃ − B̃a and Ã is
substituted by Ã − Ãa (where ∇× Ãa = B̃a and ∇ • Ãa = 0, ∀X ∈ D).

7 NOTE: Careful, ∂D+\C is not an open set of R3.
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C, we know that Eq. (III.4.6) remains valid for every closed loop belonging to ∂D+. As a

result, we can conclude from the Poincaré’s lemma that (Ã×N)×N (which belongs to ∂D+)
is a closed differential form that is locally exact on ∂D+ (i.e. ∃φ+ a scalar potential such that

∀X ∈ ∂D+, (Ã×N)×N = −∇φ+). The exact same reasoning can be applied to ∂D− and

hence we obtain that ∃φ− a scalar potential such that ∀X ∈ ∂D−, (Ã×N)×N = −∇φ−.
A priori, the scalar potentials φ+ and φ− are defined on different sets. However, we know
that locally exact differential forms that are defined on a simply connected domain are exact.
Then we can conclude that ∃φ a scalar potential such that

(Ã × N)× N = −∇φ, ∀X ∈ ∂D. (III.4.7)

If we substitute Eq. (III.4.7) into Eq. (III.4.5), we end up with

Ã = (Ã • N)N +∇φ, ∀X ∈ ∂D. (III.4.8)

As we can see, the definition of Ã on the boundary ∂D is not unique. At this point, we
choose8 to consider φ = 0 so that

Ã = (Ã • N)N, ∀X ∈ ∂D,
⇒ Ã × N = 0, ∀X ∈ ∂D.

(III.4.9)

Based on the work of Biro and Preis [12], we can show that with boundary condition (III.4.9),

Ã is uniquely defined in D.

Indeed, if we consider two vector potentials Ã
(1)

and Ã
(2)

both satisfying Eq. (III.4.4a),

(III.4.4b) and (III.4.9), then their difference Ã
(0)

= Ã
(1) − Ã

(2)
verifies





∇× Ã
(0)

= 0, ∀X ∈ D,

∇ • Ã
(0)

= 0, ∀X ∈ D,

N × Ã
(0)

= 0, ∀X ∈ ∂D.

(III.4.10)

In view of Eq. (III.4.10a), Ã
(0)

can be written as

Ã
(0)

= ∇ϕ, ∀X ∈ D, (III.4.11)

where according to Eq. (III.4.10b), the scalar function ϕ satisfies the Laplace equation

∇2ϕ = 0, ∀X ∈ D. (III.4.12)

With the boundary condition (III.4.10c), we can easily show that ϕ is a constant everywhere

in D (since D is assumed to be simply connected). Hence, Ã
(0)

= 0, which means that Ã is

8 NOTE: Any choice of scalar function φ is allowed (provided some regularity conditions). The important
thing is to choose one.
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uniquely defined.

As a conclusion, we proved that it is sufficient to impose the tangential components of Ã

on ∂D as boundary conditions.

On the particular case of Fig. III.8, if we simulate a region of surrounding air sufficiently
large compared to the dimensions of the magnetoelastic solid, and since we know that the
influence of the solid on the external magnetic field vanishes far from its boundaries, we can
reasonably impose the following boundary conditions on the faces9 ‘Top’, ‘Right’ and ‘Front’

{
u = 0,

N × Ã = 0.
(III.4.13)

For the magnetic scalar potential

For the F-H theory, both u and φ̃ need to be imposed on ∂D. For the boundary problem
described in Fig. III.8, the boundary conditions to apply on the faces ‘Top’, ‘Right’ and
‘Front’ are: u = 0 and φ̃ = 0.

9 NOTE: Careful on Fig. III.8, the boundary conditions of Eq. (III.4.13) must not be applied on the
symmetry planes ‘Bottom’, ‘Left’ and ‘Back’.



III.4 – Numerical Implementation 93

III.4.3 Symmetry conditions for the magnetic vector potential

Whenever simulating a boundary value problem, we want to reduce the size of the system
as much as possible to minimize the computational resources and time needed to solve it.
In this section, we introduce a way to do this by exploiting existing symmetries. For that
purpose, we consider the particular case of the MRE sample presented in Section III.2.2 that
is used for coupled magneto-mechanical experiments. The magnetoelastic solid is subjected
to an externally applied magnetic field b0 far from its boundaries and perpendicular to its
axis (along the e1 direction, see Fig. III.8).

Figure III.8: Schematic of the domain considered for the 3D boundary value problem of a
MRE cylindrical specimen with ellipsoidal ends subjected to an externally applied magnetic
field b0 far from its boundaries; MRE solid in red and surrounding air in blue. The figure on
the left shows the entire system whereas the picture on the right is a zoom in that presents
the symmetry planes of the problem.

For the magnetic vector potential

First, it is interesting to recall the symmetry properties of the magnetic field (or the per-
turbed magnetic field). The latter is a pseudovector (as opposed to a polar or ‘true’ vector).
Subjected to a reflection through a symmetry plane, it is transformed into the opposite of
its mirror image (as opposed to a polar vector which would be transformed into its mirror
image). In the case of a reflection through an anti-symmetry plane, it is transformed into its
mirror image (as opposed to a polar vector which would be transformed into the opposite of
its mirror image). It is important to notice that the symmetry properties of a pseudovector
and a polar vector are opposite.

In the three dimensional case, the perturbed magnetic field B̃ is expressed as the curl of
a polar vector, namely the perturbed magnetic vector potental Ã. As a result Ã and B̃ have
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opposite symmetry properties.

In the case of the magnetoelastic MRE sample, as we can see on the schematics in Fig.
III.8, there are three remarkable planes (about which the geometry is exactly mirrored).
This is the reason why only one-eighth of the problem is shown in this figure. Due to the
external magnetic field b0 being applied in the direction e1

10 (perpendicular to the axis of
the magnetoelastic solid), we can se that the plane of normal e1 named ‘Left’ (see Fig. III.8)
is a plane of anti-symmetry whereas the planes of normal e2 and e3 that are named ‘Bottom’
and ‘Back’ are symmetry planes of the perturbed magnetic field B̃. Hence, B̃ verifies the
following symmetry properties whereas the ones verified by Ã are opposite (anti-symmetry
properties)





B̃1(X1,X2,X3) = B̃1(−X1,X2,X3),

B̃1(X1,X2,X3) = B̃1(X1,−X2,X3),

B̃1(X1,X2,X3) = B̃1(X1,X2,−X3),

B̃2(X1,X2,X3) = −B̃2(−X1,X2,X3),

B̃2(X1,X2,X3) = −B̃2(X1,−X2,X3),

B̃2(X1,X2,X3) = B̃2(X1,X2,−X3),

B̃3(X1,X2,X3) = −B̃3(−X1,X2,X3),

B̃3(X1,X2,X3) = B̃3(X1,−X2,X3),

B̃3(X1,X2,X3) = −B̃3(X1,X2,−X3),

⇒





Ã1(X1,X2,X3) = −Ã1(−X1,X2,X3),

Ã1(X1,X2,X3) = −Ã1(X1,−X2,X3),

Ã1(X1,X2,X3) = −Ã1(X1,X2,−X3),

Ã2(X1,X2,X3) = Ã2(−X1,X2,X3),

Ã2(X1,X2,X3) = Ã2(X1,−X2,X3),

Ã2(X1,X2,X3) = −Ã2(X1,X2,−X3),

Ã3(X1,X2,X3) = Ã3(−X1,X2,X3),

Ã3(X1,X2,X3) = −Ã3(X1,−X2,X3),

Ã3(X1,X2,X3) = Ã3(X1,X2,−X3).

(III.4.14)
From Eq. III.4.14, we can deduce the boundary conditions to apply on the symmetry planes
‘Bottom’, ‘Left’ and ‘Back’.
The Dirichlet boundary conditions read





Ã1 =0, ∀X = (0,X2,X3) ∈ ‘Left’,

Ã1 =Ã3 = 0, ∀X = (X1, 0,X3) ∈ ‘Bottom’,

Ã1 =Ã2 = 0, ∀X = (X1,X2, 0) ∈ ‘Back’.

(III.4.15)

As for the Neumann boundary conditions, they are automatically verified and enforced by
the variational formulation.

Based on the result derived in previous section, we know that it is sufficient to impose the
tangential components of Ã on ∂D and hence it is not necessary to impose the first relation
of Eq. III.4.15 (i.e. Ã1(0,X2,X3) = 0).

For the magnetic scalar potential

For the F-H theory, we can as well establish a link between the symmetry properties of the
magnetic intensity field H̃ and the symmetry properties of the scalar potential φ̃. The latter

10 NOTE: the direction of the externally applied magnetic field dictates the nature of the geometry’s
symmetry planes.
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is an even function with respect to a symmetry plane of H̃, and an odd function with respect
to an anti-symmetry plane of H̃.

In the particular case of the boundary value problem described in Fig. III.8, the symmetry
properties of H̃ and B̃ are the same and are presented in Eq. (III.4.14). Hence φ̃ is an odd
function with respect to the anti-symmetry plane of normal e1 (‘Left’) and an even function
with respect to the symmetry planes of normal e2 and e3 (‘Bottom’ and ‘Back’), i.e.





φ̃(X1,X2,X3) = −φ̃(−X1,X2,X3),

φ̃(X1,X2,X3) = φ̃(X1,−X2,X3),

φ̃(X1,X2,X3) = φ̃(X1,X2,−X3).

(III.4.16)

As a result, we can deduce the boundary condition that needs to be applied (only the Dirich-
let boundary condition is given since the Neumann boundary conditions are automatically
verified)

φ̃ = 0, ∀X = (0,X2,X3) ∈ ‘Left’. (III.4.17)

It is to remark that such a reasoning can be applied only for a limited number of problems.
Indeed, the geometry (that could be complex) needs to present some symmetries and the
applied field has to keep those symmetries.

III.5 Results

In the first part of this Section is described the combined experimental/numerical approach
used to obtain an expression for the free energy ψ

B
(F,B) of the MRE solid. A purely

mechanical (uniaxial traction) test followed by a coupled magneto-mechanical one (pure
magnetostriction, T2 = 0 Pa) are used to obtain the free energy of the MRE in the F-B
formulation. In the second part, we test the predictive capabilities of the model based on
the experimentally obtained free energy for two different coupled magneto-mechanical tests
(T2 > 0 Pa). The last part uses a numerical approach to obtain the free energy of the MRE
for the remaining formulations, i.e. ψ

H
(F,H) and ψ

M
(F,M).

III.5.1 Free energy determination using the F-B formulation (ψ
B
(F,B))

III.5.1.a Purely Mechanical Experiments and FEM simulations

Results from the purely mechanical test in uniaxial tension are presented in Fig. III.9. The
traction (T2) versus the stretch ratio (λ2) curve is shown in Fig. III.9a while the transverse
stretch ratios (λ1, λ3) versus the axial stretch ratio (λ2) are shown in Fig. III.9b. From these
experiments, using a least squares fit in the analytical solution of the problem , one can obtain
the coefficients (µi, αi, G

′)11 (see Eq. (III.3.70a)). The result of this fit is depicted in Fig.

11 NOTE: The numerical value of the computed coefficients are: µ1 = 1.64× 10−2 MPa, µ2 = 3.21× 10−3

MPa, α1 = 1.56, α2 = −10.31 and G′ = 125 (µ1 + µ2).
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III.9 where the experiments, plotted in dotted line, the analytical solution, plotted in dashed
line, and the 3D FEM results plotted in a continuous line, are practically indistinguishable
for engineering strains of up to 70%. Note also that the MRE is almost incompressible since
λ1 = λ3 = (λ2)

−1/2, as seen from Fig. III.9b.

(a) (b)

Figure III.9: Purely mechanical (uniaxial tesion) test used for obtaining the energy density
ψ

B
for an isotropic MRE. The traction (T2) versus stretch ratio (λ2) curve is shown in (a)

while the transverse stretch ratios (λ1, λ3) versus axial stretch ratio (λ2) are shown in (b).
Experimental curves are plotted in dotted lines, analytical predictions in dashed lines and
results of FEM calculations in continuous lines.

III.5.1.b Coupled Magneto-Mechanical Experiments and FEM simulations

Results from the coupled magneto-mechanical test in pure magnetostriction are presented in
Fig. III.10. The stretch ratio (λ1) along the direction of the applied magnetic field is shown
in Fig. III.10a, the transverse and axial stretch ratios (λ2, λ3) are shown in Fig. III.10b, the
magnetic field (b1) inside the MRE specimen is shown in Fig. III.10c and the magnetization
(m1) is shown in Fig. III.10d. All curves are plotted against the remotely applied field b0

along the e1 direction. The insert in Fig. III.10d shows the magnetization response of the
MRE, i.e. magnetization (m1) versus h-field (h1) along the applied magnetic field direction;
the initial slope of this curve is the magnetic susceptibility of the material χ. Notice that for
up to about 0.4T the response is linear followed by a sharp drop in the slope as saturation
occurs; a full saturation has not occured up to 0.8T, the maximum value of the applied
magnetic field.

From these experiments, in combination with the FEM calculations as described in the
previous section (no analytical solution being possible for the corresponding boundary value
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problem), one obtains the coefficients ( ms, χ
∗, β

1B
, β

2B
)12 (see Eq. (III.3.70)). As expected

from previous work on MREs [90, 40], the engineering strain for the initial magnetostrictive
response |λ1 − 1| has a quadratic dependence on the applied magnetic field b0 and subse-
quently saturates for higher b0 values. A similar behavior is observed for the remaining
engineering strains |1− λ2|, |1− λ3|. The material parameters used for the fitting of ψ

B
give

an accurate prediction of λ1 up to 0.4T, but an increasingly higher value (compared to the
experiment as seen in Fig. III.10a) for fields b0 > 0.4T. The corresponding predictions for λ2
and λ3 are less accurate as seen from Fig. III.10b, given our choice for matching the experi-
mental and predicted value of the axial stretch λ2 for the highest magnetic field (b0 = 0.8T).
The adopted choice of parameters gives much better predictive capabilities for the purely
magnetic response, as evidenced by the experimental/numerical comparison in Fig. III.10c
and Fig. III.10d, where again we chose to match the experimental and predicted values of
the magnetization at the highest magnetic field (b0 = 0.8T).

12 NOTE: The numerical value of the computed coefficients are: ms = 1.265 × 105 A · m−1, χ∗ = 0.225
(corresponding to χ = 0.291) , β

1B
= 0.91 and β

2B
= 0.50.
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(a) (b)

(c) (d)

Figure III.10: Coupled magneto-mechanical (pure magnetostriction, T2 = 0) test used for
obtaining the energy density ψ

B
for an isotropic MRE. The stretch ratio (λ1) in the direction

of the applied magnetic field is shown in (a), the transverse and axial stretch ratios (λ2,
λ3) are shown in (b), the magnetic field (b1) inside the MRE specimen is shown in (c) and
the magnetization (m1) is shown in (d). All curves are plotted against the remotely applied
field (b0) along the e1 direction. Experimental curves are plotted in dotted lines while FEM
calculations are in continuous lines.
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III.5.2 Predictive capabilities of the model

Following the experimental determination of the free energy ψ
B
(F,B), the obvious next

question is about its accuracy in predicting other experiments, different from the ones used
to find it. To this end we compare the FEM model’s predictions, calculated using the energy
density obtained from the purely mechanical and magnetostrictive tests, as described in the
previous subsections, to two coupled magneto-mechanical tests where the sample is subjected
to fixed axial tractions F2 = 0.1N, F2 = 0.2N and under a transverse magnetic field 0 ≤
b0 ≤ 0.8T, as shown in Fig. III.11 and Fig. III.12 respectively. More specifically in Fig.
III.11a (and Fig. III.12a) are plotted the axial stretch ratio (λ2) and the transverse stretch
ratios (λ1, λ3) as functions of the applied magnetic field (b0) along e1. The magnetic field
(b1) inside the specimen as a function of the applied field (b0) is plotted in Fig. III.11b (and
Fig. III.12b) while the magnetization (m1) inside the specimen is plotted in Fig. III.11c (and
Fig. III.12c). The magnetization (m1) against the magnetic intensity (h1) inside the MRE is
also plotted in the insert of Fig. III.11c (and Fig. III.12c). The same plotting convention is
used in Fig. III.11 and Fig. III.12 as in Fig. III.9 and Fig. III.10, i.e. experimental results
in dotted lines and FEM calculations in solid lines.

(a) (b) (c)

Figure III.11: Predictive capabilities of the model based on the experimentally obtained free
energy ψ

B
for a coupled magneto-mechanical test under combined axial tension (F2 = 0.1N)

and transverse magnetic field (b0). The comparison for the stretch ratios is shown in (a),
for the magnetic field (b1) inside the MRE specimen in (b) and for the magnetization (m1)
in (c). All curves are plotted against the remotely applied field (b0) along the e1 direction.
Experimental curves are plotted in dotted lines while the FEM calculation results are in solid
lines.
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(a) (b) (c)

Figure III.12: Predictive capabilities of the model based on the experimentally obtained free
energy ψ

B
for a coupled magneto-mechanical test under combined axial tension (F2 = 0.2N)

and transverse magnetic field (b0). The comparison for the stretch ratios is shown in (a),
for the magnetic field (b1) inside the MRE specimen in (b) and for the magnetization (m1)
in (c). All curves are plotted against the remotely applied field (b0) along the e1 direction.
Experimental curves are plotted in dotted lines while the FEM calculation results are in solid
lines.

In the purely magnetostrictive test (F2 = 0) used to obtain the MRE’s free energy, the
shape effect is the strongest, as evidenced by the difference between the axial stretch (λ2)
and the transverse stretch (λ3) (had the shape effect been ignored, isotropy would dictate
λ2 = λ3). In fitting the energy density with the least number of parameters, a choice was
made to match the axial stretch (λ2) at the maximum magnetic field (b0 = 0.8T) as seen in
Fig. III.10b, thus giving the biggest difference between experiments and FEM calculations.
In the presence of axial tension F2 > 0, the shape effect is less pronounced and as a result the
discrepancy betwen numerical calculations and experiments is considerably smaller for the
axial stretch (λ2) as well as the transverse stretches (λ1, λ3). The predictive capabilities of
the FEM model improve with increasing axial tension, thus capturing the coupled magneto-
mechanical behaviour and the corresponding shape effect in a very satisfactory manner. The
success of predictive capability of the model for the magnetization curve had to be expected
since it is not significantly influenced by mechanical effects, as a comparison of experimental
results between Fig. III.10c and Fig. III.10d to their counterparts Fig. III.11b and Fig.
III.11c (for F2 = 0.1N) and Fig. III.12b and Fig. III.12c (for F2 = 0.2N) can easily establish.

III.5.3 Free energy in other formulations (ψ
H
, ψ

M
)

In Section III.5.1, special attention in the computation of ψ
B

was needed to make sure that
it only describes the material of interest and is not influenced by the shape of the specimens
used to collect experimental data. For that reason, finite element calculations have been used
to properly simulate ‘shape effects’ in our experiments.

The computation of the free energies in the other two formulations (ψ
H

and ψ
M

), though,
can be done much more easily using the analytical equations provided in Section III.3.3.
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Indeed, using the fact that the governing equations in each formulations are equivalent and
given a common problem to solve analytically, we can use the already known free energy ψ

B

to compute ψ
H

and ψ
M

. In what follows, more details are given on the procedure used.

Figure III.13: Schematic of the idealized uniaxial magnetostriction test used to compute the
free energies ψ

H
and ψ

M
. Such a problem of a stress free material subjected to a magnetic

field applied in the e1 direction can be solved analytically.

Computation of ψ
H

Based on the governing equations provided in Section III.3.2, we can prove (see Danas [39])
that the problem of a stress free material subjected to a magnetic field applied in the e1

direction can be obtained by solving a system of equations composed of a magnetic equation
and three independent equations of static equilibrium in the reference normal directions
Nk = ek, k = 1, 2, 3, given by





m =− ρ0F
−T •

∂ψ
B

∂B̃
(F, B̃ + JF

−1 • b0) = − ρ0
µ0 J

F •
∂ψ

H

∂H̃
(F, H̃ + F

T • h0),

T =ρ0

[
∂ψ

B

∂F
(F, B̃ + JF

−1 • b0)

]
• N − J

(
m • b̃

)
F
−T • N + J

(
mb̃

)
•
(
F
−T • N

)

=ρ0

[
∂ψ

H

∂F
(F, H̃ + F

T • h0)

]
• N − µ0J

(
h̃m

)
•
(
F
−T • N

)
= 0,

(III.5.1)

where T is the nominal traction.
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Given the chosen form of energy for ψ
B

(highly non-linear dependence on B as can be
seen in Eq. (III.3.69) and Eq. (III.3.70), and given a prescribed loading path (F, b), finding
the exact solution ψ

H
of the differential system of Eq. (III.5.1) is a very complicated task.

Instead, we look for an approximate solution that belongs to the set of functions of the form
suggested in Eq. (III.3.73) and Eq. (III.3.74). A least square optimization (that minimizes
the difference between the calculated solutions (λi, b1) to the given problem obtained with
the F-B and F-H theory) is used to compute the material parameters (β

1H
, β

2H
). If the

magnetic field is imposed by prescribing the set of variables (b0, m1) (see Fig. III.14c), the
optimization algorithm provides the following material parameters

β
1H

= 0.87, β
2H

= 0.375. (III.5.2)

For the considered problem, the obtained free energy ψ
H

provides stretch ratios λ1 and
λ2 = λ3 (see Fig. III.14a) and magnetic field b1 (see Fig. III.14b) very similar to the one
obtained with free energy ψ

B
.

Lastly, we make sure that the partial Legendre’s transform of Eq. III.3.51 is verified with
a very high accuracy for loading paths of the following form

F =
1√
λ

e1e1 + λ e2e2 +
1√
λ

e3e3, b = b1e1. (III.5.3)

As one can see in Fig. III.14d, the error committed on the partial Legendre’s transform
defined by

ErrorH = 100×

∣∣∣∣∣∣

W̃
H
(F, H̃)−

(
W̃

B
(F, B̃)− B̃ • H̃

)

W̃
H
(F, H̃)

∣∣∣∣∣∣
, (III.5.4)

is limited to 3% for stretch ratios λ ∈ [0.5, 2] and magnetic fields b1 ∈ [0, 2T], and is less
than 1% for the experimental range used in Section III.5.1. Such a good accuracy means
that the chosen energy form for ψ

H
can well describe the material behavior.
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(a) Stretch ratios (b) Magnetic field

(c) Magnetization
(d) Error in the Energy

Figure III.14: Analytical solution for the problem of a stress free material subjected to a
magnetic field along direction e1 computed with both the F-B (in black) and F-H theory (in
red). The comparison between the calculated principal stretch ratios is shown in (a), and the
calculated magnetic field b1 is shown in (b). Fig. (c) defines the applied magnetic loading.
In Fig. (d), we plot the accuracy up to which the partial Legendre’s transform of Eq. III.3.51
is verified for loading paths given in Eq. III.5.3.
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Computation of ψ
M

The exact same procedure is used to compute the Helmholtz free energy of the F-M theory.
The system of equation describing the same problem of a stress free material subjected to a
magnetic field applied along e1 is given by





m =− ρ0F
−T •

∂ψ
B

∂B̃
(F, B̃ + JF

−1 • b0) =
1

µ0

(
b1 e1 − ∂ψ

M

∂M
(F,M)

)
,

T =ρ0

[
∂ψ

B

∂F
(F, B̃ + JF

−1 • b0)

]
• N − J

(
m • b̃

)
F
−T • N + J

(
mb̃

)
•
(
F
−T • N

)

=ρ0

[
∂ψ

M

∂F
(F,M)

]
• N = 0.

(III.5.5)

Once again, given the form of ψ
B
, the exact solution to this differential system is quite

complex to compute, so we look for an approximate solution ψ
M

that belongs to the set of
functions of the form suggested in Eq. III.3.77. Then, after imposing the magnetic field by
prescribing the set of variables (b0, b1) (see Fig. III.15b), a least square optimization provides
the material parameters of the approximate solution ψ

M
that best solve the differential system

among the set of functions considered. We obtain

β
1M

= 1.15, β
0M

= 0.77, β
2M

= −0.41, β
3M

= 0.057. (III.5.6)

As we can see from Fig. III.15a and Fig. III.15c, the stretch ratios λ1 and λ2 = λ3, and the
magnetization m1 computed with ψ

M
for the considered problem are almost the same as the

ones obtained with free energy ψ
B
.

As a last step, we verify how accurately is the equivalence condition (between the F-B
and F-M theory) provided in Eq. III.3.63 verified. For that purpose, we consider the same
loading path described in Eq. III.5.3. As shown in Fig. III.15d, the error defined by

ErrorM = 100×
∣∣∣∣∣
W̃

B
(F, B̃)− W̃

M
(F, B̃,M)

W̃
B
(F, B̃)

∣∣∣∣∣ , (III.5.7)

is limited to 11% for stretch ratios λ ∈ [0.5, 2] and magnetic fields b1 ∈ [0, 2T], and is less
than 3% for the experimental range used in Section III.5.1. Even if there will always exist
other energy functions that can better model the material at hand, the obtained accuracy is
very satisfactory.
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(a) Stretch ratios (b) Magnetic field

(c) Magnetization (d) Error in the Energy

Figure III.15: Analytical solution for the problem of a stress free material subjected to a
magnetic field along direction e1 computed with both the F-B (in black) and F-M theory
(in red). The comparison between the calculated principal stretch ratios is shown in (a),
and the calculated magnetization m1 is shown in (c). Fig. (b) defines the applied magnetic
loading. In Fig. (d), we plot the accuracy up to which the equivalence condition (between
the F-B and F-M theory) given Eq. III.3.63 is verified for loading paths provided in Eq.
III.5.3.
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III.6 Conclusions

In this work, we present a combined experimental, theoretical and numerical study of the
macroscopic response of isotropic MREs. The general continuum framework proposed by
Kankanala and Triantafyllidis [90] is extended and multiple and equivalent variational for-
mulations are proposed based on different choices of the independent magnetic variable used
in the Helmholtz free energy. These variational formulations are numerically implemented
into 3D finite element codes, to properly simulate the significant influence of the specimens
shape on characterization results. Indeed, lots of attention is required to make sure that
the computed parameters only describe the material and for that reason, shape effects that
result from complex magneto-mechanical interactions must not be ignored. We show that it
is not possible to fit experimental data using analytical equations, nor is it possible to use
a simplified geometry of experimental specimens in numerical calculations. A combination
of accurate FEM simulations representative of experiments, together with least square opti-
mization algorithms, is used to compute material parameters. For the variational formulation
based on the F-B theory, we model both a purely mechanical uni-axial experiment and a
coupled magneto-mechanical test under pure magnetostriction with the help of an isotropic
energy function which depends on four invariants (out of the six that are theoretically avail-
able), two purely mechanical and two magneto-mechanical ones. In order to capture the
inherent hyperelastic behavior of MREs under tension, a non-linear dependence of the en-
ergy function on the two mechanical invariants is proposed. In terms of the coupled behavior,
non-quadratic terms on the magnetic field B are used in the energy to model the magnetiza-
tion saturation response of the MRE. The corresponding energy density function is found to
have excellent predictive capabilities when compared to other existing experimental results
at finite strains and under high magnetic fields. The Helmholtz free energy functions of
the other two formulations are calculated much more easily based on equivalence conditions
explained in Section III.3.3. Based on these material models and on the 3D finite element
codes implemented and used in this study, all the tools necessary to improve the design of
MRE-based devices are now available.

III.A Complement Theory

III.A.1 F-B Theory

In this section, we show that the second term of Eq. (III.3.16) is equal to zero

(i.e.
1

µ0

∫

R3

b0b̃ dv = 0 ). Several intermediate results are needed to prove that result.

First, it is useful to recall that the externally imposed Eulerian magnetic b0 is independant
of the material. It exists even in the absence of the magnetoelastic solid and it is related to
the Eulerian magnetic intensity h0 far away from the solid through the following equation

b0 = µ0h0, ∀x ∈ R
3. (III.A.1)

Secondly, it is worth mentioning that b0 (and thus h0) vanish at infinity. Indeed, an
obvious proof by contradiction using the fact that the energy in the entire space of b0 (first
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term of Eq. (III.3.16)) is finite gives that result

1

2µ0

∫

R3

b0
• b0 dv =

µ0

2

∫

R3

h0
• h0 dv, is finite,

⇒ ‖h0‖ → 0 as ‖x‖ → ∞,

⇒ ∀ ǫ > 0, ∃R > 0 such that
(
∀x : ‖x‖ > R, ‖h0‖ ≤ ǫ

)
.

(III.A.2)

Then using the fact that the non-magnetic monopole law (see Eq. (III.3.5)) also applies

to the perturbation magnetic field b̃, one can define a Eulerian vector potential ã such that

b̃ = ∇× ã, ∀x ∈ R
3. (III.A.3)

From Eq. (III.A.1) and Eq. (III.A.3), we can write

1

µ0

∫

R3

b0
• b̃ dv =

∫

R3

h0
• b̃ dv =

∫

R3

h0
•
(
∇× ã

)
dv. (III.A.4)

Applying a well known identity13 of integral calculus to the previous expression yields

1

µ0

∫

R3

b0
• b̃ dv =

∫

R3

ã •
(
∇× h0

)
dv +

∫

∂R3

(
n × h0

)
• ã ds. (III.A.5)

Moreover, h0 has to verify Ampere’s law (i.e. ∇× h0 = 0, ∀x ∈ R
3) and hence

1

µ0

∫

R3

b0
• b̃ dv =

∫

∂R3

(
n × h0

)
• ã ds. (III.A.6)

At this stage let’s consider that the space surrounding the material occupies a sphere
of radius R that we call S(R). For a large enough radius R compared to the dimension of
the specimen, we can make the approximation that the magnetoelastic solid behaves like a
magnetic dipole. It is well known for the magnetic dipole that if the pair of charges as the
source shrinks to a point while keeping the magnetization m constant, the potential reads
(in spherical coordinates)

ã(r) =
µ0

4π

m × r

r3
, ∀r ∈ S(R). (III.A.7)

If we substitute Eq. (III.A.7) in Eq. (III.A.6), one obtains

∫

∂S(R)

(
n × h0

)
• ã ds =

µ0

4π

∫

∂S(R)

(
n × h0

)
•
(m × r

r3
)
ds,

=
µ0

4π

∫ 2π

θ=0

∫ π

φ=0

(
er × h0

)
•
(
m × er

)
sinφ dθ dφ,

(III.A.8)

where we have used the fact that n the outward normal of S(R) is equal to er of the spherical
coordinates, and ds = r2sinφ dθ dφ. Using the last relation of Eq. (III.A.2) and the fact

13 NOTE:
∫
V

c • (∇×d) dV =
∫
V

d • (∇× c) dV +
∫
∂V

(N× c) •ddS, where c, d are arbitrary vector fields
defined in V (and N the outward normal of the boundary ∂V ).
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the magnetization m is constant, we can give an upper bound of the absolute value of Eq.
(III.A.8)

µ0

4π

∣∣∣∣
∫ 2π

θ=0

∫ π

φ=0

(
er × h0

)
•
(
m × er

)
sinφ dθ dφ

∣∣∣∣ ≤
µ0

4π

∫ 2π

θ=0

∫ π

φ=0

‖er × h0‖ ‖m × er‖ |sinφ| dθ dφ,

≤ µ0 ‖m‖
4π

∫ 2π

θ=0

∫ π

φ=0

‖h0‖ |sinφ| dθ dφ,

≤ µ0 ‖m‖
2

(∫ π

φ=0

|sinφ| dφ
)
ǫ = µ0 ‖m‖ ǫ.

(III.A.9)
So we prove that

∀ ǫ̃ > 0 , ∃R > 0 such that : 0 ≤
∣∣∣∣
∫

∂S(R)

(
n × h0

)
• ã ds

∣∣∣∣ ≤ ǫ̃ = µ0 ‖m‖ ǫ,

⇒ lim
R→+∞

(∫

∂S(R)

(
n × h0

)
• ã ds

)
= 0,

⇒
∫

∂R3

(
n × h0

)
• ã ds =

1

µ0

∫

R3

b0
• b̃ dv = 0.

(III.A.10)

This result is valid for any vector potential ã that vanishes as fast as the function f : x →
1/x2.

Let’s now obtain the same result when the surrounding air occupies a finite domain D.
This case is of great interest since it is impossible to consider an infinite domain surrounding
the material in numerical simulations. If the size of D is sufficiently big with respect to the
specimen dimensions, the error caused by this approximation is negligible.

If we substitute R
3 with D, Eq. (III.A.1) and Eq. (III.A.3) - Eq. (III.A.6) remain valid

1

µ0

∫

D

b0
• b̃ dv =

∫

∂D

(
n × h0

)
• ã ds. (III.A.11)

The major difference with the previous situation lies in the fact that the energy of the

externally applied field
1

2µ0

∫

D

b0
• b0 dv is finite ∀ b0 ∈ R

3 since the domain D is finite.

So we don’t necessarily have lim
x→∂D

‖h0‖ = 0. But we impose that the perturbation vector

potential ã vanishes on the boundary ∂D far from the specimen

ã = 0, ∀x ∈ ∂D. (III.A.12)

Then if we substitute Eq. (III.A.12) in Eq. (III.A.11), we get the desired result

1

µ0

∫

D

b0
• b̃ dv = 0. (III.A.13)
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III.A.2 F-H Theory

Similarly, we prove in this section that the second term of Eq. (III.3.30) is equal to zero

(i.e. µ0

∫
R3 h0

• h̃ dv = 0).
Using the Eulerian counterpart of Eq. (III.3.33), we know that ∃ ϕ̃ such that

h̃ = −∇ϕ̃, ∀x ∈ R
3; lim

‖x‖→+∞
ϕ̃ = 0. (III.A.14)

From Eq. (III.A.1) and Eq. (III.A.14), we can write that

µ0

∫

R3

h0
• h̃ dv = −

∫

R3

b0
• ∇ϕ̃ dv. (III.A.15)

At this stage, we use a well known identity14 of integral calculus to rewrite Eq. (III.A.15) as
follows

µ0

∫

R3

h0
• h̃ dv =

∫

R3

ϕ̃ (∇ • b0) dv −
∫

∂R3

ϕ̃ (b0
• n) ds. (III.A.16)

As b0 verifies the no magnetic monopole law (see Eq. (III.3.5)), we can simplify the previous
expression as

µ0

∫

R3

h0
• h̃ dv = −

∫

∂R3

ϕ̃ (b0
• n) ds. (III.A.17)

Just like in previous section, we consider a scalar potential ϕ̃ that vanishes far from the
sample in the following way

ϕ̃ =
d • r

r3
, (III.A.18)

where d is a constant vector field. It is interesting to remark that such a scalar potential

describes an electric dipole (ϕ̃ =
1

4πǫ0

d • r

r3
) where d would be the electric dipole moment.

Then, using the result of Eq. (III.A.2), we can derive the following upper bound

0 ≤
∣∣∣∣
∫

∂S(R)

ϕ̃ (b0
• n) ds

∣∣∣∣ ≤
∫

∂S(R)

|ϕ̃| ‖b0‖ ds ≤ ǫ ‖d‖
∫ 2π

θ=0

∫ π

φ=0

|sinφ| dθ dφ = 4π ‖d‖ ǫ.

(III.A.19)
So we prove that

∀ ǫ̃ > 0, ∃R > 0 such that : 0 ≤
∣∣∣∣
∫

∂S(R)

ϕ̃ (b0
• n) ds

∣∣∣∣ ≤ ǫ̃ = 4π ‖d‖ ǫ,

⇒ lim
R→+∞

(∫

∂S(R)

ϕ̃ (b0
• n) ds

)
= 0,

⇒
∫

∂S(R)

ϕ̃ (b0
• n) ds = µ0

∫

R3

h0
• h̃ dv = 0.

(III.A.20)

This result is valid for any scalar potential ϕ̃ that vanishes as fast as the function f : x→ 1/x2.

14 NOTE:
∫
V d • ∇ϕ dV = −

∫
V ϕ (∇ • d) dV +

∫
∂V (N • d)ϕ dS , where ϕ (resp. d) is

an arbitrary scalar (resp. vector) field defined in V .
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Moreover, we can easily show that this result is also true when the air surrounding the
material occupies a finite domain D in the case where we impose the following boundary
condition

ϕ̃ = 0, ∀x ∈ ∂D. (III.A.21)

III.A.3 Details of Calculation

In this section, we will detail the calculation of the derivative of the total potential W̃M(F, B̃,M)
used in the M-formulation (see section III.3.2.c). It what follows the Einstein notation will
be used.

From Eq. (III.3.48), we show that

W̃M(F,M, B̃) =ρ0ψM(F,M)− ρ0Ms(b0)s+

1

2µ0J

(
FmnFmrB̃nB̃r − 2µ0ρ0MmFmnB̃n + µ2

0ρ
2
0M

2
m

)
.

(III.A.22)

Now, if we take the derivative of that expression with respect to the deformation gradient
F (keeping in mind that we chose in this formulation B̃ and M to be independent of F),
∀ {i, j} ∈ {1, 3}2

∂W̃M

∂Fij

(F,M, B̃) = ρ0
∂ψM

∂Fij

(F,M) +
1

2µ0

∂

∂Fij

(
1

J
)
∥∥∥F • B̃ − µ0ρ0M

∥∥∥
2

+

1

2µ0J

(
∂Fmn

∂Fij

B̃nFmrB̃r + Fmn
∂Fmr

∂Fij

B̃nB̃r − 2µ0ρ0Mm
∂Fmn

∂Fij

B̃n

)
,

= ρ0
∂ψM

∂Fij

(F,M)− 1

2µ0J2

∂J

∂Fij

∥∥∥F • B̃ − µ0ρ0M
∥∥∥
2

+

1

2µ0J

(
δmiδnjB̃nFmrB̃r + FmnδmiδrjB̃nB̃r − 2µ0ρ0MmδmiδnjB̃n

)
,

(III.A.23)

where δ is the Kronecker delta

δij =

{
0 , if i 6= j,

1 , if i = j,
(III.A.24)

and based on the kinematic relation (III.3.1),

∂J

∂Fij

= J F−1
ji . (III.A.25)

At this stage, if we substitute Eq. (III.A.24) and Eq. (III.A.25) into Eq. (III.A.23), we
obtain

∂W̃M

∂Fij

(F,M, B̃) = ρ0
∂ψM

∂Fij

(F,M)− 1

2µ0J
F−1
ji

∥∥∥F • B̃ − µ0ρ0M
∥∥∥
2

+

1

2µ0J

[(
FirB̃r

)
B̃j +

(
FinB̃n

)
B̃j − 2µ0ρ0MiB̃j

]
.

(III.A.26)
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Finally, we can rewrite this last expression in a tensorial form

∂W̃M

∂F
(F,M, B̃) = ρ0

∂ψM

∂F
(F,M)− 1

2µ0J

∥∥∥F • B̃ − µ0ρ0M
∥∥∥
2

F−T +
1

µ0J

(
F • B̃ − µ0ρ0M

)
B̃.

(III.A.27)

III.A.4 Calculation of the total stress tensor Π

In this section, we show how the total first-Piola stress tensor Π can be related to the per-
turbed stress Π̃.

Instead of choosing F and B̃ as independent variables as in Section III.3.2.a, we can
choose to work with F and B as independent variables and hence we obtain the following
energy density (which shouldn’t be confused with W̃

B
(F, B̃))

W
B
(F,B) =





ρ0ψB
(F,B) +

1

2µ0J
B • C • B; ∀X ∈ V,

1

2µ0J
B • C • B; ∀X ∈ R

3\V,
(III.A.28)

where ψ
B

is the Helmholtz free energy used in Section III.3.2.a. Then we can show (see
Dorfmann and Ogden [48]) that the governing equations read





m = − ρ0F
−T •

∂ψ
B

∂B

∣∣∣
F
,

ΠT =
∂W

B

∂F

∣∣∣
B

= ρ0
∂ψ

B

∂F

∣∣∣
B

+
1

µ0J
(F • B)B − 1

2µ0J
(B • C • B)F−T .

(III.A.29)

If we introduce the decomposition, B = B0 + B̃, in the expression of the total stress Π, and
if we use the magnetic governing equation of Eq. (III.A.29), one obtains

ΠT =
{
ρ0
∂ψ

B

∂F

∣∣∣
B

+
1

µ0J

(
F • B̃

)
B̃ − 1

2µ0J

(
B̃ • C • B̃

)
F−T +

(
ρ0
∂ψ

B

∂B

∣∣∣
F

• B0

)
F−T−

(
ρ0
∂ψ

B

∂B

∣∣∣
F

• F−1

)
B0

}
+

1

µ0J
(F • B0)B − 1

2µ0J
(B0

• C • B0)F
−T−

[(
1

µ0J
B̃ • C + ρ0

∂ψ
B

∂B

∣∣∣
F

)
• B0

]
F−T +

[
1

µ0J
F • B̃ − ρ0

∂ψ
B

∂B

∣∣∣
F

• F−1

]
B0,

=Π̃+
1

µ0J
(F • B0)B − 1

2µ0J
(B0

• C • B0)F
−T −

(
H̃ • B0

)
F−T +

(
F−T • H̃

)
B0.

(III.A.30)
One can give the expression of the total Cauchy stress tensor σ with respect to its perturbed

counterpart σ̃, using the fact that, σ =
1

J
ΠT • FT

σ = σ̃ +
1

µ0

b0b0 −
1

2µ0

(b0
• b0) I −

(
h̃ • b0

)
I + h̃b0. (III.A.31)
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At this stage, we can compute the traction t in the current configuration knowing that b0 is
a continuous magnetic field

t = JσK • n = Jσ̃K • n +
1

µ0

(JbK • n)−
(
Jh̃K • b0

)
n + Jh̃K (b0

• n) . (III.A.32)

Moreover, from the boundary/interface conditions of Eq. (III.3.5) and (III.3.6), we can write
that 




JbK • n = 0,

Jh̃K =
(
Jh̃K • n

)
n.

(III.A.33)

If we substitute Eq. (III.A.33) in Eq. (III.A.32), we get

t = JσK • n = Jσ̃K • n. (III.A.34)

This result remains valid in current configuration, i.e. T = N • JΠK = N • JΠ̃K, which means

that the mechanical traction can either be computed with Π or Π̃. A similar result holds for
the other two formulations.
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III.B Importance of specimen geometry

Before combining the FEM numerical simulation of the coupled magneto-mechanical test
in pure magnetostriction with a least square optimization algorithm15, other methods and
simplifications have been tried for the fitting process.

B1. Purely analytical fitting

The first approach that one can envision to fit the coupled magneto-mechanical test in pure
magnetostriction is to use the governing equations of Section III.3.2.a to solve analytically the
problem of a stress free material subjected to an externally applied magnetic field. The mate-
rial parameters are then computed with a least square optimization technique16 to minimize
the difference between analytical solutions and experimental data.

The analytical solutions of the coupled magneto-mechanical test under pure magnetostric-
tion obtained with the material parameters identified with this approach are presented in Fig.
III.16 (where all curves are plotted against the remotely applied field b0 along the e1 direc-
tion). As one can notice, the stretch ratio λ1 (see Fig. III.16a) along the direction of the
applied field and the magnetic response (i.e. the internal magnetic field b1 (see Fig. III.16c)
and magnetization m1 (see Fig. III.16d)) are modeled very accurately. However, the ma-
jor drawback lies in the fact that the transverse and axial stretch ratios (λ2, λ3) cannot be
described properly (see Fig. III.16b).

15 NOTE: The cost function to minimize is

f(q
B
) =

N∑

k=0

[ 3∑

i=1

∣∣∣∣λi,exp(
k

N
b0)− λi,num(

k

N
b0,qB

)

∣∣∣∣
2

+

∣∣∣∣∣
b1,exp(

k
N
b0)− b1,num( k

N
b0,qB

)

b0

∣∣∣∣∣

2

+

∣∣∣∣∣
m1,exp(

k
N
b0)−m1,num( k

N
b0,qB

)

µ0 b0

∣∣∣∣∣

2 ]
,

(III.B.1)

where subscript ‘exp’ denotes experimental data, subscript ‘num’ denotes numerically calculated variables,
N represents the number of available measurements and where q

B
= ( ms, χ

∗, β
1B

, β
2B

) is the vector of
material parameters to be computed.

16 NOTE: The cost function to minimize is

g(q
B
) =

N∑

k=0

[ 3∑

i=1

∣∣∣∣λi,exp(
k

N
b0)− λi,ana(

k

N
b0,qB

)

∣∣∣∣
2

+

∣∣∣∣∣
b1,exp(

k
N
b0)− b1,ana(

k
N
b0,qB

)

b0

∣∣∣∣∣

2

+

∣∣∣∣∣
m1,exp(

k
N
b0)−m1,ana(

k
N
b0,qB

)

µ0 b0

∣∣∣∣∣

2 ]
,

(III.B.2)

where subscript ‘exp’ denotes experimental data, subscript ‘ana’ denotes analytically calculated variables,
N represents the number of available measurements and where q

B
= ( ms, χ

∗, β
1B

, β
2B

) is the vector of
material parameters to be computed.
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(a) (b)

(c) (d)

Figure III.16: Coupled magneto-mechanical (pure magnetostriction, T2 = 0) test used for
obtaining the energy density ψ

B
for an isotropic MRE. The stretch ratio (λ1) in the direction

of the applied magnetic field is shown in (a), the transverse and axial stretch ratios (λ2,
λ3) are shown in (b), the magnetic field (b1) inside the MRE specimen is shown in (c) and
the magnetization (m1) is shown in (d). All curves are plotted against the remotely applied
field (b0) along the e1 direction. Experimental curves are plotted in dotted lines while the
analytical solutions are in continuous lines except in (b) where λ2 and λ3 are represented in
dashed lines (since λ2 = λ3).

Indeed, since the analytical equations do not account for the shape of the specimens used
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experimentally and since the isotropy of the material is embedded in the equations, it is
obvious that such a method yields λ2 = λ3 which is not what we measure. This fact is a sign
of the strong shape effect observed. The parameters computed with this approach cannot be
classified as ‘material properties’ since they embed some structural effects.

Moreover, this method relies on the fact that both mechanical and magnetic internal
variables are uniform within the specimen. Even if a lot of research has been devoted to the
design of experimental specimens (see Chapter II) to reduce non-uniformities of the internal
variables, we show numerically that such an assumption is not valid. As one can see in Fig.
III.17 (which shows a cross-section of the nearly-ellipsoidal sample), the internal stretch ratio
λ1 (one the left) is much larger at the center than close to the boundary. As for the internal
Eulerian magnetic field b1 (see Fig. III.17 on the right), the assumption of uniformity appears
to be valid.

Figure III.17: Numerical results plotted in the middle cross-section of the nearly-ellipsoidal
sample for the coupled magneto-mechanical test in pure magnetostriction. On the left, we
notice a strong non-uniformity of the principal stretch ratio λ1 along the direction of the
applied field b0. On the right, we see that the Eulerian magnetic field b1 presents a small
(almost negligible) non-uniformity.

B2. Numerical fitting using a 2D Mesh

As we have seen in previous section, is is necessary to correctly simulate the non-uniformity of
the internal mechanical and magnetic fields using finite elements. In the fitting process, due
to that non-uniformity, special attention is required to compare numerical and experimental
data measured at the same location.
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However, before simulating the ‘full’ ellipsoidal sample, one can think of some simplifica-
tions in the geometry of the specimen to run the numerical simulations used in the fitting
process. Since all experimental measurements are made in the gage area of the specimen,
one could envision to simulate an infinite cylinder subjected to an external magnetic field b0

applied in a direction perpendicular to its axis (see Fig. III.18).

Figure III.18: Schematic of a infinite magneto-elastic cylinder used as a simplified geometry
of the experimental sample. To model the pure magnetostriction experiment, the cylinder
is stress free and submitted to an externally applied magnetic field b0, perpendicular to its
axis and far from its boundaries. The picture on the right shows the entire system with
the surrounding air. In the picture on the left, we present the mesh used for numerical
calculations and we indicate where periodicity conditions are applied.

Similarly to what is done in Section III.5.1, the material parameters are computed using
a combination of FEM simulations and least square optimization. The numerical solutions
of the coupled magneto-mechanical test under pure magnetostriction using the material pa-
rameters computed with the simplified geometry are plotted in Fig. III.19. The numerical
solutions using the simplified mesh are plotted in continuous lines whereas the experimental
data are plotted in dotted lines. As one can notice , the stretch ratio λ1 (see Fig. III.19a) and
the magnetic response (i.e. the internal magnetic field b1 (see Fig. III.19c) and magnetization
m1 (see Fig. III.19d)) are very well modeled. In terms of the transverse and axial stretch
ratios (λ2, λ3), even if λ2 6= λ3, the accuracy of the numerical simulations is not satisfactory
(see Fig. III.19b).

One very important thing to note on Fig. III.19 is that simulating the magnetostriction
test with the exact geometry of the experimental specimen using the previous material pa-
rameters, provides a very different solution. The results of that ‘full’ simulation are plotted
in dashed lines.
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(a) (b)

(c) (d)

Figure III.19: Coupled magneto-mechanical (pure magnetostriction, T2 = 0) test used for
obtaining the energy density ψ

B
for an isotropic MRE. The stretch ratio (λ1) in the direction

of the applied magnetic field is shown in (a), the transverse and axial stretch ratios (λ2,
λ3) are shown in (b), the magnetic field (b1) inside the MRE specimen is shown in (c) and
the magnetization (m1) is shown in (d). All curves are plotted against the remotely applied
field (b0) along the e1 direction. Experimental curves are plotted in dotted lines while FEM
calculations using the simplified geometry (i.e. the infinite magneto-elastic cylinder) are
in continuous lines. The FEM calculations on the exact geometry of the nearly-ellipsoidal
sample, obtained using the material parameters computed using the simplified geometry, are
plotted in dashed lines.
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Based on the comparison of the numerical solutions computed with the same material
properties on different geometries, we show to which extent (much more than what was
expected) the ‘shape effect’ influences the coupled behavior of an MRE-based structure.
Such a result suggests that any simplification of the geometry to numerically simulate an
MRE boundary value problem (in particular the magnetostriction test) doesn’t provide a
correct solution. The only option left in the fitting procedure is to simulate the full geometry
and compare the obtained solution with experimental data.
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IV.1 Introduction

Based on previous developments for coupled electromagnetic-mechanical processes by Brown
[22], Kovetz [97], Kankanala [90], Danas [39], we proposed in Chapter III three different
and equivalent fully coupled variational formulations for finite strains magneto-elasticity. By
minimizing the models’ generalized potential energy with respect to their independent vari-
ables, one obtains the appropriate mechanical as well as magnetic governing equations and
boundary/interface conditions. Except for some trivial geometries, analytical solutions can-
not generally be derived due to strong non-linearities in the governing equations and due to
‘shape effects’ that are caused through the interaction of the specimen with its surround-
ing. As a result, we propose in this work a powerful technique for generating finite element
approximations. This approach, first used in Danas and Triantafyllidis [41] to develop nu-
merical solutions for two dimensional boundary value problems (BVPs) in MREs, is extended
in three dimensions for each of the three formulations presented in Chapter III.

The numerical implementation of the variational formulation based on the F-H theory
(and thus relying on a magnetic scalar potential) won’t be explained in detail in this study
since it is already widely discussed in the literature. Indeed, quite a number of computational
homogenization results using this formulation have been recently reported for rubber filled
with periodic/hexagonal arrays (Galipeau et al. [61], Javili et al. [83], Keip and Rambausek
[93]) and approximately isotropic distributions (Danas [39], Kalina et al. [87]) of circular
particles in N = 2 space dimensions and with periodic cubic arrays of spherical particles
(Javili et al. [83], Miehe et al. [114]) in N = 3 space dimensions. These computational
results pertain to rubber matrices featuring high compressibility (presumably in order to avoid
numerical complications such as volumetric locking). Moreover, Lefèvre and Lopez-Pamies
[100] studied the axi-symmetric boundary problem of a magneto-elastic sphere subjected to
an externally applied magnetic field far from its boundaries.

In this Chapter we will focus on the numerical implementations of the variational for-
mulations relying on the magnetic vector potential (i.e. the F-B and F-H theory), which
present several benefits such as being very useful for: numerical instability studies, simulating
coupled electro-magneto-mechanical problems and avoiding the use of the arclength method



IV.2 – F-B Theory 121

to deal with ‘softening’ phenomena (see Miehe et al. [114], Zurlo et al. [158]).

Therefore, in Section IV.2, we briefly remind the variational framework presented in
Chapter III and we explain how to deal with numerical complications arising from the use
of the vector potential, in particular the enforcement of the Coulomb gauge. Then, even if
the numerical implementations of the F-M and F-B theories present lots of similarities, we
highlight in Section IV.3 their main differences. We specifically describe the static conden-
sation method needed to implement the F-M theory. Lastly, we remind in Section IV.4 the
valid boundary and symmetry conditions for the vector potential to solve a boundary value
problem, before presenting the different patch tests used to validate the codes in Section IV.5.
For the interested reader, the practical procedure to implement the described discretizations
in an ABAQUS user element (UEL) is explained in Appendix IV.A and Appendix IV.B.

IV.2 F-B Theory

This section pertains to the numerical implementation in three dimensions of the variational
formulation presented in Chapter III in which the Helmholtz free energy of the different
constituents of the system (magnetoelastic solid, surrounding air, etc...) depends (in addition
to the deformation gradient F) on the Lagrangian magnetic field B. The first part presents
the variational formulation used to solve MRE boundary value problems (see Section III.3.2.a
for more details). The second part specifies which type of energy density functions will be used
and the third part explains how to discretize the variational formulation using finite elements.
For the interested reader, the practical procedure to implement such a discretization in an
ABAQUS user element is explained in Appendix IV.A.2.

IV.2.1 Variational formulation

We assume in this section that the specific free energy is a function of the reference magnetic
field B. Consequently, as it is explained in Chapter III, if we follow the approach introduced
by Brown [22] using the perturbed magnetic field, we can prove that the relevant total
potential energy P

B
to consider is obtained by substracting the potential of the externally

applied mechanical loads1 W (i.e. W =
∫
D
ρ0f •u dV +

∫
∂D

T •u dS) to the total energy stored

in the system2 E
B

(i.e. E
B
=
∫
V
W̃

B
(u, Ã;b0) dV )

P
B
=

∫

V

W̃
B
(u, Ã;b0) dV −

∫

D

ρ0f • u dV −
∫

∂D

T • u dS, (IV.2.1)

where V is the volume of the entire system, D (resp. ∂D) is the volume (resp. the boundary)
of the magnetoelastic solid, and where

F = I + u∇, ρ0 = ρ J, J = detF, B = B̃+ J F−1 • b0, B̃ = ∇× Ã. (IV.2.2)

1 NOTE: The mechanical loads are applied on a magnetoelastic solid of volume D and boundary ∂D.
2 NOTE: Since this chapter is focused on the numerical implementation, the system considered has a finite

volume V and a boundary ∂V . It can be composed of subsystems such as the MRE solid, the surrounding
air, a coil, etc...
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We introduce the energy density W̃
B

with independent variables u (the displacement field)

and Ã (the perturbed magnetic vector potential) with respect to which the potential P
B

is
minimized

W̃
B
(u, Ã;b0) =ρ0ψB

(F,∇× Ã + J F−1 • b0,N) +
1

2µ0J
(∇× Ã) • C • (∇× Ã)+

1

2µ0κ
(∇ • Ã)2,

(IV.2.3)

where ψ
B

is the Helmholtz free energy of each component of the system. For instance,
ψ

B
= ψ

Mat
(F,B,N) in the material and ψ

B
= ψ

Air
(F) for the surrounding air. As it has been

pointed out in Chapter II, the magnetoelastic material under investigation can either be
isotropic or transversely isotropic (i.e. the iron particles form chains along a given direction)
depending if the curing process is conducted under a magnetic field or not. This implies that
the solid’s Helmholtz free energy also depends on a unit vector N which defines the initial
orientation of the particle chains ( N = 0 in the case of an isotropic sample). The additional
variable N is known and chosen during the fabrication process. Hence, it is not a variable
that we have to solve for and as a result the same FEM code can be used to solve boundary
value problems for different microstructures (isotropic or transversely isotropic).

In addition, to ensure the uniqueness of the perturbed magnetic vector potential Ã, the
Coulomb gauge is used. To numerically enforce it, we choose to add a penalty term in the total
potential energy with penalty κ ≪ 1 3. The choice of the penalty method has been justified
in Section III.4.1. The value of the penalty κ will be adjusted by running several patch tests
and making sure that our numerical code can reproduce exact analytical solutions of some
boundary value problems as well as numerical calculations given by an already validated
finite element code based on the F-H theory which relies on a magnetic scalar potential.
It is important to specify that the penalty term added must be under-integrated to avoid
any ‘locking phenomena’ (similarly to what is done in purely mechanical problems to avoid
volumetric locking).

IV.2.2 Form of energy density functions

In this section we specify the energy density functions that will be used in numerical calcu-
lations of MRE boundary value problems.

As mentionned Kankanala [90] and Danas [40], due to the properties of objectivity and
material symmetry, the general form of the specific Helmholtz free energy for transversely
isotropic MREs (N = 0 for isotropic samples) is given by

ψ
B
= ψ

B
(C,B,N) = ψ

B
(C, B̃ + J F−1 • b0,N), N • N = 1. (IV.2.4)

Using the general theory of transversely isotropic functions ( see Adkins [2, 3], and Pipkin
and Rivlin [123]) that depend on a rank-two tensor (the right Cauchy-Green strain tensor
C) and two vectors (the Lagrangian total magnetic field B and the orientation vector N),
one obtains that ψ

B
is a function of ten independent invariants, namely

ψ
B
= ψ

B
(C,B,N) = ψ

B

(
IBi
)
, i ∈ 1, ...10, (IV.2.5)

3 NOTE: The final solution shouldn’t depend on the parameter κ.
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where

Mechanical (Iso) I1 = trC, I2 =
1

2

[
(trC)2 − tr

(
C2
)]
, I3 = detC = J2

Mechanical
(Transversely

iso)
I4 = N • C • N, I5 = N • C2 • N

Coupled (Iso)

IB6 = B • C • B = J2 b0
• b0 + 2 J b0

• F • B̃ + B̃ • C • B̃

IB7 = B•C2 •B = J2(FT •b0)•(F
T •b0)+2J(FT •b0)•(C•B̃)+B̃•C2 •B̃

IB8 = B • B = J2 b0
• F−T • F−1 • b0 + 2 J b0

• F−T • B̃ + B̃ • B̃

Coupled
(Transversely

iso)

IB9 = (B • N)2 =
[(

B̃ + J F−1 • b0

)
• N
]2

IB10 = (B • N) (B • C • N) =[
(B̃ + JF−1 • b0) • N

] [
(B̃ + JF−1 • b0) • C • N

]

(IV.2.6)

IV.2.3 Finite element discretization

The next step is to consider the variations of P
B

with respect to its independent variables

q = [u; Ã] (column vector of unknowns). If we use this notation, the total potential energy
can be written as

P
B
(u, Ã;b0) = P

B
(q,b0). (IV.2.7)

Then the first variation of P
B

with respect to q reads

δP
B
= P

B ,qδq = [δq]T • [Fv(q,b0)] . (IV.2.8)

A more detailed expression of the global force vector Fv will be given in what follows. Simi-
larly, the second variation of the potential energy is given by

∆δP
B
= [δq]T • [K(q,b0)] • [∆q] , (IV.2.9)

where the global stiffness matrix K is better defined later in this section.
The variational formulation written in Eq. (IV.2.1) leads to seek the vector of unknown

nodal degrees of freedom q by solving the non-linear equation δP
B

= P
B ,qδq = 0. The

Newton-Raphson method which is based on the first order Taylor expansion of the global
force vector about the previous iteration is used

P
B ,q(q+∆q,b0+∆b0) δq = [δq]T •

[
P

B ,q(q,b0) + P
B ,
qb0

(q,b0)∆b0 + P
B ,qq(q,b0)∆q

]
= 0.

(IV.2.10)
To compute the global force vector Fv and stiffness matrix K, one can discretize the total
potential energy P

B
by decomposing the total volume V of the system in Ne discrete and

disjoint finite elements of volume Ve

V =
Ne⋃

e=1

Ve. (IV.2.11)
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The total potential energy P
B

is then the sum of the potential energies Pe
B

of all elements

P
B
=

Ne∑

e=1

Pe
B
=

Ne∑

e=1

(∫

Ve

W̃
B
(u, Ã;b0) dV −

∫

Ve∩D

ρ0f • u dV −
∫

∂Ve∩∂D

T • u dS

)
.

(IV.2.12)

In each element, we use the element vector of unknowns 4 qe = [u; Ã] that leads to the
definition (in a general fashion) of the discretized form of the unknown variables, i.e. ∀X ∈
Ve

[u(X)] = [Nu(X)] • [qe] ,
[
Ã(X)

]
= [NA(X)] • [qe] , (IV.2.13)

where Nu and NA are matrices associated with the element shape functions. In order to
compute the gradient of u, we use

[
u∇(X)

]
= [Gu(X)] • [qe] , F = I + u∇ = I+

[
Gu

]
• [qe] , (IV.2.14)

where Gu is a rank three tensor denoting the gradient of the Nu matrix. Finally, the operators
Curl and Divergence of the perturbed magnetic vector potential can be evaluated using the
rank two tensor GA and vector DA such that

[
B̃(X)

]
=
[
∇× Ã(X)

]
= [GA(X)] • [qe] , ∇ • Ã(X) = [DA(X)]T • [qe] . (IV.2.15)

The global force vector Fv is obtained by assembling the element force vectors fe

δP
B
= P

B ,qδq = [δq]T • [Fv(q,b0)] =
Ne∑

e=1

Pe
B ,qe

δqe =
Ne∑

e=1

[δqe]
T • [fe] , (IV.2.16)

where

fe =

∫

Ve

{[
∂W̃

B

∂F

]
• [Gu] +

[
∂W̃

B

∂B̃

]
• [GA] +

1

µ0κ

(
∇ • Ã

)
DA

T

}
dV−

∫

Ve∩D

ρ0 [f] • [Nu] dV −
∫

∂Ve∩∂D

[T] • [Nu] dS.

(IV.2.17)

Similarly, the global stiffness matrix K is obtained by assembling the element stiffness ma-
trices ke

∆δP
B
= [δq]T • [K(q,b0)] • [∆q] =

Ne∑

e=1

[δqe]
T • [ke] • [∆qe] , (IV.2.18)

with

ke =

∫

Ve





[
Gu

T ,GA
T
]

•




∂2W̃
B

∂F∂F

∂2W̃
B

∂F∂B̃

∂2W̃
B

∂B̃∂F

∂2W̃
B

∂B̃∂B̃




•




Gu

GA


+

1

µ0κ
DADA

T





dV. (IV.2.19)

4 NOTE: The element vector of unknowns qe is simply the restriction of the global vector of unknowns
q to element e.
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A detailed calculation of the first5 and second derivatives of the energy density W̃
B

is given
in Appendix IV.A.1. For the interested reader, the practical procedure to implement the
described discretization in an ABAQUS user element (UEL) is explained in Appendix IV.A.2.

IV.3 F-M Theory

In this section, we detail the numerical implementation of the variational formulation based
on the F-M theory which has been introduced in Section III.3.2.c. The objective is not to
duplicate the previous section. Instead we will simply highlight the main differences in the
numerical implementation of the two theories relying on a magnetic vector potential.

For that purpose, the first part presents the variational formulation based on the F-
M theory. The second part specifies without details the form of energy density function
considered. The third part focuses on the differences between the F-B and F-M theory in
terms of discretization using finite elements. For the interested reader, the main differences
between the F-B and F-M formulations in terms of numerical implementation in an ABAQUS
user element are explained in Appendix IV.B.2.

IV.3.1 Variational formulation

The specific Helmholtz free energy ψ
M

of interest here is a function of the deformation
gradient F and the magnetization per unit mass M (m = ρM where m is the magnetization
per unit volume and ρ is the density of the magnetoelastic solid in current configuration).
As shown in Section III.3.2.c, we prove that the relevant potential energy to consider reads

P
M
=

∫

V

W̃
M
(u, Ã,M;b0) dV −

∫

D

ρ0f • u dV −
∫

∂D

T • u dS, (IV.3.1)

where the energy density W̃
M

is defined as

W̃
M
(u, Ã,M;b0) =ρ0 [ψM

(F,M,N)− M • b0] +
1

2µ0J

∥∥∥F •
(
∇× Ã

)
− µ0ρ0M

∥∥∥
2

+

1

2µ0κ

(
∇ • Ã

)2
.

(IV.3.2)
The Helmholtz free energy ψ

M
depends on the unit vector N since the magnetoelastic material

under investigation can either be isotropic (N = 0) or transversely isotropic (N 6= 0).
Moreover, the Coulomb gauge introduced in Eq. (III.4.1) is as well numerically enforced
using the penalty approach (κ ≪ 1). It is interesting to notice that unlike the F-B theory,
P

M
has three independent variables (instead of just two), namely the displacement vector u,

the perturbed magnetic vector potential Ã and the magnetization vector M.

5 NOTE: The standard indicial notation in Cartesian coordinates is used to compute the first and second

variations of the energy density, i.e.
∂W̃

B

∂F
(F, B̃) =

∂W̃
B

∂Fij

(F, B̃)eiej,
∂W̃

B

∂B̃
(F, B̃) =

∂W̃
B

∂B̃i

(F, B̃)ei, etc...
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IV.3.2 Form of energy density functions

In terms of the solid’s Helmholtz free energy, the properties used in Section IV.2.2 to justify
its general form remain valid for the F-M theory. As a result, ψ

M
is given by

ψ
M
= ψ

M
(F,M,N) = ψ

M

(
IMi
)
, i ∈ 1, ...10, N • N = 1, (IV.3.3)

where the mechanical invariants (Ii, i ∈ [1, 5]) remain the same as in Eq. (IV.2.6) and where
the coupled invariants can be written as

Coupled (Iso) IM6 = M • M, IM7 = M • B • M, IM8 = M • B2 • M,
Coupled

(Transversely
iso)

IM9 = (M • F • N)2 , IM10 = (M • F • N)
(
M • F • FT • F • N

)
,

(IV.3.4)
with B = F • FT the left Cauchy-Green strain tensor.

IV.3.3 Finite element discretization

The next step is to consider the variations of P
M

with respect to its independent variables

q = [u, Ã,M] (column vector of unknowns). Since the potential energy can be written as

P
M
(u, Ã,M;b0) = P

M
(q;b0), its first and second variation read

δP
M
=P

M ,qδq = [δq]T • [Fv(q,b0)] ,

∆δP
M
= [δq]T • [K(q,b0)] • [∆q] ,

(IV.3.5)

where Fv and K are respectively the global force vector and the global stiffness matrix in the
F-M theory.

Similarly to what has been done in Section IV.2.3, Fv and K are computed by first
discretizing the total potential energy P

M
. If we decompose the total volume of the system

in Ne discrete and disjoint finite elements of volume Ve (see Eq. (IV.2.11), P
M

is obtained as
the sum of the element potential energies Pe

M

P
M
=

Ne∑

e=1

Pe
M
=

Ne∑

e=1

(∫

Ve

W̃
M
(u, Ã,M;b0) dV −

∫

Ve∩D

ρ0f • u dV −
∫

∂Ve∩∂D

T • u dS

)
.

(IV.3.6)

If we use in each element the vector of unknowns qe = [u, Ã,M], we can define the discretized
form of the unknown variables, i.e. ∀X ∈ Ve

[u(X)] = [Nu(X)] • [qe] ,
[
Ã(X)

]
= [NA(X)] • [qe] , [M(X)] = [NM(X)] • [qe] ,

(IV.3.7)
where Nu, NA and NM are matrices associated with the element shape functions. The
gradient of u, the Curl and Divergence of Ã are calculated using the tensors Gu, GA and
DA (already defined in Section IV.2.3) such that

[
u∇(X)

]
= [Gu(X)] • [qe] ,

[
B̃(X)

]
=
[
∇× Ã(X)

]
= [GA(X)] • [qe] ,

∇ • Ã(X) = [DA(X)]T • [qe] .
(IV.3.8)
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The global force vector Fv is obtained by assembling the element force vectors fe

δP
M
= P

M ,qδq = [δq]T • [Fv(q,b0)] =
Ne∑

e=1

Pe
M ,qe

δqe =
Ne∑

e=1

[δqe]
T • [fe] , (IV.3.9)

where

fe =

∫

Ve

{[
∂W̃

M

∂F

]
• [Gu] +

[
∂W̃

M

∂B̃

]
• [GA] +

[
∂W̃

M

∂M

]
• [NM] +

1

µ0κ

(
∇ • Ã

)
DA

T

}
dV−

∫

Ve∩D

ρ0 [f] • [Nu] dV −
∫

∂Ve∩∂D

[T] • [Nu] dS.

(IV.3.10)
Similarly, the global stiffness matrix K is computed by assembling the element stiffness
matrices ke

∆δP
M
= [δq]T • [K(q,b0)] • [∆q] =

Ne∑

e=1

[δqe]
T • [ke] • [∆qe] , (IV.3.11)

with

ke =

∫

Ve





[
Gu

T ,GA
T ,NM

T
]

•




∂2W̃
M

∂F∂F

∂2W̃
M

∂F∂B̃

∂2W̃
M

∂F∂M

∂2W̃
M

∂B̃∂F

∂2W̃
M

∂B̃∂B̃

∂2W̃
M

∂B̃∂M

∂2W̃
M

∂M∂F

∂2W̃
M

∂M∂B̃

∂2W̃
M

∂M∂M




•




Gu

GA

NM



+

1

µ0κ
DADA

T





dV.

(IV.3.12)

A detailed calculation of the first and second derivatives of the energy density W̃
M

is given
in Appendix IV.B.1.

The main difference with Section IV.2.3 lies in the fact that we need to compute M in ad-
dition to u and Ã. In the following, we set the magnetization vector M constant per element.
Furthermore, the magnetization does not need to satisfy any continuity condition between
connecting elements and thus a static condensation argument can be used to eliminate all
degrees of freedom associated with M (i.e. the magnetization in each element is not coupled
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to the magnetization in neighboring elements). It implies that, ∀X ∈ Ve

δW̃
M
|M =

∂W̃
M

∂M
• [δM] + [∆q

e
]T •




∂2W̃
M

∂F∂M

∂2W̃
M

∂B̃∂M

∂2W̃
M

∂M∂M




• [δM]

=

(
∂W̃

M

∂M
+∆F •

∂2W̃
M

∂F∂M
+∆B̃ •

∂2W̃
M

∂B̃∂M
+∆M •

∂2W̃
M

∂M∂M

)
• δM = 0.

(IV.3.13)

In view of the arbitrariness of δM, we can conclude that

∆M = −
{
∂W̃

M

∂M
+∆F •

∂2W̃
M

∂F∂M
+∆B̃ •

∂2W̃
M

∂B̃∂M

}
•

(
∂2W̃

M

∂M∂M

)−1

. (IV.3.14)

At this stage by rearranging the terms, one can easily obtain the condensed form of the
element force vector and the eement stiffness matrix by defining first the new element vector
of unknowns

qe = [u; Ã]. (IV.3.15)

Then, using Eq. (IV.3.1) and Eq. (IV.3.10) together with Eq. (IV.3.14), one gets

fe =

∫

V e





[
∂W̃

M

∂F
,
∂W̃

M

∂B̃

]
− ∂W̃

M

∂M
•

[
∂2W̃

M

∂M∂M

]−1

•

[
∂2W̃

M

∂M∂F
,
∂2W̃

M

∂M∂B̃

]


•

[
Gu

G
Ã

]
dV+

1

µ0κ

∫

Ve

(
∇ • Ã

)
D

Ã

T dV −
∫

Ve∩D

ρ0 [f] • [Nu] dV −
∫

∂Ve∩∂D

[T] • [Nu] dS,

(IV.3.16)

where the definition of D
Ã

has been adjusted to the new definition of qe given in Eq.
(IV.3.15), so that we still have

∇ • δÃ = D
Ã

T • δq
e
. (IV.3.17)

For the condensed stiffness matrix, based on Eq. (IV.3.12) we obtain

ke =

∫

V e

[
Gu

T ,G
Ã

T
]

•








∂2W̃
M

∂F∂F

∂2W̃
M

∂F∂B̃

∂2W̃
M

∂B̃∂F

∂2W̃
M

∂B̃∂B̃



−




∂2W̃
M

∂F∂M

∂2W̃
M

∂B̃∂M




•

[
∂2W̃

M

∂M∂M

]
−1

•

[
∂2W̃

M

∂M∂F
,
∂2W̃

M

∂M∂B̃

]




•

[
Gu

G
Ã

]
dV

+
1

µ0κ

∫

Ve

D
Ã
D

Ã
T dV.

(IV.3.18)

For the interested reader, the practical procedure to implement the above discretization
in an ABAQUS user element (UEL) is explained in Appendix IV.B.2.
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IV.4 Solving a boundary value problem

The purpose of this section is to briefly recall the main results that have been derived (in
details) in Section III.4 in terms of boundary and symmetry conditions to apply when it
comes to solving a MRE boundary value problem.

IV.4.1 Boundary conditions

If we consider a simulated system of volume V and boundary ∂V , in terms of boundary
conditions only the components of Ã that are tangential to ∂V need to be prescribed to
uniquely define the magnetic vector potential in the entire domain V . In practice, on the
particular case of Fig. IV.1, if we simulate a region of surrounding air sufficiently large
compared to the dimensions of the magnetoelastic solid, and since we know that the influence
of the solid on the external magnetic field vanishes far from its boundaries, we can reasonably
impose the following boundary conditions on the faces ‘Top’, ‘Right’ and ‘Front’ 6

{
u = 0,

N × Ã = 0.
(IV.4.1)

IV.4.2 Symmetry conditions for the perturbed magnetic vector po-

tential Ã

For some problems in which the geometry presents some symmetries and where the applied
field keep these symmetries, we can reduce the size of the model (to minimize the computa-
tional resources and time needed to solve it) by applying proper symmetry conditions.

As it has been recalled in Section III.4.3, the pseudovector B̃ is expressed as the curl of the
polar vector Ã and hence these vectors have opposite symmetry properties. In what follows,
we explain what it implies on the particular case of a magnetoelastic sphere subjected to a
unidirectional external magnetic field that is applied far from its boundaries (see Fig. IV.1).

6 NOTE: Careful on Fig. IV.1, the boundary conditions of Eq. IV.4.1 must not be applied on the symetry
planes ‘Bottom’, ‘Left’ and ‘Back’.
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Figure IV.1: Schematic of the boundary value problem of a magnetoelastic sphere subjected
to an externally applied magnetic field b0 far from its boundaries. The figure on the right
shows the entire system with the surrounding air. The picture on the left is a zoom in that
presents the symetry planes of the problem.

As we can see on the schematics in Fig. IV.1, there are three remarkable planes (about
which the geometry is exactly mirrored). This is the reason why only one-eighth of the
problem is shown in this figure. Due to the external magnetic field b0 being applied along
the vertical direction7 e2, we can se that the plane of normal e2 named ‘Bottom’ (see Fig.
IV.1) is a plane of anti-symmetry whereas the planes of normal e1 and e3 that are named ‘Left’

and ‘Back’ are symmetry planes of the perturbed magnetic field B̃. Hence, the perturbed
magnetic field verifies the following symmetry properties whereas the ones verified by Ã are
opposite (anti-symmetry properties)





B̃1(X1,X2,X3) = −B̃1(−X1,X2,X3),

B̃1(X1,X2,X3) = −B̃1(X1,−X2,X3),

B̃1(X1,X2,X3) = B̃1(X1,X2,−X3),

B̃2(X1,X2,X3) = B̃2(−X1,X2,X3),

B̃2(X1,X2,X3) = B̃2(X1,−X2,X3),

B̃2(X1,X2,X3) = B̃2(X1,X2,−X3),

B̃3(X1,X2,X3) = B̃3(−X1,X2,X3),

B̃3(X1,X2,X3) = −B̃3(X1,−X2,X3),

B̃3(X1,X2,X3) = −B̃3(X1,X2,−X3),

⇒





Ã1(X1,X2,X3) = Ã1(−X1,X2,X3),

Ã1(X1,X2,X3) = Ã1(X1,−X2,X3),

Ã1(X1,X2,X3) = −Ã1(X1,X2,−X3),

Ã2(X1,X2,X3) = −Ã2(−X1,X2,X3),

Ã2(X1,X2,X3) = −Ã2(X1,−X2,X3),

Ã2(X1,X2,X3) = −Ã2(X1,X2,−X3),

Ã3(X1,X2,X3) = −Ã3(−X1,X2,X3),

Ã3(X1,X2,X3) = Ã3(X1,−X2,X3),

Ã3(X1,X2,X3) = Ã3(X1,X2,−X3).

(IV.4.2)

7 NOTE: The direction of the externally applied magnetic field dictates the nature of the geometry’s
symmetry planes.
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From Eq. (IV.4.2), we can deduce the boundary conditions to apply on the symmetry planes
‘Bottom’, ‘Left’ and ‘Back’.
The Dirichlet boundary conditions read





Ã2 =Ã3 = 0, ∀X = (0,X2,X3) ∈ ‘Left’,

Ã2 =0, ∀X = (X1, 0,X3) ∈ ‘Bottom’,

Ã1 =Ã2 = 0, ∀X = (X1,X2, 0) ∈ ‘Back’.

(IV.4.3)

As for the Neumann boundary conditions, as mentionned in Section III.4.3, they are auto-
matically verified.

Based on the fact that only the tangential components of Ã need to be applied on ∂V , it
is not necessary to impose the first relation of Eq. (IV.4.3) (i.e. Ã2(X1, 0,X3) = 0).

IV.5 Code testing

As for any numerical method, a finite element code has to be tested on some problems (called
‘patch tests’) having an analytical solution, to make sure that these results can be reproduced
numerically. Even if passing different patch tests is neither sufficient nor necessary to prove
convergence, it is still a good indicator of the quality of a code. In the case of magneto-
mechanical problems, except for some trivial situations, exact solutions cannot generally be
derived due to strong non-linearities in the governing equations and non-uniformities in both
mechanical and magnetic fields.

In this section, we show the patch tests chosen to validate both our numerical imple-
mentations. In the first part, we consider a purely mechanical tensile test. The second part
focuses on a purely magnetic problem in which the deformation of the solid is not allowed
(rigid body). In the third part, we solve the coupled magneto-mechanical problem in an
infinite media. The last part presents a more complex patch test whose analytical solution
is not known. However, this problem can be solved by another finite element code (that has
already been checked for convergence) which relies on the F-H theory that uses a magnetic
scalar potential instead of a magnetic vector potential.

For the sake of not showing twice the same curves for each patch test, we will in what
follows only plot the numerical solutions obtained with the F-B code. Indeed, both numerical
codes (F-B and F-M) yield the same solutions provided the fact that the energy densities

W̃
B
(F, B̃) and W̃

M
(F, B̃,M) are equal (for more details about the equivalence of the different

formulations see Section III.3.3).

IV.5.1 Purely mechanical patch test

The first problem considered is a purely uniaxial tensile test on a parallelepiped in which the
axial displacement is controlled (i.e λ2 is controlled, see Fig IV.2a) and where the solid is
stress free in the directions transverse to the applied load. Based on the governing equations
provided in Section III.3.2.a, the analytical solution of this problem is given by

T = ρ0
∂ψ

B

∂F
• N, (IV.5.1)
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where T is the nominal traction and N is the outward normal in the undeformed reference
configuration. In the case of the parallelepiped, the principal axes of the deformation gradient
F are aligned with the principal axis of the material. Therefore, there are three independent
equations of static equilibrium in the reference normal directions Nk = ek (k = 1, 2, 3),
deducted from Eq. (IV.5.1)





T1 =0 = ρ0

(
2λ1

∂ψ
B

∂I1
+
J

λ1

∂ψ
B

∂I3

)
,

T2 = ρ0

(
2λ2

∂ψ
B

∂I1
+
J

λ2

∂ψ
B

∂I3

)
,

T3 =0 = ρ0

(
2λ3

∂ψ
B

∂I1
+
J

λ3

∂ψ
B

∂I3

)
,

(IV.5.2)

where λi are the principal stretch ratios. The Helmholtz free energy used takes the following
form

ρ0ψB
(F) = ρ0ψmech

(F) =
2∑

i=1

31−αi

2αi

µi [(I1 − ln I3)
αi − 3αi ] +

G′

2

(√
I3 − 1

)2
, (IV.5.3)

where αi, µi and G′ are material parameters and where the invariants Ik are defined in Eq.
(IV.2.6). The expression of ψ

mech
(i.e. the mechanical part of the Helmholtz free energy)

is a generalization for compressible materials of a hyperelastic model well suited for rubber
materials that has been proposed by Lopez-Pamies [103].
If we solve the system of equations (IV.5.2) with the following material constants

µ1 [MPa] α1 [-] µ2 [MPa] α2 [-] G′ [MPa]
1.5954 10−2 1 3.688 10−3 1 125 (µ1 + µ2)

we end up with the plots of Fig. IV.2.
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(a) (b)

Figure IV.2: Numerical simulation of a purely mechanical test in which the axial displacement
is controlled (i.e λ2 is controlled) and where the solid is stress free in the directions transverse
to the applied load. The nominal traction T2 - stretch ratio λ2 curve in a uniaxial test is shown
in (a), and the lateral stretch ratios λ1, λ3 appear in (b). Notice the excellent agreement
between the numerical and analytical solutions.

We notice that there is an excellent agreement between the analytical and numerical
solutions. As a result, we conclude that our code provides a valid solution to this problem.
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IV.5.2 Purely magnetic patch test

The second step in testing the codes still doesn’t involve any magneto-mechanical coupling.
In this section, as one can see in Fig. IV.3, we consider a rigid infinite magnetic cylinder
subjected to an external magnetic field b0 applied far from its boundaries in a direction
perpendicular to its axis.

Figure IV.3: Schematic of a rigid infinite magnetic cylinder submitted to an externally applied
magnetic field b0 far from its boundaries. The picture on the right shows the entire system
with the surrounding air. In the picture on the left, we present the mesh used for numerical
calculations and we indicate where periodicity conditions are applied.

The analytical solution to this boundary value problem doesn’t depend on the coordinate
along the e2 direction since the cylinder is infinite in that direction and hence it is equivalent
to solving a two-dimensional magnetic disk subjected to the same loading. For the interested
reader, a detailed derivation of the analytical solution based on the Laplace’s equation gov-
erning the h-field outside the specimen is provided in the Appendix of Bodelot [14].
Inside the specimen, the Eulerian magnetic field b and the Eulerian magnetic intensity h are
uniform and read 




h
in
=

2

µ0 (2 + χ)
b0,

b
in
=µ0 (1 + χ)h

in
=

2 (1 + χ)

2 + χ
b0,

(IV.5.4)

where χ is the initial magnetic susceptibility of the material. As one can notice from Eq.
(IV.5.4), we choose a linear magnetic law such that the magnetization per unit volume m
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(not to confuse with the magnetization per unit mass M = m/ρ) inside the material is given
by m = χh.
Outside the specimen, for material points X(x, y, z) located along the principal axis e1 and
e3, b and h are given by




h(x, y, 0) =h1(x, y, 0)e1 =
‖b0‖
µ0

(
1 +

χ

(2 + χ)

( r
x

)2)
e1, ∀x > r,

b(x, y, 0) =b1(x, y, 0)e1 = µ0h(x, y, 0) = ‖b0‖
(
1 +

χ

(2 + χ)

( r
x

)2)
e1, ∀x > r,

h(0, y, z) =h1(0, y, z)e1 =
‖b0‖
µ0

(
1− χ

(2 + χ)

(r
z

)2)
e1, ∀z > r,

b(0, y, z) =b1(0, y, z)e1 = µ0h(0, y, z) = ‖b0‖
(
1− χ

(2 + χ)

(r
z

)2)
e1, ∀z > r,

(IV.5.5)

where r is the radius of the cylinder. Based on Eq. (IV.5.5) and (IV.5.4), it is interesting
to note that the normal component of b (resp. the tangential component of b) and the
tangential component of h (resp. the normal component of h) are continous (resp. discontin-
uous) at the interface between the magnetic cylinder and the surrounding air (i.e. ‖X‖ = r),
as impose by the interface conditions mentionned in Section III.3.1 (i.e. n • JbK = 0 and
n × JhK = 0, ∀X ∈ ∂v).

Numerically, as one can see in Fig. IV.3, we simulate only a small portion of the problem.
Indeed, we first impose periodicity conditions along the e2 direction. Secondly, we use the
symetries of the problem and as stated in Section IV.4.2, we impose symetry conditions that
read in this case

Ã1 = Ã2 = 0, ∀X = (X1,X2, 0) ∈ symetry plane of normal e3. (IV.5.6)

And since the influence of the solid vanishes, we need to impose Ã = 0 far from its boundaries.

In terms of the Helmholtz free energy, we consider the following form (where IB6 = B •C •B)

ρ0ψB
(F = I, B̃ + JF−1 • b0) = ρ0ψB

(B̃ + b0) = − χ

2µ0 (1 + χ)
IB6 , (IV.5.7)

which according to the governing equations (provided in Section III.3.2.a) provides a linear
magnetic law

h =h0 + h̃ =
1

µ0

b0 +

(
ρ0
∂ψ

B

∂B̃
+

1

µ0

b̃

)
=

1

µ0

b + ρ0
ψ

B

∂IB6

∂IB6

∂B̃

=
1

µ0

b − χ

µ0 (1 + χ)

(
b̃ + b0

)
=

1

µ0 (1 + χ)
b,

⇒ m =
1

µ0

b − h = χh.

(IV.5.8)

Figure IV.4 shows the evolution of the manetic field b and the magnetic intensity h along the
principal directions e1 and e3 for χ = 0.3. As one can notice, there is an excellent agreement
between the analytical and numerical solutions.
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(a) (b)

(c) (d)

Figure IV.4: Plots of the magnetic field b and magnetic intensity h distributions in the case
of an infinite rigid magnetic cylinder subjected to an external magnetic field b0 applied in
the e1 direction (perpendicular to its axis). The spatial distribution of b along a line passing
through the axis of the cylinder and of direction e1 is presented in (a), and the distribution
of the h-field along that same path is shown in (b). The spatial distributions of b and h

along direction e3 are shown in (c) and (d).

The finite element code relying on the F-M theory provides the same solution if the energy
densities of the two formulations are equal (i.e. W̃

B
(F, B̃) = W̃

M
(F, B̃,M)) as suggested in
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Section III.3.3. We obtain

W̃
M
(F = I, B̃,M) =

µ0ρ
2
0

2χ
M • M − ρ0M • b0 +

1

2µ0

∥∥∥B̃ − µ0ρ0M
∥∥∥
2

. (IV.5.9)

According to Eq. (IV.3.2), we end up for the Helmholtz free energy with

ψ
M
(F = I,M) =

µ0ρ0
2χ

M • M. (IV.5.10)

IV.5.3 Coupled magneto-mechanical patch test on an infinite medium
(uniform field case)

As a step further in testing the numerical implementations, we consider a coupled magneto-
mechanical problem. We compute the magnetization and the principal stretch ratios of an
infinite magnetoelastic media that is stress free and subjected to a uniform magnetic field b0

along the e2 direction.
According to Danas [39] (see precisely Eq. 3.11 and Eq. 3.21 of the paper), the governing

equations that apply take the following form,





m =− ρ0F
−T •

∂ψ
B

∂B̃
(F, B̃ + JF−1 • b0),

T =ρ0

[
∂ψ

B

∂F
(F, B̃ + JF−1 • b0)

]
• N − J

(
m • b̃

)
F−T • N+

J
(
mb̃
)

•
(
F−T • N

)
.

(IV.5.11)

In the present case, we impose a uniform magnetic field b0 (i.e. b̃ = 0, b = b0, ∀X ∈ V )
and the material is stress free in each principal directions. Hence the analytical solution to
this problem is obtained by solving a system of equations composed of the magnetic equation
(Eq. (IV.5.11a)) and three independent equations of static equilibrium in the reference normal
directions Nk = ek, k = 1, 2, 3, deducted from Eq. (IV.5.11b).





m = − 2 J ρ0
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2 ∂ψB

∂IB7
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∂I1
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∂I3
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∂IB6
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2 ∂ψB

∂IB7

)]
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(IV.5.12)

Numerically, we don’t apply any traction and we simply set Ã = 0 everywhere in the material
since we impose a uniform magnetic field b = b0. Periodicity conditions are used in each
principal directions to simulate an infinite media.
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In terms of the Helmholz free energy, we add the IB7 invariant compared to the free energy
that we used in the previous patch test

ρ0ψB
(F, B̃) =

2∑

i=1

31−αi

2αi

µi [(I1 − ln I3)
αi − 3αi ] +

G′

2

(√
I3 − 1

)2

− C6
χ

2µ0 J (1 + χ)
IB6 − (1− C6)

χ

2µ0 J (1 + χ)
IB7 ,

(IV.5.13)

where we choose χ = 0.3 and C6 = 1.02.
As one can notice in Fig. IV.5, there is an excellent agreement between the analytical

and numerical solutions which indicates that the finite element code captures correctly the
magneto-mechanical coupling.

(a) (b)

Figure IV.5: Numerical simulation of a coupled magneto-mechanical test in an infinite media.
The magnetic response m2-b0 is shown in (a) and the evolution of the principal stretch ratios
λi is plotted in (b). Notice the very good agreement between the numerical and analytical
solutions.

The code relying on the F-M theory can as well reproduce the analytical solution of that
problem.

IV.5.4 Coupled magneto-mechanical patch test on a sphere (non-
uniform field case)

The last boundary value problem chosen as a patch test is the case of a mechanically stress
free magnetoelastic sphere subjected to an external magnetic field b0 applied far from its
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boundaries that has been described in Section IV.4.2 (see Fig. IV.1). A part of the mesh
used to simulate this problem is shown in Fig. IV.6.

Figure IV.6: Mesh used to numerically solve the problem of a magneto-elastic sphere sub-
jected to an externally applied magnetic field b0 far from its boundaries.

Such a boundary value problem doesn’t have an explicit analytical solution and one can
notice in Fig. IV.7 that neither the mechanical nor the magnetic quantities are uniform in
the solid.

Figure IV.7: Numerical results for the magneto-elastic sphere. On the left, we notice a strong
non-uniformity of the principal stretch ratio λ2 along the direction of the applied field b0.
On the right, we see that the Eulerian magnetic field b2 presents a small (almost negligible)
non-uniformity.
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To validate our code on such a complex problem, we use an existing finite element code
relying on the F-H theory (which uses a magnetic scalar potential as explained in Section
III.3.2.b). In order to compare the solutions given by the F-B and F-H codes, the en-
ergy densities used in both codes need to be linked by a partial Legendre’s transform (i.e.

W̃
H
(F, H̃) = W̃

B
(F, B̃)− B̃ • H̃) as it is explained in Section III.3.3. In the present case, we

use W̃
B
(F, B̃) = ρ0 ψB

+ 1/(2µ0 J) B̃ • C • B̃ where

ρ0ψB
(F, B̃ + JF−1 • b0) =

2∑

i=1

31−αi

2αi

µi [(I1 − ln I3)
αi − 3αi ] +

G′

2

(√
I3 − 1

)2
− χ

2µ0 J (1 + χ)
IB6 ,

(IV.5.14)

which leads to W̃
H
(F, H̃) = ρ0 ψH

− (J µ0/2) H̃ • C−1 • H̃ where

ρ0ψH
(F, H̃ + FT • h0) =

2∑

i=1

31−αi

2αi

µi [(I1 − ln I3)
αi − 3αi ] +

G′

2

(√
I3 − 1

)2
− µ0Jχ

2
IH6 ,

(IV.5.15)

with IH6 = h • h = H • C−1 • H = h0
• h0 + 2h0

• F−T • H̃ + H̃ • C−1 • H̃.

Multiple figures are presented in this section to show that both codes provide the same
solution. Figure IV.8 provides the deformed principal cross-sections of the sphere when we
cut it with planes passing through the origin and of normal ek (k = 1, 2, 3).

(a) (b) (c)

Figure IV.8: Deformed principal cross-sections of the sphere when we cut it with planes
passing through the origin and of normal ek. The cross-section in (a) is obtained by cutting
the sphere with a plane of normal e1, the one in (b) by a plane of normal e2 and the one in
(c) by a plane of normal e3.

Figure IV.9 shows the evolution of the average (in the sphere) of the second component
of the magnetic field b2 and magnetization vector m2 as well as the average of the principal
stretch ratios λi with respect to the loading parameter b0.
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(a) (b) (c)

Figure IV.9: Averaged quantities computed based on the numerical simulation of the sphere.
The evolution of the averaged magnetic field b2 with respect to the applied field b0 is shown
in (a) and the magnetic response m2-b0 is presented in (b). The evolution of the averaged
principal stretch ratios λi is plotted in (c). We notice an excellent agreement between the
numerical results of the F-B and F-H codes.

Figures IV.10 and IV.11 present the spatial evolution of the magnetic variables b2 and m2

, and the spatial evolution of the principal stretch ratios λi and principal components of the
first Piola-Kirchhoff stress tensor S, in the e2 direction (the path is parallel to the applied
magnetic field b0).

(a) (b)

Figure IV.10: Spatial distribution of the magnetic field b2 in (a) and the magnetization m2

in (b), along a path passing through the origin and of direction e2 (parallel to the applied
field b0).
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(a) (b) (c)

Figure IV.11: Spatial distribution of the principal stretch ratios λi in (a), of the components
S11 and S33 of the first Piola-Kirchhoff stress tensor in (b), and of S22 in (c), along a path
passing through the origin of the sphere and of direction e2 (parallel to the applied field b0).

As for Fig. IV.12 and IV.13, they provide the same type of results as Fig. IV.10 and
IV.11 for material points located on the e1 axis (the path is perpendicular to b0).

(a) (b)

Figure IV.12: Spatial distribution of the magnetic field b2 in (a) and the magnetization m2 in
(b), along a path passing through the origin and of direction e1 (perpendicular to the applied
field b0).
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(a) (b) (c)

Figure IV.13: Spatial distribution of the principal stretch ratios λi in (a), of the components
S11 and S33 of the first Piola-Kirchhoff stress tensor in (b), and of S22 in (c), along a path
passing through the origin of the sphere and of direction e1 (perpendicular to the applied
field b0).

As we can notice, for each of these plots, the F-B and F-H codes present a very good
agreement. We can conclude that the F-B code passes this last patch test.

Once again, the F-M code provides the same solution if and only if the Helmholtz free
energies ψ

M
and ψ

H
are linked by a partial Legendre’s transform (i.e ψ

H
(F, H̃ + FT • h0) =

ψ
M
(F,M) − µ0M • h) as explained in Section III.3.3. In the present case, to correspond to

the energy density used in Eq. (IV.5.15), W̃
M

is given by

W̃
M
(F, B̃,M) = ρ0 [ψM

(F,M)− M • b0] +
1

2µ0J

∥∥∥F • B̃ − µ0ρ0M
∥∥∥
2

, (IV.5.16)

where

ρ0ψM
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2 J χ
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2
0

2 J χ
IM6 ,

(IV.5.17)
with IM6 = M • M (see Eq. (IV.3.4)).
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IV.6 Conclusions

In this Chapter, all aspects pertaining to the numerical implementation of the material model
to solve MRE boundary value problems are presented. Novel formulations of the coupled
magneto-mechanical variational principle for a non-uniform applied magnetic field, using the
displacement vector and the magnetic vector potential as independent variables are discussed.

First, we explain how to numerically enforce the Coulomb gauge needed to ensure the
uniqueness of the vector potential. For that purpose, the penalty method is used to impose
this additional constraint (∇ • A = 0) which leads to numerical complications similar to
the well known volumetric locking phenomenon observed when simulating incompressible
materials. Under-integration of the penalty term is then necessary to avoid this phenomenon.

In a second time, we discuss the main differences in the numerical implementations of
the F-B and F-M theories. The implementation of the latter requires the use of the static
condensation method since the sharp discontinuity of the extra independent variable M (the
magnetization vector) at the boundary solid/air prevents its calculation at the nodes. Hence,
M has to be calculated inside each elements. The corresponding FEM discretizations are
derived in details.

Then, before showing some usage of the codes, we present which are the valid boundary
conditions to use for the vector potential. In particular, we prove that only its tangential
components need to be applied on the boundary of the simulated domain. Moreover, based on
the mathematical properties of the magnetic pseudo-vector B and polar-vector A, we explain
how to use the geometrical and loading symmetries of a problem to reduce the number of
degrees of freedom needed to solve it.

Lastly, the patch tests used to validate the numerical implementations are discussed.
As one can notice, analytical solutions of purely mechanical, purely magnetic and coupled
magneto-mechanical (in an infinite medium) problems can be retrieved numerically. More-
over, the complex and highly coupled problem of a magneto-elastic sphere subjected to an
externally applied field far from its boundaries (studied by Lefèvre and Lopez-Pamies [100])
is properly solved with both numerical implementations.

For each of the three formulations presented in Chapter III, both the MRE material model
and the associated 3D FEM numerical code are now available, thus opening the possibility
of improving the design of MRE-based devices.
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IV.A Complement for the F-B Theory

IV.A.1 First and second derivatives of the energy density, and of
the invariants

In this section, based on the definition provided in Eq. (IV.2.1), we compute the first and

second partial derivatives of the energy density W̃
B

with respect to its independent variables

F and B̃. These derivatives are used for the calculation of both the element force vectors fe
(see Eq. (IV.2.17)) and the element stiffness matrices ke (see Eq. (IV.2.19). The first partial
derivatives of the energy density read (note that the Einstein summation convention is used)
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∥∥∥
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(IV.A.1)
while the second partial derivatives are given by
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(IV.A.2)
To compute the first and second derivatives of the solid’s Helmholtz free energy ψ

B
, we apply

the chain rule knowing that ψ
B

is a function of ten independent invariants (see Eq. (IV.2.5))

ρ0
∂ψ

B

∂Fij

=ρ0
∂ψ

B

∂IBp

∂IBp
∂Fij

,

ρ0
∂ψ

B

∂B̃i

=ρ0
∂ψ

B

∂IBp

∂IBp

∂B̃i

,

ρ0
∂2ψ

B

∂Fij∂Fkl

=ρ0
∂2ψ

B

∂IBp ∂I
B
q

∂IBp
∂Fij

∂IBq
∂Fkl

+ ρ0
∂ψ

B

∂IBp

∂2IBp
∂Fij∂Fkl

,

ρ0
∂2ψ

B

∂Fij∂B̃k

=ρ0
∂2ψ

B

∂IBp ∂I
B
q

∂IBp
∂Fij

∂IBq

∂B̃k

+ ρ0
∂ψ

B

∂IBp

∂2IBp

∂Fij∂B̃k

,

ρ0
∂2ψ

B

∂B̃i∂B̃j

=ρ0
∂2ψ

B

∂IBp ∂I
B
q

∂IBp

∂B̃i

∂IBq

∂B̃j

+ ρ0
∂ψ

B

∂IBp

∂2IBp

∂B̃i∂B̃j

.

(IV.A.3)
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At this stage, we provide the first and second derivatives of the invariants used in the
F-B theory, with respect to the independent variables F and B̃. For the coupled invariants
(i.e, IBi , i ≥ 6), the expression of these derivatives cannot be written concisely and thus we
restrict ourselves to the invariants used in Section IV.5 in the expression of the free energy
ψ

B
, namely IB6 and IB7 .

Remark: In what follows we will use the Einstein summation convention. In addition, we
will use the notation b0

i for the component of b0 along ei (i.e b0 = b0
i ei) and the following

decomposition for the Eulerian magnetic field

b = b0 +
1

J
F • B̃. (IV.A.4)

∗∗ First order derivatives

******* (∂IP/∂F) *******

∂I1
∂Fij

=2Fij,
∂I2
∂Fij

= 2 (I1Fij − FirFsrFsj) ,
∂I3
∂Fij

= 2 I3F
−1
ji

∂I4
∂Fij

=2Nj Fip Np,
∂I5
∂Fij

= 2Fir Ns Fns ( NjFnr +NrFnj)

∂IB6
∂Fij

=2
[
J2 F−1

ji b
0
sb

0
s + J F−1

ji b
0
sFslB̃l + J b0

i B̃j + FisB̃sB̃j

]

∂IB7
∂Fij

=2 J2 F−1
ji (Fsrb

0
s)(Fnrb

0
n) + 2 J F−1

ji (Fsrb
0
s)(CrnB̃n) + 2 J2 b0

ib
0
rFrj + 2 J b0

iCjrB̃r+

2 J (FirB̃r)(Fsjb
0
s) + 2 J (FirFrsb

0
s)B̃j + 2 (FirB̃r)(CjsB̃s) + 2 (FirFsrFsnB̃n)B̃j

(IV.A.5)

******* (∂IP/∂B̃) *******

∂I1

∂B̃i

=
∂I2

∂B̃i

=
∂I3

∂B̃i

=
∂I4

∂B̃i

=
∂I5

∂B̃i

= 0

∂IB6

∂B̃i

=2 J Frib
0
r + 2CisB̃s,

∂IB7

∂B̃i

= 2 J CirFsrb
0
s + 2CipCpqB̃q

(IV.A.6)
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∗∗ Second order derivatives

******* (∂2IP/∂B∂B) *******

∂2I1

∂B̃i∂B̃j

=
∂2I2

∂B̃i∂B̃j

=
∂2I3

∂B̃i∂B̃j

=
∂2I4

∂B̃i∂B̃j

=
∂2I5

∂B̃i∂B̃j

= 0

∂2IB6

∂B̃i∂B̃j

=2Cij,
∂2IB7

∂B̃i∂B̃j

= 2CirCrj

(IV.A.7)

******* (∂2IP/∂F∂B) *******

∂2I1

∂Fij∂B̃k

=
∂2I2

∂Fij∂B̃k

=
∂2I3

∂Fij∂B̃k

=
∂2I4

∂Fij∂B̃k

=
∂2I5

∂Fij∂B̃k

∂2IB6

∂Fij∂B̃k

=2
[
J F−1

ji Fskb
0
s + Jb0

i δjk + FirB̃rδjk + FikB̃j

]

∂2IB7

∂Fij∂B̃k

=2 J F−1
ji

(
CkrFsrb

0
s

)
+ 2 J b0

iCjk + 2 J FikFsjb
0
s + 2 J

(
FirFsrb

0
s

)
δjk+

2Fik

(
CjrB̃r

)
+ 2

(
FirB̃r

)
Cjk + 2 (FirFsrFsk) B̃j + 2

(
FirFsrFspB̃p

)
δjk

(IV.A.8)
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******* (∂2IP/∂F∂F) *******

∂2I1
∂Fij∂Fkl

=2 δikδjl,
∂2I2

∂Fij∂Fkl

= 2 (2FijFkl + I1δikδjl − FilFkj − δikFrjFrl − δjlFisFks)

∂2I3
∂Fij∂Fkl

=2 I3
(
2F−1

lk F−1
ji − F−1

jk F
−1
li

)
,

∂2I4
∂Fij∂Fkl

= 2 δik Nj Nl

∂2I5
∂Fij∂Fkl

=2
(
NjNsδikFrlFrs +NjNrFilFkr +NlNsδikFrjFrs +NrNsδjlFirFks+

NjNlFirFkr +NlNrFirFkj

)

∂2IB6
∂Fij∂Fkl

=2
[
J2
(
b0
rb

0
r

) (
2F−1

ji F
−1
lk − F−1

jk F
−1
li

)
+ J

(
b0
rFrsB̃s

) (
F−1
ji F

−1
lk − F−1

jk F
−1
li

)
+

J F−1
ji b

0
kB̃l + J F−1

lk b0
i B̃j + B̃jB̃lδik

]

∂2IB7
∂Fij∂Fkl

=4 J2 F−1
lk F−1

ji (Frsbr) (Fnsbn)− 2 J2 F−1
jk F

−1
li (Frsbr) (Fnsbn) + 4 J2 F−1

ji (Frlbr) bk−

2 J F−1
ji F

−1
lk (FsrFnrbn)

(
FspB̃p

)
+ 2 J F−1

ji (FkrFnrbn) B̃l + 4 J2 F−1
lk (Frjbr) bi+

2 J2 bkbiδjl − 2 J biF
−1
lk

(
CjrB̃r

)
+ 2 J FkjB̃lbi − 2 J

(
FirB̃r

)
(Fsjbs) F

−1
lk +

2 J (Frjbr) B̃lδik − 4 J F−1
lk F−1

ji (Frsbr)
(
CsnB̃n

)
+ 2 J F−1

jk F
−1
li (Frsbr)

(
CsnB̃n

)
−

2 J F−1
ji (Frlbr)

(
FknB̃n

)
− 2 J F−1

ji bk

(
ClrB̃r

)
+

2F−1
ji F

−1
lk

(
FsrFnrFnpB̃p

)(
FsqB̃q

)
− 2F−1

ji

(
FkrFnrFnpB̃p

)
B̃l+

2 J F−1
lk (FirFnrbn) B̃j + 2 J δik (Frlbr) B̃j + 2 J FilbkB̃j−

2F−1
lk

(
FirFnrFnpB̃p

)
B̃j + 2 (FirFkr) B̃lB̃j

(IV.A.9)
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IV.A.2 ABAQUS UEL implementation

To numerically implement the variational formulation presented in Section IV.2, an ABAQUS
user element (UEL) is developed. In the ABAQUS environment, we are required to give the
expression of the element force vector fe and the element stiffness matrix ke. The purpose of
this section is to give some practical details on how the user element is written.

It is convenient to define the following scalar quantities which are directly used in the
UEL code

• ndm: dimension of the problem (ndm = 3 in three dimensions),

• nel: number of elements in the mesh,

• nne: number of nodes per element (nne = 8 in this section since we choose a linear cubic
element, see Fig. IV.14),

• ndof : number of degrees of freedom (d.o.f) per node (ndof = 6 in the case of the F-B

theory. The d.o.f are (u1, u2, u3, Ã1, Ã2, Ã3). It is interesting to note that the F-H
theory that is mathematically equivalent requires only 4 degrees of freedom since a
magnetic scalar potential is used in place of the magnetic vector potential),

• ndofel = ndof × nne : total number of d.o.f per element (ndofel = 6 × 8 = 48 in our
case. As we will see the size of the force vector fe is ndofel, while the size of the stiffness
matrix ke is ndofel × ndofel),

• ntens : total number of entries in the vector of the ‘stress-like’ quantities (i.e., the
number of components of [dqdx] defined later on. In this context, ntens = 12).

From now on, we consider standard eight node isoparametric cubic elements (C3D8) as
shown in Fig. IV.14. The same derivation for a standard ten node isoparametric tetrahedral
element is given in Appendix IV.A.4.

Figure IV.14: Schematic of a standard eight node cubic element (C3D8)
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At this stage, we define the notation for the ndofel components vector of unknowns by

qe = {u(1)
1 , u

(1)
2 , u

(1)
3 , Ã

(1)

1 , Ã
(1)

2 , Ã
(1)

3 , · · · , u(nne)
1 , u

(nne)
2 , u

(nne)
3 , Ã

(nne)

1 , Ã
(nne)

2 , Ã
(nne)

3 },
(IV.A.10)

where the subscript denotes the spatial component of each unknown and the superscript
denotes the node (using the local numbering shown in Fig. IV.14) associated with the
unknown under consideration.

IV.A.2.a Element jacobian and coordinate transformations

Then, we have to define the shape functions and the associated Jacobian matrix, denoted as
[J ], which serves to write quantities, which are evaluated at the local coordinate system of
the element, with respect to the global coordinate system. In the present analysis, we consider
isoparametric elements and hence the same shape functions will be used to interpolate all
nodal unknowns. The definition of the shape functions (Ni, i ∈ [1, nne]) and the definition
of the matrix G which represents the derivatives of these shape functions with respect to the
local coordinate system (Gij = ∂Ni/∂ξj, (i, j) ∈ [1, nne]

2) are given in Appendix IV.A.3.
We can then define the following local to global coordinate transformation 8

[J ] =




J11 J12 J13

J21 J22 J23

J31 J32 J33


 =



∂X1/∂ξ1 ∂X2/∂ξ1 ∂X3/∂ξ1
∂X1/∂ξ2 ∂X2/∂ξ2 ∂X3/∂ξ2
∂X1/∂ξ3 ∂X2/∂ξ3 ∂X3/∂ξ3




=




nen∑
I=1

(∂NI/∂ξ1) X
I
1

nen∑
I=1

(∂NI/∂ξ1) X
I
2

nen∑
I=1

(∂NI/∂ξ1) X
I
3

nen∑
I=1

(∂NI/∂ξ2) X
I
1

nen∑
I=1

(∂NI/∂ξ2) X
I
2

nen∑
I=1

(∂NI/∂ξ2) X
I
3

nen∑
I=1

(∂NI/∂ξ3) X
I
1

nen∑
I=1

(∂NI/∂ξ3) X
I
2

nen∑
I=1

(∂NI/∂ξ3) X
I
3




, (IV.A.11)

which implies that the inverse Jacobian matrix [J ]−1 can be written in the following way
(we use the Sarrus’ rule here)

[J ]−1 =




J −1
11 J −1

12 J −1
13

J −1
21 J −1

22 J −1
23

J −1
31 J −1

32 J −1
33




=
1

detJ




J22J33 − J23J32 J13J32 − J12J33 J12J23 − J13J22

J23J31 − J21J33 J11J33 − J13J31 J13J21 − J11J23

J21J32 − J22J31 J12J31 − J11J32 J11J22 − J12J21


 , (IV.A.12)

with detJ = J11J22J33 − J11J23J32 − J12J21J33 + J12J23J31 + J13J21J32 − J13J22J31.

8 Careful: the convention for the definition of the Jacobian is Jij = ∂Xj/∂ξi and not Jij = ∂Xi/∂ξj .
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IV.A.2.b Derivative of matrices

In order to proceed further, we need to write any second order tensor Tij in a vector format
denoted as

[T] = [T11, T12, T13, T21, T22, T23, T31, T32, T33] . (IV.A.13)

Subsequently, we evaluate the quantities u∇ and ∇× Ã in three dimensions noting that

u = {u1(X1,X2,X3), u2(X1,X2,X3), u3(X1,X2,X3)} ,
Ã = {Ã1(X1,X2,X3), Ã2(X1,X2,X3), Ã3(X1,X2,X3)},

(IV.A.14)

with capital Xi denoting the reference coordinates. Using the notation introduced in Eq.
(IV.A.13), we have

vector of size ntens×1︷ ︸︸ ︷


e1
• u∇ • e1 = ∂u1/∂X1

e1
• u∇ • e2 = ∂u1/∂X2

e1
• u∇ • e3 = ∂u1/∂X3

e2
• u∇ • e1 = ∂u2/∂X1

e2
• u∇ • e2 = ∂u2/∂X2

e2
• u∇ • e3 = ∂u2/∂X3

e3
• u∇ • e1 = ∂u3/∂X1

e3
• u∇ • e2 = ∂u3/∂X2

e3
• u∇ • e3 = ∂u3/∂X3(
∇× Ã

)
• e1 = B̃1

(
∇× Ã

)
• e2 = B̃2

(
∇× Ã

)
• e3 = B̃3




︸ ︷︷ ︸
[dqdx]

= [JI]

vector of size (ndm×ndof )×1︷ ︸︸ ︷


∂u1/∂ξ1

∂u1/∂ξ2

∂u1/∂ξ3

∂u2/∂ξ1

∂u2/∂ξ2

∂u2/∂ξ3

∂u3/∂ξ1

∂u3/∂ξ2

∂u3/∂ξ3

∂Ã1/∂ξ1

∂Ã1/∂ξ2

∂Ã1/∂ξ3

∂Ã2/∂ξ1

∂Ã2/∂ξ2

∂Ã2/∂ξ3

∂Ã3/∂ξ1

∂Ã3/∂ξ2

∂Ã3/∂ξ3




,

︸ ︷︷ ︸
[dqdxi]

(IV.A.15)
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with the perturbed Lagrangian magnetic field B̃ being defined as

B̃ = {B̃1, B̃2, B̃3} =

{
∂Ã3

∂X2

− ∂Ã2

∂X3

,
∂Ã1

∂X3

− ∂Ã3

∂X1

,
∂Ã2

∂X1

− ∂Ã1

∂X2

}
. (IV.A.16)

Then the matrix [JI] can be written as

[JI] =

matrix of sizentens×(ndm×ndof )︷ ︸︸ ︷


J
−1 0 0 0 0 0

0 J
−1 0 0 0 0

0 0 J
−1 0 0 0

0 0 0 −J−1
31 −J−1

32 −J−1
33 J−1

21 J−1
22 J−1

23

0 0 0 J−1
31 J−1

32 J−1
33 0 0 0 −J−1

11 −J−1
12 −J−1

13

−J−1
21 −J−1

22 −J−1
23 J−1

11 J−1
12 J−1

13 0 0 0



,

(IV.A.17)

where J
−1 stands for the 3× 3 inverse Jacobian matrix given in Eq. (IV.A.12) and 0 is the

3× 3 zero matrix.
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Next, one computes the vector dqdxi by
vector of size (ndm×ndof )×1

︷ ︸︸ ︷


∂u1/∂ξ1 =

nne∑

K=1

(
∂NK

∂ξ1

)
u
(K)
1

∂u1/∂ξ2 =

nne∑

K=1

(
∂NK

∂ξ2

)
u
(K)
1

∂u1/∂ξ3 =

nne∑

K=1

(
∂NK

∂ξ3

)
u
(K)
1

∂u2/∂ξ1 =

nne∑

K=1

(
∂NK

∂ξ1

)
u
(K)
2

∂u2/∂ξ2 =

nne∑

K=1

(
∂NK

∂ξ2

)
u
(K)
2

∂u2/∂ξ3 =

nne∑

K=1

(
∂NK

∂ξ3

)
u
(K)
2

∂u3/∂ξ1 =

nne∑

K=1

(
∂NK

∂ξ1

)
u
(K)
3

∂u3/∂ξ2 =

nne∑

K=1

(
∂NK

∂ξ2

)
u
(K)
3

∂u3/∂ξ3 =

nne∑

K=1

(
∂NK

∂ξ3

)
u
(K)
3

∂Ã1/∂ξ1 =

nne∑

K=1

(
∂NK

∂ξ1

)
Ã

(K)

1

∂Ã1/∂ξ2 =

nne∑

K=1

(
∂NK

∂ξ2

)
Ã

(K)

1

∂Ã1/∂ξ3 =

nne∑

K=1

(
∂NK

∂ξ3

)
Ã

(K)

1

∂Ã2/∂ξ1 =

nne∑

K=1

(
∂NK

∂ξ1

)
Ã

(K)

2

∂Ã2/∂ξ2 =

nne∑

K=1

(
∂NK

∂ξ2

)
Ã

(K)

2

∂Ã2/∂ξ3 =

nne∑

K=1

(
∂NK

∂ξ3

)
Ã

(K)

2

∂Ã3/∂ξ1 =

nne∑

K=1

(
∂NK

∂ξ1

)
Ã

(K)

3

∂Ã3/∂ξ2 =

nne∑

K=1

(
∂NK

∂ξ2

)
Ã

(K)

3

∂Ã3/∂ξ3 =

nne∑

K=1

(
∂NK

∂ξ3

)
Ã

(K)

3




︸ ︷︷ ︸
[dqdxi]

= [NG]

vector of size ndofel×1
︷ ︸︸ ︷


u
(1)
1

u
(1)
2

u
(1)
3

Ã
(1)

1

Ã
(1)

2

Ã
(1)

3

...

u
(nne)
1

u
(nne)
2

u
(nne)
3

Ã
(nne)

1

Ã
(nne)
2

Ã
(nne)

3




,

︸ ︷︷ ︸
qe

(IV.A.18)
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with

[NG] =

matrix of size (ndm×ndof )×ndofel︷ ︸︸ ︷


G11 0 0 0 0 0 · · · Gnne1 0 0 0 0 0
G12 0 0 0 0 0 · · · Gnne2 0 0 0 0 0
G13 0 0 0 0 0 · · · Gnne3 0 0 0 0 0
0 G11 0 0 0 0 · · · 0 Gnne1 0 0 0 0
0 G12 0 0 0 0 · · · 0 Gnne2 0 0 0 0
0 G13 0 0 0 0 · · · 0 Gnne3 0 0 0 0
0 0 G11 0 0 0 · · · 0 0 Gnne1 0 0 0
0 0 G12 0 0 0 · · · 0 0 Gnne2 0 0 0
0 0 G13 0 0 0 · · · 0 0 Gnne3 0 0 0
0 0 0 G11 0 0 · · · 0 0 0 Gnne1 0 0
0 0 0 G12 0 0 · · · 0 0 0 Gnne2 0 0
0 0 0 G13 0 0 · · · 0 0 0 Gnne3 0 0
0 0 0 0 G11 0 · · · 0 0 0 0 Gnne1 0
0 0 0 0 G12 0 · · · 0 0 0 0 Gnne2 0
0 0 0 0 G13 0 · · · 0 0 0 0 Gnne3 0
0 0 0 0 0 G11 · · · 0 0 0 0 0 Gnne1

0 0 0 0 0 G12 · · · 0 0 0 0 0 Gnne2

0 0 0 0 0 G13 · · · 0 0 0 0 0 Gnne3




.

(IV.A.19)
Then the derivative matrix [G] used in Eq. (IV.2.19) such that dqdx = [G] • qe is given by

[G]︸︷︷︸
matrix ntens×ndofel

=




matrix 9×ndofel︷︸︸︷
Gu

G
Ã︸︷︷︸

matrix 3×ndofel


 =

matrix ntens×(ndm×ndof )︷︸︸︷
[JI] [NG] .︸ ︷︷ ︸

matrix (ndm×ndof )×ndofel

(IV.A.20)
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Similarly, the divergence of Ã is computed by

∇•Ã =

ndm∑

i=1

∂Ãi

∂Xi

=

vector 1×(ndm×ndof )︷ ︸︸ ︷[
0̂ J −1

11 J −1
12 J −1

13 J −1
21 J −1

22 J −1
23 J −1

31 J −1
32 J −1

33

]
︸ ︷︷ ︸

[divJI]

vector (ndm×ndof )×1︷ ︸︸ ︷


∂u1/∂ξ1

∂u1/∂ξ2

∂u1/∂ξ3

∂u2/∂ξ1

∂u2/∂ξ2

∂u2/∂ξ3

∂u3/∂ξ1

∂u3/∂ξ2

∂u3/∂ξ3

∂Ã1/∂ξ1

∂Ã1/∂ξ2

∂Ã1/∂ξ3

∂Ã2/∂ξ1

∂Ã2/∂ξ2

∂Ã2/∂ξ3

∂Ã3/∂ξ1

∂Ã3/∂ξ2

∂Ã3/∂ξ3




,

︸ ︷︷ ︸
[dqdxi]

(IV.A.21)

with 0̂ being a 1×
(
ndm × ndof

2

)
zero line vector, so that the divergence vector D

Ã
defined

in Eq. (IV.2.15) such that ∇ • Ã = D
Ã
T • qe is given by

[D
Ã
]T︸ ︷︷ ︸

vector of size 1×ndofel

=

vector of size 1×(ndm×ndof )︷ ︸︸ ︷
[divJI] [NG] .︸ ︷︷ ︸

matrix of size (ndm×ndof )×ndofel

(IV.A.22)

IV.A.2.c Expression of the force vector

At this stage, if we substitute Eq. (IV.A.20) and Eq. (IV.A.22) in Eq. (IV.2.17), we can
rewrite the element force vector fe as

fe︸︷︷︸
vector 1×ndofel

=

∫

Ve

[
fe

FB
]

︸ ︷︷ ︸
1×ntens

ntens×ndofel︷︸︸︷
[G] dV +

1

µ0κ

∫

Ve

(∇ • Ã)
[
D

Ã

]T
︸ ︷︷ ︸
1×ndofel

dV, (IV.A.23)
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where based on the convention introduced in (IV.A.13), the vector
[
fe

FB
]

is given by

fe
FB =

[
∂W̃

B

∂F11

,
∂W̃

B

∂F12

,
∂W̃

B

∂F13

,
∂W̃

B

∂F21

,
∂W̃

B

∂F22

,
∂W̃

B

∂F23

,
∂W̃

B

∂F31

,
∂W̃

B

∂F32

,
∂W̃

B

∂F33

,
∂W̃

B

∂B̃1

,
∂W̃

B

∂B̃2

,
∂W̃

B

∂B̃3

]
.

︸ ︷︷ ︸
vector of size 1×ntens

(IV.A.24)

As one can notice, the potential of the externally applied mechanical loads, i.e. W =∫
D
ρ0f • u dV +

∫
∂D

T • u dS (where f is the mechanical body force per unit mass in the
reference configuration and T is the nominal traction per unit reference area), is omitted in
the expression of the element force vector fe since this term is already implemented in the
ABAQUS environment.

IV.A.2.d Expression of the stiffness matrix

Then as well we can express the element stiffness matrix ke used in Eq. (IV.2.19)

ke︸︷︷︸
ndofel×ndofel

=

∫

Ve

[G]T︸︷︷︸
ndofel×ntens

ntens×ntens︷ ︸︸ ︷[
ke

FB
]

[G]︸︷︷︸
ntens×ndofel

dV +
1

µ0κ

∫

Ve

[D
Ã
]︸︷︷︸

ndofel×1

1×ndofel︷ ︸︸ ︷
[D

Ã
]T dV,

(IV.A.25)
where

[
ke

FB
]

can be written
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ke
FB =




∂2W̃
B

∂F11∂F11

· · · · · · · · · · · · · · · · · · · · ·

∂2W̃
B

∂F11∂F33

∂2W̃
B

∂F11∂B̃1

∂2W̃
B

∂F11∂B̃2

∂2W̃
B

∂F11∂B̃3

.
.
.

· · · · · · · · · · · · · · · · · ·

∂2W̃
B

∂F12∂F33

∂2W̃
B

∂F12∂B̃1

∂2W̃
B

∂F12∂B̃2

∂2W̃
B

∂F12∂B̃3

.
.
.

· · · · · · · · · · · · · · ·

∂2W̃
B

∂F13∂F33

∂2W̃
B

∂F13∂B̃1

∂2W̃
B

∂F13∂B̃2

∂2W̃
B

∂F13∂B̃3

.
.
.

· · · · · · · · · · · ·

∂2W̃
B

∂F21∂F33

∂2W̃
B

∂F21∂B̃1

∂2W̃
B

∂F21∂B̃2

∂2W̃
B

∂F21∂B̃3

.
.
.

· · · · · · · · ·

∂2W̃
B

∂F22∂F33

∂2W̃
B

∂F22∂B̃1

∂2W̃
B

∂F22∂B̃2

∂2W̃
B

∂F22∂B̃3

symm

.
.
.

· · · · · ·

∂2W̃
B

∂F23∂F33

∂2W̃
B

∂F23∂B̃1

∂2W̃
B

∂F23∂B̃2

∂2W̃
B

∂F23∂B̃3

.
.
.

· · ·

∂2W̃
B

∂F31∂F33

∂2W̃
B

∂F31∂B̃1

∂2W̃
B

∂F31∂B̃2

∂2W̃
B

∂F31∂B̃3

.
.
.

∂2W̃
B

∂F32∂F33

∂2W̃
B

∂F32∂B̃1

∂2W̃
B

∂F32∂B̃2

∂2W̃
B

∂F32∂B̃3

∂2W̃
B

∂F33∂F33

∂2W̃
B

∂F33∂B̃1

∂2W̃
B

∂F33∂B̃2

∂2W̃
B

∂F33∂B̃3

∂2W̃
B

∂B̃1∂B̃1

∂2W̃
B

∂B̃1∂B̃2

∂2W̃
B

∂B̃1∂B̃3

∂2W̃
B

∂B̃2∂B̃2

∂2W̃
B

∂B̃2∂B̃3

∂2W̃
B

∂B̃3∂B̃3




.

︸ ︷︷ ︸
matrix of sizentens×ntens

(IV.A.26)

IV.A.2.e Numerical Integration

To calculate the element volume integrals, one needs to map them from the global (X1,X2,X3)
to the local coordinate system (ξ1, ξ2, ξ3). The infinitesimal volume dV is mapped to the local
coordinate system with the help of the determinant of the Jacobian mapping matrix 9 defined
in Eq. (IV.A.11)

dV = dX1 dX2 dX3 = (detJ ) dξ1 dξ2 dξ3. (IV.A.27)

Hence, for each function f defined in Ve, the mapping of its volume integral reads

∫

Ve

f(X) dV =

∫ 1

ξ1=−1

∫ 1

ξ2=−1

∫ 1

ξ3=−1

f(ξ) (detJ ) dξ1 dξ2 dξ3. (IV.A.28)

9 NOTE: The reader must not confuse the Jacobian mapping matrix [J ] with the scalar Jacobian of the
deformation J = detF.
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Then, based on the choice of elements that we made (8-node cubic element C3D8), we choose
to approximate each integral by a numerical eight point Gaussian quadrature rule 10

∫ 1

ξ1=−1

∫ 1

ξ2=−1

∫ 1

ξ3=−1

f(ξ) (detJ ) dξ1 dξ2 dξ3 =

∫ 1

ξ1=−1

∫ 1

ξ2=−1

∫ 1

ξ3=−1

g (ξ) dξ1 dξ2 dξ3

≈
ngp=8∑

I=1

w(I)
gp g

(
ξ(I)gp

)
,

(IV.A.29)

where g = (detJ ) f , and ξ
(I)
gp and w

(I)
gp represent respectively the coordinates of the chosen

Gauss points and their associated weight. In our case, we choose the following Gauss points
and weights

ξ(1)gp =
1√
3
(−1,−1,−1) , w(1)

gp = 1,

ξ(1)gp =
1√
3
(−1,−1,−1) , w(1)

gp = 1,

ξ(1)gp =
1√
3
(−1,−1,−1) , w(1)

gp = 1,

ξ(1)gp =
1√
3
(−1,−1,−1) , w(1)

gp = 1,

ξ(1)gp =
1√
3
(−1,−1,−1) , w(1)

gp = 1,

ξ(1)gp =
1√
3
(−1,−1,−1) , w(1)

gp = 1,

ξ(1)gp =
1√
3
(−1,−1,−1) , w(1)

gp = 1,

ξ(1)gp =
1√
3
(−1,−1,−1) , w(1)

gp = 1.

(IV.A.30)

Here, it is important to specify that the penalty term added to numerically enforce the
Coulomb gauge must be under-integrated to avoid any ‘locking phenomena’. For that pur-
pose, to compute the second term of the element force vector fe in Eq. (IV.A.23) and the
second term of the stiffness matrix ke in Eq. (IV.A.25), we will use only one Gauss point
that has the following characteristics

ξ(0)gp = (0, 0, 0) , w(1)
gp = 2. (IV.A.31)

After computing the force vector fe and the stiffness matrix ke for each element in the
user element subroutine, ABAQUS assembles the global force vector f and the global stiffness
matrix k of the system.

The variational formulation written in Eq. (IV.2.1) leads (after a finite element discretiza-
tion) to seek the vector of unknown nodal degrees of freedom q by solvig the (non-linear)

10 NOTE: A n-point Gaussian quadrature rule yields an exact result for polynomials of degree 2n − 1 or
less if a suitable choice of gauss points and associated weights is made.
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equilibrium equation that takes the following form

f (q) = 0. (IV.A.32)

The Newton-Raphson method, based on the first order Taylor expansion of the global force
vector about the previous iteration i is used

f[i+1] ≈ f[i] +∆q[i] • k[i] = 0. (IV.A.33)

The correction ∆q[i] that defines the curret approximation q[i+1] is

∆q[i] = q[i+1] − q[i], (IV.A.34)

and the so called tangent stiffness matrix k[i] at the previous iteration i is

k[i] =
∂f

∂q

∣∣∣
q[i]
. (IV.A.35)

IV.A.3 Shape functions and their derivatives for an 8-node isopara-
metric cubic element (C3D8)

In this section, we give the shape functions corresponding to an eight node isoparametric
cubic element (C3D8) as well as their deriatives.

In the local coordinate system of the element (see Fig. IV.14), the shape functions are
defined via

N1 =
1

8
(1− ξ1)(1− ξ2)(1− ξ3), N2 =

1

8
(1 + ξ1)(1− ξ2)(1− ξ3),

N3 =
1

8
(1 + ξ1)(1 + ξ2)(1− ξ3), N4 =

1

8
(1− ξ1)(1 + ξ2)(1− ξ3),

N5 =
1

8
(1− ξ1)(1− ξ2)(1 + ξ3), N6 =

1

8
(1 + ξ1)(1− ξ2)(1 + ξ3),

N7 =
1

8
(1 + ξ1)(1 + ξ2)(1 + ξ3), N8 =

1

8
(1− ξ1)(1 + ξ2)(1 + ξ3).

(IV.A.36)

These shape functions verify the following conditions:

• NI(ξ
(J)) = δIJ , where ξ(J) is the coordinate vector of node J in the local coordinate system

(Fig. IV.14)

•
nne∑
K=1

NK(ξ) = 1, for all ξ in the local coordinate system.

Then the derivatives of these shape functions in the local coordinate system read

G11 = ∂N1/∂ξ1 = −1

8
(1− ξ2) (1− ξ3) , G21 = ∂N2/∂ξ1 =

1

8
(1− ξ2) (1− ξ3) ,

G31 = ∂N3/∂ξ1 =
1

8
(1 + ξ2) (1− ξ3) , G41 = ∂N4/∂ξ1 = −1

8
(1 + ξ2) (1− ξ3) ,

G51 = ∂N5/∂ξ1 = −1

8
(1− ξ2) (1 + ξ3) , G61 = ∂N6/∂ξ1 =

1

8
(1− ξ2) (1 + ξ3) ,

G71 = ∂N7/∂ξ1 =
1

8
(1 + ξ2) (1 + ξ3) , G81 = ∂N8/∂ξ1 = −1

8
(1 + ξ2) (1 + ξ3) ,

(IV.A.37)
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G12 = ∂N1/∂ξ2 = −1

8
(1− ξ1) (1− ξ3) , G22 = ∂N2/∂ξ2 = −1

8
(1 + ξ1) (1− ξ3) ,

G32 = ∂N3/∂ξ2 =
1

8
(1 + ξ1) (1− ξ3) , G42 = ∂N4/∂ξ2 =

1

8
(1− ξ1) (1− ξ3) ,

G52 = ∂N5/∂ξ2 = −1

8
(1− ξ1) (1 + ξ3) , G62 = ∂N6/∂ξ2 = −1

8
(1 + ξ1) (1 + ξ3) ,

G72 = ∂N7/∂ξ2 =
1

8
(1 + ξ1) (1 + ξ3) , G82 = ∂N8/∂ξ2 =

1

8
(1− ξ1) (1 + ξ3) ,

(IV.A.38)

G13 = ∂N1/∂ξ3 = −1

8
(1− ξ1) (1− ξ2) , G23 = ∂N2/∂ξ3 = −1

8
(1 + ξ1) (1− ξ2) ,

G33 = ∂N3/∂ξ3 = −1

8
(1 + ξ1) (1 + ξ2) , G43 = ∂N4/∂ξ3 = −1

8
(1− ξ1) (1 + ξ2) ,

G53 = ∂N5/∂ξ3 =
1

8
(1− ξ1) (1− ξ2) , G63 = ∂N6/∂ξ3 =

1

8
(1 + ξ1) (1− ξ2) ,

G73 = ∂N7/∂ξ3 =
1

8
(1 + ξ1) (1 + ξ2) , G83 = ∂N8/∂ξ3 =

1

8
(1− ξ1) (1 + ξ2) .

(IV.A.39)

IV.A.4 ABAQUS UEL implementation for a 10-node isoparametric
tetrahedral element

The choice of element type doesn’t deeply modify the numerical implementation of the vari-
ational formulations presented in Sections IV.2.1 and IV.3.1. In this appendix we present
the slight changes that need to be made in the code to use a quadratic ten node isoparamet-
ric tetrahedral element (C3D10) instead of a linear eight node isoparametric cubic element
(C3D8). The element considered is shown in Fig. IV.15.

Figure IV.15: Schematic of a standard 10-node tetrahedral element
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Appendix IV.A.2 remains entirely valid for such a tetrahedral element if we make the
modifications that are presented in what follows. First, the number of nodes per element is
modified since we have ten nodes instead of eight (nne = 10). Secondly, the shape functions
and their derivatives with respect to the local coordinate system need to be changed as well
and read

N1 =(1− ξ1 − ξ2 − ξ3) (1− 2 ξ1 − 2 ξ2 − 2 ξ3),

N2 =ξ1 (2 ξ1 − 1), N3 = ξ2 (2 ξ2 − 1), N4 = ξ3 (2 ξ3 − 1),

N5 =4 ξ1 (1− ξ1 − ξ2 − ξ3), N6 = 4 ξ1 ξ2, N7 = 4 ξ2 (1− ξ1 − ξ2 − ξ3),

N8 =4 ξ3 (1− ξ1 − ξ2 − ξ3), N9 = 4 ξ1 ξ3, N10 = 4 ξ2 ξ3.

(IV.A.40)

These shape functions verify the following conditions:

• NI(ξ
(J)) = δIJ , where ξ(J) is the coordinate vector of node J in the local coordinate system

(Fig. IV.15)

•
nne∑
K=1

NK(ξ) = 1, for all ξ in the local coordinate system.

Then their derivatives in the local coordinate system is given by

G11 = ∂N1/∂ξ1 = 4ξ1 + 4ξ2 + 4ξ3 − 3, G21 = ∂N2/∂ξ1 = 4ξ1 − 1,

G31 = ∂N3/∂ξ1 = 0, G41 = ∂N4/∂ξ1 = 0,

G51 = ∂N5/∂ξ1 = 4 (1− 2 ξ1 − ξ2 − ξ3) , G61 = ∂N6/∂ξ1 = 4 ξ2,

G71 = ∂N7/∂ξ1 = − 4 ξ2, G81 = ∂N8/∂ξ1 = − 4 ξ3,

G91 = ∂N9/∂ξ1 = 4 ξ3, G101 = ∂N10/∂ξ1 = 0,

(IV.A.41)

G12 = ∂N1/∂ξ2 = 4ξ1 + 4ξ2 + 4ξ3 − 3, G22 = ∂N2/∂ξ2 = 0,

G32 = ∂N3/∂ξ2 = 4ξ2 − 1, G42 = ∂N4/∂ξ2 = 0,

G52 = ∂N5/∂ξ2 = − 4 ξ1, G62 = ∂N6/∂ξ2 = 4 ξ1,

G72 = ∂N7/∂ξ2 = 4 (1− ξ1 − 2 ξ2 − ξ3) , G82 = ∂N8/∂ξ2 = − 4 ξ3,

G92 = ∂N9/∂ξ2 = 0, G102 = ∂N10/∂ξ2 = 4 ξ3,

(IV.A.42)

G13 = ∂N1/∂ξ3 = 4ξ1 + 4ξ2 + 4ξ3 − 3, G23 = ∂N2/∂ξ3 = 0,

G33 = ∂N3/∂ξ3 = 0, G43 = ∂N4/∂ξ3 = 4ξ3 − 1,

G53 = ∂N5/∂ξ3 = − 4 ξ1, G63 = ∂N6/∂ξ3 = 0,

G73 = ∂N7/∂ξ3 = − 4 ξ2, G83 = ∂N8/∂ξ3 = 4 (1− ξ1 − ξ2 − 2 ξ3) ,

G93 = ∂N9/∂ξ3 = 4 ξ1, G103 = ∂N10/∂ξ3 = 4 ξ2.

(IV.A.43)

Lastly, in terms of calculation of the element volume integrals, we choose to approximate each
integrals by a numerical four point Gaussian quadrature rule. The coordinates and weight of
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the chosen Gauss integration points in the local coordinate system are given by

ξ(1)gp = (a, b, b) , w(1)
gp =

1

24
,

ξ(2)gp = (b, a, b) , w(2)
gp =

1

24
,

ξ(3)gp = (b, b, a) , w(3)
gp =

1

24
,

ξ(4)gp = (b, b, b) , w(4)
gp =

1

24
,

(IV.A.44)

where a =
5 + 3

√
5

20
and b =

5−
√
5

20
.

The penalty term that numerically enforces the Coulomb gauge is still under-integrated to
avoid any ‘locking phenomena’. For that purpose, the second term of the force vector fe and
the second term of the stiffness matrix ke are computed using one Gauss integration point

ξ(0)gp =

(
1

4
,
1

4
,
1

4

)
, w(1)

gp =
1

6
. (IV.A.45)
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IV.B Complement for the F-M Theory

IV.B.1 First and second derivatives of the energy density, and of
the invariants

In this section we provide the first and second derivatives of the total energy W̃
M

(see Eq.

(IV.3.2)) with respect to F, B̃ and M.

∂W̃
M

∂Fij

(F, B̃,M) =ρ0
∂ψ

M

∂Fij

(F,M)− 1

2µ0J
F−1
ji

∥∥∥F • B̃ − µ0ρ0M
∥∥∥
2

+
1

µ0J

(
FirB̃r − µ0ρ0Mi

)
B̃j

∂W̃
M

∂B̃i

(F, B̃,M) =
1

µ0J

(
FsrB̃r − µ0ρ0Ms

)
Fsi

∂W̃
M

∂Mi

(F, B̃,M) =ρ0
∂ψ

M

∂Mi

(F,M)− ρ0 b
0
i −

ρ0
J

(
FirB̃r − µ0ρ0Mi

)

∂2W̃
M

∂Fij∂Fkl

(F, B̃,M) =ρ0
∂2ψ

M

∂Fij∂Fkl

(F,M) +
1

2µ0J

(
F−1
lk F−1

ji + F−1
jk F

−1
li

) ∥∥∥F • B̃ − µ0ρ0M
∥∥∥
2

−

1

µ0J

[(
FkrB̃r − µ0ρ0Mk

)
B̃lF

−1
ji +

(
FirB̃r − µ0ρ0Mi

)
B̃jF

−1
lk

]
+

1

µ0J
δikB̃lB̃j

∂2W̃
M

∂Fij∂B̃k

(F, B̃,M) =
1

µ0J

[
FikB̃j +

(
FirB̃r − µ0ρ0Mi

)
δjk − F−1

ji Fsk

(
FsrB̃r − µ0ρ0Ms

)]

∂2W̃
M

∂Fij∂Mk

(F, B̃,M) =ρ0
∂2ψ

M

∂Fij∂Mk

(F,M) +
ρ0
J
F−1
ji

(
FkrB̃r − µ0ρ0Mk

)
− ρ0
J
δikB̃j

∂2W̃
M

∂B̃i∂B̃j

(F, B̃,M) =
1

µ0J
Cij

∂2W̃
M

∂B̃i∂Mj

(F, B̃,M) =− ρ0
J
Fji

∂2W̃
M

∂Mi∂Mj

(F, B̃,M) =ρ0
∂2ψ

M

∂Mi∂Mj

(F,M) +
µ0ρ

2
0

J
δij

(IV.B.1)
To give the expression of the first and second derivatives of the solid’s Helmholtz free energy,
we apply the chain rule to ψ

M
knowing that it is a function of ten independent invariants
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(see Eq. (IV.3.3))

ρ0
∂ψ

M

∂Fij

(F,M) =ρ0
∂ψ

M

∂IMp

∂IMp
∂Fij

ρ0
∂ψ

M

∂Mi

(F,M) =ρ0
∂ψ

M

∂IMp

∂IMp
∂Mi

ρ0
∂2ψ

M

∂Fij∂Fkl

(F,M) =ρ0
∂2ψ

M

∂IMp ∂I
M
q

∂IMp
∂Fij

∂IMq
∂Fkl

+ ρ0
∂ψ

M

∂IMp

∂2IMp
∂Fij∂Fkl

ρ0
∂2ψ

M

∂Fij∂Mk

(F,M) =ρ0
∂2ψ

M

∂IMp ∂I
M
q

∂IMp
∂Fij

∂IMq
∂Mk

+ ρ0
∂ψ

M

∂IMp

∂2IMp
∂Fij∂Mk

ρ0
∂2ψ

M

∂Mi∂Mj

(F,M) =ρ0
∂2ψ

M

∂IMp ∂I
M
q

∂IMp
∂Mi

∂IMq
∂Mj

+ ρ0
∂ψ

M

∂IMp

∂2IMp
∂Mi∂Mj

(IV.B.2)

At this stage, it is helpful to compute the first and second derivatives of the invariants with
respect to F and M. The derivatives of the mechanical invariants (IMi , i ∈ [1, 5]) are given
in Appendix IV.A.1. For the coupled magneto-mechanical invariants, their derivatives are
given in what follows.

∗∗ First order derivatives

******* (∂IP/∂F) *******

∂IM6
∂Fij

=0,
∂IM7
∂Fij

= 2MiMrFrj,

∂IM8
∂Fij

=2 (MiFsrFqrMqFsj +MsFsrFirMqFqj) ,
∂IM9
∂Fij

= 2MiNj (MsFsrNr) ,

∂IM10
∂Fij

=(MsFsnNn) [MiFrjFrpNp + FirNrMpFpj +MrFrpFipNj] + (MsFsnFpnFprNr)MiNj,

(IV.B.3)

******* (∂IP/∂M) *******

∂IM6
∂Mi

=2Mi,
∂IM7
∂Mi

= 2FirFsrMs,
∂IM8
∂Mi

= 2FinFsnFspFrpMr,

∂IM9
∂Mi

=2FipNp (MsFsrNr) ,
∂IM10
∂Mi

= (MsFsnNn) [FipFrpFrqNq] + (MsFsnFpnFprNr) FiqNq,

(IV.B.4)
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∗∗ Second order derivatives

******* (∂2IP/∂M∂M) *******

∂2IM6
∂Mi∂Mj

=2 δij,
∂2IM7

∂Mi∂Mj

= 2FirFjr,
∂2IM8

∂Mi∂Mj

= 2FirFsrFspFjp,

∂2IM9
∂Mi∂Mj

=2FisNsFjrNr,
∂2IM10

∂Mi∂Mj

= FjnNnFipFrpFrqNq + FjnFpnFprNrFiqNq,

(IV.B.5)

******* (∂2IP/∂F∂M) *******

∂2IM6
∂Fij∂Mk

=0,
∂2IM7

∂Fij∂Mk

= 2 (δikFrjMr +MiFkj) ,

∂2IM8
∂Fij∂Mk

=2 (δikFsrFqrMqFsj +MiFsrFkrFsj + FkrFirMqFqj +MsFsrFirFkj) ,

∂2IM9
∂Fij∂Mk

=2 [δikNj (MsFsrNr) + MiNjFkrNr] ,

∂2IM10
∂Fij∂Mk

=(FknNn) [MiFrjFrpNp + FirNrMpFpj +MrFrpFipNj] +

(MsFsnNn) [δikFrjFrpNp + FirNrFkj + FkpFipNj] +

(FknFpnFprNr)MiNj + (MsFsnFpnFprNr) δikNj,

(IV.B.6)

******* (∂2IP/∂F∂F) *******

∂2IM6
∂Fij∂Fkl

=0,
∂2IM7

∂Fij∂Fkl

= 2MiMkδjl,

∂2IM8
∂Fij∂Fkl

=2
(
MiFqlMqFkj +MiFslMkFsj +MiFkrFqrMqδjl+

MkFilMqFqj +MsFslMqFqjδik +MsFsrFirMkδjl

)
,

∂2IM9
∂Fij∂Fkl

=2MiNjMkNl,

∂2IM10
∂Fij∂Fkl

=(MkNl) [MiFrjFrpNp + FirNrMpFpj +MrFrpFipNj] +

(MsFsnNn)
[
MiFkpNpδjl +MiFkjNl + δikNlMpFpj + FirNrMkδjl+

MkFilNj +MrFrlδikNj

]
+ (MkFplFprNr +MsFsnFkrNrδln +MsFsnFknNl)MiNj.

(IV.B.7)
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IV.B.2 ABAQUS UEL implementation

In this section, we consider the same element (shown in Fig. IV.14) and we use the same
notations as in Section IV.A.2.

This implies that all the derivations (from Eq. IV.A.10 to Eq. IV.A.22) made in Ap-
pendix IV.A.2 remain valid for the F-M theory. Hence, here we will simply give the final
expressions of the element force vector fe and the element stiffness matrix ke.

Base on Eq. (IV.3.16), we can rewrite the force vector as

fe =

∫

Ve

[
fe

FM − fe
M
]
[G] dV +

1

µ0κ

∫

Ve

(∇ • Ã) [D
Ã
]T dV, (IV.B.8)

where

fe
FM =

[
∂W̃

M

∂F11

,
∂W̃

M

∂F12

,
∂W̃

M

∂F13

,
∂W̃

M

∂F21

,
∂W̃

M

∂F22

,
∂W̃

M

∂F23

,
∂W̃

M

∂F31

,
∂W̃

M

∂F32

,
∂W̃

M

∂F33

,
∂W̃

M

∂B̃1

,
∂W̃

M

∂B̃2

,
∂W̃

M

∂B̃3

]
,

(IV.B.9)

and

fe
M =

[
DW̃M

F11
, DW̃M

F12
, DW̃M

F13
, DW̃M

F21
, DW̃M

F22
, DW̃M

F23
, DW̃M

F31
, DW̃M

F32
, DW̃M

F33
, DW̃M

B̃1
, DW̃M

B̃2
, DW̃M

B̃3

]
,

(IV.B.10)

with 



DW̃M
Fij

=
∂W̃

M

∂Ms

(
∂2W̃

M

∂Ms∂Mr

)−1
∂2W̃

M

∂Mr∂Fij

,

DW̃M
B̃i

=
∂W̃

M

∂Ms

(
∂2W̃

M

∂Ms∂Mr

)−1
∂2W̃

M

∂Mr∂B̃i

.

(IV.B.11)

Then, based on Eq. (IV.3.18), the stiffness matrix ke is expressed as

ke =

∫

Ve

[G]T
[
ke

FM − ke
M
]
[G] dV +

1

µ0κ

∫

Ve

[D
Ã
] [D

Ã
]T dV (IV.B.12)
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where the definition of ke
FM is obtained by substituting W̃

B
by W̃

M
in Eq. (IV.A.26)

ke
FM =




∂2W̃
M

∂F11∂F11

· · · · · · · · · · · · · · · · · · · · ·

∂2W̃
M

∂F11∂F33

∂2W̃
M

∂F11∂B̃1

∂2W̃
M

∂F11∂B̃2

∂2W̃
M

∂F11∂B̃3

.
.
.

· · · · · · · · · · · · · · · · · ·

∂2W̃
M

∂F12∂F33

∂2W̃
M

∂F12∂B̃1

∂2W̃
M

∂F12∂B̃2

∂2W̃
M

∂F12∂B̃3

.
.
.

· · · · · · · · · · · · · · ·

∂2W̃
M

∂F13∂F33

∂2W̃
M

∂F13∂B̃1

∂2W̃
M

∂F13∂B̃2

∂2W̃
M

∂F13∂B̃3

.
.
.

· · · · · · · · · · · ·

∂2W̃
M

∂F21∂F33

∂2W̃
M

∂F21∂B̃1

∂2W̃
M

∂F21∂B̃2

∂2W̃
M

∂F21∂B̃3

.
.
.

· · · · · · · · ·

∂2W̃
M

∂F22∂F33

∂2W̃
M

∂F22∂B̃1

∂2W̃
M

∂F22∂B̃2

∂2W̃
M

∂F22∂B̃3

symm

.
.
.

· · · · · ·

∂2W̃
M

∂F23∂F33

∂2W̃
M

∂F23∂B̃1

∂2W̃
M

∂F23∂B̃2

∂2W̃
M

∂F23∂B̃3

.
.
.

· · ·

∂2W̃
M

∂F31∂F33

∂2W̃
M

∂F31∂B̃1

∂2W̃
M

∂F31∂B̃2

∂2W̃
M

∂F31∂B̃3

.
.
.

∂2W̃
M

∂F32∂F33

∂2W̃
M

∂F32∂B̃1

∂2W̃
M

∂F32∂B̃2

∂2W̃
M

∂F32∂B̃3

∂2W̃
M

∂F33∂F33

∂2W̃
M

∂F33∂B̃1

∂2W̃
M

∂F33∂B̃2

∂2W̃
M

∂F33∂B̃3

∂2W̃
M

∂B̃1∂B̃1

∂2W̃
M

∂B̃1∂B̃2

∂2W̃
M

∂B̃1∂B̃3

∂2W̃
M

∂B̃2∂B̃2

∂2W̃
M

∂B̃2∂B̃3

∂2W̃
M

∂B̃3∂B̃3




.

(IV.B.13)
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The matrix ke
M is defined by

ke
M =




DW̃
M
FF1111

· · · · · · · · · · · · · · · · · · · · · DW̃
M
FF1133

DW̃
M

FB̃111

DW̃
M

FB̃112

DW̃
M

FB̃113

.
.
.

· · · · · · · · · · · · · · · · · · DW̃
M
FF1233

DW̃
M

FB̃121

DW̃
M

FB̃122

DW̃
M

FB̃123

.
.
.

· · · · · · · · · · · · · · · DW̃
M
FF1333

DW̃
M

FB̃131

DW̃
M

FB̃132

DW̃
M

FB̃133

.
.
.

· · · · · · · · · · · · DW̃
M
FF2133

DW̃
M

FB̃211

DW̃
M

FB̃212

DW̃
M

FB̃213

.
.
.

· · · · · · · · · DW̃
M
FF2233

DW̃
M

FB̃221

DW̃
M

FB̃222

DW̃
M

FB̃223

symm

.
.
.

· · · · · · DW̃
M
FF2333

DW̃
M

FB̃231

DW̃
M

FB̃232

DW̃
M

FB̃233

.
.
.

· · · DW̃
M
FF3133

DW̃
M

FB̃311

DW̃
M

FB̃312

DW̃
M

FB̃313

.
.
. DW̃

M
FF3233

DW̃
M

FB̃321

DW̃
M

FB̃322

DW̃
M

FB̃323

DW̃
M
FF3333

DW̃
M

FB̃331

DW̃
M

FB̃332

DW̃
M

FB̃333

DW̃
M

B̃B̃11

DW̃
M

B̃B̃12

DW̃
M

B̃B̃13

DW̃
M

B̃B̃22

DW̃
M

B̃B̃23

DW̃
M

B̃B̃33




,

(IV.B.14)

with 



DW̃M
FFijkl

=
∂2W̃

M

∂Fij∂Ms

(
∂2W̃

M

∂Ms∂Mr

)−1
∂2W̃

M

∂Mr∂Fkl

,

DW̃M
FB̃ijk

=
∂2W̃

M

∂Fij∂Ms

(
∂2W̃

M

∂Ms∂Mr

)−1
∂2W̃

M

∂Mr∂B̃k

,

DW̃M
B̃B̃ij

=
∂2W̃

M

∂B̃i∂Ms

(
∂2W̃

M

∂Ms∂Mr

)−1
∂2W̃

M

∂Mr∂B̃j

.

(IV.B.15)

Finally, the calculation of the integrals and the method used to solve for the equilibrium
equation remain the same as in Appendix IV.A.2.
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V.1 Conclusion

This doctoral thesis brings a completely novel experimental, theoretical and numerical ap-
proach to study the macroscopic response of MREs.

After presenting an extensive literature survey in Chapter I, we introduce the motiva-
tion of the present study which is to cope with the lack of characterization of the coupled
magneto-mechanical behavior of MREs up to large strains and high magnetic fields. Obtain-
ing a phenomenological material model to be implemented in numerical analysis is necessary
to improve the design of MRE-based devices.

The thesis continues with Chapter II that focuses on an experimental investigation of
MREs. For the sake of capturing the coupled behavior, sample testing occurs under combined
mechanical and magnetic fields. A new sample’s design is envisioned in order to increase the
uniformity of internal fields. For that purpose, an almost ellipsoidal MRE core terminated
at both ends by 3D printed non-magnetic plastic heads is proposed. The fabrication of both
isotropic and transversely isotropic samples, the influence of curing conditions and the surface
treatment of iron particles are also discussed. It is shown that a chemical particle surface
treatment prior to sample fabrication is necessary to prevent debonding of the particles
from the matrix. This debonding phenomena (that can be neglected for purely mechanical
experiments) has been highlighted during coupled magneto-mechanical tests.

In addition, we present in Chapter II, the novel magneto-mechanical testing setup where
a uniaxial tensile machine can slide in place between the poles of a powerful electromagnet.

169
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This setup allows simultaneous 3D mechanical and magnetic field measurements using optical
techniques for strain measurements and Hall probes for magnetic ones. In particular, we detail
a way to measure the internal magnetic field variables (i.e. the h-field, the magnetization m

and the magnetic field b) during deformation without displacing the Hall probes by using
analytical expressions describing the decay of magnetic fields outside elliptical samples (and
by measuring in-situ the distances between the probes and the sample).

In the last part of Chapter II, the results for both purely mechanical and coupled experi-
ments for various volume fraction of particles and different microstructures are discussed. It
is found that instabilities are ubiquitous in MREs. In the case of isotropic samples, Maxwell
stresses at the solid/air interface lead to an expansion in the applied field direction and de-
formations up to 28% (for the highest volume fraction considered: 22%) have been observed
for a magnetic field b0 = 0.65 T. Lots of experimental data are collected and will be used in
Chapter III to propose a constitutive model for isotropic MREs.

In Chapter III, a continuum description to derive constitutive laws that accounts for finite
strains and anisotropy is proposed. The energetic approach is used and requires an energy
density function for the MRE solid. Multiple variational formulation alternatives are given
based on different choices of the independent magnetic variable (B, H or M) used in the
energy function. We prove that all these admissible formulations are equivalent provided the
fact that the different energy densities are linked by proper transformations (for instance, the
F-B and F-H energy densities are linked by a partial Legendre’s transform). A method to
numerically implement these three formulations into finite elements codes is also presented.
In the last part of Chapter III, we use these numerical codes to compute the material pa-
rameters based on experimental data obtained in Chapter II. In particular, by combining
FEM simulation and least squares optimization algorithms, a fitting of all three formulations
ψ

B
, ψ

H
and ψ

M
is given. The proposed energy functions show excellent predictive capabilities.

Finally, Chapter IV details the numerical implementation of the different variational for-
mulations proposed in Chapter III. For all three formulations, we show that isoparametric
elements are well suited for coupled magneto-mechanical problems, and there is no need to
use Nedelec elements. Then, unlike the numerical implementation of the F-H theory that
doesn’t create any particular issue due to the uniqueness of the scalar potential φ, we show
that special attention is needed for the variational formulations based on the vector potential
(i.e. the F-B and F-M theories). Indeed, the uniqueness of the vector potential requires and
additional constraint, namely the Coulomb gauge, to be numerically enforced. For that pur-
pose, the penalty method is chosen, and under-integration of that penalty term is necessary
to avoid any locking phenomenon. In terms of the numerical implementation of the F-M
theory, even though it is very similar to the numerical implementation of the F-B theory,
the static condensation technique is needed to compute the magnetization vector M inside
each elements. Finally, before the presentation of the different patch tests used to validate
the codes, we show which are the valid boundary conditions to use for the vector potential
A. Furthermore, we explain how to use the symmetry properties of a problem to reduce the
computational resources needed to solve it.
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To sum up, this thesis provides a complete roadmap (involving fabrication, experimental
testing, modeling and numerical implementation) to study the highly coupled behavior of
magneto-rheological elastomers. The tools developed can then be used to improve the design
of MRE-based devices.

V.2 Future work

This work brought new answers but also paved the way for numerous new research to be
conducted.

In terms of fabrication, a variety of different matrix (softer and harder, as well as various
material formulations) and particle materials (size and geometry, hard magnetic particles)
could be tested to characterize their aptitude for novel MRE applications.

In terms of experiments, obtaining extra experimental data for various deformation modes
such as uni-axial compression, shear, bi-axial tension, etc..., could be helpful to further check
the predictive capabilities of the proposed constitutive model. However, this task seems
very complicated and it can be questioned if it is even possible to achieve uniform field
distributions in strain and magnetization space for such loadings. The use of 3D finite
element codes provided in this thesis might be key to conduct such a study. Additionally,
the testing configuration in uni-axial tension with the applied field along the longest axis of
the proposed specimen could give interesting results but further major developments of the
testing apparatus would be needed.

In terms of modeling, more complex free energy density functions taking into account
higher order invariants would further improve the prediction capabilities of the constitutive
model. Moreover, the time-dependent material behavior (and thus relaxation, creep, stress
recovery and fatigue experiments) as well as the temperature-dependent behavior (and thus
the integration of heating/cooling systems into the experimental setup) would be important
extensions of our existing model.

In a less distant future, all the immediately available tools developed in this thesis can be
used to solve boundary value problems involving MRE-based devices. For instance, one could
numerically study the different instabilities highlighted in experiments for both isotropic and
transversely isotropic MREs (see Section II.5.2). Regarding the development of haptic devices
such as tactile MRE interface, we recommend to numerically simulate the problem of a simple
MRE disk subjected to a spatially localized magnetic field generated by an electromagnetic
coil. Such a device has already been prototyped (see Fig. V.1) and experimentally tested
(see Fig. V.2).
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