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(6) U. Stazhynski. Uncertainty quantification for stochastic approximation limits: L*-
convergence rate. Preprint, (2018).

1 Part I: Discretization of processes at stopping times

1.1 Introduction to discretization of processes

Discretization problems play a fundamental role in the applications of continuous-time
stochastic processes. Indeed, since only discrete data can be observed, simulated and pro-
cessed, discretizated versions of such processes are usually used in practice. In this regard,
the quantification of the errors related to discretization is of great importance.

In this work we study discretization problems for a class of models called the It processes
(see [RY99, p. 298] for the definition) and their various generalizations. An Ité process
(St)o<t<T on a given filtered probability space has the form

¢ ¢
Sy =5y +/ bsds +/ 0sdBs, te€0,T]
0 0

where (Bt)o<t<7 is a Brownian motion, (bt)o<t<7 and (o¢)o<t<7 are adapted processes verify-
ing suitable assumptions (though a more general finite variation part may be considered, see
Chapter 1). This class of models is widely used in many applications in finance, insurance,
economy, biology, population dynamics, random mechanics and physics.

We consider the high frequency fixed horizon asymptotic framework for discretization
problems. Namely, we assume that the time interval [0,7] is fixed and for each n > 0 a
finite discretization scheme 7" = {0 =73 < --- < T}\l,% = T} is given with the number of
discretization times Nj (possibly random) going to infinity as n — +oo. The goal may be
either to quantify or to optimize (in a suitable asymptotic sense) the error produced from
the substitution of S; by S,(), where p(t) is the largest discretization time 7" before ¢, into
a given procedure.

Here we discuss several applications where discretization problems naturally arise.

The first class of problems is related to statistics. Deploying continuous-time stochas-
tic models in applications requires an estimation of various statistics or model parameters
based on discrete observations of a single process trajectory. A standard example is the
quadratic variation of a 1-dimensional It6 process Sy given by f(;f o2dt for which the classical

estimator has the form Z?ﬁ(&.{z — Sff_1)2' A more complicated setting is the parametric
inference for diffusion processes, where the diffusion coefficient oy = o(t, St,6) depends on
an unknown parameter 6 to be estimated based on discrete observations of the process (see
Sections 1.9-1.10). In these applications the estimation error is usually expressed in terms
of the discretization error for the underlying process S. This means that the analysis of the
estimators consistency and asymptotic normality boils down to the corresponding analysis
of discretization errors.

The second class of problems studies the optimization of the tracking of a target whose
dynamics is modeled by an It6 process. Here the goal is to optimally choose the discretiza-
tion times for the rebalancing of a stochastic system in order to minimize certain criteria



1. Part I: Discretization of processes at stopping times 6

expressing the deviation from the continuous target. Continuous rebalancing is typically not
possible due to various costs of intervention and adjustment (so-called transaction costs).
Examples of applications in finance include option delta-hedging (see [Fuklla, GL14a]) and
index tracking (see [PS04]) among others. In such problems the optimal disretization times
usually depend on the process trajectory in an adaptive way and thus are given by ran-
dom stopping times. A particular case considered in Chapters 1-2 is the quadratic variation
minimization for stochastic integrals (see Section 1.4 for details).

Finally, another group of problems is related to the process simulation via discretization
schemes and the subsequent analysis of the discretization error in Monte Carlo simulations,
see e.g. [FO15] and references therein. However we do not consider this type of problems in
our work and focus solely on the other two explained above.

1.2 Random discretization schemes

Discretization based on equidistant times, i.e. for 7" = %, is a well studied subject, see
e.g. [Roo80, JP98, HMO05, GT09, GT01, MZ06] among others, see also [JP12] and references
therein. However, in practice, the discretization times are quite often not regularly spaced.
The nature of the irregularity itself may be quite different, depending on the setting. More-
over, the discretization times may be random as well, which makes the analysis even more
complicated.

Concerning statistical estimation problems, possible reasons for random observation
times may be that ) some data is missing; i) the observations are more frequent dur-
ing certain periods of time, or when the observed process is in certain regions of space; i7)
the observations occur randomly, e.g. according to the arrival times of a Poisson-like process
or stopping times related to the process itself, and others. Many works in this direction
report a non-negligible impact of the randomness of the discretization times on the asymp-
totic properties of the errors compared to the classical deterministic case. For example,
[ASMO3] observes considerable effect of random sampling on the estimators in the setting of
parametric inference for diffusions. In [[LZZ13] the authors note that taking into account the
endogenous randomness of the observation grids, when it exists, may substantially improve
the performance of the integrated volatility estimator.

In the problem of the discretization times optimization for optimal tracking, random
discretization grids appear naturally as optimal rebalancing times, and thus play the key
role in the analysis, see e.g. [Fuklla, GL14a].

The importance of random discretization schemes in high frequency finance was, in par-
ticular, emphasized in [DGM " 01, Section 1.1] and [ASJ14, Chapter 9], see also [Fuk10, FR12,
RR10, RR12].

We distinguish the following two levels of generality when considering irregular discretiza-
tion schemes:

1. For all i the time 7;* depends only on Frn ~(where (F¢)o<t<r is some fixed filtration)
and some extra independent noise. This group contains, in particular, all deterministic,
strongly predictable (i.e. 7" is JFrn -measurable with no independent noise) and random
independent times.
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2. More general stopping times with respect to a given filtration. This setting presumes
that endogenous random noise may trigger discretization times. A benchmark example
is the discretization of the process at its own exit times from some specified domains.

While the first setting, including strongly predictable and random independent times, is
better studied, the second one is more difficult for the analysis and constitutes the primary
focus of this work. Random discretization schemes given by exit times appear naturally in
the problem of the tracking error optimization (see [Fukl1lb, Fuklla, GL14a]). Chapters 1-2
are devoted to this problem in the context of optimal discretization of stochastic integrals
(detailed discussion is given in Section 1.4).

The availability of the data only at stopping times may be an intrinsic property of a model
that aims to explain certain observations that are irregularly spaced in time. Quite recently
a number of papers appeared in this direction. In [RR10, RR12] the authors construct a fi-
nancial high-frequency price model which combines microstructure noise, including rounding
noise, and sampling at transaction times on the basis of suitably defined hitting times, and
then estimate the integrated volatility. They also provide the asymptotic analysis of their
estimator. An even more complicated setting is when the observations of different compo-
nents of a multidimensional process are random and in addition not synchronized. This is
a typical situation in some financial applications (see e.g. [HY08]). As additional motiva-
tion for stopping time discretization grids we also refer to [GWO02] for empirical evidence
about the connection of volatility and inter-transaction duration in finance, and [Fuk10] for
modeling bid or ask quotation data and tick time sampling.

In Chapters 1-4 our goal is to extend the current research on the processes discretization
based on random stopping times, regarding both the applications in statistics and in tracking
error optimization. The rest of this section contains more detailed introductions to each of
the problems considered with a literature review, and also a summary of the results of
each chapter. In Section 1.3 we introduce the class of random grid sequences under study.
Techniques related to this class of grids are the main driving force of the proofs in Chapters
1-4. In Section 1.4 we continue with the introduction to the problem of the quadratic
variation minimization for stochastic integrals based on general Brownian semimartingales.
Our contribution to this problem is summarized in Sections 1.5-1.6. In Section 1.7 we discuss
the background results on Central Limit Theorems (CLTs) for discretization errors. This is
followed by a summary of our work on the CLT for discretization errors based on random
stopping time grids. Finally, in Section 1.9 we discuss the problem of parametric inference
for diffusion processes. We conclude with the presentation of our work on the parametric
estimation of diffusions based on observations at stopping times in Section 1.10.

1.3 A class of random discretization grids

In this section we present the class of random discretization grids under study. It has been
introduced in [GL14a] as the class of admissible grids for optimal discretization of a stochastic
integral. The tools developed in [GL14a] play the key role in all the aspects of our analysis
in Chapters 1-4. This class is essentially defined through the two assumptions below. For
a process S, a sequence of discretization grids 7 := {7" : n > 0} with 7" = {7]* : 0 <
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i < N2}, some positive deterministic sequence (g,,)n>0, such that 3", 2 < 400, and py > 1
consider the following assumptions:

(AZ): The following non-negative random variable is a.s. finite:

sup [ €,2 sup sup |&g—5’7in_1|2 < +o0. (1.1)
nz0 1<isNpte(rf 7))

(A n): For a given parameter py > 1 (verifying certain assumptions, in particular py < 4/3)
the following non-negative random variable is a.s. finite:

sup(e2°N NIV < +o0. (1.2)
n>0

Assumption (A%“) means that the oscillation of the process S between two successive
times obeys a scaling rule; it implicitly implies that the time step related to successive times is
small enough in some sense described by €,,. On the other hand, (A y) states that the number
of random times is not too large at some scale, refraining for instance an accumulation of
stochastic times.

Now for arbitrary €, — 0 we consider the class of discretization grid sequences {7 :
n > 0} such that for any subsequence ¢(n) there exists another subsequence ¢’ o ((n) such
that {7¢°4" : n > 0} verifies (A%) and (Ay) with (€ou(n))n>0- Such a definition is
motivated by the subsequence principle that we later use to pass from a.s. convergences to
the corresponding convergences in probability (see Lemma 2.2.2).

In particular, this class contains most of the discretization grids considered in the previous
works and that we can imagine from application point of view. To emphasize its generality
we present below several large families of random grids that it contains (for a justification
see Remark 1.2.2 and the discussion in Section 3.2.2)

1. T={T":n >0} where each 7" = {7]* : 0 < i < N}} is a sequence of stopping times
(with N7 possibly random) and such that

2 2
C7lef ™ < min A7 < max AP <Cei”, n>0, as.,

T 1<i<NR T 1<i<NR
for an a.s. finite positive random variable C' > 0 and a parameter p > 0. This
example contains, in particular, the sequences of deterministic or strongly predictable
discretization times for which the time steps are controlled from below and from above
and for which the step size tends to zero.

2. Poisson random times with the random noise independent of F7 but with a stochas-
tic F-adapted intensity. More precisely for a continuous adapted positive process
(AMt)o<t<r we consider 7™ = {7)* : 1 < i < N3} given by the jump time of a Poisson
process with intensity (e;,2°N \)o<i<7-

3. Consider a sequence of adapted random processes {D}' : 0 < ¢t < T'} where each D} is
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an open set such that
B(O,Cl€n) C D;L C B(O,Cgé‘n)

for some a.s. finite positive random variables C,Co, here B(0,r) denotes the ball
centered at 0 with radius r. Define the sequence of strategies 7 = {7" : n > 0} with
Tr={7]":0<1i< N}} as follows: 7§ =0 and for i > 1

i =inf{t > 7l (S —Sm ) ¢ D?."_l} AT.

In other words, we consider exit times of random sets of size &, (more complicated
examples may be found in Section 3.2.2).

As we may see, the class of discretization grids under study is quite universal and con-
tains practically all the types of discretization grids that may appear interesting in practice.
Chapters 1-4, along with their principal contributions, develop powerful techniques for the
analysis of such discretization grid sequences, that provide a solid background for treating
future problems in the discretization of processes.

1.4 Optimal discretization of stochastic integrals

This is an introductory section to Chapters 1-2. We consider the problem of finding a finite
sequence of optimal stopping times 7" = {0 =7 < 7' < --- < TR,{FL = T'} which minimizes
the renormalized quadratic variation of the discretization error for the stochastic integral
given by .

Z = /0 v(s,8) - dSs — > w(r]y, 8 ) (Seopnr — Sen ), (1.3)

T <t

where S is a d-dimensional continuous Brownian semimartingale and v(t,z) is a R%valued
continuous function. Here T' > 0 is fixed and the number of stopping times N7 is allowed to
be random.

Under some mild assumptions on the model, and for deterministic or strongly predictable
grids, the discretization error Z7 after suitable renormalization converges in distribution to
a mixture of Gaussian random variables (see [Roo80, KP91, JP12]). A natural candidate for
minimization criterion in this case is the product N:(Z")r. In particular, in the case where
a CLT holds for \/NJZ}, the limit lim,, N(Z™)r represents the asymptotic (conditional)
variance of the limit distribution (see e.g. Chapter 3).

The study of minimization problems for stochastic integral discretization has been initi-
ated by [Fuklla] in dimension d = 1, but instead of N7:(Z™)r the author considers a criterion
in expectation for both terms, i.e. E(NZ)E ((Z")7).

The pathwise minimization of lim,, N7*(Z")r has been addressed in a multi-dimensional
setting d > 1, in [GL14a]. They define the class of admissible discretization strategies as
those verifying (A%“)-(Ay). For S a local martingale and under certains conditions of
v (essentially its Jacobian matrix D,v is invertible) the authors exibit a lower bound on
lim inf,, Nj:(Z")7 across the class of admissible grid sequences. An exhaustive discussion of
this problem in the setting of hedging in finance, as well as a review of the existing literature
on the subject may be found in [Fuklla, GL14a].
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In [GL14a] the authors show that the discretization grids giving optimal (or arbitrarily
close to optimal) performance have the form of exit times from random ellipsoids. Namely
for an explicitly specified continuous adapted process (A¢)o<t<r taking values in the set of
symmetric positive definite d x d matrices, an optimal sequence 7 := {(7]")o<i<nz : 7 > 0}
of grids may be written as

n o .__
78 =0,
T = inf{t > T (S — STZ-",l)TATZLl (St — STZLI) > E%} AT,
As proved in [GL14a], the optimal sequence 7 is admissible and attains the optimal value
of lim,, N}}(Z™)r among the whole class of admissible grids. These results is a starting point
of our work in Chapters 1-2 which is presented in the next two sections.

1.5 Summary of results in Chapter 1

In Chapter 1 we consider the optimal discretization problem presented in Section 1.4 and
prove optimality results in a much larger setting than previously afforded in the literature.

First, we allow S to be a general Brownian semimartingale S = A+ M with A a general
finite variation adapted continuous process with some Holder properties, while in [GL14a]
the process S is essentially a local Brownian martingale (A = 0, M = [;0.dBs). For this
generalized model we prove the following important results:

e In Theorem 1.3.4 we show that the sets of admissible strategies (admissibility w.r.t.
a process S is again defined as verifying (A% )-(Ay)) for the semimartingale S and
for its local martingale part M are the same. The result is non-trivial and is proved
via a continuation scheme with a subsequent application of the BDG inequality. Since
[GL14a] assumed local martingale condition, Theorem 1.3.4 is of primary importance:
it allows to apply the results, previously established in [GL14a], to our generalized
setting.

e In Theorem 1.3.10 we show that the discretization strategy based on hitting times of
random ellipsoids of the form

70 =0,
7 i=1nf{t > 7" | : (S} — STi'il)THTZil(St — S ) >E2VAT,

i—1
is admissible under suitable assumptions. This extends [GL14a, Proposition 2.4].
e Theorem 1.4.2 is one of the main results in Chapter 1 and provides a uniform lower

bound (which is sharp, as we show later) for liminf, , . NJ(Z™)r over the entire
class of admissible strategies, given by

2
T
lim inf N2 (Z")p > ( / Tr(Xt)dt> a.5.
0

n——+00
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for an explicitly defined process X;. This is an important extension of [GL.14a, Theorem
3.1] to the semimartingale case.

Second, the martingale part of S can be degenerate in our setting, whereas a stronger
a.s. ellipticity of oy is considered in [GL14a]. Namely we do not require that the inverse o; !
exists. Also Dgv(t,S;) may be not invertible in our work.

For this generalized model we prove the following important result: Theorem 1.5.2 shows
that the strategy of the form

Ty =0,

7 i=1inf{t > 7", : (St — STZL_1)TA$'?’21(St — S ) > e, ) AT,
where Aﬁ") is a suitable perturbation of A; := (02 )TXtcr;f (M denotes the pseudo-inverse
matrix of M), and X, is explicitly given as a solution of certain non-linear matrix equation,
attains the lowest possible value of lim,, N7:(Z")r across the entire class of admissible random
grid sequences.

The proof of Theorem 1.5.2 is non-trivial, since due to possible degeneracy of o; we use
pseudo-inverses and lose certain continuity properties of the optimal strategy. In addition,
our strategy attain the exact optimal limit while in [GL14a] only a u-optimal strategy has
been established which is arbitrarily close to the optimum. In Section 1.5.3 we provide a
numerical test that confirms the optimal performance of the strategy given by Theorem
1.5.2.

The ability to treat the non-elliptic case is fundamental for applications as well:

e First, it allows to consider partially degenerate models which arise in various applica-
tions such as random mechanics (see Subsection 1.5.3 for examples).

e Second, it provides a robustness result for the optimal strategy studied in [GL14a]:
namely Theorem 1.5.2 shows that even if o; is close to being degenerate, this will not
effect the performance of the optimal strategy. This is an important consideration in
financial applications related to option hedging developed in [GL14a] (see the discussion
in Section 1.5.3).

1.6 Summary of results in Chapter 2

In Chapter 2 we continue the study of the optimal discretization problem for stochastic
integrals with respect to Brownian semimartingales started in Chapter 1. Our goal here is
to construct an adaptive version of the optimal discretization algorithm from Chapter 1 that
does not require any prior knowledge about the model.

In the previous works optimal sequences {7™ : n > 0} strongly depend on the model for
S, in particular on the volatility o-process. As a difference, in Chapter 2 we suppose that
no prior knowledge about the diffusion coefficient of the underlying process S is given. We
do not assume neither a diffusion model for S nor a parametric form for ¢. The process
S of the form A + [;0,dBs is quite arbitrary and we only suppose that it satisfies some
mild regularity and non-degeneracy assumptions. A model-adaptive version of the optimal
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discretization algorithm designed in Chapter 1 is needed in order to make the latter algorithm
applicable. Another important question is the robustness of the optimal discretization with
respect to the estimation error of . The optimal strategy may be given as

n n
T, =@ (O-Tin_lu-DCCv(Ti717 STZ-TL_l)a (St - STZZ_l)tZTZZ_1> >

where ¢ represents a quite complex non-linear dependence. The robustness analysis of this
dependence requires substantial effort and is critical for applications.
In Chapter 2 we investigate this issue and prove the following important results:

e In Theorem 2.2.4 we state sufficient assumptions on a general sequence of estimators
of of o; ensuring the optimality of the resulting sequence of strategies. Namely let o}
verify (for a parameter 6 > 0) the condition

e sup (o)) 2 -0 5 0.
0<t<T n—-+o0o

Then for a suitable perturbation [AZQI]E;Z of At used in Chapter 1 to construct the

optimal strategy, the sequence {7"};,>0, where 7" = (7]")o<i<ny is given by

T8 =0,

14
7 c=1inf{t > 77" : (S; — STZ@I)T[A"TL 1]5f» (St — S ) = e2FOVAT, (14)

Ti7

attains the optimal lower bound on lim,, N3:(Z")r.

o We interpret the assumptions of Theorem 2.2.4 on the estimator sequence o} for a
general class of weighted moving average estimators and specify some sufficient joint
conditions on the lookback estimation period and the frequency of estimation times
in order to preserve the asymptotic optimality of the strategy. In particular, under
certain assumptions and for some deterministic sequence (ay,)n>0 and general kernel
functions K (-) we prove in Theorem 2.4.1 that o} given by

of = (S¢ + a, 1dg)'/?,
where (for some admissible observation grid {7 };>0)

S = 3 K, (7 — )ASaAST (1.5)
Tt

verifies the assumptions of Theorem 2.2.4 and thus yields an optimal discretization
strategy attaining the uniform lower bound on liminf, N7(Z")r across the class of
admissible strategies.

e We also provide a counter-example (see (2.1.7)) which shows that the knowledge of
o, is important for the optimal strategy construction, while a misspecification of oy
leads to a suboptimal performance. In addition, we support our claim by a numerical
example in Section 2.5.
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1.7 Central Limit Theorems for discretization errors

In the high frequency fixed horizon asymptotic framework for discretization problems, a
common goal is to analyze the asymptotic behavior of the discretization error as the grid
meshsize goes to 0. In particular, one typically wants to establish a Central Limit Theorem
(CLT) for the renormalized discretization error process. Classical results on CLTs for regular
grids may be found in [JP12].

Here we are particularly interested in existing works studying random discretization
grids. Many of them are restricted to certain specific cases in terms of the model, the
dimension (d = 1 or d > 1), the discretization error term or the discretization grid. In
particular, a group of works analyze the discretization error for strongly predictable (up
to extra independent noise) discretization grids. Among them [ASMO04, DGO04] study the
problem of statistical estimation for diffusions and [BNS05, BNGJ 06, MZ06, KP08] deal
with the estimation of integrated variance and the power variation estimation in a non-
parametric setting. We also mention [Roo80, GT01, HM05, GT09], more detail may be
found in the introduction to Chapter 3.

The closest to our setting are the recent works considering more general stopping time
grids. In [Fuk11b] the author provides a quite general CLT result in dimension 1 for stopping
time grids. However the class of random grids under study is described in an implicit way
through a set of assumptions. The limit distribution also depends on the processes whose
existence is given as an assumption. Verification of the assumptions for a particular random
discretization schemes may require a substantial effort. Generalization of this work to the
general multidimensional case seems non-trivial both in terms of the extension of the central
limit theorem (in particular, characterization of the limit distribution) given the abstract
assumptions on the moments, and even more in term of the determination of the class of
random grids verifying these assumptions. For example, natural candidates for endogenously
generated discretization times are exit times from random domains, whose analysis is much
more complicated in multidimensional setting (while in dimension 1 such a domain is given
by the two boundary points). We also mention [LMR"14] where a Central Limit Theorem
(CLT) for estimating the integrated volatility in dimension 1 is established assuming the
convergence in probability of renormalized quarticity and tricity. Here again the authors do
not characterize the stopping times for which these convergences hold. Moreover, the result
is only one-dimensional and studies a specific application.

In Chapter 3, we aim at closing this gap in the existing literature on the subject. Namely
we want to establish a CLT for a multidimensional general discretization error term and
a multidimensional process for an explicitly described class of random discretization grids
with explicit limit characterization. We aim at providing a result that would be sufficiently
general in terms of the random discretization grids considered and with assumptions that
would be immediate to check for a specific model.

1.8 Summary of results in Chapter 3

For a given sample path of a stochastic process S on a time interval [0, 7] and a sequence of
random discretization grids 7" :={7 =0 < 1" <--- < 7']\‘,% = T} given by stopping times,
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we consider an m-dimensional error term & given by £ = &/ s &' 2 where
T AL T AL
&= [ Mo (S-S5 )ds, &%= 3 [ (S = S )T A dB,
o<t Til1 T <t Ti—1
(1.6)
here M and A are continuous adapted processes with values in Mat,, 4(R) and Matg 4(R) ®
R™ respectively (so that A; maps bilinearly (z,y) € R? x R? to 2T A;y € R™, for details see
Section 3.2.3).
The error term given by (1.6) appears in such important applications as:

e strategies for quadratic variation minimization with application to optimal hedging in
finance;

e error analysis for integrated variance estimation based on random times observations;
e parametric estimation for diffusion processes observed at random times;

see the introduction of Chapter 3 for a detailed discussion.

The goal of Chapter 3 is to prove a functional central limit theorem for the sequence of the
renormalized discretization error processes (v N:E")o<t<T, where NJ* := #{i > 1: 71" < t}.

In Chapter 3 we consider a quite general concrete class of random discretization grids (i.e.
specified directly by its definition and not by abstract assumptions) given as follows. Let
{(D)o<t<T : m > 0} be a sequence of adapted processes with values in the set of domains
in R? (the details are in Section 3.2.2). In particular, we assume the convergence (in a
suitable sense) to an adapted continuous domain-valued process (Dy)o<i<7. Let (Uin)n.ien
be an ii.d. family of random variables U := {U,; : i,n € N} with U,; ~ U(0,1), that are
independent of Fp. Let G : (t,w,u) € [0,T] x 2 x [0,1] = Rt U {+o00} be a P ® B([0,1])-
measurable mapping, where P denotes the o-field of predictable sets of [0, T'] x €2, to simplify
we write G¢(u). We consider the following class of discretization grids 7 := {7" : n > 0}
with 7" = {7]* : 0 < i < N}} given by

T8 =0,
i i=1inf{t > 7" | : (S¢ — S

1—1

1.7
)¢ caDlh YA () + 26 (Ung) + A AT, O

where (Ayi)nicn is a term representing some negligible contribution.

This class of discretization grids, in particular, allows coupling of endogenous noise gen-
erated by hitting times and extra independent noise given, for example, by a Poisson point
process with stochastic intensity (see an example in Section 3.2.2).

The advantages of our setting include the following:

e we consider a general filtration, which allows models with regime switching, see Exam-
ple 3.2.1;

e our framework allows both multidimensional process and multidimensional error term,
as opposed to 1-dimensional setting considered in the previous works (e.g. [Fukl1b]);
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e domain exit times represent complicated objects in multiple dimension as opposed to
dimension 1;

e our model for the process S is given by quite general Bronwian semimartingales sat-
isfying mild regularity assumptions and includes a variety of models used in practice,
such as diffusion processes, path dependent processes, stochastic volatility models, etc.
(see Example 3.2.1);

e we allow domains with corners (such as bounded intersections of half-spaces, i.e. poly-
hedrons).

Theorem 3.2.7 constitutes the main result of Chapter 3 and is given as follows. For
explicitly defined processes m;, Q; and K; we prove (under quite mild assumptions) the
following F-stable functional convergence of (\/N["E}")o<i<7 in distribution:

t t t t
JNper L / mylds ( / M,Q.ds + / QT A.dB, + / /c;/2dws), (1.8)
(0,77 0 0 0 0

where W is an m-dimensional Brownian motion defined on an extended probability space
(Q, F,P) and independent of B.

The proof of Theorem 3.2.7 consists of the following two blocks, each of which is itself a
valuable contribution:

e Theorem 3.3.1 show a CLT of the type (1.8) for general stopping time grids satisfying
suitable assumptions. This is the first result of this type in the multidimensional case.
Moreover the assumptions are well adapted for verification and a tractable characteri-
zation of the limit distribution is provided.

e Propositions 3.3.4, 3.3.5 provide a weak error bound for the domain exit time of an
1t6 process with respect to the perturbation of its diffusion coefficient and the domain.
They provide very delicate analysis of the weak errors that allows to pass from local
estimation for a single exit time to a global estimation for a sequence of discretization
grids, based on such domain exit times, under weak assumptions.

An important and direct application of our result is the case of time grids given by
hitting times of random ellipsoids. Such grids naturally appear in [GL14a] and Chapters 1-2
as optimal discretization strategies regarding the minimization of the quadratic variation
criteria for multidimensional models and play important role in the problem of hedging error
optimization in finance (see [Fuklla]). Theorem 3.2.7, in particular, justifies the use of
lim,, N*(Z")r as a minimization criteria since this limit appears to be the variance of the
asymptotic limit in the CLT. Another important application developed in Chapter 4 is the
parametric inference of diffusions observed at stopping times.

1.9 Parametric inference for diffusions observed at random times

Parametric inference for stochastic processes differs from the classical setting of finite di-
mensional i.i.d. observations and is more complex. Usually only discrete observations of a
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single sample process trajectory are available. A classical estimation approach is based on
the approximation of the process transition densities between the observation times resulting
in so called approximate maximum likelihood estimators (AMLEs). In the high-frequency
fixed horizon framework the number of observations N over a fixed interval [0, T is supposed
to be large, and we are interested in the asymptotic properties of the estimators as N goes
to infinity.

Estimation usually requires the knowledge of the diffusion coefficient o at the observation
times, which requires a Markovian assumption since we only observe the process S. This
restrict the class of models under study to the diffusion processes of the form

t t
s, :50+/ bsds+/ o(s,Ss,€)dB,s,  t€[0,T], SoeRY, (1.9)
0 0

where £* is an unknown parameter.

A number of works study the problem of inference for diffusions. For general references,
see the books [Ser04, Fucl3] and the lecture notes [Jac07].

The nonparametric estimation of the diffusion coefficient o(.) is investigated in [F7Z93]
for equidistant observations times on a fixed time interval. In [GCJ93] the authors con-
sider the problem of the parametric estimation of a multidimensional diffusion under regular
deterministic observation grids. They construct consistent sequences of estimators of the
unknown parameter based on the minimization of certain contrasts and prove the weak con-
vergence of the error renormalized at the rate \/n to a mixed Gaussian variable, where n is
the number of observations. We also mention [GCJ94], see the discussion in the introduction
to Chapter 4. The problem of achieving minimal variance estimator is investigated using the
local asymptotic mixed normality (LAMN) property, see e.g. [CY90, Chapter 5] for the defi-
nition: this LAMN property is established in [Doh87] for one-dimensional S, and in [Gob01]
for higher dimensions using Malliavin calculus techniques, when the n observation times are
equidistant on a fixed interval. These latter results show the optimality of Gaussian AMLESs
that achieve consistency with minimal variance.

Several works are dedicated to the inference problem with observations at random times,
but under quite restrictive assumptions on those times. More precisely, in [ASMO03, DG04]
the authors assume that the time increment 7" — 77" ; depends only on the information up
to 7/*; and on extra independent noise. A similar condition is considered in [HJY11], and
it can take the form of strongly predictable times (7" is known at time 7* ;). In [ASMO04],
the time increments are simply independent and identically distributed.

The above works consider only deterministic, strongly predictable of random independent
grids. However, as we argue in Section 1.2, the case of more general random observation
times given by stopping times is important in applications and must be investigated as well.
To the best of our knowledge this setting has not yet been studied in the literature, except
for [LMR"14] (in the non-parametric setting) where a Central Limit Theorem (CLT) for
estimating the integrated volatility in dimension 1 is established assuming the convergence
in probability of renormalized quarticity and tricity (however, the authors do not charac-
terize the stopping times for which these convergences hold). One reason for this lack of
studies in the literature is essentially that the necessary tools for the analysis of the stopping
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time discretization grids for multidimensional processes were not available until recently. In
particular, the study of the asymptotic normality for a sequence of estimators requires a
general central limit theorem for discretization errors based on such grids. Such a result has
been very recently obtained (see Chapter 3) in a concrete setting (i.e. for explicitly defined
class of grids, and not given by abstract assumptions, as opposed to [LMR " 14]), in several
dimensions (as a difference with above references) and with a tractable limit characteriza-
tion. Note that in [Fukl1b], the derivation of CLT is achieved in the context of general
stopping times, but the limit depends on implicit conditions that are hardly tractable except
in certain situations (notably in dimension 1).

In Chapter 4 we aim at constructing a consistent sequence of estimators (£"),>o of the
true parameter £* and provide its asymptotic analysis in the case of random observation
grids given by general stopping times. In particular, our setting covers those considered in
the previous works on the subject and allows new more general observation stopping times,
which is an important progress in the subject.

1.10 Summary of results in Chapter 4

We consider a d-dimensional Brownian semimartingale (S¢)o<¢<7 of the form (1.9), and a
sequence of observation grids 7" = {7]* : 0 <14 < N}\} verifying the assumptions (A%“) and
(A y) given in Section 1.3.

Our goal is to construct for each n > 0 an estimator £" of £* based only on the knowledge
of {TZ-n,STZ,n : 0 < i < N}}. We also suppose that no additional information about the
distribution properties of 7;* is provided (see the discussion in Section 4.1.2).

Although the distribution of S, as 7 is a stopping time, may be quite different from
Gaussian, we are inspired by the same approach. However, we provide a slightly different
interpretation of the same minimization criteria. We also generalize the criteria to account
for non-equidistant distribution of the discretization points over [0, T.

Denote py () := (27)~%?(det X)~ /2 exp (— %mTﬁflw) the density of a centered d-dimensional
Gaussian variable Ny(0,%) with the covariance matrix 3 (assumed to be non-degenerate).
Denote the Kullback-Leibler (KL) divergence between the variables Ny (0, ¥1) and Ny(0, X5)
by

— ps, (x)
Dii (51, %) = /R o) log P25 (1.10)

For some continuous weight function w : [0, 7] x R? —]0, +-00[ set w; := w(t, S); the process
(wt)o<t<T is continuous adapted positive. Owing to a suitable identification assumption we
show that the minimization of fOT Dx1,(ct(€%), ee(§))widt under suitable assumptions yields
the true parameter £*. Next we consider U*(-), given by

T
U*(&) = /0 (log(det cu(€)) + Tr(ou(€) e, (€)on(€"))) widt,

and show that foT Dxr,(ci(£%), ct(€))wedt = $U*(€) + Co, where Cj is independent of . The
term fOT Tr(oe(6%) e 1 (€)o¢ (€¥))wedt represents a quadratic variation. Thus we define the
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following discretized version of U*(+), that uses only {7]*,Sr» : 0 <1 < N},

un§) = Z wrr | log (det Cﬁll(g)) (" —71t) + Z wTﬁlASJ;nc;r}l(g)ASﬁz. (1.11)

T, <T T <T )

The random function U"(.) plays the role of a contrast function: it is asymptotically equal
to U*(.), for which the minimum is achieved at £*. In the case of regular grids and w; = 1
the contrast (1.11) coincides with [GCJ93, eq. (3)].

We define the sequence of estimators (£")n>0 as follows:

§" == Argmingc= U™ (§) (1.12)

(if the minimizing set of U™(-) is not a single point we take any of its elements).

Note that the user is free to choose the form of the process w;. While the rigorous
optimization of the choice of w; given only the observations {7/",S;» : 0 < i < Np} is
complicated, it seems reasonable to increase w; on the time intervals where the observation
frequency is higher. We have not investigated furthermore in this direction.

In Chapter 4 we prove the results for the sequence of estimators (£"),>¢ given by (1.12)
following below. These results are new in the setting of general observation grids given by
stopping times described in Section 1.3.

e Theorem 4.2.1 states that for the sequence estimators (£"),>¢ given by (1.12) we have

& & *
n—-+oo ’

e In Theorem 4.2.2 we prove that under suitable assumptions we may write
PN (E =€) = My + 0,(1))e, "N 21 + 0, (1),

where py is given in (Ay), ob (1) _% 0 and H7 is explicitly defined, and the term
n o

Z} has the form of the discretization error studied in Chapter 3, i.e.

T T
23 = [ ASTAdBi+ [ MyASudt
0 0

for certain explicitly given processes M; and A;. In particular, this result allows
to derive a CLT for the estimator sequence by a direct application of a CLT for the
discretization error process Z;*, such as the one developed in Chapter 3, as well as other
works. As a consequence, our work provides sufficient results enabling the derivation
of the CLT for the sequence of estimators ({"),>0 in a very general setting in terms of
the (random) observation times, not previously available in the literature.

e In the case of 1-dimensional parameter ¢ and when the asymptotic mixed normality
holds without the bias term, Theorem 4.2.6 states a universal lower bound on the
asymptotic variance of our sequence of estimators among the class of discretization
grids given in Section 1.3 and prove the tightness of this bound. Namely we provide
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a random variable V” " such that if (for an arbitrary observation grid sequence 7")

we have /NE(&" — &%) AN (0, Vr), and under some additional assumptions, we

automatically get Vp > V2% as. In addition, we provide a sequence of grids {77 : n >
0} for which the limit variance is arbitrarily close to V7P t- (in a suitable sense). To the
best of our knowledge, this is the first result of this type in the parametric inference
for diffusions (see also the discussion of the difference of our framework with [GCJ94]
in the introduction of Chapter 4).

2 Part II: Uncertainty quantification for stochastic approxi-
mation limits

Part II of this thesis is devoted to the problem of model uncertainty quantification for
Stochastic Approximation (SA) limits. SA is used to find zeros of a function z — h(z) for
which no closed-form formula is available and which may only be expressed as an expectation
h(z) := E[H(z,V)]. The expectation is taken with respect to some random variable V' which
models the stochastic system under study. In many applied problems the exact specification
of the distribution of V is not known, and it is reasonable to consider the model for V
as uncertain (see Section 2.2 for the motivation). We express this through a parametric
dependence V' ~ p(6,dv) where 6 € © is an uncertain parameter following some distribution
7. In this setting the function h, as well as its zero z*, will depend on 6, so that z* = ¢*(6)
for some function ¢*(-). Our goal is to compute ¢*(-) so that we can efficiently quantify the
probability distribution of the SA limit ¢*(0) given the probability distribution 7 for . We
choose the chaos expansion approach and assume that ¢*(-) belongs to the Hilbert space
of square integrable functions with respect to m. We design an SA procedure in increasing
dimension (dubbed as the USA algorithm) for computing the basis coefficients of the chaos
expansion of ¢*(-) on an orthogonal basis of this Hilbert space. This results in a sequence
of approximations ¢*(-) converging in a suitable sense to ¢*(-).

Chapters 5-6 are devoted to the design and the convergence analysis of the USA algo-
rithm. Section 2.1 presents an introduction to Stochastic Approximation method. In Section
2.2 we formulate the problem of model uncertainty for SA limits and provide motivational
examples. The chaos expansion approach is discussed in Section 2.3. Construction of the
USA algorithm is given in Section 2.4. Section 2.5 provides the summary of our results on
the convergence of the USA in Chapter 5 and the L?-convergence rate of the USA obtained
in Chapter 6.

2.1 Introduction to Stochastic Approximation algorithms

Stochastic Approximation method is used to find zeros of a function z — h(z) expressed as
an expectation. We assume that h(z) represents an average of the values of some known
function H(z,V) over the random scenarios given by a random variable V. The goal is to
calculate numerically a solution to h(z) = E[H(z, V)] = 0 assuming that i.i.d. simulations of
V are available. Classical deterministic methods combined with Monte Carlo approximation
of each value of h(z) would be too computationally demanding. Stochastic Approximation
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was developed to solve this problem more efficiently.

Initiated by Robbins and Monro [RM51] and Kiefer and Wolfowitz [KW52] in the early
1950s, the theory of stochastic approximation algorithms has been the subject of extensive
research, both theoretical and applied. It comprises the study of important theoretical is-
sues in the analysis of dynamically defined stochastic processes and has a large number of
applications. The SA method is now mainstream in such areas as optimization, parameter
estimation, signal processing, adaptive control, Monte Carlo optimization of stochastic sys-
tems (see [KY97a, BMP90]), stochastic gradient descent methods in machine learning (see
e.g. [BCO5, SSS08, BCN17]), adaptive Monte Carlo sampler (see e.g. [HST01, AT08, FMP11,
FJLS16, FS00, DVA9S]), and efficient tail computations [BEFP09], among others.

A common application of SA is where h is the gradient of a convex function ¢ given by
an expectation, i.e.

h(z) = V.c(z) = VLE[C(z,V)].

In this case SA corresponds to the minimization of ¢ and is called Stochastic Gradient
Descent. Remark that in order to use classical SA we need to have V,E[C(z, V)] =
E[V.C(2,V)] and H := V,C to be known. If only the function C is known one may
apply a slightly different Kiefer-Wolfowitz procedure ([KW52]) using finite differences.

The basic paradigm of SA is a stochastic difference equation of the form

=2 oy H(Z V).

Here, z is a parameter of a system, and the random vector H(z",V,,) is an observation of a
sample scenario of the system (produced by a simulation of V,, ~ V) with the parameter set
to z™. One recursively adjusts the parameter so that the goal is met asymptotically. The
principal idea developed in [RM51] is that, if the step sizes 7, in the parameter updates are
allowed to go to zero in an appropriate way as n — 400, then there is an implicit averaging
that eliminates the randomness effects in the long run.

A lot of SA convergence results have been proved in various settings. To give an example
we refer to [BFP09, Theorem 2.2] since this version is the closest to our analysis in Chapter 5.
Concerning the rate of convergence for SA, classical results show the asymptotic normality
for the renormalized sequence ’y%,/ 2(,2" — z*) where z* = lim,, 2" (see e.g. [Duf97, Chapter
2]). Applying in addition the Polyak-Ruppert averaging procedure (see e.g. [PJ92]) we can
increase the convergence rate up to 1/n for any v, = 1/n% a € (1/2,1).

We remark that the Monte Carlo method (aiming to calculate E[V]) is a special case of
SA with v, = 1 and H(z,v) = z — v.

2.2 Uncertainty Quantification for SA limits: Motivation

The SA setting described in Section 2.1 involves a random variable V', so that the problem
writes as E[H(z,V)] = 0. In many applications, the choice of the model for V' is of great
importance. An exact specification of the model that describes some real-world phenomena
must be chosen before the SA method is applied. Quite often it is chosen from a parametric
family of distributions {u(,dv) : § € © C R%}, so that the parameter § must be pre-
estimated or set by an expect opinion. Obviously, a perfect specification of € is rarely
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possible. In some cases, where we lack information about 6, it is reasonable to assume that
the model for V is uncertain. This may be expressed via additional randomness of the
parameter 6.

Here we present several problems that are solved by SA, and for which the model uncer-
tainty is relevant:

e Minimization of expected cost (or risk; or utility maximization) under model un-
certainty. In this case V models a stochastic system and z corresponds to the pa-
rameter determining the strategy of interaction with this system. Further we have
H(z,v) :== V,C(z,v) where C is some cost function. The goal is to find a strategy =z
in order to minimize the expected cost E[C(z,V)]. Under suitable assumptions this
will write as E[V.C(z,V)] = 0 and thus may be solved by SA. In this case the model
uncertainty problem for V' is highly relevant. Examples of this setting include portfolio
optimization (here one wants to optimally chose portfolio weights in order to minimize
some expected risk, the variable V' is the random market distribution over some future
period, see e.g. [GMIC14]) and many other applied problems.

e SA may be used to calculate quantiles of a distribution, also known as Value-at-Risk
(VaR) in finance (and more generally to calculate a pair of risk measures VaR and CVaR
which are widely used, see [BEP09] for details). In financial applications V' represents
a future random value of some portfolio for which the choice of the distribution is not
easy. Often we lack information about it and we need an efficient way to compute the
risk measures for a family of models to analyze the model risk. In particular, such
analysis is required by financial regulators.

e In some applications the Bayesian approach is used to choose the model for V. Here
one considers a parametric family of distributions {u(6,dv),0 € ©} with some prior
law on 6. After the observation of the data the law of 6 is updated to some posterior

distribution 7. In this case the randomness of # naturally yields model uncertainty for
V.

We express the model uncertainty through a parametric dependence V'~ p(6, dv) of the
distribution of V and suppose that 6 follows some law 7 on ©. In this case, the solution z*
of E[H(z,V)] = 0 where V' ~ p(60,dv) for a fixed 6, depends on 6, so that z* = ¢*(0) for
some function ¢*(-). Our main goal is to quantify the distribution of the solution (or the SA
limit) given by {¢*(0) : 0 ~ 7w} via an approximation of ¢*(-) in a suitable functional space.

We remark that in the examples above a simpler alternative might be to increase the
model complexity for V' to incorporate the randomness of 6, i.e. to set V to follow the
marginal distribution of (0, V) ~ (6, dv)r(d#). This problem may then be solved by stan-
dard methods. However such approach will give much less information, typically just one
solution (representing some average value along different model specifications), while we are
more interested in quantifying the entire distribution of ¢*(9).
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2.3 Problem formulation. Chaos expansion approach

Let us formalize the problem described in Section 2.2. We start from an equation E[H(z, V)] =
0, where V is some random variable with values in a metric space V, and impose the uncer-
tainty in the form of a parametric dependence V' ~ pu(6,dv) (for some transition kernel p
from © to V). The parameter @ itself follows some probability distribution m(df) on © c R?
which is known. We also allow uncertainty in the function H, through a dependency in 0,
thus we take H : R? x ¥V x © — R%. We denote by L3 the Hilbert space of square integrable
functions with respect to . The uncertainty quantification problem for SA limits may be
now formally given as follows:

Find ¢* in L3 such that / H(¢*(0),v,0)u(0,dv) =0, T-a.8. (2.1)
1%

A naive way to access the distribution {¢*(#),0 ~ 7w} would be to simulate § ~ 7w and
then, for each simulated value 6;, run an SA procedure with the model parameter set to 6;
that will result in an approximation ng(E) of ¢*(6;).

A more clever approach is to approximate the function ¢*(-) in a suitable way, so that
further only the simulation of 8 ~ 7 is needed. This may be done via the chaos expansion,
which dates back to Wiener [Wie38] and has been developed in the fields of engineering
and uncertainty quantification in the 2000s (see [GS03, LK 10] and references therein). This
technique, also known as the spectral method, consists of projecting the unknown function
#* : © — R? on an orthonormal basis {6 — B;(6),i € N} of the L? space with respect to the
distribution 7 and computing the coefficients of its decomposition

¢* =Y uB;. (2.2)

>0

In the most common case where By = 1, once the coefficients {u}, 7 > 0} have been computed,
the expectation and the variance-covariance matrix of {¢*(0),0 ~ 7} are available for free
as
Egnr[¢*(0)] = ufy and Vargwr(¢*(0)) = Y ui(u) "
i>1
In the case of a polynomial basis, higher order moments are also usually computable explic-
itly, see [LK10, Appendix C].

The naive nested SA approach to calculate the coefficients u}’s is to simulate 6y, - - ,0n ~

—

7 and then for each #; run SA to get ¢*(6;) so that we get an approximation of u} given by

N I ey Sy
1 ::N. &*(0;)B;(6;). (2.3)

=1

However, such method involves nested calculation and is inefficient. This may be easily seen
on a simple example where SA is reduced to MC (a particular "linear" case with H(z,v) =
z—w). This naive method will result in a 2-stage MC procedure which thus converges 2 times
slower. The right approach here is to approximate the average [g,, vu(8,dv)B;(6)m(d6)
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directly using i.i.d. simulations (0, V) ~ u(0,dv)r(d0).

In this regard we expect that the naive approach (2.3) may be also largely improved in
the general SA case and aim at designing an algorithm to calculate the coefficient u;’s using
an efficient mix of the simulation of § ~ 7 and the simulations feeding the SA algorithm. In
the introduction of Chapter 5 we argue that a procedure in increasing dimension (i.e. with
progressively increased truncation level) is needed due to non-linearity of the setting. Such
chaos expansion methods are in general hard to analyze. Even in the case of an explicitly
known function ¢* (here finding individual coefficients u} in (2.2) is straightforward by
MC simulation) the global convergence of a method where more and more coefficients are
computed by MC is subject to a nontrivial tuning of the speeds at which the number of
coefficients and the number of simulations go to infinity (see [GS14]). Thus designing such
a method in the case of general SA and analyzing its convergence is a non-trivial problem.

2.4 The USA algorithm

In Chapter 5 we design an SA procedure for computing the coefficients of ¢* = >",5qurB;
so that each iteration lies in finite dimensional subspace of the Hilbert space L7, while the
dimension of these subspaces goes to infinity.

Below we present a slightly simplified version of this procedure (called the USA algo-
rithm, Uncertainty for Stochastic Approximation) that solves the problem (2.1). It is a
fully constructive, detailed, and easy to implement. More details on the motivation and the
construction of this algorithm may be found in Chapter 5.

1 Input: Sequences {7y, k > 1}, {mg, k> 1}, {My, k> 1}, K € N, {uf,i =0,...,mo}
2 fork=0to K —1, do
3 sample (07, .,V 1),s =1..., Mj41, under the distribution 7(df)u(6,dv); for
1 > my1 define uf =0
for i =0 to myy1, do

_ M,
t u?“ = uf - '7k+1Mk+11 Yot H (Z}n:ko U?Bj(eiﬂ)’ Vicrts 91@+1) B;(0;11)

I

[

6 Output: The vector {uf,i=0,...,mg}.

Algorithm 1: The USA algorithm for the coefficients of the basis decomposition of
¢
The inputs of the algorithm are: a positive stepsize sequence {vx,k > 1}, two integer
valued sequences {my,k > 1} and {Mj,k > 1} corresponding to the number of non-zero
coefficients in the approximation of ¢* and to the number of Monte Carlo draws of the pair
(0,V) ~ 7(df)u(0,dv) at each iteration k, an initial value uy € R™0 and a total number of
iterations K.
The output of the algorithm is a sequence v/ = {uZK ,i < mg} approximating a solution
u*. The corresponding approximation ¢* of a solution ¢* to the problem (2.1) is then given
by

mg
o™ :=>" ulB;. (2.4)
=0

Further this approximation allows to easily calculate any statistics of the uncertain SA limit
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¢*(0) using only the simulation of 6 ~ .

2.5 Summary of results in Chapters 5 and 6

In Chapter 5, along with a more detailed motivation for the construction of the USA Algo-
rithm 1, we prove its a.s. and LP, (p < 2), convergence.

In Theorem 5.3.5 we show under explicit and tractable assumptions that for the sequence
{¢* : k > 0} given by (2.4) we have

lim [oF —¢®| =0as, Wpe(0,2) lim E[[¢"— o[ ] =0.
k—oo ™ k—o0 m

where ¢ is some random variable on the set of solutions of the problem (2.1) (or simply
@ = ¢* is the solution ¢* to (2.1) is unique).

Algorithm 1 is an SA in the infinite dimensional Hilbert space I3, which make the con-
vergence analysis quite non-trivial. We argue that our result is original and is not covered
by the previous papers on the SA in Hilbert spaces. There exists a number of works on
infinite dimensional SA. We are only interested in SA in increasing dimension (so that all
iterates lie in a finite dimensional subspace, and the algorithm is implementable). This
is generally known as the sieve approach. The sieve-type SA procedures were studied in
[Nix84, Gol88, Yin92] (in a particular case of independent noise, i.e. H(z,V) = H(z) + V).
In [CWO02] the authors derive results on the convergence and asymptotic normality for SA
with growing dimension in a more general setting. However, the above-mentioned works are
proved under fairly abstract conditions. Many of the assumptions in [YZ90] and [CW02]
are hard to check. Also [Nix84, CW02] consider a noise term of the form H(¢*, Vi 11) with
H :H xV — H and a single distribution for V;,’s. By contrast, in our case, H(¢"(-), Viy1,-)
can only be simulated 6 by 6, as the distribution of Vi1 may depend on #. In addition,
some key assumptions of these works are not verified in our setting, see Chapter 5 for a more
complete discussion and counter-examples (e.g. Remark 5.3.3).

In Section 5.5 we provide extensive numerical analysis of our algorithm, including a
detailed discussion of the choice of its design parameters.

In Chapter 6 we analyze the L?-convergence rate of the sequence {¢*, k > 0} given by
the USA algorithm. Our main result in Theorem 6.3.1 explicitly provides @ > 0 such that
for some constant C, > 0 we have for all £k > 0

o[l

} < ot (2.5)

Control of the form ~;' is motivated by similar results in the finite dimensional case, where
typically the SA squared error is proved to be of order O(~), i.e. a = 1 (see e.g. [Duf97,
Chapter 2]).

In finite-dimensional results on the SA convergence rate the convergence speed itself
typically depends only on the step-size sequence ;. In our setting, however, the exponent
a in (2.5) will depend non-trivially on the model, the regularity of ¢*, the choice of the
basis functions and the design parameters of the USA algorithm. The knowledge of this
dependence plays an important role in the correct tuning of the algorithm to guarantee the
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L?-convergence with the best possible rate, given the model specification. We illustrate how
the obtained results justify the optimality of the heuristic choice of the dimension growth
speed used in Section 6.3.2.

Again the previous works on the sieve-type infinite dimensional SA cannot be applied to
the convergence rate analysis of the USA, see the introduction of Chapter 6. This emphasizes
the novelty of our results.

Beyond model uncertainty, applications of our approach include sensitivity analysis, with
respect to 0, or quasi-regression in the sense of reconstructing a whole unknown function,
for instance in the context of nested Monte Carlo computations involving a nonlinear inner
function 0 — ¢*(0).
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Cette these étudie deux sujets différents : Discrétisation de processus a des temps d’arrét
et Quantification d’incertitudes pour des limites d’approximation stochastique. L’introduction
de chaque partie est présentée indépendamment dans les Sections 3 et 4. Les Parties I et 11
contiennent respectivement 4 et 2 chapitres, qui se basent sur les articles suivants (publiés
ou en révision):
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Statistiques, Vol. 54, No. 3, pp. 1556-1582, (2018).

(2) E. Gobet and U. Stazhynski. Model-adaptive optimal discretization of stochastic inte-
grals. En révision pour Stochastics, (2018).

(3) E. Gobet and U. Stazhynski. Central limit theorem for discretization errors based on
stopping time sampling. Soumis, (2018).

(4) E. Gobet and U. Stazhynski. Parametric inference for diffusions observed at stopping
times. Soumis, (2018).

(5) S. Crepey, G. Fort, E. Gobet and U. Stazhynski. Uncertainty quantification for stochas-
tic approximation limits using chaos expansion. En révision pour SIAM Journal of
Uncertainty Quantification, (2018).
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(6) U. Stazhynski. Uncertainty quantification for stochastic approximation limits: L*-
convergence rate. En préparation, (2018).

3 Partie I: Discrétisation de processus a des temps d’arrét

3.1 Introduction a la discrétisation de processus

Les problemes de discrétisation jouent un role fondamental dans les applications des pro-
cessus stochastiques a temps continu. En effet, comme seules des données discretes peuvent
étre observées, traitées et simulées, des versions discrétisées de tels processus sont souvent
utilisées en pratique. A cet égard, la quantification des erreurs reliées & la discrétisation est
trés importante. Dans ce travail, on étudie les problemes de discrétisation pour une classe de
modeles appelés processus d’Ito (voir la définition dans [RY99, p. 298]) et pour certaines de
leurs généralisations. Un processus d’It6 (St)o<i<7 sur un espace de probabilité filtré donné
s’écrit comme

t t
Sy =5y —|—/ bsds +/ osdBs, t€[0,T)
0 0

ou (By)o<t<r est un mouvement brownien, (bt)o<t<7 €t (0¢)o<t<r sont des processus adap-
tés vérifiant des hypotheses convenables (bien que des termes a variation finie plus généraux
puissent étre pris en considération, voir le Chapitre 1). Cette classe de modeéles est indis-
pensable dans de nombreuses disciplines, y compris la finance, ’assurance, I’économie, la
biologie, la dynamique de la population et la physique. On se place dans le cadre de haute
fréquence et d’horizon fini pour les problemes de discrétisation. Plus précisément, on sup-
pose que l'intervalle de temps [0, 7] est fixe et pour tout n > 0 on se donne un schéma de
discrétisation finie 7" = {0 = 70 < -+ < TN = T} avec un temps de discrétisation N
(possiblement aléatoire) tendant vers l'infini quand n — +o00. Le but est soit de quantifier,
soit d’optimiser (dans un sens asymptotique bien choisi) I'erreur produite par la substitution
de S; par S,y dans une procédure donnée, ot ¢(t) est le plus grand temps de discrétisation
7' avant ¢.

Ci-dessous, on présente quelques applications pour lesquelles le traitement des problemes
de discrétisation est indispensable. La premiere classe de problémes est liée aux statistiques.
L’utilisation des modeles stochastiques a temps continu en pratique demande ’estimation de
différentes statistiques ou de parameétres du modele & partir d’observations d’une seule trajec-
toire du processus. Un exemple standard est la variation quadratique d’un processus d’It6 de
dimension 1 donnée par fOT o2dt dont I'estimateur classique s’écrit comme sz\ﬁ (Srn—Sen )2.
Un cadre plus compliqué est 'estimation statistique des processus de diffusion, ou le coef-
ficient de diffusion o, = o(t, St,0) dépend d’un parametre inconnu 6 & estimer sur la base
d’observations discrétes du processus (voir les Sections 3.9-3.10). Dans ces applications,
lerreur d’estimation fréquemment s’écrit en fonction de I'erreur de discrétisation pour le
processus S. Cela signifie que 'analyse de la consistance et celle de la normalité asymp-
totique des estimateurs ramenent a l'analyse des erreurs de discrétisation correspondantes.
La seconde classe de probléemes étudie l'optimisation du tracking d’une cible dont la dy-
namique est modélisée par un processus d’Itd. Ici, le but est de choisir de maniere optimale
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les temps de discrétisation pour le réajustement du systeme stochastique afin de minimiser
certains critéres exprimant la déviation de la cible continue. Le réajustement en continu est
typiquement impossible a cause des cotts d’intervention variés (cotits de transaction). Les
exemples d’applications en finance incluent la couverture d’options (voir [Fuklla, GL14a])
et le tracking d’indices financiers (voir [PS04]), entre autres. Dans les problémes de ce type,
les temps de discrétisation optimaux dépendent de la trajectoire du processus de maniere
adaptative. Ainsi ils sont donnés par des temps d’arrét aléatoires. Un probléme particulier
considéré dans les Chapitres 1-2 est la minimisation de la variation quadratique pour des
intégrales stochastiques (voir la Section 3.4 pour les détails).

Enfin, un autre groupe de problémes s’intéresse a la simulation de processus par des
schémas de discrétisation et ’analyse ultérieure de ’erreur de discrétisation dans des simula-
tions de Monte-Carlo (voir par exemple [FO15]). Cependant, on ne considére pas ce type de
problémes dans notre travail et on se concentre uniquement sur les deux classes de questions
discutées précédemment.

3.2 Schémas de discrétisation aléatoires
La discrétisation basée sur des temps équidistants, c.a.d. pour 7" = %, est un sujet bien
fourni, voir par exemple [Roo80, JP98, HMO05, GT09, GT01, MZ06] parmi d’autres, voir
aussi [JP12] et les références y contenues. Cependant, en pratique, des temps de discréti-
sation sont assez souvent espacés de facon irréguliere. La nature de cette irrégularité peut
étre différente selon le cadre. De plus, les temps de discrétisation peuvent aussi étre aléa-
toires, ce qui rend l'analyse encore plus compliquée. Concernant les problemes d’estimation
statistique, bien des raisons peuvent entrainer le caractére aléatoire des temps d’observation
i) une partie des données est manquante ; i) les observations sont plus fréquentes du-
rant certaines périodes de temps ou quand le processus se trouve dans certaines régions de
I'espace ; iii) les observations arrivent aléatoirement selon les temps d’un processus de type
Poisson ou des temps d’arrét reliés au processus lui-méme, et d’autres. De nombreux travaux
dans cette direction signalent un effet non négligeable du caractere aléatoire des temps de
discrétisation sur le comportement asymptotique des erreurs par rapport au cas déterministe
classique. Par exemple, [ASMO03] observe un impact considérable d’échantillonnage aléatoire
sur les estimateurs dans le cadre de Iestimation paramétrique de diffusions. Dans [LLZZ13]
les auteurs remarquent qu’en prenant en compte le caractere aléatoire et endogene des grilles
d’observation (lorsqu’il en existe), ils arrivent a améliorer considérablement la performance
de l'estimateur de volatilité intégrée. Dans le probléeme d’optimisation des temps de dis-
crétisation pour le tracking optimal, on retrouve naturellement des grilles de discrétisation
aléatoires comme des temps optimaux du réajustement, et par conséquent, ils jouent un roéle
clé dans l'analyse, voir [Fuklla, GL14a]. L’importance des schémas de discrétisation aléa-
toires en finance haute fréquence a été souligné en particulier dans [DGM 01, Section 1.1] et
[ASJ14, Chapitre 9], voir aussi [Fukl0, FR12, RR10, RR12]. On distingue les deux niveaux
suivants de généralité lorsque 1'on considere des schémas de discrétisation irréguliere :

1. Pour tout ¢ le temps 7;* dépend uniquement de Frn (ou (Ft)o<t<T est une filtration
fixée) et d’autres bruits indépendants. Ce groupe inclut, en particulier, toutes les
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grilles déterministes, fortement prévisibles (c.a.d. 7" est Frn -mesurable, pas de bruit
indépendant) et les temps aléatoires indépendants du processus.

2. Des temps d’arrét généraux par rapport a une filtration donnée. Ce cadre présume que
du bruit aléatoire endogene peut déclencher les temps de discrétisation. Un exemple
de référence est la discrétisation d’un processus par ses temps d’atteinte de domaines
spécifiés.

Le premier cadre, qui inclut les temps fortement prévisibles et les temps indépendants du
processus, est mieux étudié, alors que le second est assez récent et plus compliqué pour
I’analyse. Il constitue ’objet principal de notre travail. Des schémas de discrétisation aléa-
toires donnés par des temps d’atteinte sont étroitement liés au probleme de I'optimisation de
Ierreur de tracking (voir [Fukllb, Fuklla, GL14al]). Les Chapitres 1-2 sont consacrés a ce
probleme dans le contexte de discrétisation optimale d’intégrales stochastiques (une discus-
sion détaillée est donnée dans la Section 3.4). La disponibilité des données seulement & des
temps d’arrét peut étre une propriété intrinseque d’un modele dont le but est d’expliquer
certaines observations qui arrivent de maniere irréguliére. Assez récemment, plusieurs études
ont été faites dans cette direction. Dans [RR10, RR12] les auteurs développent un modele du
prix financier en haute fréquence qui combine le bruit de microstructure, y compris ’erreur
d’arrondi et I’échantillonnage a des temps de transaction basés sur des temps d’atteinte bien
choisis. Ensuite, ils estiment la volatilité intégrée. Ils étudient aussi les propriétés asympto-
tiques de leur estimateur. Un cadre encore plus compliqué se présente lorsque les instants
d’observation des différents composants d’un processus multidimensionnel sont aléatoires et
qu’en plus, ils ne sont pas synchronisés. C’est un cadre typique dans certaines applications
en finance (voir e.g. [HY08]). Pour une motivation supplémentaire pour des grilles de dis-
crétisation aléatoires, on renvoie le lecteur a [GWO02] ou les auteurs fournissent des preuves
empiriques de la connexion entre la volatilité et la durée entre transactions en finance, et a
[Fuk10] qui étudie des modeéles de données bid-ask du prix et 1’échantillonnage a des temps
de transactions. Dans les Chapitres 1-4 notre but est d’étendre la recherche actuelle sur la
discrétisation de processus basée sur des temps d’arrét aléatoires dans plusieurs directions,
y compris les applications en statistiques et ’optimisation de ’erreur de tracking. Le reste
de cette section contient les introductions plus détaillées pour chacun des probléemes étudiés
avec une revue de la littérature, ainsi qu'un résumé des résultats de chaque chapitre. Dans
la Section 3.3, on introduit la classe des suites de grilles aléatoires étudiée. Les techniques
liées a cette classe sont indispensables pour notre analyse dans les Chapitres 1-4. Dans la
Section 3.4 on continue avec l'introduction dans le probleme de minimisation de la variation
quadratique pour des intégrales stochastiques basées sur des semimartingales browniennes
générales. On résume nos contributions a ce probleme dans les Sections 3.5-3.6. Dans la
Section 3.7 on discute les résultats précédents sur les théorémes centraux limites pour les
erreurs de discrétisation. Ensuite on résume notre travail sur le TCL pour des erreurs de
discrétisation basées sur des grilles aléatoires. On conclut par une présentation de nos ré-
sultats sur I'estimation paramétrique de diffusions basée sur des observations & des temps
d’arrét dans la Section 3.10.
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3.3 Une classe de grilles aléatoires de discrétisation

Dans cette section, on présente une classe de grilles aléatoires de discrétisation étudiée dans
ce travail. Elle a été introduite dans [GL.14a] comme la classe des grilles admissibles pour la
discrétisation optimale d’intégrales stochastiques. Les techniques développées dans [GL14a]
sont fondamentales pour tous les aspects de notre analyse dans les Chapitres 1-4. Cette
classe est essentiellement définie par les deux hypotheses ci-dessous. Pour un processus S,
une suite de grilles de discrétisation 7 := {7™ : n > 0} avec 7" := {7]* : 0 < ¢ < N3},
une suite déterministe strictement positive (e,)n>0, telle que Y, €2 < 400, et py > 1 on
considere les hypotheses suivantes :

(AZ): La variable aléatoire suivante est p.s. finie :

sup [ ,% sup sup |S75—.5Y7in_1|2 < +0o0. (3.1)
n>0 L<I<Np te (e 7]

(Apy): Pour un parametre py > 1 donné (qui vérifie certaines hypotheses, en particulier
pn < 4/3) la variable aléatoire suivante est p.s. finie:

sup(e2°N NJY) < +oo. (3.2)
n>0

L’hypothese (A2“) signifie que les oscillations entre deux temps successifs suivent une
regle de scaling ; elle implique que le pas entre temps successifs est suffisamment petit
dans un sens défini par e,. Par ailleurs, (Ay) dit que le nombre des temps aléatoires
n’est pas trés grand a une échelle donnée, ce qui exclut par exemple le cas d’accumulation
de temps stochastique. Maintenant, pour tout €, — 0 on considere une classe contenant
les suites de grilles de discrétisation {7™ : n > 0} telles que pour toute sous-suite ¢(n) il
existe une autre sous-suite ¢/ o ¢(n) pour laquelle {7¢°“™ : n > 0} vérifie (AZ") et (Ay)
avec (€,/0,(n))n>0- Cette forme particuliere de la définition est motivée par le principe de
sous-suites que l'on utilise plus tard pour passer de convergences p.s. a des convergences
correspondantes en probabilité (voir le Lemme 2.2.2). En particulier, cette classe contient la
plupart des grilles de discrétisation considérées dans les travaux précédents et des grilles que
I’on peut imaginer du point de vue d’applications. Pour souligner sa généralité, on présente
ci-dessous plusieurs familles assez larges des grilles aléatoires qui sont incluses dans cette
classe (pour une justification, voir la remarque 1.2.2 et la discussion dans la Section 3.2.2)

1. Les suites 7 = {7" : n > 0} ou chaque 7" = {7" : 0 < i < N7} est une grille formée
des temps d’arrét (avec N7 possiblement aléatoires) et telle que

2 2
Cley™ < min AP < max AT <Cei™, n>0, ps.,
1<i<NZ 1<i<NZ
pour une variable aléatoire p.s. finie C' > 0 et un parametre p > 0. Cet exemple
contient, en particulier, les suites de temps déterministes et fortement prévisibles pour
lesquelles le pas de temps est contrélé en haut et en bas et tend vers zéro.
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2. Les temps aléatoires de Poisson avec du bruit indépendant de JFp mais avec une in-
tensité stochastique F-adaptée. Plus précisément, pour un processus continu adapté
strictement positif (A¢)o<i<7 on considere 7" = {r]* : 1 < i < N}} donné par les
temps des sauts d’'un processus de Poisson avec l'intensité (g, 2N A\ )o<t<7-

3. On se donne une suite des processus aléatoires adaptés {Dy : 0 <t < T} ou D} est un
ensemble ouvert tel que

B(O, Clé-:n) C D? C B(O,Cge?n)

pour des variables aléatoires p.s. finies C1,Cy > 0; ici par B(0,7) on note la boule
centrée en 0 avec un rayon 7. On définit une suite de stratégies 7 = {7 : n > 0} avec
T" ={r":0<i< NJ}} de la maniére suivante : 7§’ = 0 et pour tout ¢ > 1

7{1‘ = 1nf{t > qun_l : (St - STin—l) ¢ D:—L'nfl} N

Autrement dit, on considére des temps d’atteinte d’ensembles aléatoires de taille &,
(des exemples plus compliqués peuvent étre trouvés dans la Section 3.2.2).

Comme on peut le voir, la classe des grilles de discrétisation étudiée est assez universelle ;
elle contient en effet a peu pres tous les types de grilles de discrétisation qui peuvent sem-
bler intéressants en pratique. Les Chapitres 1-4, en plus de leurs contributions principales,
développent des outils puissants permettant d’analyser les grilles de discrétisation de ce type,
ce qui fournit une base solide pour les études futures d’autres problémes dans la discrétisation
de processus.

3.4 Discrétisation optimale d’intégrales stochastiques

Cette section est une introduction pour les Chapitres 1-2. On considere le probleme qui a
pour 'ambition de trouver une suite finie des temps d’arrét optimaux. 7" = {0 = 7 <
<< 7']’\1]? = T} qui minimise la variation quadratique renormalisée de 'erreur de
discrétisation pour une intégrale stochastique donnée par

t
Ztn = /0 U(S,Ss) -dSs — Z U(Tin_la Sfl."_l) ) (STZL/\t - S‘ri"_l)7 (33)

T <t

ol S est une semi-martingale brownienne continue de dimension d et v(t,z) est une fonc-
tion continue & valeurs dans R%. Ici T > 0 est fixé et le nombre de temps d’arrét N7 peut
étre aléatoire. Avec des conditions faibles sur le modele, et pour des grilles déterministes
et fortement prévisibles, I’erreur de discrétisation Z: apres une renormalisation bien choisie
converge en loi vers un mélange de gaussiennes (voir [Roo80, KP91, JP12]). Un choix na-
turel du critére de minimisation dans ce cas est le produit N2(Z™)7. En particulier, dans le
cas ot /NREZE vérifie un TCL, la limite lim,, N:(Z™)p constitue la variance asymptotique
(conditionnelle) de la loi limite (voir e.g. Chapitre 3). L’étude des probléemes de minimisa-
tion pour la discrétisation d’intégrales stochastiques a été initiée par [Fuklla] en dimension
d = 1, mais au lieu de N3(Z")r les auteurs considérent un critére en espérance pour les
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deux termes, c.a.d. E(N})E ((Z")r). La minimisation trajectorielle de lim,, N2(Z™)7 a été
adressée dans un cadre multidimensionnel d > 1, dans [GL14a]. Les auteurs définissent une
classe des stratégies de discrétisation admissibles comme celles vérifiant (A% )-(Ay). Pour
une martingale locale S et sous certaines hypothéses sur v (essentiellement son Jacobien D,v
est inversible), ils fournissent une borne inférieure sur lim inf,, N7.(Z™)7 pour toute la classe
des suites de grilles admissibles. Une discussion complete de ce probleme dans le cadre de
couverture d’options en finance, ainsi qu’'une présentation des travaux précédents, peuvent
étre trouvées dans [Fuklla, GL14a]. Dans [GL14a] les auteurs exhibent des grilles de dis-
crétisation optimales (ou arbitrairement proches de l'optimum) ayant une forme de temps
d’atteinte d’ellipsoides aléatoires. Plus précisément, pour un processus continu adapté ex-
plicite (A¢)o<t<r & valeurs dans I’ensemble des matrices symétriques définies positives de
taille d x d, une suite optimale de grilles 7 := {(7]")o<i<ny : n > 0} s’écrit comme

T =0,

7 =inf{t > 77", : (S¢ — ST;EI)TATﬁl(St — Spn ) > er} AT,
Comme démontré dans [GL14a], la suite optimale 7 est admissible et elle atteint la valeur
optimale de lim,, NJ:(Z")7 parmi toutes les grilles admissibles. Ces résultats sont un point de
départ de notre travail dans les Chapitres 1-2 qui est résumé dans les deux sections suivantes.

3.5 Résumé des résultats du Chapitre 1

Dans le Chapitre 1 on considére le probleme de discrétisation optimale introduit dans la
Section 3.4. On démontre des résultats d’optimalité dans un cadre beaucoup plus large par
rapport a la littérature précédente. Premierement, on permet S d’étre une semi-martingale
brownienne de la forme S = A+ M ou A est un processus continu adapté général a variation
finie qui satisfait certaines propriétés de Holder, alors que dans [GL14a] le processus S est
essentiellement une martingale locale brownienne (A = 0, M = [;o,dB;). Pour ce modele
généralisé, on démontre les résultats suivants :

e Dans le Théoreme 1.3.4 on montre que les ensembles des stratégies admissibles (ad-
missibilité par rapport & un processus S est définie par (A%*“)-(Ay)) pour une semi-
martingale S et pour sa partie martingale locale M sont les mémes. Le résultat est
non trivial, il est démontré par un schéma de continuation avec une application succes-
sive de 'inégalité de BDG. Car [GL.14a] suppose la condition de martingale locale, le
Théoreme 1.3.4 est primordial : il permet d’appliquer les résultats établis récemment
dans [GL14a] & notre cadre plus général.

e Dans le Théoréme 1.3.10 on montre que la stratégie de discrétisation basée sur les
temps d’atteinte d’ellipsoides qui a la forme

T =0,
= inf{t > 7 (Sp — Sen )THpn (Sy— Sy ) > 2} AT,

i—1 i—17 —

est admissible sous certaines hypotheses. Ce résultat généralise [GL14a, Proposition



3. Partie I: Discrétisation de processus a des temps d’arrét 33

2.4].

e Le Théoreme 1.4.2 est un des résultats principaux du Chapitre 1 ; il exhibe une borne
inférieure uniforme sur liminf, . N7#(Z")r (qui est exacte comme démontré plus
tard) parmi toutes les stratégies admissibles. Cette borne est donnée par

T 2
lim inf N7 (Z")p > (/ Tr(Xt)dt> p.s.
0

n——+oo

pour un processus X; explicitement défini. C’est une extension importante de [GL14a,
Théoreme 3.1] au cas de semimartingales.

Deuxiemement, la partie martingale de S peut étre dégénérée dans notre cadre, alors qu'une
hypothese plus forte d’ellipticité p.s. de o, est supposée dans [GL.14a]. Autrement dit, on ne

U existe. Aussi D,v(t,S;) peut étre non inversible dans notre

demande pas que 'inverse o,
cadre. Pour ce modele généralisé, on démontre le résultat suivant : le Théoreme 1.5.2 montre

que la stratégie de discrétisation de la forme

7o =0,

ri = inf{t > 7 (S = Sen )TAS (S0 — S ) > e2en} AT
ou Agn) est une perturbation bien choisie de A; = (atT )TXtUZ (par M on note la matrice
pseudo-inverse de M), et X; est une solution d’une certaine équation matricielle non linéaire
donnée explicitement, atteint la valeur la plus petite possible de lim,, N7:(Z")r parmi toutes
les suites des grilles aléatoires admissibles. La preuve du Théoreme 1.5.2 est non trivial, car
a cause de 'absence d’inversibilité de oy, on utilise des matrices pseudo-inverses de sorte que
I’on perd certaines propriétés de continuité de la stratégie optimale. De plus, notre stratégie
atteint exactement la limite optimale, tandis que dans [GL14a] seulement une stratégie u-
optimale a été établie (qui peut étre arbitrairement proche de 'optimum). Dans la Section
1.5.3 on illustre par un test numérique la performance optimale de la stratégie exhibée dans
le Théoreme 1.5.2. La possibilité de traiter le cas non elliptique est aussi fondamentale pour
les applications :

e Premierement, elle permet de considérer des modeles partiellement dégénérés qui ap-
paraissent dans des applications variées comme, par exemple, la mécanique aléatoire
(voir la Section 1.5.3 pour des exemples).

e Deuxiemement, elle implique un résultat de robustesse de la stratégie optimale étudiée
dans [GL14a] : le Théoréme 1.5.2 montre que méme si oy est proche d’étre dégénérée,
cela ne va pas impacter la performance de la stratégie optimale. C’est une consid-
ération importante dans les applications financieres reliées a la couverture d’options,
développées dans [GL14a] (voir la discussion dans la Section 1.5.3).
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3.6 Résumé des résultats du Chapitre 2

Dans le Chapitre 2 on continue I’étude du probleéme de discrétisation optimale pour des
intégrales stochastiques par rapport a des semimartingales browniennes, commencée dans le
Chapitre 1. Ici notre but est de construire une version adaptative, qui ne demande aucune
information sur le modele de I'algorithme optimal de discrétisation présenté dans le Chapitre
1. Dans les travaux précédents, les suites optimales {7 : n > 0} dépendent fortement du
modele pour S, en particulier, du processus de volatilité . Contrairement a cela, dans le
Chapitre 2 on ne suppose aucune information sur le coefficient de diffusion du processus
S. On ne suppose pas de modele de diffusion pour S, ni de forme paramétrique de o. Le
processus S de la forme A + [;0.,dBs est assez arbitraire et on suppose seulement qu'’il
vérifie certaines conditions faibles de régularité et d’inversibilité. Une version adaptative au
modele de 'algorithme de discrétisation optimale, développé dans Chapitre 1 est nécessaire
pour rendre cet algorithme applicable en pratique. Une autre question importante est la
robustesse de la discrétisation optimale par rapport a l'erreur de l'estimation de o. La
stratégie optimale s’écrit comme

n n
7 = ¢ (0mn  Dav(rly, Sen ), (St = Sen Dizer )

ou ¢ représente une dépendance complexe et non linéaire. L’analyse de la robustesse de
cette dépendance nécessite un effort considérable ; il est aussi critique pour les applications.
Dans le Chapitre 2 on étudie cette question et démontre les résultats suivants :

e Dans le Théoreme 2.2.4 on établit des conditions suffisantes pour une suite générale
d’estimateurs o' de o qui garantissent l'optimalité de la suite de stratégies corre-
spondantes. Plus précisément, supposons que o} vérifie (pour un parametre § > 0) la
condition

~0/2 qup (o] 2 — 0" B 0.

En
0<t<T n—-+o0o

Alors pour une perturbation bien choisie [A%ﬁl]gz de A; (utilisé dans le Chapitre 1 pour

construire la stratégie optimale) la suite {7"},>0, ot T" = (7]")o<i<ny est donné par

70 =0,

= inf{t > Ty (S — S JT[AT |0(S) — Sn ) 2 2P} AT,

(3.4)

atteint la borne inférieure optimale sur lim, N2 (Z™)7.

e On interprete les conditions du Théoreme 2.2.4 imposées sur la suite d’estimateurs
oy pour une classe générale d’estimateurs de la moyenne glissante pondérée et spéci-
fie certaines conditions jointes sur la période d’estimation et la fréquence des temps
d’estimation afin de préserver 'optimalité asymptotique de la stratégie. En particulier,
sous des hypotheéses convenables et pour une certaine suite (o, )n,>0 et des fonctions
générales de noyau K, (-) on démontre dans le Théoreme 2.4.1 que o7 donné par

U? = (Z? + an Idd)1/27
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ou (pour une grille d’observation admissible {7"};>0)

P =) Ky (7 — ) ASzAST, (35)
Tt

vérifie les hypotheses du Théoreme 2.2.4. Cela produit donc une stratégie de discréti-
sation optimale qu’atteint la borne inférieure uniforme sur liminf, N3(Z")r parmi
toutes les stratégies admissibles.

e On fournit aussi un contre-exemple (voir (2.1.7)) qui montre que la connaissance de
o, est importante pour la construction de la stratégie optimale, alors qu’un choix de
o; erroné peut impliquer une performance sous-optimale. En plus, on soutient notre
assertion par un exemple numérique dans la Section 2.5.

3.7 Théoreme Central Limite pour des erreurs de discrétisation

Dans le cadre asymptotique de haute fréquence et d’horizon fixe pour les problemes de dis-
crétisation, la démarche classique est d’analyser le comportement asymptotique de ’erreur
de discrétisation quand le pas de discrétisation tend vers 0. En particulier, on cherche a
établir un Théoreme Central Limite (TCL) pour les processus de l'erreur de discrétisation
renormalisés. Des résultats classiques sur le TCL pour des grilles régulieres peuvent étre
trouvés dans [JP12]. Ici on est particulierement intéressé par les travaux précédents qui
étudient des grilles de discrétisation aléatoires. Beaucoup d’entre eux sont restreints aux
cas spécifiques en ce qui concerne le modele, la dimension (d = 1 or d > 1), le terme de
I’erreur de discrétisation ou la grille de discrétisation. En particulier, un groupe de travaux
(de chercheurs 7) analyse l'erreur de discrétisation pour des grilles fortement prévisibles ou
aléatoires indépendantes du processus. Parmi eux, [ASM04, DG04] étudient le probléme
de lestimation statistique pour des diffusions et [BNS05, BNGJ 06, MZ06, KP08] traitent
I’estimation de la variance intégrée et ’estimation de la variation de puissance dans un cadre
non paramétrique. On cite aussi [Roo80, GT01, HMO05, GT09], et pour plus de détails,
on renvoie le lecteur a l'introduction du Chapitre 3. Les plus proches de notre cadre sont
les travaux qui considerent des grilles plus générales données par des temps d’arrét. Dans
[Fuk11b], 'auteur montre un TCL assez général en dimension 1 pour des grilles formées de
temps d’arrét. Cependant, la classe de grilles considérée est décrite de manieére implicite
par un ensemble d’hypotheses. La loi limite dépend aussi des processus dont l'existence est
donnée comme hypothese. La vérification de ces hypotheéses pour un schéma de discrétisa-
tion particulier demande un effort considérable. La généralisation de ce travail pour le cas
général multidimensionnel semble non triviale en ce que concerne l'extension du TCL (en
particulier, la caractérisation de la loi limite) sous des hypotheses abstraites sur les moments
des incréments du processus, ainsi que la détermination de la classe de grilles aléatoires qui
vérifient ces hypotheses. Par exemple, des candidats naturels pour les temps de discrétisation
générés de maniere endogene sont des temps d’atteinte de domaines aléatoires, dont ’analyse
est beaucoup plus compliquée dans le cadre multidimensionnel (alors qu’en dimension 1, un
tel domaine est donné par les deux points du bord). On mentionne aussi [LMR'14] ot un
TCL pour l'estimateur de la volatilité intégrée en dimension 1 a été établi en supposant la
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convergence en probabilité de quarticity et tricity renormalisées. Ici encore, les auteurs ne
caractérisent pas les temps d’arrét pour lesquels ces convergences ont lieu. En plus le résultat
est unidimensionnel et il étudie une application particuliere. Dans le Chapitre 3, on a pour
objet de rectifier des lacunes dans la littérature existante sur le probleme. Plus précisément,
on veut établir un TCL pour une erreur de discrétisation multidimensionnelle générale et
pour un processus multidimensionnel. De plus, on cherche a avoir une description explicite
de la classe des grilles aléatoires considérées, et également une caractérisation explicite de
la loi limite. Ainsi, notre but est de produire un résultat qui serait suffisamment général au
niveau des grilles de discrétisation et avec des hypothéses qui seraient immédiates a vérifier
pour des modeles particuliers.

3.8 Résumé des résultats du Chapitre 3

Pour une trajectoire donnée d’un processus S sur un intervalle de temps [0, 7] et une grille

aléatoire de discrétisation 7" := {7}/ =0 < 7{' < -+ < 7N» = T} formée de temps d’arrét,
T

N e . . 1 2
on considére une erreur de discrétisation £ de dimension m de la forme & = £ + &7,
ol

0 T AL 2 A T
nl _ n2 _
g = 3 [T Mo (S-S s &= 3 [T (8- 8 )T A B,
T <t -1 T <t i1

(3.6)
ici M et A sont des processus continus adaptés a valeurs dans Mat,, 4(R) et Matg 4(R) @ R™
respectivement (de sorte que 4; est une application bilinéaire qui envoie (z,y) € R? x R?
vers 21 Ay € R™, voir la Section 3.2.3) pour les détails. Le terme d’erreur donné par (3.6)
apparait dans les applications suivantes :

e les stratégies de minimisation de la variation quadratique avec une application a la
couverture optimale d’options ;

e l'analyse d’erreur de l'estimation de la variance intégrée basée sur des observations a
des temps d’arrét ;

e l'estimation paramétrique de diffusions observées a des temps d’arrét ;

voir 'introduction du Chapitre 3 pour plus de détails. Le but du Chapitre 3 est de démontrer
un théoreme central limite fonctionnel pour une suite de processus d’erreurs de discrétisation
renormalisés (v NiE")o<t<T, ou Nj* := #{i > 1: 7/* < t}. Dans le Chapitre 3 on considére
une classe concrete assez générale de grilles de discrétisation aléatoires (c.a.d. spécifiée
directement par sa définition et non pas par des hypotheéses abstraites) donnée comme suit.
Soit {(D})o<i<T : m > 0} une suite des processus adaptés a valeurs dans I’ensemble de
domaines dans R? (voir les détails dans la Section 3.2.2). En particulier, on suppose la
convergence dans un sens approprié vers un processus continu adapté (Dy)o<¢<7 a valeur dans
les domaines. Soit (U )n ien une famille i.i.d. de variables aléatoires U := {U,; : i,n € N}
avec Uy, ; ~ U(0,1), qui sont indépendantes de Fr. Soit G : (t,w,u) € [0,T] x Q x [0,1] —
R*U{+00} une application P ® B([0, 1])-mesurable, ot par P on note la tribu des ensembles
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prévisibles de [0, 7] x 2, pour simplifier on écrit G;(u). On considére une classe de grilles de
discrétisation 7 := {7" :n > 0} avec 7" = {7 : 0 < i < N}} donnée par

T =0,
Tin = inf{t > Tin_l : (St — ST;il) ¢ EHD;:L } VAN (Tin_l + E%LGTZL,l (Un,z) + An,i) AT,

n
i—1

(3.7)

ol (Api)nien est un terme d’erreur négligeable. Cette classe de grilles de discrétisation
permet, en particulier, un couplage du bruit endogeéne généré par des temps d’atteinte et
du bruit indépendant donné, par exemple, par un processus de Poisson avec une intensité
stochastique (voir par exemple la Section 3.2.2). Les avantages de notre cadre sont, en
particulier, que :

e on considere une filtration générale qui permet des modeles avec un changement de
régime, voir Exemple 3.2.1;

e notre cadre permet des processus et des termes d’erreurs multidimensionnels, contraire-
ment aux résultats de dimension 1 dans les travaux précédents (e.g. [Fukl1b]);

e les temps d’atteinte des domaines constituent des objets compliqués en plusieurs di-
mensions & la différence de la dimension 1 ;

e notre cadre pour le processus S comprend des semimartingales browniennes assez
générales qui satisfont certaines hypotheses faibles de régularité ; il inclut beaucoup
de modeles utilisés en pratique comme, par exemple, des processus de diffusion, des
processus dépendants de trajectoire, des modeles a volatilité stochastique, etc. (voir
Exemple 3.2.1);

e on permet des domaines avec des coins (comme des intersections bornées de demi-
espaces, c.a.d. des polyedres).

Le Théoreme 3.2.7 constitue le résultat principal du Chapitre 3 qui est donné comme suit
: Pour des processus explicites my, @Q; et K; on démontre (sous des hypotheses faibles), la
convergence en loi F-stable fonctionnelle de (1/N/*E")o<t<T:

¢ ¢ t t

Ny <] [Fmstas ( | MQuas+ [ Qlaab,+ | zc;/QdWS) (38
(0,77 Y Jo 0 0 0

ou W est un mouvement brownien de dimension m défini sur un espace de probabilité étendu

(Q, F,P) qui est indépendant de B. La preuve du Théoreéme 3.2.7 consiste des deux blocs,

dont chacun représente une contribution importante :

e Le Théoreme 3.3.1 montre un TCL du type (3.8) pour des grilles générales données
par des temps d’arrét sous des hypotheses convenables. C’est le premier résultat de ce
type dans un cadre multidimensionnel. En plus, les hypotheses sont bien adaptées a
la vérification, et une caractérisation traitable de la loi limite est fournie.

e Les Propositions 3.3.4, 3.3.5 exhibent une borne sur l'erreur faible pour les temps
d’atteinte de domaines par un processus d’It6, par rapport a une perturbation de
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son coefficient de diffusion et du domaine. Ils effectuent une analyse tres délicate de
I’erreur faible qui permet de passer d’une estimation locale pour un seul temps d’arrét
a une estimation globale pour une suite de grilles de discrétisation formée de tel temps
d’arrét, sous des hypotheses peu restrictives.

Une application directe et importante de notre résultat est le cas des grilles de temps donnés
par des temps d’atteinte d’ellipsoides aléatoires. Les grilles de ce type apparaissent dans
[GL14a] et les Chapitres 1-2 comme des stratégies optimales de discrétisation pour la min-
imisation de la variation quadratique, dans un cadre multidimensionnel. Ils jouent un role
important dans le probleme d’optimisation de l’erreur de couverture d’options en finance
(voir [Fuklla]). Le Théoréme 3.2.7, en particulier, justifie l'utilisation de lim, N3(Z")r
comme un critere de minimisation car cette limite se révele étre la variance de la loi limite
dans le TCL. Une autre application importante développée dans le Chapitre 4 est ’estimation
paramétrique de diffusions observées a des temps d’arrét.

3.9 L’estimation paramétrique de diffusions observées a des temps d’arrét

L’estimation paramétrique de processus stochastiques est une tache plus difficile par rapport
au cadre classique des observations i.i.d.. Typiquement, seules des observations discretes
d’une seule trajectoire du processus sont disponibles. Une approche classique d’estimation est
basée sur 'approximation des densités de transition du processus entre les temps d’observation,
et utilisée pour construire des estimateurs de vraisemblance approchée. Dans le cadre de
haute fréquence et d’horizon fini, le nombre d’observations N sur un intervalle fixe [0, 7] est
supposé large, et on s’intéresse aux propriétés asymptotiques d’estimateurs quand N tend
vers l'infini. L’estimation typiquement (ou type 7) demande la connaissance du coefficient de
diffusion o aux temps d’observation, lequel, a son tour, nécessite une hypotheése de Markov
car on observe uniquement le processus S. Cela restreint la classe de modeles étudiés aux
processus de diffusion de la forme

t t
S, :so+/ bsds+/ o(s,5,)dBs,  te[0,T), SpeR% (3.9)
0 0

ou £* est un parametre inconnu. De nombreux travaux étudient le probléme d’estimation de
diffusions. Pour des références générales, voir les livres [Sor04, Fucl3] et les notes de cours
[Jac07]. L’estimation non paramétrique de coefficient de diffusion o(.) est étudiée dans [FZ93]
pour des temps d’observation équidistants sur un intervalle fixe. Dans [GCJ93] les auteurs
considerent le probleme d’estimation paramétrique pour des diffusions multidimensionnelles
et des grilles d’observations régulieres. Ils construisent une suite consistante d’estimateurs
du parametre inconnu basée sur la minimisation de certaines fonctions appelées contrastes
et démontrent la convergence faible de l'erreur renormalisée au taux /n vers un mélange
de gaussiennes, ou n est le nombre d’observations. On cite aussi [GCJ94], voir la discussion
dans l'introduction du Chapitre 4. Le probleme d’estimation a variance minimale a été
étudié en utilisant la propriété de normalité mélangée asymptotique locale (local asymptotic
mixed normality ou LAMN en anglais), voir e.g. [CY90, Chapitre 5] pour la définition :
la propriété LAMN a été établie dans [Doh87] pour S unidimensionnel, et dans [Gob01]
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pour plusieurs dimensions en utilisant le calcul de Malliavin, quand n temps d’observation
sont équidistants sur un intervalle fixe. Ces derniers résultats montrent l'optimalité des
estimateurs gaussien qui atteignent la consistance avec la variance optimale. Certains travaux
sont dédiés au probleme d’estimation basée sur des observations a des temps aléatoires, mais
sous des hypotheses assez restrictives sur ces temps. Plus précisément dans [ASMO03, DG04]
les auteurs supposent que I'incrément 7;* —7* ; du temps dépend seulement de I'information
avant 7;' ; et d’autres bruits indépendants. Une condition similaire a été considérée dans
[HJY11], et il peut y avoir une forme des temps fortement prévisible (7" est connu a temps
7 1). Dans [ASMO04], les incréments de temps sont simplement indépendants identiquement
distribués. Les travaux précédents considerent seulement des grilles déterministes, fortement
prévisibles ou aléatoires indépendantes du processus. Cependant, suivant les arguments dans
la Section 3.2, le cas des temps d’observation plus généraux donnés par des temps d’arrét est
important dans les applications et doit aussi étre examiné. A notre connaissance, ce type de
problémes n’était pas encore étudié dans la littérature, sauf dans [LMR " 14] (dans un cadre
non paramétrique)ot un TCL pour 'estimation de la volatilité intégrée en dimension 1 a été
établi en supposant la convergence en probabilité de quarticity et tricity renormalisées (mais
les auteurs ne caractérisent pas les temps d’arrét pour lesquels ces convergences ont lieu).
Une raison qui explique la carence d’études dans la littérature est essentiellement que les
techniques nécessaires pour 'analyse des grilles de discrétisation aléatoires pour des processus
multidimensionnels n’étaient pas disponibles jusqu’a récemment. En particulier, I’étude de la
normalité asymptotique pour des suites d’estimateurs demande un TCL pour des erreurs de
discrétisation basées sur telles grilles. Un résultat de ce type a été établi récemment (voir le
Chapitre 3) dans un cadre concret (c.a.d. pour une classe de grilles définie explicitement, et
non pas par des hypothéses abstraites, contrairement a [LMR " 14]), en plusieurs dimensions
(contrairement aux travaux précédents) et avec la loi limite explicite. Notons que dans
[Fuk11b], la dérivation du TCL est atteinte dans le contexte des temps d’arrét généraux,
mais la limite dépend des conditions implicites qui sont difficiles a vérifier sauf certains cas
particuliers (notamment en dimension 1). Dans le Chapitre 4 notre but est de construire
une suite consistante d’estimateurs (”),>o du vrai parametre £* et d’effectuer son analyse
asymptotique dans le cas de grilles de discrétisation données par des temps aléatoires. En
particulier, notre cadre couvre les grilles considérées dans les travaux précédents sur le sujet
mais permet aussi des temps d’observation plus généraux donnés par des temps d’arrét, ce
qui constitue un avancement important dans le sujet.

3.10 Résumé des résultats du Chapitre 4

On se donne une semi-martingale brownienne (St)o<t<7 de dimension d de la forme (3.9),
et une suite de grilles d’observation 7" = {7]* : 0 < ¢ < N} qui vérifie les hypotheses
(AZ“) et (An) introduites dans la Section 3.3. Notre but est de construire pour tout n > 0
un estimateur £ de &* utilisant seulement la connaissance de {7, Srn 10 <4 < N7}. On
suppose aussi qu’aucune information supplémentaire concernant les propriétés de la loi de 7.*
n’est fournie (voir la discussion dans la Section 4.1.2). Bien que la loi de S, pour 7 un temps
d’arrét, puisse étre assez différente de la loi gaussienne, on est inspiré par la méme approche.

Cependant, on présente une interprétation un peu différente du méme critére de minimisa-
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tion. On généralise aussi le critére pour prendre en compte 'irrégularité de distribution des
points de discrétisation sur [0,7]. Notons px(z) := (27)"%?(det £)~ /2 exp (—%xTE_1z> la
densité de la loi gaussienne centrée Ny(0,Y) de dimension d avec la matrice de covariance
Y. (supposée étre non dégénérée). Notons la divergence de Kullback-Leibler (KL) entre les
variables NV;(0, %) et NVy(0,X2) par

Py, (%)
Dk, (X1, % ::/ x)lo 2dz. 3.10
KL(E1,22) = [ P, (2) 8 e (2) (3.10)
Pour une fonction de poids continue w : [0,7] x R —]0, +oco[ on note w; := w(t,Sy); le

processus (w¢)o<t< est continu adapté positif. Sur la base d’une condition d’identifiabilité
appropriée, on montre que la minimisation de fOT Dx1,(ci(€%), ci(§))widt sous certaines hy-
potheses donne le vrai parametre £*. Ensuite on considere U*(+), donné par

U*(€) = /O ' (log(det cy(€)) + Tr(ou(6) e, (€)on(€"))) widt,

et on montre que fOT Dxr,(ci(€%), ct(€))wpdt = $U*(€) + Co, ot Cp est indépendant de &. Le
terme fOT Tr(op(6%) Te; 1 (€) oy (€¥))widt représente une variation quadratique. Ainsi on définit
la version discrétisée de U*(-) suivante, qui utilise seulement {7/*, S;» : 0 <i < N7},

U™¢) = Z wrn  log (det cTin_l(f)) (ri" —71y) + Z WT{L_lASTTgLC;f:(f)ASTf' (3.11)

T, <T ", <T

La fonction aléatoire U™(.) joue un role de contraste : elle est asymptotiquement égale a
U*(.), pour laquelle le minimum est atteint en £*. Dans le cas des grilles régulieres et wy; = 1
le contraste (3.11) coincide avec [GCJ93, eq. (3)]. On définit une suite d’estimateurs (§™)n>0
comme suit :

§" := Argmingcz U™ (§) (3.12)

(si ’ensemble minimisant de U"(-) n’est pas un singleton, on prend n’importe lequel de ces
éléments). Notons que 'utilisateur est libre de choisir la forme du processus w;. L’optimisation
rigoureuse du choix de w; en utilisant uniquement {7, SE‘" :0 < ¢ < N}} est compliquée
; néanmoins, en pratique, il semble raisonnable de faire augmenter w; sur les intervalles de
temps ou la fréquence des observations est plus élevée. On n’a pas réalisé d’autres études
dans cette direction. Dans le Chapitre 4 on démontre les résultats pour la suite d’estimateurs
(€")n>0 donnée par (3.12) présentés ci-dessous. Ces résultats sont nouveaux dans le cadre
de grilles d’observation aléatoires données par des temps d’arrét introduites dans la Section
3.3.

e Le Théoréme 4.2.1 déclare que pour la suite d’estimateurs (£"),>0 donnée par (3.12)

on a
P
fn *.
n—-4o00

e Dans le Théoréme 4.2.2 on montre que sous des hypothéses convenables, on a une
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représentation
PN (E =€) = My + 0,(1)e, "N 21 + 0, (1),

oil py est donné par (Ay), o (1) % 0 et H7 sont définis explicitement, et le terme
n—-—+0oo

Z} a une forme de l'erreur de discrétisation étudiée dans le Chapitre 3, c.a.d.
T T
Zpi= | ASTAdBe+ [ MypAsit
0 0

pour certains processus M, et A; définis explicitement. En particulier, ce résultat
permet de déduire un TCL pour la suite d’estimateurs (3.12) par une application
directe d’'un TCL pour l'erreur de discrétisation Z;', comme celui dans le Chapitre 3,
ainsi que pour d’autres résultats. Par conséquent, notre travail fournit des résultats
suffisants qui permettent de déduire un TCL pour une suite d’estimateurs (£"),>0 dans
un cadre tres général en termes de temps d’observation aléatoires, lequel cadre n’était
pas disponibles avant dans la littérature.

e Dans le cas de parametre £ de dimension 1 et quand la normalité asymptotique est
vérifiée sans terme du biais, le Théoreme 4.2.6 exhibe une borne inférieure universelle
sur la variance asymptotique de notre suite d’estimateurs parmi toute la classe de
grilles de discrétisation introduite dans la Section 3.3. On montre aussi que cette borne
est tendue. Notamment on exhibe une variable aléatoire VTp telle que si (pour une

suite de grilles d’observation assez arbitraire 7") on a /NZ({™ — &) 4N (0, V),
et sous certaines hypothéses, on obtient automatiquement que Vp > V7P I p.s. En
plus, on donne une suite de grilles {T™ : n > 0} pour laquelle la variance limite est
arbitrairement proche de VT dans un sens approprié. A notre connaissance, c’est le
premier résultat de ce type dans l'estimation paramétrique de diffusions (voir aussi la

discussion sur la différence de notre cadre par rapport a [GCJ94] dans l'introduction
du Chapitre 4).

4 Partie II : Quantification d’incertitudes pour des limites
d’approximation stochastique

La Partie II de cette theése s’intéresse au probléeme de la quantification d’incertitudes de mod-
ele pour des limites d’approximation stochastique. L’approximation stochastique (Stochastic
Approximation ou SA en anglais) est utilisée pour trouver des zéros d’une fonction z — h(z)
pour laquelle il n’y a pas de formule fermée, et qui est disponible sous une forme d’espérance
h(z) := E[H(z,V)]. L’espérance est prise par rapport a une variable aléatoire V' qui mod-
élise le systeme stochastique étudié. Dans de nombreux problemes appliqués, la spécification
exacte de la distribution de V est inconnue, et il est raisonnable de considérer le modele
comme incertain (voir la Section 4.2 pour la motivation). Cette incertitude peut étre ex-
primée par une dépendance paramétrique V ~ p(6,dv) ot € © est un parametre incertain
qui suit une certaine loi w. Dans ce cadre la fonction h, ainsi que son zéro z*, va dépendre
de 6, ou autrement dit z* = ¢*(0) pour une fonction ¢*(-). Notre but est de calculer ¢*(-)
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de sorte que I'on puisse quantifier de maniére efficace la loi de la limite de SA ¢*(0) étant
donné la loi 7 de #. Pour accomplir cette tache, on choisit la méthode d’expansion de chaos.
On suppose que ¢*(-) appartient a '’espace de Hilbert des fonctions carrées intégrables par
rapport a w. Ensuite on développe une procédure d’approximation stochastique en dimen-
sion croissante (surnommée ’algorithme USA, Uncertainty for Stochastic Approximation)
pour le calcul des coefficients de 1’expansion de chaos de ¢*(-) dans une base orthogonale
de l'espace de Hilbert. Cela nous fournit une suite d’approximations ¢k() convergeant vers
¢*(+) par rapport aux normes de l'espace de Hilbert. Les Chapitres 5-6 sont consacrés au
développement et a ’analyse de convergence de 'algorithme USA. La Section 4.1 présente
une introduction a la méthode d’approximation stochastique. Dans la Section 4.2 on for-
mule le probleme d’incertitude de modele pour des limites d’approximation stochastique et
on donne des exemples de motivation. On discute 'approche d’expansion de chaos dans
la Section 4.3. La construction de I'algorithme USA est présentée dans la Section 4.4. La
Section 4.5 contient un résumé de nos résultats sur la convergence de USA dans le Chapitre
5 et le taux de convergence dans L? obtenu dans le Chapitre 6.

4.1 Introduction aux algorithmes d’approximation stochastique

La méthode d’approximation stochastique est utilisée pour trouver des zéros d’une fonction
z +— h(z) donnée sous une forme d’espérance. On suppose que h(z) représente la moyenne des
valeurs d’une fonction connue H(z, V') sur des scénarios aléatoires produits par une variable
aléatoire V. Le but est de calculer numériquement une solution de h(z) = E[H(z,V)] =0
en supposant que des simulations i.i.d. de V sont disponibles. Des méthodes classiques
déterministes en combinaison avec une approximation par Monte-Carlo de chaque valeur
de h(z) peuvent s’avérer trop cofiteuses en temps de calcul. L’approximation stochas-
tique a été développée pour résoudre ce probleme de maniére plus efficace. Initiée par
Robbins et Monro [RM51] et Kiefer et Wolfowitz [KW52] dans les années 1950, la théorie
d’algorithmes d’approximation stochastique était un sujet de recherche intensive, théorique
comme appliquée. La méthode d’approximation stochastique est maintenant activement
utilisée dans de nombreux domaines comme l’optimisation, ’estimation paramétrique, le
traitement des signaux, le controle adaptatif, 'optimisation des systémes stochastiques par
Monte-Carlo (voir [KY97a, BMP90]), les méthodes de descente du gradient stochastique
dans l'apprentissage (voir e.g. [BC05, SSS08, BCN17]), I’échantillonneur de Monte- Carlo
adaptatif (voir e.g. [HSTO1, AT08, FMP11, FJLS16, FS00, DVA9g]), et le calcul efficace
des queues de distribution, parmi d’autres. Une application standard de ’approximation
stochastique est le cas ou h représente le gradient d’une fonction convexe ¢ donnée par une
espérance, c.a.d.
h(z) = V.c(z) = V,E[C(2,V)].

Dans ce cas SA correspond & la minimisation de ¢ et s’appelle descente du gradient stochas-
tique. Notons que pour utiliser le SA classique, il faut que V,E[C(z,V)] = E[V.C(z,V)]
et que H := V,C soient connus. Si seule la fonction C est connue, on peut appliquer la
méthode de Kiefer-Wolfowitz ([[KXW52]) qui utilise les différences finies.
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Le paradigme de base de SA est I’équation de différence stochastique de la forme
=g Yn+1H (2", Vy).

Ici, z est un parametre du systéme ; le vecteur aléatoire H(z",V;,) est une observation du
scénario du systéeme (produite par une simulation de V,, ~ V) avec le parametre fixé a
z". On ajuste récursivement le parametre afin d’atteindre le but asymptotiquement. L’idée
principale développée dans [RM51] est que, si le pas 7, dans les mises & jour du parameétre
tend vers 0 de maniere appropriée quand n — 400, cela produit de la moyennisation implicite
qui élimine les effets aléatoires a long terme. De nombreux résultats sur la convergence de
SA ont été démontrés dans des cadres différents. Pour donner un exemple, on renvoie le
lecteur & [BEFP09, Théoréme 2.2] car cette version est la plus proche de notre analyse dans
le Chapitre 5. Pour ce qui concerne le taux de convergence de SA, les résultats classiques
montrent la normalité asymptotique de la suite renormalisée 771/ 2(2"
(voir par exemple [Duf97, Chapitre 2]). En utilisant en plus la procédure de moyennisation
de Polyak-Ruppert (voir [PJ92]) on peut atteindre le taux de convergence de 1/n pour tout

— 2z*) ou z* = lim,, 2"

Y =1/n%a € (1/2,1). On remarque que la méthode de Monte-Carlo (ayant pour le but de
calculer E[V]) est un cas particulier de SA avec v, = = et H(z,v) = z — v.

4.2 Quantification d’incertitudes pour des limites d’approximation stochas-
tique: motivation

Le cadre de SA introduit dans la Section 4.1 comprend une variable aléatoire V', pour laquelle
le probléme principal s’écrit comme E[H (z, V)] = 0. Dans beaucoup d’applications, le choix
du modele pour V est tres important. Une spécification exacte du modele expliquant un
phénomeéne du monde réel doit étre choisie avant I'utilisation de la méthode de SA. Assez sou-
vent elle est choisie dans une famille paramétrique de distributions {u(0,dv) : 6 € © C R},
de sorte que le paramétre 0 doit étre pré-estimé ou fixé par un avis d’expert. Evidemment,
une spécification parfaite de 6 est rarement possible. Dans certains cas, ol on manque
d’informations sur le parametre 6, il est raisonnable de supposer que le modele de V' est
incertain. Cette incertitude peut étre exprimée par le caractére aléatoire du parametre 6.
Ici on présente quelques problémes résolus par SA, pour lesquels l'incertitude de modele
constitue un probléme pertinent :

e Minimisation de colits espérés (aussi minimisation de risque ; maximisation d’utilité)
sous l'incertitude de modele. Dans ce cas V modélise un systeme stochastique et z cor-
respond au parametre déterminant la stratégie d’interaction avec le systéeme. Ensuite
on a H(z,v) :== V,C(z,v) ou C est une fonction de coit. Le but est de trouver une
stratégie z qui minimise le cofit espéré E[C(z,V)]. Sous des hypotheses convenables,
ce probléeme s’écrit comme E[V,C(z,V)] = 0 et donc peut étre résolu par SA. Dans
ce cas l'incertitude du modele est tres pertinente. Un exemple d’un tel cadre, parmi
beaucoup d’autres, est 'optimisation de portefeuille (ot on veut choisir de maniére op-
timale les poids de portefeuille afin de minimiser certains risques espérés ; la variable
V représente la distribution aléatoire future du marché, voir par exemple [GMICI14]).
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e SA peut étre utilisé pour calculer une quantité de distributions, qui porte aussi le nom
de Value-at-Risk (VaR) en finance (et plus généralement pour calculer une paire de
mesures de risque VaR et CVaR qui sont largement utilisées, voir [BFP09] pour les dé-
tails). Dans des applications financiéres, V' représente une valeur future de portefeuille
pour laquelle le choix de la loi n’est pas simple. Souvent on manque d’informations et
on a besoin d’une approche efficace pour calculer les mesures de risque pour une famille
de modeles afin d’analyser le risque du modele. En particulier, une telle analyse est
exigée par les régulateurs financiers.

e Dans certaines applications une approche bayésienne est utilisée pour choisir le modele
de V. Ici on considére une famille paramétrique de lois {u(0,dv), 0 € O} avec une loi
a priori sur §. Apres avoir observé les données, la loi de 6 donne jour & une certaine loi
a posteriori . Dans ce cas le caractere aléatoire de # implique 'incertitude de modele
pour V.

On exprime l'incertitude de modele par une dépendance paramétrique V ~ u(6,dv) de la
distribution de V' et on suppose que # suit une loi m sur ©. Dans ce cas, la solution z* de
E[H(z, V)] =00uV ~ u(#,dv) pour 0 fixé, dépend de 6, ce qui implique z* = ¢*(6) pour une
fonction ¢*(-). Notre but principal est de quantifier la loi de la solution (ou la limite de SA
) {¢*(0) : 0 ~ 7} par une approximation de ¢*(-) dans un espace fonctionnel bien choisi. On
note que dans les exemples ci-dessus, une alternative plus simple pourrait étre d’augmenter
la complexité du modele de V' en faisant V' suivre la loi marginale de (6, V') ~ u(6, dv)mr(d6).
Ce probleme peut étre ensuite résolu par des méthodes standard. Cependant cette approche
donne beaucoup moins d’informations, typiquement une seule valeur (qui représente une
sorte de moyenne des solutions parmi les différents choix du modele), alors que l'on est
intéressé par la quantification de la loi complete de ¢*(6).

4.3 Formulation du probléeme. Expansion de chaos

Maintenant on va formaliser le probleme introduit dans la Section 4.2. On commence par
I'équation E[H(z, V)] = 0, ou V est une variable aléatoire a valeurs dans un espace métrique
V. On impose de lincertitude sous une forme de dépendance paramétrique V ~ p(6,dv)
(pour un noyau de transition u de © a V). Le parametre 6 lui-méme suit une loi de probabilité
connue 7(df) sur © C RY. On permet aussi de l'incertitude sur la fonction H, sous une forme
de dépendance en 6, de sorte que l'on prend H : R? x V x © — R?. On note par L3 'espace
de Hilbert des fonctions carrées intégrables par rapport a 7. Le probléme de la quantification
d’incertitudes pour des limites de SA s’écrit maintenant formellement comme

Find ¢* in L3 such that / H(¢*(0),v,0)u(0,dv) =0, T-a.8. (4.1)
\%

Une approche naive pour accéder a la distribution {¢*(6),0 ~ 7} est de simuler 6 ~ 7 et
ensuite, pour chaque valeur simulée 6;, de lancer une procédure d’approximation stochas-
tique avec le parametre du modele fixé a 6; qui donne une approximation gbj(a) de ¢*(6;).
Une technique plus intelligente est d’approcher la fonction ¢*(-) de telle maniere qu’ensuite
seulement, la simulation de # ~ 7 soit nécessaire. Cela peut étre fait par I’expansion de chaos
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qui remonte & Wiener [Wie38] et qui a été développée dans les domaines d’ingénierie et de
la quantification d’incertitudes dans les années 2000 (voir [GS03, LK10] et les références y
contenues). Cette technique, connue aussi comme la méthode spectrale, consiste en la pro-
jection de la fonction inconnue ¢* : © — R? sur une base orthogonale {0 — B;(0),7 € N} de
'espace L? par rapport a la loi 7 et le calcul des coefficients de sa décomposition.

¢* = uiB;. (4.2)

i>0

Dans le cas le plus commun ou By = 1, une fois que les coefficients {u},i > 0} sont cal-
culés, l'espérance et la matrice de la variance-covariance de {¢*(0),6 ~ 7} sont disponibles
directement sous une forme

Egor[¢*(0)] = uf and Varg.(¢*(0)) = > uf(u}) .
i>1

Dans le cas de base polynomiale, les moments plus élevés sont aussi calculables, voir [LIK10,
Appendix C].

Une méthode naive imbriquée pour calculer les coefficients u} peut consister en une
simulation de 6, --- ,0ny ~ 7 et ensuite, pour chaque 6;, d'un tour de SA pour obtenir
—_—

¢*(0;). Ainsi on retrouve une approximation de u} donnée par

1L —
U= > ¢*(0:)Bi(0;). (4.3)
iz1

Cependant, cette méthode demande des calculs imbriqués, et par conséquent, elle est peu
efficace. On peut lillustrer a partir d’'un exemple simple ou SA est réduit a la méthode
de Monte-Carlo (un cas particulier "linéaire" ou H(z,v) = z — v). Dans cet exemple, la
méthode naive entraine une procédure de MC en deux étapes qui convergent deux fois plus
lentement. La facon appropriée de faire le calcul dans ce cas serait d’approcher la moyenne
Joxy vu(0,dv)B;(0)r(df) directement par des simulations i.i.d. de (6,V) ~ u(0,dv)r(df).
A cet égard, on attend que l’approche naive (4.3) peut étre aussi largement améliorée dans
le cas général ; notre but est de développer un algorithme pour calculer les coefficients u}
en utilisant un mélange efficace de la simulation de 8 ~ 7 et les simulations de ’algorithme
d’approximation stochastique. Dans I'introduction du Chapitre 5 on montre qu’une procé-
dure en dimension croissante (c.a.d. avec le niveau de troncature progressivement augmenté)
est nécessaire a cause de la non linéarité du probleme. De telles méthodes d’expansion de
chaos sont difficiles & analyser. Méme dans le cas ou la fonction ¢* est connue (ici le calcul
des coefficients individuels u} dans (4.2) est évident par Monte- Carlo) la convergence glob-
ale de la méthode ou le nombre de coefficients croit vers I'infini nécessite un réglage de la
vitesse de croissance de leur nombre et du nombre de simulations. Le développement d’une
telle méthode dans le cas plus général de SA et I'analyse de sa convergence sont donc un
probleme ambitieux.
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4.4 L’algorithme USA

Dans le Chapitre 5 on développe une procédure d’approximation stochastique pour calculer
les coeflicients de ¢* = > ,~ou;B; de sorte que chaque itération appartient a un espace
de dimension finie et la dimension de ces espaces tend vers l'infini. Ici on présente une
version un peu simplifiée de cette procédure surnommeée ’algorithme USA, qui résout le
probléeme (4.1). Elle est complétement constructive et facile & réaliser. Plus de détails sur la
motivation pour la construction de cet algorithme peuvent étre trouvés dans le Chapitre 5.

1 Input: Sequences {7y, k > 1}, {mg, k> 1}, {My, k> 1}, K € N, {uf,i =0,...,mo}

2 fork=0to K —1,do

3 sample (07, .,V ),s =1..., Mj41, under the distribution 7(d@)u(6,dv); for
1> Mgy deﬁne uk =0 for i =0 to myyq, do

M S
4 t wit =k — ey M YT H (ZJ o uf B (07.41), Vk+1’9k+1) Bi0p41)

5 Output: The vector {uX,i=0,...,mg}.

Algorithm 2: L’algorithme USA pour le calcul des coefficients de la décomposition
de ¢*.

Les entrées de l'algorithme sont : une suite positive de pas {vx, k > 1}, deux suites a
valeurs entiéres positives {my,k > 1} et {My,k > 1} qui correspond au nombre de coef-
ficients non nuls dans I'approximation de ¢* et le nombre de simulations de Monte-Carlo
du couple (0,V) ~ w(df)u(f,dv) a chaque itération k, une valeur initiale vy € R™ et un
nombre total d’itérations K. La sortie de I’algorithme est une suite v/ = {uZK i < mpg} qui
approche la solution w*. L’approximation correspondante ¢ de la solution ¢* du probléme
(4.1) est donc donnée par

my
K=3 " ufB;. (4.4)
1=0

Ensuite cette approximation permet de calculer facilement toutes les statistiques de la limite
incertaine de SA ¢*() en utilisant seulement la simulation de 6 ~ .

4.5 Résumé des résultats des Chapitres 5 and 6

Dans le Chapitre 5, en plus de la motivation plus détaillée de la construction de I'algorithme
USA 2, on démontre sa convergence p.s. et dans LP, (p < 2). Dans le Théoréme 5.3.5 on
montre sous des hypothéses explicites et claires que pour la suite {¢* : & > 0} produite par
(4.4) on a

lim Hqﬁk ¢°°H =0ps., Vpe(0,2) hmE[Hw ¢°°’H—o

ol ¢ est une variable aléatoire & valeur dans I’ensemble des solutions du probléme (4.1)
(ou tout simplement ¢ = ¢* est la solution ¢* de (4.1) s’il est unique). L’algorithme
2 est une procédure d’approximation stochastique dans ’espace de Hilbert de dimension
infinie [, ce qui rend I’analyse de la convergence relativement non triviale. On montre que
nos résultats sont originaux car ils ne sont pas couverts par les travaux existants sur le SA
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dans des espaces de Hilbert. Parmi eux, on est uniquement intéressé par SA en dimension
croissante (mais ot chaque itération est de dimension finie, ce qui rend l’algorithme réalisable
en pratique). Ce type de SA a été étudié dans [Nix84, Gol88, Yin92| (dans un cas particulier
du bruit indépendant, c.a.d. H(z,V) = H(z)+V). Plus récemment, dans [CW02] les auteurs
montrent des résultats de convergence et de normalité asymptotique pour SA en dimension
croissante dans un cadre plus général. Cependant, ces résultats sont démontrés sous des
conditions assez abstraites. De plus [Nix84, CWO02] considérent un terme de bruit de la
forme H (¢, Viy1) avec H :H xV — H et une seule loi pour les V,,. Par contre, dans notre
cas, H(¢*(-), Vi1, ) peut étre simulé seulement 6 par 6, car la loi de Vi1 peut dépendre de
0. Enfin, certaines hypotheses clés des travaux ne sont pas vraies dans notre cadre, voir le
Chapitre 5 pour une discussion plus compléte et des contre-exemples (par exemple dans la
Remarque 5.3.3). Dans la Section 5.5 on effectue une analyse numérique détaillée, incluant
la discussion du réglage des parametres pour la mise en pratique de l'algorithme USA. Dans
le Chapitre 6 on étudie le taux de convergence dans L? de la suite {¢*, k& > 0} produite
par l'algorithme USA. Notre résultat principal dans le Théoreme 6.3.1 donne explicitement
a > 0 tel que pour une constante C, > 0 on a pour tout k£ > 0

E{Hqﬁk_(b*

2:| < Ca')/l?- (4'5>

Un controle de la forme ~;* a été motivé par des résultats similaires dans le cas de dimension
finie ou typiquement l’erreur carrée de SA est d’ordre O(~), c.a.d. o =1 (voir par exemple
[Duf97, Chapitre 2]). Dans les résultats de dimension finie sur le taux de convergence de
SA, la vitesse de convergence dépend uniquement de la suite de pas ;. Dans notre cadre,
I'exposant « dans (4.5) va dépendre de fagon non triviale du modele, de la régularité de
¢*, du choix des fonctions de base et des parameétres de 'algorithme USA. La connaissance
de cette dépendance joue un rdle important dans le réglage correct de l'algorithme afin de
garantir la convergence dans L? avec le meilleur taux possible, étant donné le modéle. On
montre comment les résultats obtenus justifient 'optimalité du choix heuristique de la vitesse
de croissance de dimension dans la Section 6.3.2. Encore une fois, on conclut que les travaux
précédents sur le SA en dimension infinie ne peuvent pas étre appliqués a ’analyse de taux
de convergence de USA, voir I'introduction du Chapitre 6. Cela souligne la nouveauté de
nos résultats.

En dehors de la quantification d’incertitudes, notre approche peut étre appliquée a
I’analyse de sensibilité par rapport a €, ou la quasi-régression dans le sens de reconstruction
compléte d’une fonction, par exemple dans le contexte du calcul de Monte-Carlo imbriqué
qui comprend une fonction intérieure non linéaire 6 — ¢*(6).
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Chapter 1

Optimal discretization of stochastic
integral driven by general Brownian
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1.1 Introduction

Statement of the problem. In this work we consider the problem of finding a finite

sequence of optimal stopping times 7" = {0 =71 < 7" < -+ < T§» = T'} which minimizes

T
the renormalized quadratic variation of the discretization error of the stochastic integral

ZTL

S

:/0 o(t, 1) - dSi— S w(ry, Sen )+ (Serns — Sen ), (L.1.1)

n
Ti—1<8
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where S is a d-dimensional continuous Brownian semimartingale and v(t, z) is a R%valued
continuous function. Here T' € (0, +00) is fixed. The number of stopping times N is allowed
to be random.

The almost sure minimization of Z7 is hopeless since after suitable renormalization and
under some mild assumptions on the model, Z7. weakly converges to a mixture of Gaussian
random variables (see [Roo80][KP91][JP12]). Alternatively we aim at minimizing a.s. the
product

N (Z™)p. (1.1.2)

The choice of this minimization criterion is inspired by the fact that in many particular
cases with deterministic discretization times, we have E ((Z")r) ~ Const/N7 as Nj — +o0.
For example, in the one-dimensional Brownian motion case with v(¢,z) = x the value of
E((Z™)r) for the regular mesh of size n may be calculated exactly and is equal to 5-. For
more general S and v satisfying fractional regularity conditions [GG04], the error E((Z")r)

is still of magnitude Cst/n by appropriately choosing n deterministic times on [0, T].

Background results. The problem of optimizing the discretization times was initially
considered in a different framework: simulation of diffusion processes. In [HMGRO1] the
authors study the optimal discretization times for the simulation of a one-dimensional dif-
fusion X via the Euler/Milshtein schemes, where the discretization times adapt to the local
properties of every single trajectory. They consider three different schemes and analyze their
Ly errors (in time and w):

a) A simplified Adaptive scheme X i, for which the sequence of discretization times (7;)1<i<y
is such that each 7; is a measurable function of the previously simulated values of the
Brownian motions W, ..., W,, |, and Euler and Milshtein schemes with two appropriate
time scales are combined to approximate X. This method is of varying cardinality since
the number v of times is random. Observe that (7;); are stopping times but they belong to
the subclass of strongly predictable times (see [JP12, Chapter 14]), along which moments
of martingale increments are easier to compute.

b) An Adaptive scheme )A(;‘L with discretization times of fized cardinality. To control the
number of times, a first monitoring of an approximation of X is considered in order to
decide where to refine the discretization whilst maintaining a given number of time points.
Therefore, the discretization times are somehow anticipative and they are not stopping
times.

c) An Adaptive scheme Xy, with path-independent step-size Control, as a variant of X;‘L where
the monitoring is made in mean and not on the specific path X to simulate.

In [HMGRO1, Theorem 1], the authors prove the asymptotic superiority of X B over the two
other schemes and [HMGRO1, Theorem 2] states the asymptotic optimality of each scheme
within its own class. For the latter optimality result, the criterion used for the optimization is
the renormalized La-error. Despite the similarities between our current work and theirs, there
are significant differences that we shall stress. First, we consider discretization of stochastic
integrals and not of diffusion processes, therefore the objectives are quite different. Second,
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we study the case of general multi-dimensional continuous Brownian semimartingale whereas
[HMGRO1] handles the case of diffusion in d = 1 and [MGO02, Chapter I1I] deals with d > 1
under commutative noise assumption. Third, we allow optimization over a quite large class
of stopping times, see examples of Remark 1.2.2 illustrating this fact.

Besides, the study of minimization problems for stochastic integral discretization has
been initiated by [Fuklla] in dimension d = 1, but instead of (1.1.2) the author considers a
criterion in expectation for both terms, i.e. E (N7)E ((Z")7). However, if n — 400 denotes
an asymptotic parameter (defined later), observe that

2
liminf E(NHE ((Z™ > lim inf |E N Z™ 1.1.
’égl-il-go ( T) (< >T) Cauchyfsamarz ineq. 7121"1}010 { < T< >T>] ( 3)
2
> E lim inf N2 (Z™ . 1.14
Fatou lemma [ (\/”_H‘OO T< >T>] ( )

Since the solution to the problem of a.s. minimizing (1.1.2) exists (see Theorem 1.5.2) and
is such that N7 and (Z")r are asymptotically proportional (see the limits (1.5.14) and
(1.5.15)), the above inequalities can be turned into equalities (with a little of technical work)
and therefore, we get for free a solution to minimizing asymptotically E (N#)E ((Z")7),
however with substantially more information.

The pathwise minimization of (1.1.2) has been addressed in a multi-dimensional setting
d > 1, in [GL14a]: the authors assume that S is a local martingale and the lower bound is
achieved under stringent conditions of v (essentially its Jacobian matrix D,v is invertible).
These assumptions are restrictive and we aim at relaxing the hypotheses and strengthening
the optimality results. This requires to develop new arguments presented in this work.

As an extra motivation for this theoretical study, we refer to the recent work of Hairer et
al. [HHJ15], which highlights that discretization schemes for stochastic differential equations
using deterministic grid may surprisingly converge very slowly in Le-norm. Actually any
slow rate is possible [JMY16]. These amazing results give a strong incentive for studying
discretization problems with stochastic grids and pathwise criterion. Applications of the
current results to pathwise-optimal discretization of SDEs are left to future research.

Our contributions. In the current work, we prove optimality results in a much larger
setting than previously afforded in the literature.

e First, we allow S to be a general Brownian semimartingale S = A + M, while in
[GL14a] S is essentially a local Brownian martingale (A = 0, M = [; 0sdB;). Actually,
considering the existence of the finite variation term A modifies a priori significantly
the definition of admissible discretization strategies (see the definition (AZ“) later)
and restricts the set of available tools to analyze them. Our first contribution is to
establish that admissible strategies for the semimartingale S and for its local martingale
part M are the same: see Theorem 1.3.4. This is a non-trivial result. This allows to
transfer a priori estimates available in the martingale case (Lemmas 1.3.2 and 1.3.3)
to our extended setting, this is instrumental for the subsequent analysis.
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Second, the martingale part of S can be degenerate in our setting, whereas a stronger
a.s. ellipticity (on o) is considered in [GL14a]. This allows to consider partially degen-
erate models like

~ t ~
s, = (8., / S,ds)
0

or other SDEs with vanishing diffusion coefficient (see Subsection 1.5.3 for examples).
Also D,v(t,S;) may be not invertible in our work. This second set of improvements
requires a quite delicate analysis, which constitutes the core of this work. Actually
the possible degeneracy lets us lose some continuity property (in particular because we
need to consider the inverse o ~!) and some convergence properties. To overcome these
issues, we assume that in a sense, oy and D,v(t,S;) are not zero simultaneously: for
a precise statement, see Assumption (H¢) or a weaker Assumption (Hy). These are
quite mild conditions.

The ability to treat the non-elliptic case is fundamental for applications as well:

(a) Regarding financial applications, see for example [Fuklla, GLI14a], minimizing
(Z™)r is related to better hedge market risks. In that context, the treatment
of degenerate case appears to be important. Though the covariance matrix of
a group of asset returns is usually non-degenerate, it may have some very small
eigenvalues [BP11]. The reason is that typically a large portfolio of financial
assets is driven by a smaller number of significant factors, while the other degrees
of freedom represent low-variance noise. Thus the inversion of the covariance
matrix is often seen as undesirable by practitioners, if no robustness analysis is
provided. Our study of the degenerate case justifies in a way the robustness of
the optimal discretization algorithm when the diffusion coefficient is degenerate
or close to being degenerate.

(b) Some important examples of diffusion models with degenerate diffusion coefficient
come as well from random mechanics, see [KS12] for an overview. Typically, a
body is modeled by its position X and its velocity V: it is subjected to random
forces, so that due to the second Newton law of motion, its dynamics writes

Xy = Xo + [ Vids, (115
Ve =Vo + Jy (X, Va)ds + fy (X, V)W h
In [LPCI1], these equations describe the response of structural systems sub-
jected to severe environmental loads (like earthquakes, strong winds, recurrent
waves. .. ). The authors study examples like seismic-excited ten-storey building
(see [LPCI1, Section 5]) where they propose to optimally control the structure
by activating tendons, in order to compensate external forces. They derive a
continuous-time optimal control, but in practice, only discrete-time controls can
be applied. Our study gives a theoretical framework to determine when to apply
the controls in order to minimize the deviation from optimally-controlled build-
ing.

In [Tal02], the author studies the approximation of stochastic Hamiltonian sys-



1.1. Introduction 53

tems of the form (1.1.5). The author emphasizes the technical difficulty of the
analysis coming from the polynomial growth of the coefficients and the degeneracy
of the infinitesimal generators. In our context of optimal discretization problem,
our a.s. analysis allows for arbitrary growth conditions on the coefficients.

e Third, we provide a strategy 7" attaining the lower bound, while in [GL14a], only a
p-optimal strategy (with p small) is designed. Informally, the natural candidate for
optimality is a sequence of hitting times by S of random ellipsoids which characteristics
depend on D,v and S. However, in general and in particular because of the degenerate
setting on o, and D,v(t,S;), this strategy is not admissible (ellipsoids may be flat
or infinite). Alternatively, we prove that a suitable perturbation makes the strategy
admissible, without altering its asymptotic optimality.

Our main result (Theorem 1.5.2) states that an optimal strategy is of the form

T8 =0,

= i {t > Ty (S, = S JTASY (S = Sop,) 2 8} AT

T i—17 =

for a sequence &,, — 0, where A§”) is a suitable perturbation of A; := (az )TXta;r (where M
is the pseudo-inverse matrix of M), and X; is the symmetric non-negative definite matrix
solution to the equation

2Tr( X)X 4+ 4X? = o] (Dyv(t, Sy)) Tovo] Dyol(t, Sy)oy.

2
T
Additionally the asymptotic lower bound to (1.1.2) is ( / Tr(Xt)dt> .
0

Organisation of the chapter. In Section 1.2, we define the model and the admissible
strategies under study. In Section 1.3, we state and establish crucial properties of admissible
strategies. The minimization of (1.1.2) is studied in Section 1.4, and designing an optimal
strategy is made in Section 1.5. We also present a few examples and a numerical experiment
in Subsection 1.5.3. Technical results are postponed to Appendix.

Notation used throughout this work.

e We denote by z-y the scalar product between two vectors z and y and by |z| = (z- $)%
the Euclidean norm of x. The induced norm of a m x d -matrix is denoted by |A| :=

SUPgeRrd:|z|=1 |A$,

e The transposition of a matrix A is denoted by AT; we denote by Tr(A) the trace of a
square matrix A; Idg stands for the identity matrix of size d.

o SUR),S4(R) and S¢, (R) are respectively the sets of symmetric, symmetric non-
negative definite and symmetric positive-definite d x d matrices with real coefficients.
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e For A € S4R) we denote A(A) = (A1(A),..., q(A)) the eigenvalues of A placed in
decreasing order, we set Apin(A4) := Ag(A4) and Apax(A) := A\ (A).

e We denote by Diag(ay, ..., aq) the square matrix of size d with diagonal entries aq, . . ., aq.

e For the partial derivatives of a function f(t,z) we write

O (12), Dansit.) = Lty D2, fita) = 0T

th(tx)za ) ) 87.731 ) ) T :8%8:6]@

, ).

e For a R%valued semimartingale S we denote (S); its matrix of cross-variations
(5% 57t )1<ij<d-

e We sometimes write f; for f(¢,S;) where S is a semimartingale and f is some function.

e For a given sequence of stopping times 7", the last stopping time before ¢t < T is defined
by ¢(t) = max{7}' : 7 < t}. We omit to indicate the dependence on n. Furthermore
for a process (ft)o<i<r we write Af; := fi — fy—). Besides we set A :=t—¢(t—) and
AT =11 — T .

e () stands for a a.s. finite non-negative random variable, which may change from line
to line.

1.2 Model and strategies

1.2.1 Probabilistic model: assumptions

Let T > 0 and let (Q,F,(Ft)o<t<t,P) be a filtered probability space supporting a d-
dimensional Brownian motion B = (B%);<;<q defined on [0,T], where (F;)o<i<r is the
P-augmented natural filtration of B and F = Fp. Let

(o, 0,) € (%, 1] % (0,1] (1.2.1)

be some regularity parameters and let (S¢)o<i<7 be a d-dimensional continuous semimartin-
gale of the form
Sy = Ay + My, 0<t<T, (122)

where the processes A and M satisfy the following hypotheses.

(H,4) The process A is continuous, adapted and of finite variation, and satisfies

|At—As| < C()|t—8|a Vs, t € [O,T] a.s.. (HA)
(Hps) The process M is a continuous local martingale of the form

t
M, = / odB,, 0<t<T, (Hy)
0
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where ¢ is a continuous adapted d x d-matrix valued process, such that the value oy is
a.s. non-zero for any ¢ € [0, 7], and

loy — o] < Colt —s|%/2 Vs te0,T] as.

Furthermore, we assume that the function v, involved in (1.1.1), is a C%2([0,T) x RY)
function with values in R%. For applications like in [GL14a], we shall allow its derivatives
in uniform norm (in space) to explode as ¢ — 7T, whilst remaining bounded a.s. in an
infinitesimal tube centered at (¢, S¢)o<t<7. This is stated precisely in what follows.

(H,) Let D € {D,;, D, ,D;:1<j,k<d}, then

TjT?

P(lim sup sup |Du(t,x)] < +4oo|=1. (H,)
0=00<t<T |z—S;|<6

1.2.2 Class 729 of admissible sequences of strategies

Now we define the class of strategies under consideration. As the optimality in our problem is
achieved asymptotically as a parameter n — +o00, a strategy is naturally indexed by n € N:
a strategy is a finite sequence of increasing stopping times

2

Thi={g =0<--<7' <.+ <7yn =T}, with N <+00a.s..

We now define the appropriate asymptotic framework. Let (,,)nen be a sequence of positive
deterministic real numbers such that

e < oo
n>0

In the following, all convergences are taken as n — +o0o. The above summability enables
to derive a.s. convergence results: alternatively, had we assumed only ¢, — 0, using a
subsequence-based argument (see [GL14b, Section 2.2]) we would get convergences in prob-
ability.

On the one hand the parameter €,, controls the oscillations of S between two successive
stopping times in 7.

(AY“) The following non-negative random variable is a.s. finite:

sup [ &,2 sup sup |St—STin_1|2 < +o0.
n>0 L<i<Np te (e |70

Here the lower argument in the assumption (A®°) refers explicitly to the process at hand.
On the other hand ¢,,2°N (for some py > 1) upper bounds up to a constant the number of
stopping times in the strategy 7.
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(An) The following non-negative random variable is a.s. finite:

sup(e2°% N) < +oo.
n>0

In the above, py is a given parameter satisfying

0.\ 4 (1
< i _ — . 2.
1_,0N<<1+2)/\3/\(2+a> (1.2.3)

where (o, 0,) are given in (1.2.1).

Definition 1.2.1. A sequence of strategies T := {T" : n > 0} is admissible for the process
S and the parameters (en)nen and pn if it fulfills the hypotheses (AY) and (An). The set
of admissible sequences is denoted by 7'Sadm'.

The larger py, the wider the class of strategies under consideration.

Remark 1.2.2. The notion of admissible sequence is quite general, in particular, it includes
the following two wide families of random grids.

i) Let p € (0,1) and let (en)n>0 be a deterministic sequence such that ,~¢e% < 400.
Consider T = {T"}n>0 where each T" = (7]')o<i<ny is a sequence of stopping times
(with N3 possibly random) and such that

2 2
C 1" < min AT]' < max A71]' < Cel™, n>0, a.s.,
1<i<Np 1<i<Np

for an a.s. finite positive random variable C > 0. This example contains in particular the
sequences of deterministic grids for which the time steps are controlled from below and
from above (like those of [HMGRO01] used for building X;* mentioned in introduction),
and for which the step size tends to zero fast enough.

Let us check (A%“)and (Ay). First, note that S is a.s. Hélder continuous on [0,T]
with exponent %: this is a consequence of (Hy) for the finite-variation component A

and of [BY82a, Theorem 5.1] for the martingale component M under the assumption
(Hys). Therefore, a.s. for each n >0
1—p 1-p
sup sup  |S¢— S 1| < CS{ max AT{‘} P < C0CT gy,
L<i<NRte[r ] " Lsishz

Furthermore,

2
NZ <TCep "7

IA

minlSiSN; ATl-n

so that (An) is verified with 2py = 2(1 — p) provided that we take p small enough
to satisfy the upper bound (1.2.3). Thus the sequence of strategies T is admissible for
(en)n>0 and pn given above.
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it) Consider a sequence of adapted random processes {D} : 0 < t < T'} where each D} is
an open set such that

B(0,Che,) C D C B(0,Ca¢ep)

for some a.s. finite positive random variables Ci,Cs, here B(0,7) denotes the ball
centered at 0 with radius r. Here again the deterministic sequence (en)n>0 is such that
> ns06n < +00. Define the sequence of strategies T = {T"}n>0 with T™ = (1")o<i<nz
as follows: 73 =0 and for i > 1

Tin = inf{t > Tl'n,l : (St - ST?—l) ¢ D:—L'nfl} AT

In other words, we consider exit times of random sets of size e,,. The assumption (AF*)
follows from the definition of T":

sup sup  [S; — Srn | < Coep.
L<i<Np te[r] ,77]

Further to check (An), we write (using Proposition 1.3.9)

CPelNf < Ciel 4+ Y |AS=]> = Tr((S)r) <400  as.

n—-+4o0o
T <T

This proves the admissibility of T. A particular case is the ellipsoid exit times, see
[GL1ja, Proposition 2.4].

1.3 General results for admissible strategies

This section gathers preliminary results, needed to establish the subsequent main results. In
Subsection 1.3.1, we recall without proof some estimates about the mesh size sup; ;< N AT
of the time grid 7" simultaneously for any n, as well as bounds on (local) martingales
depending on n. This is preparatory for Subsection 1.3.2 where we establish an important
result: in our setting, admissible sequences of strategies for S and M are the same. Last in
Subsection 1.3.3, we establish the a.s. convergence of weighted quadratic variations under
some mild assumptions, which are crucial to derive our new optimality results.

1.3.1 Control of A" and martingale increments

We start from a simple and efficient criterion for a.s. convergence of continuous local mar-
tingales.

Lemma 1.3.1 ([GL14a, Corollary 2.1]). Let p > 0, and let {(K})o<i<T : n > 0} be a
sequence of continuous scalar local martingales vanishing at zero. Then

Z<K”>1}/2 <400 as. = Z sup |K{'|P < 400 as..
n>0 n>0 0St<T

The useful application is the sense =: by controlling the summability of quadratic varia-
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tions, we obtain the non trivial a.s. convergence of supg<,<7 |K{*| to 0. This kind of reasoning
is used in this work. o

The next two lemmas yield controls of A7; and of martingales increments for an admissible
sequence of strategies. In view of the Brownian motion scaling property one might guess that
an admissible sequence of strategies 7 = {7 : n > 0} yields stopping times increments of
magnitude roughly equal to £2. More generally, we can study in a similar way the increments
of martingales. Here we give a rigorous statement of these heuristics.

Lemma 1.3.2 ([GL14a, Corollary 2.2]). Assume (Hys) and let T = {T" : n > 0} be a
sequence of strategies. Let p > 0, then the following hold:

(1) Assume T satisfies (ASY), then

sup(e?™t sup A7T]) < 400 as.
n>0 1<i<Np

(i) Assume T satisfies (ASF)-(AnN), then

sup(e?? sup A1) < 400 as..
n>0 1<i<NZ

Lemma 1.3.3 ([GL14a, Corollary 2.3]). Assume (Hjs). Let ((K[")o<t<T)n>0 be a sequence
of R%-valued continuous local martingales such that (K™); = fg kirdr for a measurable adapted
K™ satisfying the following inequality: there exist a non-negative a.s. finite random variable
Cy and a deterministic parameter 8 > 0 such that

0<|r" < Co(|AM|? +1]A,1%)  YO<r<T, ¥Yn>0, as.

Finally, let p > 0, then the following assertions hold.
(i) Assume T satisfies (AT, then

sup(er~1F0/2 qup sup |AK[']) < 400 a.s..
n>0 1<i<Np 7 <t<rh

(i) Assume T satisfies (ASF)-(AnN), then

sup(e?~ 10 gup sup |AK]) < 400 a.s..
n>0 1<i<Np 7t <t<t]*
1.3.2 The admissible sequences of strategies for S and M coincide

We now aim at proving the following Theorem.

Theorem 1.3.4. Let S be a semimartingale of the form (1.2.2) and satisfying (H)-(Hys).
Then a sequence of strategies T = {Tp : m > 0} is admissible for S if and only it is admissible
for M with the same parameter py: in other words, if T satisfies (An),

(A%) & (AZ®).
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Rephrased differently, defining admissible sequence of strategies based on the martingale
M is robust to perturbation by adding to M a finite variation process A, satisfying a-Holder
regularity with a > 1/2.

Proof. For convenience in the proof, we adopt the short notation

|AT" | := sup AT/, |AU oo := sup sup AUy,
1<i<NP 1<i<Np 77 <t<rn

for any process U.

Proof of =. Suppose first that 7 = {7, : n > 0} is admissible for S. Let us prove that it
is admissible for M, i.e. the assumption (A§}*) is satisfied. We proceed in several steps.

> Step 1. Preliminary bound. From |M; — M| < |S; — Ss| + |Ar — As| and (H4), we get
AMlso < [AS|oo + CoAT", < Colen + [AT"). (13.1)

Using It6’s formula and (Hj;), we obtain that for any 0 < s <t < T

0<t—s<Cp! /t Te(oy0 T )dr = C;! Ed: (59}, — (§9),) (1.3.2)
s j=1

_ o Ed: ((sg' gy - 2/: (59 — sg)dsgj), (1.3.3)

) . (1.3.4)

< Coen.- (1.3.5)

where Cp = inf,c(o 11 Tr(oyo]) > 0 a.s.. Hence

d t ) ) t ) .
A<t [ Coe2 123 / ASIdAI / ASIAM)
= ot o(0)

d
+2>°
j=1

Using that A is of finite variation and (AZ*), we get the crude estimate

d

D

J=1

t . .
ASIdA
o(t)

) 2 9 . .
Now consider the local martingale K; = &}, ( f(f ASIdM ) for some p > 0. We have

¥
2

, T \:
Do (K™Myg =3 e (/ |AS£|2d<MJ>r) <Co) en<too s,
0

n>0 n>0 n>0

which by Lemma 1.3.1 implies that 3, ~,supy<;<r |K["/|P < 400 a.s., and thus we have
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SUP,,>0 SUPg<i< [K;7 | < 400 a.s.. This reads

sup
0<t<T

t , . 1-2
/ ASIAMI| < Coen ? = Coel™, (1.3.6)
0

where § = 2/p is an arbitrary positive number. Plugging this and (1.3.5) into (1.3.4) yields
|AT" |00 < Co(e2 4+ &n +e57%) < Coep™. (1.3.7)

The above is analogous to Lemma 1.3.2-(i) but under the assumption (A%“). Combined
with (1.3.1), we then deduce

|AM | < Coe21=9) (1.3.8)
for any given § € (0,1).
> Step 2. We prove the following lemma, which gives the basis for a continuation argument

(Step 3): once we have estimated |AM |, with some order w.r.t. &,, we obtain automatically
a slightly better order, up to reaching the order 1, as required by (A$F).

Lemma 1.3.5. Suppose that for some 8 > 0

sup (anﬁ sup sup \AMt]2)<+oo a.s.. (1.3.9)
]

n>0 1<i<Np te(rl o

Then for any p > 0

d
sup (En(ﬁp) sup sup ZA(Mj>t> < 400 a.s..

n0 IISNR te(r | 77 21

Proof. Let p > 0. Consider the following two sequences of processes:

d p

Z A<Z\4j>7'i”/\t

=1

Utn — 572;61%2/)1\1 Z

T <t

V= 5721—Bp+2mv Z sup |AM,|?P.

<t SE(T 1, TN

Y

We aim at proving that »°,-qUf < +oo a.s. using Lemma 1.A.1 in Appendix. First,
> n>0 V7 converges a.s.: indeed using (Ax) and (1.3.9) we obtain

Z Vi < Cy Z g2=Prt2on N1 sup sup  |AM|*P < Cp Z e2 < +oo.
n>0 n>0 I<iSNE se(r] 7] n>0

Second observe that for any n, ¢t — V" is a.s. non-decreasing. Last it remains to verify the
relation of domination of Lemma 1.A.1-(iii). Let k& € N, let 6 be defined as in the quoted
lemma. On the set {7 ; < t A6} from a conditional version of the multidimensional BDG
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I ) |
i—1

p
‘]:Tinl))

Hence by Lemma 1.A.1, we obtain that 3, -, Uy converges a.s. and thus sup,,~, Uy < 400
a.s..

inequality we have

d

Then it follows that

+oo
E (Ut%k) =y PPN YR (1rf_1<m9kE (

d
Z A(M ) znptno;
J=1

P
“FT{L—l) < ( sup |AMs,2p

T <SSTIAEAO)

d
Z A<J\4‘7 >T?At/\9k
i=1 j=1

< cpE (V;CL\G;C> .

P
Now write 2~ /P+2en SUP1<j<Np SUPte(rn | ] E?Zl A<M3>t) < U#, which implies

d
sup E%QJ“Q’)N)/]”_B sup sup Z A(M?)| | < 40 a.s..
n>0 1<i<NF te(r] 7] j=1
To conclude, choose p = % to get the desired result. O

> Step 3. Continuation scheme. Take 6 > 0, as in (1.3.8), set dg = a(l —0) and pg =
200 — 1)d
M > 0. Consider the sequence (dy,)m>0 given by dp11 = 2ad,, — apy for m > 0.

Assur%e for a while that
dm+1 — dm > apo, (1.3.10)

and let us show by induction that, for any m > 0,
|AM | < Coemin(dms1), (1.3.11)

The case m = 0 stems directly from (1.3.8). Now suppose that (1.3.11) holds for m. If
dm > 1, since dp+1 > dp, owing to (1.3.10), (1.3.11) is valid for m + 1. If d,,, < 1, then we
have |[AM | < Coedm and using Lemma 1.3.5 we obtain

< Cosidm_po .

d
> A(MY)
j=1

oo

Consequently (1.3.2) gives |AT"|o < Coe2@m =0 which, combined with (1.3.1), yields
|AM|oo < Cosgin(l,a@dm—po)).

This finishes the proof of (1.3.11) for m + 1. It remains to show (1.3.10) by induction. For
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m = 0 we get d; = 2ady — app and thus

2% —1)dy (2a —1)d
dl—dO:(Qa—l)do—(a2)0:(a2)0:ap0.

Suppose that (1.3.10) is true for all m < k and let us extend to m = k. We write

2a —1)dy

20 —1)d
st — dyy = (20— 1)dy, — . (2a—1)do

> (2 — 1)dg — 5

= o,

using that d,,, > dg by the induction assumption. We are done.

> Step 4. Conclusion. In view of (1.3.10), (dm)m>0 becomes larger than 1 for some m, for
which (1.3.11) simply writes |AM | < Coer. (ASY) is proved. O

Proof of <. Now suppose that the sequence 7 is admissible for M. Let us prove the
admissibility of 7 for the process S. Again it is enough to verify the assumption (AZ*).
Similarly to the decomposition (1.3.1), we have

|AS|oo < [AM | + |AA|oo < Colen + |AT™S).

From Lemma 1.3.2-(ii), for any v > 0, we have |A7"|o, < Cpe2™7 a.s.. Since a > 1/2, we can
choose v such that (2 —)a > 1 and for such v we deduce |AS|w < Co(en +€$L2_7)O‘) < Coen.

The proof is complete. O
Remark 1.3.6.

e Theorem 1.3.4 implies that if a sequence of strategies fulfills (An), we do not need to
emphasize anymore the dependence of the assumption (A%“) on a particular process
M or S; in that case, we will write simply (A°) and will refer to admissible sequence
of strategies ToIm- ;= Tadm. — adm.

e In addition, we can use all the results for admissible sequences of strategies based on
the local martingale M and (ASY") (as those from [GL1ja]): in particular, for any
admissible sequences of strategies (for M or S), we have SUD << N |ATP| < Coe2™
for any ~v > 0.

A direct consequence of Lemma 1.3.2-(ii), (H4) and Theorem 1.3.4 is the following.

Corollary 1.3.7. Let S be a semimartingale of the form (1.2.2) and satisfying (H)-(Hys).
If T € T29m then for any p > 0,

sup sup  |AA] < CoeZor,
1<i<Np 7t <e<7]*
1.3.3 Convergence results for quadratic variation

We first recall a convergence result about weighted discrete quadratic M-variations corre-
sponding to 7 = {7",n > 0}.
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Proposition 1.3.8. [GL1ja, Proposition 2.3] Assume (Hys) and let T be a sequence of
strategies satisfying (ASY"). Let (Hy)o<t<T be a continuous adapted d x d-matriz process such
that supycpo ) |Hi| < +00 a.s., and let (Ki)o<i<r be a RY-valued continuous local martingale

such that (K); = [§ kdr with Supye(o,1) [kt| < +00 a.s.. Then

T
> AKLHm AKon %3 / Tr(Hyd(K)y).
T <T ' 0

We now establish an extension to the semimartingale S.

Proposition 1.3.9. Let S be a semimartingale of the form (1.2.2) and satisfying (Ha)-
(Hpr), and let T be a sequence of strategies satisfying (AF“). Let (Hy)o<i<r be as in
Proposition 1.3.8. Then

T
> ASTHy ASy %% [T,

T <T

Proof. From It6’s lemma, the difference between the above left hand side and the right one
is equal to

/ AST (Ho) + HY dSt+/ (H () — Hid(M)y). (1.3.12)

Due to (Hjy), the second term is bounded by Cj f(;f |H () — Hy|dt: it converges to 0 by an
application of the dominated convergence theorem. Indeed, H is continuous and bounded
on [0,7) and the mesh size goes to 0 under (AZ“) (see (1.3.7) which is established under
(A¥*) and without using (Ay)). Next, decompose the first term of (1.3.12) into stochastic
integrals w.r.t. A and M. On the one hand, A is of finite variation, thus

/ AS](H, o+ H (t))dAt < Cp sup _sup |AS,| sup |[Hy| %% 0 (1.3.13)
1<iKNR 7 <t <7l t€[0,T)

in view of (AZ**). On the other hand, f(;f AST(H ) + H;—(t))th 2% 0 by proceeding very
similarly to the proof of (1.3.6). O

In the next theorems we identify an important admissible sequence of strategies, namely
hitting times by S of random ellipsoids parametrized by a matrix process (H)o<t<7 (oI a
perturbation of it). This extends [GL.14a, Proposition 2.4] to hitting times of S and to possi-
bly degenerate H. This more general construction of ellipsoids is a significant improvement,
and crucial for the subsequent optimality results.

Theorem 1.3.10. Let S be a semimartingale of the form (1.2.2) and satisfying (H4)-(Hyy),
and let (Hi)o<i<T be a continuous adapted symmetric non-negative definite d x d matriz
process, such that a.s.

0< mf )\mm(Ht) < sup Amax(Hi) < 400.
0< 0<t<T
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The strategy T" given by

T8 =0,
{T-" = inf{t > 71y (Sp — S )T Hpn (Sp— S ) > e} AT,

1 1 i—1 i—17

defines a admissible sequence of strategies.

The proof is given later. The condition supy<;7 Amax(H;) < +00 ensures that none of
the corresponding ellipsoids & := {z" Hyx < c}iwith ¢ > 0 are flat in some directions, it
allows to derive a bound on the number of hitting times N} as in (A ). The non-degeneracy
condition Apin (Hy) > 0 (i.e. & is bounded) is important to control the increments AS as in
(AZ“). Without this latter condition, we need to perturb the above sequence of strategies.
To this purpose, let x(.) be a smooth function such that

Loo,1/2) < X() < (oo (1.3.14)
and for p > 0 set x,(z) = x(z/p).

Theorem 1.3.11. Let S be a semimartingale of the form (1.2.2) and satisfying (H)-(Hys).
Assume that pn defined in (1.2.3) is such that py > 1, and let § € (0,2(py — 1)]. Let
(Hi)o<t<T be an adapted symmetric non-negative definite d x d matriz process, such that

(i) there exists a random variable Cy, positive and finite a.s., such that
Amax(Hy) < Cg, Vte[0,T), as.

(notice that H is not necessarily continuous).

Define a sequence of processes H™ by
Ht(n) = H; + EfLXs;SL ()‘min(Ht)) Idg .

Then the strategy T™ defined by

70 =0,
1.3.15
{7’-” =inf{t > 7", : (St — ST{LI)TH(Z) (Sp — Spn ) > 2OV AT, ( )

(2 T,

i—1 =17

forms a sequence T = {T" : n > 0} satisfying the assumption (AF*). If in addition the
following convergence holds
(i)
T
S ASTHua ASp 25 / Te(H,d(M),),
i i— i 0

T <T

then the sequence T satisfies also the assumption (Ay), that is T € T4m,
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Proof of Theorem 1.3.11. First let us prove that 7, is a.s. of finite size for any n € N. The
definition of Ht(n) implies that

/\maX(Ht(n))g Cp +suped < +oo, Vte[0,T) as.
n>0
Define the event N := {w : N}(w) = +oo}. For w € N the infinite sequence (77*(w)) is
increasing and bounded, thus converges. Hence on N N Eg, with

Es = {(St)e[o,r is continuous and Oy < +o0},

we have

T

qi—

0< €2L+5 = (Sri” — Spn

i—1

THS) (S — S )

< (CH +sup€fl> |Sn — 57711|2 by,

n>0 ¢

which is impossible. Hence P (N™ N Eg) =0, but P(Eg) = 1 thus P(N™) = 0.

Next we show that T satisfies (AZ“). From the definition of Ht(n) it is straightforward
that

56
L. Vtel0,T).

)\min(Ht(n)) Z ?

Thus

£,2 sup sup  |AS;?

n
I<i<Np 77 <t<rh

-1
< < inf )\min(Ht("))> e,? sup sup (AStTHiﬁ_)IASt) < 2e,0e,2e2H0 = 9,

-~ \telo1) 1<i<Np 7 <t<rP
which validates the assumption (AZ“).

Finally assume that in addition (77) holds and let us show that the sequence of strategies
T satisfies the assumption (Ay). Writing N7t =1 + Yi<icnp—11 and using 2+ 6 < 2py,
we observe that (for n large enough so that €, < 1)

EXNNG < e2FONG <2t 4 3 ASTHm ASm+ > AST(HS — Hen )AS..
T <T T<T

(1.3.16)

Now by (ii) we have

T
S ASTHon ASn ™5 / Tr(H,d(M)) "S 400
m<r 0

(the contribution ¢ = N7 does not change the convergence). Besides from the definition of
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H®™ we get

> ASL(HY, — Hep

T, i—1

W JAS| <ed YT |ASm? 20, (1.3.17)

T, <T T <T

using § > 0 and Proposition 1.3.9 (valid since (AF“) is in force now). We have proved
that the r.h.s. of (1.3.16) converges a.s. to a finite random variable, which completes the
verification of the assumption (Ay). O

Proof of Theorem 1.3.10. This is an adaptation of the previous proof. First, with the same
arguments we prove that 7, is a.s. of finite size for any n € N. Second, the verification of
(AY“) stems from

-1
-2 2 o , ‘
€,” sup sup  |AS" < (tel[I&fT) )\mm(Ht)>

1<i<NR T <t<rP
Third, for n large enough so that €, < 1, we write

ENNE <epNf <en+ > ASHpr AS
T <T

and we conclude to (Ay) using Proposition 1.3.9 and the continuity and boundedness of
H. O

1.4 Asymptotic lower bound on the discretization error

Let S be a semimartingale of the form (1.2.2) and let v be the function appearing in the
discretization error (1.1.1), and satisfying (H,). The main result of the section is Theorem
1.4.2: this is an extension to the semimartingale case of the asymptotic lower bound on the
discretization error, proved in [GL14a, Theorem 3.1] in the martingale case.

The discretization error Z™ defined in (1.1.1) can be decomposed into a martingale part
and a finite variation part:

zi= | (0t 1) — v(6(t), o)) - AM; + / (0t 1) — v(6(1), Syqr)) - dAy.

The analysis is partially derived from a smart representation of (Z™)p as a sum of squared
random variables and an adequate application of Cauchy-Schwarz inequality. The derivation
of such a representation is based on applying the Ito6 formula to a suitable function and
identifying the bounded variation term. While it is straightforward in dimension one, a
multidimensional version of this result requires to solve the following matrix equation.

Lemma 1.4.1. Let ¢ be a d X d-matrix with real-valued entries. Then the equation

2Tr(z)z + 42 = cc' (1.4.1)
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admits ezactly one solution z(c) € S (R). Moreover, the mapping c — x(c) is continuous.

The proof of the above lemma directly follows from [GL14a, Lemma 3.1] applied for
(cc™)Y/? (i.e. the symmetric non-negative definite square root of cc'). Now we state the
main result.

Theorem 1.4.2 (Lower bound). Assume (Hya), (Hys), (H,) and let T be an admissible
sequence of strategies (satisfying (An) and (A°¢)). Let X be the continuous adapted sym-

metric non-negative definite matriz process solution of (1.4.1) with ¢ = o' (Dyv)To, i.e.

Xy = x(o] (Dyve)Toy), for 0<t<T. (1.4.2)
Then we have )
lim inf N7 (Z"™)p > (/ Tr Xt)dt> a.s..

n—-+4o0o

Proof. The martingale part of the discretization error can be written

s

/0 (U(t, St) - U(¢(t), S¢(t))) . th =: /0 ( xv¢( )ASt)th + Rn. (143)
Therefore the quadratic variation of Z™" is given by
T T T
(2" = /0 AST (Dyp()) TA(M )y Dy ASy + €.
T
_ /0 AM (Dyg() "M, Dyvgn AM; + € + €lb (1.4.4)
where
T T T
ey i= /0 AAT (Dyv500)) A (M) Dyvgey (AS) + AMy),

61 T <Rn>T + 2(/ ( zv¢(t)AMt) - d My, Rn>T
Now in the first contribution of (Z™)p in (1.4.4), we seek an expression involving only

the Brownian motion B and not the local martingale M: hence we replace AM; by 04;)AB;
and d(M); by U¢(t)0'(—z|;(t)dt, which leads to

<ZTL / AB J¢(t)<D U¢()) 0¢()J¢()D 'Ugb()U¢(t))ABtdt+eoT+61T+62T7
where
T T T T
ey ::/0 AM; (Dgvgr)) Aloroy ) Davgp AMdt

T
+ /0 (AMt + O'(b(t)ABt)T(Dqus(t))T0'¢(t)0':;)—( t) 331](]5( )(AMt — Ot )ABt)d
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Denote C; = o] (Dyv;)To;. We seek a smart representation of the main term of (Z")7 in the
form

T 2
> (ABLX;p ABp)? (1.4.5)

T <T

where X is a suitable measurable adapted symmetric d x d-matrix process. For such a process
X, the It6 formula on each interval [7)*,, 7] yields

T
Y (ABLXop ABpn)® = / AB[ (2 Tr( X)) X + 4X50)) ABdt
T <T 0
T
+4 / AB[ X sy ABAB] X 4y dB.
0
Now take X as stated in the theorem. Clearly X; € Sﬁ(R) owing to Lemma 1.4.1. The

continuity of the mapping ¢ — x(c) also ensures that X is continuous and adapted, as
o7 (Dyv)To is. Then a simplified representation of (Z™)r readily follows:

(Z"r= Y (ABLXs ABm) +efq+elr+esr+eir, (1.4.6)
i <T

where

T
ehp = —4 /0 AB[ Xy AByAB/ X 5ydBy.

Using Cauchy-Schwarz inequality and X; € Si(R), we obtain
2
Nit > (ABL.X;n ABm)*> | > ABL X ABmo| .
o <T ' mo<T

The process X; is a.s. continuous on [0,7), with sup;cjo ) |Xt| < +oo a.s., and thus the
assumptions of Proposition 1.3.8 are satisfied for (H, K) = (X, B). Therefore

T
S ABL X AB %5 / Te(X,)dt.
TZL<T 7 11— 1 0

To summarize we have obtained that

2
T
lim inf (NF(Z") — N (el r + elr + eBr + eir)) > (/ Tr(Xt)dt> a.s..
n_>+m b b b b 0

To complete the proof, it is enough to show that N%(e&T telrteyr+ eg’T) 2%0. In view

of the assumption (Ay) it is sufficient to prove that

e?Nelp 230 fori=0,1,2,3. (1.4.7)
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Contribution ey p. Owing to Corollary 1.3.7, we obtain immediately that
T
leo.r| < C'o/ |AA|(JASy| + |[AM;|)dt < Coelt2e=r,
’ 0

for any p > 0, which implies e, 2°¥ egp — 0 since py < % + o
Contribution e} p. To handle it, we need the following lemma; its proof follows that of
[GL14a, Lemma 3.2], with minor adaptations (see Appendix 1.A.1).

Lemma 1.4.3. Under the assumptions (Hy), (Hys), (Hy), (A%%) and (An), we have
274N (R y 23 0, where R™ is defined in (1.4.3).

Now to show that &, 2"V el r — 0, use the above lemma and (A) to get
N || < N (R 4+ 200 (")) = ofe2% ) + o(1) ™5 0.

Contributions e 1 and €3 . The proof is similar to that of [GL14a, Theorem 3.1], we skip
the details. O

1.5 Optimal strategy

1.5.1 Preliminaries, pseudo-inverses

Now our main purpose is to provide, in notation of Theorem 1.4.2, an optimal discretization
strategy, i.e. an admissible strategy 7 for which

T 2
lim Np(Z™qp = </0 Tr(Xt)dt> a.s..

n——+o00
Notice that an existence result is proved in [GL14a, Theorem 3.3], only under the conditions
that o is invertible, that v(¢,z) = Vyu(t, ) with
inf  Amin(D2 8.
odnf Amin(DZzu(t, St)) >0 a.s
and that A = 0 (martingale case). Our aim here is to relax these three conditions, and to
extend the ideas of this aforementioned theorem to our general setting.
Actually, the main difficulty comes from the possible degeneracy of o. First recall the

definition and some properties of pseudo-inverse matrix (a.k.a. Moore-Penrose generalized
inverse).

Definition 1.5.1 (pseudo-inverse of a matrix). Let M be a real-valued d x d-matriz. Con-
sider the singular value decomposition of M

(D 0\, .t
m=u (P )
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where U,V are both orthogonal matrices, and D is a diagonal matrixz containing the (positive)
singular values of M on its diagonal. Then the pseudo-inverse of M is the d X d- matrix

defined as
D1 0
(I Ve T

We recall the following well-known properties, which can be easily checked from Definition
1.5.1:

(1.5.1)

MMIM = M, MIMMT = Mt
the matrices MM and MM are symmetric.

1.5.2 Main result

We wish to design optimal stopping times in terms of the process S to allow better tractabil-
ity. Inspired by [GL14a], a good candidate is then the sequence {7 : n > 0} where T" is
defined as:

79 =0,
(1.5.2)
= inf{t > 7] (St — Sin YTA (S — S ) > 2} AT,

? = 1 i—1 i—17 —
where A¢ := (0, )T Xy, with X given by (1.4.2).
Such a sequence turns out to be optimal when S is a martingale and under some additional
assumptions (see [GL14a, Theorem 3.3]). The problems with this definition can arise if o; is
not invertible, or if A; is degenerate for some values of ¢ (then we have difficulties to verify

(A°5%)). To overcome these problems we use a;r instead of o, *. Furthermore we take Agn)

)

equal to a small perturbation of A; depending on &, such that A§” is always non-degenerate.

We need one additional assumption.

(Hp) Let (Xi)o<t<r be defined in (1.4.2) and consider the S¢ (R)-valued process defined by

A= (o) Xy0f, Vte0,T). (Hy)

There exists a non-negative random variable c(; 5 3), finite a.s., such that

0 S TI'(At) S C(1‘5.3), Vit € [O,T), a.s.. (153)

Note that of may be discontinuous, so A may be too. Recall (see (1.3.14)) that x(.)
stands for a continuous function such that 1(_1/9) < X(-) < 1(—se,1), and for p > 0, we set
Xu(x) = x(z/p1). Now we state the precise definition of an optimal sequence of strategies.

Theorem 1.5.2 (Optimal strategy). Assume that (Ha), (Hyr), (Hy), (Hp) are in force.
Let pn satisfy (1.2.3) with py > 1, and let § € (0,2(py — 1)]. For each n € N, define the
process (Aﬁ") 1t <T) by

AP = Mg+ €5 xes (Ain (M) 1dg
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where A is given in (Hy), and define the strategy 7;% by

y =0,
{T(; ) (1.5.4)

7t =inf{t > 7", : (S¢ — STZLA)TAS}I_ (St = Spn ) > eZPIAT.

? 1 i—17 —

Then the sequence of strategies T = {7;’} :n > 0} is admissible for the parameter pn (in the
sense of Definition 1.2.1 and Theorem 1.3.4) and is asymptotically optimal, i.e.

2
T

lim Np(Z™)p = T S..

Jm {Z") 7 (/0 r(Xt)dt> a.s

To conclude this subsection, we provide a condition simpler than (H,), the proof is
postponed to the end of this section.

Proposition 1.5.3. Assume that (Ha), (Hys), (Hy) are in force, and assume that v €
CY2([0,T] x RY) so that Dyv; and Xy can be defined continuously up tot = T. If the matriz

Ct = O';r(D;E’Ut)TO't 7é 0 (HC)

for allt € [0,T] a.s., then (Hy) holds.

1.5.3 Examples
About the assumptions (H,) and (H¢)

Recall that under our assumptions, X is a.s. uniformly bounded on [0,7"). Thus in order
to satisfy (H,), it is enough to have ¢! a.s. uniformly bounded on [0,7). We provide a
(non-exhaustive) list of such examples.

a) oy is invertible for any ¢ a.s.: then o] = o; ! is clearly bounded on [0, T].
b) We can also afford degenerate cases: for instance if oy is constant in time (but possibly

with rank(o;) < d), then a;r is also constant in time (and thus bounded).

. . . . ¥ 0
c¢) The previous principle can be generalized to the time-dependent case oy = Ot 0> where

-1
% O) is bounded on

> is a square matrix, a.s. invertible at any time: indeed atT = ( 0 0

[0, T7].
Now, we argue that checking (H¢) may be sometimes much simpler than the verification
of (Hy). Let us give a non-trivial example where ¢ is not continuous a.s. For the i-

th component of S, take a squared d;-dimensional radial Ornstein-Uhlenbeck process with
parameter —\;, which is the strong solution to

e _ : ‘
Si— s +/ 5i — AiS? ds+2/ SidB!,
f=sp+ [0 nshas 2 [
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where S§ > 0, §; > 0, \; € R (see [GJY03]). The matrix o; is diagonal and its i-th element
is equal to 24/S:. It is easy to check that (H4) and (Hj,) hold (in particular o; # 0 for

all ¢ a.s.). The pseudo-inverse az is diagonal with i-th element equal to [24/S{]~'1 P00
Assume now that one of the §; is strictly smaller than 2: then the associated component S°
has a positive probability to hit 0 before T. As a consequence, with positive probability, of
is unbounded on [0,77] and it is not clear anymore to check directly (Hy). Alternatively,
assume (again to simplify) that Dyv; € 8¢, (R). Then C; # 0: indeed, C; € S4(R) and
Tr(Cy) = Tr(Dyvioi0]) > 0 since oy0] # 0 and Dy, is invertible.

A numerical example

We consider a two-dimensional example, defined by

B} +0.3B2
S = ft Blds ’
0 S

It corresponds to a constant (degenerate) matrix

(1 03
t~V\o o)

ot z) = <cos(3x1)> 7

For the function v we take

cos(3z2)

and we set T = 1. According to the previous paragraph, (H,) is satisfied and an optimal
sequence of strategies is given by Theorem 1.5.2. To assess the efficiency of an arbitrary
admissible sequence of strategies we set

Q= Ni{Z%)r 5 and B = ﬂ
(Jo (X0t ) Jo Tr(Xy)dt

From Theorem 1.4.2 we must have liminf,, , . o, > 1 a.s., while for the optimal sequence
the equality holds. The normalized error 3, is also important in practice, however we cannot
in general asymptotically control a.s. this quantity. But it is easy to believe that the values
of 3, are smaller for strategies where the corresponding values of «,, are smaller, at least in
mean. We will illustrate this heuristics in the following.

To simulate the process S on [0, 1] we use a thin uniform time mesh with 7 = 10000
points. The same mesh is later used to calculate the true value of the stochastic integral

and the optimal lower bound equal to ( fOT Tr(Xt)dt)2. The hitting times are calculated as
well on this mesh. Using this thin grid induces a discrete-time sampling error but by taking
n quite large as we do, we guess that this error can be neglected in our subsequent results.

We simulate 25 trajectories of the process S on [0,1]. Further we test the optimal
discretization strategy and the regular deterministic discretization on these trajectories, for
different discretization parameters &,,.
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Figure 1.1: The values oy, opt and o, ge¢ With respect to Nip.

a) To test the performance of the optimal discretization we take 5 different values of e,
namely 0.2,0.14,0.1,0.07,0.05, and apply the strategy given in Theorem 1.5.2.

b) Further we test the performance of the deterministic discretization strategy with N}
equidistant times, for N3 = 20,40, 80, 160, 320 (the values of N} are empirically chosen
as approximately equal to the average number of discretization times in the optimal
algorithm for the values of €, given above).

We denote (aun,opt, Bn,opt) and (Qu det, Bn,det) the pairs (am, Bpn) respectively for the optimal
and the regular deterministic strategy.

Regarding further details of implementation, we refer to [GL14a, Proof of Lemma 3.1] for
the detailed construction of the solution to the matrix equation (1.4.1). For the computation
of the pseudo-inverse matrix in (H,), this is straightforward since oy is constant. For the
perturbation procedure appearing in (1.5.4), we take § = 0.6 < 2(py — 1) < % and the
function x(z) = sin(m(x V 1/2) A 1).

Figure 1.1 shows the values of o, opt and «, ge¢ With respect to the number of the dis-
cretization times N7 for the optimal and the regular discretization in all the tests belonging
to 5 different groups. We observe that the values o, o become less and less dispersed and
converges to 1 as N increases (g, — 0), which confirms the theoretical results. In partic-
ular, from N7 = 80 the quality of the algorithm is already good and it largely outperforms
the regular discretization.

Figure 1.2 illustrates the pairs (ay,,) for the same 25 simulations, where &, = 0.05
was used for the optimal discretization and N7 = 320 was used for the regular deterministic
strategy (i.e. the last group of the tests). As expected from Theorems 1.4.2 and 1.5.2, we
observe the inequality o, opt < gt and the limit oy, o = 1. Moreover, the inequality
|Bn,opt] < |Bn.det] holds as well for 21 of the 25 simulations. The empirical variances of the
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Figure 1.2: The pairs (o, det; On,det) and (Qn opt, Bn,opt) are represented by crosses and points
respectively.

values of 3, opt and 3, qe¢ are equal to 1.07 and 3.52 respectively, which is nearly the same
ratio as for the corresponding values of «,,: this observation is coherent with the possible
property of Central Limit Theorem for 3,,, where the limiting distribution would be a mixture
of Gaussian distributions with variance roughly equal to «ay,. This latter property is just a
conjecture which is delicate to prove and left for further research. Anyway, this observation
confirms that the almost sure minimization of the limit of «, helps to reduce the variance
of 3, as expected.

1.5.4 Proof of Theorem 1.5.2

The proof is divided into several steps. Assumptions of Theorem 1.5.2 are in force in all this
subsection.

Step 1: a reverse relation between X and A
Proposition 1.5.4. The following equality holds
Xy = (o) Aoy,  Vte[0,T) as. (1.5.5)

Proof. We are going to establish the above relation for any given ¢, with probability 1:
however, the reader can check that the negligible set can be the same for all ¢ (as for the
definitions of o, X, A) because the arguments used are of deterministic nature.

If o, is invertible, 02 =0, L and obviously X; = (0¢)TA¢oy in view of the definition (Hy).
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Now assume that rank(o;) < d. By (1.5.1) we have
O'tO';rUt = 0y (1.5.6)

and the matrix UZ o, is symmetric. We choose an orthonormal basis (e;)1<ij<q under which

the matrix 02 oy is diagonal, i.e.

a1 0 . 0
i 0 a9 0
0;0t = .
0 0 ... Oy
for some aq,...,aq. If of,..., 08 are the column vectors of o; (in the basis (e;)1<i<4), then
from (1.5.6) we get
(nof,...,0q08) = (a},... o). (1.5.7)

For any 1 < i < d if o7 # 0 then we must have a; = 1. On the other hand k := rank(o] o) <

rank(c;) < d. Hence by permuting the basis elements and using (1.5.6) we can write o] oy

and oy in the form:

O'it O'lfvt 0 0
1 k
0 ... 0
i, — (e O _ |7 e 1
et (0 0)’ ot S S (158)
Tt O'Z:t 0 0

We want to show that X; = (o;)" Ajo; which by the definition of A; is equivalent to
X, = (ol0)) " Xy(0)0y) = (0] 00) Xi (o) o). (1.5.9)

In view of (1.5.8) and since X is symmetric non-negative definite, the equality (1.5.9) is
equivalent to the following system of equations:

e] Xie; =0 for i=k+1,...,d, (1.5.10)

where (e;) are the vectors of the basis. We now prove (1.5.10). Let i € {k +1,...,d}. From
the definition of X; we get

2Tr (X)Xt + 4X}2 = o] Cyoy, (1.5.11)

where Cy = (Dyv;)Toy0] Dyvy. From (1.5.8) it is clear that oye; = 0, thus Equation (1.5.11)
yields
T Ty2, _
2Tr(Xy)e; Xeei + 4de; Xie; = 0.

Both X; and X7 are in S¢(R), thus both above terms are non-negative, therefore they are
equal to 0. Either Tr(X;) = 0 (implying X; = 0 and (1.5.10)), or Tr(X;) > 0 and e] X;e; = 0.
In any case, (1.5.10) holds and we are done. O
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Step 2: verification of (A%SC.)

The stopping times (1.5.4) define a sequence of strategies satisfying (AZ**): this is a conse-
quence of Theorem 1.3.11-(7) with H = A. Indeed the existence of the finite random variable
Cpy stems from (1.5.3).

Step 3: verification of (Ay)

We aim at showing

Proposition 1.5.5. We have the following convergence

T T
S AST A ASp 23 / Te(Ad(M);) = / Te(X,)dt.
L ‘ 0 0

T <T

Then, in view of Theorem 1.3.11- (%), we conclude that the sequence of strategies 7 =
{T% : n > 0} satisfies (Ay). Combined with Step 2, we have proved that this is an
admissible sequence.

Observe that the above result is not a particular case of Proposition (1.3.9) since we
do not know if A is continuous in time (it is likely not for degenerate o). To handle this
difficulty, we are going to leverage the reverse relation between X and A (Step 1), and the
continuity of X.

Proof of Proposition 1.5.5. By Itd’s lemma like for (1.3.12) and using that A is symmetric,
we obtain

T T
> AShAL AS =2 /0 AST A gy dS; + /0 Tr(A g d(M),). (1.5.12)

T <T

Then
T T T T T
/0 Tr(A gy d(M)y) = /0 Tr(oy Agyor)dt = /0 Tr(og( Ao 7o)t
T T
+/0 Tr ((at — U¢(t)) A¢(t)(0t +‘7¢(t))> di.

Observe that the first term on the r.h.s. above is equal to fOT Tr(X4(;))dt owing to Proposition
1.5.4: since X is a.s. bounded continuous and the time step goes to 0 (see (1.3.7) valid under
(AY“)), we easily obtain foT Tr(Xg))dt % fOT Tr(Xy)dt.

The second term tends to 0 a.s. thanks to the continuity of ¢ and the uniform bound
(1.5.3) on A. We have proved

TTA d(M)y) =% TTth
/01"(¢(t)<>t)—>/0 r(X;)de.
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To complete the proof, in view of (1.5.12) it remains to show that
T a.s
| AsTaspds; =% 0
0

The a.s.-convergence to 0 of the contribution f(;[ AS;FA¢(t)dAt is proved as for (1.3.13), using
(AY“) and (Hy). The second contribution K7 := fOT ASTA g dMy is a local martingale,
which bracket is bounded by €2 up to a random finite constant (use again (A%) and (H,)).

Consequently, an application of Lemma 1.3.1 with p = 2, ensures that K7 2% 0. We are

done. O

Final step: completion of proof of Theorem 1.5.2

So far, we have showed that the strategy 7 = {7;(5n) :n > 0} is admissible. We now prove
that "

2
lim Np(Z™)p = (/ Tr(X, dt) a.s..

n—-+o0o

First, proceeding as (1.3.16), we write that 2+ N2 equals

b X ASTAn, ASp + 3 ASTAR, ~ An JAS. (1513

~
i—1
<T m<T

The first term converges to 0, as well as the last term (proceeding as for (1.3.17)), while the
second one converges a.s. to fOT Tr(Ayd(M)) (Proposition 1.5.5). To summarize, we have
justified

lim e2HONE = /TrAt /Tr (Xy)d a.s.. (1.5.14)

n—-+00

Thus it remains to show that

lim e, 2z / Tr(X;)d a.s.. (1.5.15)

n—-+00

Starting from (1.4.6), write (Z")r in the form

(Z"r= > (AS] A( v ASp)? e r ey ey ey el + el
T <T

where e 1, €] p, €5 1, €5 7 are defined as in the proof of Theorem 1.4.2 and the other terms
are defined as follows:

eir= Y (ABLhX;n ABm)?— Y (AShAmn ASq)?,
T <T T <T

eBri= Y (ASLAm ASm)?— 3 (ASTAL A2

T <T T <T
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First notice that for each i < N7 — 1 we have ASTTnA(T?L)lASTZL = £2+9 thus

—(2496) T A (n) 2
&n Y (ASLALY ASpm)
T <T
= 3 ASTLAY A8 4, PH(ASTAY  ASy)?
2 A Np—1
. (T T
% / Tr(Ad(M);) :/ Tr(X;)dt,
0 0
where the last convergence is derived similarly to that of (1.5.13).
Moreover, from (1.4.7) in the proof of Theorem 1.4.2, we already have (for e, small
enough so that €, <1 and since 2 + 0 < 2py)

a.s

5;(2+§)€ZT < 5;2pN€ZT ps 0| a.s. fori=0,1,2,3.

To complete the proof of Theorem 1.5.2, it remains only to prove that

e, GHen 2% a.s. fori=4,5.

We start with eg‘yT :
en @ el | < Y (AST A ASe + AST AL AS)
L <T
X |AST Arn ASen — AST AL ASler @+
< Y e Omin(Aey DIAS 2672 ASTAL A

T <T

<2 D |ASw]2 20

T <T
thanks to Proposition 1.3.9.

Finally, we analyse eZT. From its definition, Proposition 1.5.4 and (H,), we get

e, 30 err|
<&, S |ABL X ABrp — AST A ASp| (ABT X ABr 4+ AST A ASn)
T <T

< e, sup  sup  |AS, 4 0y ABY
1<i<NRte(r 7]

x (ABLuX;n ABpn + ASTAgn ASe). (1.5.16)

t
/ AO’Sst + AAt
(1)

Now we apply twice Lemma 1.3.3-(ii), first taking # = 0 and second taking 6 = 6, it readily
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follows that for any given p > 0, we have a.s. for any n € N

sup sup (\AMJ + ]J¢(t)ABt]) < Coelr, (1.5.17)

LISN te(rf 77

t
AosdBg
o(t)

sup sup < Coeltbo=r, (1.5.18)

LI<NR te(rf y77]

Moreover by Corollary 1.3.7 we have

sup sup  |AAy| < CoeZar.
1<isNpte(ry 7))

The last factor in the r.h.s. of (1.5.16) converges a.s. to a finite random variable (Propositions
1.3.8 and 1.5.5). Combining this with the above estimates, the inequality (1.5.16) becomes

e e r] < Co 20k P (ektrr 4 c2or),

It is now easy to see that, since we have chosen § < 6, and § < 2a — 1, we can take p small

enough so that e, (2+6)€Z7T — 0. The proof is finished. O

1.5.5 Proof of Proposition 1.5.3

Consider the equation solved by X; (see (1.4.1) and (1.4.2)), and multiply it by atT from the
right and by (O’Z )T from the left: it gives

2Tr(X) (o)) T Xyo] + 4(o)) T X20] = (000])TCy(010))

where Cy = (Dyvt)Toy0] Dyvy. Take the trace, use that (UZ)TXEUZ € S4(R), in order to
obtain
2Tr(X;) Tr(Ay) < Tr ((UtJZ)TC’t(UtJT)) .

Recall the inequality Tr(SS’) < Tr(S) Tr(S’) for any non-negative definite symmetric matri-
ces S and &', Thus, Tr((otal )T(j't(atag )) < d? Tr(C;) where we have used the easy inequality
Tr(oo ;r ) < d. Note that the above inequalities are of deterministic nature and therefore they
hold for any ¢ with probability 1 (the full set is the one allowing to define X, A,o,C). In-
voking (Hjs) and (H,) to control C, we deduce that there exists a non-negative random
variable ¢, finite a.s., such that

Tr(X;) Tr(A) <& Vte[0,T] as. (1.5.19)

Owing to the condition (H¢), X; # 0 for any ¢ € [0, 7] a.s., and by continuity of X;, we get
that inf,co ) Tr(X:) > 0 a.s. and we conclude to (H,) thanks to (1.5.19). O
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1.A Appendix

1.A.1 Proof of the Lemma 1.4.3

In view of (H,) there exists Qp with P(Qp) = 1 such that for every w € Qp there is 6(w) > 0
such that, for any A € {Dggj,D2 Dy:1<j,k<d}

;T

sup sup |Av(t, )| < 4o0.
0<t<T |z—5¢ (w)|<(w)

Since sup; <;< N AT *3 0 and S is continuous on [0, 7], there exists a set Q¢ of full measure
such that, for every w € (¢, for n large enough we have

sup [St(w) = Ss(w)] < 6(w).

0§s,t§T,|tfs\§sup1SiSN% ATl

Hence for w € Q¢ N Qp, for n large enough, by a Taylor formula we obtain (the dependence
on w is further omitted, we assume w € Q¢ N Op)

sup |v(t,S¢) —v(1itq, ST{LI) — DIU(TZL_MST;LI)‘ < Cy (ATi" +  sup |ASt|2) .
te(r] 1,77 te(r 1,7

Plugging this estimate into (R™)7 we obtain that a.s., for n large enough,

274N (R™) p < Cope2 4o Z ((AT[L)?’—FAT? sup ’ASt|4>-

n n
T, <T T ST

We deduce that €274~ (R")y %% 0 since

o for any p > 0, &g N Y n o (AT])? < i TN NEsup iy, (A7) < Coely %N P

by using Lemma 1.3.2- (%), thus it converges to 0 since py < 4/3,
o 274N Yien < AT SUPn <pcrn |AS* < Coel~4NT — 0 as..

We are done. O

1.A.2 Almost sure convergence using domination in expectation

The next result allows to prove the a.s. convergence of a dominated process U using that of
a dominating process V, the domination relation being in expectation. Its use is crucial in
our analysis.

Lemma 1.A.1 ([GL14a, Lemma 2.2]). Let C(T be the set of non-negative continuous adapted
processes, vanishing at t = 0. Let (U™)n>0 and (V™),>0 be two sequences of processes in Cg .
Assume that

1) t = V" is a non-decreasing function on [0,T], a.s.;
t
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(ii) the series 3 ,~o V' converges a.s.;
(7ii) there is a constant ¢ > 0 such that, for everyn € N, k € N and t € [0,T], we have
E[Uthg,] < cE[VRg,]
with the stopping time 0), := inf{s € [0,T] : Vs > k}' setting V; = 3,50 V{"-

Then for any t € [0,T], the series 3,5 Uf* converges a.s.. As a consequence, U’ 2.

lwith the usual convention inf @ = +oo.
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2.1 Introduction

Statement of the problem. In this chapter we continue the study of the optimal dis-
cretization problem for stochastic integrals with respect to Brownian semimartingales ini-
tiated in [Fuklla] and further developed in [GL14a] and Chapter 1. Our goal here is to
construct an adaptive version of the optimal discretization algorithm from Chapter 1 that
does not require any prior knowledge about the model.

Let T' > 0 be fixed. We consider a Brownian semimartingale (S;);c[o,7], valued in RY, of

the form
St = Mt + At, (211)

where M is written as a Brownian local martingale

¢
M; ::/ 0sdBg, (2.1.2)
0

82
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and A is adapted, Holder-continuous and of finite variation.

The problem of optimal discretization consists of finding optimal stopping times to dis-
cretize the stochastic integral

T
/O o(t, 5¢) - dS, (2.1.3)

for a C12([0,T] x R%,RY)-function v, with the highest possible accuracy for a given number
of discretization times. More precisely we aim at finding a sequence of strategies {7"},>0
where each 7™ is an increasing sequence of stopping times {7)"};>0 that will achieve the
lower bound of the limiting renormalized discretization error

s n/rrn

lim inf N7.(Z")7, (2.1.4)

within the class of admissible sequences of discretization strategies. Here N7 is the number
of stopping times in 7", Z™ is the discretization error for the grid 7" defined by

Zg ;:/ 'U(t,St)-dSt— Z U(Tﬁl,sfrnl)-(57—71/\5—57—711), OSSST, (2.1.5)
O 11— k3 11—

n
T, 1<8

and (Z™) is the bracket process of the continuous semimartingale Z". In the aforemen-
tioned references, optimal sequences of (7"),>¢ are derived under some assumptions, but
these strategies strongly depend on the model for S, in particular on the o-process. As a
difference, in this work we suppose that no prior knowledge about the diffusion coefficient
of the underlying process S is given. We do not assume neither a diffusion model for S nor
a parametric form for o. The process S of the form (2.1.1)-(2.1.2) is quite arbitrary and we
only suppose that it satisfies some mild regularity and non-degeneracy assumptions. Thus
a model-adaptive version of the optimal discretization algorithm designed in Chapter 1 is
needed in order to make the latter algorithm applicable.

Regarding applications, having at hand an algorithm able to adapt automatically to
the model without fully identifying it, is quite useful; it is usually referred to as data-driven
algorithm. The problem of discretizing (2.1.3) can be interpreted as a pursuit problem where
the target evolves like s — [jv(t,S;)-dS; and S is a random path modeling the system.
The interpretation is application-dependent: in random mechanics [KS86], the system is a
controlled object subject to random forces; in finance [GL14a], the system is an investment
portfolio. In these cases, S should be seen as a black-box process, which we don’t know
exactly the coeflicients of.

The notion of admissible sequence 7 of discretization strategies is parametrized by a
real number py > 1 and a sequence of positive numbers (g,)n>0 converging to zero, see
Definition 2.2.1 for details. To get the a.s. optimality we need additional assumption of the
square summability of (e,,)n>0, otherwise the optimality holds in probability.

In Chapter 1 an optimal sequence of strategies is constructed under very mild assumptions
on the model. The optimal stopping times are given in the form

Tin =@ (O'TﬁlanU(Tzn—lv S‘rﬁl)a (St - STZLl)tZTZ-n71> 5 (216)
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for some complicated function . These stopping times are interpreted as exit times of
random ellipsoids. If we think that S comes from statistical data (as a black-box), the only
unobservable process that is used to construct optimal strategies given by Theorem 1.5.2 is
the diffusion coefficient o. The rest is based on the observation of the semimartingale S. In
practice a statistical estimator of the process ¢ must be used instead.

This rises the question of the robustness of the optimal discretization with respect to
the estimation error of o. In view of the lack of continuity of the function ¢ from (2.1.6),
of its non-linearity and more generally because of its complicated structure, this problem is
quite non-trivial. This issue is quite fundamental regarding the applications listed before.
We exemplify now the importance of taking the right ¢ in the minimization of NA(Z™)p.

Example 2.1.1 (Non optimality for misspecified model). Consider the case d = 2, Sy =
M; = oB; (i.e. A=0) with

(10 g [ V148!
U—<O ().5) andv(t,S,S)-( 07 S

(the constants are chosen purely for the sake of analytical tractability). Suppose that the
optimizer has no prior knowledge about the diffusion coefficient o and he/she believes that o
1s proportional to identity, say & = Idy instead of the true matriz o as above. Then suppose
that he/she constructs a discretization algorithm from Theorem 1.5.2 (for some e, — 0 and
pN > 1) based on this assumption. Let N%(ZWT denote the renormalized error for this
sequence of discretization strategies. Then the sequence is suboptimal in the sense that

NMZ™ p n_%_oo (Opt. Lower Bound)+ T2, (2.1.7)

where > 0 (the exact calculation of 5 is given in Equation (2.A.7)).

The first term on the above right hand side is the lower bound over all admissible strate-
gies. The proof of (2.1.7) is postponed to Appendix 2.A.4. This clearly shows that a model
misspecification (via taking an erroneous diffusion coefficient) likely leads to suboptimal re-
sults.

In this work we investigate this issue and our goal is to find sufficient assumptions on
a general sequence of estimators o' of oy ensuring the optimality of the resulting sequence
of strategies. Rather than assuming a particular parametric model for o we only suppose
Holder-continuity and non-degeneracy of o. In such a general framework (nonparametric,
non-Markovian, and multidimensional), presumably the only accessible class of estimators for
oy is the one based on a weighted moving average estimation (Kernel techniques). It assumes
that, as intuitively expected, recently realized quadratic covariations are good predictions
of the current value of the instantaneous covariances. In this work we prove an optimality
result for a general class of weighted moving average estimators and specify some sufficient
joint conditions on the lookback estimation period and the frequency of estimation in order
to obtain the asymptotic optimality in the discretization problem (2.1.4)-(2.1.5).
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Background results. The study of optimal discretization of stochastic integrals using
random grids has been initiated by [Fuklla] in the case of dimension d = 1, but instead of
(2.1.4) the author considers a criterion in expectation for both terms, i.e. E(NZ#)E ((Z")r).
The point of view of pointwise approximation of scalar SDEs is investigated in [MGO04].
Optimal convergence rates of E ((Z™)r) for deterministic grids are investigated in [GGO04].

The pathwise minimization of (2.1.4) has been addressed in a multi-dimensional mar-
tingale setting d > 1 in [GL14a]. The authors have made a very useful observation that,
although more mathematically demanding at the first sight, the use of almost sure criterion
simplifies the analysis and makes it possible to tackle the multidimensional case. The a.s.
framework has proved to be much more flexible and in this work too, it is crucial for the
construction of adaptive optimal discretization schemes. In Chapter 1 the study of optimal
discretization is generalized for non-elliptic ¢ and a general Holder-continuous finite varia-
tion part. The framework of Chapter 1 covers most of the examples that are interesting in
applications.

In our work we combine previous studies on optimal discretization with standard tech-
niques of non-parametric estimation of the diffusion coefficient in a multidimensional setting.
The problem of retrieving diffusion coefficient from observations of S is classic and has been
studied by many authors. In particular, in [Hof97] and [FZ93] estimation techniques are
derived in the non-parametric setting and for irregular samplings respectively. Although
quite different in the mathematical tools, these two studies are the closest to our work.

Our contributions. In the current work, we prove optimality results for an adaptive
discretization strategy that does not assume any prior knowledge on the diffusion coefficient
model. This is the first result on adaptive strategies for optimal discretization problems. In
particular,

e we prove that if o is estimated by o™ at some rate, a strategy of the form (2.1.6) but
with o” instead of o yields an optimal sequence for the problem (2.1.4). This reads as
a robustness result w.r.t. the model.

e we prove the optimality of the strategies based on general weighted moving average
estimators provided that certains conditions on the lookback period and the estimation
frequency are fullfilled.

Optimality results in almost sure sense (Theorem 2.2.5(bis)) or in probability (Theorem
2.2.5) are derived. In [GL14a] and Chapter 1 only a.s. results are established.

Organisation of the chapter. In Section 2.2 we present the model under study and list
the assumptions used throughout the chapter. In Section 2.3 we investigate the optimality
of the discretization strategies for a general sequence of diffusion coefficient estimators. In
Section 2.4 the same issues are considered for a particular class of weighted moving average
estimators of (Jt)te[oﬂ. A numerical experiment is presented in Section 2.5.

Notation used throughout the chapter.
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e 1 -y stands for the scalar product between two vectors = and y, |z| = (x - l’)% denotes
the Euclidean norm of z.

e For a given matrix A, AT denotes its transpose, Tr(A) is its trace (when A is square),
Id, stands for the identity matrix of size d.

e We write |A| for the spectral norm of a matrix A, i.e. the square-root of the largest
cigenvalue of ATA. Apin(A) is the square-root of the smallest eigenvalue of AT A.

o 5% Sﬁ and Si . are respectively the sets of symmetric, symmetric non-negative definite
and symmetric positive-definite d X d matrices with real coefficients.

e For A € Sjl_, we denote by A1/2 S_‘f_ the principal square root of A. Recall that for an

orthogonal diagonalization A = UTDU of A, the principal square root AY/2 is given
by UTD'Y2U where D'/? is diagonal with entries Di{Q, e chllc/12-

e For A € 8¢ and a real number p > 0 we define
A 1= A+ i Onin(A) /1) 1 (2.1.8)

where x is a smooth function such that 1(_ 1/9 < x(.) < 1(_oo,1)- We easily check
that
Amin([A]") = /2. (2.1.9)

e In what follows, Cj stands for a finite non-negative random variable, that may change
from line to line.

2.2 Model and main results

2.2.1 Model and assumptions

Let (2, F,P) be a probability space supporting a standard d-dimensional Brownian motion
(Bt)te[o,T]- Denote (]:t)te[O,T] the filtration generated by B, augmented by the P-null sets.

We consider a d-dimensional Brownian semimartingale S = M + A of the form (2.1.1)
and (2.1.2).

Here we state the assumptions on the processes under consideration.

Assumptions 1.

(HA): the process A is adapted, continuous, with finite variation and verifies for some o €

(1/2,1]
|A; — As| < Colt — s|® Vs, t € [0,T] a.s.

(Hy): the process (01)iejo,r) s a continuous adapted d x d-matriz process such that the value
o1 18 a.s. non-zero for any t € [0,T]. Moreover it verifies the following Holder property
for some 6, € (0,1]:

loy — 0| < Colt —s|%/2 Vs, t €[0,T] a.s.
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(HIYP): oy is a non-degenerate matriz for all t € [0,T)] a.s.
(H,): the function v belongs to the class C*2([0,T] x R? R?).

(Hpy): Dyve := Dyo(t, Sy) is a non-zero matriz for all t € [0,T)] a.s.

We suppose Assumptions 1 to be verified in all subsequent sections of the chapter and
the constants 6, and o are fixed from now on.

In particular, (1) and (1) imply that the inverse matrix process o; ! is continuous, since
the determinant and the adjugate matrix of o; are continuous (their components are given
by polynomials of the components of o;) and the determinant is positive.

Remark that in Chapter 1 an optimal strategy is derived under more general assumptions
on oy, namely without (1), by using at some places the Moore-Penrose pseudo-inverse of o;.
However here we restrict to the case where o; is a.s. non-degenerate for all ¢, because the
pseudo-inverse is discontinuous w.r.t. perturbations (occurring when o is replaced by o™).
Removing (1) in the current model-adaptive setting leads to delicate issues that are seemingly
quite difficult to overcome.

2.2.2 Background results: optimal discretization when the model is known

First, we briefly recall the construction of the optimal sequence of strategies from Chapter 1
in the particular case of (1), giving almost sure convergence results. Then, we extend them
to the convergence in probability sense.

Almost sure convergence

The following matrix equation plays an important role in the analysis:
2Tr(z)z + 422 = cc', (2.2.1)

here ¢ is a d X d-matrix and z is unknown. From [GL14a, Lemma 3.1], there exists a unique
z € 8¢ solution to (2.2.1). It can be shown that this solution is continuous in c.

The definition of an admissible sequence of strategies is parametrized by the choice of a
sequence (gy,)n>0 of positive real numbers and a real number pn > 1. Here we assume

D e < 4o0. (2.2.2)
n>0

Definition 2.2.1. A sequence of strategies T := {T" : n > 0}, where T" := {1§ =0 <
el T < < 7'}\1,% = T} is a finite sequence of stopping times, is admissible if the two
following conditions hold:

(A°%): sup,,>q (5;1 SUP) <i< Np SUPse(rn | 77] |St — Sr{il|) < t0o, a.s.
(An): supnzo(e%pNN%) < +00, a.s.

The set of admissible sequences is denoted by T24™ .
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pN « .

Observe that the larger py, the larger the family 729™ . However, to keep the presentation
concise, in what follows the notion of admissibility is used without anymore reference to py
and to the square-summable sequence (£,,)n>0-

Some optimal results in a.s. sense are established in Chapter 1. First, by Theorem 1.4.2,
for any sequence in 72d™:

2
T
lim inf N2 (Z™) g > ( / Tr(Xt)dt> a.s., (2.2.4)
n—+o0o 0

where X; is the solution of (2.2.1) with ¢ = C} := o] (D,v)Toy for all 0 < ¢ < T. In
addition, the lower bound is attained by a sequence of hitting times of random ellipsoids,
that are admissible as soon as py > 1. Namely, consider the Sf,ir—valued process defined by

A= (07 )T Xpop b for 0<E<T, (2.2.5)

and choose ¢ such that 0 < 0 < 2(pny — 1) (still under the condition py > 1). Then for a
given n € N define the strategy 7 as (7]")o<i<np verifying

70 =0, (2.2.6)
= inf{t > 77 (S; — Spn ) [Amn [0 (S; — Spn ) > e2F0} AT, -

¢ i—1 i—1 i—1/ —
This reads as iterative exit times of random ellipsoids (parametrized by [At]’fz defined as in
(2.1.8)). From Theorem 1.5.2, the sequence of strategies 7 = {775 : n > 0} is admissible
and asymptotically optimal, i.e.

2
T
lim NJ(Z")p = < / Tr(Xt)dt> a.s. (2.2.7)
n—-+00 0

Convergence in probability

Now we remove the square-summability condition (2.2.2), i.e. we only assume &, — 0,
and we extend the previous results to convergence in probability. This is made by using a
subsequence principle stated below.

Lemma 2.2.2 ([Bil95, Theorem 20.5]). Consider real-valued random variables. X, % X
n—-+00

if, and only if, for any subsequence (X,(n))n>0 of (Xn)n>0 , we can extract another subse-
quence (X,o,(n))n>0 such that Xop ) X,

n—-+o0o

With this lemma at hand, we are now in a position to clearly motivate the next definition
of admissibility, which is suitable for convergences in probability.
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Definition 2.2.3. A sequence of strategies {T"},>0 is called P-admissible for a real number
pN > 1 and a sequence of positive real numbers (e,)n>0 converging to 0 if for any subse-
quence (€,(n))n>0 of (En)n>0 , we can extract another subsequence (€,0,/(n))n>0 such that
> >0 5L20u(n) < 0o and {T*" ™M}, 5q is admissible for py and (€wov(n))n>0 in the sense of
Definition 2.2.1.

An easy example of such P-admissible sequence is, for instance, {7"},>0 fulfilling both
2.2.1 and 2.2.1 (with €, — 0 only).

Theorem 2.2.4. Let Assumptions 1 hold and let py > 1. For any P-admissible sequence of
strategies {T" }n>0, we have

n—-+0o00

2
min [O,N%(Z”)T— (/OTTr(Xt)dt> ] 5 o (2.2.8)

For pn > 1, the sequence defined in (2.2.6) is admissible and optimal:

2
NI Z™)p TH%OO </0T Tr(Xt)dt> : (2.2.9)

Proof. Let ¢, be equal to the left hand side of (2.2.8). To prove its convergence in probability
to 0, it is enough (Lemma 2.2.2) to consider a.s. convergence along iterated subsequences.
Let {¢(n)}n>0 be a given subsequence, consider an extraction for which -, -, sfm,(n) < 00

and that makes {7°'("}, 5o admissible in the sense of Definition 2.2.1. We can then apply
(2.2.4) to obtain ¢, “¥ 0. Thus (2.2.8) is proved. The justification of (2.2.9) follows the
[e.9]

n—+
same arguments. ]

2.2.3 Assumptions and main results for adaptive optimal discretization

Let {0 : 0 <t < T},>0 denote a sequence of caglad adapted processes, valued in invertible
d x d-matrices. We will study the sequence where the n-th strategy is built in the same way
as in (2.2.6) but using the approximation process of' in (2.2.5).

Let us introduce the following definition, that will be constantly used in the sequel:

Cf' = (o) (Dyvr) o7’ (2.2.10)
X/ is the solution of (2.2.1) with ¢ = C}";
AP = (o) )T X (o) (2.2.11)

In this subsection we prove the optimality of the sequence of discretization strategies based
on a general sequence of estimators for ¢™ provided that it converges' sufficiently fast to
(00*)1/ 2. These estimators may depend on the path of S. Our working assumptions are the
following.

Note that this would not be much realistic to assume convergence to ¢ since at the continuous time-limit,
we can retrieve oo™ only.



2.2. Model and main results 90

Assumptions 2.
o (en)n>0 is a positive sequence with €, — 0;
e pn is a real number such that pn € (1, (0,/2+ 1) A (4/3) A (a+1/2));

e b is a real number such that § € (0,2(py — 1)].

Assumptions 3.
® SUpP,>q (supte[oﬂ \Um) is a.s. finite;

e o} is non-degenerate for allt € [0,T] and n >0 a.s.

Assumptions 4.

e For any subsequence {t(n)}n>0, there exists a further subsequence {v o (n)}n>0 such

w0/ (n) ‘)

that sup,,>g (supte[O,T} o, is a.s. finite;

e o' is non-degenerate for allt € [0,T] and n >0 a.s.

Let {7T"}n>0, where 7" = {7'}i>0, be a sequence of discretization strategies defined as
follows: for any n € N

T8 =0,
(2.2.12)

7 i=1inf{t > 7", : (S; — STZZ_JT[A?-’LJE% (S; — Sn ) > 2HOVAT.

i—1

The sequence (£2),>0 serves to measure the minimal convergence rate of o™ to (oo ")/?
in order to maintain global optimality results. Since § can be taken arbitrary close to 0, the
requirement on the estimation rate is quite mild. Now we state one of the main results of

this work.

Theorem 2.2.5. Let Assumptions 1 and 2 be verified. Suppose that the sequence {o}* : 0 <
t <T},>0 satisfies Assumptions 4. Assume also that

e sup |(opo )2 — o7 5 o (2.2.13)
te[0,T] n—+4o0

Then the sequence of strategies (2.2.12) is P-admissible and optimal in the sense that

2
T
Npze B </0 Tr(Xt)dt> .

In the case where Y~ &2 < +00 we can state an a.s. version of Theorem 2.2.5. In fact
the rest of this section will be devoted to the proof of this next result with a.s. convergence.
Then as for Theorem 2.2.4, we will deduce the convergence in probability for a general
sequence &, such that e, — 0.
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Theorem 2.2.5(bis). Let Assumptions 1 and 2 be verified, under the stronger condition
that >~ €2 < +o00. Suppose that the sequence {of : 0 <t < T},>o0 satisfies Assumptions
3 and that

e %2 sup (oo )2 —0p] X 0. (2.2.14)

n
te[0,T] n—+oo

Then the sequence of strategies (2.2.12) is admissible and optimal in the sense that

n—-+o0o

T 2
NRZMp % ( /0 Tr(Xt)dt> .

The proofs are given in Section 2.3.

2.3 Proofs of optimality of adaptive discretization strategy

This section is dedicated to the proofs of Theorems 2.2.5 and 2.2.5(bis).
Outline. All the preliminary results are preparatory for the proof of Theorem 2.2.5(bis)
regarding almost sure results; later (Section 2.3.3), the proof of Theorem 2.2.5 (convergence
in probability) is deduced owing to the subsequence principle. We divide the proof in two
stages.
First in Section 2.3.1 we aim at finding a sufficient speed of convergence for the approximated
processes A" (see (2.2.11)) that characterize the ellipsoids in (2.2.12), in order to ensure the
optimality of the resulting sequence of discretization strategies. This involves a careful
analysis of the error terms about the deviation of the renormalized discretization errors from
the optimal sequence.
Second in Section 2.3.2 we give the complementary part of the arguments to complete the
theorem proof: we establish the Lipschitz property w.r.t. (00*)1/ 2 of the ellipsoid generating
process A. Surprisingly this property holds under the general enough Assumptions 1-2-
3 despite the non-linear nature of the dependence given from the solution of the matrix
equation (2.2.1). This implies in particular that the sufficient speed of approximation is the
same for diffusion coefficient estimators and for the ellipsoid generating processes.

For this section, we need some specific notation:

e for a given sequence of stopping times and a given function (U;)o<i<7, we set AU; =
U — Usn | for t € (1)1, 7).

e 0,(1) stands for a random variable converging to 0 a.s as n — +o0.

2.3.1 Deviation of the discretization error from the optimum

In this subsection we prove a preliminary result on the optimality for an adaptive sequence
of discretization strategies.

The next lemma states the admissibility of a sequence based on hitting times of random
ellipsoids. It is a generalization of [GL.14a, Proposition 2.4], its proof is given in Appendix
2.A.2.
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Lemma 2.3.1. Let Assumptions 1-2 be in force and assume that Y ,~oc2 < +oo. Let
(H{")n>0 be a sequence of adapted cigldd matriz processes defined on [0, TT and valued in ij_.
Suppose that
sup |HP' — Hy| *% o0, (2.3.1)
te[0,T] n—+00
where (Hy)ic(o,m) 95 a continuous adapted matriz process.
Then the sequence of discretization strategies {T" }n>0, where T™ = {1]'}; is defined for
any n € N by

T =0,
{ ’ (2.3.2)

= inf{t > 7 (S; — Sen ) T[H 1]52(5% — Spn ) > YA,

g Ti_ i—17 —
is admissible (in the sense of Definition 2.2.1).

The following lemma states uniform positivity for some sequences of processes that will
be important in the subsequent proofs. For its proof, see Appendix 2.A.3.

Lemma 2.3.2. Let Assumptions 1-2-3 be in force and assume that

sup |07 — (oo )2 %% 0. (2.3.3)
te[0,7T] n—+00

We have a.s.

inf ( inf /\min(af)> >0,

n>0 \ t€[0,7]

inf Tr(X;) >0, inf ( inf Tr(Xf)) > 0.
t€[0,T] n>0 \ ¢€[0,T)

We are now in a position to state and prove the main result of this subsection, which is
instrumental for the subsequent analysis.

Proposition 2.3.3. Let Assumptions 1-2-3 be in force and assume that 3, €2 < +o00.
Consider the discretization strategy (2.2.12): it defines an admissible sequence.
Set R} := [A?]ai — A¢ and assume that

—6/2 n a.s.
€ sup |RY| = 0. (2.3.4)
" te[0,T] 1 notoo
Then we have )
n/on o T N N a.s.
NHZ™)r (T;TAST?AT“ASTi ) L1 0 (2.3.5)

Proof. Assumption (2.3.4) readily implies that

sup A} — Ay “¥ 0.
te[0,7] n—+00
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Remark that the process X and thus A are a.s. continuous due to the continuity of the
solution to the matrix equation (2.2.1). Thus by Lemma 2.3.1, the sequence of strategies
defined in (2.2.12) is admissible.

Now we decompose N (Z™)r as
NIZ") 7 = (e N (e, B2 ),

and consider the two multipliers separately. First using (2.2.12) we write

2N =2+ Y ASLAT. RAS. (2.3.6)
T <T
=24 3 AST A ASa+ Y ASLRL AS. (2.3.7)
7' <T Th<T

Since from the continuity of A and (2.3.4) we have

sup Ay < +oo, sup sup |R}| < +oo, (2.3.8)
t€[0,T n>0te€[0,T)]
by applying Proposition 2.A.1 we easily justify that the three terms on the right hand side
of (2.3.7) are uniformly bounded in n, almost surely. We have proved that 5%+6N% is an a.s.
bounded sequence.

Second, from the equations (1.4.6)-(1.4.7), we can decompose (Z")r as follows:

(Z"r = Y (ABLXy ABm) +efq+elr+esr+eir, (2.3.9)

T <T

2PN nel 0. 2.3.10

€n 02;23 |61,T| n——+00 ( )

Next, from [GL14a, Corollary 2.3(ii)] or Lemma 1.3.3, we get that for any p > 0 there exists
an a.s. finite random variable Cy such that

sup |ABy| < Coel=/4. (2.3.11)
te[0,7

This readily follows that

> (ABl.X.n ABm)® < CoNfen ” sup |Xif*.
™ <T ¢ te€[0,T]

The above upper bound goes to 0 a.s., by taking p small enough because of 2.2.1 and pn < %.
In view of (2.3.9)-(2.3.10) and the above, we have proved that

(Z™p % 0. (2.3.12)

n—-+o00
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Furthermore, from (2.3.9), we can write

(Z"r =3 (ASL[A% 1 AS.m)? (2.3.13)
T<T .
n 66
+ ;T ((AS;nAT;_IAST;)Q — (ASTLA ] nASTZ_n)2> (2.3.14)
+ 3 ((ABL X ABm)? = (AST A ASp)?) (2.3.15)
T<T
+ (AB;XT]%R_IABT)Z + 687'11 + 6?’T + 63"1" + 673‘L7T. (2316)
T

We aim at analyzing e, (2+6)<Z”>

enough (and since ¢ < 2/3),

7. From (2.3.11) we deduce again that, for p > 0 small

e, G (AB] X

n n__
NT

1ABT)2 < C()E%Liafp 3 0.

n—-4o00

The convergences (2.3.10) combined with 2 + ¢ < 2py ensure

en T (efr + el + ear + €5 ) nﬁm 0. (2:3.17)

Regarding the third sum on the right hand side of (2.3.16), we obtain

en @) 3" ((ABL Xon AB)? = (AST A ASm)?) 3 0

n
n—-+oo
T<T

by the same argument as for €} 1 in the proof of Theorem 1.5.2 (it only uses the admissibility
of the sequence of strategies). We now handle the second sum on the right hand side of
(2.3.16):

e 3 ((AST Asn AS)? — (AST[AZ, [AS0)2)
T ' v
=, S (AST A ASq — ASTAZ. [0AS)

i—1
T<T

x (ASTAsn ASen + AST[AZ: [0 AS,)

i—1
= =, ) N AST R Ao (2881 AT RASn — AST Rl ASn)
7_7:71<T k2 11— k2 11— 1 1—
== Y ASLRIL ASm (2-e;®HASL R AS.)
T[L<T 1 11— 1 11—
- _ T pn n —(249) T pn )2
=2 ) ASLR! ASq+e, Y (ASLRL ASm)%

T <T T <T
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Consequently, we get that

en N2y = 3 ASLA% mASm —2 Y ASLRL ASpm
7L<T 7L<T
+e, 0T N (AST R ASpn)? +0,(1)
Tr<T
= > AShAm ASn— Y ASL R ASp
n<T 3 TTL<T 7 11—

+e, T N (AST R ASpn)? + 0a(1).

T<T

7

Therefore, combining the above with (2.3.7) and (2.3.12), it comes

2 2
NHZ") g = (Z AST Az AS; ) - (Z AS{,LR%_IAST;)

Tn<T 7' <T

(Z AST AT [EnAS, ) LT N (AST R AS)? + 0n(1).

T<T Tm<T

7

Thus, since the admissibility of {7"},>0 implies

-2 T pn 2 n|2 2
€, ASw Rl ASm)” < Cp sup |R AS|* ],
T (AT £87)* < Co sy IR (ZTr 1\)
we finally derive

2
NMZ™)r (Z ASln A AS; )

nT

2
< sup |R}|? ( > !AST?\2> <1+Co<€;‘ssup sup I[A?]Eio + on(1).

From (2.3.8) we get that

sup sup \[A?]Ei\ =sup sup |R} + A¢| < +oo.
n>0t€[0,7T) n>0¢e€[0,7T)

In addition, Proposition 2.A.1 ensures the a.s.-convergence of 3_ n g [ASy» |2. Tt remains
to use the convergence (2.3.4) to complete the proof of (2.3.5). We are done. O
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2.3.2 Verification of Assumption (2.3.4) of Proposition 2.3.3: bound for
|R?|

In the previous subsection we have estimated the deviation of the discretization error from
the optimal one in terms of |R}|. Our goal is to further express this error in terms of the
estimation error for o}’ and specify the conditions on the estimators o}’ to get an optimal
sequence of discretization strategies.

The purpose of this subsection is to prove the following result.

Proposition 2.3.4. Let Assumptions 1-2-3 be in force and assume that 3, €2 < +oo.
Consider the discretization strategy (2.2.12) and assume

e sup |07 — (o) X% 0. (2.3.18)
Then we have
IA? — Ay| < Col(opo )2 — o7, (2.3.19)
—0/2 R % 0. 2.3.20
€n tes[%%]l T (2.3.20)

Proof. Since R} = [A?]Ei — A¢, we get |RP| < &% 4 |A? — A4|, which shows that it is enough
to prove (2.3.19) to derive (2.3.20).

To prove (2.3.19), we argue that this enough to consider the case where o, is symmetric.
Indeed, observe that the matrix solution A; computed with o; or (o0 )'/?
that the bound (2.3.19) depends intrinsically on oy through (o0 )'/2. Therefore, assume

is the same, so

hereafter that oy is symmetric, so that oy = (o0 )'/2. The proof of (2.3.19) requires a few
linear algebra results that we recall below. For this proof, we use three convenient notations.

e For a given A € S% let a(A) denote the vector of the eigenvalues of A placed in
decreasing order.

e For a square matrix A, |A|p = (/Tr(ATA) stands for the Frobenius norm of A (also
known as the Hilbert-Schmidt norm).

o Let {(P/")o<t<T : n > 0} be a sequence of non-negative measurable processes, we write
B o — oy

if PI* < Cyloy — o}|,Vt € [0,T],Vn >0, a.s..

Lemma 2.3.5 ([Wih09, Theorem 1.1]). Let f : I — R be a real function on a interval I C R
which is Lipschitz with a constant C;. Let A, B € 8¢ such that their eigenvalues are in I.
For a matriz M € S¢ with spectral decomposition M = UT Diag(\1, ..., \q)U we denote

f(M) =UT Diag(f(/\l)a R f()‘d))U

Then
|f(A) = f(B)|r < C1|A - BlF.
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Lemma 2.3.6 (Hoffman-Wielandt inequality, [AGZ09, Lemma 2.1.19]). Let A,B € S<.
Then
|a(A) —a(B)| < |A— Blp.

We now go back to the proof of (2.3.19) (still in the symmetric case for o;): We extensively
use Assumptions 3, the statements of Lemma 2.3.2 and we proceed in several steps.

1: |GCF = CP(CP)T| =2 |or — a7l.
From the definitions of Cy and C}* using a standard calculation we get
C.CF = CR(CP)T| = |of (Dywvr) Tav0{ Dyvioy — (o7) T (Dyvr) o} (o7) T Dyvioy|

3
< D Davefloe| o P o — o,
1=0

We are done.

2: |a(CiC) — a(CH(CP)T)| = o — afl.

This directly follows from Lemma 2.3.6 and Step 1.

3: |Tr( X — Xy)| 2 oy — of].

Here we need to recall part of the proof of [GL14a, Lemma 3.1], which gives the solution
to the matrix equation (2.2.1). Consider the function f : R:{ x RT — R, defined by

d
f(By) = (A+d)y— Z\/y2+4ﬁz

For any 8 € R;{, there is a unique yg > 0 solution to f(8,y) = 0. In addition
Tr(Xy) = yi(ctcj) > 0 and Tr(X}') = yi(ctn(cgl)T) > 0. The first fundamental theorem
of calculus yields, for any 3, 3,

Supxe[o,l]‘Dﬂf()‘ﬁ (1=Np, y{B+1 2B )‘
infyepo, | Dy (A8 + (1= N8 yls, 1 n)a0)

vl — bl < 16— Bl.

Remark that for any y > 0 and any g

Dyf(B,y) =4+d— Z\/T

2

Dy, f(B,y)| = ———— <
[Dg, f(B, )] \/m

QQ

< | N
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Vd

Therefore, ]yg - yg/] < m |8 — B'|. It readily follows that
BB

Tr(Xe — X{)| =

f . f
Yacrery = Yaepemm

- Vd
~ 2min(Tr(Xy), Tr(X7))

(il = alcpe)T)| < low - of

using Lemma 2.3.2 and Step 2.

4: | X — Xy| <oy — o}
From [GL14a, Equation (A.7)], we have

Tr(X 1/2
) — Tr(Xt) Idy+= (r(4t) Idg —I—CtCtT)

and similarly for X;*. We now apply Lemma 2.3.5 with f(z ) f x: with the notation

of this lemma, the eigenvalues of wld +C,C and ( £ Idg +CHCM)T take

values in I := [mm(%, %), +00) and thus, the Llpschltz constant of Lemma

2.3.51s Cp ¢ 1 := 1/ min(Tr(X), Tr(X7")). Furthermore, by Lemma 2.3.2

inf ( inf Tr(X[ )) >0, inf Tr(X;) >0
n>0 \ ¢€[0,T) t€[0,T]

which implies sup,,>q sup;(o,7] Cn,t,1 < +00. As a consequence, we obtain
X7 = X0 2 T = )|+ [ Te(Xp)? = Te(X0)? + | C(ep)T = GicT |
= ot — o]

where we have used Assumptions 1 and 3, Steps 1 and 3.
5: ’O’;F(A;L - At)at} =< |oy — o]
We write
af (A} = Aoy = of (o)) T X7 (o) 1oy — X,
= (0] (o)) ' Xu(of) L or = Xi) + of (o)) HXT = Xi) (o) o

For the first term on the right hand side, we get

of (o)) Xu(of) Loy — X
= |(1da+(or = o) (o)) ) Xe(lda +(07) " (o0 = o)) = X
= (o = o)) )X + X (o) M (ow — oF)

+ (o1 = o) (o)) " Xa(07) " (or — 7))
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< (21Xello?) + low = o ll(o?) M PIXel) o — |

= |or — oy

using that by Assumptions 1, 3 and the continuity of X we have

sup [ sup |of'| | < +o0, sup |oy] < +oo, sup | Xy < 400
n>0 \t€[0,T] t€[0,T] te[0,T

while Lemma 2.3.2 gives
é%% <t el[%fT ] Amin (07 )) > 0.
Now for the second summand, it is clear from Step 4 that
o7 ()T X = Xo) (o) o] < Jow — .
We are done.
6: |A} — A¢| < |or — o7

This directly follows from Step 5 and from the sub-multiplicativity of the matrix norm.

This finishes the proof of Proposition 2.3.4. O

2.3.3 Proof of Theorems 2.2.5(bis) and 2.2.5

Now we are ready to finish the proof of the announced theorems.

Proof of Theorem 2.2.5(bis)

We assume Y ,,~oc2 < +0o. First the sequence {7T"},>0 defined in (2.2.12) is admissible:
this is the first part of Proposition 2.3.3.

The hypothesis (2.2.14) of Theorem 2.2.5(bis) implies that (2.3.20) of Proposition 2.3.4
holds. Therefore, we can apply the last part of Proposition 2.3.3 to write

2
NMZ™Mp — (Z ASTT?ATZLIASTZL) 0.

n—-+00
T <T

The a.s.-limit of (---)? is handled using Proposition 2.A.1 and we finally obtain

T 2 T 2
lim NE(ZM)p = ( /O Te(Asoro) )dt) _ ( /0 Tr(Xt)dt> a.s.

n—-+0o

This finishes the proof of Theorem 2.2.5(bis). O
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Proof of Theorem 2.2.5

Here we assume only e, — 0. Let {7"},>0 be the sequence of strategies defined in (2.2.12).
By the subsequence principle (Lemma 2.2.2), it is enough to show that for any subsequence
(e.(n))n>0 of (en)n>0, we can extract another subsequence (€, (n))n>0 Which is square
summable and such that {TLOL/(")}nZO is admissible and

4 / a.s T :
NQL'*OL (n) <ZLOL (n)>T n_j_oo (/0 TI‘(Xt)dt> . (2321)

But these properties have been proved in Theorem 2.2.5(bis), which holds because Assump-
tion 3 with the subsequence (v o ¢/(n))p>0 is satisfied (owing to Assumption 4). We are
done. O

2.4 Rolling diffusion coefficient estimation

In this section we study the properties of the estimators (of'):c(o,r) based on the rolling
covariance estimation of the increments of S with a general weighting kernel. We will find
out the asymptotic properties of the lookback window size and the estimation grid size that
will ensure the optimality of the resulting sequence of strategies (in the sense of verification
of en°/? SUPye(o,7] (o102 — o % 0 as in Theorem 2.2.5).

’ n—-+00

The subsequent approach will make use of data observed at negative times on [tg, 0]
(for some ty < 0), just to be able to provide accurate estimation of (oo} )!/2 for t close to

0. Alternatively, one could assume directly that (aoag )1/ 2

is known (exactly or with some
error) and then combine this a priori knowledge with observation on [0,7]. However, we
believe that this would be quite artificial and that a full data-driven algorithm is preferable
and more realistic for practical applications. Therefore for this section we suppose that the
process S is defined on [tg, T] (with some ¢y < 0) and we start the discretization algorithm
at time 0 (as in Sections 2.1-2.2-2.3).

Now we define the kernel used for the estimation. Let K : R — RT be a non-negative

bounded function satisfying
0
/ K(u)du = 1.
—00
We assume that the kernel K verifies the following hypotheses:
(H}/P") : K has a compact support included in [—#, 0] for some £ > 0.
(H%p ) : K is Lipschitz continuous on the interval [—k, 0] with a Lipschitz constant L.
Note that K may be discontinuous at —x and 0. For any v > 0 denote
1 t
K () = 2K (> .
Y Y
As mentioned before, the process S is defined on [ty,T] for some tyg < 0. We implicitly
suppose that Assumptions 1 and 4 are modified for the case where ¢ € [tg, T]. However the
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optimality results for discretization strategies are still considered on [0,7]. We are aware
that doing so, we should redefine the probabilistic model on [ty,T] as a difference with
previous sections. However, the reader can easily check that it would not modify the results
but would complicate the presentation (which we prefer to avoid for the sake of clarity and
conciseness).

Let Assumptions 1 hold. Fix some (€,)n>0,pn and 0 satisfying Assumptions 2. Fur-
ther we will use a particular sequence of estimators ;' that as will be shown also verifies
Assumptions 4.

We choose a sequence {7"},>o of estimation grids that is P-admissible for some (e},),>0
with €], — 0 and p/y > 1. The sequence of estimation grids may differ from the sequence
of the grids representing the optimal discretization strategy. The latter one is admissible
for (e5)n>0 and py. Remark that in this section 7;* will denote the stopping times of the
estimations grid 7" ={tp =10 <--- < 7' <--- < TNn = T}.

Choose a positive sequence (7y)n>0 such that 4, — 0; we can assume without loss of
generality that tg < —k7v, for any n > 0. Define the rolling empirical covariance matrix,
where the kernel K represents a weight function, as follows

S =Y Ky (i — )AS; AST, (2.4.1)

T<t

where, for any process U, we set AU :=U; —Uzn | fort € (tlq, 1.

Note that for each n > 0 the process X" is adapted (as 7;*’s are adapted). Moreover it is
continuous between the pairs of stopping times 7;* ; and 7;* and takes the left limit at 7;*’s.
Thus the process X} is adapted caglad for each n.

The main result of this section is the following theorem.

Theorem 2.4.1. Let (ou,)n>0 be a sequence of real positive numbers such that

5/204” — 0.
n—-+00

€n
Define the sequence of estimators {o} : 0 <t < T}, >¢ by setting
o = (X0 + o, Idg) 2,

where X is the symmetric matriz given by (2.4.1). Suppose that e}, e, and ~, satisfy the
assumptions

(i) €/, =0, en = 0,7y, = 0;

.. —0/2 05/2
(ii) 5n/’yn/ — 0, asn — 00;

()"

6/2
5n/ Yn

(iii) there exists p € (0,2) such that — 0, asn — oo.

Then the estimators o™ fulfill Assumptions 4 and the sequence of discretization strategies
(2.2.12) based on the estimators o™ is optimal in the sense of Theorem 2.2.5.
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Remark 2.4.2. Clearly the set of hypotheses in Theorem 2./4.1 is non-contradictory since
we can first choose 7y, that converges to 0 fast enough to satisfy (ii) and then choose e,
converging to 0 fast enough to satisfy (iii).

The rest of the section is devoted to the proof. The above result states optimality for
convergence in probability, optimality in almost sure sense would be similar by requiring

square summability of the sequences ¢, and ;%, the detailed analysis is left to the reader.
En '771
We now prove Theorem 2.4.1. The following lemma is a technical property of the kernel

K with the stochastic grid 7™.

Lemma 2.4.3. Consider a sequence of grids, admissible (in the a.s. sense of Definition
2.2.1) for e, and ply, with 3°,~o(eh)? < 4+00. Denote ¢(s) the latest stopping time of a
estimation grid strictly before s,_where we omit the dependence on n and on the grid. Then,
for any p > 0, we have a.s. for anyn >0 and any t € [to, T

[ s == K (ots) — s < SR

(note that the a.s. finite random variable Cy may depend on p).

Proof. We recall the a.s. control of time step for the admissible estimation grid (see Lemma
1.3.2), i.e.

sup(el)P™? sup AT < 400 a.s. (2.4.2)
n>0 1<i<NP

So we obtain

/_too |Ky, (s =t) = K, (¢(s) —t)|ds < / |K, (s —=t) — K, (¢(s) — t)|ds
t—kyn<¢(s)<s<t
[ K - K 0ls) — blds

P(s)<t—rkyn<s<t

L 2 Co(eh)?=r
< —I;/-wn sup A7+ — sup K(u) sup A7 < M,
Tn 1<i<NZ Tn ue[—rk,0] 1<i<NR Tn
which implies the result. O

Now we show a preliminary result on the convergence of the estimators 3.

Proposition 2.4.4. Suppose that ), &, and 7y, satisfy the assumptions (i)-(ii)-(iii) of The-
orem 2.4.1. Then we have that

e sup [SP—-% 5 0 (2.4.3)
te[0,7) n—+00

where ¥y = 010, .



2.4. Rolling diffusion coefficient estimation 103

/

Proof. Note that (i) and (#i¢) imply — 0. First suppose that

d 2
{-_‘n/ 7n

el 2
Z ( 572 ) < +o0.
n>0 \én Tn

In particular, this implies that 3,5 (e; !)? < +oo0. For this case we will prove the convergence
(2.4.3) in the a.s. sense and then, as in the proof of Theorem 2.2.5, use the subsequence
principle from Lemma 2.2.2 to pass to the general case. Write

t
0P -2 < 2| [ K (s - s - 3 (2.4.4)
t
b/ / Ky, (s—t)Sds — Y Ky (77 —t)ASmASL|. (2.4.5)
- TRt '

Let us first show the convergence

a.s.
= 0.
n—-4o0o

/ K., 1)Ysds — X

sup
te[o T)

Using the Holder property of oy (and by consequence of 3;), the assumption 2.4 and that
[t K, (s—t)ds = 1, we have

e=0/2

/ K,, t)Ysds — Xy

<e; 5/2/ K., (5 —t)|%s — %y|ds

SC’osg‘s/Q’yz”/z/ K., (s —t)ds = Coe; 024012 2% ¢
—00 n—-+o0o
uniformly on [0, 7], in view of the assumption (i) of the proposition.

Now consider the second term of the decomposition (2.4.4). Had the grid 7" been
deterministic (i.e., the usual case in the literature), the analysis would have been quite
standard, using direct martingale arguments. Here the stochasticity of 7™ and of the factors
K., (7] —t) complicate significantly the analysis. Using the It6 formula we write

T<t

£-5/2 ( / Ky, (s —t)Seds — > K, t)AST?ASIZn> (2.4.6)
—=c;9/2 (/ Ky, (s —t)Seds — > Ky, (7] — t) / ) ds) (2.4.7)

n<t
— 20N K (0 — 1) / AS,dM]T (2.4.8)
T <t
92N K (e — 1) / * AS,dAT. (2.4.9)
T

T <t
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a) For the first summand in the decomposition (2.4.7) we have

—6/2/ Koy (s —)Seds — S Ko (i —1) [ Suds

T <t

o)
< 5;5/2/ K, (5 — ) — Koy (6(s) — )] - Sslds + 72| [ K (s — )Zuds

o(t)
e 2—p E/ 2—p
< Cp sup ]Et]( ")6/2 + Cp sup ]Zt\supK( )%,
tG[to,T] Ynén G[to,T] YnEn

where for the last inequality we used Lemma 2.4.3 for p from (iii), and (2.4.2). Further

()" _ oy, ()7
5/2 - ’Vn c
Yn€n Tnén

in view of (4i7). Thus the first summand in (2.4.7) tends to 0, uniformly in ¢ € [0,7].

b) Now let us handle the second term in (2.4.7). Define a martingale process on [to, 1],
valued in R? @ R?, as follows:

P! = AS dm].

to

The Abel transformation yields

S K, (r / ASAMT = 3 K, ( (P — Pl ) (2.4.10)

i—1
T<t T <t

= P;:.”(K%(Tin—l — 1) = Ko, (7" = 1)) + Py Ky (0(2) — 1) (2.4.11)

Tr<t

Consequently we obtain

23 K, (1) / CASAMT

T <t

<&, sup [P} (Z (K (T8t —t)—K%(Ti”—t)|+Kn(¢(t)—t))

toss<T <t
<% sup |PM | 2Lk Z (7 — 7)) + 27, L sup K (u)
toss<T t— /vyn<‘r 1<7' <t u

_ 1
<=2 swp P (52 Lk + 205 Sup K1) ) < Cogrp— sup [P
to<s<T En Vn to<s<T

1
The quadratic variation of the (k,l)-element of the matrix-valued martingale S P is
En Tn
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equal to
1

ed2

/ ASERaMY, < 0y C 4;)2.

5/2

2
/
el
Hence 32,50 (en ' "y 1P,?J)T < 400 a.s. using the temporary assumption ), ( > <

5/2
en
400 made at the beginning of the proof. From this using Lemma 2.A.2 for a process c?eﬁned

on [tg, T] (see Remark 2.A.3) we deduce that

1 a.s
n .s.
5/2 P |PS | n—>—-‘,>-oo 0’
En  Yn to<s<T

Thus the second term in the decomposition (2.4.7) a.s. converges to 0 uniformly in ¢ € [0, 7.
c) Denote t — |A!|; the total variation process of the I-th component A. For the (k, [)-element
of the third (matrix) summand in (2.4.7) we get

5;6/2 < Cye —5/25upu n Z g d‘Al|s

n n<t T

S Ky (7 / ASFdAL

<

—5/25upu K( )

n

< Coe en(|Alr — |Aly)-
/

In view of (iii) we have — 0, which implies the a.s. convergence to 0 in the sup-norm.

6/2
r}/ngn/

Hence the a.s. convergence

V2 sup |Bf —%] "% 0

€n
t€[0,7) n—+o0

/
en
is proved under the assumption of square summability of (—2— /2 )n>0-
En Tn
To prove (2.4.3) in the general case under (7)-(ii)-(ii7) we use the subsequence principle.

For any subsequence (¢(n))n>0 of positive integers there exists another subsequence (¢ o

2

el

V' (n))n>o for which 3,5 ((5/2“(”)) < +4o00. Thus as shown earlier in the proof,
ELOL/(’R) Yiou! (n)

we have Ebof/ (i) SUPye(o,7] Do ) _ b . jm 0. Using Lemma 2.2.2 we obtain the desired

convergence (2.4.3). O
Now we are ready to finish the proof of the main result of this section.

Proof of Theorem 2.4.1. Using Lemma 2.3.5 and the Frobenius norm |.|r on matrices, write

o7 = (010]) 2|5 = [(5F + an 1dg)/? — (20) 2| (2.4.12)
1

= X0 — Sylp + apVd). 2.4.13
> 2\/m1n()\m1n(2?) + s Amin(zt)) (‘ t t’F « ) ( )
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From this it is easy to deduce via Lemma 2.2.2 the convergence

_ P
e %2 sup |of — (opo])V?] = 0,
te[0,1) n—+o00

5/2

using that e,/ “«a;, — 0 and the convergence

e sup [SP—-% 5 0
tE[O,T] n—-4o0o

given by Proposition 2.4.4. Indeed for some subsequence (¢(n)),>0 we have

—6/2 t(n) a.s.
E,m) Sup [y — X = 0, 2.4.14
(n) te[0,7) ‘ t t‘ n—-+00 ( )

therefore a.s. -
é%%té[%,fﬂ ()‘min(zt ) + oun)) >0,
and thus, in view of (2.4.13) and (2.4.14), we obtain

5/2

W sup joi™ — (oo)'?] % 0.

£y
te[0,T] n—+00

In the above, the strict positivity uniformly in n stems from the convergence of X the
fact that inf;cpo 1 Amin(2¢) > 0 and the strict positivity of )\min(Ei(n)) + () for any n > 0.
Hence finally using Lemma 2.2.2 we deduce that

—5/2 T\1/2 P
ex’’lof = (o))’ % 0.

Note that from the construction of the sequence {o}" : t € [0,T]},>0 it satisfies As-
sumptions 4 by taking subsequences as above. So the assumptions of Theorem 2.2.5 are
verified and its application shows that the sequence of discretization strategies based on
{o} :t € ]0,T]}n>0 is optimal. The proof is finished. O

2.5 A numerical example

We consider a 2-dimensional diffusion process S on [tg,T],tp = —0.1,7 = 1 with a deter-
ministic diffusion coefficient, so that S is a Gaussian process that can be simulated exactly.
Namely we define S;, = 0 and

ds; = (2)Y2dB; for t € [-0.1,1],

where B is a standard 2-dimensional Brownian motion and

5, = ( o1(t)? Pal(g)ffz).

poi(t)oz o3
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Here o1(t) = 1 + ksin(mt) with & = 0.3, m = 10. The other parameters are set as follows:
oo =0.1, p=—0.2.

Now we take the following function v, it does not depend on t:

2
oft, S) = (6§SQ> .

Note that an efficient discretization of fol v(t, S¢) - dS; must take into account the difference
of the sensitivities of v with respect to S* and S2.

We simulate the process S exactly on [—0.1,1], on a regular grid with a step 0.00002
used for the estimation. In this example we will not perform asymptotic tests, so we will
not define the whole sequence (&,,)n>0. Instead we consider a fixed n and we may directly
specify small €, that we take.

In this test we consider 4 different discretization methods:

1. asymptotically optimal discretization method, given in Theorem 1.5.2, using the exact
knowledge of ¥;

2. asymptotically optimal discretization method based on estimation of the diffusion co-
efficient, given by Theorem 2.4.1 that uses a kernel K (u) = 11_,<,<0;

3. discretization method based on hitting times of equal circles, i.e. with the quadratic
form process A, generating the ellipsoids in (2.2.12), equal to \Id;

4. regular deterministic discretization grid.

The method based on the hitting of equally sized circles may be seen as a choice by default
when one does not want to estimate the model.

We fix €, to be 0.025. To get the grids of approximately equal sizes, we take A = 2 in
the construction of the circle hitting times grid. This value of €, is empirically chosen to get
nearly 1000 discretization points on [0, 1], further for the deterministic discretization we set
the grid size equal exactly 1000. The lookback window for the estimation (i.e. k) is 0.002
with 100 estimation points.

We simulate 25 trajectories of the process S. For each trajectory we compute the optimal

2

lower bound equal to ( fol Tr(Xt)dt> . Further for each discretization method we calculate
the grid size N7, the quadratic variation of the discretization error (Z");, using the finest
grid with time step 0.00002.

N (Z"h

1 2
(Jy (X))
theoretical results imply that the first two methods are asymptotically optimal and thus
must have 3, 1 close to 1.

On Figure 2.1 we display the values of 3,1 for the 4 discretization methods in each of

Note that the

The quantity of interest for each method is 3,1 =

the 25 simulations.
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3.5
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Figure 2.1: The values of the ratio 3,1 of the renormalized discretization error and the
optimal limit lower bound for 4 discretization methods, 25 different simulations.

The numerical test strongly confirms the theoretical results about the optimality of the
estimation based algorithms. We see that for both standard and adaptive versions of the
optimal discretization, the values of 3,1 are very close to 1, thus the renormalized error
nearly attains the optimal lower bound. For the circle hitting times method, the strategies
are less accurate, we lose nearly 40 percent in efficiency. Further the first three methods
based on stopping times largely outperform the regular discretization with approximately
the same grid size. Remark that this is true in exactly each of the 25 simulations which is
in line with the a.s. nature of the theoretical results. To conclude, the tests confirm that
the use of adaptive estimation in the case of no prior information about the model does
not impact the quality of the discretization method and the model-adaptive version of the
optimal discretization works as well as the initial one.

2.A Appendix

2.A.1 Convergence of discrete quadratic variation

We reformulate Proposition 1.3.9 in our setting.

Proposition 2.A.1. Let S be a semimartingale of the form (2.1.1)-(2.1.2) satisfying As-
sumptions 1. Let T = {T" : n > 0} be a sequence of strategies satisfying 2.2.1 with
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> n>0 57% < +o0. For any continuous adapted d x d-matriz process (Hy)o<i<T, we have

> ASLHmn ASn / Tr (H;d(M)y) .
4 e i n—>+oo

T <T

Further we recall the following result from [GL14a] (see Corollary 2.1) about the a.s.
convergence to zero of sequences of martingales.

Lemma 2.A.2. Let p > 0 and let {M} : 0 <t < T},>0 be a sequence of scalar continuous
local martingales vanishing at zero. Then

Z(M”}?/2<+oo a.s. < Z sup |M”|p<+oo a.s..

In particular the left hand side implies that supg<;<p | M| a—_>s‘_ 0.
- - n—-+00

Remark 2.A.3. Note that from a simple time-change argument the statement of Lemma
2.A.2 holds for martingales defined on [to,T),to < T, and vanishing at ty, where the supre-
mum is be taken over [to,T].

2.A.2 Proof of Lemma 2.3.1
Here we closely follow the proof of [GL14a, Proposition 2.4]. First note that the convergence
(2.3.1) implies

sup (sup |[H}J
n>0 \t€[0,T)

<sup | sup |HP|+¢ed | < +oc.
n>0 \t€[0,T)

From this we deduce (similarly as in [GL14a, Proposition 2.4]) that the sequence of stopping
times 7™ is a.s. finite for all n > 0.

We now have to verify the two assumptions 2.2.1 and 2.2.1 in Definition 2.2.1 about
admissibility. Let us begin with 2.2.1:

2
sup sup  (AS][H" ] nASt) < g2t = 9¢?

5 n
n

1
sup |AS[* < -
tef0.7] infsefo,7) Amin ([HP]7) 1<i<Np te(r, o) €

using (2.1.9).
Now let us establish 2.2.1. For n large enough so that €, < 1, we have

§
EPNNGF < e ONf =ent 4+ 3" AST[H 1 AS»
T, <T

<204 S ASLHp ASp 3 |AS P |[H P - Ho

1—1
T T

<&l 3 ASTHp ASm o sup (a + sup |H{" - Htl) Y |ASH

T <T t€[0,7] T <T
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Using only 2.2.1 and the continuity of H, Proposition 2.A.1 gives us that

T
S ASTHp AS; "3 (A Te(H,d(M),),

Th<T onmreo
2 a.s.

X a8 T

i

Thus the sequence (2°N N2V),, is a.s. finite and the assumption 2.2.1 is proved. The sequence
{T"}n>0 is admissible. -

2.A.3 Proof of Lemma 2.3.2

Using that o is a.s. continuous and non-degenerate we get that

inf  Awmin 12y 5 0.
ol ((oroy )77)

The above and the convergence (2.3.3) readily implies that

n>0 \ ¢€[0,T

inf ( inf Amin(%”)) > 0.

The fact that it holds for any n > 0 (and not only asymptotically) is made possible owing
to Assumptions 3. Assumptions 1 (in particular (1) and (1)) imply that C; is non-zero for
any t € [0,7] a.s.. Thus from the continuity of Cy we deduce that

inf T T . 2.A.1
é&qd@Q)>0 (2.A.1)

Writing
COF = CR(CT)T| = |of (Dyve) T a10] Dyvioy — (07) T (Dyvr) T o7 (07) T Dyvioy'|
and using that sup,,>q (|o7'|) is a.s. bounded, we easily deduce from (2.3.3) that

sup |C:Cf —Ccrem T “S oo,
te[0,T] n—+00

which in particular implies that

: : n(m\T
égfo (tel[%,fT] Tr(CP(CY) )) > 0. (2.A.2)

Consider now the matrix equation (2.2.1)

2Tr(z)x + 422 = cc'. (2.A.3)
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For x € Si, we have the easy inequalities
Tr(z?) < Tr(z)? < d Tr(z?).
Then taking the trace in (2.A.3) we get
(4 4 2d) Tr(z?) > 2Tr(x)? + 4 Tr(z?) = Tr(ccT),

from which we deduce

Tr(z)? > Tr(z?) > Tr(ce™).

4+2d
Combining this with the properties (2.A.1) and (2.A.2) leads to

inf Tr(X;) >0, inf ( inf Tr(Xf)) >0,
t€[0,T7] n>0 \ t€[0,T
which finishes the proof. O

2.A.4 Proof of the counter-example 2.1.1

Dy (VI D
xv—om.

We use a misspecified model with & = Ids. Let us follow the construction of the discretization
strategy in [GL14a, Theorem 3.3] (here all the processes are constant, we mark by tilde those
corresponding to the misspecified model). Thus we obtain

\/ﬁ())_

We have

C=5"(Dw) 6= ( 0 Ji0i

One easily checks that X = (é 2) satisfies the matrix equation

co oo a7 (14 0
2Tr(X)X +4X%2=CC _<0 o4 )

Thus we obtain
A=(@E"HTX6! =X,
which is the matrix used by the optimizer to construct the discretization times as the ellipsoid

hitting times. For the given sequence (€,)n>0 with £, — 0 we define {7"},>0, where
T™ = {7 }i>0, to be a sequence of discretization strategies such that: for any n € N

78 =0,
N (2.A.4)
7 i=1nf{t > 7" | : (S} — Sri[l)TA(St — S ) > 5%} NT.

i—17 —
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Using that the true diffusion matrix is ¢ = ( 0 05

1 -
0 ) , so that 0TAc = Ids, the above

definition (2.A.4) is equivalent to

70 =0,
. (2.A.5)
= inf{t > 77, : (B;— Brn )T 1do(By — Brn ) > €2} AT

i—1 =17 —

Now consider the renormalized discretization error for {7"},>0,
NR(Z™My = N2 <\/14 / "ASIAS! + /104 / ' Asfdsf>
0 0 T
n ’ 1\2 104 (7 212
_ N 14/ (AB)) dt+?/ (AB2)%dt | .
0 0

For a moment, assume that the following holds for j = 1, 2:

o [T oanivza BT
NEZ AB — 2.A.
P @B S S (2.A.6)

(which proof is given at the end of the section). Thus we obtain the convergence

- 41
N Z™) n}}m §TQ.

At the same time for the optimal discretization algorithm (which attains the optimal
lower bound) the P-limit is equal to Tr(X)27?, where the matrix X is the solution of the
equation 2 Tr(X)X +4X?% = CCT (see [GL14a, Theorem 3.3] combined with Lemma 2.2.2).
Here

14
CCT = (6T (D) To)? = < ; g) .
2
For the case of diagonal CCT the solution X can be calculated analytically. Following the
proof of [GL14a, Lemma 3.1], y = Tr(X) is the unique solution to the equation

13
6y:\/y2+4-14+\/y2+4~?.

After simple calculations and simplifications, y must solve the bi-quadratic equation

1152y — 590432 4+ 900 = 0,

T T
whose solutions for y? are % V41481. Using the inequality Tr(X)? > fl(fgd)

Section 2.A.3, we derive that Tr(X)? = 2089498l - Therefore we obtain the desired result
(2.1.7) with

_ 41
=15 from

41 369 +9v/1481

b 8 144

~ 0.157. (2.A.7)
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Proof of (2.A.6). [(‘LHA Theorem 3.3] applied with S; = B; and D,v = Ids (here we have
Xi=X=A= 5 f Idy) and combined with Lemma 2.2.2 yields

2

2
e /OT((AB§)2+ (AaBpdt 5 (/ Te(X)) dt) - % (2.A.8)

here we suppose that the discretization rule from [GL14a, Theorem 3.3] uses a sequence
52

(&n)n>0 satisfying &2 = 55 S0 that it is coherent with the one defined in (2.A.5). We now

prove that the left hand side of (2.A.6) has a limit in probability, which is a constant. For
7 =1,2 write

o ' Np—1
an / (ABI)2dt — Z <4 / (ABI)2dt + 0n(1),
0
where oy, (1) comes for the last summand. From [GL14a, Proof of Theorem 3.2] we obtain

Npe2 & /TTr(Xt)dt:T.
" p—too 0 \/§

Let (W:)¢>0 be a 2-dimensional Brownian motion independent of B. Define a sequence of
stopping times (6;);>0 by 6y = 0 and

;1 = inf{t > 0; : |W, — Wp,|* > 1}.

Let N” be the number of ; satisfying 6; < Te,?2, it is easy to justify that ]\7% 2 oo
Define a sequence of random variables

0it1
Qi :/ (W, — Wy )%ds.
0;

Using the scaling property of B we get the following equality of distributions

N”l N"l

1n et ABJ 2qt 4
NT =1

Tzl

a.s.

Hence using that V2 4% 400 the Law of Large Numbers implies

)2dt ﬂ (2v2)2E(Q)

N% =1 T oo

and so .
e / (AB2dt 5 4TPE(Q).
0

n—-+o0o

As the limit is the same for j = 1,2 in view of the symmetry we deduce E(Q) = 1—16 from
(2.A.8). Thus, (2.A.6) is proved. O
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3.1 Introduction

Statement of the problem and motivation. In this work we consider the discretization
of a multidimensional It6 process S at random stopping times 7' =0 < 7" < --- < TNn =T.
The number of discretization times N7 may be random as well. Our goal is to establish a
functional Central Limit Theorem (CLT) for the renormalized discretization error process
(V/NPEMo<i<T, where ' is R™-valued and has the form & = &' + &% with

TINAL "/\t
gth = Z nl MTin—l (SS - STin—l) n = Z / )T'A"'zn—1dB5'
o<t Tim1 <t Til

(3.1.1)
Here, B is a d-dimensional Brownian motion, M and A are arbitrary adapted continuous
processes with values in Mat,, 4 and Matg 4 @R™ respectively (so that A; maps bilinearly
(z,y) € RTxR? to 2T Ay € R™; see the notation at the end of this section and Section 3.2.3
for more details).

Analysis of the discretization errors based on deterministic discretization grids is a well
studied subject developed in works such as [Roo80, JP98, HMO05, GT09, GT01, MZ06] among
others, see also [JP12] and references therein. However, in practice the discretization times
may be random, which makes the analysis much more complicated. The setting of random
discretization grids has gained a lot of attention due to applications in high frequency finance
(see e.g. [Fukl0, FR12, RR10, RR12]). The importance of the subject was, in particular,
emphasized in [DGMT01, Section 1.1] and [ASJ14, Chapter 9]. See also [GW02] for em-
pirical evidence about the connection of volatility and inter-transaction duration in finance,
[Fuk10] for modeling bid or ask quotation data and tick time sampling. Many works re-
mark the non-negligible impact of the randomness of the discretization times with respect
to the classical deterministic case when dealing with convergence results. For example, in
[ASMO3] it is observed a considerable effect of random sampling on the estimators in the
setting of parametric inference for diffusions. In [LLZZ13] the authors note that taking into
account the endogenous randomness of the observation grids, when it exists, may substan-
tially improve the performance of the integrated volatility estimator. Certain works (such
as e.g. [LR13, ZS16]) consider the case of random but, so called, strongly predictable dis-
cretization times. Though important, this case is more basic compared to stopping times.
While the theory of stopping time discretization grids has recently experienced substan-
tial progress (see the literature discussion below), the existing results possess a number of
drawbacks. First, many of them only cover the 1-dimensional case and typically consider
particular examples of the error term, e.g. related to integrated variance estimation (e.g.
[Fuk10, Fukl1b, FR12]). Second, in terms of the discretization grids under study, most gen-
eral works (such as [Fuk11b]) consider an abstract setting with assumptions that are difficult
to verify and thus do not explicitly describe the class of those grids. Generalization to the
multidimensional case is highly non-trivial both regarding the extension of the central limit
theorem (in particular, characterization of the limit distribution) given the abstract assump-
tions on the moments, and even more regarding the determination of the class of random
grids verifying the assumptions. For example, natural candidates for endogenously generated
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discretization times are first exit times from random domains, whose analysis is much more
complicated in multidimensional setting (while in dimension 1 such a domain is given by the
two boundary points). Less abstract works (such as e.g. [FR12, RR12, LZZ13, LMR"14])
study only specific classes of grids and are restricted to either the case of grids given by
hitting times or random times driven by a noise independent on the process S, while a
combination of these two types of grids has not been addressed.

In our our we propose a unified treatment and we aim at closing these gaps in the
existing literature on the subject. Our goal is to prove a functional CLT for the sequence
of the renormalized discretization error processes (v/Ni&)o<i<r in the multidimensional
case for a general error term of the form (3.1.1) for a sufficiently general concrete class
of random discretization grids (i.e. specified directly by its definition and not by abstract
assumptions) with explicit characterization of the limit distribution. In particular, the model
for the process S; allows quite general (non-Markov) Ité processes verifying mild regularity
assumptions, and therefore it includes most of the models relevant in practice. The class of
random discretization grids allows a combination of the endogenous randomness generated
by S and independent noise, and includes the exit times from general random domains — a
framework that was not previously studied in the literature. As seen in (3.2.6) , it will take
the form of

i =inf{t > 7t (Sp = S ) € enDin P A(T] 4 e2 Grr (Ung) +Ani) AT,

for some parameter ¢, — 0, some stochastic domain D" indexed by time, some independent
random variables (U, ;)i n, some negligible terms A,, ;. More general forms are even allowed
in Section 3.3

In particular, the form (3.1.1) of the error term covers such important applications as
error analysis for integrated variance estimation, optimal tracking strategies and parametric
estimation for processes. In these applications a discretization error process can be typically
decomposed into a linear part of the form (3.1.1) and the rest, that gives negligible contri-
bution. To illustrate consider a process of the form S; := Sy + fg bsds + fg osdBs and let
ASy:= 5, — Sr» with 7" the largest discretization time before .

1. Integrated variance estimation. Here the goal is to estimate fo Tr(o,0])ds using the
random process observations (see, e.g., [BNS05, MZ06, RR12, LZZ13, LMR*M]). Us-
ing the It6 formula we write the error process

t t t
S [ ASm el — / Te(os0 T )ds = 2 / AST6,dB, + 2 / bTASds.
‘ 0 0 0

T <t

2. Optimal tracking strategies. This is related to the minimization of the tracking error
of a continuous-times strategy, which, for some function v : R x R? — R, may be
written in the form

t ”/\t
/U(S,SS)dSS— DECETERICESS / V(i 1, S )AS,dS,,
0 ‘r

T <t T <t
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which is a particular case of (3.1.1). See, e.g., [Fukl1lb, Fuklla, GL14a] and Chapters
1-2.

3. Parametric estimation for processes. In the problem of the parametric inference for a
diffusion process, depending on a parameter £ € =, and observed at discrete times, the
proof of the CLT for the renormalized estimation error sequence (\/NJ(£™ — &*))n>0
often requires the CLT for discretization errors of the form (3.1.1). This application is
developped in Chapter 4, where the question of optimal contrast estimator is investi-
gated together with optimal observation grids, see also [GCJ93, GCJ94, ASMO04].

There also exists a number of works related to the asymptotic analysis of the Euler scheme
error, see [FO15] and references therein. We remark, however, that our setting is quite
different since we deal we discretization of the true process trajectories, and thus we do not
consider this problem here.

Background results. A number of works deal with the case of strongly predictable
(possibly up to conditioning on some independent noise) grids. This case is studied in
[ASMO3, ASMO04] in the setting of parametric inference for diffusions. [DG04] investigates
the inference problem for Markov processes observed at random times and provides, in par-
ticular, their asymptotic normality. Sampling scheme intervals are made of exponential
times with intensity that may depend on the underlying Markov process and on the param-
eter vector to be estimated (compare with our analysis in Section 3.2.2, where we do not
use any Markovian assumptions). [BNS05] studies the estimation of general power varia-
tions for time-changed regular schemes. In [BNGJ"06] a CLT is proved for realized power
and bipower variations of continuous semimartingales for even functions, [KP08] provide an
extension of this result for more general functions. Among other works we also mention
[Roo80, GTO01, HM05, GT09] where the asymptotic properties of the discretization error
for stochastic integrals are studied in various settings. In [GCJ93, GCJ94] an asymptotic
normality property is given for an estimator of a parameter of a diffusion process based on
discrete observations. Though in [GCJ94] random observation times are allowed, the frame-
work is quite different since those times are not stopping times and are chosen by the user
given anticipative observations.

Some more recent papers study the case of endogenously triggered discretization times. In
[RR10, RR12] the authors construct a financial high-frequency price model which combines
microstructure noise, including rounding noise, and sampling at transaction times on the
basis of suitably defined hitting times, and then estimate the integrated volatility. They also
provide the asymptotic analysis of their estimator. A different approach with endogenous
random sampling times can be found in [LZZ13, LMR"14], the authors prove a CLT for
the realized volatility in a general endogenous time setting. Random discretization schemes
given by hitting times appear naturally in the problem of optimizing the tracking error which
is interpreted as a discretization error of stochastic integral (see [Fukllb, Fuklla, GL14a]
and Chapters 1-2).

In the above mentioned works the CLT typically holds with a limit having zero correlation
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with the initial Brownian motion, if the time grids satisfy the centering property

E[(B.

i+1

— Bl Frn] = 0 (3.1.2)

for the odd moments of the increments of the j-th component of the Brownian motion B.
When the observation times are deterministic, (3.1.2) can be proved thanks to Gaussian
centering property. When (7)< Ny are hitting times of symmetric intervals (thus the prop-
erty (3.1.2) still holds), [Fuklla] shows also a CLT with an independent Brownian motion
at the limit in the case of dimension 1. When (3.1.2) holds asymptotically, that is the third
moment of the increments oscillates around 0 fast enough (e, 1IEJ[(B£ZL+1 - Bi?)3|}}zn] —F0),
as for instance in the case of random grids made of hitting times of regularly spaced meshes,
the authors of [FR12] prove also no bias in the limit. However, many important cases re-
quire treatment of irregular grids without the centering property (3.1.2) and the analysis of
asymptotic bias. For example, in [LZZ13] a CLT with biased limit distribution is given in
the case of integrated volatility estimation on randomly spaced observations in dimension 1.
The closest to our setting are the works by Fukasawa et al. In particular, [Fuk10] proves
the CLT for hitting times of a regular grid in dimension 1. In [Fukl1b] the CLT for renor-
malized discretization error sequence is established in a very general (allowing, in particular,
the asymptotic bias) setting in dimension 1. The result, though quite important, is given in
terms of abstract assumptions on the moments of the process increments, which determine,
in particular, the limit distribution. Verification of these assumptions is hard beyond simple
cases (and would be particularly complicated if the result were generalized to the multidimen-
sional case). Hence, an application of this result to a concrete example requires a substantial
amount of work, including the assumption checking and finding the limit distribution.

Our contribution.

e To our knowledge, this is the first attempt to study the convergence in distribution
of discretization errors for a concrete general class of Itd6 processes and random dis-
cretization grids given by stopping times. In particular, our models for the process and
the discretization times are specified directly, in simple terms and without abstract
assumptions, so that verification for a specific example is quite straightforward. In
addition, we provide explicitly the limit distribution (the asymptotic bias and covari-
ance matrix) in a tractable form in terms of the underlying model. We consider both
multidimensional process and multidimensional error term.

e Our class of random discretization grids includes, in particular, hitting times of general
random multidimensional domains (under quite mild assumptions). To our knowledge,
this is the first work that studies such discretization grids.

e Our class of random grids allows a combination of endogenous (e.g. given by hitting
times) and exogenous noise (given by independent random variables, e.g. Poisson
process) in the definition of discretization times, while a majority of previous works is
restricted to only one of these cases.
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n,1

e We consider a general error term &' = &' + &/ 2 given by (3.1.1) which covers

simultaneously most of the applications of interest.

e We do not impose any Markovian assumptions either on the process or on discretization
times.

e An important and direct application of our results is when time grids are made of
hitting times of random ellipsoids. Such grids naturally appear in [GL14a] and Chap-
ters 1-2 as optimal discretization strategies regarding the minimization of quadratic
variation criterion for multidimensional models and play important role in the problem
of hedging error optimization in finance (see [Fukllal).

e Furthermore, to derive the above CLT for general grids, we have proved several im-
portant results on the sensitivity of the exit times of Brownian semimartingales from
bounded domains with respect to the model and domain perturbations. They are of
their own interest and may be useful in other problems.

e Though our framework is multidimensional, we consider only discretization times that
are synchronized for different components of the process. This may be not true in var-
ious applications. See, for example, [HY08] for the treatment of asynchronous observa-
tions in high-frequency finance. Nevertheless, our work is an important intermediary
step for the study of more general asynchronous discretization schemes and provides
useful machinery to tackle this problem. Generalization of our results to, for example,
bipower variations (see [BNS05, BNGJ 06, KP08]) is left for future research.

Organization of the chapter. In Section 3.2 we introduce the stochastic model for the
semimartingale S and describe the class of random discretization grids under study. Further
we state the main theorem of this work and provide various examples and applications of
our result. Section 3.3 is devoted to the proof of the main theorem, which contains two
important blocks: a general abstract CLT for discretization errors based on random grids
(Section 3.3.1) and certain important properties of the semimartingale exit times from general
domains (Section 3.3.2). The completion of the proof is given in Section 3.3.3. In Section
3.4 we continue with the proof of the general abstract CLT, while Section 3.5 is devoted to
the proof of the semimartingale exit time properties. Supplementary material and technical
results are given in Appendix.

Notation used throughout this work.
e v - w denotes the scalar product in R¢,

e Mat,, 4 denotes the set of m x d real matrices. Tr(.) and T stand respectively for the
trace and transpose operators.

e We write (M);; for the components of a matrix M, M;. (resp. M) its i-th row (resp.
i-th column), and a”* for the components of the vector a.
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e Sy, Sj and S&H denote respectively the set of symmetric, positive semidefinite sym-
metric and positive definite symmetric real d x d matrices.

e For M € Mat,, q we denote by ||M]|| := /Tr(MMT) its Frobenius norm. For M €
Matg 4, we recall the easy inequality | Tr(M)| < V/d||M]].

e For M € §; we denote Apin (M) and Apax(M) the smallest and the largest eigenvalue

of M.
u.c.a,s. . u.c.p. .
e We denote by: =" - a.s. convergence uniform on [0,7], —> - convergence in
n—-+o0o n——+o0o

probability uniform on [0, 77, 0:dT> - convergence in distribution on [0,7] in the sense

of processes w.r.t. the uniform topology..
e Bji(zo, R) denotes a d-dimensional closed ball with radius R and center xg.
e U(0,1) stands for the distribution of a uniform random variable on [0, 1].

e Csup([0,7T7]) denotes the normed vector space of continuous processes on [0, 7] with the
sup-norm.

e If f:R? — R is a smooth function, then V f (resp. V2f) stands for the gradient (resp.
the Hessian) of f, as a row vector (resp. as a square matrix).

e A f:R?— R is an a-homogeneous function (for some o € N) if f(cz) = ¢*f(x) for
all ¢ >0,z € R?

e All the further asymptotic convergences are stated through a positive deterministic
sequence (ey,)n>0 with g, — 0. Without loss of generality and for the sake of simplicity,
from now on we assume g, < 1 for any n.

e For any subinterval I C [0,7] denote N"(I) := #{7]* € I} for the number of grid times
in I. Let |I] denote the length of I.

e In what follows, we may consider the conditional expectation of scalar random variables
X that are non necessarily integrable. We adopt the following convention. When X is
non-negative, E;(X) can be properly defined as a random variable valued in Ry U{+o0}.
In the case of E;(|X]) < 400 a.s. we define E;(X) := Ei(Xy) — Ei(X_) where X} and
X_ are the positive and the negative parts of X.

3.2 Stochastic model, random grids, main result

3.2.1 Probabilistic model

Let T > 0 and let (Q,F, (Ft)o<t<T,P) be a filtered probability space supporting a d-
dimensional Brownian motion (Bi)o<i<7. We assume that the filtration (F:)o<i<r satis-
fies the usual assumptions of being right-continuous and P-complete. Let (S¢)o<i<7 be a
d-dimensional continuous JF-adapted semimartingale.
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Our first CLT (Theorem 3.2.7) and the computation of explicit limits in Section 3.2.4
will be derived under the following assumptions and for stopping times of the form (3.2.6).
A slightly more general version of CLT is established in Section 3.3.1, for abstract stopping
times satisfying some structure conditions (Hp)-(Hpg).

(Hg): The process S is of the form

t t
S, :SO+/ bsds+/ o.dB,, te0,T], (3.2.1)
0 0

where
e the starting point Sy is an Fy-measurable random variable;
e (bt)o<t<7 is a F-adapted d-dimensional stochastic process;

e (0t)o<t<t is a continuous F-adapted Matg 4-valued process, such that oy is invertible
a.s. for all t € [0,T] and oy, 00_1 are bounded;

e for some a.s. finite random variable C, > 0 satisfying E (C%|Fy) < 400 and a parameter
ne € (0,1], we have

loy — 0| < Cylt —s|"/2 Vs tel0,T] as.

We remark that the boundedness of o9 and o, L above is needed mainly to guarantee that
certain processes are integrable at 0 in the proof of Proposition 3.4.1 in Section 3.A.2, which
is an important step of our main proof. Later similar boundedness condition is assumed for
some other processes for the same reason.

(HA): There exist positive F-adapted processes (vg)o<t<7 and (d;)o<t<7, such that vy is a.s.
bounded and d; is a.s. continuous, and for which we have a.s. for all ¢ € [0, T]

U;I < inf )\min(asa;r) < sup ||Usg:gl—|| < vy, sup ‘bs| < v,
t<s<ap(t) t<s<ap(t) t<s<ep(t)

where

P(t) :==1inf{s >t :|Ss — S¢| > &} AT, t€][0,T].

In (Ha) the key assumption is that v, is F-adapted, so that it allows Fi-measurable
control on [t,v(t)] for t € [0,T].

Example 3.2.1. On (Q,F,P) consider a Brownian motion (B:)o<i<T and a continuous-
time Markov chain (Py)o<i<T taking values in Np := {1,..., R}, that is aimed at modeling a
regime-switching behavior (see [Nor98, Chapter 2]). The label r € Ny stands for indexing the
different regimes. The transition from state r to state v’ in two successive times is given by a
Frobenius matrix Mg and the distributions of time interval between two jumps are exponential
distributions, with a parameter depending on Mp. Define the P-augmented right-continuous
extension (Fy)o<t<t of the filtration generated by (B, P). Consider the processes

o1 = 0 (t, (Ssat)o<s<T) 5 by = b (P, t, (Ssat)o<s<T)
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for functions o : [0,T] x Ceup([0,T]) — Matay such that o; ' ewists for all t € [0,T] a.s.
and b : Np x [0,T] X Ceup([0,T]) — R%. Suppose that o(-,-) is continuous and that b(r,-,-)
is continuous for all v € Ng. Thus for a given continuous positive process vy, since oy
is invertible, we may choose d; (continuous in t) small enough, such that if the trajectory
(Ssnu(t))o<s<T is at distance at most & from (Ssat)o<s<T we may upper and lower bound
the eigenvalues of o (u, (Ssau)o<s<t) ,u € [t,¢(t)], using ve. Similar reasoning yields the
condition on by in (HA). We remark that this model is path-dependent (thus non-Markovian)
and non-only driven by Brownian motions (which justifies the use of general filtration). It
also includes the diffusion model oy = o(t, St) as a particular case.

3.2.2 Class of random discretization grids

In this section we discuss the class of random discretization grids for which we study the
discretization error, in particular, for which we establish the functional CLT with explicit
limit characterization.

e This class is quite large and includes the hitting times of general random domains. No-
tably, it allows almost arbitrary random domain processes under some mild regularity
assumptions. We claim that this is the most general concrete framework (i.e. with
explicit description and without any abstract assumption) for endogenously generated
discretization schemes for multidimensional processes considered in the literature.

e In addition we allow to incorporate additional independent noise of quite general form
while constructing the discretization times.

In particular, examples include random grids given by a combination of the hitting times
of random domains with the times generated by a Poisson process having general random
path-dependent intensity and independent source of randomness.

We recall that (5,)n>0 is a deterministic sequence with ¢,, € (0,1] and &, — 0.

A set of regular bounded domains

We recall that a domain is a non-empty open connected set, see [GT83, p.10]. Let D be
the set of bounded domains D in R¢ which contains 0, and let D be the subset of D which
element D has a boundary 0D of class C2. For any D € 15, define the signed distance
dop : R? — R to its boundary by

dop(7) := (lgep — lygp) inf{|z —y| : y € ID}. (3.2.2)

We recall that without any regularity on 0D, dpp is a Lipschitz function with Lipschitz
constant smaller than 1 (see [G'T83, Section 14.6, p. 354]). For any D', D? € D define

u(D', D?) := sup |0pp2(z)| + sup [Sppr(z)].
x€OD! z€dD?

Lemma 3.2.2. u(.,.) is a distance on the set D of domains of R containing 0.
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Proof. 1t is obviously non-negative and symmetric.

Assume that (D', D?) = 0 for D', D? € D and let us show that D' = D2?. We have
SUpeopt [0gp2(z)| = 0: for any = € D!, since the boundary D? is compact, there exists
a y(x) € 0D? such that 0 = Jyp2(x) = |x — y(z)| which shows that D! C dD?. Using
SUpean2 |0sp1 (z)| = 0, we get the converse inclusion and therefore, D' = dD?. But since
D' and D? are open connected sets containing 0, we must have D! = D?.

It remains to prove that p satisfies to the triangular inequality: this is an easy verification
that we leave to the reader. The proof is complete. O

To allow greater generality and deal with intersection of J smooth domains (to encompass
domains with corners like polyhedrons) we introduce appropriate notations. For any integer
J >0, let

J
D' :={(Dy,....,D;): D;€D},  DL:={()D;:D;eD}. (3.2.3)
j=1

An element of D7 is a sequence of J domains, while an element of DY is a domain of R?. We
generalize pu(-,-) to u’(-,-) on D7 (resp. DY) by setting, for any D!, D? in D’ (resp. DY),

J
p/(D',D?) =3 (D}, D3),
j=1

with obvious definitions of D} Since p is a distance on D, 1’ defines also a distance on
D7 (vesp. DZ). In what follows the continuity for a D’ or DZ-valued process is meant with
respect to p” (-, ).

For a domain D € DZ, the notation eD stands naturally as eD := {y € R? : y/e € D}
and similarly for D € D’.

Class of random discretization grids

Fix some integer J > 0. We consider a DZ-valued continuous F-adapted process (Dy)o<i<T
and a sequence of DZ-valued continuous F-adapted processes {(D)o<i<r : n > 0}. All
these domains of DZ are under the form

J J
D} := () D},,  Di:=()Djgu
j=1 J=1
Suppose that for some positive constants rg, 7y the initial domain Dg verifies

Bd(O,To) C Dy C Bd(o,fo) a.s. (3.2.4)

We will assume the following approximation and continuity properties.
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(HL): There exists a constant np > 0 such that

sup <£;"D sup ,uJ(Df,Dt)> < 400. (3.2.5)
n>0 0<t<T

(H%): There exists a continuous F-adapted positive process (Lt)o<t<r such that Ly Lis
a bounded random variable and the following holds a.s. for all ¢ € [0,7] and any D €

{D74, Djr, n>0,5=1,...,J}

1. the signed distance dgp(-) is C2 on the set {x € R? : |0gp ()| < Lt}

2. we have sup,cp || < L; ! and

. 1 _
inf —[Vogp(z)| = o, sup  (|Védon(@)| + [[V?0ap(2)]) < Li".
@:|6op ()| <Lt 2 2600 ()| <Lt

Remark 3.2.3. Assumption (H%) is quite mild. Indeed, following [G'T83, Lemma 14.16]
for any D € D there exists Lp > 0 such that the distance function (3.2.2) is C* on the set
{z € R?: |6gp(x)| < Lp}. Further, using that Vésp(-) restricted to OD is the inward unit
vector at the boundary, the boundedness of D and 0D, we get the existence of Lp > 0 such
that, in addition, sup,ep |z| < Lp' and

—_

inf _ [Voop(z)| = 5, sup  (|Vdap (@) + [V*on(2)l) < Lp'.

z:|0pp ()| <Lp z:|85p (x)|<Lp

Therefore (H7,) only requires some continuity and uniformity properties of Lp for the ran-

dom domain-valued processes D3y, Dje, n>0,5=1,...,J.

Suppose that (2, F,P) supports an i.i.d. family of random variables U := {U,,; : i,n € N}
with U, ; ~ U(0, 1), that are independent of Fr. Define the filtration FY := F; V o(U). Let
G: (t,w,u) €[0,T] x Q2 x[0,1] = Rt U{+00} be a P® B([0, 1])-measurable mapping, where
P denotes the o-field of predictable sets of [0,7] x . In what follows, we will simply write
Gt (u)

Now we present the class of random discretization grids that constitutes the principal
object of our analysis. Define a sequence of discretization grids 7 := {7" : n > 0} with
Tr={7",i=0,...,N}} given by

Ty =0,
{Ti" =inf{t > 7ty (St =S ) & €”D‘TFL511} ATy +epGrn (Ung) + Ani) AT,

(3.2.6)
where (Ap,;)nien is a family of random variables such that 7/’s are FU-stopping times
and A, ; is independent of Uy, ; for m # n or j > ¢. The variables A, ; play the role of
error terms, we make an additional assumption on it later. We define the counting process

NP = #{i > 1: 7" <t} for any ¢ € [0,T], this is a cadlag FU-adapted process.

Remark 3.2.4. Note that G¢(-) may take the value of +o00. However 7' is always well
defined since we take the minimum with the exit time in (3.2.6). In particular, if G¢(-) = 400
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for all t € [0,T] we simply get a sequence of random grids given by exit times without
exogenous source of randomness.

Define the normed vector space

u
H = {u:(un,nEN):uneR, llul|y = g ‘2;L‘<+00}7
neN

and consider the H-valued FU-adapted cadlag process Z; := (Z,,n € N) on [0, 7] defined
by

n € N.

NTL
Lt = !
n,t Ntn + 17
Let (]?t)ogth be the right-continuous extension of the filtration (F; V o(Z,,r < t))o<i<T-
Since Z; is FY-adapted and FU is right-continuous, we naturally have

Fi CFCF. (3.2.7)

Thus the filtration F verifies the usual conditions. We also remark that the definition of Z;
implies that the FU-stopping times 7/* given by (3.2.6) are F-stopping times.
Suppose the following condition:
(Hg): 1. With probability 1, for all u € [0,1] the process (Gt(u))o<t<r is continuous
on Rt U {+0c0}. Moreover there exists an Fr ® B([0,1])-measurable mapping G, :
Q x [0,1] — RT not a.e. equal to zero, such that a.s. for alln >0 and 1 <7 < N} we

have
GTTL (Un,z> + g;QAn,i > G*(Un,z)

i—1 -

2. For some constant 7 > 0 and an F-adapted bounded process (pt)o<t<T We have a.s.
foralln >0and 1 <i < Np

E (|AnillFrr ) < pren o2t (3.2.8)

The following lemma states certain important properties of the filtration F.
Lemma 3.2.5. The following properties hold.

(i) The F-Brownian motion (By)o<i<t is also a F-Brownian motion. Moreover any JF-
adapted continuous semimartingale has the same characteristics (finite variation part,
local martingale part and quadratic variation) w.r.t. F.

(i) For any ]?7511 ® B(|0,1])-measurable mapping f : Q x [0,1] — RT we have

1
E(f(w,Uni)|Frr ) :/0 f(w,z)dz.

Proof. Item (i). Observe that [Pro04, Theorem 2, Chap. VI] ensures that any F-semimartingale

remains a FU-semimartingale with the same characteristics. Now we extend this property



3.2. Stochastic model, random grids, main result 126

to the filtration F. For this, consider a square-integrable continuous F-martingale M: using
that it is a FY-martingale as recalled before, M is also a F-martingale in view of (3.2.7)
and of the equality

E(Mt|"f8) = E(E(Mt|fsU)|"fs) = E(Ms‘ﬁs) = M;.

In addition, M has the same quadratic variation (M) w.r.t. F since it is characterized by the
fact that M2 — (M) is a martingale. The same conclusion can be extended to the case of local
martingales since the localization times may be chosen as v¥ = inf{t € [0,T] : (M); > k},
which are F-stopping times, and thus by the previous argument each process M. Ak 1S a
F-martingale. Finally the property of having finite variation is independent of the filtration.
Item (ii). It is sufficient to show that U, ; is independent of ]t".r;z_l. Indeed, Uy, ; is independent
of Fr and of (Z,,+)o<i<r for m # n. Moreover, N,, is a counting process, thus its natural
filtration (or equivalently that of Z,, ) is right-continuous (see [Pro04, Theorem 25, Chap.
I]). So, it is enough to show that U,; is independent of Znzr - This follows from the
construction (3.2.6) of the times 7;* and the properties of A, ;, in particular, since U, ; is
completely unused up to the time 7" ;, and no information about it is available at 7;* ;. [

In what follows by adapted process we mean F-adapted, for F-adapted processes we will
specify it explicitly if this property is needed. We also denote E;(-) := E(:|F3).

Example: combination of hitting times and Poisson point process with general
stochastic intensity

In this section we present the example of Poisson random times having general random
path-dependent intensity and based on independent source of randomness (see [Str10] for an
introduction to Poisson point processes), for which (H¢) holds.

Let (At)o<t<T be a strictly positive F-adapted continuous stochastic process, playing the
role of a stochastic intensity, and suppose that the following assumption holds.

(H)): For some constant 7, € (0, 1] we have
A=A SCAt =™, 0<s<t<T, as.

and, in addition, E(Cx\s ™)) < oo where A, = infoci<r Ar.

For a given trajectory of (At)o<t<7 define a sequence of independent Poisson point pro-
cesses (P™),>0, where for each n > 0 the process P™ has the intensity {e,,%2\,t € [0,T]} and
is based on the random noise (Up;)ien (see (3.2.11) below for a precise definition). Define a
sequence of random discretization grids 7 := {7" : n > 0} with 7" = {7",i = 0,..., N}}

as follows
T8 =0,
‘ (3.2.9)
= inf{t > 7", : (St — STin_l) ¢ e, DM L or teP"IAT.

) !
i—

Then our claim is that 7 belongs to the class of grids described in Section 3.2.2, of the form
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(3.2.6), and it satisfies to (H¢). Indeed, let

Gi(u) :== —;t log(1 — u), (3.2.10)

which is the inverse c.d.f. of the exponential distribution with parameter );. The next
Poisson time 7" after 7;" ; is defined by the equation

5;2/ " ds = —log(1 — Up,), (3.2.11)
i1

so that A, ; is such that (in view of (3.2.6))

(2

=1+ e2Gn (Uni) + A (3.2.12)

It readily follows that

=n

T
G\ (Uni) e B = (7 =0) = (sup )76 [ 7 s = ( sup 3™ [log(1-Un ).
0<t<T T 0<e<T

We have completed the proof of (H¢)-1.
Now, let us establish (3.2.8). Combining (3.2.10)-(3.2.11)-(3.2.12) and invoking Assumption
(H,), we obtain

-3

/" As = Arr |ds

1—1

[Anil = <N =Ty

Fn
~n n -1 t
T’i — T’L’*l — )\T_n / )\SdS
i—1 n
Ti—1

<A

Further (3.2.11) yields

]

s

ey <A [ Ads = A7 log(1 - Uno)le2,
T

which finally implies

|Ani] < COATFT™ | Tog(1 — T, ;)| M e2t2m,

Using Lemma 3.2.5-(ii), we deduce that
1
—(2+
Err (|Anil) < (/0 |log(1 — x)|1+"*dx> Ern (C’A)\*( m)) g2t2m,

The process E; (CA)\*_(QHM)) < 400 is a martingale due to (H,) and thus has a cidlag
version, hence it is a.s. bounded. We have proved (Hg)-2. All in all, (H¢) holds in this
general framework of Poisson point process with stochastic intensity. ]
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3.2.3 Main result

We are now in a position to state a functional CLT for a general multidimensional discretiza-
tion error in the setting presented in the previous subsections. The CLT limit is defined in
terms of the solution to the following matrix-valued quadratic equation.

Lemma 3.2.6 ([GL14a, Lemma 3.1]). Let ¢ be a d x d-matriz symmetric non-negative real
matriz. Then the equation
2Tr(z)x + 42° = ¢ (3.2.13)

admits exactly one solution z(c) € S . Moreover, the mapping ¢ — z(c) is continuous.

Proof. We remark that in [GL14a, Lemma 3.1], the input matrix on the right hand side of
(3.2.13) is & instead of ¢ here. Of course, it does not modify the existence and uniqueness
properties in the form we state them here. Only the continuity property is questionable:
in [CL14a, Lemma 3.1] the continuity of & — 2(&%) = z(c) is proved. However one may
easily deduce the continuity of ¢ — z(c) from their proof as well: indeed, this is a direct
consequence of the representation [GL14a, eq. (A.7)] and of the fact that y, is continuous
in (A2)4_; (in the notation of [GL14a, Section A.4]). O

Fix a random grid sequence T := {7 : n > 0} of the form (3.2.6). Define

o(t) :=max{r € T" : 7 < t}, o(t) :=min{r e T" : 7 > t}, ¢(T) =T,

(3.2.14)
AXt = Xt — Xgo(t)7

where the dependence on n is omitted for the sake of simplicity.

Let (My)o<i<t and (A¢)o<i<r be adapted continuous processes with values in Mat,, 4 and
Matgq ®@R™ respectively (recall that an element A; € Maty 4 @R™ is given by m real d x d
matrices as [Aig,. .. ,.Am,t]T for which we write 2T Ay = [:BT.ALty, - xTAm,ty]T e R™).
Consider an R™-valued discretization error process given by

g =M &M, te0,T),

with " and £ of the form

t T AL
gl= Y Mon ASyds, &%= 3 /n ASTA;» dB,.  (3.2.15)

o <t?Tin <t li—1
i—1 Ti—1

n
A

Note that this is the most general form of an error term which is linear (or bi-linear) in terms
of AS; and dBs.

Now we introduce some processes that are involved in the explicit characterization of the
limit distribution. Let W be a standard Brownian motion with Wy = 0 and U ~ U(0,1) be
independent of W, both independent of Fr. Set

7(t) :=inf{s > 0: o, W5 ¢ D} NG (U), t € [0,T].
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In addition, for any measurable f : R? — R define
BlF()) =B (floWa)) , L€ [0,T], (3.2.16)
and
my = Ey(7(t)), t €[0,T). (3.2.17)

Define an R%valued adapted continuous process (Q¢)o<t<T by

Qt = 5my : : (3.2.18)
(0107 ) ad Belf (x) := (a4)”]

Denote Al := [A],, ..., AT T and AV = %(Amfl;rt + AItqut)' Since”Aij is symmetric,
by Lemma 3.B.1 we may write AY = A7 — AV~ where AY" and A~ are continuous
symmetric non-negative definite matrices. Define a Mat, ,,-valued process (Kt)o<t<7 by

K= my By (@) = (07 ') X7 (0 '2))2 = (07 ') "X (07 10))?] — QTAYQu,
(3.2.19)

for all 1 <4,j < m, where X;J:Jr (resp. X[77) is the solution of the matrix equation (3.2.13)
for ¢ = o] A oy (vesp. of A7 oy). )

Here is the main result of this chapter which provides the F-stable functional convergence
of (VNI'E[")o<it<T in distribution as n — oo. For stable convergence, see [JS02, p. 512]-
[JP12, Section 2.2.1.] for definition and properties.

Theorem 3.2.7. Assume that S satisfies (Hg), (Ha)and T is given by (3.2.6) and satisfies
(HL), (H?) and (Hg). Assume that Mo and Ao are bounded random variables. Then
the processes Q and K are adapted continuous and Ky € S}, a.s. for all t € [0,T]. Denote
lCtl/2 the matrix principal square root of Ki. Then there exists an m-dimensional Brownian
motion W defined on an extended probability space (Q,f', INP)) and independent of B such that
the following functional F-stable convergence in distribution holds:

t t t t
Nper L / my ds ( / M,Q.ds + / QT AdB, + / K;/des) (3.2.20)
0 0 0 0

(0,7]

3.2.4 Examples

Below we discuss several examples where the characteristics m, @, K of the limit distribution
(3.2.20) may be explicit or easily computable using only some basic numerical calculations.
We consider a general process (S¢)o<i<r verifying (Hg), (Ha) and sequence of domain-
valued processes (D')o<i<T,n > 0 verifying (H}), (H%), while we only specify explicitly
the process (D¢)o<t<T-
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Case d = 1, hitting times of stochastic time-dependent barriers. First consider
the case d = 1, G¢(-) = +o0 and the domain-valued process D; := (—ay, 5;) C R for some
adapted continuous a.s. positive processes (oy)o<t<7 and (B¢)o<t<7. Recall that

r(t) == int{r > 0: oW, ¢ (o, )}, Bilf ()] == e (f(0:Woq0)).

In this case the distribution of otW,( is explicitly known: Pi(o:W ) = —ay) = B _ and

a+0B;
Pe(otWrwy = Br) = 35, so that By[f(z) = 2k = W In particular, an easy
calculatlon from (3.2.16) and (3.2.17) yields
2 —2 1 -1 -2 3 1
my = Ey(7(t)) = Et((WT(t)) ) = ayBo; 7, Q= gmt oy “By[f(z) :==2"] = g(ﬁt — ay).

To calculate K; we remark that A;'" = (A4;)%, A~ = 0 and thus (X}'1)? = to? (A2
This further implies

(Ap)?
18

Ky =my lat (A)?o7 Bilf (2) = 2*] — QF (A)? = (af + A7 + aufy).

6
So finally we get

./Npspél\//i /M ds+/ s)AsdBs
[0,7] 3 o3 (3.2.21)

+\/§/0 AS\/a§+ﬁ§+asﬁdeS>.

From (3.2.21) we can easily deduce the result of [Fukl0, Theorem 3.1] (for ¢(z) = z; the
general case may be easily deduce by applying ¢ ~!(-) to S;) which studies a particular case
of oy = f; = 1 and considers the estimation of integrated variance (see Section 3.1), so that
Ay = 20y. In this case, invoking Theorem 3.3.1 yields

eler =L /c1/2dw
0,7]

where Ky = ?, and Theorem 3.4.3 justifies that

D NLCE n%oo/ o2dt,

T <T

which, all in all, coincide with the results in [Fuk10, Theorem 3.1]. Theorem 3.2.7 uses the
normalization /N/*, which is somewhat more natural for a CLT, and it writes

. [2 t
N = 7/ Ugds/ osdWs.
.17y 3 Jo 0
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Note that our work provides tractable limit distribution characterization in a more general
setting than [Fukl0] in terms of the discretization times, the shape of the error terms;
furthermore it covers the multidimensional case.

Now suppose that G¢(-) is not always +o0o0. Let T be deterministic and 7 be the first
exit time of W from an interval [—c, §]. Thus the distribution of WA, is equal to

P(T <Ty,cW, = —a)é_a(d:v) + k(x)ﬂ[,a’m (:c)da; + ]P)(T <Ty, oW, = ,3)55((11:),

where, following [RY99, p.111, Exercise 3.15], k(x) equals

(:U+2k:(a+5))2) — exp (— (m—2ﬁ+2k(a+ﬁ))2>}7

1 = 1
o _
V2rTyo , — { P < 2Tho2

2102

and, from [BS02, p.212, formulas 3.0.6],

02T0
P(r < Ty, oWy = —a) = / sss(B, o + B)ds,
0

2Ty
P(r < Ty, oW, =) = / sss(a, a+ f)ds
0

for ss;(-,-) given under an explicit form in [BS02, p.641].
Let N(a, B, u,0%,p) := ffa 2Ppy o (x)dz, where p,,(x) = (2%02)_1/2 exp (—M)

202

Note that the explicit value of N(a, 3, 1,02, p) in terms of the standard Gaussian c.d.f.
maybe easily deduced (recursively in p) via integration by parts. Further define

+o0

Mp(Oé,B,O’, TO) = Z {N(Oé,ﬂ, —2]{](0& +B)7T00—27p) —N(Oé,ﬂ, 26 - 2]{](0& +B)7T00—2ap)}'

k=—oc0

Note that in practice M,(a, 3,0,Tp) is well approximated by a finite sum due to the fast
decay of e~ Now a simple calculation yields that B.[f(z) := 2P] equals

07Gt(u)

1
/0 oy (Mp(ata Bi, o1, G(u)) + /0 ((—ou)Psss(Be, o + Be) + BY sssau, ou + 5t))d8> du,

which allows to easily deduce the explicit form of the limit distribution in (3.2.20) through
the computations of m, @, K (at least, using a numerical integration routine).

Case d > 1, hitting times of symmetric domains, ellipsoid based grids. Suppose
that for all ¢ € [0,7] the domain D; is symmetric (i.e. Dy = —Dy), denote 7(t) = inf{r >
0:0¢W, ¢ D} ANGy(U). Let us prove that Q; = 0. Indeed, in view of (3.2.18), this follows
from

Ed(Wpyar)?) = Bl (=W _pyar)’) = Bl (=W pyar)?) = =B (W) (pyar)’)s

where we denote 7(D) the first exist time of o;W from a domain D, and T > 0 is fixed.
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We suppose again that G¢(-) = +oo. Consider the case d > 1. For an Sj+—valued process
(X¢)o<t<T we take Dy = {x € RY: 2T¥z < 1}. Hence

7(t) = inf{r > 0: W, (o] Syo) W, > 1}.

Let UtT Yiop = UtT AU where Uy is orthogonal and Ay is diagonal. Then 7(t) is equal in
distribution to inf{r > 0 : W,JA,W, > 1}. To characterize explicitly the limit distribution
(conditionally on oy) in (3.2.20), it is enough to calculate K; (since Q¢ = 0), which requires
only the calculation of E4(7(t)) and E; ( fl:l(Wi(t))ki) for ky +---+ kg =4,k > 0.

In the case d = 2 we need only to calculate numerically the following 3 functions

AO)=E(W o), ) =E(W W22, () = E(Wi0)*W2y)),

where 7(A) = inf{r > 0: (W})2 + A(W2)? > 1} for A > 0 (other calculations follow from
setting A — % and using basic scaling properties). To treat the case with general Gy(-) it is
enough to numerically calculate the following 3 functions in 2 parameters

A To) == E(Wam) b, F2(0 To) = E(W oyam Wooan)?)s
f3(0To) = B((W 5 vm) WA

To the best of our knowledge, explicit formulas for these functions are not available and
we have to resort to numerical methods like Monte Carlo methods. For related efficient
schemes, see the boundary shifting scheme of [GM10], the walk on moving spheres algorithm
of [DH13].

3.3 Proof of the main result (Theorem 3.2.7)

This is based on two general results: first, a CLT (Section 3.3.1) for discretization errors
in an abstract setting; second, general properties of exit times from intersection of regular
domains (Section 3.3.2). The proof of Theorem 3.2.7 is then completed in Section 3.3.3.

3.3.1 A general CLT

The result of this section is the key ingredient of the proof of Theorem 3.2.7 and consti-
tutes itself a stand-alone contribution. In particular, it generalizes the result of [Fuk11b] in
our framework of multidimensional process and general multidimensional error term, with
explicit limit coefficients (as opposed to the non-explicit Condition 2.3 of [Fukl1b]).

Within Section 3.3.1 (and Section 3.4 for the proofs) we are working in a slightly more
abstract framework regarding S than in Section 3.2. Let (Q, F, (F)o<i<T,P) be a filtered
probability space (with (F;)o<;<7 satisfying the usual conditions) and consider a more gen-
eral semimartingale S satisfying the following extended assumption.

(HZ™): The process S on [0, T] is given by

t
St :At—i-/ osdBs, te€ [O,T],
0
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where

e the process A is continuous, adapted and of finite variation, and satisfies
|A; — As| < Calt — s|™ Vs, t € [0,7] a.s., (3.3.1)
for a random variable C4, a.s. finite, and a parameter n4 € (1/2,1];

e (0¢)o<i<r is a continuous adapted Maty 4-valued process, such that oy is invertible a.s.
for all t € [0,T] and o9, 0 L are bounded random variables;

e for some a.s. finite random variable C,, > 0 and a parameter 7, € (0, 1], we have

loy — 0| < Cylt —s|"/2 Vs tel0,T] as.

Let T = {7 : n > 0} be a sequence of discretization grids made of stopping times, where
T" = {r,i =0,...,N}}. We introduce two assumptions, whose formulation depends on
the choice of a particular sequence (e5,),>0. For the subsequent CLT, we consider ¢, — 0;
with loss of generality, we assume ¢, < 1 for any n.

(Hgr): 1. There exists an adapted continuous non-decreasing process (C£3'3'2))0§t§T with
bounded C(()s.s.z)’ such that for v € {2,3,4} and for all n > 0 and 1 <1i < N}
sup (Be(|Srp = Sr 1) + [Siarp = Spn |7) < Ol e (3.3.2)
T <t<T it

where E(.) := E(. | Fp).

2. The following non-negative random variable is a.s. finite:

Cz33) = 81;18 (éiN%) < +o00. (3.3.3)
n_

Observe that it is enough to verify (3.3.2) with a = 4, by invoking the non-expansion
property of (conditional) LP-norms.

For a € N we denote by P“ the vector space spanned by a-homogeneous polynomial
functions f : R — R. The next set of assumptions is related to the mapping B;[-] arising
in (3.2.16) in our applications. Since we deal here with a more general setting, we state a
more general assumption.

(Hp): 1. There is a linear operator B [.] from the vector space spanned by P, a = 2, 3,4,
into scalar adapted continuous process (B:[f(-)])o<t<7, such that the random variable
Bo[f] is bounded for any such f.

Bi[f(z) := |z[*]
)

Tr(oo)

2. The R-valued process m; := is strictly positive and such that mg Lis

bounded.

3. There exists a function g : [0,1] — R, with lim._o(g(e) + £2=Pg(e)~!) = 0 for some
p € (0,1), such that for any f € P* with o € {2,3,4} we have, for some a.s. finite
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random variable C3 3 4y and a parameter 7 € (0, 1], that

Swp e B (F(Sep = S ) = B O] € Canel (3:34)
T <(T—g(en))+

for all n > 0 a.s.

4 We have & 247" : (T — glen))+ < 7' ST} 53 0.

n—-+o0o

The assumption (Hp) imposes consistency on the distribution of the discretization grids
for various n and specifies a “scaling” property for the grid sequence as n — +o0o. At first
sight it looks like similar to [Fukllb, Condition 2.3], but as we see in Section 3.3.3, it is
quite tractable. Moreover, we remark that [Fuk11b, Condition 2.3] involves higher moments
(up to 12, as opposed to 4 in our work) and is stated for moment ratios which makes the
generalization to the multidimensional case and the practical verification of this condition
much harder.

We adopt some of the notation from Section 3.2.3 but with the general notion of B.[f(-)]
and m; in (Hp) instead of (3.2.16) and (3.2.17), and for a general sequence of discretization
grids 7. In particular, we similarly denote ¢(t), p(t) and AX; (for any process X;) as in
(3.2.14).

We consider an R™-valued discretization error process & := &/ 1y & 2 with & ! and
5?’2 given by (3.2.15). The processes (Q¢)o<i<r and (Ki)o<i<r are derived from m; and
B.[f(-)] in the same way as in (3.2.18) and (3.2.19). Here is a general result which provides
the F-stable functional convergence of (\/NJ'E/")o<t<7 in distribution.

Theorem 3.3.1. Assume that S satisfies (HL"") and consider a sequence of discretization
grids T := {T™ :n > 0} with T" = {7]*,i = 0,...,N}}. Assume that S and T are such
that, there is a positive sequence €, with &, — 0, such that for any subsequence (&‘L(n))nzo
there exists another subsequence (€,o,(n))n>0 for which (Hg) and (Hg) hold (for this sub-
subsequence). Suppose that My and Ay are bounded random variables.

Then there exists an m-dimensional Brownian motion W defined on an extended probability
space (Q,f", I~P’) and independent of Fr such that the following convergences hold:

1. the functional F-stable convergence in distribution

t t t
e ten =L ( / MQqds + / QrA.dB + / K;/QdWS>;
(0,77 \Jo 0 0

2. the uniform convergence in probability

t
S\ m; Lds. (3.3.5)

As a consequence, this justifies the convergence in distribution for (\/N/*E" : 0 <t < T)
in the functional sense (see [JP12, p.45]). The proof will be given in Section 3.4.
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3.3.2 Properties of exit times from domain

Let B be a d-dimensional Brownian motion on a probability space (2, F, (F;)i>0,P), with
filtration satisfying the usual assumptions of being right-continuous and P-complete. In this
section we present some general properties of domain exit times for d-dimensional continuous
It6 semimartingales (S;)o<¢< and (S;)o<¢<7 of the form

t t _
Sy = / b.ds —|—/ 0sdBs, Sy=o09B;, t>0, (336)
0 0

where (bt)¢>0 and (o4)¢>0 are respectively R%-valued and Mat g g-valued F-adapted stochastic
processes, satisfying some assumptions presented below. Here the starting point is Sy = 0,
for the sake of simplicity; actually, this is enough for our analysis, since the stopping times
under study are essentially defined regarding the increments of .S, extensions to Sy # 0 would
be straightforward. The subsequent results (Lemma 3.3.2, Propositions 3.3.4 and 3.3.5) play
a key role in the proof of the CLT (Theorem 3.2.7, which proof is provided in Section 3.3.3).

(H27): The following assumptions hold.

loc

i) Let J > 1 and D € DY (ie. D = ﬁjlej for some D; € D). Define the functions
dop, : RY — R which are the signed distances to dD; (defined in (3.2.2)). Set Lp > 0
such that for all j we have dsp, (-) € C? on {z: 69D, (z)| < Lp} and

1

xeD].‘ ‘ $i|58Dj($)\SLD’ D]( )‘ %

sup  (|Vdap, ()| + [ V?0ap, (2)) < Lp'.
ac:\csaD]. (z)|<Lp

(3.3.7)

ii) The Mat, 4-valued process (o¢)o<i<7 is adapted continuous, such that for all ¢ > 0 the
matrix o; is invertible and

oy — 00| < Cyt™/?, Yt e[0,T] as.

for some 7, > 0 and some random variable C, > 0 satisfying m, := E (C}) < +00. In

addition, there exist strictly positive and finite constants AJ; , A7 ., bmax such that

A% < inf Apin(oio)) < sup oo || < A sup |b| < bmax,  (3.3.8)

min — max’
tE[O,T()} tE[O,To} tG[O,Tg]

where we denote 79 := inf{t > 0:.S; ¢ D}.

Let f € C?(R?,R) be an a-homogeneous function for some o > 2. It is easy to check
that for some constant C'y we have for all x € R

F@| < Clal*, Vi@ < Chlel*, V@) < Cplaf 2. (3.3.9)

A
the model. The following notation is quite convenient for the subsequent analysis, it will be

In what follows, we fix the parameters Lp, 1y, Mg, A7, AJaxs bmax, Cr that are specified by
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repeatedly used.

Notation 1. Let & be a set of variables. We denote by C(&) the set of strictly positive and
continuous functions of the variables of &.

Remark that such a set C(&) is closed under addition, multiplication and all usual oper-
ations we may perform in the following analysis.
Let us fix & := {Lp, 1o, Mo, Afis Adiaxs Dmax, Cf }. For the elements of C(&) we will omit
the dependence on the arguments, the value of a function in C(&) is by default assumed to
be equal to the value on the parameters fixed above.

Now we state the main results of this section (proofs postponed to Section 3.5). The

next lemma is a simple technical result.

Lemma 3.3.2. Assume (Hgf). For any € € (0,1] any stopping times vi,ve € [0, 7], with
T:=1inf{t > 0:5; ¢ eD}, we have

-1 L oo —(am2)\ o
[E(F(Sn) = F(Se2))] < Cplbmax L™ + S VAo L5 ™) E (11— val)

Proof. Using the It6 formula, the inequality | Tr(M)| < V/d|| M| for any M € Mat,, 4, the
sub-multiplicativity of the Frobenius norm, and since € < 1, we obtain

v2

[E (f(Su1) = f(Swa)) | < ‘E (/

(o 1 —(a— _
< CplbmaxLp ™" + SV L") E (1 — v

[V £(S0)be + % Tr(oT V2 f(St)at)]dt> ’

1

O]

The next results state some important properties of domain exit times, their proofs are
postponed to Section 3.5.2. These results are interesting on their own.

Lemma 3.3.3. Assume (H") with D € D (J = 1). There exists Rp € C(S) such that,

loc

for any e € (0,1], 7 =inf{t > 0: S; ¢ eD} and any stopping time v, the following holds:
i) for any p € N*, a.s. on the event {v < 7} we have E, ((1 — v)P) < p! (Rpe?)?;
ii) for any ¢ > 0, a.s. on the event {v < 7} we have a.s. P, (1 — v > &2¢) < 2€7ﬁ.
The next proposition estimates the weak error between the exit values for S and S.

Proposition 3.3.4. Assume (H":7) and let f € C(R%,R) be an a-homogeneous function

loc

with o € {2,3,4}. There exists K € C(&) such that for any € € (0, 1], the stopping times
T=inf{t >0:8, ¢ eD} and 7=inf{t>0:5;¢eD}
satisfy, for any T > 0,

e |B(f(Sear) = f(Senr))| < Ke™. (3.3.10)
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The next result gives the estimation of the weak error between the exit values of S from
two domains that are close to each other.

D,o

Proposition 3.3.5. Assume (H,))”) and let f € C(R%,R) be an a-homogeneous function
with o« € {2,3,4}. There exists K € C(6 U{K'}) such that for any e € (0,1], any strictly
positive constants K', i and any D' € DY, such that p’ (D, D') < K'e" | and for which (3.3.7)

and (HD'”) hold for D' instead of D with the same constants Lp, A%. A% . buax, we have

loc min> £ *max>

e [E(f(Sear) — f(Spar))| < Ke7,
for all T > 0, where

r=inf{t>0:S, ¢eD}, 7 =inf{t>0:5;¢cD'}.

3.3.3 Completion of the proof of Theorem 3.2.7

We come back to the setting of Section 3.2.3. Our strategy is to apply the general CLT
stated in Theorem 3.3.1. In particular, we aim at checking (Hp) and (Hpg) for the B[]
given by (3.2.16) for any &, satisfying 3,52 < +o00. For a general sequence ¢, — 0 the
result will follow in view of the subsequence formulation of Theorem 3.3.1: it is enough to
verify the assumptions for some subsequence €,,(,) (that may be chosen square summable)
of arbitrary subsequence ¢, of .

Let us prove (Hp)-1. Recall that we denote E.(-) := E(:|F;). From the definition of T
in (3.2.6), we have by (H%)) that for all n > 0 and 1 <14 < N2

sup  (Bu(|Sr — Sep |7) + | Siar — S [2) <2 sup L e,
T <t<T 0<s<rm |,ac{2,3,4}

which shows (Hp)-1 with Ct(S'B'Q) =2 ( sup Ls_a>, so that by (H%) the process
0<s<t,a€{2,3,4}
C©32) is continuous and 053'3‘2) is bounded.
The verification of the assumptions (Hp)-2 and (Hp)-4 is technical, and it relies on
the next Lemma, which is proved in Appendix 3.A.1. The result below gives a quantita-
tive comparison between the empirical measure related to the grid times and the Lebesgue

measure.

Lemma 3.3.6. Assume the conditions of Theorem 5.2.7 and ), £2 < +oo. Then, for
any sequence of non-empty deterministic intervals I, C [0,T], such that for some p € (0,1)

e, 22|, | = 400, (3.3.11)
there exists an a.s. finite random variable C such that
N™(I,) < Ce,.2|I,|, Vn >0, as. (3.3.12)

The condition (Hpg)-2 follows from Lemma 3.3.6 (with I,, = [0,7] and any p € (0, 1)),



3.3. Proof of the main result (Theorem 3.2.7) 138

while the condition (Hp)-4 follows from Lemma 3.3.6 with I,, :== [(T — g(en))+, 1] and the
choice g(e) =¢, p=1/3.

We now prove that the statements 1-2-3 of (Hz) hold with B[f] and m defined in (3.2.16)-
(3.2.17). For a Brownian motion W starting at 0 and U ~ U(0,1) independent of W (both
independent of Fr) let

7(t) :==inf{s > 0: 0.Ws & D;} NG (U), (3.3.13)

() == inf{s > 0: oyWs ¢ Dy} AGy(U) Ay, (T —t). (3.3.14)

Since a.s. Dy is a bounded domain and oy is invertible, 7(¢) and 77(t) are a.s. finite random

variables. Moreover (Wya,() : s > 0) is a bounded martingale (with a Fi-measurable bound
depending on oy, 0, ', L; 1), thus

Bilf()] =i (foiWe))

(given in (3.2.16)) is well defined for any function f € P*, « € {2,3,4}. It obviously defines
a linear operator from the vector space spanned by P% o = 2,3,4, into scalar adapted
processes. Note that By[f] is bounded owing to the boundedness of oy, aal, Lal.

The aforementioned boundedness on W .« implies Et(WTi(t)Wz(t)) =0for0<i<j<d
and Et((WTi(t))Q) = Ei(7(t)): to see these, apply the optional sampling theorem at the
stopping time 7(t) A k and take the limit as k T +o0, each right hand side converges using
the dominated convergence theorem, each left hand side using the monotone convergence
theorem. As a consequence and using easy manipulations, we obtain the identity

Bilf(z) := |=[?]

Tr(oyo])

- Et(T(t)) (32217) e

Since D; contains 0 € R%, 7(t) > 0 a.s. and therefore m; > 0 a.s.; in addition from (3.2.4),
we get the boundedness of mg ' and Bo[f(-)]. We are done with the proof of (Hp)-2.

Observe that to get (Hp)-1, it remains only to justify the continuity of B;[f(-)]. Using
that Up<;<7D; is a.s. bounded and the local Lipschitz condition of f, we have for some a.s.
finite C7 and all 0 < s < ¢ < T that

BF ()] = Bl ()] = [Eu(f(0Won))) = Eo(F(05Wr(e)))|
< Or (low = o] + B (W) = Wee))))

The first term on the right hand side is clearly continuous under our assumptions on o. For
the second, write

ET(|WT(t) - WT(5)|) < ET(|WT(t) - WT(S)’2)1/2 =Er(|7(t) — T(S)DI/Q'

Let us fix t, assume s — t and let us prove that Ex(|7(t) — 7(s)|) — 0. Define the domains
Dy :=0;'Dy, Ds := 07 Dy (where 07'D = {o~'2 : x € D}), and set

7(s,t) :==1inf{r >0: W, ¢ DS} ANGy(U),
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so that
Er(|7(t) — 7(s)]) < Ex(|7(t) — 7(s,1)]) + Ex(|7(s, 1) — 7(s)]). (3.3.15)

From the continuity of oy and D; (w.r.t. u/(-,-)) one may check that u’(Ds, D) — 0: thus,
the convergence to 0 of the first term in (3.3.15) readily follows by invoking Corollary 3.5.5
with D and D’ equal to the components of D, and D; respectively (see (3.2.3)), with § = W,
and making K’ — 0 (in the notation of Corollary 3.5.5).

The second term in (3.3.15) is bounded by Ep(|7 A G¢(U) — 7 A G5(U)|) (where 7 denotes
the first exit time of W from Ut[)t), which converges to zero by the dominated convergence
theorem in view of (H¢)-1. The proof of (Hg)-1 is now complete.

It remains to show the condition (Hp)-3 with the choice g(¢) = £ made at the beginning.
Fix n and 7, let f : R — R be any a-homogeneous polynomial function of degree o = 2, 3, 4.
Let

ti=inf{t >7",: S v EenDin }/\(11+5Gn (Un,i)) AT,

7t =inf{t > 71, : 5 — Sri’il ¢ enDrn FA (T4 + &2 Gro (Uni)) NT
(77" differs from 7" by the use of D.n instead of D7 in the deﬁn1t1on, and 7" differs from
7 by the use of Ap; in (3.2.6)). Recall that by (H%,) sup,,>g SUP,ep,upp 4] < L;'. Define

a sequence of events Q, := {e,L; ' < & Vt € [0,T]},n > 0, where §; is given by (Hn). For
any 7,01 < (T'—€p)+ (since we consider g(¢) = ) and in view of (3.2.16), write

Lo, |62 Ern , (F(Ser = Sen ) = Ben [£0)]
< 10,6, [Een, (F(Sep = Se ) = Ean (f(Sp — S )|
+ 10,6 [Erp, (F(Sep = S ) = Ere, (F(Sep = o7 )| (3.3.16)
+10,6,° [Erp, (F(Sep = Sz ) = Erp (F(En0mp, Wnien )|
+ 10,677 [Brn  (F(En0rn , Wenen ) = Ben (f(Enan , Waen )]

Remark that the assumption (Hié ) is verified on §,, for D;» and D7 due to (Ha) with
ne given by (Hg), my, = Ergl_l(04) AZs = vk and A%, = bmax = vrn . In addition we

may take Lp = L . R
For the first term of the right-hand side of (3.3.16), by applying Lemma 3.3.2 and using that
|7 — 1" < |Ap,i| together with (H¢)-2 we have for some Frn -measurable K and for some

constant n > 0

1o,¢e

o (F(Sm = Som ) = Ban (f(Szp = Se )| < o K2

’rL

For the second term we apply Propositions 3.3.5 with D = D-» and D = D» conditionally

on Up; and taking T := e Grn (Unq) A (T — 7). Note that the necessary conditions are
verified due to (H1},). Since in Proposition 3.3.5 the variable K is independent of T', we may
further take (in view of Lemma 3.2.5-(ii)) expectation w.r.t. U, ;. Thus we get for some
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foil-measurable K and the constant np > 0

Ig,&,”

Erp  (F(Sen = 8o ) = Eep (F(Sep — S )| < KelP.

For the third term we similarly apply Propositions 3.3.4 with D = D;n and D = D%’Ll
conditionally on the coupling U, ; = U and taking T := 5721GT5L71(U) A (T — 7). Again for
some Jrn -measurable K > 0 (integrating with respect to Uy,; = U ~ U(0,1) since K is
independent of T' in Proposition 3.3.4, and in view of Lemma 3.2.5-(ii)) we get

Lo,en® [Br, (F(Sip = Sr ) = o (f(en0a Wonien )| < Kol

Finally for the last term we write using Lemma 3.3.3, 7" ; < (T — &,)+ and (3.3.9), that

ETin—1 (f(anaT?_len(Tﬁl))) — ETf_l (f(EnO'TZL_le(Ti[l)))‘
<210, CrL Prn (7(11) > (T = 71)e,”)

< KCexp(—Ce,') < Kepsup (ze™™)
x>0

lo,&,”

for some a.s. finite K (independent of 7" and 7> ;) and an fT;_l—measurable C.

In addition from (H¢)-2, Lemmas 3.3.2, 3.3.3 and Propositions 3.3.4, 3.3.5 we also deduce
that sz,ril—measurable K in the four latter bounds may be expressed as continuous positive
simple expressions of 7y, Ern | (CH), vrn and Lye . This implies that, due to boundedness
of the processes vy, Ly, E¢(C%) (since it is a martingale and thus has a cadlag version) and
also p¢, we may choose K > 0 uniformly in n > 0 and 7 = 1,..., N so that for all n > 0,

1o

n

Sup  |en B (f(Sep — S ) = Bon [f()]] < Kepmrnent,

i—1
7’;11 <(T—6n)+

Finally, 1, = 1 except for a finite number of n a.s., hence we easily derive the inequality
(3.3.4). Thus, (Hp)-3 is verified. The proof of Theorem 3.2.7 is finished. O

3.4 Proof of the general CLT (Theorem 3.3.1)

We adopt the framework of Section 3.3.1. The overall strategy of proof is standard and
consists in proving that the drift and the quadratic variation/covariation of the error &,
converge in probability to some limits (see details in Subsection 3.4.2). The trick is to switch
from convergence in probability to a.s. convergence by using the subsequence principle in
Lemma 2.2.2. In our framework, the flexibility in choosing another subsequence ¢/ is that
it can be made to guarantee >, efOL,(n) < 400 and to make (Hp)-(Hpg) valid along this
sequence €n, = €,0,/(n). In doing so, we define a new sequence of discretization grids T =
{7 (™) . n > 0}. Because the new sequence (&, : n > 0) is square summable and (Hz)-(Hp)
hold for (&, : n > 0), we are back to the framework of admissible sequences of discretization
grids studied in [GL14a] and Chapters 1-2 with a parameter py = 1. This latter framework
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is quite interesting since some a.s. results for discretization errors are already available.

The careful reader will have observed that the above references study these convergence
results for admissible grid sequences in the context of a Brownian filtration 7 (this choice
of filtration was motivated by the application at hand). However, the reader can check
easily that the results of [GL.14a] and Chapters 1-2 hold true even if the filtration satisfies
the usual assumptions of being only right continuous and P-complete, as for F in particular,
because the proofs of the above references mostly use the It6 formula for the continuous
semimartingale S of the form (H%™) and the BDG inequalities for the Brownian integral
(as in the decomposition of S), both being available when the filtration satisfies the usual
assumptions.

3.4.1 Part I: Preliminary almost sure convergence results

We now provide some auxiliary almost sure convergence results that are necessary for the
proof of Theorem 3.3.1. These results are, however, of their own interest and hence we put
them in a separate section. In view of the above subsequence principle, these results will
have to be established for a sub-subsequence (&, : n > 0) instead of (g, : n > 0). But to
maintain simple notation, we keep writing €, (instead of £,), and therefore, we will have to
assume that (g, : n > 0) is square summable and (Hp)-(Hpg) hold for (g, : n > 0).

The next lemma allows to replace locally the values of homogeneous functions of the
process increments by their conditional expectations.

Proposition 3.4.1. Assume the hypotheses (HL"") and (Hp) for the sequence (ey)n>0 with
S ns0E2 < +o00. Let o € {2,3,4}. For any adapted continuous P*-valued process (fi)o<t<T
with bounded fo (i.e. given by fi = 2 finitely many i [EP, where Py, are monomials of degree
o and fF are adapted continuous scalar process with bounded random variables fé“), and for
any adapted continuous scalar process (Hi)o<i<r with bounded Hy, we have

872170‘ Z Hrin_l (ffri"_l (AST[L/\t) _ETZL_1(fTZL_1(AS7—?))) uLas. o

n—-+o0o
T <t

Similar convergence-in-probability results are typically deduced using the Lenglart in-
equality (see e.g. [Fukllb, Proof of Lemma A.2]). However, here, since we need a.s. results
to leverage the setting of admissible grid sequences, and due to lack of suitable references
we provide our own proof in Section 3.A.2.

Next, we reformulate the above convergence in a form ready to be used in combination
with (Hp).

Proposition 3.4.2. Assume (H%™"), (Hg) and (Hg) for the sequence (€n)n>0 with Y50 €2 <
+o00. Let (fi)o<i<r be adapted continuous P*-valued process for a € {2,3,4} with bounded
fo (see the definition in Proposition 3.4.1). Then

(1) the process (Bi|fi(-)])o<t<T is adapted continuous;
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(ii) for some random variable Ci.a1y a.s. finite and independent of n, we have a.s. for all
n>0

sup  |en Err, (Fre, (Sep = S ) = B [, Ol S el (3:4.)
L1 <(T—g(en))+

(iii) for any adapted continuous scalar process (Hy¢)o<i<T we have

8121 Z HTZLI (E;aETﬁl(fTﬁl(Sq—Zn — STZLI)) — BTZLI[fT'ZLI(.)]) HEAE 0, (3.4.2)

n—-+o0o
T <t

Proof. Statements (i) and (ii) are obvious to check from (Hp)-1 and (Hg)-3.
Let us now prove (iii). Decomposing the sum in (3.4.2) into the contributions of the
intervals [0,t A (T — g(en))+) and [t A (T — g(en))+, t], we write using (3.4.1)

S Hen, (27%Ben (Frp (Sep = Sen ) = Ben [fen ()])

T <t

2
< Cane, N sup |Hgle]
0<s<t

’ 2 en | s (IHool (20 o) (fos) (Sats) = Sts))] + 1Bs) Fiotoy ()11 )
(T—g(en))+ <7 <T 0<s<t
n—+00

where for the first term we used that €2 N/ is a.s. bounded owing to (Hp)-2, and for the
second term the convergence is proved by (i), (Hp)-1 and using that by (Hp)-4 we have

2 a.s,
Z(ng(sn))+§7f_1<T En n—>+;oo 0. O

The next theorem states the convergence of the renormalized sum of process values at
the discretization grid points.

Theorem 3.4.3. Assume (HL™), (Hg) and (Hp) for the sequence (gn)n>0 such that
s < +oo. Let (my)o<i<r be given by (Hg)-2. Let (Hy)o<i<T be an adapted continuous
scalar process with bounded Hy. Let oo € {2,3,4} and (fi)o<t<r be an adapted continuous
P-valued process with bounded fy. Then the following uniform convergences hold on [0, T]:

g2 Z Hon “C“/Hm (3.4.3)

Tim1 pst'oo
T <t

E?;a Z HTZL_1foL_1(STZI/\t _S e / Hsmg B fs()lds. (3:44)

nﬁ+oo
T <t

Proof. Let us first prove (3.4.3). The assumption (Hp)-2 reads By[f () := |x|?] = m; Tr(oya]),
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where the above right-hand side is positive continuous. Let

& = my Tr(owo])™Y, te€0,T); (3.4.5)

note that ¢ is adapted continuous, & is bounded in view of (Hp)-2 and (HZ™), and we have

EBf(z) =z} =1, tel0,T)]. (3.4.6)

Now leverage the above equality to write

e > Hen =2 > Hpn &n B [f(z) = |2

T <t T <t

= > Hep & |ASonf

T <t

+ 3 Hop b, (Enp, (18872 = |ASpnil?)

T <t

+e2 3 Hep &n (B [f(2) = 2] — . %Een | [AS, [?).

T <t

Applying (3.4.2) from Proposition 3.4.2 with fi(z) = |z|?, a = 2, we justify that the third
term above converges uniformly a.s. to 0. Further using Proposition 3.4.1 with fi(x) = |z|?,
a = 2, the second term above also converges uniformly a.s. to 0. Finally by Proposition 1.3.9
(it easy to check in the proof that the convergence there holds in the sup-norm) we obtain

t t
Z Hon 1§T?L 1|AST."/\t|2 el / H&s Tr(UsUsT)dS = / Hsms_lds,
= = ° n—+o0o Jo 0

T <t

where for the last equality we recast the definition of {. The proof of (3.4.3) is finished.
Regarding (3.4.4), write

en® Y Hep fro (Seone—Sep ) =cen > Hpr Ben [frr ()]

T <t i<t
+en Y Hyp (e0°Eer, (Fp, (S = Srp ) = Bop 1, O)]) (3.4.7)
T <t
ten® Y Hop, (frp, (Sepne = Smp ) = Eop, (fo, (Smp = 5o ).
7'1."71<t

Proposition 3.4.2 and Proposition 3.4.1 imply respectively that the second and the third
terms in the above right-hand side converge uniformly a.s. to 0. Last, apply (3.4.3) to
the process (HB:[fi(-)])o<t<r (which is adapted continuous by Proposition 3.4.2): this
shows that the first term of the right-hand side of (3.4.7) converges uniformly a.s. to
J3 Hym 'Bs[fs(-)]ds. We are done. O

The next lemma gives the limit of integral of weighted increments of S.
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Lemma 3.4.4. Assume (HY™), (Hg) and (Hp) for the sequence (en)n>0 with Y,50€2 <
+00. Let (My)o<i<r be a Maty, g-valued adapted continuous process with bounded My, and
recall the definition (3.2.18) of the R%-valued adapted continuous process (Qy)o<i<T:

Qr = 5my : : (3.4.8)
(010] )l Bilf (x) = (%))
Then . .
5,71/0 M ASsds ::—iio/o MQsds.

Proof. For any adapted continuous scalar process (H)o<i<r with bounded Hj, and any
coordinate k € {1,...,d}, the It formula yields that

—1/ HyASSds =<5t 2 Hyy (ony ok Dt
T 1<t

1 TN TN
X (3(Asﬁmt)3 /n (A5§)2dsf—/n ASEA(USUJ)kkds)

i—1 i—1

First, by Theorem 3.4.3 applied with f;(z) = ()3 we obtain

et Y Hyp (0rr 0T Dot (ASE )P "ot / Hom N oso )0 Bolf (2) == (a*)]ds.

n—>+oo
T <t

Second, apply Lemma 3.B.3 with a = 2 to get

T t
' Y oy (o o ) / U (ashask e,

7 n——+oo
’L 1<t i—1

Finally, in view of (3.3.2) in (Hp) and using the Holder continuity of o in (H%™), it readily
follows that

nA

TN
e Z Hin (o7n ,In )kk/ AS*A(os0 ) irds

T 1<t Ti—1

< )770/2

n

1 sup |H5(0503—),;€1| sup |AS§| sup |A(0'30';r)kk| t< C( sup AT
0<s<t 0<s<t 0<s<t 1<i<NZ

for some finite random variable C. The above time step goes almost surely to 0, this is a
consequence of (HY™)-(Hp), see Theorem 1.3.4 and Lemma 1.3.2. All in all, this implies

EnlfotH@(s>ASfd o /Hm (0508 ) Bslf () = (a")°]. (3.4.9)

n~>+oo

Now, apply the above for each component fo M “ASkds arising in the product matrix-

v(s)
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vector fg M (5)ASsds, we get the announced convergence. O

The next lemma handles the convergence of integral of weighted squared increments of

S.

Lemma 3.4.5. Assume (HY™), (Hg) and (Hp) for the sequence (ep)n>0 with Y, 5068 <
+oo. Let (H¢)o<i<T be an adapted continuous Sj—valued process with bounded Hy. Then

t
e? / ASTH,yAS.ds "< [ mI1B,[f(x) = (07 '2)T Xa(05 1)) ds,

n—H—oo 0
where X the solution of the matriz equation (3.2.13) for ¢ = ol Hsos (remark that o] Hyo

is in SF ).

Proof. Set Ay := (071)T X 07!, First observe that, owing to the properties of Lemma 3.2.6,
X and A are adapted continuous processes. Moreover, multiply (3.2.13) (with ¢ = o] Hs0,)
by (6717 on the left and ;! on the right: this gives the identity

2A, Tr(o’scr;rAs) + 4A8050JAS = H,. (3.4.10)

Besides, for 7' ; < t, the It6 formula gives
2 A T T
(AT A ASrn)? = 4 / U AST A ASAS]T Ay dS,
Ti—1
TN
+ / AS;F [21\@(3) TI‘(USO'STA(P(S)) + 4A§0(S)O'SO';FA;[(S)} ASgds.

T

Therefore, summing over ¢ for 7/* ; < t and using the idendity (3.4.10), we get

t
St 3 (AT ASp )’ =5, /0 AST A () ASSAST A, dS,

no<t

2 / AS] (280 Tr( A0 )A ) + 4By Alosa] )AL )| ASds

+e? / AST H () AS.ds. (3.4.11)
0

Lemma 3.B.3 with a = 3 implies that ;> fg ASJA@(S)ASSASJAﬂS)dSS Y298 0. Moreover,
n—-+00

the Holder continuity of o in (H%™) and the bound (3.3.2) of (Hp) ensure the existence of
a a.s. finite random variable C' > 0 such that

SC( sup ATZ-”)%ﬂ.

1<i<NZ

sup

t
2 [ AS] 2A ) Tr(A(0s0] YAu(s) + 4A L0 A AL | ASd
thE"/o ¢ [28 ) Tr(A (050 YA y(e) + 4A 0 Aloso] )AL | s

The latter bound converges to 0, see the arguments in the proof of Lemma 3.4.4. Therefore,
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from (3.4.11), we obtain

t
£, / ASTH, ) ASuds — 72 S (ASTupeArn  ASpung)® "S55 0.
O T 11— 7

n—-+00
T <t

Observe that due to the boundedness of g, o Land Hp, and the properties of the solution
of (3.2.13), the coefficients of X and Ay are bounded random variables. Thus, we can apply
Theorem 3.4.3 with a = 4 and f,(z) := (2" Asx)?, to obtain

e’ Y. (ASLATZLIAST?)Q S B[ f (2) = (2T Agz)?]ds

T <t

The proof is complete. O

3.4.2 Part II: Conclusion of the proof

Now we are in a position to finish the proof of Theorem 3.3.1. It boils down to combine
previous preliminary results with the application of an abstract CLT for semimartingale
sequences. The reference result on this subject is [JS02, Chapter IX, Theorem 7.3]. Next
we state a theorem that essentially follows from a simplified version of this general result
given in [Fukl1b, Theorem A.1]. For notions of stable convergence in distribution, [JS02, p.
512]-[JP12, Section 2.2.1.].

Theorem 3.4.6. Let (0, F,(Fi)o<i<t,P) be a filtered probability space supporting a JF-
adapted d-dimensional Brownian motion (By)o<i<r. Let (S™)n>0 be a sequence of adapted
continuous semimartingales of the form

S?’L — 147’L+]\41’L7

where M™ are R™-valued F-local martingales of the form M" = JoosdBs, and A™ are
R™-valued adapted continuous processes with finite variation (note that m and d are not
necessarily equal). Suppose that:

a) (M™), N J3 Ksds for all t € [0,T] and (Ki)o<i<r is a S}-valued adapted process;

n——+oo
b) (M",B); n%oo 0 for all t € [0,T];

c) there exists an adapted continuous R™-valued process A such that supg<,<p | A} — Ay —>Ii
== n—-—+oo
0.

We denote by ICI}/2 the principal square root of the symmetric non-negative definite matrizc
Ki. Let W be a m-dimensional Brownian motion independent of Fr defined on an extended
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probability space (Q,f', 15). Then, we have the following functional F-stable convergence in
distribution

sr =L A, + /t K2qw.
[0,T] 0
Proof. First we apply [Fuk11b, Theorem A.1] to the martingale sequence M. The conditions
of [Fuk11b, Theorem A.1] follow from (a)-(b) and the fact that M™ = [; aldB, is orthogonal
to all martingales that are orthogonal to B. Note that this result in [Fukl1b] can be easily
extended to our multidimensional setting using the standard Cramér-Wold argument. Finally
the convergence of S™ follows from (c) and the F-stability in [Fuk11b, Theorem A.1]. [

We now proceed to the proof of Theorem 3.3.1. We come back to the setting of Theorem
3.3.1 with general sequence ¢, — 0. Take any subsequence (Eb(n))nZO' Then there exists
another subsequence (EL/OL(n))nZO which is square summable and for which the assumptions
(Hg) and (Hp) are verified. To simplify the notation we write simply &, instead of &,/0,(»)
until the final part of the proof.

Recall (see definitions (3.2.15)) that

g =&rt + &M
with £"" and £ given by

: t
Stn,l _ / Mgo(s)ASSds’ gf’Q = / AS;—AQO(s)dBS
0 0

For two continuous semimartingales (at)o<i<7 and (b)o<i<r with values in R™ and R4
respectively we denote by ({a;b)¢)<;<p their Mat,, 4-valued quadratic covariation process.
Recall that A; = (A1 4,..., Apny)’ and set

ij . 1
A = i(Ai,tA;!—,t + -AItAj,t)'

Using Lemma 3.4.4 we obtain for any [ = 1,...,m and (Q)o<t<7 given by (3.4.8)

. t t
-1 T -1 T U.C.QS. T
€ ASS A (s dBS;B> =, / ASS A sds — / s A sds. 3.4.12
< /0 Lo (s) t A Lo ds T2 ) Qs AL ( )
Hence

. t
<5;15"’2;B>t:<6;1 / ASSTAW(S)dBS;B> u.Cas / QT A,ds. (3.4.13)
0 t 0

n—-+o00

Further we have

t t
</0 QIAsst;B>t—/O Q1 Ayds, (3.4.14)

which in view of (3.4.13) yields

<sn15"’2 — / QSTASdBS;B> HEA ), (3.4.15)
0

t n—-+o0o
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We decompose the quadratic covariation matrix of e, 1£™2 — [; Q1 A,dB; at time ¢ as follows:
for any 1 <14,j < m, we have

. i t
<e;15”’2 - / QIASst> =e,” / ASJ Aip(s)A] o(s) S5 d”/ Qi Ais A Qds
0

el T(
/ @s (4, S‘Al wo(s) T Ai 3"41 ©(s) )ASSdS'
By symmetry of the matrix <£;15”’2 —fs QSTASdBS>t, we deduce
<5;15”’2 / QI AdB, > .2 / ASTA” JASsds + / QI AYQ,ds
—1/ QT (As o AT oy + Ao AT () )AS,ds.

First, apply the dominated convergence theorem by invoking the a.s. continuity of A and
Q. on [0,T], (Hg) and the convergence to 0 of the mesh size of 7" (see the proof of Lemma
3.4.4), it gives

t
1 T ij T ' T ) T u.c.a.s.
et | PR AL — QT (AT, + Ausd )| ASuds 225" 0, (3.4.16)
Second, from Lemma 3.4.4 we obtain
t .
et / QLA ASids 225 [ QTAQuds. (3.4.17)

Last, we write AY = AYT — AY~ (see Lemma 3.B.1), where AYT and A9~ are adapted
continuous symmetric non-negative definite matrices. Owing to Lemma 3.4.5 we get

_2/ AST(AY )T ASds "2 tm 'Bilf(2) = (0 @) ' XTI (0, )] ds,

n—-+o0o

5;2/0 AS;I'(A:OJ( ) AS dsucas tm 18 [f(l') :((O' l,)TX’Lj (O'S_I.’L‘))2]d8,

n—-+o0o
where X+ (resp. X¥7) is the solution of the matrix equation (3.2.13) for ¢ = o] A%+ 0y

(resp. ol AY~a,). Hence, using that B[] is linear, we obtain

,2/ASTA1] ASd uc:zrs

) (3.4.18)
/Oms‘lBs[f(x) = (05 2) T X7 H (0,1 2))? = (07 ') T XTI~ (07 )] ds.

Recall the definition (3.2.19), i.e

K =my By [f(z) = (07 '0) X7 (071 2)% = (07 '2) X7 (07 '2))%)| - QT AV Q1.
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Thus from (3.4.16), (3.4.17) and (3.4.18) we get the convergence

<e;15”72/' QSTASdB> == / Kds. (3.4.19)
0

¢ n—+00

Note that IC; is a symmetric non-negative definite matrix since it is the a.s. limit of covariation
matrices.

Further we compute the limit for the finite variation part &/ 1 Owing to Lemma 3.4.4
we directly have

t t
-1 a0 —1 u.c.a.S.
elemt = e /0 M ASids “2%5" /O M,Quds. (3.4.20)
For the convergence of 2 NJ* we take advantage of Theorem 3.4.3 to write

giNt": g2 nole / my (3.4.21)

n—>+co
1<t

Now we come back to the initial notation ¢,,, for the subsequence. Having proved the a.s.
convergences (3.4.15), (3.4.19), (3.4.20) and (3.4.21) for &,, = €,,, we use the arbitrary choice
of ¢(n) and the subsequence principle from Lemma 2.2.2 to get the same convergences in
probability along the initial sequence (e, : n > 0). So, in particular, we can apply Theorem
3.4.6 with

t
MpP = e len? / QTAdB, and AP —elem!
0

and after easy manipulations, we obtain the following functional F-stable convergence in
distribution:

;15“ (/ M Qsds+/ QT AdB, +/ zcl/de>

The uniform convergence in probability (3.3.5) follows similarly from the P-version of the
convergence (3.4.21). The proof of Theorem 3.3.1 is now complete. O

3.5 Proofs of domain exit time properties (Lemma 3.3.3, Propo-
sitions 3.3.4 and 3.3.5)

We assume the notation of Section 3.3.2. In particular Lp denotes the constant given by

(3.3.7).

3.5.1 Proof of Lemma 3.3.3

We begin by justifying ¢) with p = 1. For this we assume without loss of generality that the
process S has its coefficients such that

A < 1nf /\mm(O'tUt ) < sup HUtUt | < AZ

min max’

sup |bt| < bmax- (3.5.1)
>0
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Indeed, we can still define new }_"—adapted coefficients b, = bil <t and 6y = o4l <t +
1:>44/A9,./d: they satisfy to the above bounds, they coincide with those of S before 7,
and therefore the process with new coefficients has the same exit time 7. For the proof of
the above lemma, this is enough to consider such a modified process instead of the initial S,
or equivalently to assume (3.5.1) for S.

Now, we invoke the rough bound 7 < 7 = inf{t > 0: |Sy;| > L'} which holds since D is
included in a ball centered at 0 with radius LBI. We now derive two bounds, one for any
e < ¢gg <1, the other for small .

1. Take A\ as the unique positive solution to —Abmax + %)\QAU = 1: clearly A € C(6);

min

then apply the It6 formula in expectation to get
ALT! AS12) _ ASLL T ASiegat 4 Ly2 2
eMo >R, (e =e +E, e (Abg + 2)\ lo1.,5]7)ds
v
T _
>E, (/ e’\SLSds> > e_’\LDIIE,,(f —v).
12

This holds for any € < 1.

2. Now, for ¢ < min(1,A%;, Lp/(4bmax)) := &0 € C(6) so that —2eLp byax + A%y >
AZ:./2, we have with similar arguments

7

L >E, (5%5) =57, +E, (/ (251,5b1,5 + |(71;,s|2)ds> > E, (7 —v) AZ/2.

To summarize, we have justified that for any stopping time v, a.s. on {v < 7} we have

E, (1 —v) SE, (7 —v) < @ PLosgy + 26 /(LpAT ) 1eze, < max (207 /25, 2/ (LHAG )
= RDE2
with Rp € C(6).

We now establish 7) for p > 2 by induction. Assume that 7) holds for some p > 1 and for
any stopping time v: then, on {v < 7},

0
S/ (p+1E, p!(Rpez)plT_,,Zt)dt
0
= (p+ DURp=2PE, (7 — v) < (p+ 1)} (Rpe2)!

using twice the induction assumption (first for the stopping time v+t on the event {v+t < 7},
second for v on the event {v < 7}).

Last we derive 7). On {v < 7}, use the exponential Markov inequality and the estimates
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i) to get

1 ( 2

2 2 \TVv—¢ c) — 5= 1 T—V.p __c_
PV(T—VZEC)SEV (€2RD ) Se 2Rp Z;OP‘QPEV <(}%D52) ) SQ@ 2Rp |

We are done. O

3.5.2 Preparing the proof of Propositions 3.3.4 and 3.3.5

This section is devoted to some preliminary results. Only within this section we assume that

(we pass to the general case D € DY, in Section 3.5.3). For simplicity we write §(-) instead of
Sap(-) since D € D is fixed and no confusion is possible. For ¢ > 0 denote §.(x) := ed(e ™).

Lemma 3.5.1. Assume (Hfzf) with D € D (J=1). Let 1o :=inf{t > 0:S; ¢ D)}. There
exists Ly, € C(&) such that L, < Lp and for any t € [0, 9] we have a.s.

0<s(@)<Lo (00 (VOTVO +0V70)(w)o) 2 ghmin:

Proof. Remind of the convention on V4 as a row vector. By (3.3.7) on the set [§(x)] < Lp
the function §(-) is C* and info<s(y<y,, [Vé(z)[* > 1. For any z € D such that |§(z)| < Lp
we have

Tr(o) (V6TVO)(x)oy) = V(z)T - 000 V()T > A” (3.5.2)

4 min*

Further using | Tr(M)|v/d||M|| for M € Matg 4(R) and the sub-multiplicative property of the
Frobenius norm, for any 0 < L < Lp and = € D with |§(z)| < L, we have

| Te(of (§V20)()or)| < Vd|owo] (6V20)()|| < Vdorof || x [(6V?8)(2)]| < VALLR'AT,

max*

(3.5.3)
We set L, := Lpmin <1, 8}%‘;‘; ), which is a continuous function of Lp, A% and A7,
so that A7, —VdL, Ly AT, > T A%, which together with (3.5.2) and (3.5.3) implies the
announced result. ]

Lemma 3.5.2. Assume (H-") with D € D (J = 1). There exists K € C(&) such that for

loc

any € € (0,1] and the stopping time
T=inf{t >0:5; ¢eD}
and any stopping time v such that v < 7 a.s. we have

E(r —v) < Ke?RE(6(e71S,)). (3.5.4)
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Proof. Take € € (0,1]. Let L, € (0, Lp] be given by Lemma 3.5.1 (Lp is defined in (3.3.7)),
l € (0,Ls]. We have

E(r — ) = E(7 — 1) Lye15,)50) + E((T — 1) Lo 15,)<1)- (3.5.5)
Using Lemma 3.3.3 we get
E((7T — v)1sc-15,)51) = E(Ls(e-15,)>Eo (T — v)) < Rpe®P(3(e71S,) > 1). (3.5.6)

The rest of the proof consists in estimating Ls.-15,)</Ev (7 — ). For simplicity we omit the
indicator in the calculations, so that we are working on the event {5(¢~1S,) < I}. Denote

= inf{t > v : 6.(S;) > le}. Note that §(-) is C% on the set |6(z)| < I since [ < L, < Lp.
Let us write the It formula for 62(S;) on [v, T A 7]

52(Sonm) = 62(S,) + 2 / (6.V6.)(Ss) dS,
R (3.5.7)

T Tl

+/ T(VoIV6. +06.V26.)(S,)0,)ds.

Note that by Lemma 3.5.1, s <7 < 79, 0 < 6(e71Ss) <1 < Ly, (V6IV: +0.V2%5.)(2) =
(V6TV6 + 8V25)(e~1x) we have for all s € [v,7 A 7] as.

Tr(o] (VIS + 6.V25.)(Ss)os) > Agm
So we obtain
TAT]
/ " Tr(oT(VETV6. + 6.V26.)(Sy)os)ds > 8Amm(T AT — D). (3.5.8)

Further

e ([ " (6.96.)(5) as,)| = e ([ " (6.95.)(S4) b

< lLBlbmaXIEV(T AT — V).

(3.5.9)

Thus from (3.5.7), applying E,(-), using (3.5.8), (3.5.9) and simply that §2(S,) > 0 we get
CiEy (1 A7 = v) < By (82(Sran)),
where C = ;:A%;, € C(&), for any [ satisfying

0 <1< Ly A(LpA%ybil, /16). (3.5.10)

We continue with [ satisfying (3.5.10). Now using that 6.(S;) = 0 and from the definition
of 7, we get E,(62(Sran)) = Eu(62(Sr)1rsr) = 1262P, (7 > 7;), and consequently

CiE, (1 A1 — v) < PP, (1 > 7). (3.5.11)
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Further we write
B, (r Ami— ) = Ey(T= 1) Lran) +Eo (1= ) Lrsm) = By (7 =) ~Ey (= 7)Lrry). (35.12)
Using Lemma 3.3.3 (with Rp € C(&)) we obtain
E,((7 — 1)lrss) = Ey(Lrsn By (T — 7)) < Rpe®Py(1 > 7). (3.5.13)
Hence plugging (3.5.11) and (3.5.13) into (3.5.12) yields
E,(r —v) < (Rp + CTHEP, (1 > 7). (3.5.14)

Now, we aim at upper bounding the above probability. By taking the conditional expectation
E,(-) of the It6 formula for 6.(S;) on [v, T A 7], we get

1B, (> 1) = B(0.(Srnn)) = 0:(5,) + By ([T 06.(5.) buas)
%E </VTATZ r(a!V255(SS)US)ds> .

The first expectation in the right-hand side of (3.5.15) is bounded by L 1bmax E,(t AT — 1/)
while the second expectation, in view of (3.3.7) and (H [3(:0) is bounded by e 'vVd L' Ag

max

71—v). Therefore, plugging the above into (3.5.15) and using then (3.5.11), we readlly obtain

(3.5.15)

1
1e°P, (1 > 7)) < €6.(S,) + (iﬂLglAﬁlax + L5 bmax)Eu (T ATy — V)
< e0.(S,) + 2ColPP, (T > 7),

where C := (%\/ﬁLDlAﬁlaX + L5 bmax)C Y, s0 that Co € C(6). Note that all the previous

analysis is valid for any [ Verlfying (3.5.10) and the elements of C(&) do not depend on [, so

we may now fix | = ly := min(Cy /2, Ly, (LpAY;, byl ) /16) which implies C5 := Iy — Cng

o > 0. Observe that ly, C3 € C(&). Hence we obtain

P,(r > 7,) < C310(s71S,). (3.5.16)
Combining (3.5.14) and (3.5.16) and setting K := (Rp + C;13)C5! € C(&), we get

E, (1 —v) < Ke25(e718,). (3.5.17)

Remember that this result is obtained on the event {§(¢71S,) < lo}. Going back to the
general notation we have ls.-15,)<;oEu(T — ) < Ke?ls-15,)<,0(¢7'S,), and then by
taking expectation and combining this with (3.5.6) and (3.5.5), we finally obtain

E(r —v) < Ke’E(8(c1S,)) + Rpe*P(8(c™'Sy) > lo) < (K + Rplg ' )e*E(3(7"5,))

where we have applied the Markov inequality at the last inequality. We are done. O

E,(TA
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Lemma 3.5.3. Assume (H2°) with D € D (J = 1), and let f € C3(RLR) be an o-

loc
homogeneous function with o € {2,3,4}. There exists K € C(&) such that for any € € (0,1],
for the stopping times
T=inf{t >0:8, ¢ eD}, T=inf{t>0:8, ¢eD}

and any stopping time v such that v < 7 AT a.s., we have

e2E(|S, — 5,|?) + e *E(f(S,) — £(S,))| < Ke™. (3.5.18)

Proof. We start with a bound on E(|S, — S, |?):

+oo

E (\S,, - 5,,]2> <E( Y 1yjecp-1p) sup [S; — Sif?
k=1 t<ke2

00 1/2
<Y P/ e[k —1,k)"? [E < sup |S; — St|4>] :
=1

t<ke?

a) Estimate for E (suptgkaz 1Sy — St]4>: Denote

B t
M; = / (05 — 00)dWs
0
so that S; — S; = fg bsds + M,. Using the BDG inequalities and (HZIZLU) we obtain
E (sup |S: — St]4> <8 <bﬁlax(k62)4 +E < sup \Mt]4>>
t<ke2 t<ke2
< O (Bhaxlke) + B ((01)72)),

where C' is some universal constant. For the quadratic variation part we get

2

8 (<M>i82) =k <</ok€2 loy — JO!th>2> <E (Cﬁ) </Ok€2 t"”dt) — Cg(k:52)2(”"+1),

with Cp := (%mf'l)z So we conclude, using that k > 1,e <1,

E <sup |St — §t|4> < Clk452(2+2770), (3519)

t<ke2
where Cp := C(b% .. + Cp) € C(&).
b) Estimate for P(v/e? € [k —1,k))"/?: Lemma 3.3.3-ii) directly yields

P(v/e® € [k —1,k)) <P(v > 2(k — 1)) < Rpe fiok—1)
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for some Rp € C(S) Hence combining this with (3.5.19) we get

1/2

t<ke?

“+oo “+o00
Z P(V/€2 c [k ~1, k))1/2 lE (sup |St N St4> < /RDC1 (Z eRD(kl)/2k2> €2+27]a_
k=1 k=1

Thus for K = VRpCh (Z;ﬁ‘i e_RD(k_l)/QkQ) (so that K € C(6)), we get

E,(|S, — S,|%) < Ke*t2ne, (3.5.20)

Now we proceed with the proof of (3.5.18) regarding f. Recall that the function f verifies
(3.3.9). We have

E(£(,) - 75.)) | <E (IS, - 5 /01 VIS, + (1 N5l

1/2

< [IE ((/01 IVF(AS, + (1 — A)Sy)w)z)] [E (\S,, - §V|2>}1/2.

Using that v < 7 A 7 we obtain |S,| < eLp! and |S,| < L' so that

[E <</°1 VIS A)SmdA)Q)

Now combine (3.5.20) and (3.5.21) to get (up to changing K € C(&)) the announced estimate.
O

1/2
< Cp Ly Vet (3.5.21)

Corollary 3.5.4. Assume (HlDOf) with D € D (J =1). There exists K € C(&) such that
for any e € (0, 1], the stopping times

T=inf{t >0:8, ¢ eD}, T=inf{t>0:5,¢eD}

satisfy
E(]r —7]) < Ke*te, (3.5.22)

Proof. Let v := 7 AT. Applying Lemma 3.5.2, we get for some K € C(S)
E (7 —v) < KeE (5(=7'5,)) . (3.5.23)
Using that 1,.,6(¢7'S,) = 0 and 1,—,6(¢71S,) = 0 we write
E(3(7'8,)) = E (L<r(d(e7'S)) = 6(e715,))) < Lp'e'E(IS, — S, [)Y>.

Using (3.5.18) from Lemma 3.5.3 we get e?E(5(¢™'S,)) < Ly K'/220/2 In view of
(3.5.23), we have proved (up to redefining K € C(8))

E(l,s7(7 — 7)) = E(1 — v) < Ke?t.
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A similar bound holds for E(1,<7(7 —7)): this is justified in the same way, applying Lemma
3.5.2 to S and Lemma 3.5.3. Consequently, the proof of the bound for E(|7 —7]) is complete.
O

Corollary 3.5.5. Assume (H-7) with D € D (J = 1). There exists K € C(& U {K'})

loc

such that for any e € (0,1], any strictly positive constants K', 7' and for D' € D such that
w(D,D") < K'e"', and for which (3.3.7) and (Hgf) hold for D' instead of D with the same

constants Lp, A%, AZ .« bmax, we have

E(jr —7'|) < Ke2t" (3.5.24)

where
T=inf{t >0: S, ¢eD}, 7 =inf{t>0:S5; ¢eD'}.

In particular, K is a multiple of K', so that K — 0 as K’ — 0.

Proof. Let v := 7 A7" and denote by d(-) the distance dsp(-). Using Lemma 3.5.2, we obtain
for some K € C(G)
E(r — v)< Ke?E(6(¢71S,)).

Observe that 6(¢='S,) < (D, D’) < K'e" | which gives
E(Lysm(r — 7)) = E(1 —v) < KK'e*7

A similar bound on E(1,/>,(7" — 7)) follows from the symmetry between D and D’. O

3.5.3 Proofs of Propositions 3.3.4 and 3.3.5

Now we pass to the general case of D € D, i.e. of the form D = ﬂ}-llej. Note that the
results of Section 3.5.2 are valid for each Dj,j =1,...,J.

Proof of Proposition 3.3.4. Let v:=7 AT. Denote for j =1,...,J
mj=inf{t >0:S5; ¢ D;}, 7, =inf{t >0:5; ¢eD,},
so that 7 = min(my,...,7s) and 7 = min(7y,...,7s). Write

IE(f(Sear) = F(Sear))| < [E(f(Suar) = f(Suar))| + [E(f(Sraz) = f(Sunt))]
+ [E(f(Szar) — £(Suar))l-

By Lemma 3.5.3 (applied for any j to the domain D; and the stopping time v AT < ;A7)
we have for some K € C(S)

e YNE(f(Sunr) — f(Sunr))| < Ke'. (3.5.25)
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For the next term we have (using that ¢ < 1)

TNA\T 1 Tw2
/V VIS0 + 5 Tr(eT VR (Si)on) e

)

(a— 1 —(a— _
< CplbmaxLp ™™ + SV L )" E(Ir AT — v AT)

mqwﬂw—fwwﬂngm<

a1y 1 (o J
< Cf(bmaxLD(a b + iﬁAglaxLD(a 2))€a_2 Z E(|Tj - 77_j|)
j=1

(since the min function is Lipschitz)
—(a— 1 “(a—
< Cp(bumax L + 5\/&A;;MLD<“ Mea=2] | 2o

where we have applied Corollary 3.5.4 at the last inequality. We can show a similar bound
for S and at the end, we obtain the advertised inequality (3.3.10). O]

Proof of Proposition 3.3.5. The proof is quite similar to that of Proposition 3.3.4, at the end
we invoke Corollary 3.5.5 instead of Corollary 3.5.4. O

Appendix
3.A Technical proofs

3.A.1 Proof of Lemma 3.3.6

We start with some preliminary analysis. Let (U;,7 > 0) be i.i.d. random variables uniformly
distributed on [0, 1] and independent of Fr. We keep the same notation for the extended
probability space supporting these extra random variables and we simply write Pp(-) (resp.
Er(-)) for the probability (resp. expectation) conditionally on Fr.

Set V; = G.(Uj), j > 0 where G.(-) is given by (Hg): conditionally on Fr, these random
variables are i.i.d. Let Y be the random variable given by

Y :=inf{m > 1:ZV]- > T4
j=1

In view of (H¢) there exists an a.s. finite Fr-measurable random integer mg such that a.s.

we have
vyi=Pr(Vi4+- 4+ Vi) <T) <L
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Our goal is to show that Y has finite (conditional) moments. We write for all p > 0

k-1
Er(JY[P) <) kPPr (Z V; < T) < KPP (Vi+ -+ Ving) < T)L*=1)/mo)

E>1 j=1 k>1 (3.A.1)
— Z kp,yt(kfl)/moJ < +00.
k>1

We now come back to the main point about proving (3.3.12). For any n > 0 the grid 7™ may
be represented as a union 7™ U 7™2 (possibly non-disjoint), where 7™! is the grid points
with 7* = 7*, + E%Gﬁll (Un,i) + Ap; and T™2 contains the points where exit times occur
first (see (3.2.6)). We have N"(I,,) < N™1(I,,) + N™?(I,,) with respect to the decomposition
TN — Tn,l U Tn,2.

> Upper bound on N™1(I,). Note that from (3.A.1) we get E7(Y) < 400 a.s. Set C := 1+
2E7(Y), let (Y;)i>0 be i.i.d. copies of Y conditionally on Fr, and put my, := (5;2]1}1]/T1 —

+oo. Let < denote the relation of first-order stochastic domination (conditionally on Fr).
Then using (H¢)-1 and the subadditivity property of counting processes we obtain

m Mn
NN (1) Zinf{m > 0: > V; > %I} 2 )Y,
j=1 i=1

Remark that the latter relation of domination turns into equality in distribution in the
particular case of V; having an exponential distribution due to the additivity of Poisson
variables.

Let p:=2/p > 2 for pin (3.3.11). Note that from (3.3.11) we have 2 /|I,,| < Coe?’ so that
S s0(€2/11,])P/? < +o0. Applying the Markov inequality, the Burkholder inequality (see
e.g._[HH80, Theorem 2.10]) and the Minkowsky inequality we obtain (for n large enough so
that m, > 2)

Pr(T|L| 2N (1) > C)

<y (ZELY 5 ¢ < py (TG BT 5 )

my, — 1 m, — 1

mn

S (Vi - Ep(Y))?

=1

<Er (‘ S (Y — En(Y))

my, — 1

p
) < CBurk. My, "Ep (

p/2)

Mn p/2
< CBurk.my,” <Z Er(Y; — ET(Y)\p)Q/p> = Chukmy " *Ep([Y — Ep(Y)[P)*/?

i=1
Te2 )p/2
n

< Cpuc (Y — Er(V)[P)2/? (m

So we get
> Pr(T|I,| 'l N™ (I,) > C) < +o0 as.
n>0
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and thus, by the Borel-Cantelli lemma, the event {T|I,| 'e2 N™!(I,) > C} occurs finitely

many times conditionally on Fr a.s. This proves sup,,~q&2|I,| ' N™(I,) < C; a.s. for some

a.s. finite C1. N

> Upper bound on N™?(I,). Denote 7, := infoci<r sup{r > 0 : By(0,7) C Ny>oDP}. Let us

show that r, > 0 a.s. Indeed for any n > 0, we have info<;<psup{r > 0: B4(0,7) C D}*} >0

since each D} contains 0 and in view of the time-continuity of D} w.r.t. the distance u”’(-, ).

The same holds for (D¢)o<t<7. Now the positivity of r, follows from the convergence of D}

to Dy w.r.t. p’(-,-) uniformly in ¢ € [0, 7] by (H}). For N*%(1,,), we write

N"’2(In)5i < 5% + 7”*_2 Z 2
T?ET"QHI%TZLIGI“

<e? ;2 >

7'? eTNly, 77—:‘_1 eln

Srp = S|

2
Sep = Sy

We have

3 IAS,A]? — / Tr(ov07)dt = 2 / AST0,dB; + 2 / ASTbydt.
‘ In In In

TRET N, Eln

Further, using (Hp)-1, we obtain that there exists an a.s. finite random variable C' such that

< Cel "/ |Il,

where for the last inequality we apply [GL14a, Corollary 2.1] for the sequence of martingales

‘ / Asjbtdt’gcgn|fn| and ‘ / AST0,dB,;
In In

-1
en

M} =
VL

for the parameter p := 2/p with p given by (3.3.11), in view of the quadratic variation bound

t
/ 1z, (S)AS;rasdBS,
0

(Mmyp =
T

AS o] AStdt‘ < Cetlp, Z(M”)’;/ < 400 as..

In n>0

Using that e.7?/+/]I,[ — 0 by (3.3.11), this finally implies

N"™(I) < 1+77%,” (\In sup Tr(opo] ) + OZ‘S'(!In!)> :
0<t<T

which finishes the proof. O

3.A.2 Proof of Proposition 3.4.1

First let us prove the statement for f; = f, for any t € [0,T], where f : R — R is a
continuous a-homogeneous deterministic function. Let Cy := sup|,— |f(z)| and C332) be
given by (Hp). First note that from (Hp) and the homogeneity of f we have for all n > 0
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and for all ¢ € [0,7] a.s.

F(AS)] + [Ex(F(ASp))| < CrCl e (3.4.2)

Fix n > 0. Consider the adapted process

ZH (BUf(AS) = Eep (F(AS5)))

o<t

(note that the conditional expectations are well defined, see our conventions at the end of
the introduction). Define the process

2
V; = 0(332)4- sup |H,| + (20 0(332) sup_ |H H—l) (1—1—25?1]\@") .
0<s<t 0<s< =0

Note that V; takes finite values due to (Hp)-2 and is adapted cadlag and non-decreasing.
Define

=inf{t>0:V;, >k} (3.A.3)
(with the convention v, = 400 a.s. if k > V). Due to boundedness of Hy and 0(3 32)
have that

_ o« o . 2
Vo = C§* 4 | Hol + (204C5 P |Hol +1) < Cy

for some deterministic constant Cy, . Now observe that (since the jumps of N;* are of size 1)

Vi, < (1 +> e;i) (kv Cy,) =t q(k). (3.A.4)

n>0

In order to justify the manipulations with the conditional expectations below we remark the
following properties

o < AS* < OGP er <q(k)ed, L alHen | <q(k)  as..  (3.A5)

no

It implies that for any stopping time # and any continuous function ® we have the equality

ILTZTL_ISV’“/\HEV’“/\G(117{’_1§1/k/\9(ID(ASTZL)) = ]]-Tf_lguk/\GEuk/\e (q)(ASTZn)) (3A6)

Owing to (3.A.5), the random variable inside the conditional expectation on the left hand
side is bounded, and therefore its conditional expectation is well-defined (and in any LP).
The random variable inside the conditional expectation on the right hand-side is not nec-
essarily integrable (essentially controlled thanks to (Hpg)), but actually, in the next com-
putations, it will be still localised on a set of the form {r*; < v* A 6}, on which we

have the equality (3.A.6). Therefore, in what follows, writing Lon <uingEprng (@(AST;L))

or Lon < rppE,n /\Q(H.Tn_lgyk /\9<I>(ASTin)) is the same and gives random variables that are
bounded: for the sake of brevity, we use the notation on the left hand side of (3.A.6).
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For 7' | <t A v we obtain

0<s<vk

\HT;LII(IEtAuk(f(ASTg))I+|Eﬂl(f(AST?))|) g( sup |H, 0 20,039 20 < F
(3.A.7)

Using in addition that eiNt’}\Vk < q(k), we obtain a.s.

Zoud < 3 1Hen | (1Bon (FAS)| + ey (F(ASz)]) < Ny, i Ja(k)ed
Tt <tAvg (3A8)
< q(k)* g

Hence, we get that E(|Z}},, |P) < +o0 a.s. for all p > 1 with an LP-norm bound independent
of t € [0,T]. Using (3.A.5)-(3.A.6) to deal with the conditional expectations and (3.A.8) to
be able to interchange the sum and the conditional expectation below, we verify that for any
0<s<t<T we have a.s.

Bo(Zpe) = 3. Hen (Bype(f(AS) = Ern (F(AS:)))

n k
T <sAV

FE| Y Hey (B (FAS) ~ B (F(AS2) | = 200

SAVR ST | <tAUF

Hence the process (Zf/\yk)ogtggp is a martingale, and, in particular, it has a cadlag modifica-

tion. Using that v¥ = 400 for k > Vi we deduce that the process (Z}")o<;<7 is cadlag.

In view of (3.A.2), the final result will follow from the convergence 2~ %27 u%)s 0. We
n—-+0o0

prove it by leveraging Lemma 3.B.2. Define

2
U = eh 2 sup |Z0P, W:éwewwmamﬁo.

0<s<t 0<s<t

Since N™ and Z" are cadlag, it readily follows that U™ and V" are cadlag adapted processes,
non-decreasing, vanishing at 0. Note that

2
S < <2Cfct(3'3'2) sup \HS|> S AN <V (3.A.9)
0<s<t

n>0 n>0

Let us check the hypotheses (i)-(ii)-(iii) of Lemma 3.B.2. The assumptions (i)-(ii) fol-
low from (3.A.9). We have already proved (iv) in (3.A.4). Now, we check the relation of
domination (iii). We need to show that for some (deterministic) constant Cy > 0 we have,
uniformly in k£ and n,
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We proceed with the following estimate of E(|Zf4,, |*) using Fubini’s theorem

E (|2, ) =E( > HL (Em,,k<f<AsT;>>—Engl(f(AsﬁL)))Q)

T <tAvg

v2 Y Byt (B ((AS) - Eq, (7(25,)

1—1
1<i<j<+oo

X Hyy By (Bin (1(857)) ~ By (£(85,7))

Jj—1

2

3.3.2 _

S E ((20fct(/\uk ) sup |H8’) NtCL\V’“E%a> = 5721(1 4E( t7/L\Vk) )
0<s<tAVk

where we used (3.A.8) to interchange the sum and the expectation, and (3.A.6)-(3.A.7) to

justify that the expectations of the cross-products are well defined and equal 0. In particular,

since the process in the right-hand side of the last inequality is non-decreasing, we obtain

en 2 sup E(Z,, 1Y) <E(ViR,,). (3.A.11)
0<s<t

Applying Doob’s L2-inequality (see [RY99, Theorem I1.1.7]) to the cadlag martingale (Z,,,x )o<i<T,
we obtain

E ( sup |Z7;/\Vk|2> <4 sup E (]Z;‘/\VkP) .

0<s<t 0<s<t

Combining this estimate with (3.A.11) and from the definition of U;* we get

E(Uip,) = en °E ( sup !Z?Mf) < AE(Vin,)-

0<s<t

The convergence £2-*Z} u%s 0 now follows from Lemma 3.B.2.
n—-+0o0

To complete the proof in the general case fi = > gnitely many & fE P, simply apply the
above result to H;fF and P, for each k. O]

3.B Supplementary material

3.B.1 Decomposition of symmetric matrix into non-negative and non-
positive parts

Lemma 3.B.1. Let (M;)o<i<T be an Sg-valued continuous adapted process on some filtered
probability space. Then we can decompose My = M;" — M, where M;" and M, are S;—valued
continuous adapted processes; this decomposition, however, is not unique.

Proof. Let A\ := max (Amax(M;),0). By Hoffman and Wielandt’s theorem [HJ90, p. 368],
(At)o<t<T is continuous and we may take M= NId, M, = M\ 1d—M,. O
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3.B.2 Fundamental lemma on the a.s. convergence of processes

The following lemma is inspired from [GL14a, Lemma 2.1], but its assumptions better fit
our setting.

Lemma 3.B.2. Let (U")p>0 and (V"),>0 be two sequences of mon-negative measurable
processes. Assume that:

(i) the series 3°,~o V" converges for all t € [0,T] a.s.;
(ii) the above limit is upper bounded by a non-decreasing adapted cadlag process V ;

(iii) there is a constant ci3p1y > 0 such that, for everyn € N, k € N and t € [0,7T], we

have
E[Ufp k] < ey E[Vinx (3.B.1)

with the stopping time v* := inf{s € [0,T] : Vi > k} (with the usual convention that
inf ) = +00);

(iv) there is a deterministic function q : N — RT such that q(k) > k and V. < q(k) for
any k a.s.

Then for any t € [0,T], the series 3,50 Uf* converges almost surely. As a consequence,
ur % o.

Proof. Lett € [0,T] be fixed. Denote by Ny the subset of 2 on which the series (3,50 V/*)o<t<r
do not converge, on which V and then (v*);>q are not defined and on which the inequalities
of (iv) are not fulfilled; note that Ny is built as a countable union of negligible sets, thus it

is P-negligible.

For w ¢ Ny, we have V,,,x(w) < q(k) for any k € N. Set VP := 3P _ OV": we have VP <V
on N; thus, the localization of V entails that of V? and we have Vti v < q(k) for any k,p
(on N{7). Furthermore the relation of domination (iii) writes

|3 Vi

for any k,p (on N). From Fatou’s lemma we get E[>, 5o U/} «
the series 3,50 U/} x(w) converges for all w outside of a P-negligible set Ny ;. The set
Nt = Upen Ni,t UNv is P-negligible, and it follows that for w ¢ N, the series 35, 5o Ul i (w)
converges for all k € N. For w ¢ N, we have v*(w) = 400 as soon as k > Vp(w); thus by

taking such k, we complete the convergence of 3, -, U on Nf. O

< ¢@3.Ba) E [Z /\,,k] = C(3.B.1) E[Vte\,jﬂ < ¢(3.B.1) q(k) (3.B.2)
n=0

| < 400 for any k, therefore

3.B.3 Control of martingale processes

Lemma 3.B.3. Assume that a process S and a sequence of discretization grids T wverify
(HE™) and (Hg)-1 with a sequence (en : n > 0) such that Y ,5gen < +00. Let (Hp)o<i<r
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be an adapted continuous scalar process and let f : R* — R be a a-homogeneous function
with a > 0. Then for any k=1,...,d we have

n/\t
ot Y H, 71/ FIAS,)dSE "<

o<t n—+oo
Proof. Using the decomposition S = A + M, we write

t t
Y ey, / F(AS,)dSk = /0 H () f(AS,)dA" + /0 H ) F(AS,)AME.

T <t

First, the assumption (Hg)-1 and the inequality |f(z)| < Cf|z|* yield

/H )dAk

Second, the quadratic variation of the Brownian stochastic integral is

t
_a+1 <5an sup |Ht‘/ (8;1|ASS|)ad|Ak|S U.C.0S. 0.
0 n—-+00

0<t<T

. T
<€na+1/ H@(S)f(ASS)de> < Cf sup |Ht\ sup \(atat Vkk|€s, 2‘”2/ ]ASS\QO‘ds SC&“Z
0 T 0<t<T 0<t<T

for some a.s. finite random variable C' > 0 (using again (Hp)-1). Thus using that 3, 5qez <
+oo and applying [GL14a, Corollary 2.1] we get

t
gt /0 H ) F(AS)AME “S%5 0

~>+oo

which implies the result. O
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Statement of the problem. In this work we study the problem of parametric inference
for a d-dimensional Brownian semimartingale (S¢)o<:<7 of the form

t t
S, :so+/ bsds+/ (s, 85, €)AB,,  te[0,T], SoeRY (4.0.1)
0 0

based on a finite random number of observations of S at stopping times. The time horizon
T > 0 and Sy are fixed. We assume that the observations are the values of a single trajectory
of (S¢:0 <t <T)sampled from the model (4.0.1) with an unknown parameter { = {* €
Z. Our goal is to estimate £* using these discrete observations and study the asymptotic
properties of the estimator sequence as the number of observations goes to infinity; we work
in the high-frequency fixed horizon setting. Handling data at random observation times is
important in practice (see the examples in [GW02, Fuk10] for instance) and it has a large
impact on inference procedure, as it is argued in [ASMO3].

A large number of works (see the references below) are devoted to the inference of dif-
fusion models in the case of deterministic, random independent or strongly predictable ob-
servation time grids. In most cases they are based on the approximations of the transition
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probability density of the diffusion process, resulting in so called approximate maximum
likelihood estimators (AMLEs). However, in practice, the observation times may be random
and, moreover, the randomness may be (at least partly) endogenous, i.e. depending on the
sampled process itself: see [GW02] for empirical evidence about the connection of volatility
and inter-transaction duration in finance, and [Fuk10] for modeling bid or ask quotation data
and tick time sampling. In other words, as motivated by those examples, the observation
grid may be given by a sequence of general stopping times with respect to a general filtration;
see the introduction of Chapter 3 for additional motivation and discussion. To the best of
our knowledge this setting has not yet been studied in the literature, except in [LMR™14]
where a Central Limit Theorem (CLT') for estimating the integrated volatility in dimension 1
is established assuming the convergence in probability of renormalized quarticity and tricity
(however, the authors do not characterize the stopping times for which these convergences
hold). One reason for this lack of studies in the literature is essentially that the necessary
tools for the analysis of the stopping time discretization grids for multidimensional processes
were not available until recently. In particular, the study of the asymptotic normality for a
sequence of estimators requires a general central limit theorem for discretization errors based
on such grids. Such a result has been very recently obtained in Chapter 3 in a concrete setting
(i.e. for explicitly defined class of grids, and not given by abstract assumptions, as a differ-
ence with [LMR14]), in several dimensions (as a difference with above references) and with
a tractable limit characterization. Note that in [Fuk11b], the derivation of CLT is achieved
in the context of general stopping times, but the limit depends on implicit conditions that
are hardly tractable except in certain situations (notably in dimension 1). Another issue is
that it is delicate to design an appropriate AMLE method in this stopping times setting:
in general, approximation of the increment distribution seems hardly possible in this case,
since the expression for the distribution of (S, 7), where 7 is a stopping time, is out of reach
in multiple dimension even in the simplest cases.

In this work we aim at constructing a consistent sequence of estimators (£"),>0 of the true
parameter £* in the case of random observation grids given by general stopping times. We
provide an asymptotic analysis that allows to directly apply the existing results of Chapter 3
on CLTs for discretization errors and show the convergence in distribution of the renormalized
error /N7(§" — &) (where N7 is the number of observation times) to an explicitly defined
mixture of normal variables.

Literature background. A number of works study the problem of inference for diffusions.
For general references, see the books [Ser04, Fucl3] and the lecture notes [Jac07].

The nonparametric estimation of the diffusion coefficient o(.) is investigated in [FZ93] for
equidistant observations times on a fixed time interval. In [GCJ93] the authors consider the
problem of the parametric estimation of a multidimensional diffusion under regular deter-
ministic observation grids. They construct consistent sequences of estimators of the unknown
parameter based on the minimization of certain contrasts and prove the weak convergence of
the error renormalized at the rate \/n to a mixed Gaussian variable, where n is the number
of observations. The problem of achieving minimal variance estimator is investigated using
the local asymptotic mixed normality (LAMN) property, see e.g. [CY90, Chapter 5] for
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the definition: this LAMN property is established in [Doh87] for one-dimensional S, and in
[Gob01] for higher dimensions using Malliavin calculus techniques, when the n observation
times are equidistant on a fixed interval. These latter results show the optimality of Gaussian
AMLESs that achieve consistency with minimal variance.

If the time step between the observations is not small, one can use more advanced tech-
niques based on the expansions of transition densities in order to approximate the likelihood
of the observations. See, for instance, [AS99, AS02, AS08, CC11]. Note that these works
consider only the case of deterministic observation grids.

In [GCJ94] the authors study the case where each new observation time may be chosen by
the user depending on the previous observations (so that the times depend on the trajectory
of S). The authors exhibit a sequence of sampling schemes with an asymptotic conditional
variance achieving the optimal (over all such schemes with random times) bound for LAMN
property for all the parameter values simultaneously. We remark that though in [GCJ94]
the observation times are random, they are not stopping times, and the perspective is quite
different from ours: the authors assume that observations at all times are, in principle,
available, and aim at choosing adaptively a finite number of them to optimize the asymptotic
variance of the estimator. In our setting observations are stopping times and are not chosen
by the user in an anticipative way.

Several works are dedicated to the inference problem with observations at stopping times,
but under quite restrictive assumptions on those times as a difference with our general setting.
More precisely, in [ASMO03, DGO04] the authors assume that the time increment 7 — 77
depends only on the information up to 7" ; and on extra independent noise. A similar
condition is considered in [HJY11], and it can take the form of strongly predictable times
(17 is known at time 7" ;). In [ASMO4], the time increments are simply independent and
identically distributed. In [Fukl0, FR12], the authors consider the observation times as
exit times of S from an interval in dimension 1: because such one-dimensional exit time
can be explicitly approximated, they are able to establish some CLT results for the realized
variance. For potentially more general stopping times, but still in dimension 1, [LMR™14]
provides CLT results under the extra condition of convergence of the quarticity and tricity.
To summarize, all the above results consider stopping times with significant restrictions and,
in any case, in one-dimensional setting for S. In the current study, we aim at overcoming
these restrictions.

Our contributions.

e To the best of our knowledge, this is the first work that analyzes the problem of
parametric inference for multidimensional diffusions based on observations at general
stopping times.

e Under mild assumptions we construct a sequence of estimators and prove its consistency
for a large class of observations grids, which, following Remark 1.2.2; contains most of
the examples, interesting in practice.

e Using our asymptotic analysis and applying the results of Chapter 3 we prove the
weak convergence of the renormalized error to a mixture of normal variables, for a
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quite general class of random observations, which includes exit times from general
random domains, and allows combination of endogenous and independent sources of
randomness. In addition, we explicitly compute the limit distribution. The asymptotic
limit is, in general, biased, and we characterize both asymptotic bias and variance.
Such a bias has not been previously observed in parametric inference problems due to
centering property of Gaussian increments for strongly predictable grids.

e We provide a uniform lower bound on the limit variance in the case of a 1-dimensional
parameter £ € Z, and for the set of observation grids for which the weak convergence
to a mixture of normal variables without bias holds. We also prove that this bound
is sharp in this class of grids. To the best our knowledge, this result for parametric
inference for diffusions is new, and it allows for discussing optimal sampling procedure
for instance.

Last, for other applications and results of stopping times in high-frequency regime, see
[Fukllb, GL14a] and Chapter 1.

Outline of the chapter. In Section 4.1 we present the model for the observed process
S, the random observation grids, and construct a sequence of estimators ({"),>0 based on
the discretized version of the integrated Kullback-Leibler divergence in the Gaussian case.
Section 4.2 is devoted to the statements of the main results of the chapter. We continue
with the proofs in Section 4.3. Several technical points are postponed to Section 4.A.

4.1 The model

Let (Bt)o<t<r be a d-dimensional Brownian motion on a filtered probability space
(Q, F, (Ft)o<t<t,P) with (F;)o<t<r verifying the usual conditions of being right-continuous
and complete. By |-| we denote the Euclidean norm on matrix and tensor vector spaces. Let
Mat,, , be the space of real m x n matrices, denote by S (resp. S;}) the set of positive
(resp. non-negative) definite symmetric real m x m matrices.

Let = C R?,q > 1, be a convex compact set, with non-empty interior to avoid degenerate
cases. We fix a parameter {* € =\ 0= (where OZ is the boundary of =). The process serving
for the observation is a d-dimensional Brownian semimartingale (St)o<¢<7 of the form

t t
s, :So+/ bsds—i—/ o(s, S, €NdB,, € [0,T], SoeRY, (4.1.1)
0 0

verifying the following:
(Hg): 1. 0:[0,T] x RY x = — Matg 4 is a C1*? function;

2. the matrix o(t, St, €) is invertible for all £ € = and t € [0,T] a.s.;

3. (bt)o<t<r is a continuous adapted R?-valued process such that for some n, > 0, for
some a.s. finite C' and for any 0 < s <t < T we have |b; — bs| < C|t — s|™.

In what follows we denote for simplicity o;(&) := o(t, S, &). Let ¢;(-) := oy (-)oe(-)T. We
suppose, in addition, the following parameter identifiability assumption.
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(He): For any £ € =\ {¢*} we have a.s. that the continuous trajectories ¢t — ¢;(£*) and
t — ¢4(€) are not almost everywhere (w.r.t. the Lebesgue measure) equal on [0, 7.

4.1.1 Random observation grids

We consider a sequence of random observation grids

]

{0 =0<7 < - <7 < <7 :=T) :n >0}

on the interval [0,7] and suppose that for each n, only the values (7', Sr»)o<i<nz are
available for the parameter estimation: these are the observation data. For each n, (7] :
0 < i < N}) is a sequence of F-stopping times and N is a.s. a finite random variable. Here
we do not assume further information on the structure of these stopping times (e.g. they
are hitting times for S of such or such boundary and so on): we are aware that having this
structural information would presumably be beneficial for the inference problem, by making
the estimation more accurate. Proving optimality results (like in [Doh87, Gob01]) given
the sequence of observations {(77, S’Tin)ggig Npim> 0} is so far out of reach, and we leave
these problems for further investigation. However we establish a partial optimality result in
Section 4.2.4.

Our statistics analysis is based on the asymptotic techniques, developed recently in
[GL14a] and Chapters 1-2, for admissible random discretization grids in the setting of
quadratic variation minimization. In this work we adapt these techniques to the problem of
parametric estimation.

We introduce the following assumptions that depend on the choice of a positive sequence

(en)n>0 With €, — 0 and a parameter py > 1 (compare to the definition in Section 1.2.2):

(AZ®): The following non-negative random variable is a.s. finite:

sup | €,% sup sup \St—57511|2 < +00. (4.1.2)

n>0 1<i<NZ te(r 7]

(An): For some py € [1, (1 + 2m) A 4/3) the following non-negative random variable is a.s.
finite:
sup(e2PN NIV < +o0. (4.1.3)
n>0
Let us now fix (ey,)n>0 with £, — 0 and a sequence of discretization grids 7. We assume
for some py € [1, (14 2n) A 4/3) the following hypothesis:
(Hr): For any subsequence (g,(n))n>0 Of (€n)n>0 there exists another subsequence
(€v0u(n))n>0 for which the assumptions (AZ)-(A ) (with the given py) are verified.

Remark that the class of grids verifying (Hy) is very general and covers most of the
settings considered in the previous works on inference for diffusions. At the same time, it
allows new types of grids that were not studied before. In particular, it includes:

e The sequences of deterministic or strongly predictable discretization grids for which
the time steps are controlled from below and from above and for which the step size
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tends to zero. Here py > 1, see Remark 1.2.2.

e The sequences of grids based on exit times from general random domains and, possibly,
extra independent noise. Namely let {(D})o<t<7 : n > 0} be a sequence of general
random adapted processes with values in the set of domains in R?, that are continuous
and converging (in a suitable sense, see the details in Section 3.2.2) to an adapted
continuous domain-valued process (D;)o<¢<7. Consider also an i.i.d. family of random
variables (U; n)nien uniform on [0, 1] and an arbitrary P @ B([0, 1])-measurable (P is
the o-field of predictable sets of [0, 7] x Q) mapping G : (t,w,u) € [0,T] x Q x [0,1] —
RT U {+0c0} (to simplify we write G¢(u)). Then the discretization grids of the form
T:={T":n >0} with 7" = {7]*,i =1,..., N3} given by

T8 =0,
{TZ." =inf{t > 7ty 0 (St =S ) & aan{zl} ATy +erGrn (Ung) + Ani) AT,
(4.1.4)
where (A, i)nien represents some negligible contribution, verify the assumption (Hy)
with py =1 (see the proof in Section 3.3.3). This class of discretization grids allows a
coupling of endogenous noise generated by hitting times and extra independent noise
given, for example, by a Poisson process with stochastic intensity (see Section 3.2.2).
In addition, we can rely on a CLT for a general discretization error term based on
such grids (see Theorem 3.2.7). The optimal observation grid in Section 4.2.4 is of the
above form, taking some ellipsoid for D" and G(-) = 400, A, ; = 0.

The subsequence formulation of the assumption (H7) is motivated by the subsequence
principle in Lemma 2.2.2. It allows to first prove a.s. results for the sequences of observation
grids verifying (A%“)-(Ay) and Y,,~¢€2 < +00, and then pass to the equivalent results in
probability in the general case. -

4.1.2 Sequence of estimators

Suppose that 7 := {7™ : n > 0} is a sequence of random grids verifying (H7) for some
en — 0, and pny € [1,(1 + 2m) A 4/3). Denote for any process H (where we omit the
dependence on n)

o(t) ==max{T € T" :7 <t}, AH;:=H;— Hy,). (4.1.5)

Parametric inference for a discretely observed process typically requires a discrete ap-
proximation of some criterion, whose optimization yields the true parameter £*. A standard
approach is to approximate the likelihood of Srn, ..., S:n, or equivalently of the distribution
of ASTZ-TL conditionally on Srn, ..., S . Gaussian approximations are often used when the
distance between observation times is small, see, for instance [GCJ93]. The optimality of
the Gaussian based likelihood approximations in the case of regular observation times has
been proved in [Doh87, Gob01]. Although the distribution of S, as 7 is a stopping time
may be quite different from Gaussian, we are inspired by the same approach, because of the
flexibility and tractability of the subsequent contrast estimator with respect to the choice
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of observation times 7;'; however, below we present a slightly different interpretation of the
same minimization criteria, since in the stopping time case the distribution of process in-
crements is not necessarily close to Gaussian. We also generalize the criteria to account for
non-equidistant distribution of the discretization points over [0, T].

Denote py () := (2r)~%?(det X)~/2 exp (— %:UTZ*%) the density of a centered d-dimensional
Gaussian variable N;(0,Y) with the covariance matrix ¥ (assumed to be non-degenerate).
Denote the Kullback-Leibler (KL) divergence between the variables Ny(0, 1) and Ny (0, 32)
by

py, (%)
Dk, (X1, 2 ::/ py, () lo dzx. 4.1.6
KL(21, 22) » = (7) & o, (7) (4.1.6)
For some continuous weight function w : [0,T] x R? —]0,+oo[ set w; := w(t,S;); the

process (wt)o<t<7 is continuous adapted positive. Recall that Dkr,(31,%2) is always non-
negative and equals 0 if and only if ¥; = Xy. Thus, in view of (H¢), the minimization of
fOT Dxr.(ct(€7), ct(€))wedt naturally yields the true parameter £*. Our goal is to construct a
discretized version of this criterion based on the observations of S. We write

1
Dxr,(X1,%2) = 3 /Rd (log(det ¥o) — log(det ¥y) + 2" 85 e — xTEl_lx) ps, (z)dz,

and thus . )
| Drala(e). ci©)dt = 5U°(€) + Con (41.7)

where Cj is independent of ¢ and

T
U*<£) = /0 /]Rd (10g(det Ct(é)) + JZTCt_l(f)-T) pct(f*)<$)wtd$dt (4.1.8)

= /OT (1og(det ct(g)) + TT(Ut(f*)TC;l(f)ot(g*))) wydt.

Remark that fOT Tr(op(6%) e 1 (€) o4 (€*))widt represents a quadratic variation. Thus we de-
fine the following discretized version of U*(-), that uses only (7/*, Srn : 0 <i < Nj),

U"(&):= Y. wen,log (deten (6)) (7 —7iy) + Y. wen ASTer! (§)AS.

T <T T <T

(4.1.9)

The random function U"(.) plays the role of a contrast function: it is asymptotically equal
to U*(.), which minimum is achieved at £*. In the case of regular grids and w; = 1 the
contrast (4.1.9) coincides with [GCJ93, eq. (3)].

Define the sequence of estimators (£"),>¢ as follows:
§" := Argmingcz U™ (§) (4.1.10)

(if the minimizing set of U"(-) is not a single point we take any of its elements). We expect
that the minimizer of U™ (+) will asymptotically attain the minimizer of fOT Dy, (et (€7), et(§))wedt,
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ie. &

Note that the user is free to choose the form of the process wy. While the rigorous opti-
mization of the choice of w; given only the observations (7;*, Srn,0 < < N7) is complicated,
it seems reasonable to increase w; on the time intervals where the observation frequency is
higher. We have not investigated furthermore in this direction.

4.2 Main results

For the subsequent convergences, we adopt the following natural notations. By O%*(1)
(resp. 02% (1)) we denote any a.s. bounded (resp. a.s. converging to 0) sequence of random
variables; in addition, denote O%%(x) = z0%%(1),0%%(x) = zo%*(1). Similarly we write
ol (1) for sequences converging to 0 in probability.

Besides, we introduce a convenient and short notation for denoting random vectors writ-
ten as a mixture of Gaussian random variables. Given a (possibly stochastic) matrix V € S;t,
we denote by N(0,V) a random variable which is equal in distribution to V/2G where G
is a centered Gaussian m-dimensional vector with covariance matrix Id,,, where V1/2 is the

principal square root of V', and where G is independent from everything else.

4.2.1 Consistency

The following result states the convergence of the estimators (£"),>0 in probability to £* for
any sequence of random observation grids verifying (H7). Its proof is postponed to Section
4.3.1.

Theorem 4.2.1. Assume (Hg), (H¢) and (Hy). Then for the sequence estimators (" )n>0
given by (4.1.10) we have the following convergence in probability

gn & *
n—-+4o0o '

4.2.2 Asymptotic error analysis

We now proceed with the asymptotic analysis of the error sequence (£ —&*),>0. Recall that
Dx1,(31,X9) given in (4.1.6) is always non-negative and equals to 0 if and only if ¥ = X.
Thus for any ¢ € [0, 7] the point £* € =\ 0= is a minimum of Dkr,(¢:(£%), ¢¢(+)) which implies
that VEDKL(ct(f*),ct(f)) le=¢» is positive semidefinite a.s. for all ¢t € [0,7"]. We introduce
the following assumption:

(Hy): There exists a subset Z C [0, T] of positive Lebesgue measure such that
VEDKL(Ct(f*), ct(§)) |e=¢~ is positive definite for all ¢ € Z.

Note that in practice, since £* is not known, the verification of (Hy) is typically required
for all possible values of £&* € Z\ 9=. Assumption (Hy) in particular implies that

T
Hy =2 /0 (V§DKL(ct(§*), ct(€)) |§:§*) wydt = VZU*(£Y) (4.2.1)
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is positive definite, and where the second equality follows from (4.1.7) (note that we can
interchange differentiation and integration via the dominated convergence theorem).

In what follows we assume the following conventions. The gradient of an R-valued func-
tion is assumed to be a column vector. For a Matg4-valued function ¢ = ¢(z), x € R™,
the gradient V,c(-) is a element of R™ ® Matgy4. For an element z ® y € R™ ® Matg 4
we denote Tr(z ® y) := x Tr(y), which extends linearly on the entire space R™ ® Mat, 4.
For A € R™ @ Matgg so that A = [Al,--- ,A™T and 2,y € RY we denote 2T Ay :=
[xT.Aly, e ,:UTAmy]T € R™. By 2" A we denote the linear operator in Mat,, 4 correspond-
ing to y — o' Ay (similarly for x — 2T My). Finally, partial derivatives of a Mat 4-valued
function are obtained by differentiating each matrix component and take values in Matg 4.

For ¢ = 1,...,d we denote V,,0(§) := Vy,0(t, S, ), where o = o(t,z,&) is given by
(Hg)-1. Define the processes (M;)o<i<r and (As)o<i<r with values in Mat,, 4 and R™ ®
Matg 4 respectively as follows:

My = 2wib] Ve HE) + My, Ay = 2w Veer H(€9) o (€7), t€[0,7] (4.2.2)
where for 1 <7 <m,1 < j < d we define
M = 20 Tr(04(€) Ve, e (E) Vi, 04(€7)). (4.2.3)

Here comes the main result of this section. This is a universal decomposition of the
estimation error, available for any stopping time grids, as in (H7 ), which will be the starting
point for showing a CLT later.

Theorem 4.2.2. Assume (Hg), (H¢), (H7) and (Hy). Then, for pn as in (Ay), we have

PN (E" — &) = (Hyp' + 0, (1)e, N Zi + 0, (1), (4.2.4)
where s <
Zn = / AST Ay dB; + / Mo ASdt = M 4 AT (4.2.5)
0 0
for My and A; defined in (4.2.2).
The proof is done in Section 4.3.2.

4.2.3 CLT in the case of ellipoid exit times

We start with the following lemma, that plays an important role in the sequel:

Lemma 4.2.3 ([GL14a, Lemma 3.1]). Let y be a d x d-matriz symmetric non-negative real

matriz. Then the equation
2 Tr(z)x + 42% = o* (4.2.6)

admits ezactly one solution z(y) € S .

Theorem 4.2.2 shows that it is enough to study the convergence in distribution of /N7 Z7
to obtain such a convergence for /NZ(§" — £*). Indeed, from (4.2.4) we get

VNRE™ =€) = (Hp" + of (1) /NpZ5 + o ((/Npep™)
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where o}, (\/NJebN) = ob (1) from (H7) and the subsequence principle (Lemma 2.2.2). This
makes possible the direct application of general results on CLT for discretization errors of
the form (4.2.5); we refer to Chapter 3 for discussion and references on the subject.

Since we are particularly interesting in the case of stopping time discretization grids in
the multidimensional case, we use Theorem 3.2.7 where the CLT for discretization errors of
the form (4.2.5) with general M; and A; has been proved in a quite general setting. We state
a particular case of this setting, namely the exit times from random ellipsoids (as defined in
(4.2.7)). This example is, in particular, used in Section 4.2.4.

Let (Z4)o<t<r and (X7)o<i<r,n > 0, be adapted continuous S; *-valued processes, char-
acterizing the ellipsoids. Assume the following:

(Hyg): 1. For some n > 0 and a.s. finite C' we have that supy<;<7 |2 — 7| < Ce]) as;

2. There exist positive continuous F-adapted processes (v¢)o<t<r and (0)o<i<7, such
that we have a.s. for all ¢ € [0,T] that sup,;<,<y ) [bs| < vt, where ¢(t) := inf{s > ¢ :
|Ss — St| > &} AT, te€[0,T] (this condition is qulte mild, see Example 3.2.1).

3. The random variables by and Yy are bounded.

4. For some 1, > 0 we have |o; — 04| < C,|t —s|7/? for all 0 < s < t < T and the variable
C, verifies E(C%) < +oco (this condition, in particular, holds for a diffusion process
with bounded coefficients b and ¢ such that their derivatives are also bounded).

Define the sequence of discretization grids 7 = {7" : n > 0} by

0 =0, 7'=inf{t>7",: (S — STin_l)TZ"n (S =8 ) > EVAT. (4.2.7)

T
i—

Such a sequence verifies (H7) with py = 1 (which follows from Theorem 3.2.7, see the proof
of Theorem 4.2.4).
To simplify we note oy := 04(£*) till the end of this section. We consider the setting of
Section 3.2.2 with D; = {z :€ R?: 2T%,x = 1} and D} = {x :€ R?: 2T¥Px = 1}. Define
-1
the process m; = [Tr(o';r Ztat)} . Following Chapter 3, define, for any ¢ € [0,7] and any

measurable function f : R? — R,

7(t)i=inf{s > 0: W, ¢ Di},  Bf()] =B (f(eWe)), (4.2.8)
where W is an extra d-dimensional Brownian motion, independent from everything else.
Denote Al := [Af;,..., A} ,]T and A= (Az,tATt + Al Ajs). Since A is symmetric,
by Lemma 3.B.1 we may write AY = A”" — A7~ where A’ and A7~ are continuous

symmetric non-negative definite matrices. Define a Mat,;, ,,-valued process (K¢)o<i<7 by
Kl =y B (@) = (o7 ") X (07 ") — (07" 0) X (0 )], (4.29)

for all 1 <i,7 < m, where XZH (resp. X;77) is the solution of the matrix equation (4.2.6)
for ¢ = o, A”+ (resp. o] A" 0;). Remark that the process (Q;)o<i<r defined in (3.2.18)
is equal to 0 in our case since the domains D; and D}’ are symmetric, see Section 3.2.4.
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Also note that the matrix equation (4.2.6) may be easily solved numerically, see the details
in [GL14a, Section A.4]. However, analytic solution is only available in dimension 1. In
general (especially in multi-dimensional case), the computation of K is hardly explicit, and
requires some numerical methods, like Monte-Carlo schemes suitable for statistics of stopped
processes, see e.g. [GM10]. The following result is an application of Theorem 3.2.7 and its
proof.

Theorem 4.2.4. The process (Ki)o<i<r s continuous and K, € S}, a.s. for all t € [0,T].

Denote lCtl/2 the matriz principal square root of Ki. Then there exists an m-dimensional
Brownian motion W defined on an extended probability space (2, F,P) and independent of
B such that for the sequence estimators (§")n>0 given by (4.1.10) we have

d -1 r -1 T 1/2 1757
VIVP(E" =€) — Hp / my dt/ Ky =AW, (4.2.10)
0 0

where Hr is defined in (4.2.1). More specifically, for Z™, M™ A™ defined in (4.2.5), we have
the convergences

e 2ZM), /ICtdt, for all s € [0, 77,
0

n—+o0o
e, N Z", B), n%@ 0, for all s € [0,T], (4.2.11)
el sup A7 £ 0 2Ny 5y /Tm_ldt
"oy S e P oo Jo T

Proof. Our goal is to check the assumptions of Theorem 3.2.7. First note that all random
variables g, o 1. My and Aj are bounded under our setting. Condition (Hg) follows from
(Hg) and (Hy)-4. Further (Ha) follows from (Hy)-2.

Conditions (H},)-(H?,) are straightforward from the definition of D; and D}, and (Hy;)-1.
Namely, for B4(0, 1) the unit ball in R? centered at 0, we write

Dy = {3, %23 € By(0,1)} and DI = {(Z7) 2z :z € By(0,1)}

from which one may easily get (for the distance pu(-,-) for domains, as defined in Section
3.2.2) that u(Dy, DY) < 2\2;1/2 — (¥7)~1/2|. The latter bound can be controlled uniformly
in ¢ and n in view of the continuity and the non-degeneracy of 3,37 and the condition
(Hy)-1.

Finally (H¢) is trivial in this case since the function G(-) equals +00 and A, ; = 0 (in
the notation of Chapter 3). Other assumptions of Theorem 3.2.7 follow from (Hjy)-3. O

Note that the drift b does not enter in the parameters of the CLT, this is due to the
symmetry of the domain defining the observation times.
Because W is independent of everything else, we have the identity

T T 1o~ T T 1/2
/mgldt/ K,/ 2dWy = 1yt /mgldt / Kedt | N(0,1d,,)
0 0 0 0



4.2. Main results 176

with an extra independent m-dimensional Gaussian random variable N(0,1d,,). In other
words, the (random) covariance limit of \/NZ(§" — £*) is

T T
Vi = (/ mt_ldt> Ht </ ICtdt> H'.
0 0

4.2.4 Optimal uniform lower bound on the limit variance

In this section we assume ¢ = 1, so that = C R. Our aim is to seek the optimal observation
times (among ellipsoid based stopping times) achieving the lowest possible limit variance.
Let X¢(€) be the solution of the matrix equation (4.2.6) with

y® = 01(&)TVee; 1 (§)oe(§)oe()TVee, 1 (§)ou(€)

(note that it is an element of Matg 4(R) for a scalar £). For Hr given in (4.2.1) define

2
VPt = H (/OT thTr(Xt(g*))dt> , (4.2.12)

which is fixed from now on. In the case where the weak convergence of the renormalized error
to a mixture of normal variables holds without bias (e.g. the case of deterministic grids, see
[GCJ93]; or the hitting times of symmetric boundaries, see Section 3.2.4 and Theorem 4.2.4)
we prove that V;p " is a uniform lower bound on the asymptotic variance of the sequence
of estimators (4.1.10). In addition, this lower bound is tight in the sense that one can find
a sequence of observation times achieving as close as possible this lower bound. This is
formalized in the following definition.

Definition 4.2.5. Let ko > 0. A parametric family of discretization grid sequences {7, :
k € (0,ko]} is k-optimal if there exists an a.s. finite random variable Cy independent of
such that /N (" — &) converges in distribution to a mizture of centered normal variables

for all T,
JNRE &) - N0, V),

and the limit variance Vi associated with T, verifies the condition
0 < VFE— VP < Cor, Vr € (0,ro).

The subsequent k-optimal observation times are related to some random ellipsoid hitting
times, which are built as follows. Let x(.) be a smooth function such that 1(_ 1/9) < x(.) <

L(_oo,1), let Xx(x) = x(x/K). Let Ay(§) := that_l({)TXt(g)at_l(g), define
AF(€) = A(§) + £xs(Amin(At(€))) 1dg,

where Amin(M) stands for the smallest eigenvalue of M € S;. Hence, AF(¢) € S5+ as
soon as k£ > 0. Recall that under the general assumptions of Theorem 4.2.2 we have the
decomposition (4.2.4), with Z" given by (4.2.5). In view of (4.2.4), to study the weak
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convergence of \/NJ(£"—£*) we essentially need to consider /N7 Z7. The result below states
that under standard conditions implying the CLT for \/NZ2Z} (and hence for \/NJ(&" — &%)
) there exists a uniform lower bound on the limit variance. We also show the tightness of
this bound in the sense of Definition 4.2.5.

Theorem 4.2.6. Assume (Hg), (H¢), (Hy) and (Hy). Let (§")n>0 be defined by (4.1.10).
For some p € [1, pN] suppose that the semimartingale decomposition ZJ* := M]' + A} in
(4.2.5) verifies

e 2P (M™), P, / Kdt, for all s € [0,T],
0

n—-+00

e-P(M™, B), n%w 0, for all s € [0, T], (4.2.13)

_ P
e, P sup |[A}| — O
n 0§t£T| t|n—>+<>o
for some adapted non-negative continuous process (Kt)o<i<r. Assume also that N (Z"™)r
converges in probability to an a.s. finite random variable. Then, the following holds:

(1) \/NE(E™ — &) N N(0,Vp) for some non-negative random variable Vi (asymptotic
variance).

(i) The asymptotic variance Vp satisfies the following uniform lower bound: Vp > V:ﬁpt' a.s.
for VP defined in (4.2.12).

(iii) Assuming, in addition, (Hy)-2,3,4, the lower bound V;pt' is tight in the following sense:
the parametric family of discretization grid sequences {T. : k € (0,1]} given for any
en = 0 by T = {7, : n > 0} with T, = (1" )o<i<ng written as

79 =0, 7;"=inf {t >t (St — Srz.'gl)TA%t 1(5*)(St — S ) > 6%} AT (4.2.14)

is k-optimal for kg = 1 in the sense of Definition 4.2.5.

We remark that the class of discretization grids over which the universal variance lower
bound is obtained in Theorem 4.2.6 includes most of the examples for which a CLT has been
established, since the conditions of the type (4.2.13) are quite commonly required (see [JS02,
Chapter IX, Theorem 7.3] for a classical result). Typically for deterministic or strongly
predictable grids the conditions will hold with p = py > 1, while in the setting of Section
3.2.2 we have p = py = 1. See also the discussion in Section 4.1.1 and Remark 1.2.2.

As we may notice the x-optimal sequence of discretization grids in (4.2.14) depends on
the unknown parameter ¢*. Besides, concerning the optimal variance VP in (4.2.12), it
also involves £*, as well as wy: we argue in Section 4.1.2 that the rigorous optimization of
wy (to minimize V7P t') is out of reach because £* is unknown. However, for all these extra
optimization steps, a heuristic approach might be used. Namely in practice, one may pre-
estimate £* on some initial interval [0, 77] using any reasonable consistent estimator and then
proceed with the estimation that achieves the limit variance close to the optimum on [T7, T
using this pre-estimator instead of £*. A thorough analysis of the limit variance in our case
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would be possible, although quite technical; we naturally expect that such a method would
constitute a k-optimal family of strategies for 77 = k2T in view of the robustness results for
the optimal sequence of discretization grids produced in Section 2.3.1.

4.3 Proofs of the main results

The next lemma provides some important properties of the process oy(-).

Lemma 4.3.1. Assume (Hg)-1. Let T be any sequence of observation grids verifying
(AZ)-(AN) with 3,505 < +00. Then the following holds:

(i) For any n, € (0,1) we have that for some a.s. finite random variable Cy

|01(€) — 05(€)| < Colt — s[7/? Vs, t € [0,T] aus.

(ii) For (V40:(&F))o<t<t defined in Section 4.2.2 and any p > 0 we have

—(2—p) * * a.s,
€n sup |o -0 Va0 JASH 25 0.
Oﬁth t(f ) (’D(t Z i7e(t 5 s +oo

Proof. To prove (i) remark that (S;)o<i<7 is Holder continuous with any exponent smaller
than 1/2 by [BY82b, Theorem 5.1]. We conclude by using that ¢ = o(t,z,£*) is locally
Lipschitz in ¢ and = due to the continuous differentiability, and that (S)o<¢<7 is a.s. bounded
on [0, 7.

To prove (ii) we use the differentiability of o(¢,z,£*) in ¢ and = by (Hg)-1. We write

O't(f*) = Op(t) (5*) = U(t Sta ) - O'(QO('[J), Scp(t)ag*)
=0(p(t), 8, &%) — o (p(t), Spw), €7) + OF ™ (JAL])
d
=Y Vu,0(0(t), Spy, €)ASE + O (| AL + [AS]?).
From (A%)-(Ay) and Lemma 1.3.2 we get supe(o 7y |Of™ (| At[+ |AS )| < Cpe27* for any
p > 0 and some a.s. finite C',, which finishes the proof. O

The next lemma states the a.s. convergence of U"(+) to U*(+), as well as the corresponding
results for the derivatives V U"(-) and VEU ().

Lemma 4.3.2. Assume (Hg)-1,2. Let T be any sequence of observation grids verifying
(AZ)-(AN) with Y,50€% < +00. Then the following convergences hold

sup U™ (€) = U*(€)] = 0, (4.3.1)
¢eE n—-+o0o

sup |[VeU™(€) — VU (€)] —> 0, [VEU™() = VEU*(€)| =% 0, VE€E. (4.3.2)

n—-+o0o
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Proof. Using (4.1.8) and Lemma 4.A.1 we deduce the following expressions for V¢, U*(§)
and ng&U*(f) (1 <k, 0l<m):

* _ T —1 *\ T —1 *
Vel (©) = [ T (V@@ + o) Ve (©ole)) wdt, (4.3.3)

0
T
ViU (€)= /0 Tr (V2 gc(6)er () + Ve,cr(§) Ve (€) + 0u(6)TVE g e H(§)a(€h)) wrdt,
(4.3.4)

Recall that

= Y wen log(deten ()7 — 7/ ) + Z wen ASTicl (§)ASm. (4.3.5)

Ti—1<T T <T e
Let us first prove that for any £ € =

Ur(€) == U*(¢). (4.3.6)

n—+o0o
The convergence of the first term in the right-hand side of (4.3.5) follows from the standard

Riemann integral approximation, using that sup A7 i—i) 0 by Lemma 1.3.2, so we get
n o0

Z wrr log(detcqn (§))(7" — 7i14) TH+OO/ log(det ¢t (&) )wedt. (4.3.7)
Ti—1<T

For the second term we have by Proposition 1.3.9

T

Z W ASTac! (ASy 25 i Tr (00(6%) Ter 1 (€)on(€") ) wdt. (4.3.8)

z 1<T

Hence the convergence (4.3.6) follows now from taking the sum of (4.3.7) and (4.3.8). Further
using Lemma 4.A.1 we obtain

Ve U"(&) = Y we, Tr(Veom  (&ert (9) (7 —7iy) (4.3.9)
T <T
+ 3 wen AST(Vect (6)ASn,
T <T -
VEaU" (€)= 3 wm T (Vigem () (6) + Veem (OVecr (6)) (7 =)
T <T
(4.3.10)

+ Z wrp (ASTVE e ¢ (§)ASqr.
L <T

Using (4.3.3), (4.3.4) and applying the same reasoning as for the proof of (4.3.6) we also
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show the following convergences for any £ € =

VU'() % VUME),  VEU(€) % VEU(E). (4.3.11)

Further from (4.3.9) and (4.3.10), using (Hg)-1,2, the compactness of =, the continuity of

a.s.

w; and the convergence Y np |ASn|? 2 Tr((S)r) by Proposition 1.3.9, we have a.s.
= v n—-+oo

sup (suprgU"(é“N) <C sup [wt <suprvgct<5>ct1<5>|+§ug|vgct1<s>|) < oo,
= €=

n>0 \ £EEE 0<t<T £e=

sup <sup|V§U”(£)l> < C sup_[wy(sup(IVEer()lle; ! (€)]) + sup | Ve (€) 2
n>0 \ £€E 0<t<T ¢eE £e=

+sup [VEe; ' (€)])] < +oo,
£e=

for some a.s. finite C' > 0. This implies that the sequences (U"(-))n>0, (VeU™(-))n>0 are
equicontinuous and hence the convergences in (4.3.6) and (4.3.11) are uniform in { € =. We
are done. ]

4.3.1 Proof of Theorem 4.2.1

First suppose that 3°,,~0&2 < +oc and that the grid sequence T verifies (A% )-(Ay).

Recall that Dkr,(ct(£F),c:(€)) > 0 and the equality holds if and only if ¢(§*) = ().
From (H¢) we have that for any { # &* the processes ¢;(£*) and ¢;(£) are not almost
everywhere equal on [0,7]. Hence £* is the unique minimum of fOT Dxr,(ci(€%), ei(§))widt,
and in view of (4.1.7) we have that a.s.

§* = Argmingcz U*(§).

Further, Lemma 4.3.2 implies that U™ () % U*(§) uniformly in & € Z, from which
n——+0oo

we deduce that " 25 ¢* since " = Argming.z U™ ().
n—-+oo

Finally the convergence " % & for T verifying (H7) with general €, — 0 follows
n—-+0oo

from the subsequence principle in Lemma 2.2.2. O

4.3.2 Proof of Theorem 4.2.2

First suppose that 3°, - 2 < 400 and the grid sequence T verifies (AZ)-(Ay).

Step 1. We start by showing the convergence

/01 VEU™M(E +u(€” — €))du 25 VIUX(E) =: Hr. (4.3.12)

n—-+o0o



4.3. Proofs of the main results 181

Let 1 < k,l < m. In view of the convergence VgU”(ﬁ*) 22 VgU*(E*) from Lemma 4.3.2

n—-+o0o

it is enough verify that

n—-+4o0o

/01 V2 U +u(€" — €9))du — V2, UME) 2% 0. (4.3.13)

Denote v(§) := Tr(ngglct(f)ct_l(g) + Ve, ct(§) Ve et (€)). Using the representation (4.3.10)
for vfk&l U™(-), we get that the left-hand side in (4.3.13) is equal to

5w () et e é‘))du—wl@*))(f — )

" <T

+ Z wrn  AST, (/ Ve (€ +u(€" §*))du—ng§lc;£l(§*)> ASpn.

" <T

a

Now (4.3.13) follows from the convergence £" —i> &* for T verifying (A%)-(An) (see the
n—-—+0o0

proof of Theorem 4.2.1) and the dominated convergence theorem (in view of the differentia-
bility and invertibility properties of o from (Hg)-1,2 and the compactness of =).

Step 2: linearization. Our strategy is to analyse £ — £* using the second order Taylor
decomposition of Uf(-) near £ and invoking Theorem 4.2.1. From (Hy;) the matrix Hy =
V?U*(ﬁ*) is positive definite. Define the following sequence of events

1
vimferes\ozpn{ [ VAU e - e)due st

From the convergences (4.3.12) and £"” j—i> €%, and since £* ¢ OZ we obtain Ign =% 1.
n [o.¢]

n—+oo
On Q" we have V U™ (") = 0, which implies

1 —1
Lon(€" =€) = Lon ([ VME +u(en - €))u) V(e

by the Taylor formula. This implies, in view of (4.3.12) and since Ig\g» = 0 for n large
enough, that

g,V (" =& = (’H}l + o";‘f'(l)) EnPNVU™(EF) + 05 (1). (4.3.14)

Step 3: expansion of V.U"(£*). Now let us analyze the term V U"(£*). Using the
expression (4.3.9) of V¢ U"(-) and applying the It6 formula, we obtain

VU (€)= Y e T (Ve (€06 (€)) (7 =)+ Y wr ASTVee! (€)A8,
T <T T <T

= 30w, T (Veem, (), (€) - omp (€T Veerd (€0, (61)) (7 = 7l1)

i
T <T
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T
4 [t T ((00(6) + 00 (60 Ve (€ 0u(€") — o (€))
T
12 / WaAST Ve b (€)bydt +2 /O WanASTVee by (€)01(6)dB,. (4.3.15)

Consider the four terms on the right-hand side of (4.3.15). The first term is equal to 0 since,
using that Vgc (§*) = .%1(f*)vécn’il(’E*)C;ﬂil(f*% we have

T (00 ()T Veert (€)om,(€9) = — Tr (Veens (€)ert (€9).

For the second term, using Lemma 4.3.1 and the properties (A%*“)-(A ) we deduce that
T * T * *
| a0 T (00 + 000 (€D TV (€)1(6) = 7 (€Dt
T
= 2/ Tr (0 y(€9) TVgc t vaﬁw(t) ASt> wemndt + er
0
T _
= / M¢(t)AStdt + 6%’2,
0
where for any p > 0 and any 7, € (0, 1), using Lemma 1.3.2 and Lemma 4.3.1-(i) we have

[ 2] < Coler ™ + ensup [t — @(t)]"/?) < Coeyt e/,

Here, C is a notation standing for any a.s. finite random variable (independent on n), which
pN+1+(2 P)Ne/2  a.s,
—
n—-+oo

0 for p small enough, since py < 4/3 by (Ay). Also remark that the process (M;)o<i<7 is
the same as defined in (4.2.3), Section 4.2.2.

values may change throughout the computations. Note that e, [ef 5| < Coe

The third term of (4.3.15) may be written as

T
2/0 wso(t)AS;rV€C;(1t) (f*)bw(t)dt + 6%3,
where, in view Lemma 1.3.2 and Lemma 4.3.1-(i), we have
3] < Coensupy [t — ()™ < Coey, 7277

Again (Ay) implies that ,,”V el 5] = 0 for p small enough.
T n—-4o00

Finally, the last term of (4.3.15) equals

2 / 0 AST Ve (€00 (€)dABy + s,

where, (624)0§t§T :n > 0) is a sequence of continuous local martingales verifying for some
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a.s. finite Co, Cl

(€7 < Co sup (|ASIPlov(€”) = o (€1)F) < Crelt>r

for any 7, € (0,1) using (A%“), Lemma 4.3.1-(i) and Lemma 1.3.2. This implies €,,”~ |e} ;| %
"= n—4o00

0 via an application of [GL14a, Corollary 2.1, p large enough| to the sequence &, P~ ely.
Hence, we deduce that VU™ (£*) is equal, up to some negligible contribution, to Z7 given
in (4.2.5). So finally this implies

V(€ =€) = (Hp +oi™ (1) en N 24 + o™ (1).

Step 4: convergence in probability. For a general T satisfying (H7) with &, — 0 the
result is obtained via the subsequence principle (Lemma 2.2.2). O
4.3.3 Proof of Theorem 4.2.6

Recall that A4(€) = 2w, (€)TX:(€)o, 1 (€), where Xy(€) is the solution of the matrix
equation (4.2.6) with y? = 04(&)TVee; 1(€)ai(€)ot (&) TVee, 1 (€)au(€).

Central Limit Theorem. All the conditions for applying the CLT of Theorem 3.2.7 are
fulfilled, and we get

T —
En/ Lt / K2 aws,
0
with an independent Brownian motion w. Moreover, the above convergence is F-stable
(see [JP12, Section 2.2.1] for related definition and properties). Therefore, together with the
convergence of e2? N we deduce the announced result in (i).
Lower bound. We have

T
NH(Z")r = Nj [ 4fASTTee (€)ou(€)or(6") T Veer (€At

Take some subsequence «(n) such that 37, 6?(n) < 400 and such that the convergence of
N}(n)<ZL(”)>T holds a.s.. Then 7—[;2N}(n)<ZL(")>T % Vr where Vr is the limit variance of
n—-+oo

VINE(E™ — &), in view of the above arguments for proving (i). From the proof of Theorem
1.4.2 we obtain that

2
T
Vi = H;2 lim, NA™ (2400 > 3452 < /0 2wy Tr(Xt(g*))dt> = VP as.

This finishes the proof of (ii).

k-optimal sequence. We now prove (iii). Let Z™ be defined in Theorem 4.2.2 based
on 7,7, and ({")p>0 be the corresponding estimator sequence. By Theorem 4.2.4 we get



4.A. Technical results 184

the convergence /N (" — &%) N N(0,Vf). In addition, by Proposition 4.B.1, since

N} Z™)r _% ”H%Vq’f, we obtain 0 < Vi — Vjﬂ’pt' < Cyk for some a.s. finite Cy independent
n o
of k and ¢,. O

Remark that taking x = 0 in the definition of 7" would lead to a grid verifying (Hy)
with pny > 1 which is not covered by Theorem 4.2.4.

4.A Technical results
Let G € C2(Z,85; ). Define f: Matg4(R) x RY — R by
f(G,z) :=log(det G) + TG .
The following lemma provides the expressions for Ve f(G(€),z) and VZf(G(€), ).
Lemma 4.A.1. We have (for all 1 < k,1 < m)
Ve, log(det G(€)) = Tr(Ve, G(E)G™()), (4.A.1)
Vi log(det G(€)) = Tr (VE,, GG (€) + Ve, GOV GTH(E)) (4.A.2)
and, as a consequence,
Ve [(G(),2) = Tr (Ve, GE)GTH(E)) +2TVe, 671 (), (4.A.3)
V6 f(G()7) = Tr (V26 GOG (9 + Ve GOVeG T (9) +2 V3G (. (4.A4)
Proof. Using the Jacobi formula we get

Ve, log(det G(€)) = w

= Tr (Ve, GEG1(9)
which gives (4.A.1), a second derivation now implies (4.A.2). The expressions (4.A.3) and
(4.A.4) now follow from the definition of f(G,x) and (4.A.1)-(4.A.2). O

4.B rk-optimal discretization strategies

Let (St)o<t<r verify (Hg). Let (A¢)o<t<r be given by (4.2.2). Fix i € {1,...,m} and let
2w Hy = A} with H; = Vee; '(€%)ou(€*). Consider the discretization error process of the
form s

Zg' Z:/O 2wgp(t)AStTng(t)dBt-

In this section to simplify we write oy := 04(£*). Let X; be the solution of the matrix
equation (4.2.6) with y? = o] H H 0y = O';I—Vgc;lo'tU;I—V§C;10't. The next result essentially
follows from [GL14a, Theorem 3.2].
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Proposition 4.B.1. Assume (Hg), (H¢) and (Hy). Let k € (0,1], for t € [0,T] set
A= 2w (o )T X0, and AF := Ay + kxeAmin(A¢)) Idg (recall the definition of x,(-) from
Section 4.2.4). For a given n € N, define the discretization grid T,I" by
no._ no__ n . TAk 2
1 =0, 7" =1inf {t 27ty (St = Sen ) An (Sp—Spn ) > En} AT. (4.B.1)

7 Ti—

Then, the sequence of strategies T, = {7, : n > 0} verifies (Hy), and it is asymptotically
k-optimal in the following sense: we have N Z")p % Vi with Vi verifying
n—-+0oo

T 2
0< Vf — (/ 2wt TI‘(Xt)dt> S C()H (4B2)
0

for some a.s. finite random variable Cy independent of k € (0,1].

Proof. First note that from Theorem 4.2.4 (note that Af is obviously bounded, as needed in
(Hx)-(3)) we get the convergence NA(Z™)r % V. Take a subsequence of €, for which
n——+0oo

2n>0 Ef(n) < +oo and the grid sequence T verifies (A%“)-(A ). Without loss of generality
we assume that for this subsequence the convergence to V¥ holds a.s. Let A; := fg bsds be the
finite variation part and M; be the martingale part of S;. Then, using Lemma 1.3.2, we get for
any p > 0 and for some a.s. finite C' > 0 that sup,cpo ) [AA:| < [bloo supyepo, ) |AL] < Ce2=r.
Hence one may easily check that for Z7 := I QwSD(t)AMtTHw(t)dBt we have

n n N/ n a.s,
By (A%“)-(Ay) and Theorem 1.3.4, the sequence of grids 7, is admissible for the process

My in the sense of [GL14a]. Thus, for the subsequence (g,(,))n>0, the statement follows from
(4.B.3) and [GL14a, Theorem 3.2] applied to N3{(Z™)p, with

Cp = ( sup C,i> (/OT Xr(Amin(Ay)) Tr (UtotT) dt)

k€(0,1]

where C = fOT (8wt Tr(Xy) + SRXH()\min(At))Tr(ct))dt. For general case it is enough to
note that the limit V7 is the same for any subsequence due to the convergence in probability
for the entire sequence (gy,)n>0- O
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Chapter 5

Uncertainty quantification for stochas-
tic approximation limits using chaos
expansion
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5.1 Introduction

Since the seminal work of Robbins and Monro [RM51], the method of stochastic approxi-
mation (SA for short) has become mainstream for various applications, such as optimiza-
tion, parameter estimation, signal processing, adaptive control, Monte Carlo optimization of
stochastic systems (see [KY97a, BMP90]), stochastic gradient descent methods in machine
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learning (see e.g. [BC05, SSS08, BCN17]), adaptive Monte Carlo sampler (see e.g. [HSTO01,
ATO08, FMP11, FJLS16, FS00, DVA98]), and efficient tail computations [BFP09], among
others.

SA is used to find zeros of an intractable function h : R? — RY given in the form of an
expectation h(z) := E[H(z, V)], where V is some random variable and H can be computed
explicitly (as opposed to its expectation h). A common application of SA is where h is the
gradient of a convex function ¢ given by an expectation, i.e.

h(z) = V.c(z) = V.E[C(2,V)].

In this case SA corresponds to the minimization of ¢ and is called Stochastic Gradient
Descent. Remark that in order to apply SA we need to have V,E[C(z, V)] = E[V.C(z, V)]
and H := V,C to be known. If only the function C' is known one may apply a slightly
different Kiefer-Wolfowitz procedure ([[lXW52]) using finite differences.

In applications, the choice of the model for V is of great importance. Quite often it is
chosen from a parametric family of distributions {u(6,dv) : § € © C R?}, so that the param-
eter # must be pre-estimated or set by an expect opinion. Obviously, a perfect specification
of 0 is rarely possible. In some cases, where we lack information about 0, it is reasonable to
assume the model for V' to be uncertain. This may be expressed via additional randomness
of the parameter . Below we present several problems that are solved by SA, and for which
the problem of model uncertainty is important:

e Minimization of expected cost (or risk; or utility maximization) under model un-
certainty. In this case V models a stochastic system and z corresponds to the pa-
rameter determining the strategy of interaction with this system. Further we have
H(z,v) := V,C(z,v) where C is some cost function. The goal is to find a strategy =z
which minimizes the expected cost E[C(z, V')]. Under suitable assumptions this writes
as E[V,C(z,V)] = 0 and thus may be solved by SA. In this case the model uncertainty
problem for V' is highly relevant.

e SA may be used to calculate quantiles of a distribution, also known as Value-at-Risk
(VaR) in finance (and more generally to calculate a pair of risk measures VaR and CVaR
which are widely used, see [BEP09] for details). In financial applications V' represents
a future random value of some portfolio for which the choice of the distribution is not
easy. Often we lack information about it and we need an efficient way to compute the
risk measures for a family of models to analyze the model risk. In particular, such
analysis is required by financial regulators.

e In some applications the Bayesian approach is used to specify the model for V. Here
one considers a parametric family of distributions {u(6,dv),0 € ©} with some prior
law of 6. After the observation of the data the law of # is updated to some posterior
distribution 7. In this case the randomness of # naturally yields model uncertainty for
V.

Motivated by the examples above, we consider the following mathematical framework.
We study the uncertainty of the SA procedure in the following forms: (7) the distribution
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of V' depends on an unknown parameter 6 in ©, i.e. V ~ pu(f,dv), for which only some
probability distribution 7 is available; (i) the function H is modeled through a dependency
in the parameter 6. For each 6 the solution z* of the equation

h(z,0) ::/VH(z,V,H)u(Q,dv) —0 (5.1.1)

depends on 6, so that z* = ¢*(6) for some function ¢*(-). Our goal is to compute ¢*(-) so
that we can efficiently quantify the probability distribution of the SA limit ¢*(6) given the
probability distribution 7 for 6.

Uncertainty quantification. Chaos expansion approach. In the last two decades,
UQ has become a huge concern regarding both research and industrial applications. In this
work we study the UQ problem for the SA limits, which, to the best of our knowledge, has
not been investigated so far.

In UQ applications (see [LK10, Smil4]), the goal is often to quantify the dependence of a
solution to an auxiliary problem on some uncertain parameter §. We denote this dependence
by 6 — ¢*(0). Quite often ¢* solves a Partial Differential Equation (PDE) (see e.g. [LK10]);
in our setting, the function ¢* is defined for (7m-almost) all 6, as the limit of an SA algorithm
parameterized by 6.

For the UQ analysis, a first possible approach is based on crude Monte Carlo (MC)
methods: they consist of sampling M values 6, under 7, and then compute, for each sample
0, an approximation qﬁ*/(HZ) of ¢*(0y,). The distribution of the random variable {¢*(6), 0 ~
7} is then approximated by the empirical distribution of {qb*/(QZ) : 1 <m < M}. When
¢* solves a PDE, a global error analysis is performed in [BTZ04], accounting for both the
sampling error and the PDE discretization error, which are decoupled in some way. In our
SA setting, a naive approach would be to compute qﬁ*/(HZ) as the output of a standard SA

algorithm for fixed 6, (see the discussion in Section 5.2.1).

A second method, developed in [LBM8&6, KH92], is a perturbative approach taking advan-
tage of a stochastic expansion of {¢*(0),0 ~ m} that is available when 6 has small variations
(a restriction that we do not need or want to impose in our case).

A third strategy, which dates back to Wiener [Wie38] and has been developed in the fields
of engineering and UQ in the 2000s (see [GS03, LK10] and references therein), is based on
chaos expansions. This technique, also known as the spectral method, consists of projecting
the unknown function ¢* : © — R? on an orthonormal basis {6 — B;(#),i > 0} of the real-
valued and squared-integrable (w.r.t. ) functions and computing the R?-valued coefficients
{ur,i >0} of ¢* in its decomposition

¢* = uiB;. (5.1.2)

i>0

Availability of u’s (or their approximations) allows to efficient quantify the distribution
{¢*(0),0 ~ w}. In the most common case where By = 1, the expectation and the variance-
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covariance matrix of {¢*(0),6 ~ 7} are related to the coefficients {u},7 > 0} through

Egor[¢*(0)] = uf and Varg.(¢*(0)) = > uf(u}) .
i>1

Higher order moments are also available, in the case of polynomial basis (see [LK10, Ap-
pendix C]). For an approximation of more general statistics, one can and sample i.i.d. vari-
ables 0 ~ 7 to efficiently calculate the empirical estimators.

Non-linearity of the problem. SA in infinite-dimensional spaces. The calculation
of the chaos expansion coefficients for the SA limit ¢* is non-trivial due to the non-linearity
of the setting. Indeed, for a given 6 the value ¢*(#) may solve, for example, an optimization
problem. Examples of chaos expansion in the linear setting include the works on UQ for
linear PDEs, see e.g. [LK10, Section 4.4] and [GS91, Section 3.3]. Here, in certain cases,
it is possible to reduce the problem to finite dimension if we are only interested in some
truncation of ¢*. By contrast, in our setting, the projection of the equation (5.1.1) given
(for some basis {B;,7 > 0}) by

/@ h (i u,;Bi(H),0> Bi(0)r(d8) =0, i=0,....m,
=0

with the variable set restricted to uo, ..., %, will not yield the coefficients wg, ..., u}, in the
decomposition (5.1.2) of ¢*. The analysis of the corresponding error is quite complicated.
In [KB09], the authors provide a finite dimensional procedure to approximate the function
¢* that minimizes ¢ — [g L(¢(8),8)m(d@), for some explicit function L, and they analyze
the error due to such finite dimensional truncation. The error estimation is quite rough and
provides little insight on how to fix the truncation level in advance.

Moreover, even when the function ¢* is explicitly known, though estimating individual
coefficients u} in (5.1.2) is straightforward by MC simulations, the global convergence of
a method where more and more coefficients are computed by Monte Carlo is subject to
a nontrivial tuning of the speeds at which the number of coefficients and the number of
simulations go to infinity (see [GS14]). In our case, the function ¢* is unknown and is given
by SA limits which is much more complex.

In Section 5.2.3 we argue that an infinite dimensional procedure is needed to achieve
convergence to the true coefficients {u},7 > 0} (or even a finite number of them). We design
a method based on chaos expansion that is able to overcome the finite dimensional truncation
by increasing the dimension. Thus our method belongs to the family of infinite dimensional
SA algorithms, however it’s fully constructive since at each iteration the dimension is finite.

We argue that previous works on infinite dimensional SA cannot be applied to our setting.
There exists a large number of works on such SA methods. In [Wal77], [BS89] and [YZ90],
the authors study SA in Hilbert spaces in the case H(z,V) = H(z)+V, where z here lives in
a Hilbert space. The conditions of convergence are infinite dimensional formal analogues of
those in the finite dimensional case (see Remark 5.3.3). Unfortunately, although interesting
from a theoretical point of view, these SA algorithms are defined directly in the infinite
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dimensional Hilbert space, so that they are not feasible in practice.

An alternative is to iteratively increase the dimension, to oo in the limit, while remaining
finite at each iteration. There have been several papers in this direction, generally known
as the sieve approach. [Gol88] proves almost-sure convergence in the norm topology for a
modified Kiefer-Wolfowitz (see [KW52]) procedure in infinite dimensional Hilbert space using
a sieve approach. [Nix84] shows asymptotic normality for a modified sieve-type Robbins-
Monro procedure. [Yin92] proves almost-sure convergence in the weak topology for a sieve-
type Robbins-Monro procedure. The latter three papers treat specific expressions of H :
H x V — H while [CW02] combines the unrealistic approach (as in [Wal77, BS89, YZ90])
with the sieve approach (as in [Nix84, Gol88, Yin92]), deriving results on the convergence
and asymptotic normality for SA with growing dimension in a quite general setting.

However, none of these literatures is adapted for dealing with UQ. Indeed, all of these
previous papers in a infinite dimensional Hilbert space H solve problems of the form

find ¢* € H : /H(gb*,v)u(dv) =0,

so that, first, the distribution of V' does not account for the uncertainty and, second, for
any v, the computation of the quantity H(¢,v) may have a prohibitive computational cost
depending on how a function ¢ appears in the definition of H.

Our SA algorithm in this chapter combines (i) the sieve approach in the special case H
is L3 for some probability distribution =, () the UQ framework by allowing u to depend
upon # € ©, § ~ w, and (i) a tractable computational cost of the function H. In the
special case where p does not depend on 6 and H = L7, it can be compared to one of the
methods in [CWO02]: see the TRMP algorithm in [CWO02, Section II]. But our method is
able to address the case when the underlying scalar product of L3 is not explicit. Moreover,
our proof of convergence - while addressing the more general framework where the scalar
product is approximated - relies on weaker assumptions (see Remark 5.3.3, where we show
that, under our assumptions for convergence, the assumptions of [CW02] may fail to hold).

We also remark that recently numerous works have been devoted to statistical learning
in Hilbert spaces, in particular, reproducing kernel Hilbert spaces (RKHS, see e.g. [DB16]
and references therein). However, statistical learning in Hilbert spaces reduces to finite
dimensional SA: based on N input/output examples {(z;,v;),1 < i < N}, it consists of

solving
N
) 1
argmingey - > (L(p(x:), vi) + Qp)) (5.1.3)
i=1
where H is a RKHS associated to a positive-definite real-valued kernel K, L is a non-negative
loss function and €(f) is a penalty term. By the Representer Theorem, the solution admits
a representation of the form ¢* = SN | w; K (-, z;) so that, under regularity conditions on L

and €, the solution of (5.1.3) can be solved by a SA algorithm in R,

Our contributions and summary. To the best of our knowledge this is the first work that
studies rigorously the problem of Uncertainty Quantification for Stochastic Approximation
limits. We provide the following contributions:
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e A fully constructive, easy to implement, algorithm for UQ analysis of SA limits in
a chaos expansion setup is obtained. It is dubbed USA (Uncertainty for Stochastic
Approximation);

e A convergence proof is provided under easy-to-check hypotheses, in terms of underlying
problems corresponding to fixed values of 6, avoiding conditions involving Hilbert space
notions that are often hard to check in practice;

e Complexity issues, extensive reports and discussion on numerical tests are provided.

The chapter is outlined as follows. USA is introduced in Section 5.2. Section 5.3 states
the almost-sure convergence of USA and its LP convergence with respect to the underlying
Hilbert space norm. The proof is deferred to Section 5.4. Section 5.5 presents the results of
numerical experiments, including a detailed discussion of the choice of the design parameters.

Note that beyond model uncertainty, applications of our approach include sensitivity
analysis with respect to 6, or quasi-regression of an unknown function (see [AOO01]), for
instance in the context of outer Monte Carlo computations involving some unknown inner
function 0 — ¢*(0), which are left for future research.

5.2 Problem Formulations and Algorithmic Solutions

Let V be a metric space endowed with its Borel o-field, © be a subset of R¢, and H :
R? xV x © — R?. Let m be a probability distribution on © and u be a transition kernel
from © to V. We define the scalar product induced by 7 by

(1), = [ 10)9(0)r(0). (5.2.1)
for any measurable functions f,g : © — R. By extension, for measurable functions f =
(fi,---,fq) :© =>R%and g : © — R, we write in vector form

(f1;9)x
(fig)ei=1 - (5.2.2)
<fq§g>7r

We denote by L7 the Hilbert space of functions f : © — R? such that the norm | f . :=
L (fi; fi),, is finite (we omit the dependence on ¢ since it will not lead to confusion).

We consider the following problem:
Finding ¢* in L3 such that / H(¢*(0),v,0)u(0,dv) =0, T-a.s. (5.2.3)
1%

We work on a probability space with expectation denoted by E.
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5.2.1 SA Approach “d by 6”

A naive approach for solving (5.2.3) is to calculate ¢*(6) for each value of 6 separately,
for example by the following standard (unparameterized) SA scheme (see [BMP90, Duf97,
KY97a)): for a fixed 0, given a deterministic sequence {7, k > 1} of positive step sizes and
a sequence of independent and identically distributed (i.i.d.) r.v. {V,k > 1} sampled from
w(0,dv), we may obtain z* = ¢*(6) as the limit of an iterative scheme

=k H (2R Vi, 6). (5.2.4)

Explicit conditions can be formulated in order to obtain the convergence z* = limy, z* (see
e.g. [Duf97, Chapter 1]). However, except in the case where © is finite with few elements,
the estimation of ¢* (), separately for each 6 € ©, is too demanding computationally.

5.2.2 Chaos Extension Setup and Approach “Coefficient by Coefficient”

Let {0 — B;(#),i > 0} be an orthonormal basis of L3 (for the scalar product (5.2.1)).
Orthonormal polynomials are natural candidates, but there are other possibilities.

Example 5.2.1 (of orthogonal bases). See [CHQ)Z06, Chapter 2] for the four first examples
based on orthogonal polynomials in dimension d = 1. An orthonormal basis {B;,i > 0} can
then be obtained by renormalization of the given orthogonal basis.

(i) If w(df) has the density 1/(mv/1 — 62) with respect to the Lebesque measure on © =
[—1,1], then the Chebyshev polynomials of the first kind form an orthogonal basis.

(it) If w(dO) has the density 2v/1 — 6% /7 w.r.t. the Lebesgue measure on © = [—1,1], then
the Chebyshev polynomials of the second kind form an orthogonal basis.

(iii) If w(dO) is the uniform distribution on the interval ® = [—1,1], then the Legendre
polynomials form an orthogonal basis.

(iv) More generally, if w(d0) is the distribution on [—1,1] with density proportional to (1 —
0)*(1+6)° for some a, B > —1, then the Jacobi polynomials form an orthogonal basis.

(v) If w(d0) is the uniform distribution on the interval © = [—m, 7|, then we have the
orthogonal Fourier basis {1, cos(if),sin(if),i > 1}.

(vi) If {Bj,i > 0} is an orthogonal basis on © C R with respect to the distribution 7(d0)
w(0)d0, then, for any continuously differentiable increasing function ¢, {B;((+)),1
0} 4s an orthogonal basis on p~(0) with respect to the distribution 7(p(v))¢' (v)dv.

AV

(vii) For a multidimensional distribution (d > 1), with independent components, an orthogo-

nal basis is given by the set of all possible products of basis functions of a single variable
(see [CHQ)Z06, Section 5.8]).

For z,y € R? we denote by z -y and |z| the scalar product and the Euclidean norm in
R4. We denote by s the normed vector space of the R?-valued sequences {u;,7 > 0} with
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||u||l22 = Y is0 luil? < 400. As is well known, given an orthonormal basis {B;,i > 0} in L7,
any function ¢ € L7 is characterized by a sequence {u;,i > 0} in Iz such that ¢ = 37,5 u; B;.
Throughout the chapter, we use the natural isomorphism Is: o — LI given by

=Is(u Z“Z i, 1.e. u; = (¢; B;), for each i € N, (5.2.5)

>0

and the corresponding isometry [|¢[ . = [ull;, (see [Musl4, Proposition 10.32]).

Assuming ¢* € L7, an alternative strategy for solving (5.2.3) consists of the estimation
of the R9-valued coefficients {u},i > 0} of ¢*, combined with a truncation at a fixed level
m of the expansion (5.2.5) and a Monte Carlo approximation of the coefficients {u},i < m},
i.e., for i < m,

uf = (¢ By), ~ — Z o*( 9;“ i (0k.i), (5.2.6)
where {0,k > 1,7 < m} are i.i.d. with distribution 7 and dm is an approximation of
®(0k,i). Let us discuss the computational cost of this approach, in the case ¢ = 1 for ease

of notation (and dimension d of #). In the case of a Jacobi polynomial basis, the following
control on the truncation error of ¢ holds (see [Fun92, Theorem 6.4.2] or [CHQZ06, Chapter

5)):
~0 (mQ%”) , (5.2.7)

where 7 is the order of continuous dlfferentiability of ¢ (in some cases the order may

D uib

>m

be strengthened to O (mf%n)). Neglecting the error associated with the approximation
&(Ok,i) = ¢(Ok,i), we have

m 2

> (ui — 07) B

1=0

E -0 (ﬁ) : (5.2.8)

1+280=2) (7]

s

For balancing the error components (5.2.7) and (5.2.8), we must set M o< m . Toreach
a precision €, m has to increase as e~ % 2=1) and M has to increase as € (”d/( (77 D). The
computational cost in terms of number of Monte Carlo samples to estimate m coefficients is
therefore ¢~ (1+4/(n=1))  This quantity suffers from the curse of dimensionality, which makes
this approach fairly inefficient when combined with a nested procedure for the computation

of m, e.g. through (5.2.4) if ¢ = ¢*.

Also note that in the simple case where SA is reduced to MC (i.e. for H(z,v) = z — v),
the approximation (Z)%) in (5.2.6) will be given by a second MC, so that (5.2.6) results in a
two-stage MC procedure which thus converges two times slower and is highly inefficient. The
right approach here would be to approximate the average [q ., vu(6,dv)B;(0)7(df) directly
using i.i.d. simulations from (0,V) ~ u(#,dv)r(df). This motivates the construction of
an algorithm which couples in an efficient way the outer Monte Carlo sampling of 6 and
the inner Monte Carlo sampling used to feed the SA algorithm in order to optimize the
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calculation.

5.2.3 The USA Algorithm

Through the isomorphism (5.2.5), the problem (5.2.3) can be restated on Iy as

Finding u* in lo; / H (Z u; Bi(0),v, 9) w(0,dv) =0, m-a.s.. (5.2.9)
1%

1>0

Note that the problem (5.2.3) is equivalent to finding ¢* € L3 such that

/9 (/v H (¢7(0),v,0) u(0, dv)) Bi(0)m(df) = Ops, Vi > 0. (5.2.10)

This observation can be used for devising an original SA scheme for the w} in (5.2.9).

A first attempt in this direction is to restrict the problem to a set of functions ¢ of the
form > u; By, for some fixed m > 1. If, in addition, p(6,dv) = p(dv), and assuming the
scalar product (-;-). (corresponding to the integral in (5.2.11)) computable exactly (possibly
at a large computational cost), then an SA algorithm for the computation of {u},i < m}
consists of iterating:

witt = uf = /@H (Z “?BJ(Q)aVkH,H) Bi(#)m(df) i=0,---,m, (5.2.11)
i=0

where the {(V%),k > 0} are i.i.d. with distribution p(dv) and {7z, k > 1} is a deterministic
stepsize sequence. In the more general case, an SA algorithm for the computation of {u},i <
m} is given by

m
u7]ﬁ€+1 = Uf — Vk+1 H (Z u?B](9k+1), Vk+17 0k+1) Bi(6k+1)7 i = Oa s, M, (5212)
Jj=0

where the {(0k, Vi), k > 0} are i.i.d. with distribution (df)u(6, dv).

However, in practice, ¢* is typically not of the form ) ;" u;B; and, even when it is, we
may not know for which m. We emphasize that, in the general case ¢* € L3, as the first
argument of H in (5.2.12) is the current truncation -7 u¥B;(0)11) and not ¢*(0x1), this
algorithm does not converge to the projection of ¢* onto the space spanned by { By, - - , By, }.
See the numerical evidence reported in Section 5.5.4.

Accordingly, the final version of the algorithm tackles the infinite dimensionality of the
problem space L] on which the problem is stated by increasing m, to recover in the limit
the full sequence of the coefficients {u},7 > 0} defining a solution ¢* = >, u}B;. Toward
this aim, we introduce a sequence mj which specifies the number of coefficients u; that are
updated at the iteration k. The sequence {my, k > 0} is nondecreasing and converges to co.

The USA algorithm corresponds to the update of the sequence {uiC ,i > 0} through the
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following SA scheme, where IT 4 denotes the projection on a suitable convex subset A of lo:

1 Input: Sequences {v, k > 1}, {mg, k > 1}, {My, k> 1}, K € N,
{ud,i=0,...,mp}, a convex set A C Iy
2 fork=0to K -1, do
3 sample (67, ,,V;’,),s =1..., M}y, under the distribution 7(df)u(6,dv);
4 for i > mp41 set uf“ =0;
5 for + =0 to mg,1, do
N _ M
6 ui‘{H = “f - 7k+1Mk+11 Zs:kfrl H (ZT:’“O Ué?Bj(eZH)» Vks-;-p 91@4—1) Bi(918<;+1)
7 WP = T (@)
8 Output: The vector {uf,i=0,...,mg}.

Algorithm 3: The USA algorithm for the coefficients of the basis decomposition of
¢*.

The inputs of the algorithm are: a positive stepsize sequence {7y, k > 1}; two integer
valued sequences {my,k > 1} and {My,k > 1} corresponding to the number of nonnull
coefficients in the approximation of ¢* and to the number of Monte Carlo draws of the pair
(0,V) at each iteration k; an initial value ug € R™0; a total number of iterations K; a convex
subset A of [, on which to project each newly updated sequence of coefficients.

The output of the algorithm is a sequence v/ = {ulK ,i < mpg} approximating a solution
u* to the problem (5.2.9). The corresponding approximation ¢ of a solution ¢* to the
problem (5.2.3) is then

mg
o™ =>" ulB;. (5.2.13)
=0

Remark 5.2.2. The motivations for the introduction of the projection set A and for the
averaging over My, draws at step k are discussed in the respective sections 5.3.2 and 5.5.5.

5.3 The USA Algorithm Converges

5.3.1 Assumptions

For simplicity of presentation above, we assumed a uniqueness of ¢*. However, the USA
algorithm is proved below to converge even in the case of multiple zeros. Accordingly,
Problem (5.2.9) is reformulated as

Finding v* in 7* where

T {u* € ly: /VH (Z ufBi(H),v,G) (0, dv) =0, W—&.S.} . (5.3.1)

>0

We do not restrict ourselves to the case of a singleton 7*. However, we introduce the
following assumption on the target set 7* in order to guarantee the existence of a (random)
limit point ¢>° of the algorithm in this set:

C1. The set T* is compact and non-empty.
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Remark 5.3.1. Allowing for multiple limits is quite standard in the SA literature. From the
point of view of the application to UQ), it may seem meaningless to quantify the uncertainty
of a non-uniquely defined quantity. However, enabling multiple limits appears to be the right
setting when some components of the vector-valued function ¢*(-) € Is(T*) are unique and
some other are multiple. This encompasses the important case of computing quantiles and
average quantiles (cf. [BFP09]) of a (uncertain) distribution: the SA approximation for the
quantile component may converge to several limits, while for the average quantile component,
the limit is unique.

C2. {My,k > 1} and {my, k > 1} are deterministic sequences of positive integers; {yi, k >
1} is a deterministic sequence of positive real numbers such that, for some k > 0,

Q _
nyk = 400, Z’y,}f” < 400, ny,% ]\;’“ < 400, ny,i ", < 400, (5.3.2)
E>1 E>1 E>1 k E>1

where the sequences {qm, m > 0} and {Qp,, m > 0} are defined by

Gm = sup Y |ulf?, Qm = gungBz-(@)\Q- (5.3.3)
(S

wET j>m i<m

Remark 5.3.2. Since T* is compact, we have lim,, g, = 0 (cf. the proof of Lemma 5.B.1).
Assumption C2 requires, in particular, that Q,, < 4+oo for any m. If © is bounded, then
this is verified for any basis of continuous functions. In the case of polynomial basis, the
coefficients Q, are related to the Christoffel functions [NevS86].

C3. For any z € RY,
L HG0,0)] (0. do)r(d6) < ocs
oxV

For any z € RY and 6 € O,
h(z0) = [ H(z0,0) p(6,d0)
1%

exists; For any ¢ € L%, the mapping h(¢p(-),-) : 0 — h(¢(0),0) is in L5; The mapping
¢ h(p(+),-) from LF into itself is continuous.

C4. For m-almost every 0, for any zg, z5 € RY such that h(zg,0) # 0 and h(z},0) =0,
(z9 — 2) - h(zg,0) > 0.

Remark 5.3.3. Previous works on SA in a Hilbert space H typically require an assumption
of the type

/@(¢(9) = ¢*(0)) - h™((6),0)m(d0) > 0, Vo € L5\ Is(T™), 0" € Is(T™),

for m large enough, where h"™(¢(-),-) is the approzimation of h($(-),-) using the first m
elements of a basis of H: See e.g. [CW02, Assumption A3P(2)], which only requires the
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above condition for every ¢ # ¢* in the vector space spanned by the first m basis functions B;.
Howewver, even this relaxed assumption does not hold in general in our setting. As a counter-
example, one may take any ¢* =Y ;= w; B; with non null coefficients u}, h(z,0) = z—¢*(0),
and ¢ = @™ given, for every m, as the truncation

@™ = Trunc,,(¢*) = Z u; B;

i<m

of order m of ¢*. Then, as Truncy,(¢™ — ¢*) = 0Lz (by definition of ¢™ ), we have

L(@70) = (0)) -7 (0(6),0)w(@0) = [ (67(0) = 6(6)) - Truncy (67 — 6°) (O)m(d6) = .

for every m.
By contrast, C} is the standard assumption for SA with fized 6.

C5. a) There exists a constant Cy such that, for any z € RY,

sup [ |H(z0,0)2u(6.dv) < Cu(1+ 2.
0ce JV

b) The map from L3 into R defined by ¢ — [, o |H(4(8),v,0)|*m(d8)u(, dv) is bounded,
i.e. it maps bounded sets into bounded sets.

Note that C5-b implies that ¢ — h(¢(-),-) is a bounded map from L3 into itself.

C6. For any B > 0, there exists a constant Cp > 0 such that, for any (¢, ¢*) € L5 x Is(T*)
with || — ¢*[|, < B,
2
=9

Note that the above minimum exists since Is(7*) is compact, by C1.

[(6=60)-n(6(6),0)7(d0) = C5 _min

oeIs(T™)

5.3.2 Projection Set

We address the convergence of the algorithm 3 for three possible choices regarding the
projection set A (which always includes T%).

Case 1. A:= 1.
Case 2. A is a closed ball of lo containing T*.

Case 3. A is a closed convez set of lo containing T*, with compact intersections with closed

balls of ls.

Note that the projection set A is bounded in Case 2 and unbounded in the two other cases
(for sure in Case 1 and potentially in 3).
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Case 1 is the most convenient from the algorithmic viewpoint since no actual projection
is required. However, it requires a stronger condition C5-a to ensure the stability and an
additional assumption C6 for the convergence.

The projection on a ball {u € Iz : [|ul|;, < B} is given simply by

B
u — min (1, ) u. (5.3.4)
[l

Hence, the projection required in Case 2 is quite straightforward. The milder assumption
C5-b is required for the stability but one still needs C6 for the convergence.

Case 3 requires a potentially nontrivial projection on a closed convex set: see e.g. Ex-
ample 5.3.4 below. The stronger condition C5-a is required for both the stability and the
convergence, but C6 is not needed.

We now give an example of the set A in Case 3.

Example 5.3.4.  Given a positive sequence {an,n > 0} such that 3, a? < oo and an
increasing sequence of non-negative integers {d,,n > 0}, define the closed conver set A:

A= {u €ly: Z lug|? < a2 Vn > O} . (5.3.5)

dn<i<dnpi1

When dy = 0, the set A is a compact convezr subset of ly (see Lemma 5.B.1). Otherwise, it
is not necessarily compact. However, the set AN{u € ly : 3 ;o u? < B} is a compact subset
for any B > 0 (see Corollary 5.B.2). The orthogonal projectfon on A consists of projecting
(Udys - - Udy, —1) 0N the ball of radius a, for all n > 0.

5.3.3 Main Result

Theorem 5.3.5. Assume C1 to C4 and C5-a if A is unbounded or C5-b if A is bounded.
Let there be given i.i.d. random variables {(63,V}7),1 < s < My, k > 1} with distribution
7(d0)u(0,dv). Let uf and ¢* be the outputs of the USA Algorithm (cf. (5.2.13)).

Stability. For any ¢* € Is(T*), limg_ 1 oo H¢k —¢*

exists, is finite a.s., and we have
s

supE [W g

k>0

ﬂ < +o0. (5.3.6)

Convergence. In addition, in case 3, and in cases 1 and 2 under the additional assumption
C6, there exists a random variable ¢ taking values in Is(T*) such that

lim Hqﬁk - qZ)OOH7r = 0a.s. and, for any p € (0,2), klgl;loE [Hgbk - gbooHﬂ =0.

k—o0

(5.3.7)

Remark 5.3.6. The standard assumption ensuring a central limit theorem (CLT) for SA
algorithms in a Hilbert space (cf. [CW02, Assumption B3(1)] or [Niz8/, Section 3, equation
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3.8]) is not satisfied in our setup: as a counter-ezample, one can take a function h(z,0) such
that 0,h(¢*(0),0) = 0 and any polynomial basis, due to the recurrence relations of order
two that are intrinsic to such bases. The study of convergence rates and CLT for the USA
algorithm is therefore a problem per se, which we leave for future research.

5.4 Proof of Theorem 5.3.5

Throughout the proof, we will use the notation

mg
¢F =>"ufBi=> ulB;
=0

i>0 i=

(recalling that u¥ = 0 for any i > my, in the USA Algorithm). For any z = (21, -+ , 2,) € R¢
and any real-valued sequence p := {p;,i > 0} such that >>,5 p? < oo we write

z2@p = ((21p0; ", 2qP0), (2101, , ZqD1), -+ ) € L.
Set B™(0) := (Bo(0),...,Bm(0),0,0,...). Define the filtration
Fr:=00;, V5 1<s< Mp1<l<k), k>1.

We fix u* € T*, which exists by C1, and we set ¢* := Is(u*).

5.4.1 Stability

The first step is to prove that the algorithm is stable in the sense that

lim Huk —u*|| exists a.s. , (5.4.1)
k I
supE {Huk —u” 2} < 400, (5.4.2)
k l2
lim inf (% (0) — ¢*(0)) - h(¢*(9),0)7(dF) =0, a.s. (5.4.3)
—oco Jo
k+1 s

Using the definition of 4"+ in the USA algorithm and the property IT4(u*) = u*, we obtain
(recalling that, in all cases 1 to 3, T* C A)

2

H¢k+l _ ¢* i _ Huk-i-l —u* l22 _ HHA(ak—‘rl) _ H_A(U*) l22 < ak—‘rl —u* .,
= Huk —u* = e MY — ’Yk+1"7k+1Hl22 )
where
k 1 e k(ns S s m s
H"=E Mors ; H(¢ (0k+1)7vk+170k+1) @B k“(ekﬂ)‘fk
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_ / H (6"(0),v,0) @ B™+1(6) n(d0)u(6, dv)
oxV

:/eh(qﬁk(e)ﬁ)@Bmk“(@) m(do),

1 s s s m S
771“r1 = My 1 Z H (qbk(ek-i-l)?vk—i-l?@k—i-l) ®B k+1(9k+1) —H".

For the equivalent definitions of H*, we used the Fubini theorem and C3. Observe that, by
definition of B"*, H* and n**! are sequences in lo such that, for all i > mj1,

’Hf = ORa, 775+1 = Opa.
Define
ﬁk‘ — Hf 1 S mrg+41,
T S h(65(0),0)Bi(0) m(dB) i > s

Recalling that uf = Orq for ¢ > my41, we obtain

k 2 k 2 &g k
Hu e b HU - U*HZQ = 241 Y (uf —uf) - Hj
=0
mE41
k k1
— 21 Y (uf —uf) -t
i=0
2 Rl gk 2 k1] 2 k|2
+ 2% 41 Z 0 1+ e Hﬁ ! ng + Ve HH le
i=0
k * 2 k * A7k
= |l =], = 2w Yo ) A
2 i>0
ME+1 M1
k+1 ok k k+1
+ 2974 Z ne Tt HY — 294 Z (uf —uf)-m "
i=0 i=0
a7k | 2 k+1]|2 2 k|2
- 2’719-"—1 Z UJ: Hz +'}/k+1 HT] + Hl +’Yk+1 HH Hl . (544)
i>mk+1 2 2

C4 implies that, for each 0,

> ((uf —uf) -1 (656),6)) Bi(®) = (64(6) — ¢*(9)) - h (6(9).6) > 0.

>0

Taking expectation with respect to § ~ m and applying the Fubini theorem (which follows
from C3), we obtain for all k£ > 0

Rt .= /@ (65(6) = ¢*(0)) - h (¢"(0),0) m(d6) = >_(ulF —u}) - H; > 0. (5.4.5)

1>0
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Note also that 7% (uF — uf) - HE € Fj. By definition, E { K1) Fe ] =0, so that

M1 MEg41
E [ Stk k] =0, E [Z (uf —ur k+1‘]:k] — 0. (5.4.6)
=0 i=0

. k 1 2 .
Let us consider the term Hn + L We write

2

2 Mi41 2
B[], 17 <E S H (6407, Vi, 01 ) @ BT (6,1) - HE|| 1R
l2 k+1 4 l
2
1 A . 9
: Mj1 /®xv HH <¢ (9)’v’6) ® BT (9)]], w(d0)u(6, dv)
1 k o [Tk+1 o
"~ M /@xv ‘H (¢ (9),1},0)’ ( ; Bi(0)” ) w(df)u(6, dv)
Qmyiy k 2
<qre /@ | (4©.0.0) #(a0)uc0. av). (5.4.7)

Next we consider the term 2ygi1 Zi>mk+1 uy ﬂf By using 2ab < a? + b with a «

* K 71&‘
(i) 2 |uf] and b« (v 1) Y2[H; |, we have

—+00
1-k 2 1+r{
< Vi1 Z 7] V+1
i>mk+1 z>mk+1

—k
2yhg1 D, up - H,

i>mk+1
11—k 14k ||77k 2
S ’Yk—&-l qu+1 =+ 7k+1 H le 3 (5.4.8)
where we used C2 in the last inequality. Note that
/ h(g(9) / Ih(e"(6) ? 1(do)
/ [ (64(6), v,e)\ ~(d0)a(6, ). (5.49)
OxV

Combining (5.4.4), (5.4.5), (5.4.6), (5.4.7), (5.4.8), and (5.4.9), we obtain

Bt =17 < [ =, 2B+
+ (mlﬂiiﬁ k+1?\;k+l>/@XV‘H(qbk(Q),v,H)’27T(d0)u(9,dv).

(5.4.10)

To control the integral in (5.4.10), we distinguish two cases.
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First case: A is unbounded. Using C5-a we write
X 2 NG
L Jm(640).0.0)[ w0y av) < [ (14]640)]" ) m(a0)
oxy ©
2
12> ’

where C := 2Cy (1 4 Sup e+ Hu*HlQQ) Note that C; is finite by C1.

e <1+ Huk—u*

Second case: A is bounded. Note that, by definition of u*, there exists a constant B such
that a.s. supg>q HukHl < B. Assumption C5-b implies that, for some finite and
- 2

positive Co,

sup [ H(8(6), v.6) Fr(d8)u(6,dv) < Co.
k>0 JVx0O

In either case, we deduce from (5.4.10) that

]E[Huk'H —u*

2 2

¢ < o=} a2l s

QW%+1 2
o)’

Mk+1
Conclusion. In view of the above controls and of C2, the assumptions of the Robbins-

) (C1V Cy) <1 + Huk o

2 1 2
+ (’Yk—i—l + %cif + Vit+1

2

Siegmund lemma are verified (see [RS71]). An application of this lemma yields that limy, Huk —u* l
2

exists and D4 Ye41RF < 400 a.s.. This concludes the proof of (5.4.1). Taking expecta-
2
.

R := lk}m inf R* =0, as.. (5.4.12)

—+00

*

tions in (5.4.11) and applying the Robbins-Siegmund lemma to the sequence E {Huk —u
yields (5.4.2). Note also that

Indeed, on the event {R > 0}, there exists a finite random index K such that R¥ > R/2 holds
for any k > K, which implies that >~ vk+1R¥ < 400 (as, by assumption, Y~ 7% = +00).
Therefore {R > 0} C {45071 RF < 400}, where we saw above that {30 k1 RF <
+00} is a zero probability event. Hence so is {R > 0}, which proves (5.4.3).

We know from (5.4.1) that limg Hgbk — ¢'|| exists a.s. for any ¢’ € Is(T*). For later use
we need the existence of this limit simultanegusly for all ¢ € Is(T*) with probability one.
Note that limg Hgbk - ¢ _ is continuous in ¢’ (by triangle inequality). Using that Is(7*) is
separable as a subset of a separable Hilbert space L7, we deduce that

i

exists for all ¢’ € Is(T™), a.s. (5.4.13)
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5.4.2 Proof of the Almost Sure Convergence in (5.3.7)

Proof for Case 1 or Case 2. Under the assumption C1, Is(7*) is bounded so that,
by (5.4.1), the random variable B := supg.c7+ supy Hqﬁk — ¢*
s

is finite with probability
one. Since by (5.4.12) liminfy R¥ = 0, with probability one, there exists a subsequence
{¢(k), k > 1} such that limy RS®) = 0.

From (5.4.5) and by C6 applied with ¢ < ¢¥) and ¢* « Is(u*), there exists a positive
random variable Cp (finite a.s. and independent of k& by definition of the r.v. B) such that

2
RK) > Cgp min
#€Is(T*)

-4

-
Let {¢*, k > 0} be an Is(7*)-valued sequence such that, for all k,

o3 = o -3,

_ min
oeIs(T™)

Such a sequence exists since 7* is compact by C1. Using that lim, RS*) = 0 we obtain
limy, H(bC(k) - qﬁkH = 0 a.s.. Since the sequence {¢*, k > 0} is in a compact set Is(7*) (see
K

C1), up to extraction of a subsequence it converges to a random limit ¢>° € Is(7*). Hence
lim HqﬁC(k) — gbooH =0 a.s..
k T
In view of (5.4.13), we deduce
: kool ;i C(k) _ g0l —
tim o — ¢, =tim ¢ — 6= =0 as.
This concludes the proof of (5.3.7).

Proof for Case 3. Since by (5.4.12) liminf; R¥ = 0 with probability one, there exists
a (random) subsequence {C(k),k > 1} such that lim; R¢*) = 0 a.s. Since the sequence
{u¢®) k> 0} is bounded in I5 a.s.(as limy, Huk —u* l exists a.s.) and belongs to the convex
set A by construction, hence it belongs to a compact 2set (see Corollary 5.B.2). Therefore we
can assume (up to extraction of another subsequence) the existence of u> € Lj such that
limyg, Hug(k) —u = 0 a.s. We now prove that «*° is a 7*-valued random variable (possibly

2
depending on the choice of u* € T*). Set ¢>° := Is(u™) and define

= [ (6% =) (0) - h(6(0),6) w(d0)

Then for any j > 1,

R— 1 = [ (6= 6%) )1 (/(0).0) n(a0)
+ [@= =) 0)- (h(#(0).0) = 1 (6(0).0)) n(0).
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By either C5-b or C5-a (depending on whether A is bounded or not) and since sup; Huk H <

l2

o0 a.s., we have supy, Hh (d)qk)(-), ) i < o0 a.s.. Since

=0, a.s.,

e R

it follows that
lim / (659 = 6) (0) - h (6P (0),0) m(d0) = 0, ass.
kE Je
Furthermore, since, by C3, ¢ — h(¢(-),-) is continuous in L7, we have
tim [ (6% =) (0) - (h (5(6),6) — b (6 (6).0)) 7(d0) = 0 as.
k Je
Hence 0 = limy, RS*) = R a.s. In view of the definition of R and of C4, we deduce that

u*™® € T* a.s.. In view of (5.4.13), this implies that limy, H(ﬁk - <Z5°OH7r = limy, ‘QSC(k) - ‘Z’ooHﬂ -
0.

5.4.3 Proof of the L?-Control (5.3.6) and of the L’-Convergence in (5.3.7)

The L2-control

supE {Hqﬁk — ¢°°H2] < 400
k>0 ™

follows directly from (5.4.2) and the boundedness of 7* (see C1). This proves (5.3.6). Let
C > 0and pe (0,2). We write

B R I P R | e L/ PN

The first term on the right hand side converges to 0 as C' — +oo, uniformly in k: indeed,
we have

sup;>q UW B (booHi]

ko0 P
E [Hqﬁ i U{Hask—aﬁwIIpC}} = cFr
For any fixed C' > 0, the second term converges to zero by the dominated convergence
theorem. This concludes the proof of Theorem 5.3.5. O

5.5 Numerical Investigations

This section is devoted to the numerical analysis of the convergence of the USA algorithm .

There cannot be any comparison, performance-wise, between the USA algorithm and the
naive algorithms of Sections 5.2.1 and 5.2.2. The “6 by 0”7 algorithm of Section 5.2.1 is of
course no option unless a finite set ©, with reasonable cardinality, is considered. As for the
“coefficient by coefficient” algorithm of Section 5.2.2, it requires one (standard, admittedly)

—

SA algorithm for each estimate ¢(0);) of ¢(6k;) in (5.2.6): since k indexes Monte Carlo
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draws, it means a nested Monte Carlo approach, which can only be achieved, on realistic
applications, by resorting to concurrent computing resources. Instead, the USA algorithm
is a single SA procedure (in increasing space dimension) for the joint estimation of the
coefficients .

Hence, the section is purely focused on the USA algorithm. We discuss its parameteri-
zation and we test empirically the sensitivity of its performance with respect to the latter.

Notably, the possibility of letting the number mj, of estimated coefficients u} tend to
infinity appears not only as a necessary ingredient for proving the theoretical convergence (see
Theorem 5.3.5), but also as an important feature for its numerical performance, regarding,
in particular, the estimation of the lower order coefficients ] and the mitigation of the
burn-in phase. We illustrate this assertion numerically, by testing both the genuine USA
algorithm with increasing mj and the fixed dimension version with my = m (for different
values of m), respectively referred to as the “increasing my” and the “fixed m” algorithms
henceforth. The speed of the dimension growth turns out to be a determining factor of the
practical convergence rate of the algorithm. A correct tuning of this speed allows achieving
the right balance between the truncation error, i.e. the error due to the non-estimation of
the coefficients beyond the mzh one, and the estimation error on the “active” coefficients
up to my. Balancing these two contributions of the error seems to be the way to reach an
optimal performance of the algorithm.

5.5.1 Design Parameterization of the USA Algorithm

When running the USA algorithm, the user has to choose some design parameters: given
a problem of the form (5.3.1) and the corresponding sequence {g,,, m > 0} via (5.3.2), the
user has to choose the orthogonal basis {B;(#),i > 0}, which fixes in turn the sequence
{Qm,m > 0}. It remains to choose {vg, k > 1}, {mg,k > 0} and {My,k > 1}. In this
section, we consider sequences of the form

=kT% mp= K] +1, M,=|k]+1, (5.5.1)
for a,p > 0 and b > 0, and we discuss how to choose these constants assuming that
gm = O (m_‘;) , Qm =0 (mA) , (5.5.2)

for some 6 > 0 and A > 0.
An easy calculation shows that C2 is satisfied (x > 0 ensuring C2 exists) if

0<a<l, 2 —0b < 2a, bA +1 < 2a + p. (5.5.3)

Given § > 0 and A > 0, there always exist a, b, p satisfying these conditions.

Figure 5.1 displays the lines z — 1, 2 — 2(1 — z)/6 and = — (22 — 1)/A for different
values of the pair (§,A) with A > 0. The colored area corresponds to the points (a,b)
satisfying the conditions (5.5.3) in the case p = 0, i.e. in the case where the numbers of
Monte Carlo draws is constant over iterations. Note that this set becomes all the more
restrictive as & — 0 and A — oco. Choosing p > 0 gives more flexibility, but it also leads
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to higher computational cost (since the number of Monte Carlo simulations increases along
iterations, see the discussion in Section 5.5.5).

10 10 10 10

@ point (0.875, 0.45)

08 0.8 08 08

06 0.6 06 06
E=l E=] E=] E=l

0.4 0.4 04 04

02 02 02 >< 02
0.0 0.0 0.0 00

06 0.8 10 06 0.8 10 06 08 10 0.6 08 10
a a a a

Figure 5.1: For different values of (d, A), in the case p = 0, the colored area is the admissible
set of points (a,b) satisfying (5.5.3). From left to right: (0, A) = (2,1),(0.5,1),(4,3), and
(0.5,5).

5.5.2 Benchmark Problem
We consider the problem (5.3.1) in the case where

O=|-ma,  (d)= %1[_”@ do. (5.5.4)

We perform tests for two different models of function H:

cos(v)

1. Hy(z,v,0) := (2 — ¢*(0)) (1 + cos(z — qzb*(@))) + v,

COS(v

(v) . x
9 sin(z — ¢ (9))>,

for a common function ¢* : © — R given by

20 Hy(2,0,0) = (2 — 6*(0)) (1 +

6(0) = 'g + %exp(sin(&)) _ cosh(sin(0)?)

(1 + sin(26)), (5.5.5)

and where, for any § € ©, the conditional distribution u(f,dv) is a centered Gaussian
distribution with variance 2.
The functions hq, he corresponding to Hy, Hy (cf. C3) are equal to

hi(2,0) = (2 — 6*(0)) (1 + E[COS’;W” cos(z — ¢*(9))> , (5.5.6)
ha(2,0) = (= — 6*(0) <1 + E[COS’;H Yl in(z — ¢*(e))> , (5.5.7)

where Y ~ N(0,1). In both cases we have ¢ = 1 and Is(7*) = {¢*}.
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It is easily checked that for any z € R, 6 € © and 7 = 1,2 we have

(2= ¢"(0))*.

DN | =

[ G 00, d0) < 82 = 9O +20%, (2= 6°(0)) - i(,0) >

Hence, the assumptions C3, C4, C5, and C6 are satisfied for both models.
The two models for H above correspond to two possible behaviours of the martingale

increment sequence {n*,k > 1} (cf. Section 5.4.1): E [anHl } bounded away from 0 (case
2

of Model 1) or E [anHl } — 0 (case of Model 2). While the first case is more general, the
2

second one may also appear in practice and leads to quite different behaviour of the USA
algorithm, requiring a different tuning of the parameters.

In real-life applications, the target function ¢* is bound to be less challenging than
the present one, e.g. monotone and/or convex/concave with respect to 6 or some of its
components. Moreover, the user may be interested with a few coefficients u} only, whereas
we show numerical results up to myg = 250 below.

The choice of N(0,6?) for the kernel pu(6,dv) is purely illustrative. This distribution
could be replaced by any other one (simulatable i.i.d.) without expectable impact regarding
the qualitative conclusions drawn from the numerical experiments below.

Finally, for the orthonormal basis {B;,i > 0}, we choose the normalized trigonometric
basis on © = [—7, 7] (cf. Example 5.2.1(v)). Therefore, we have sup,~q supg |B;(f)| < +oo,
so that

Qm = O(m),

i,e. A =11in (5.5.1). Since ¢* extended by periodicity outside [—, 7] is piecewise continu-
ously differentiable, its truncation error satisfies (see Lemma 5.A.1)

“+o00

> luiF=0(m),

i=m+1

i.e. we have § = 2in (5.5.2). Numerically, one can check that the practical rate of convergence
lies somewhere between 2 and 3, i.e. the theoretical value § = 2 above is reasonably sharp
(meaning that our example ¢* is close to a “real” 6 = 2 example and not much “easier”,
which also motivated our choice of this particular function ¢*).

5.5.3 Performance Criteria

In the numerical experiments that follow, we compare the performances of the algorithms
with increasing my and fixed m, for different choices of (a,b,p). The comparison relies on
the root-mean-square errors, where the exact expectation is approximated by the mean value
over 50 independent runs of the algorithms. After K iterations, the square of the total error

£? is decomposed into the mean squared SA error £2,, which is the error restricted to the

sa’
(mg + 1) estimated coefficients, and the squared truncation error £2., i.e. €2 = 2 + E2.
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where
mg —+o0
& —E||u* -], 2= [waf —uﬂ, and &= Y ()
2 i=0 i=mp+1

(recalling uX = 0 for i > myg). The benchmark values for the coefficients u’ are pre-
calculated by high-precision numerical integration. With the exception of Figures 5.3 and
5.5[left], all our graphs are error plots in log-log scale.
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Figure 5.2: The total error £ as a function of the number of iterations, for different choices
of the sequence {my,k > 0}: my increasing (solid line) and: [left] for Model 1 with my =
m = 8,12,16,20 (other lines); [right] for Model 2 with m; = m = 10,20, 30,40, 50 (other
lines).

5.5.4 Impact of the Increasing Dimension

In this section, we discuss the role of the sequence {my,k > 0}. Since (§,A) = (2,1), the
set of admissible pairs (a,b) for our benchmark problem is given by the leftmost graph of
Figure 5.1.

We take a = 0.875, which is in the middle of the corresponding admissible interval. For
Model 1 (i.e. H = Hj), a heuristic may be applied to choose intelligently the value of b.
In finite dimensional SA schemes, the squared L?-error after k iterations is typically of the
order of vy, = k% (see [Duf97, Chapter 2]). For the USA algorithm we may expect (in the
case p = 0) a growth of the variance at least proportional to the dimension my =~ kb. This
suggests a heuristic guess for the SA-error order given by 1/k%~?. Now, by (5.5.2) (with in
our case § = 2), the truncation error is of order k7. Hence, to optimize the convergence
rate, we take b such that b0 = a — b. This approximately corresponds to b = 3, which is
the value that we use in our tests for Model 1. In the case of Model 2 (i.e. H = Hy), this
heuristics does not apply, because the variance of the martingale increments goes to 0. In
this case we simply take b = 0.45, so that (a,b) = (0.875,0.45) lies in the middle of the
admissible set (see Figure 5.1[left]). Also note that the range [0.25,0.5] for b is reasonable in
view of the total number K of iterations that we commonly use in the algorithm and of the
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Figure 5.3: The functions ¢* and ¢ are displayed in respective solid line and dashed lines,

as a function of 0 € [—m, 7).

On the left, {my, k > 0} is increasing and on the right, it is

constant and equal to m = 30. From top to bottom, K € {128,256,512,1024}.

number my of the coefficients of interest.

Figure 5.2 displays the total error & for different strategies on the sequence {my,k >

|k*] + 1 (with b = 0.3 and 0.45 for Models 1 and 2

0}: the solid line is the case my

8,12, 16, 20 for Model

=m

respectively), while the other lines correspond to the cases my,
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1 and my = m = 10,20, 30,40, 50 for Model 2 (larger values of m are used here since the
convergence is expected to be faster for Model 2). The performance of the algorithm with
increasing my, is similar or better throughout the whole iteration path. This holds true in
the burn-in phase, which is typically related to disproportion of the first values of v and the
magnitude of the solution (estimated coefficients). In fact, with increasing my, the dimension
gradually grows with k, with larger values of ~; naturally associated with the estimation of
the first, larger coefficients, whereas, when my = m is constant, the higher order “small”
coefficients are involved from the very beginning along with the larger values of v, leading
to a longer burn-in phase. It is also true on the convergence part, where the fixed dimension
algorithms my = m only converge up to a certain accuracy depending on the value of m. The
superior performance of the increasing dimension version is more pronounced for Model 2,
while for Model 1 fixed m versions have similar performance within certain ranges of values
of K. However, in practice we do not know in advance the length of the burn-in phase or
the magnitude of the truncation error for various m. Hence, the genuine USA algorithm
with increasing my, which provides optimal performance without the need for additional
knowledge, is always preferable.

Let us now analyse the weak burn-in phase performance of the fixed m version for Model
2 (cf. Figure 5.2[right]). Figure 5.3 displays the result of a single run of the USA algorithm in
this case. In dashed line, the function 8 — ¢ () is displayed for § € [—m, 7r]. For comparison,
the function 6 — ¢*(0) is displayed in solid line. To illustrate the advantage of the USA
algorithm on the burn-in phase due to gradual dimension growth, we show the estimated
function ¢ for different values of K (from top to bottom, K € {128,256,512,1024}) and
for my, increasing (left panels) versus my = m = 30 for any k (right panels). The increasing
dimension my, leads to a smoother convergence, with intermediate iterations looking closer
to a projection of ¢* on the subspace spanned by a smaller number of basis functions. We
conclude that in the case where the variance of the martingale increment is small or goes to
0, the progressive dimension growth plays a key role in the USA algorithm performance.

In Figure 5.4, we show that increasing my, is also key for an accurate determination of the
lower order coefficients (e.g. in the case where only the first few coefficients of the expansion
of ¢* are of interest to the user). In fact, as already mentioned in Section 5.2.3, the algorithm
with fixed m does typically not converge to the first (m+ 1) coefficients of the decomposition
of ¢*. In Figure 5.4[left], the L?-error on the first 4 coefficients is displayed as a function of
the number of iterations K, for two strategies on my, (case of Model 2): the solid line is the
case my, = O(k?) with b = 0.45 and the dotted line is the case m = 3. In Figure 5.4[right],
the total error £ and the truncation error &, are displayed, resp. in dash-dot line and dashed
line in the case my is the constant sequence equal to m = 3. These figures show that, when
myg — +0o, USA converges (which is the claim of Theorem 5.3.5), whereas, when my = m
for any k, it does not: the total error does not reach the truncation error since there is a
non vanishing bias on the estimation of the first (m + 1) coefficients (the SA-error &, does
not vanish when K — 400).

For Model 1, similar effects (not reported here) are visible, even if a bit less obvious due
to the slower convergence of both versions (fixed and increasing dimension) of the algorithm
in this case."
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Figure 5.4: Model 2: [left] in the case mj — oo (solid line) and my = m = 3 (dotted line),

1/2
the error (IE S8 o(uf — uf)z) / as a function of the number of iterations K; [right] in the
case my = m = 3, the truncation error &, (dashed line) and the total error £ (dash-dot line)

displayed as a function of K.

5.5.5 Impact of the Design Parameters for the Increasing m; USA Algo-
rithm

In this section, we discuss the impact of the choice of a, b, and p on the performance on the
USA algorithm.

Role of b

In this paragraph, we set as before a = 0.875, p = 0, and we test different values of b. The
range of admissible values of b is (0.125,0.75). We take b € {0.2,0.25,0.3,0.35,0.4,0.45} for
Model 1 and b € {0.3,0.4,0.5,0.6,0.7} for Model 2 (as we see next, these values of b suffice
to explain the behavior of the algorithm for each of the models).

Figure 5.5 displays the evolution of the total error £ as a function of the number of
iterations K for different values of b for both models of H.

For Model 1, the variance increases with the dimension, which makes the SA error larger
as b increases. At the same time the truncation error has the decrease rate bd, so that for
too small values of b the truncation error dominates the SA error. Hence there is a trade-off
between the two errors, with optimal values of b somewhere in the middle. This phenomenon
is observed on Figure 5.5[left, center]. For b = 0.2,0.25,0.3, the total error is dominated by
the truncation error, while from b = 0.35 the error is dominated by the SA error so that, as b
increases further, the convergence becomes slower due to additional variance which augments
the SA error.

For Model 2, since the variance of the martingale increments goes to 0, the effect of
additional variance due to a larger dimension is not visible. We observe that larger values of
b lead to better convergence up to b = 0.70. However, as we may see, the gain in the speed
of convergence from taking larger b decreases as we approach the border of the admissible
interval. In addition, this analysis in terms of the number of iterations K does not take into
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account the higher computational cost due to a dimension growing faster and each iteration
becoming longer when b is larger. For example, for b = 0.70, we made only K = 2500
iterations, because the computational effort becomes too large beyond this. To conclude we
suggest that in this case optimal values of b (for given a) in terms of both convergence and
computational cost lie near the middle of the admissible interval.
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Figure 5.5: [left] Empirical L? convergence rate for b € {0.2,0.25,0.3,0.35,0.4,0.45}, Model
1. Total error € as a function of the number of iterations K, for different values of b; [middle]
Model 1, b € {0.2,0.25,0.3,0.35,0.4,0.45}; [right] Model 2, b € {0.3,0.4,0.5,0.6,0.7}.

Role of a

In this paragraph, still for p = 0, taking as in Section 5.5.4 b = 0.3 for Model 1 and b = 0.45
for Model 2, we compare different values of a.

Figure 5.6 displays the total error £ as a function of the number of iterations K for
different values of a for both models 1 and 2.

For Model 1, we see that the convergence rate is better for larger values of a. This is
in line with classical results for finite dimensional stochastic approximation, whereby the L?
error is of order ’y,i/ 2 ko2 (see [Duf97, Chapter 2]).

For Model 2, varying a does not produce much effect (except for a slight decline as a
approaches 1), because the step-size controls the variance of the corresponding martingale
noise, but in the case of Model 2 the variance of the martingale increments goes to 0 anyway.

Role of p

In this section we consider the case p > 0, i.e. the number of Monte Carlo samples at
each iteration increases along the USA iterations. One may check that all the triples of the
parameters (a, b, p) used below lie in the admissible set (cf. (5.5.3)).

In the analysis that follows, we want to keep track of the dependence of the error with
respect to a computational cost proxied by the total number of Monte Carlo draws of the
pair (0,v), i.e., after K iterations, Zfz_ol My ~ O(KP*!). As we want to have the same
dimension growth speed with respect to the computational cost for different tests, we take
b=b(p+ 1), with b = 0.3 for Model 1 and b = 0.45 for Model 2.
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Figure 5.6: The total error £ as a function of the number of iterations, for different values
of a in {0.75,0.80,0.85,0.9,0.95,1.0}: [left] Model 1 and [right] Model 2.
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Figure 5.7: Model 1, total error £ of the USA algorithm for different values of p €
{0,0.1,0.2,0.3} as a function of the number of iterations [left] and of the total number
of Monte Carlo draws [right]. Here a = 0.875 and b = 0.3(p + 1).

We first set @ = 0.875 (as in Sections 5.5.4 and 5.5.5). Figures 5.7 and 5.8 display the
total error £ as a function of the number of iterations (left) and as a function of the total
number of Monte Carlo draws (right) for triples of the form (a,b(p + 1),p) with various
p. The results show that, even though larger p yield a better convergence in terms of the
number of iterations K, there is no much difference when the computational cost is taken
into account (i.e. in terms of the number of Monte Carlo draws).

Taking a larger p allows taking a smaller a (see (5.5.3)), so that v decreases at a lower
rate. To see if it is possible to take advantage of this balance in the case of Model 2 (since
typically with Model 1 the convergence is slower for smaller a, see Section 5.5.5), we test
triples of the form (&/(p—i— 1),b(p + 1),p>, with (a,b) = (0.875,0.45) and different values
of p. Figure 5.9 displays the results. The conclusions are similar as for the previous test.
Hence, on our problem, it seems difficult to take advantage of the degree of freedom provided
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Figure 5.8: Model 2, total error £ of the USA algorithm for different values of p €
{0,0.1,0.2,0.3,0.4,0.5} as a function of the number of iterations [left] and of the total number
of Monte Carlo draws [right]. Here a = 0.875 and b = 0.45(p + 1).

by Mj, by going beyond the obvious choice M = M for any k. Such a degree of freedom
could still be useful to ensure the convergence of " ~qV2Qm, M N ! (as required by C2) in
situations where A > 1 (i.e. @, grows faster than in our example), and therefore ensure
the convergence of the algorithm in such cases, even if this comes at a higher computational
cost.
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Figure 5.9: Model 2, total error £ of the USA algorithm for different values of p €
{0,0.1,0.2,0.3,0.4} as a function of the number of iterations [left] and of the total num-
ber of Monte Carlo draws [right]. Here a = 0.875/(p+ 1) and b = 0.45(p + 1).

To summarize, we observe from our experiments that the growing dimension feature of
the USA algorithm is essential for the asymptotic convergence, as well as the lower order
coefficients estimation, and also yields a milder burn-in phase. As expected, the convergence
is generally faster for Model 2 due to reduced variance effect. In the more general setting
(Model 1), the parameter b plays a crucial role in the performance of the algorithm, a good
rule of thumb (in the case p = 0) being to take b satisfying b0 = a—b. However, in the special
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case where the variance of the martingale increments goes to 0, this rule does not work and
one should take larger values of b. Empirical convergence rates are naturally bounded by
a/2 for Model 1 (which follows from corresponding results for finite dimensional SA), while
for Model 2 the convergence is much faster. Finally, taking p > 0 may potentially be useful
for verifying the assumptions of Theorem 5.3.5 in some cases, but it makes no real difference
in terms of convergence speed when the latter is assessed with respect to the total number
of simulations.

5.A Truncation error for trigonometric basis

Lemma 5.A.1. Let ¢ : R — R be 2w-periodic and piecewise continuously differentiable. Let
{u;i,i > 0} be the coefficients of its decomposition with respect to the normalized trigonometric
basis (cf. Example 5.2.1(v)). Then for some C >0

400
Z \uz|2 < COm™2

i=m-+1

Proof. Consider the Fourier decomposition of the function ¢’ on [—m,7]:

¢ (z) = vp + Z (Vam—1 sin(mx) + vap, cos(mz)).
m2>1

As ¢ is 2m-periodic (i.e. ¢(—m) = ¢(m)), integrating by parts yields, for any m > 1,

Ugm—1 = ;ﬂ/ﬂ o(x) sin(mz)dx = 27r'm/ ¢(x)d cos(mx)

_ oL My _ v
= 27rm¢( )cos(mac)t7r R — » ¢'(x) cos(mzx)dx = i
and
Uzm = 5 / ¢(x) cos(mz)dx = 27rm / ¢(x)d sin(max)
= 7¢(x) sin(rm:)‘Tr / ¢ (z) sin(mz)dz = _Bamt
2mm —x 2mm m
Hence,
“+o00 +o00o 71112
1 kel
Z |Uz’2 < m2 Z ’%“2 < 2
i=2m—1 i=2m—1
which implies the result. O

5.B Compact sets in [y

Lemma 5.B.1. For a positive sequence {a,,,n > 0} such that 3_;~g a? < oo and an increas-
ing sequence of non-negative integers {d,,n > 0} such that dy = 0, the closed convex set A:
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A= {u €ly: Z lu;|?> < a2 Vn > 0} (5.B.1)

dn §i<dn+1

18 compact.

Proof. By [KB09, Theorem 3] a subset A of Iy is relatively compact if and only if

sup Z lu;|? is finite for every n and converges to 0 as n — +oo.
ueA i>n

For A given by (5.B.1) it is clear that for [ such that d; < n we have

sup > Juil”* < sup > |ui* <Y af +0
as n,l — +o0. Since A is also closed we deduce that it is compact. O

Corollary 5.B.2. Let A be defined by (5.B.1) (with dy not necessarily 0). For any constant
B >0 the set {u € A: ||lul|,, < B} is convex compact.

Proof. The result follows directly from Lemma 5.B.1 using that >, lus|? < B? for any
u e A O
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6.1 Introduction

In this chapter we continue the study of the Uncertainty Quantification (UQ) problem for
Stochastic Approximation (SA) limits. In Chapter 5 we designed a new method, called the
USA (Uncertainty for SA) algorithm, to compute the chaos expansion coefficients of the SA
limit as a function of the uncertain parameter and proved its a.s. and LP convergence. Our
goal is to analyze the L?-convergence rate of this algorithm.

Let us briefly recall the setting of Chapter 5. We consider SA that is typically used to
find zeros of an intractable function h : R? — RY that is only available in the form of an
expectation as h(z) := E[H(z, V)], i.e. for solving equations of the form

E[H(z,V)] =0, (6.1.1)

where V' is some random variable. In Chapter 5 the problem (6.1.1) is considered under
the presence of uncertainty. Assume for simplicity that (6.1.1) has a unique solution z*.

218
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Uncertainty in the solution z* appears in the situations where the distribution of the random
noise V' or the function H is not known exactly. This is studied in the form of: (7) a
parametric dependence V' ~ (6, dv) where the distribution of V' depends on an unknown
parameter 6 for which only some probability distribution 7(df) is available; (%) through a
dependency of H in the uncertain parameter . This leads to the equation of the form

h(z,0) = /\/H(z,v,@)u(@,dv) =0, T-a.8. (6.1.2)

Denote z* := ¢*(0) the solution of (6.1.2) for fixed # € ©. The USA algorithm developed
in Chapter 5 aims at calculating the coefficients of the function 6 — ¢*(6) on an orthogonal
basis {B;,7 > 0} of the Hilbert space of square integrable functions with respect to the
distribution 7(d#). It provides recursively a sequence of vectors (u*)z>o so that each vector
u¥ is of dimension my, + 1 (for some increasing integer sequence mj — oo) and constitutes a
current approximation of the first my+1 coefficients of the decomposition of ¢* on {B;,i > 0}.
An iteration of the USA algorithm (up to some technical formalities) is given as follows: for

i:O,...,mk+1

Mk:+1 mi
“fﬂ :Uf —7k+1M1;:1 Z H (Z U§Bj(91§+1)7vif+1>91§+1) Bi(elf:—&-l)a (6.1.3)
s=1 §=0

. . k+1
while for i > my1 we set u;

= 0. Here {7,k > 1} is a positive step-size sequence
converging to 0, {Mj,k > 1} is some (possibly constant) sequence and {(6;, V), k> 1,s =
1,..., My} are i.i.d. simulations from the distribution 7 (df)u(#,dv). Each iteration of the
USA algorithm provides an approximation of the function ¢* given by ¢* := 1" u¥B;. Fur-
ther we may use ¢* to approximate the distribution of the uncertain SA limit by {¢*(6),0 ~
7} using the i.i.d. simulations of 6 ~ 7.

We refer to Chapter 5 for the motivation of the UQ problem for SA limits and the
construction of the iterative procedure (6.1.3) and its comparison with other techniques to
tackle the UQ problem for SA limits.

In Chapter 5 we prove the a.s. and LP (p < 2) convergence of the error Hgbk —¢F

to 0 as
™
k — oo (where |||, is the Hilbert space norm). Remark that, though the USA approximates
an infinite-dimensional object, it is fully constructive since the iterates are finite-dimensional.
Chapter 5 contains various numerical investigations and, in particular, uses an empirical L?-

2
error (i.e. an empirical version of E [quk —QF ]) as a performance criteria. Most of the
s

numerical examples in Chapter 5 confirm the L2-convergence of the USA algorithm with
some positive polynomial rate. More importantly, the performance of the USA depends on
a careful tuning of the dimension growth speed (i.e. parameters determining the sequence
my — 00). Though some heuristics for its choice are given in Section 5.5.4, a full theoretical
study is needed to provide further insights on this issue.

Our contribution. In this chapter we analyze the L?-convergence rate of the sequence
{¢*, k > 0} provided by the USA algorithm. Our main result explicitly provides o > 0 such
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that for some constant C,, > 0 we have for all kK > 0

=[Jor-s

2
} < Covp- (6.1.4)

Control of the form 7 is motivated by similar results in the finite dimensional case, where
typically the SA squared error is proved to be of order O(~), i.e. « = 1 (see e.g. [Duf97,
Chapter 2]).

We consider the contribution of this work valuable for the following reasons.

Firstly, while in the finite-dimensional results on the SA convergence rate, the convergence
speed typically depends only on the step-size sequence v, in our setting, the exponent «
in (6.1.4) will depend non-trivially on the model, the regularity of ¢*, the choice of the
basis functions and the design parameters of the USA algorithm. The knowledge of this
dependence plays an important role in the correct tuning of the algorithm to guarantee the
L?-convergence with the best possible rate, given the model specification. We illustrate how
the obtained results justify the optimality of the heuristic choice of the dimension growth
speed used in Chapter 5 (see Section 6.3.2).

Secondly, the iterative procedure (6.1.3) belongs to the class of infinite dimensional SA
algorithms. A number of works has been devoted to such SA procedures, see e. g. [Wal77,
BS89, YZ90, Nix84, Gol88, Yin92] (we will not give details about all of them here, an
extensive discussion can be found in Chapter 5). A particular family of algorithms, which
iteratively increase the dimension up to oo at the limit while remaining finite at each iteration,
is usually referred to as the sieve approach. Such algorithms are fully constructive, in
particular, the USA algorithm belongs to this class. There were a few papers studying
the convergence rate results for sieve-type SA: [Nix84] shows asymptotic normality for a
modified sieve-type Robbins-Monro procedure in the case of independent noise H(z,V) =
H(z)+V, [CW02] generalizes the previous works on SA in Hilbert spaces and derives results
on the convergence, the asymptotic normality and the mean convergence rate for sieve-type
SA in a quite general setting. However, none of these works is adapted for dealing with
the analysis of the USA algorithm convergence rate. In addition to the arguments in the
introduction of Chapter 5, we note that the asymptotic normality result for sieve-type SA in
[CWO02, Theorem 3.1] (see also [Nix84] for a similar result in a less general setting) assumes a
hypothesis (see [CW02, Assumption B3(1)] and [Nix84, eq. (3.3)]) that in our setting would
take the form

(Id -11,,)GII,, - 0 as n — +oo, (6.1.5)

where G is an operator on the Hilbert space defined by G(f)(-) = V:h(¢*(+),) f(+), and II,,
is the projection on the subspace spanned by the first n + 1 elements of the basis. Note
that in our setting (6.1.5) does not hold even in the most standard cases. For example, an
orthogonal polynomial basis {B;,7 > 0} should satisfy a recurrent relation of the form

Bui1(8) = (anb + bp)Bu(6) + cnBn_1(6),
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so that, taking for example h such that V, h(¢*(0),0) = 6, we get
(Id —11,,)GM,,(B,) = a, ' Bpy1,

with a, ! typically not converging to 0 (e.g. a, = 2 for all n for Chebyshev polynomials of
the first kind, see [CHQ)Z06, Chapter 2]). The results on the mean rate convergence (e.g.
[CWO02, Section V]) also require certain properties on the truncations of V,h(¢*(+),-) that
are generally not verified in our case. See, for example, [CW02, Assumptions A.3P, D.1P]:
the counter-example in Remark 5.3.3 is valid for both of them.

Outline of the chapter. In Section 6.2 we present the model under study with various
comments and examples. Section 6.3 is devoted to the statement of the main result. In
Section 6.3.2 we interpret the assumptions and the main result in the case of polynomial
sequences and apply it to optimize the dimension growth speed in the USA algorithm. In
Section 6.4 we proceed with the proof of the main theorem. Some technical details are given
in Appendix 6.A.

6.2 Model and assumptions

Let V be a metric space endowed with its Borel o-field and © C R?. Consider a function
H :RIxVx0O — RY Let m be a probability distribution on ©® and u be a transition
kernel from © to V. For any measurable functions f, g : © — R we define the scalar product
induced by 7 as

(Fi9)- = [ F(©)g(6)n(a0). (6:21)
By extension, for any measurable functions f = (f1,---,f;) : © = R?and g : © — R, we
write in the vector form
<f17g>7r
(fig)e =1 - (6.2.2)
<fq§g>7r

We denote by L3 the Hilbert space of functions f : © — R? such that the norm || f| :=

T (fi; i), is finite. Let us fix an orthonormal basis {B;,7 > 0} of L. Assume that we
work on a probability space with expectation denoted by E.

The USA algorithm was proposed in Chapter 5 to solve the following problem:
Find ¢* in L7 such that / H(¢*(0),v,0)u(6,dv) =0, TT-a.8. (6.2.3)
v
Consider the decomposition of the solution ¢* := 37,5y u;B;. The USA algorithm aims at

calculating the coefficients {u},7 > 0}. It is given through the update of an approximating
sequence {u¥ i > 0} (having only a finite number my + 1 of non-zero elements for all k) by
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the SA scheme presented in Algorithm 4 below.

1 Input: Sequences {vx, k > 1}, {myg, k> 0}, {My, k> 1}, K € N, {uf,i =0,...,mo}
2 fork=0to K -1, do

3 sample (07, 1,V ,),s =1..., Mj;1, under the distribution 7(df)u(6,dv);

4 for i > myy 1 define uf“ =0

5 for i =0 to myy1, do

o | L

| Wbt = b M S H (ST B (0711), Vi 0 ) Bil6}s)

8 Output: The vector {uX,i=0,... , mg}.

Algorithm 4: The USA algorithm for the coefficients of the basis decomposition of
9*.
See Section 5.2.3 for the details on the derivation of the USA algorithm. At iteration k
the sequence {uf, 0 < i < my} approximates the chaos expansion coefficients of a solution
¢* to the problem (6.2.3). The corresponding approximation ¢* of ¢* is then given by

mg
¢" = ulB;. (6.2.4)
=0

The most general version of the algorithm also allows to project each newly updated ap-
proximation on some known convex subset A of L7 and converges under slightly weaker
assumptions (see Section 5.3.2). However in this work, the assumptions will be sufficient for
the version of the USA algorithm without projection, thus we do not consider such a set A
here.

The USA algorithm approximates the whole function ¢* within a single iterative proce-
dure and avoids nested calculations. Theorem 5.3.5 states the a.s. and LP,p < 2, convergence
of ¢* to ¢* with respect to ||-||._. The full discussion about the advantages of this approach,
compared to more naive methods, can be found in Section 5.2.

The goal of this work is to derive the L?-convergence rate for the sequence {(bk, k >0}
produced by Algorithm 4 (possibly under slightly stronger assumptions than those in Chapter
5). Namely, we aim at finding such o > 0, that for some constant C, > 0 and for all k£ > 0

we would have E [Hqﬁk —¢F

of the regularity of the solution ¢*, the chaos expansion basis {B;,i > 0} and the input
sequences Vg, Mg and My of the USA algorithm.

2
] < Cog- Such a rate o is supposed to be defined in terms
s

In Section 6.2.1 we continue with the assumptions on the model (namely on the functions
H and h). Various comments on these assumptions are given in Section 6.2.2.

6.2.1 Assumptions

In what follows we denote |z| and « - y the Euclidean norm and scalar product in RY.
The first assumption states properties that are quite standard for SA setting. We also
suppose the uniqueness of the solution to (6.2.3)
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H1. The following conditions hold:

1. For any z € R? and § € © the integral h(z,0) := [, H(z,v,0) u(6,dv) exists and

/ [H (2, 0, 0)| (6, dv)(d6) < +o0.
oOxV

2. For any ¢ € L%, the function h(¢(-),-) belongs to L. The mapping ¢ — h(o(:),-) from
L3 into itself is continuous.

3. There exists a unique solution ¢* € L5 to the problem (6.2.3).
4. Form-a.a. 6 € © and any z € R? such that h(z,0) # 0 we have (z — ¢*(0))-h(z,6) > 0.

Denote Mat, the space of ¢ x ¢ matrices, and ||-||g; the induced operator norm on Mat,
(ie. [|M||gy = supjy—; |Mz|). Note that h takes values in R? and thus V,h(z,0) is a ¢ x ¢
matrix.

H2. The derivative V,h(z,0) exists for any z € R? and 7-a.a. 0 € O, in addition:

1. For some constant Lo > 0

sup sup ||V h(z,0)||pe < Lo.
z€RI €O

2. There exists a constant Cg > 0 such that for any z € RY

sup [ |H(z,0,0)2 (0, dv) < Ca(1 + |2]),
0ce JV

H3. For some constant Ag > 0 one of the following holds:

(a) for all z € RY and 7-a.a. 6 € O the matriz V h(z,0) is symmetric positive definite with
all eigenvalues greater or equal to Ao,

(b) for all z € RY and mw-a.a. 0 € © the matrix V h(z,0) is upper triangular and such
that for all x € R? we have £V h(z,0)x > Ag|z|? (in particular, diagonal elements of
V.h(z,0) are positive and greater or equal to Ayp).

Let {u},i > 0} be the coefficients of ¢* € L3 in the base {B;,7 > 0}. For the sequence
{my, k > 1} controlling the dimension growth of the procedure define ¥(m) := inf{k > 0 :
myg > m}. Also define

qm ‘= Z |uﬂ2’ Qm = zug Z ‘Bz(e)|2 (6.2.5)
S

i>m <m

We note that a bound of the type ¢, = O(m~?) for some § > 0 may be deduced for various
bases depending on the regularity of the solution ¢*(+) (see [CHQZ06, Chapter 2] and Section
5.2.2 for examples and discussion).
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Define the set £ C R by

0 ,Y;((l)—i-a/Q) ||
E:=La>0:sup | v, “gm, + . 020 4 n - <400 P, 6.2.6
{ = (” e g G 1) - wm») } (620

The next assumption specifies certain conditions on the input parameter sequences 7, my
and Mj, of the USA algorithm.

H 4. Suppose that {My,k > 1} and {my,k > 1} are deterministic sequences of positive
integers; {vk,k > 1} is a deterministic decreasing sequence of positive real numbers such
that:

1. The set € defined in (6.2.6) is non-empty.

2. For some k > 0,

Z Y, = 400, Z ’yli—i_ﬁ < +00, khm 7].;_1 log('yk,l/fyk) = 0,
k>1 k>1 o (6.2.7)
> Ome. s, > A < 00, sup A < oo,

k
k>1 M, k>1 m>0 Vy(m+1)

where {qm,m > 0} and {Qm,m > 0} are defined in (6.2.5).
3. The sequence {¢p(m), m > 0} is strictly increasing (i.e. my grows only by 1).

Assumption H4 is fairly technical and may be not easy to understand in the current
form. To make it clearer, we later interpret it in the case where the sequences involved have
polynomial growth, see Section 6.3.2. We remark that £ will appear to be a set of « for
which (6.1.4) holds.

6.2.2 Comments on the assumptions

Here we discuss the assumptions H1, H2 and H3. In particular, it will be useful to interpret
them on the following example of SA applied to the minimization of a function given in the
form of an expectation:

Example 6.2.1. Consider a function of the form u(z,6) := E[U(z,V,0)] that is convex
in z for fized 6. Let h(z,0) := V,u(z,0), so that (under certain assumptions) h(z,0) =
E[V.U(z,V,0)]. In this case, the problem (6.2.3) translates as the minimization of u(-,0)
for an uncertain parameter 6 € ©. The SA procedure in this case is known as Stochastic
Gradient Descent.

Assumption H1 is mostly needed to verify the conditions of Theorem 5.3.5 that states the
a.s. convergence. Properties H1-1,2 guarantee that the problem is well defined and satisfies
basic requirements. H1-4 is also quite standard (see [BMP90, KY97b]). In the setting of
Example 6.2.1 it follows from the convexity of the function u(-, ) for fixed values of 6.

Let us now discuss H2 and H3. Their main purpose is to guarantee a uniform upper
bound on V,h (in H2-1) and a uniform positive lower bound on the eigenvalues of V h,
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i.e. the uniform repulsivity (in H3). In the case of Example 6.2.1 such global bounds are
available (in the case u(-,0) € C?) if for all z € R%,0 € ©

Amin < Eigenvalues of Vgu(z, 0) < Amax (6.2.8)

for some constants Amin, Amax > 0.

Note that the uniform repulsivity of V,u(-,0) in a neighborhood of the solution ¢*(0) is
a quite standard assumption in classical results (see [BMP90, KY97b]) on the convergence
rate and asymptotic normality of SA without uncertainty (i.e. for fixed ).

Assumption H3 imposes certain qualitative restrictions on V,h(z, ) but nevertheless it
covers the following important situations:

e general case in dimension ¢ = 1;

e the case of convex function minimization (Example 6.2.1) since here V h(z, ) equals
V2u(z,0), which is symmetric provided u(-, ) € C?;

e multi-component function h with triangular dependence, i.e. h = (h1,...,hq) with h;
depending only on z1,...,z2;,6 (this example was originally motivated by the simul-
taneous calculation of a quantile and the average above the quantile, which are also
known as VaR and CVaR in financial applications, see [BFP09)]);

e the same results will also hold for V,h(z,0) that is lower triangular or that is built
from symmetric and triangular blocks satisfying H3.

6.3 L?-convergence rate of the USA algorithm

6.3.1 The main result

Theorem 6.3.1 below shows that £ defined in (6.2.6) appears to be a set of the exponents
a for which an L2-error control with the speed v¢ may be provided. The motivation for
such definition of £ will be clear from the proof of Theorem 6.3.1. An explanation of the
meaning of the three terms in the definition of £ is also given in Section 6.3.2 for polynomial
sequences Y, My and M.

Let {¢* k > 0} be given by (6.2.4). The following result provides the a.s. convergence

2
)
Theorem 6.3.1. Assume H1, H2, H3, Hj. Assume that the set £ defined in (6.2.6) is
non-empty. Then for {¢* k > 0} given by (6.2.4) we have

¢* — ¢* and the non-asymptotic control of the squared L?-error E {Hgbk — @

a.s.
— 0,
T k—+o00

oo

and for any a € £ we have for some constant Cy, > 0 and all n > 0 that

E (" - ¢*II2] < Cari.
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Note that if the set £ has a maximum value then @ = max £ is the best bound on the
convergence speed available from Theorem 6.3.1. This, for example, holds for the sequences
Gm, Qm, M, My and ~, with polynomial growth, see Section 6.3.2.

6.3.2 Example: case of polynomial sequences

In this section we interpret the assumptions and the result of Theorem 6.3.1 in the case where
the sequences involved have polynomial growth. Further we apply this result to optimally
choose the speed of the dimension growth in the USA algorithm for the model studied in
Section 5.5.

For sequences of the form
=kT% My=|kP|+1, k>1, and my=|k"]+1, k>0, (6.3.1)

with a,b > 0 and p > 0, we discuss how to choose these parameters to satisfy H4 assuming
that

gm =0 (m“s) ; Qm =0 (mA) , (6.3.2)
for some § > 0 and A > 0. Recall that ¢(m) := inf{k > 0 : my > m}.

Let us interpret the condition H4: v, Yog(yr—1/7k) means simply that a < 1. Condition

SUD,,>0 Tom) < oo is straightforward for any a,b > 0. Thus using in addition C2 and

~ Tp(m+1)
(5.5.3) (where the other conditions of H4 are expressed), H4 writes as

0<a<l, 2 —0b < 2a, bR+ 1< 2a+p. (6.3.3)

Now we analyze the definition (6.2.6) of the set £. Let o € £. The condition sup,, v,, “¢m,, <
11—« an

oo writes as a < bd/a. Further sup,, ¥ < 00 is equivalent to a < 1 + %. Finally

n
M,
consider the condition (to simplify we use exact equalities instead of asymptotics)
—(14a/2) |, %
g/ Juz|
sup i) L <. (6.3.4)

n>0 (V(n+1) = ¢(n))

Denote Y;, := %;((j;ra)/(wm +1) —(n))2. It is not difficult to check that Y;, has polynomial

growth of order (2 + )% — (% - 2). Assume that for some § > 0 we have |u%|?> = O(n™?).

From (6.3.4) we deduce that

2 — _ —
2ataa—2 s o 0022 , 2
b a a

Hence, the analysis above implies

—bA b(6 —2 2
maxé’Za*:zmin(bj,l—l—p b ,b(d )—2—|—>. (6.3.5)
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The non-emptiness of £ reads as a* > 0. In this case we get E[||¢" — ¢*||3r] < Cyn™" where
r is given by
7 := aq = min (bé, a+p—>bA, b(d—2)+2(1— a)) . (6.3.6)

In (6.3.6) the rate r writes as a minimum of 3 terms each of which has a natural in-
terpretations. The term b¢ is related to the speed of the truncation error decrease for ¢*.
The term a + p — bA corresponds to the variance coming from the simulations of (6%, VF).
A typical rate in finite dimensional case is 7 = a (see [Duf97]) while here an additional
term bR corresponds to the increase of variance with dimension, and p reduces the variance
since larger p means more simulations made at each iteration. The role of the last term
b(6 — 2) + 2(1 — a) is more subtle and related to the deviation of the sieve-type iterative
procedure in Algorithm 4 from the "genuine" infinite-dimensional dynamics. It compensates
the absence of the property (Id —II,,)GII,, — 0 discussed in the introduction. Details will be
given in the proof on Theorem 6.3.1.

6.3.3 Application: parameter tuning in Algorithm 4.

We remark that in this work we do not carry out numerical tests, since an extensive numerical
study has been already done in Chapter 5. Below we apply our result to optimize the choice
of the dimension growth speed in the USA algorithm, which is determined by the parameter
b.

The formula (6.3.6) for the convergence rate suggests how to optimally choose the speed
of the dimension growth, determined by the parameter b. The strategy consists in choosing
b that maximizes the convergence rate for given values of the other parameters.

Let us consider the example discussed in Chapter 5 (see Model 1 in Section 5.5.2). In the
numerical test presented in Section 5.5.5 we have a = 0.875,p = 0,6 = 2, A = 1. Further,
though the value of § cannot, in general, be improved theoretically beyond the trivial bound
8 > 4, a good heuristic guess when dealing with polynomial sequences is 6 = § + 1. By
(6.3.6) this gives the rate r = min(b + 0.25,2b,0.875 — b), so that we get the optimal value
0.3125. This is in line with the value of b giving optimal performance in Chapter 5. Note
however that the values of the rate itself provided by (6.3.6) tend to be rather conservative
and underestimate the actual empirically obtained rate (which is not a contradiction to
Theorem 6.3.1). This has a natural explanation: first, the actual truncation error decrease
may be faster than the theoretical bound; second the analysis of the convergence rate involve
certain estimations that are by their nature non-optimal (e.g. control by the maximum of
the basis functions, see Step 1 of Section 6.4.2). We expect that the rate may be improved
in certain specific cases. However, Theorem 6.3.1 is a valuable contribution since it provides
a bound on the convergence rate in the general case, that seems hard to improve. Moreover,
it provides important information for the optimization of the design parameters, especially
the dimension growth rate b, which allows to enhance the numerical performance of the USA
algorithm.
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6.4 Proof of Theorem 6.3.1

This section is devoted to the proof of Theorem 6.3.1, we suppose that all of its assumptions

are verified.

6.4.1 Proof of the a.s. convergence

Let us check the assumptions of Theorem 5.3.5 for the USA Algorithm 4. Conditions C1,
C3, C4 follow from H1, condition C2 follows from H4. Condition C5-(a) follows from
H2-2. To show C6 (in the case of a unique solution ¢*) we use H3 and that for any ¢ € L3

p6(0).0) = ( [ V:h(6"(0) +(6(6) ~ 6*(0)),0)dt ) (60) ~ 5*(9)).

So, finally by Theorem 5.3.5 for Case 1 (without projections) we obtain

H¢k‘ _¢*

2 0 and supIE[thk—tb*

2
T k—+oo k>0 T

]<+oo.

6.4.2 Proof of the L?-convergence rate

(6.4.1)

Recall that we denote by {#*,k > 0} the sequence given by ¢F := S .o ufB; = 3.7 uFB;
y g Y >0 % =0 %4

where {u¥,i > 0} is updated via Algorithm 4, so that u¥ = 0 for all i > my.
Define the filtration

Fk ::U(Qg,ws,lﬁsﬁMg,lﬁfgk), ]{ZZ 1.
For k> 0and ¢ =0,...,mp41 let us denote
HE = / h(6"(0),0)Bi(0) 7(d9),
e

M1

1
= ——— N H(6%(0741), Vi1, 0341 ) Bi(0341) — MY,
i ey o H (O Vi O ) BiBh) —

and let pFt! .= S kiR Recall the definition of g, and Q,, in (6.2.5).

2
lemma provides an estimation of E {anH }
™

The next

Lemma 6.4.1. Under the assumptions of Theorem 6.3.1, for some deterministic C > 0 we

have that for all k > 1
B ||+

2 Q
< 02k
J _CMk:

Proof. For k> 1and i=0,...,m; we decompose nf = Ay + By ; where

My,
Api = A;k > (H (" (00, vie, 01) — h (41 (00),67) )Bxez),
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M
1 . k—1/ps s s k—1
By = L 5:221 h (¢ (0%) 0k> Bi(0F) — Hi ™.
We write for ¢ = 0,...,my

E [|771k|2|]:k—1} =E [E [|Ak,i|2 +2Ak,; - B + |Bk,i|2‘91£a . -,9%»]‘7«—1} ’fk—l}

= E[E[|Ari|* | 6}, .., 00, Fro1)|Frei] + E[|Bril*|Fr_1] (6.4.2)
=E[|Ag,i|* | Fi-1] + E[|Bri[*| Fr-1l,

using that

E [Ak,z‘ “ By

O, 00, Fi1] =E[Ay,

911:7 oo ’GIJnga‘Fk—l} : Bk,i =0.
Define I' : R? x © — R by
T(z,6) = / \H (2, 0,0) — h(z, 0)2u(6, dv) (6.4.3)
%

(well-defined due to H2-2). First

My,
1 - S S S
El| Akl [ 0F, . 0™, Fioa] = 705 DT (647(67).67) Bi(6})”,
k s=1
and hence 1
Bl AviP\Fia] = 5 [ T(61(0),0)B:(6)°x(40). (6.4.4)
k JO
Second
|2 i k—1 2 N2
BBl Fia] < 3 [ |60, 0)] Bi(0)*n(ao). (6.4.5)

From (6.4.2), using (6.4.4), (6.4.5) and taking the sum over i = 0,...,my, we obtain (since
() = Sy nf Bi(")) that

E Mn’“Hi Ifk_l] < ?\Zf

k—1 2 k-1
/. (‘h(qb ©).0)[ + (s (9),9)) 7 (d6). (6.4.6)
Note that H2-2 implies that for any z € RY, for m-a.a. 6 € © and some deterministic C' > 0
Ih(z,0) +T(2,0) < C(1 + |#f2).

Thus taking expectation in (6.4.6) implies

B[] < o%e 1z [lo|]) < s (1em[fol]7]) G an

)
>0 My,

where sup;>o E [Hd)ﬂHﬂ is finite by (6.4.1). O



6.4. Proof of Theorem 6.3.1 230

Since the gradient V,h(-,-) exists on © x R? by H2, for 7m-a.a. § € © we have that

n(oh©).0 = (| VLA 0) + 1 0) - 0)), Ot) (¢50) - 5°0).  (648)

For any f : © — R we denote EssSupycgq f(0) the essential supremum of f with respect to
the measure 7 on ©. Define M*: @ — Mat, by

MEC) = [ VR0 + 160 - (), (6:4.9)

From H2-1 we deduce that

sup EssSup H/\/lk(ﬂ) < Lo, (6.4.10)

k>0 60€O

We proceed with the following lemma, which provides a uniform contraction property of the
operators (Id —y,.1.MF(0)),0 € ©.

Lemma 6.4.2. For any A; € (0, Ag) (Ao given by H3) there exists t € (0,1] (t =1 in the
case H3-a) and ko € N both depending only on Lo, q, Ao, A1 and the sequence (Vn)n>0, such
that for all k > ko and the matriz Dy := Diag(t,t2,...,t7) we have

EssSup HD;l (1d =71 M*(0) ) Dy
0cO®

op. A
pe = (1= 4140).

The proof of Lemma 6.4.2 is given in Section 6.A.1 and essentially follows from H3.

Let I1,,, : L5 — L7 be the projection on the subspace of L spanned by {B;,7 =0, ..., m}.
From Algorithm 4, (6.4.8), (6.4.9) and the definition of n* we obtain the following recurrent
equation for {¢* — ¢* k > 0}

PFT — ¢ = ¢F — % — Y1 I, (ME(OF — ¢%)) — Y™t (6.4.11)

First let us pass from (6.4.11) to a procedure with iterates having only a finite number of
non-zero coefficients in the basis decomposition. Denote R, := (Id—Il,,)¢* so that ¢,
defined in (6.2.5) equals ||R,, 2. We have

¢" — ¢* =y, (8" — ¢*) — Rpn,. (6.4.12)
Since the term R,,, is deterministic, it remains to analyze IL,,, (¢* — ¢*). Denote

th = (M, — Ty, ) 0™ (6.4.13)

k

Applying I1 to (6.4.11) we get the following recurrence equation for the sequence I, (¢"—

)

My, (05T = 0%) = T, (0 — 6%) = i T, (MF(6F = 0%)) — ppan™™ = 571 (6.4.14)

Mp41

Our strategy is to decompose 1I,,, (¢* — ¢*) into two sequences, so that one of them has the
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same recurrence equation as (6.4.14) but without the term #**! and to put all the rest in
the second one. Following this idea, define the sequences {u*, k > 0} and {p¥, k > 0} in L]
by po = 0, p° = Iy (¢ — ¢*) and for all k > 1

P = P — g Ty, MPRP — g™, (6.4.15)
P = o = Tl MEE 4 it (T, MP R, — 3 #571) (6.4.16)

Taking the sum of (6.4.15) and (6.4.16), and using (6.4.14), (6.4.12), it is easy to show by
induction that I, (¢* — ¢*) = u* + p*.

Now we analyze the sequences {u*,k > 0} and {p¥,k > 0} separately. We estimate
2
first E [H ukH ] using the uniform contraction property of the operators (Id —yz,1 MF¥(6))

given by Lemma 6.4.2. Further we provide a deterministic control on H p H In particular,

we obtain, using H4, the speed of convergence of these errors to 0. The definition of the
convergence rate set £ will be clear from various stages of the proof.

In what follows, C' denotes a deterministic constant that may change from line to line.

2
Step 1. Estimation of E [H,ukH } From the equation (6.4.15) we have
™

Mk+1 =1, (Id _7k+1Mk> :Uk - '7k+177k+17 (6.4.17)

Fix A; € (0, Ag). Consider D; with ¢ given by Lemma 6.4.2. Multiplying (6.4.17) by D;!
and using that D, ! and II,,, commute for any m (since linear operations commute with the
truncation II,,,) we get

D; Yyt =1, (D) (Id _'Yk+1Mk) Dy)D; ¥ — 1 D
This implies

e |lore ] = -1,

[ 07" (0e100) 200 1

since u* and MF¥ are Fj-measurable, E[n**!|F.] = 0 which yields
E {<Hmk+1(Dt_1 (Id —fka/\/lk) D) D; ' yF; D k+1>ﬂ] —0.

Applying Lemma 6.4.2, we have for some deterministic kg € N for any k > kg

o

™

||t <

(1= ve+141)? “’D 1ﬂkH } + 71 E
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We deduce by induction that for some constant C' > 0 coming from the terms with k£ < kg
1 nl? =~ - 1 k|2
eflorrlt] <o ato (23 o]
k=1 =k

2
(note that C' is finite since for all £ > 0 the term E U’nkHH } is finite from Lemma 6.4.1

and E MukHj is finite from (6.4.17) and (6.4.10)). Let C1;:=C HD;:[HORI: | D¢ ||y Then

112 < Cre 3ontenp (-zAl 3 %-) elif]. e

k=1 j=k+1

Let the set £ be given by (6.2.6) and o € £. Multiplying (6.4.18) by 7,,* and using (6.4.7)
we obtain for a different constant C > 0

“Efllp"™ ]<C’Yna271+aexp( 24, Z 7]) ( - “?\Z’“) (6.4.19)

k=1 j=k+1

In view of H4 we may apply Lemma 6.A.2 to get

: o 1
hmsupynaz exp( 2A12%) ( 1 a?&”) < Ehmbup <7,,11 a?&:) < 400,

where the last inequality holds since a € &€ (see (6.2.6)). Using (6.4.19) this implies

sup,, “E[[|"|[3] < +o0. (6.4.20)
n>0

Step 2. Estimation of H’Oan From (6.4.16) we have

pk+1 = Hmk+1 (Id _’YkJrle) pk + Ve+1 (Hmk-o-leRmk ’7k+1tk+l) (6'4'21>

Consider D; with ¢ given by Lemma 6.4.2. Multiplying (6.4.21) by D; ! and, using that D; !
and II,,, commute for any m, we get

Dt =T, (D (1d =301 MY) DD PR + i DY (T, MP Ry, — 5y t54Y).
By (6.4.10) we have for some deterministic C' > 0

[T M B, | < Lol R, = €2,
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By Lemma 6.4.2 for some deterministic ky € N we have for any k > kg

BssSup ||, , Dy (1d —7k41M"(0)) Dy
0cO

op.
Ra = (1= Ye+141).
Thus for all &£ > kg

for'], =@ w077+ oues 05

(ol it ]

So finally we get for some another constant C' > 0, coming from the terms with k£ < kg, that

"I < Czn:wg exp ( A Z wj) (a2 + 7k HtHlHﬂ) (6.4.22)

(C'is finite from (6.4.21) and HtkH’Lr < ||¢*].)). First, for any a € € (so that sup,, v;, *¢m,, <
+00, see (6.2.6)) we write using Lemma 6.A.2

lim sup~y,, /2 Z’yk exp (Al Z ’Yj) err{,?

n—oo k=1 =k+1

n

1+a/2 2

= hm Sup Tn o/ Z Vi el exp | —A; Z il Vg — q71n/k2)
k=1 j=k+1

—a/2 1/2

< A7 hrn sup’y < 400

Second, using the definition (6.4.13) of t*, we have

n—oo k=1 —k+1

mewzwwm(mz%ylwwm

(6.4.23)

14+a/2 —1—a/2
= hmsupfywm me‘:)/ exp (—A1 Z ’Yg) Yep(s) / |usl
j=1(s)+1

For any ¥ (s) < k < ¢(s+ 1) we have exp ( Ay Zd}(m )+1 VJ) < exp (—Al Zﬁ@rl 'yj) . So,

using also that sup,,~g % < 400 and 7, is decreasing by H4, we deduce that the
right-hand side term of (6.4.23) will be finite if
a/2 1+a/2 '7_1 o2 u;fnk’
h;g}s;p’y kz:l'y exp ( Ay Z’yj) D+ 1) — (me) < +o00. (6.4.24)

Now (6.4.24) follows from Lemma 6.A.2 and since for any o € £ we have

—1-0/2) & ‘ —1-a/2
. n .
lim sup UL = lim sup
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Coming back to (6.4.22), in view of the analysis above, we get for some deterministic C' > 0
2", < C, (6.4.25)

and, in particular, E [||p”||ﬂ < CHe.

Step 3. Completion of the proof. We proceed with the final estimation. We write
" — ¢ =p" +p" — R,

Since a € £ we have sup,,(v,, *¢m,,) < oo where ¢, = ||RmH,2T So, using (6.4.20) and (6.4.25)
we conclude that for some deterministic C7 > 0

Ell¢" — ¢* 121 < 3 (B [l 12] +E [Ilo"12] + am..) < Cris

The proof is complete. O

6.A Technical Lemmas and Proofs

6.A.1 Proof of Lemma 6.4.2

Before we prove Lemma 6.4.2 we need the following auxiliary result.

Lemma 6.A.1. Let M be a qx q upper triangular matriz such that all diagonal elements are
greater or equal to some Ay > 0 and [|M||gy < a for some a > 0. Then for any A; € (0, Ag)
there exist 4 > 0 and t € (0,1] both depending only on a,q, Ay and Ay such that for the
matriz Dy := Diag(t,t2,...,t7) we have for any 0 <y <7

| Dt ad—yMmyDy |7 < (1 = Ay,

Proof. We have

A1 tMLQ t2M1,3 cee tq_l./\/llyq
0 Ao tMosg - tqfl./\/lgq
Di'MD; = | : : = A+ Ry,
0 0 0 e tMg1g
0 0 0 e Ag

where A := Diag(A1,...,Ay) is the diagonal of M with A\; > Ay > 0.

Denote || - || the matrix Frobenius norm. Let ¢, be such constant that for all M

cg ' IMIgE < IMllF < cqIMIIg5 -
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for all ¢ x ¢ matrices M. We have for any t € (0, 1]

1/2
[RIRT < cqll Rellp < cqt ( > M?,j) < cgt|M|r < cita.

1<j<q
So we get
IRellge <t [ Ml < teqa, (6.A.1)

where ¢, depends only on ¢q. Take ¥ > 0 such that ya < 1. In particular, since A;’s are the
eigenvalues of M, we have 4\; < 1 for all 7 and 74y < 1. Thus for any A; € (0, Ap) there
exists ¢ > 0 such that tcia < (Ag — A1)/2 which we fix from now on. For any ~ € (0,7] and
t € (0,1] we get

_ op. . .
| Dt a w7 < 1a A YL + v Ral1

Note that
ITd —~A|lgs < (1 —~Ao)

and thus, using that tcla < (Ag — A1)/2 and (6.A.1) we get

_ op. Ag— A
| Dt (1 —vM)DtHRq < (1=~40) + v% = (1 =741).
Remark again that the choice of t and 4 depends only on a, g, Ag and Aj. O

Proof of Lemma 6.4.2. For the case H3-a we take t = 1 and 4 > 0 such that 5 || Mgy <
1. Further we use that for any symmetric positive definite matrix M = U*AU, with U
orthogonal and A diagonal we have || M ||z = [|Allg -

For the case H3-b, let 4 > 0 and ¢ € (0, 1] be given by Lemma 6.A.1. Let kg be such that
vk < 7 for all k > ko. Now, in view of the bound (6.4.10), the result follows from Lemma
6.A.1. O
6.A.2 An auxiliary lemma

For convenience we state here a simplified version of [Forl4, Lemma 5.9]

Lemma 6.A.2. Let {y;, k > 0} be a positive sequence such that
li =0, lim 7, " log(v— =0 S
Jim =0, lim 5 log(yk-1/7k) = 0, Ek:% +00

Let e, k > 0 be a non-negative sequence. Then for any V > 0,p >0

n n
lim sup v, P Z fyﬁ“ exp | =V Z v | e <V limsupey,.
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