Skip to Main content Skip to Navigation

Discretization of processes at stopping times and Uncertainty quantification of stochastic approximation limits

Abstract : This thesis consists of two parts which study two separate subjects. Chapters 1-4 are devoted to the problem of processes discretization at stopping times. In Chapter 1 we study the optimal discretization error of stochastic integrals, driven by a multidimensional continuous Brownian semimartingale. In this setting we establish a path wise lower bound for the renormalized quadratic variation of the error and we provide a sequence of discretization stopping times, which is asymptotically optimal. The latter is defined as hitting times of random ellipsoids by the semimartingale at hand. In comparison with previous available results, we allow a quite large class of semimartingales and we prove that the asymptotic lower bound is attainable. In Chapter 2 we study the model-adaptive optimal discretization error of stochastic integrals. In Chapter 1 the construction of the optimal strategy involved the knowledge about the diffusion coefficient of the semimartingale under study. In this work we provide a model-adaptive asymptotically optimal discretization strategy that does not require any prior knowledge about the model. In Chapter 3 we study the convergence in distribution of renormalized discretization errors of Ito processes for a concrete general class of random discretization grids given by stopping times. Previous works on the subject only treat the case of dimension 1. Moreover they either focus on particular cases of grids, or provide results under quite abstract assumptions with implicitly specified limit distribution. At the contrast we provide explicitly the limit distribution in a tractable form in terms of the underlying model. The results hold both for multidimensional processes and general multidimensional error terms. In Chapter 4 we study the problem of parametric inference for diffusions based on observations at random stopping times. We work in the asymptotic framework of high frequency data over a fixed horizon. Previous works on the subject consider only deterministic, strongly predictable or random, independent of the process, observation times, and do not cover our setting. Under mild assumptions we construct a consistent sequence of estimators, for a large class of stopping time observation grids. Further we carry out the asymptotic analysis of the estimation error and establish a Central Limit Theorem (CLT) with a mixed Gaussian limit. In addition, in the case of a 1-dimensional parameter, for any sequence of estimators verifying CLT conditions without bias, we prove a uniform a.s. lower bound on the asymptotic variance, and show that this bound is sharp. In Chapters 5-6 we study the problem of uncertainty quantification for stochastic approximation limits. In Chapter 5 we analyze the uncertainty quantification for the limit of a Stochastic Approximation (SA) algorithm. In our setup, this limit is defined as the zero of a function given by an expectation. The expectation is taken w.r.t. a random variable for which the model is assumed to depend on an uncertain parameter. We consider the SA limit as a function of this parameter. We introduce the so-called Uncertainty for SA (USA) algorithm, an SA algorithm in increasing dimension for computing the basis coefficients of a chaos expansion of this function on an orthogonal basis of a suitable Hilbert space. The almost-sure and Lp convergences of USA, in the Hilbert space, are established under mild, tractable conditions. In Chapter 6 we analyse the L2-convergence rate of the USA algorithm designed in Chapter 5.The analysis is non-trivial due to infinite dimensionality of the procedure. Moreover, our setting is not covered by the previous works on infinite dimensional SA. The obtained rate depends non-trivially on the model and the design parameters of the algorithm. Its knowledge enables optimization of the dimension growth speed in the USA algorithm, which is the key factor of its efficient performance.
Complete list of metadata

Cited literature [125 references]  Display  Hide  Download
Contributor : ABES STAR :  Contact
Submitted on : Tuesday, January 8, 2019 - 10:53:05 AM
Last modification on : Wednesday, September 2, 2020 - 3:35:51 AM
Long-term archiving on: : Tuesday, April 9, 2019 - 3:08:30 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01973169, version 1


Uladzislau Stazhynski. Discretization of processes at stopping times and Uncertainty quantification of stochastic approximation limits. Statistics [math.ST]. Université Paris Saclay (COmUE), 2018. English. ⟨NNT : 2018SACLX088⟩. ⟨tel-01973169⟩



Record views


Files downloads