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En quelques sortes qu’arrive ce pressentiment secret des choses futures, on ne saurait voir que ce qui est.
Or ce qui est déja, n’est point a venir, mais présent. Ainsi, lorsqu’on dit que ’on voit les choses futures, ce
ne saurait étre elles-mémes, puisqu’elles ne sont pas encore ; mais c’est peut-étre leur cause ou leur signe

, . ., - . Lo A . )
que l'on voit, lesquels sont déja. |...] Lorsque j’apercois 'aurore, je prévois aussitot que le soleil va se lever:
ce que jlapercois est présent, et ce que je prédis est a venir. [...] Cette aurore méme, laquelle je vois dans
le ciel, n'est pas le lever du soleil, ni cette imagination que je congois dans mon esprit n’est pas non plus
son lever; mais ce sont deux choses, lesquelles sont présentes, qui me font prédire le lever du soleil qui est a

vVenir.

In whatever manner this secret preconception of future things may be, nothing can be seen except what
exists. But what exists now, is not future, but present. When, therefore, they say that future events are seen,
it is not the events themselves, for they do not exist as yet, but perhaps, instead, their causes and their signs
are seen, which already do exist. [...] I see the dawn, I predict that the sun is about to rise. What I see is in
time present, what I predict is in time future. That dawn which I see in the sky is not the rising of the sun,
nor is that imagination in my mind. These two are seen in time present, in order that the event which is in

time future may be predicted.

Saint Augustin, 13 November 354 AD — 28 August 430 AD, bishop of Hippo Regius in the Roman province
of Numidia (modern-day Annaba in Algeria), Confessions, Book XI, Chapter XVIII.

Combination of translations from
Joseph G. Pilkington and Albert C. Outler (English),
Arnauld d’Andilly and Joseph Trabucco (French).
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Chapter 1

Introduction

1.1 Résumé substantiel des travaux en francais

1.1.1 Contexte

La collection d’un ensemble de mesures au cours du temps, éventuellement dans des conditions contrdlées,
permet a un observateur d’entreprendre I’étude quantitative de I’évolution d’un phénomene. Certaines de
ces études aboutissent a des schémas quasi-mécaniques prétendant pouvoir déduire avec quasi-certitude
I’évolution future dudit phénomene, étant observé un certain état. D’autres en revanche, si elles parvi-
ennent & identifier certains comportements typiques au cours du temps, en arrivent & attribuer une place
prépondérante a un aléa dont les causes semblent échapper a ’analyse. Dans ’approche probabiliste des
phénomenes temporels erratiques, la recherche d’un schéma mécanique céde ainsi le pas a celle d’'une «bonne»
approximation par un processus aléatoire. Plutot que de révéler explicitement des relations de cause a ef-
fet entre différentes mesures et grandeurs, 'approximation en question se doit seulement de répliquer «au
mieux» la dynamique du systeme observé en vue de fournir des prévisions fiables. Dans une de ses accep-
tions les plus larges, cette approche suppose que la série de mesures du phénomene, disons (X;), obéit & une
dynamique de la forme

X =o(Xi—1, Xi—2,...160),

pour une certaine fonction ¢ décrivant la dépendance de observation présente & 1’évolution passée et ou (e4)
est une suite d’erreurs indépendantes et identiquement distribuées (i.i.d.). Le cas ou ¢ est linéaire constitue
sans doute le point de départ historique de la formalisation des séries temporelles et a donné lieu a une
littérature massive, & la fois théorique et appliquée. Yule (1927) [130] fit le premier usage de ces modéles
linéaires, dits autoregressifs, pour modéliser la série dénombrant les taches solaires sur la période 1749-1924
et publiée par Alfred Wolfer en 1925 [126].1 Les recherches sur les fondements théoriques des processus

Devenue un classique de la discipline et souvent intitulée Wolfer’s sunspot series, la constitution de cet ensemble de mesures

ft cependant initiée et conduite principalement par Johann Rudolph Wolf & partir de 1848 [125], dont Wolfer devint lassistant
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autoregressifs (AR) et des séries temporelles linéaires en général suivirent peu apres (voir par exemple Mann
et Wald (1943) [98], Kendall (1944) [82], Barlett (1946) [6]). Des applications & divers domaines —économie,
télécommunication, géophysique, astronomie entre autres— ont émergé et se poursuivent jusqu’a aujourd’hui,
accélérées par la parution d’ouvrages méthodologiques tels ceux de Box et Jenkins (1970) [14] et de Brockwell
et Davis (1991) [19] ainsi que par Pautomatisation informatique de certaines procédures d’analyse. Dans le
cadre des processus AR, on cherche a approximer la dynamique d’une série d’observations par un processus

vérifiant une équation de récurrence stochastique linéaire de la forme
p(B) Xy = ey, (1.1)

ot p(z) := 14+ 3" piz', 2 € C, est un polynome a coefficients réels de degré p € N, B est I'opérateur
retard (BX; := X;_1) et (g¢) est une séquence i.i.d. Les équations récurrentes stochastiques de la forme (1.1)
admettent un unique processus solution strictement stationnaire si et seulement si le polynéme ¢ n’admet

pas de racine sur le cercle unité du plan complexe:

w(z) #0, pour |z|=1. (1.2)

La variable aléatoire X; a I'instant t € Z dépend alors en général de tous les termes de la suite i.i.d. (e;). Tres
souvent toutefois, le processus approximant est supposé satisfaire (1.1) non pas avec (1.2) mais en supposant

que ¢ n’admet pas de racine sur ou a 'intérieur du cercle unité:

w(z) #0, pour |z| <1, (1.3)

qui est nécessaire et suffisante pour que 'unique solution (X;) stationnaire ne dépende que des termes
«passés» {e5: s <t} de la suite i.i.d., & tout indice ¢t € Z. La solution, dite alors non-anticipative, causale
ou de phase minimale, serait ainsi conforme & une certaine intuition de la causalité lorsque ¢ représente le
temps : le présent du processus ne serait déterminé que par les événements passés. Lorsque la condition (1.3)
n’est pas imposée, des solutions dites anticipatives, non-causales ou de phase non-minimale, apparaissent,
dépendant des valeurs «futures» de la séquence (g¢) et de ce fait considérées comme «contre-naturelles». Si
les solutions stationnaires anticipatives ont été généralement écartées pour ’analyse des signaux temporels,
les processus AR ne satisfaisant pas (1.3) ont été considérés dans d’autres configurations. Ainsi, plutot que
de considérer la solution stationnaire de (1.1), une littérature statistique a étudié les processus partant de
conditions initiales en ¢ = 0 puis suivant une dynamique dictée par (1.1). Lorsque ¢ admet des racines
a l'intérieur du cercle unité, ce type de processus suit alors des trajectoires non-stationnaires explosives.
L’estimation du polynéme ¢ dans ce cadre a fait l'objet de plusieurs articles (Rubin (1950) [114], White
(1958) [123], Anderson (1959) [2], Rao (1961) [108], Stigum (1974) [120], Lai et Wei (1983) [84], Breton et
Pham (1989) [17]). Par ailleurs, lorsque l'indice ¢ ne représente pas le temps mais indice un domaine spatial
ou fréquentiel, 'interprétation «causale» ou «non-causale» des solutions stationnaires anticipatives est sans
objet. Dans ce type de contexte, les AR de phase non-minimale, considérés uniquement en tant que «filtresy,

en 1875 (voir Izenman (1983) [76] et les études qui y sont citées).
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ont été au centre de problemes de déconvolution en géophysique, traitement de signaux vocaux, télécom-
munication et astronomie (voir par exemple Wiggins (1978)[124], Benveniste, Goursat et Ruget (1980) [11],
Donoho (1981) [45], Scargle (1981) [119], Godfrey et Rocca (1981)[58], Lii et Rosenblatt (1982, 1988, 1992,
1996) [90, 91, 92, 93], Giannakis et Mendel (1989) [56], Giannakis et Swami (1990) [57], Gassiat (1990a,
1990b, 1993) [53, 54, 55], Breidt, Davis, Lii et Rosenblatt (1991) [16], Chi et Kung (1995) [29], Chien, Yang
et Chi (1997) [28], Andrews, Davis et Breidt (2007)[5]).

Récemment toutefois, des méthodes d’estimation n’imposant pas la contrainte de causalité ont été ap-
pliquées a des séries de prix et volumes d’action, de chomage et d’inflation et ont favorisé des modeles
linéaires non-causaux au détriment de leurs homologues causaux (Huang et Pawitan (2000) [75], Breidt,
Davis et Trindade (2001) [15], Andrews, Calder et Davis (2009) [3], Wu et Davis (2010) [129], Wu (2011)
[127], Lanne et Saikkonen (2011) [87], Lanne, Luoto et Saikkonen (2012) [85]). A la croisée des processus
anticipatifs et de la théorie des valeurs extrémes, il a été de plus remarqué que des solutions stationnaires
anticipatives de (1.1) démontraient des dynamiques temporelles similaires & celles des bulles spéculatives
sur les marchés financiers, vues comme des déviations explosives de court-terme dans les séries de prix par
rapport a un niveau stationnaire. La modélisation par des processus anticipatifs de ces phénomenes a été
trouvée adéquate pour des séries telles que le taux Bitcoin/USD, des séries de prix du pétrole, I'indice Nasdaq
ainsi que des séries de volatilité réalisée (Hencic et Gouriéroux (2015) [70], Hecq, Lieb et Telg (2016) [67],
Gouriéroux et Zakoian (2017) [63], Cavaliere, Nielsen et Rahbek (2018) [24]). Une littérature en économétrie
et finance a ainsi émergé, faisant des AR anticipatifs son outil central pour I’analyse temporelle de tels

phénomenes.

1.1.2 Motivation

En vue de modéliser les bulles spéculatives, Gouriéroux et Zakoian (2017) [63] proposent et étudient PAR(1)
anticipatif a-stable. Ce processus strictement stationnaire a variance infinie génére des trajectoires présen-
tant des périodes calmes —proches des valeurs centrales— entrecoupées d’épisodes de croissance explosive
(«Vinflation de la bulley), s’achevant sur un abrupte retour aux valeurs centrales (le «crash»). Sans doute
l'un des processus les plus élémentaires dans la famille des anticipatifs, ’AR(1) stable anticipatif est défini

comme la solution strictement stationnaire de I’équation

Xt = pXt+1 + Et, €t i'};”d. S(Oé, ﬂ7 ag, O)a (14)
ou 0 < |p] < 1etS(a,f,0,0) désigne la loi stable de paramétre de queue « €]0, 2[, ’asymmétrie § € [—1, 1]
et d’échelle o > 0. Outre la pure curiosité mathématique, 'étude de ’AR(1) anticipatif est motivée par la
possibilité qu’il offre d’inférer les dates de culmination et d’évanouissement des bulles, qui serait d’un intérét
évident pour les gestionnaires de portefeuilles mais également pour la gestion des risques et le régulateur. Cela
requiert cependant de connaitre sa dynamique conditionnelle, qui, contrairement a celle de son homologue

causal, est non triviale a obtenir du fait de la dépendance entre les observations passées du processus
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{Xs, s < t} et les erreurs «futures» {es, s > t}. Cet aspect probabiliste a regu le moins d’attention de
la littérature, ce qui peut s’expliquer par la nature spatiale/fréquentielle des problémes de déconvolution
qui ont motivé la recherche sur les processus non-causaux au cours des années 1980 et 1990. La dualité
passé observé/futur & inférer est absente du contexte spatial ot I’ensemble du domaine est potentiellement
observable. La problématique de prédiction des processus non-causaux a toutefois été abordé par Rosenblatt
(1995, 2000) [111, 112] dans le contexte de variance finie. Gouriéroux et Zakoian (2017) [63] ont obtenu des
résultats étonnants sur la dynamique conditionnelle de ’AR(1) anticipatif a-stable. Aprés avoir établi son
caractere markovien, ils montrent I'existence de moments conditionnels d’ordre plus élevé que les moments
marginaux:

E[|Xi17]X] <400, pour 7<2a+1,

bien que E[| X;|*] = 400, car X; est marginalement a-stable.” Dans le cas ot la séquence (e¢) est symmétrique

a-stable (8 = 0), ils ont également montré que l’espérance conditionnelle s’écrit
E[X (11| Xi] = p=*7 17 X, (1.5)

ott 50> := sign(x)|z|® pour tout x,b € R, et si (¢;) est marginalement de loi de Cauchy, (o =1, 3 =0), la
variance conditionnelle est alors une fonction quadratique de I’observation présente:

0.2

lpl(1 = lpl)”

Ces propriétés tranchent singulierement avec les résultats connus pour les processus non-anticipatifs, que ce

1
V(Xe41|Xy) = <|p| - 1) X3P+

soit dans le contexte de variance finie ou infinie. En particulier, la discrépance entre moments marginaux
et conditionnels laisse entrevoir un certain «exces de prédictabilité» des processus anticipatifs par rapport
a leurs homologues non-anticipatifs. Au moment d’entreprendre cette these, la dynamique conditionnelle
de TAR(1) anticipatif a-stable reste seulement partiellement comprise tandis que celle des processus
d’ordres plus élevés est totalement & explorer. A ce premier aspect probabiliste s’ajoute une problématique
statistique incontournable en vue d’une utilisation pratique de cette classe de modeles, a savoir I'estimation

des parametres étant donnée une série d’observations.

Cette these s’est fixée pour objectif I’étude des processus linéaires a-stable anticipatifs dans le cas général,

et en priorité, ’étude de leur dynamique conditionnelle.

1.1.3 Synthese des principaux résultats

Le deuxiéme chapitre commence par explorer les aspects probabilistes et statistiques des processus AR

d’ordres supérieurs, c’est-a-dire dont le polyndéme caractéristique comporte des racines a la fois a l'intérieur

%Un résultat similaire a 6té obtenu par Cambanis et Fakhre-Zakeri (1995) [20] pour ’AR(1) a-stable non-anticipatif en temps

inversé.
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et & Pextérieur du cercle unité. Pour ces processus AR, dits miztes causaux/non-causaux, la dynamique

peut s’écrire sous la forme factorisée
¢(F)¢(B>Xt = &t,

ol ¢ et ¢ sont deux polyndmes & coefficients réels d’ordre respectif p et ¢, vérifiant tous deux (1.3) et
ot F est 'opérateur avance (F := B~!, ie., FX; = X;;1). L’extension des propriétés probabilistes est
étudiée sur la base des résultats et des techniques de Gouriéroux et Zakoian (2017) [63] d’une part, et
d’autre part la décomposition du processus mixte (X;) en partie causale et partie non-causale de Lanne
et Saikkonen (2011) [87] (voir aussi Gouriéroux et Jasiak, 2016 [59]). On montre que (X;) est markovien
d’ordre p 4+ g et que la discrépance entre moments conditionnels et marginaux n’est présente que lorsque
p > 1, a savoir, lorsque la composante anticipative du processus est non-triviale. Des formules fermées pour
les moments conditionnels sont obtenues dans des cas particuliers, par exemple lorsque ¥(F) =1 — ¢ F et

B =0, U'espérance conditionnelle est linéaire et s’écrit pour tout ¢ > 1
E[Xi|Z1] == X + (1= B) (1 X o1 + .+ 9 Xi—y),

ot lon note ¢(z) =1 — 12 — ... — $427 et (%) la filtration canonique du processus (X;). Si de surcroit

a =1, on montre que (X;) admet la représentation causale semi-forte

(1 —sign (¢)B)p(B) Xy = oy,

o2

02:1—>X—X——X2
= (1) i = oics = e+

o E[n F#i_1] =0et E [nf‘ Fia] = 1.

Du point de vue statistique, ce chapitre aborde ’estimation par les moindres carrés du modele

wo(F)¢O(B)Xt = &,

ot Yo(z) = 1= Y0 [ voiz’, ¢o(z) = 1 — Y1, boiz", & partir d’observations Xi,..., X, du processus.
Contrairement & la méthode du maximum de vraisemblance, I’approche par les moindres carrés n’exige pas
de supposer que les €; suivent une distribution précise, ce qui la rend plus robuste aux erreurs de spécification.
En lieu d’étre distribuée selon une loi a-stable, on suppose seulement que les €; appartiennent au domaine
d’attraction d’une loi stable, c’est-a-dire que

P
P(leg| > x) = 2™ L(x), et lim Pleo > )

—c € 0,1],
z—o0 P(|eg| > ) c€0.1]

pour L une fonction & variations lentes a l'infini.” Le statisticien fait face a plusieurs inconnues: les ordres
p et g des polyndmes 1)y et ¢g, leurs coefficients, et la décomposition causale/non-causale de la dynamique,

a savoir, lequel des deux polyndmes est associé a l'opérateur avance F, et lequel est associé a I'opérateur

}itg o0 L(tz)/L(z) = 1,Vt > 0.
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retard B. Une difficulté que l'on rencontre pour l'estimation consiste en ce que le processus (X;) admet
plusieurs représentations polynomiales avec erreurs dépendantes mais en apparence non-autocorrélées. En
effet, pour tout polynome 7§ obtenu & partir de ¢ (2)do(z) en remplagant une ou plusieurs racines par leur
inverse, on a

1o (B)Xe = (7

ol (¢;) est un processus dit «all-pass» dont les autocorrélations empiriques tendent vers zéro avec la taille
de I’échantillon. Il est ainsi attendu que 'on ne pourra pas retrouver la structure causale/non-causale de
la dynamique avec les seuls moindres carrés, qui n’exploitent que l'information provenant des moments
d’ordre deux. On propose donc une procédure mettant a profit cette limitation des moindres carrés en la
couplant avec le phénomene d’«extreme clustem'ng».4 On tire avantage de la limitation des moindres carrés

en constatant que ’on a en particulier
Yo(B)¢o(B) Xt = (t, (1.6)

pour un certain processus all-pass ((;). La procédure consiste en trois étapes.

1) A P’aide de (1.6) et en supposant connu le degré p + ¢ du polynéme 19 (2) := 1o(2)do(z), on montre tout
d’abord la convergence en probabilité et en distribution de l'estimateur de Yule-Walker de la régression
de X; sur Xy _1,...,X¢_p_q vers les coefficients de 1y en utilisant les techniques développées par Davis et
Resnick (1986) [41].

2) En pratique, le degré p 4 ¢ étant inconnu, on introduit un test de type portmanteau afin de détecter une
éventuelle «autocorrélation empirique» dans les résidus apres estimation. On est ainsi en mesure de rejeter
les modeles sous-spécifiés (d’ordre plus petit que p + ¢). En commencant par des ordres petits, on peut
estimer le modele, tester sa validité, et répéter cette étape en incrémentant ’ordre jusqu’a ne plus rejeter
I’hypothese de validité.

3) Une fois lordre p 4+ ¢ validé et le polynome ny(z) estimé, on obtient alors un estimateur consistant
des racines de g(2)¢o(z) et il suffit d’identifier quelles racines «appartiennent» a 1g(z) et lesquelles
«appartiennent» & ¢o(z) afin d’identifier la structure causale/non-causale de la dynamique. Toute allocation
des racines entre composantes causale et non-causale aboutit & une représentation all-pass du processus (X;)
et ’on ne peut donc pas déterminer par un test d’autocorrélation des résidus si la «vraie» dynamique a été
identifiée. Si toutes les représentations all-pass ont des erreurs non-autocorrélées, seules la représentation
originelle du processus admet des erreurs indépendantes. Dans ce contexte de variance infinie, on justifie par
I'intermédiaire de techniques provenant de la théorie des processus ponctuels que la dépendance des erreurs
des représentations all-pass induit un phénomene d’extreme clustering : les erreurs extrémes apparaissent
en clusters, et ces clusters sont d’autant plus grand que la dépendance est forte. Ce phénomeéne ne se
manifeste pas dans les erreurs de la représentation originelle, qui sont indépendantes, et les valeurs extrémes
y apparaissent isolées les unes des autres. La troisiéme étape consiste a mesurer le degré de clustering des

extrémes dans les résidus de chaque allocation possible des racines entre composantes causale et non-causale.

4 . . . 2 N ~
On pourrait tenter de traduire cette expression par «phénomeéne des amas d’extrémes».
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L’allocation correspondant & la «vraie» structure causale/non-causale est, en principe, la seule pour laquelle
aucun indice d’amassement ne devrait étre détecté.
Des simulations illustrent la validité empirique de chaque étape et le chapitre se conclut sur une application

a six séries financieres similaires.

L’étroitesse du cadre dans lequel la dynamique conditionnelle a pu étre obtenue au deuxieme chapitre
appelle une nouvelle approche. Le troisieme chapitre revisite I’AR(1) anticipatif en mobilisant la théorie des
distributions stables multivariées, et en particulier la littérature des années 1990 sur les moments condition-
nels des vecteurs stables bivariés (Hardin, Samorodnitsky, Taqqu (1991) [64], Cioszek-Georges, Taqqu (1994,
1995a, 1995b, 1998) [30, 31, 32, 33]). Tout vecteur stable X = (Xi,...,Xy) est caractérisé par une unique
paire (T, u°), ot1 T est une mesure borélienne finie sur la sphere euclidienne Sy = {s € R?: ||s]|. = 1}, avec

|- |le dénotant la norme euclidienne, et pu° € R? un vecteur fixe, telle que
E[e““’xq - exp{ 7/ \(u, 8)| <1 — isign({u, s))w(a, <u,s>)) T(ds) + i (u,uo)}, VueRY,  (L7)
Sa

avec w(a, s) = tg (%), sia#1, w(l,s) = f% In|s|, s € R (Théoréme 2.3.1 de Samorodnitsky, Tagqu, 1994
[117]). La mesure I' est appelée mesure spectrale de X et encode I'information & propos de la dépendance
entre les composantes du vecteur, et la paire (F, uo) est sa représentation spectrale. On montre que pour
(Xt) solution de (1.4), le vecteur (X, X;yp) est bivarié a-stable et sa fonction caractéristique est de la forme

(1.7) avec pour mesure spectrale

o _ a/ _
Tn="5 ) [(1 —|pl*" + (1 —~ (p<a>)h)z95> g0} + (1 - \p\”‘) ‘(14 195)6{195,1}1, (1.8)

vES,
ou S; = {—1,+1}, ;1 est la masse de Dirac au point x € R2, 5% = o B = Bi et
TR e ’ 1—|p|*’ 1— p=o>’
ko1
Sy = M € S5. Toute distribution de masse finie sur la sphére unité définie une mesure spectrale

L+ P

valide d’un certain vecteur stable. Il est remarquable qu’ici, I'j, est un objet purement discret chargeant ou
bien deux, ou bien quatre atomes. Une fois ce constat acté, plusieurs résultats de la littérature sur les vecteurs
stables bivariés sont immédiatement applicables. L’existence des moments conditionnels de Xy sachant X,
jusqu’a ordre 2ar + 1 découle du fait que f52 |s1|7*T') < 400 pour tout v > 0 et h € N* (voir le Théoréme
5.1.3 de Samorodnitsky, 1994, [117] et les travaux de Cioszek-George et Taqqu). Les Théorémes 5.2.2 et
5.2.3 de Samorodnitsky et Taqqu (1994) [117] donnent la forme fonctionnelle de I’éspérance conditionnelle
en termes d’une mesure spectrale arbitraire et permet d’étendre le résultat (1.5) de Gouriéroux et Zakoian
(2017) [63] & tout B € [—1,1], révélant la non-linéarité de © — E[X;4|X: = z] dans le cas général. La
forme de la variance conditionnelle a également fait 'objet d’un article par Cioszek-George et Taqqu (1995)
[31], toutefois, la preuve dans le cas asymmétrique o # 1 est omise, et le cas asymmétrique a« = 1 n’est
pas traité. Les résultats pour la variance conditionnelle sont complétés, et I’on contribue a la littérature sur

les vecteurs stables bivariés par ’obtention des formes fonctionnelles des moments d’ordre trois et quatre
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(& savoir, asymétrie et kurtosis). Les formes des quatre premiers moments conditionnels étant établies
pour des vecteurs (bivariés) stables généraux, on déduit alors leurs formes particulieres pour (X;, Xiip),
et ce pour toute paramétrisation admissible du processus (X;), en substituant par la mesure spectrale
(1.8). La dépendance entre la réalisation future et observation présente se révele fort complexe, comme on
peut le constater au Théoréeme 3.2.1. Toutefois, la dynamique de I’AR(1) a-stable anticipatif se simplifie
drastiquement lors des évenements extrémes dans le cas p > 0. Lorsque sz — 400, s = 1, on montre que

les moments conditionnels admettent les équivalents5

w(z, h) ~ (p~"a)peh, si ae€(0,2),
JQ(xvh) ~ (p_hx)2pah(1 - pah)v si a€(1/2,2),
1 —2p2h
() — s siae(L,2),
pt (1 — ph)
1 1 .
72($7h)—>pﬁ+m—6, S1 a6(3/2,2),

ou u(z,h), o%(z,h), y1(x, h) et vo(x,h) désignent respectivement 1’espérance, variance, asymétrie et excés
de kurtosis de X;4p sachant X; = x. On peut alors remarquer que les expressions apparaissant a droite

correspondent aux quatre premiers moments de la variable aléatoire Z définie par
P(Z = p~ha) = poh, et P(Z =0)=1-p*.

Une interprétation inédite de la dynamique de (X;) émerge de la forme asymptotique des moments condi-
tionnels : lors des épisodes de bulle, (X;) semble suivre une trajectoire exponentielle de taux d’accroissement
p~ 1, et la probabilité conditionnelle de survie de la bulle & horizon h serait donnée par p®". On montre
au quatrieme chapitre une convergence en distribution vers ce comportement lors des évenements extrémes.
Avec les outils appropriés pour définir les processus stables en temps continu —a savoir, les mesures aléatoires
a-stables et les intégrales stables— le chapitre obtient des résultats similaires pour le processus d’Ornstein-
Uhlenbeck anticipatif.

L’approche suivie dans ce troisiéme chapitre peut étre appliquée a tout processus a-stable (Y;) pour anal-
yser les moments conditionnels de Y;,; sachant I’observation présente Y;, ce que I’on illustre avec I’agrégation
d’AR(1) définie par

J
Xe =1 X4, Xir=piXjei1+ee cu = S(a, B,1,0), (1.9)

j=1
pour 7; des réels strictement positifs et J > 1. Ce processus a été proposé par Gouriéroux et Zakoian
(2017) [63] afin de lever une limitation de I’AR(1) anticipatif simple, & savoir que ce dernier ne semble
capable de générer que des bulles de taux de croissance p~! identique d'un événement extréme a lautre.
5Si || = 1, Pune des queues de la distribution marginale de X; n'est pas & variation réguliére et peut méme dtre totalement

absente. Dans ce cas, les valeurs extrémes sont nécessairement toutes de méme signe et le comportement asymptotique n’est

valable que pour x — +0c0 ou z — —oo.
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Le processus agrégé (1.9) en revanche, semble produire des trajectoires marquées par des bulles de taux
croissance différents p}l, j=1,...,J. On montre que (X, X;5) est également a-stable pour ce processus

et que sa mesure spectrale I'j, est donnée par
J
Ln=) m5Tin, (1.10)
j=1

ou I'j 5 est la mesure spectrale du vecteur (X, Xj¢1p) lié & ’AR(1) simple de parametre p; dans (1.9) et
qui est donnée mutatis mutandis par (1.8). Par-dela 'existence des moments conditionnels au moins jusqu’a
Pordre 2« + 1, la forme fonctionnelle des quatre premiers moments conditionnels, et malgré le fait que
Yiyn|Y: ne caractérise pas totalement la distribution conditionnelle pour ce processus non-markovien, (1.10)
trahit la similarité des structures de dépendance entre processus stables «simples» et processus stables
agrégés. On tirera avantage de cette similarité au chapitre suivant pour proposer une approche unifiée de
I’étude des processus stables agrégés et non-agrégés, les premiers démontrant des dynamiques bien plus

riches que les derniers.

Le quatrieme chapitre s’appuie sur deux indices entrapercus au cours du chapitre abordé précédemment.
D’une part la nature a-stable multivariée des parcelles de trajectoire Xy := (X¢—my .-, Xt, Xet1, -+, Xttn)s
m >0, h > 1, et d’autre part la simplification de la dynamique lorsque le processus s’éloigne de ses valeurs
centrales. Cette simplification constatée sur la forme des moments conditionnels peut étre obtenue comme
une conséquence de la variation réguliere des queues de distribution du vecteur X;. Si I' est la mesure
spectrale de X; sur la sphere euclidienne S,,r+1, on a en effet par application du Théoreme 4.4.8 de
Samorodnitsky et Taqqu (1994) [117] et du Théoréme de Bayes que

I'NAnnB
P(X:/|Xillc €A | | Xille > and Xo/|IXelle € B) — (r(3)>’ (1.11)

pour tous boréliens A et B vérifiant des conditions de I'-continuité. La mesure I" décrit ainsi complétement
la distribution conditionnelle des chemins normalisés X /|| X | —la «forme» de la trajectoire— quand le
vecteur X est grand au sens de la norme euclidienne. Dans le cas ou (X;) est un processus moyenne mobile

infinie de forme générale

+oo
Xt = Z dk€t+k> t e Z, (112)

k=—o0
la mesure I" est explicite en termes de la séquence (di) et il serait tentant d’invoquer directement (1.11) afin
d’étudier la distribution conditionnelle du chemin futur (X;y1,..., X:4n) étant donnée la trajectoire passée
(X¢—m,---,X¢). Dans un contexte de prévision cependant, (1.11) est en tant que telle de peu d’intérét
du fait de la dépendance de I’événement conditionnant aux réalisations futures, principalement a travers la
norme euclidienne de X ;. L’idée de ce chapitre est d’obtenir une version de (1.11) ol la norme euclidienne

serait remplacer par une semi-norme || - || vérifiant

(@ —my - mo, @1y zn)|| = [[(@om,y -+, 20,0,...,0)], (1.13)
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pour tout (x_,,,...,x,) € R™T"*1 Dans ce but, une nouvelle représentation spectrale des vecteurs stables
sur la «sphere» unité Cll;‘_l_hH = {s € Rm*h+L . ||s|| = 1} relative & une telle semi-norme est explorée. Pour
des raisons géométriques évidentes, on préferera employer le terme de cylindre plutot que celui de «spherey.
On dira qu’un vecteur stable X = (Xy,...,Xy) est représentable sur un cylindre unité C’(g'“ relatif a une
semi-norme ||-|| 8'il existe une paire (F”'”,uﬁ,”), ott TI'l| est une mesure borélienne sur C’C‘ll'H, uﬁ,“ € RY, telle
que la fonction caractéristique de X soit de la forme (1.7) avec (Sy,T', u°) remplacée par (Cu‘l"”,]f‘“"huﬁ‘”).
Pourvu qu’une telle représentation existe, on montre alors que (1.11) peut effectivement étre reformulée en
remplacant la norme euclidienne par la semi-norme correspondante, et en substituant I' par T'lI'll.

S’il est établi que tout vecteur stable admet une représentation sur la spheére unité relative a toute norme
(Théoreme 2.3.8, Samorodnitsky et Taqqu, 1994 [117]), on montre qu’il n’en va pas de méme sur les cylindres
unités relatifs & des semi-normes. Le chapitre s’ouvre donc sur ’étude préliminaire de la représentabilité des
vecteurs stables en général, et des chemins X; en particulier, sur de tels cylindres unités. Comme souvent en
travaillant avec les distributions stables, le cas o = 1 nécessite une considération particuliere en présence de
lois asymétriques. Ce cas est traité au quatrieme chapitre et les résultats sont similaires. Toutefois, afin de
ne pas alourdir 'exposition des résultats, il sera supposé dans ce qui suit que a # 1. Pour une semi-norme
quelconque || - || sur R%, on établit qu'un vecteur stable (X1, ..., X4) arbitraire admettra une représentation

sur C,Jll'H si et seulement si6
r({s €Sy: |8l = 0}) = 0. (1.14)

Cette condition peut étre comprise de la maniére suivante. Intuitivement, compte tenu de (1.11), la mesure
spectrale d’un vecteur stable encode 'information & propos de la dépendance extréme de ses composantes en
assignant de la masse aux directions de l’espauce.7 Un vecteur stable est totalement caractérisé par la donnée
de cette distribution de masse sur les directions de I’espace, qui s’exprime usuellement par 'intermédiaire
d’une mesure sur une spheére unité relative a une norme. Puisque les sphéres unités sont en bijection
avec ’ensemble des directions de ’espace, ces-dernieres permettent de caractériser toutes les dépendances
extrémes potentielles d’un vecteur. En revanche, un cylindre unité n’est pas en bijection avec I’ensemble
des directions de I’espace et une mesure sur un tel ensemble ne peut pas décrire la dépendance extréme de
certains vecteurs stables. La condition (1.14) indique qu’un vecteur stable sera représentable sur le cylindre
Cﬂ'” pourvu que les directions problématiques —celles appartenant au noyau de la semi-norme— soient non
informatives pour décrire sa dépendance extréme. En dimension 2, un vecteur (X7, X»), de mesure spectrale
' sur la sphére euclidienne, sera représentable sur le cylindre {(si,s2) € R? : |s;| = 1} pourvu que

1"({(07 —1), (O;i—l)}) = 0, c’est-a-dire si le vecteur (X1, X2)/\/X? + X7 a probabilité zéro de tendre vers

6Dans le cas @« = 1 en présence d’asymétrie, on obtient la condition nécessaire et suffisante légérement plus forte
de ’1n||sH ’F(ds) < +oo. Cette-derniére implique en particulier (1.14) étant donné que ’1n||sH ’ = 400 pour tout s dans
le noyau de la semi-norme.

7Par «directiony», on entend les classes d’équivalence de R? pour la relation «=» définie par: w = v si et seulement si il existe

A > 0 tel que u = \v, u,v € R?
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(0,£1) lorsque la norme /X? + X2 devient grande. En d’autres termes, F({(O, —1), (0, —l—l)}) = 0 indique
que les réalisations de (X7, X3) ol X5 est extréme et X; est non-extréme, ont zéro probabilité d’occurrence.
Apres avoir considéré le cas des vecteurs stables généraux, on considére celui des chemins d’une moyenne
mobile (X;) de forme générale (1.12) pour laquelle on impose seulement la condition de sommabilité
0< Z |dg|® < 400, pour un certain s € ]0,a[ N [0,1]. (1.15)
keZ

La moyenne mobile (X;) n’est donc pas supposée a priori anticipative. La propriété (1.11) ne permettra

d’étudier la distribution conditionnelle de (X};) que si l'on peut trouver des chemins de la forme

Xt = (thm;"'7Xt7 Xt+17’"7Xt+h)7

m+1
observations  horizon de prévision

représentables sur C I

muhy1 Pour une semi-norme satisfaisant (1.13). Plusieurs cas apparaissent selon la

disposition du noyau de la semi-norme. Pour fixer les idées, on considére dans ce chapitre les semi-normes

telles que

I(Z—my- s T0, 21, 2p)|| =0 <= 2oy =... =20 =0,
pour tout vecteur (z_,,...,x,) € R™TA+1 et qui satisfont en particulier (1.13).
En définissant M ={m >1: Ik €Z, dyym =...=dps1 =0, di #0}, et

sup M, si M #0),
0, si. M =10,

mo =

on montre par 'intermédiaire de (1.14) qu’il est nécessaire et suffisant que
mo < +00, (1.16)

pour que les chemins X soient représentables sur C' I

m+
(X¢) n’induira des chemins représentables sur Cy”r;

ny1 bour tout m > mg et h > 1. En d’autres termes,
H—h 41 que si toute séquence de zéros consécutifs dans les
coefficients (dj) est soit finie, soit infinie «a gauche». Etonnamment, alors que l'on ne présuppose rien
sur la causalité ou non de (X;), on démontre ainsi que seules les moyennes mobiles anticipatives induisent
des chemins X, représentables sur un cylindre unité approprié au contexte de prévision. Cette condition
de représentabilité apporte une lumiére nouvelle sur la prédictabilité des extrémes d’un processus a-stable.

1 41 Pourvu que tout évenement extréme affectant les

Intuitivement, le chemin X; sera représentable sur C’ﬂ;
h dernieres composantes inobservées ne puissent pas se produire indépendamment d’un événement extréme
sur les m + 1 premiéres composantes observées (condition (1.14)). En d’autres termes, tout événement
extréme a venir sur la trajectoire (X;) doit manifester des signes avant-coureurs. La différence entre processus
anticipatifs et non-anticipatifs est évidente de ce point de vue. Pour ces-derniers (’AR(1) stable non-

anticipatif, Y; = pY;_1 +n, par exemple), les événements extrémes surgissent soudainement, sans crier gare,

sous la forme de saut dont la magnitude suit une loi de puissance de variance infinie. Pour les premiers en
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revanche, les événements extrémes sont identifiables en avance par des tendances ou des signaux trahissant
leur survenue prochaine et sont atteints graduellement (I'inflation des bulles de PAR(1) anticipatif). Pour
les processus autoregressifs, qui furent le point de départ de cette these, la condition de représentabilité des

chemins se simplifie. On considére un ARMA (X;) donné par
ivi.d.
¢(F)¢(B)Xt = e(F)H(B)Et? gt ~ 8(06,670', O)a
ou ¥, ¢, ©, H sont des polyndomes vérifiant (1.3), ) et © (resp. ¢ et H) n’ayant pas de racine commune. Il
est alors montré que (X;) induira des chemins représentables sur un cylindre unité approprié au contexte de

prévision si et seulement si

deg(v) = 1.

Dans ce contexte, les AR non-anticipatifs sont donc des processus typiquement pathologiques. Une des forces
de cette approche est d’englober naturellement les processus (X;) résultant de la combinaison linéaire de

moyennes mobiles a-stables, appelés agrégats stables et définis comme

J

i.1.d.

Xp =Y mXju, Xjo =Y dikciirk, it~ S(a, B5,1,0), (1.17)
j=1 keEZ

ol les 7; sont des réels strictement positifs, J > 1 et ot chaque suite de coefficients (d; )i vérifie la condition
de sommabilité (1.15). Par le biais d’une relation similaire & (1.10) mise au jour dans le troisiéme chapitre,
il est établit que les chemins du processus agrégés (X;) seront représentables sur un cylindre unité si et
seulement si toutes les moyennes mobiles latentes (X ;) sont anticipatives au sens de (1.16). On dira ici par
analogie que l'agrégat stable (X;) est lui-méme anticipatif.

Une fois achevée ’étude préliminaire de la représentabilité des chemins de processus a-stable, analyse
de la distribution conditionnelle peut commencer. Le choix du borélien B C CTMF,L 41 apparaissant dans le
conditionnement de (1.11) doit étre adapté au contexte de la prévision, i.e., 'événement { X /|| X || € B} doit
étre indépendant des h réalisations inobservées. Gardant & 'esprit que || X;| = ||(Xi—m, .-, X, 0,...,0)|l,

supposons que 1’on observe

Xoomro ) X,
S v
pour un certain borélien V' sur la sphére unité Sr‘ln:url ={(s5_my---,80) ER™1: (s ..., 80,0,...,0)| =
1} de R™+1° Le plus grand borélien dans lequel vit le vecteur complet X /|| X || € C’,”,;Hrh 41 est alors
B(V):=VxRccll, (1.18)

et c’est ce type de boréliens que l'on choisira pour apparaitre dans le conditionnement de (1.11). Pour

(X:) un agrégat a-stable anticipatif défini par (1.17), on montre que la mesure spectrale des chemins X; =

8 . N I PN C s . N
L’ensemble Sl‘nil n’est autre que la sphére unité de R™*1 relative & la restriction de la semi-norme || || aux m+ 1 premiéres

composantes.
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(Xt—mv s aXta Xt+1, .. Xt+h) sur C7,L+}L+

7
rhr=3%"%" Zwyﬂ?lldmﬂa(;{ vd; }’

j=19=%1k€eEZ
’ 1%

avec 0g.y masse de Dirac, djr = (djktm,--- djp, djr—1,...,djr—n), wjs = (1 +96;)/2, et si djr =

| S’écrit

(0,...,0), le terme disparait de la somme par convention. La propriété (1.11) donne alors

Tl (Am B(V))
_> e

plll (Xt,A‘B(V)) ::P( X : (1.19)

X,
éA‘ X > =, BV>
T, € A > = ey € B0)

pour tous boréliens A C C’” I Yhi1 €t «observation» V' telle que Tl (B(V)) > 0 (et satisfaisant certaines

conditions de continuité).

On peut maintenant explorer la distribution conditionnelle lors des évenements extrémes en évaluant la
probabilité asymptotique en différentes localisations de ’espace et pour différents conditionnements. On
tentera ici de dégager les lignes d’analyse principales en présentant cote-a-cote le cadre général et 'exemple
de T'agrégation d’AR(1) anticipatifs.

On remarque tout d’abord que la mesure TllI'l charge uniquement les points de la forme +d; x/||d; ||
pour k € Zet j=1,...,J. Ces points correspondent eux-mémes a des «chemins» déterministes extraits des
suites de coefficients des moyennes mobiles latentes (X ;). En choisissant A un voisinage arbitrairement petit
autour de tous les points (+d, 1 /||d; x||);k, on constate que la probabilité «inconditionnelle»” asymptotique

vaut

lim PL (X, AlCh, ) =1

5400
Par conséquent, lors de tout événement extréme, le chemin suivi par le processus (X;) est nécessairement
«de la méme forme» qu’un des chemins déterministes £d; 1 /||d; x|

Pour 'AR(1) agrégé (1.9), les suites de coefficients des moyennes mobiles sont de la forme (P?ﬂ{kzo})k,
ce qui donne pour tout j =1,...,J

m+1 A

(5T, .. p;,1,0,...,0,0,...,0)
(5™, ... p,1,0,...,0,0,...,0)

, pour ke{-m,...,—1},

m+1 h

(p§+7rl""7pj’p§ 17"'7pj71,07"',0)
||(p§“+m,...,pj,p;€ L P, 1,0,...,0)]

d;, , pour ke{0,...,h—1},

m—+1 h

(p;l+h7"'7pjap? 11"'7pj71)

h h— ’
||(p;n+ 7"'7pjap] 1a"'apj71>||

pour k> h,

9 L 215 . . . . P A .
Conditionnelle au borélien non-informatif B(Slln‘_l'_ )= cll et au fait d’observer un événement extréme (i.e., || X¢|| > ).

m-+h+1
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Les chemins déterministes ci-dessus consistent en des fragments d’exponentielles divergentes, arrétées a une
certaine coordonnée (pour —m < k < h—1), puis demeurant a zéro."’ Ainsi, lors des événements extrémes, la
trajectoire de PAR(1) anticipatif agrégé est nécessairement de la forme d’une exponentielle explosive avec un
certain taux d’acroissement pj_l7 et s’achevant éventuellement sur un retour a des niveaux non-extrémes. On
formalise ainsi le comportement que Gouriéroux et Zakoian (2017) [63] avait intuitivement conjecturé, & savoir
I’apparition de bulles aux taux d’accroissement différents et ’on peut obtenir les probabilités d’occurrence
de chaque type de bulle explicitement. En particulier, on constate que pour J = 1, c’est-a-dire pour ’AR(1)
anticipatif non-agrégé, un seul taux d’accroissement est possible et le processus ne génere qu’'un seul type
de bulle. On s’apercoit ainsi que les processus non-agrégés ont des dynamiques limitées, astreintes a un seul
motif apparaissant de fagon récurrente d’'un événement extréme a l'autre. Les processus agrégés ne sont
pas soumis a une telle restriction et géneérent des trajectoires ot peuvent apparaitre différents «patterns» au
cours du temps.

Plus encore que les probabilités inconditionnelles d’occurrence, on peut aussi évaluer la probabilité que
le processus suivent certains chemins étant observée une parcelle de trajectoire formée de m + 1 observations
appartenant a un voisinage V' sur Sl‘r;l_Ll. La condition Tl (B (V)) > 0 indique que ’on ne peut conditionner
que par un borélien V' contenant au moins une parcelle de trajectoire «plausible» du processus (X;). Pour
un agrégat stable anticipatif général, ces trajectoires «plausibles», ou «observablesy», de longueur m + 1 sont

nécessairement de la forme
(djktmy--rdjk)

;.|
Dans le cas de PAR(1) agrégé, on montre que
m+1
k+m
tm o 501,0,...,0
k+(jj i ) , for ke{-m,...,—1},
H(p] la'"apj71707"'70703"'70)”
h
(djhtmy - djk) _ m
d.
;] .
—_——
Py
— 7} pir1) , pour k> 0.
(P55 P, 1,0,...,0,0,...,0)
: ) N—— ———
m—+1 h

Les trajectoires «observables» consistent ou bien en une tendance exponentielle ininterrompue, ou bien en
une tendance exponentielle suivie d’'un retour & zéro. Il est aisé, intuitivement, d’identifier ’observation
d’une tendance exponentielle ininterrompue avec la période d’«inflation» d’une bulle, c’est-a-dire, pour un
certain jo € {1,...,J}, un événement de la forme

(Xt—wu e aXt)
12X

(p;’g77pjo71)
H(pygw"7pj071707"'70)||

Conditionnellement & une telle observation, quelles sont les trajectoires futures possibles et leurs probabilités

€V, pour V un voisinage de

d’occurrence ? Pour répondre & cette question il faut en premier lieu identifier les éléments de V' x R?

10 T . .
Pour k < —m, d; ;, = (0,...,0) et ces indices k n’interviennent donc pas dans la mesure spectrale ri-r,
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auxquels Il attribuent une masse strictement positive, & savoir
B(V)" = {s eV xR: Tl{s}) > o}.

On montre que

d.;
B(V)*t = { dok_ k> 0},
o,k

et on en déduit a laide de (1.19) qu’avec probabilité 1, asymptotiquement, le chemin complet X /|| X¢||
appartiendra & un voisinage arbitrairement petit des points (dj, x/||djo.k]|)&>0, comme données plus haut.
Ainsi, le chemin futur est nécessairement une tendance exponentielle de méme taux d’accroissement que la
trajectoire observée, pj_ol, et dont la date d’arrét peut étre atteinte a& n’importe quelle date future. Si la date
de «crash» de la bulle demeure incertaine, on peut néanmoins évaluer sa probabilité d’occurrence a tout

horizon. En considérant A un voisinage arbitrairement petit de

m-+1 h
kbm ok Rl pi1,0,...,0
(pﬁ_m’ ‘20 pf;’_l Pho ) ,  pour un certain k€ {0,...,h—1},
H(pjo a"'vpj07pj0 7"'7pj071707"'70)||

Pévénement sur le vecteur complet { X /|| X¢|| € A} correspond & celui pour lequel le sommet de la bulle est
atteint dans exactement k périodes, 0 < k < h. On montre pour ce choix de A que
Tl (A N B(V)) Tl (A N B(v>+)

P!‘“(Xt,A‘B(V) el FH~H(B(V)) = FII-H(B(V)+) = [pjo|“* (1 = |pjo|*)-

D’autre part, pour A un voisinage arbitrairement petit de

m-+1 h
(p?:;+h7 s 7p?05p?071a <9 Pjos 1)
ok T DI

Pévénement {X /|| X ;|| € A} correspond a celui pour lequel le sommet sera atteint dans h périodes ou plus.

On obtient
-l (A n B(V)+)

st T (B(V)+) I

PI (X, A|BV) = 1o
Ainsi, étant observée la phase d’inflation d’une bulle (disons de taux d’accroissement pji)l), la probabilité
que le sommet soit atteint dans exactement k périodes, 0 < k < h est |p;,|**(1 — |pj,|*), tandis que la
probabilité que le sommet soit atteint dans h périodes ou plus est |pj0|°‘h. L’interprétation des moments

s SN . , ey sy 2 11
conditionnels du troisiéme chapitre est retrouvée avec plus de flexibilité.

Au troisieme chapitre, la forme des moments conditionnels de X; 5, sachant X laissait voir '’apparition d’une distribution
de type Bernoulli lors des événements extrémes : soit la bulle aura éclaté strictement avant la période h, soit la bulle survivra
h périodes ou plus. Les probabilités respectives de ces événements étaient 1 — |p\°‘h et |,o|0‘h7 qui sont bien compatibles avec la

distribution obtenue au quatriéme chapitre.
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La démarche suivie ici illustre Putilisation de la propriété (1.19) pour Pagrégation d’AR(1) stables an-
ticipatifs mais peut étre déployée pour étudier tout type de processus stable, pourvu qu’il soit anticipatif.
On voit émerger une interprétation de la prédiction des chemins futurs en termes de reconnaissance de
formes («pattern identificationy) dans les trajectoires. D’autres processus sont considérés dans ce quatrieme
chapitre, et en particulier un processus bivarié, afin de mettre en exergue le potentiel du cadre d’analyse

proposé.
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1.2 Introduction in English

1.2.1 Background

After gathering a set of measurements through time from a given phenomenon, an observer can undertake the
quantitative study of its evolution. In some cases, such studies lead to quasi-mechanistic explanations from
which the future evolution of the phenomenon given any observed state can be deduced almost exactly. In
other cases however, even in the presence of some identifiable typical behaviours through time, the evolution
seems to feature a significant random component which origin remains unexplained. In the probabilistic
approach of erratic time-evolving phenomena, one does not seek a mechanistic scheme anymore but rather
a «well approximating» stochastic process. Instead of directly exhibiting the causality relations between
measurements and variables of interest, this approximation shall only replicate «as best as possible» the
time dynamics of the phenomenon in order to provide accurate predictions of future evolutions. Under one
of its most general setting, this approach assumes that the evolution of measurements, say (X;), follows a

dynamics of the form

Xe=0(Xeo1, Xi—9,...561),

where ¢ is a function describing the dependence of the present observation to the past evolution and (&)
is an independent and identically distributed (i.i.d.) error sequence. The historical starting point of time
series analysis lies in the case where ¢ is assumed linear, which has given rise to a massive theoretical
and applied literature. Such linear models, called autoregressive (AR), were first used by Yule (1927) [130]
to study the time series of sunspot counts spanning the period from 1749 to 1924 that was published by
Alfred Wolfer in 1925 [126].12 The theoretical foundations of autoregressive processes and linear time series
analysis in general have been the object of investigations shortly afterwards (see for instance Mann and
Wald (1943) [98], Kendall (1944) [82], Bartlett (1946) [6]). Linear time series modelling has been fruitfully
applied to domains such as, inter alia, economics, telecommunications, geophysics and astronomy and their
usefulness stretches until today. Their diffusion have recently greatly benefited from the publications of
methodological books such as those of Box and Jenkins (1970) [14] and Brockwell and Davis (1991) [19],
and of the computer automatisation of several analysis procedures. In the framework of AR processes, one
attempts to approximate the dynamics of some time series data by a process satisfying a linear stochastic

recurrence equation of the form
@(B)X; = &, (1.20)

for a polynomial ¢(z) := 1+ > Y, ¢;z%, z € C, of degree p € N with real coefficients, and where B is the lag

operator (BX; := X;_1) and (e;) an i.i.d. sequence. Stochastic recurrence equations such as (1.20) admit a

12
Now a textbook example of time series analysis, this series is often named Wolfer’s sunspot series despite the fact that
it was Johann Rudolph Wolf who initiated and mainly conducted the gathering of sunspot counts starting 1848 [125]. Wolfer

later became Wolf’s assistant, in 1875 (see Izenman (1983) [76] and the references therein ).
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unique strictly stationary solution if and only if the polynomial ¢ has no root on the complex unit circle:
o(z) #0, for |z|=1. (1.21)

At any date ¢t € Z, the random variable X; depends in general on all the terms of the i.i.d. sequence (e;).
The sought-after approximating process is however often assumed to satisfy (1.20) with a polynomial ¢ that

does not have roots neither on nor inside the unit circle:
o(z) #£0, for |z| <1, (1.22)

which is necessary and sufficient to guarantee that the stationary solution (X;) only depends on «past» values
{es: s <t} of the i.i.d. process at any date t € Z. The solution, called non-anticipative, causal or minimum
phase, would then be consistent with a certain intuition of causality when ¢ represents a time-dimension: the
present of the process would be only determined by past events. When (1.22) is relaxed, anticipative solutions
arise, also called noncausal or nonminimum phase, which depend on «future» values of the sequence (&¢)
and, because of this, are regarded as «unnatural». The anticipative stationary solutions have been generally
sidelined when it comes to time series analysis. Nevertheless, AR processes for which (1.22) is not imposed
have been considered in other settings. Instead of focusing on the stationary solution of (1.20), a statistical
literature has studied processes starting from initial conditions at ¢ = 0 and then following a dynamics given
by (1.20). When ¢ has roots inside the unit circle, this type of processes features non-stationary explosive
trajectories. The estimation of ¢ in this context has been the object of several articles (Rubin (1950) [114],
White (1958) [123], Anderson (1959) [2], Rao (1961) [108], Stigum (1974) [120], Lai and Wei (1983) [84],
Breton and Pham (1989) [17]). Furthermore, when ¢ does not represent a time-dimension but is instead
indexing a spatial or a frequency domain, the «causal» and «noncausal» interpretations of the anticipative
stationary solutions are immaterial. In such frameworks, nonminimum phase AR processes —only viewed
as «filters»— have been at the center of deconvolution problems in geophysics, speech signal processing,
telecommunications and astronomy (e.g., Wiggins (1978)[124], Benveniste, Goursat and Ruget (1980) [11],
Donoho (1981) [45], Scargle (1981) [119], Godfrey and Rocca (1981)[58], Lii and Rosenblatt (1982, 1988,
1992, 1996) [90, 91, 92, 93], Giannakis and Mendel (1989) [56], Giannakis and Swami (1990) [57], Gassiat
(1990a, 1990b, 1993) [53, 54, 55], Breidt, Davis, Lii and Rosenblatt (1991) [16], Chi and Kung (1995) [29],
Cheng, Yang and Chi (1997) [28], Andrews, Davis and Breidt (2007)[5]).

Recently however estimation methods that do not impose the causality constraint have been applied
to time series of stock prices, trading volumes, unemployment and inflation, and have favoured noncausal
linear models over their causal counterparts (Huang and Pawitan (2000) [75], Breidt, Davis and Trindade
(2001) [15], Andrews, Calder and Davis (2009) [3], Wu and Davis (2010) [129], Wu (2011) [127], Lanne
and Saikkonen (2011) [87], Lanne, Luoto and Saikkonen (2012) [85]). At the intersection of anticipative
processes and extreme value theory, it has been noticed in addition that anticipative stationary solutions
of (1.20) displayed time dynamics similar to that of speculative bubbles on financial markets, viewed as

short-term explosive deviations of prices from a stationary level. The modelling of such phenomena by
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anticipative processes has been found appropriate for time series such as the Bitcoin/USD rate, oil prices,
the Nasdaq index and several series of realised volatilities (Hencic and Gouriéroux (2015) [70], Hecq, Lieb
and Telg (2016) [67], Gouriéroux and Zakoian (2017) [63], Cavaliere, Nielsen and Rahbek (2018) [24]). An
econometric and financial literature using noncausal AR processes as its main tool for the analysis of such

time series phenomena has thus emerged.

1.2.2 Motivation

For the purpose of speculative bubble modelling, Gouriéroux and Zakoian (2017) [63] have proposed and
studied the anticipative a-stable autoreggression of order 1. This infinite variance strictly stationary pro-
cess generates trajectories featuring calm periods —close to central values— interspersed by explosive growth
episodes (the «bubble inflation») ending on sharp returns to central values («the crashy). The stable antic-
ipative AR(1), arguably one of the most elementary processes within the anticipative family, is defined as

the stationary solution of the equation

X = pXiy1+e, & L S(a, 8,0,0), (1.23)
where 0 < |p| < 1 and S(«, 5, 0,0) stands for the a-stable distribution of tail index a € (0,2), asymmetry
B € [—1,1] and scale ¢ > 0. Beyond the purely mathematical interest, the study of the stable anticipative
AR(1) is motivated by the possibility it offers to infer the peak and crash dates of bubbles, which could
be valuable not only for portfolio managers, but also for risk managers and regulators. This nonetheless
requires to know its conditional dynamics which, contrary to its non-anticipative counterpart, is non-trivial
to obtain because of the dependence of the observed past trajectory {X, : s < t} on «future» errors
{es: s > t}. This probabilistic aspect received the least attention from the literature which is explained by
the spatial/frequency perspective of the deconvolution problems that motivated the research on noncausal
processes across the 1980s and 1990s. The duality between an observed past and a to-be-predicted future is
absent from such contexts where the whole domain is potentially observable. Prediction aspects of noncausal
processes were nevertheless addressed by Rosenblatt (1995, 2000) [111, 112] in the finite variance framework.
Gouriéroux and Zakoian (2017) [63] have obtained surprising results about the conditional dynamics of the
a-stable anticipative AR(1) process. For instance, after establishing its markovian nature, they have shown

the existence of conditional moments of higher order than marginal moments:
Bl Xe41["|Xe] < +o0, for v <2a+1,

despite the fact that E[|X|*] = 400, because X; is marginally a-stable.”” In the case where the sequence

(e¢) is symmetric a-stable (8 = 0), they have furthermore shown that the conditional expectation writes

E[X:1]X:] = p=* > Xy, (1.24)

13 A similar result has been obtained by Cambanis and Fakhre-Zakeri (1995) [20] for the non-anticipative a-stable AR(1) in

reversed time.
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where <> := sign(x)|z|® for z,b € R, and if (¢;) is marginally Cauchy-distributed, (o = 1, 8 = 0), the

conditional variance is then a quadratic function of the observed present value:

o2

lpl(1 = |p])

These results contrast sharply with properties known for non-anticipative processes, either in finite or infinite

1
V(X411 Xy) = <|p| - 1>X3 +

variance. In particular, the discrepancy between marginal and conditional moments suggests a certain
«excess of predictability» of anticipative process compared to non-anticipative ones. When undertaking this
thesis, the conditional dynamics of the anticipative a-stable AR(1) is only partially understood, while that
of higher-order processes is completely unexplored. In addition to this probabilistic aspect, a statistical
dimension also arises as the estimation of the model parameters given a series of observations constitutes

an unavoidable step before any practical use of this class of processes.

The purpose of this thesis is to study the class of linear anticipative a-stable processes in the general

case, with special attention given to their conditional dynamics.

1.2.3 Main results

The second chapter starts with the study of probabilistic and statistical aspects of higher-order AR processes
for which the characteristic polynomial admits roots both inside and outside the unit circle. For these

processes, called mized causal/noncausal, the dynamics can be written under the factorised form

P(F)p(B) Xy = ey,

for two polynomials ¥ and ¢ of respective orders p and ¢ satisfying (1.22), and where F is the lead operator
(F := B71, ie, FX; = X;;1). The extension of the probabilistic properties is studied on the basis of
Gouriéroux and Zakoian’s results (2017) [63] on the one hand, and on Lanne and Saikkonen’s (2011) [87]
decomposition of the mixed process (X;) into its purely causal and noncausal components on the other
hand (see also Gouriéroux and Jasiak (2016) [59]). It is shown that (X;) is markovian of order p + ¢ and
that the discrepancy between marginal and conditional moments is present only if p > 1, that is, when the
noncausal component of the process is non-trivial. Closed formulae are obtained for the conditional moments
in particular cases. For instance when (F) =1 — ¢ F and § = 0, the conditional expectation is linear and

writes for all ¢ > 0
EXi|Zi1] == X1+ (1= B)($1Xe—1 + ... + $gXi—q),

where ¢(z) =1—¢12—...— @427 and (%) denotes the canonical filtration of the process (X;). If in addition

a =1, it is shown that (X;) admit the semi-strong causal representation
(1 —sign (¢)B)p(B) Xy = oy,

Ut2 - (WJ1| B 1) (Xt1— 1 Xp 20— ... — (qut*q*l)Q

0.2

TR
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where E [n| #i—1] =0 and E [777:2| g\t—l] =1

On statistical aspects, this chapter addresses the least squares estimation of the model

wo(F)%(B)Xt = &,

from observations X1, ..., X,, where ¢g(2) = 1 — >0 0iz’, ¢o(2) = 1 — 3L ¢o;z". Contrary to the
maximum likelihood method, the least squares approach does not require a fully parametric distributional
assumption on the error sequence (), which makes it more robust to misspecifications. Instead of requiring
the €;’s to be a-stable distributed, it is only assumed that they belong to the domain of attraction of an
a-stable distribution, i.e.,

P
P(leo| > x) = 27 L(x), and lim Pleo > )

—ce|0,1],
z—00 ]P’(|50| > .7;) c€0.1]

for a slowly varying function L at inﬁnity.14 The statistician faces several unknowns: the orders p and q of
the polynomials ¢y and ¢g, their coefficients, and the causal/noncausal decomposition of the dynamics, that
is, which of the two polynomials is associated to the lead operator F', and which is associated to the operator
B. One of the difficulty encountered for the estimation is that the process (X;) admits several polynomial
representations with dependent yet non-autocorrelated errors. Indeed, for any polynomial 7§ obtained from

¥o(2)@o(z) by replacing one or several roots by their reciprocals, we have that
no(B)Xe = (7,

where (; is a so-called «all-pass» process which empirical autocorrelations tend to zero with the sample size.
It is thus expected that one will not be able to retrieve the causal/noncausal structure of the dynamics from
the least squares alone given that they only exploit the information from second-order moments. A procedure
is hence proposed to alleviate this limitation of the least squares by coupling them with the extreme clustering

phenomenon. One can actually take advantage of this limitation by noticing that it yields in particular

Yo(B)do(B) Xt = G, (1.25)

for a certain all-pass process (¢;). The procedure consists of three steps.

1) Relying on (1.25) and assuming the order p + ¢ of the polynomial 79(z) := 10(2)¢o(z) to be known, it is
shown using techniques from Davis and Resnick (1986) [41] that the Yule-Walker estimator of the regression
of Xy on X;_1,...,X;_p_4 converges in probability and distribution towards the coefficients of 7.

2) In practice, the degree p + ¢ being unknown, a portmanteau-type tests is introduced to detect any
«empirical autocorrelation» in the residuals after estimation. One is thus able to reject under-specified
models (of order lower than p + ¢). Starting from low orders, one can estimate the model, test its validity,

and increment the order until the validity hypothesis is not rejected.

Mima oo L(ta)/L(z) = 1,¥¢ > 0.
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3) Having validated the order p + ¢ and estimated the polynomial 79(z), a consistent estimator of the
roots of ¥y(2)¢po(2) is available and it is sufficient to identify which roots «belong» to ¥(z) and which
«belong» to ¢o(z) in order to recover the causal/noncausal structure of the dynamics. Any allocation of the
roots to the causal and noncausal components leads to an all-pass representation of the process (X;) and
it is therefore impossible to determine whether the «true» one has been found on the basis of a residuals
autocorrelation test. If every all-pass representations admit non-autocorrelated errors, only those of the
original representation are actually independent. In this infinite variance framework, it is justified based on
point processes arguments that the dependence of all-pass representations errors gives rise to a phenomenon
of extreme clustering: the extreme errors occur in clusters, and the stronger the dependence, the larger the
clusters. This phenomenon is absent from the errors of the original representation of the process, because
of their independence, and extreme values appear isolated from one another. The third step hence consists
in measuring the intensity of extreme clustering in the residuals of each possible allocation of the roots
between causal and noncausal components. The allocation corresponding to the «true» causal/noncausal
structure is, in principle, the only one for which no evidence of extreme clustering should be found.

The empirical validity of each step is illustrated by simulations and the chapter concludes on an application

to six financial time series.

The narrowness of the conditions under which the conditional dynamics has been obtained in the second
chapter calls for a new approach. The third chapter revisits the stable anticipative AR(1) from the perspective
of multivariate stable random vectors, and leverages in particular the literature on the conditional moments
of bivariate stable vectors from the 90s (Hardin, Samorodnitsky, Tagqu (1991) [64], Cioszek-Georges, Taqqu
(1994, 1995a, 1995b, 1998) [30, 31, 32, 33]). Any stable vector (X, ..., Xy) is characterised by a unique pair
(T, u%), where T is a finite Borel measure on the Euclidean unit sphere Sy = {s € R% : |[|s]lc = 1}, || - ||e

denoting the Euclidean norm, u° € R? a fixed vector, such that
E[e“”?xq = exp { - / |{u, s)|* (1 — isign((u, 8))w(a, (u, s}))F(ds) +i (u7u0>}, Vu € RY,  (1.26)
Sa

with w(a, s) = tg (%), if « # 1, and w(l,s) = —% In|s|, s € R (Theorem 2.3.1 by Samorodnitsky, Taqqu,
1994 [117]). The measure T is called the spectral measure of X and encodes the information regarding the
dependence between the components of the vector, and the pair (', u?) is called its spectral representation. It
is shown that for (X;) solution of (1.23), the vector (X, X¢45) is bivariate a-stable and that its characteristic

function is of the form (1.26) with spectral measure I'j, given by

~« _ a/2 _
Th="% > Kl —lplo + (1~ (p<a>)h)19/3) S + (1+102) (1 + ﬂﬂ)é{gsh}], (1.27)

vES,
here §; = {—1,41}, &7, is the Di t point eR?*a—LB—ﬁﬂ d
where S; = , , 0{z) is the Dirac mass at point x , 0% = e T 17p<a>,an
h1
h = M € Sy. Any finite distribution of mass on the unit sphere defines a proper spectral measure

N
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of a certain stable vector and it is remarkable that, here, I';, has a very specific form as a purely discrete
object charging either two or four atoms.

From this representation, several results from the literature on bivariate stable vectors can be readily
applied. The existence of conditional moments of Xy, given X; up to order 2a+ 1 is obtained from the fact
that sz |s1|*T'h(ds) < +oo for any v > 0 and h > 1 (see Theorem 5.1.3 by Samorodnitsky, 1994, [117] and
the articles of Cioszek-George and Taqqu). Theorems 5.2.2 and 5.2.3 by Samorodnitsky and Taqqu (1994)
[117] provide the functional forms of the conditional expectation in terms of an arbitrary spectral measure
and enable to extend Gouriéroux and Zakolan’s (2017) [63] result (1.24) to any S € [—1,1], revealing the
non-linearity of @ — E[X;4,|X; = z] in the general case. The form of the conditional variance has also
been studied in an article by Cioszek-Georges and Taqqu (1995) [31]. In presence of asymmetry, the proof
in the case @ # 1 is however missing and the case o = 1 is not considered. The results for the conditional
variance are completed and this chapter also contributes to the literature on bivariate stable random vectors
by providing the functional forms of the conditional moments of order 3 and 4 (i.e., skewness and kurtosis).
Having obtained the forms of the first four conditional moments for general (bivariate) stable vector, we
deduce their forms for the particular vector (X;, X¢4p) for any admissible parameterisation of the process
(X¢) by substituting by the spectral measure (1.27). The dependence between the future realisation and the
present observation appears complicated in general, as can be noticed in Theorem 3.2.1. The dynamics of the
anticipative a-stable AR(1) however drastically simplifies during extreme events for p > 0. As sz — +o0,

s = +1, it is shown that the conditional moments admit the following asymptotic equivalents15

(@, h) ~ (p_hx)paha if a€/(0,2),
o?(a,h) ~ (p~ ") po (1 = p"), if ac(1/2,2),
1-2 ah
’Yl(l‘,h) — S%, if ac (1,2),
V(1 = ph)
1 1
72($,h)—>pc¥7h+W76, if 046(3/2,2)7

where p(x, h), 0%(z, h), v1(x, h) and y2(z, h) denote respectively the conditional expectation, variance, skew-
ness and excess kurtosis of X4 given X; = x. It can then be noticed that the expressions appearing on the

right-hand side correspond to the first four moments of the random variable Z defined by
P(Z = p~"x) = poh, and P(Z =0)=1-p*".

An enlightening interpretation of the dynamics emerges from the asymptotic forms of the conditional mo-

L and

ments: during bubble episodes, (X;) appears to follow an exponential trajectory with growth rate p~
the conditional probability that the bubble lasts at least h more periods would be given by p®". A conver-
gence in distribution towards this behaviour during extreme events is shown in the fourth chapter. With the

appropriate tools to define stable processes in continuous time —such as stable random measures and stable

151f |B] = 1, one of the tails of the marginal distribution of X; is not regularly varying and can even be completely absent. In

such case, the extreme values are necessarily all of the same sign and the asymptotics is valid only for x — 400 ou x — —oo.
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integrals— parallel results are obtained for the anticipative a-stable Ornstein-Uhlenbeck process.
The approach followed in this chapter can be applied to any stable process (Y;) to analyse the conditional
moments of Y;y, given the present observation Y, which is illustrated on the aggregation of anticipative

AR(1) defined by
J
ivid.
X = Zﬂij,n Xje=piXjee1 t e, €~ S(a, 85,1,0), (1.28)
=1

for positive real numbers m; and J > 1. This process has been proposed by Gouriéroux and Zakoian (2017)
[63] to alleviate a limitation of the simple anticipative AR(1), namely, that it appears only able to generate

L necessarily identical from one extreme episode

one type of bubble characterised by a single growth rate p~
to another. The aggregated process (1.28), on the contrary, features trajectories where bubbles of different
growth rates pjfl, j=1,...,J appear. It is shown that (X, X;1) is also a-stable in that case and that its

spectral measure I'y, writes
J
Th=> mTin, (1.29)
j=1

where the T'; ;,’s are given mutatis mutandis by (1.27) as the spectral measures of the vectors (X, X; 1n)
associated to the simple AR(1) processes with parameter p;, j = 1,...,J in (1.28). Beyond the existence
of conditional moments up to order 2« + 1, the functional forms of the first four conditional moments, and
despite the fact that Y;y,|Y: does not fully characterise the conditional distribution for such a non-Markov
process, (1.29) betrays how similar the dependence structures of «simple» and aggregated processes are.
This similarity is leveraged in the next chapter to study aggregated and non-aggregated stable processes

alike, the former featuring much richer dynamics than the latter.

The fourth chapter builds on two indications that emerged from the third one. First, the fact that any
piece of trajectory X; = (X¢—pm, .., Xty Xpg1, - o, Xegn), m > 0, h > 1 is multivariate a-stable, and second,
the fact that the dynamics simplifies when the process is far from its central values. This simplification,
noticed on the forms of the conditional moments, can be obtained as a consequence of the regularly varying
tails property of the stable vector X ;. Denoting I' the spectral measure of X; on the Euclidean unit sphere

Sm+h+1, we have by Theorem 4.4.8 by Samorodnitsky and Taqqu (1994) [117] and the Bayes Theorem that

'AnB
P(X/IXlle € A | | Xille > and X/| Xl € B)  — (4nB) (1.30)

+ e T(B)
for any Borel sets A and B satisfying some I'-continuity conditions. The spectral measure I' thus completely
describes the conditional distribution of normalised paths X, /|| X |l —the «shape» of the trajectory— when
the vector X is large according to the Euclidean norm. In the case where (X;) is an infinite moving average

process of general form

+oo
Xe= Y dperyr, tELZ, (1.31)

k=—o0
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the measure I" is explicit and it would be tempting to directly invoke (1.30) in order to study the conditional
distribution of the future path (X41,...,X¢+n) given the observed past trajectory (Xi—m,...,X;). For
prediction purposes however, (1.30) is of little interest because the conditioning event depends on future

realisations of the process, mainly through the Euclidean norm of X;. The idea in this chapter is to obtain

a version of (1.30) where the Euclidean norm would be replaced by a semi-norm || - || satisfying

(X, s xo, 21, .- s zn)|| = [(@—m, - - -5 T0,0,...,0)|], (1.32)
for any vector (z_p, ..., r) € R™Th*1 In this view, a new spectral representation of stable vectors on the
unit «sphere» C’Jﬂ_h 41 = {s e R™*"*1 . ||| = 1} relative to such semi-norm is explored. For obvious

geometrical reasons, the term cylinder is preferred to that of «spherey». It will be said that a stable random
vector X = (X1,...,Xq) is representable on a unit cylinder relative to a semi-norm || - || if there exists a
pair (F“'”,uﬁ_l‘), L'l a Borel measure on C’g'”, “ﬁ-\l € R?, such that the characteristic function of X is of
the form (1.26) with (Sg, T, u°) replaced by (C{g'”,lﬂ“'”,uﬁlﬂ). Provided such a representation exists, it is
then shown that (1.30) can indeed be restated with the Euclidean norm replaced by the corresponding semi-
norm and I" by Tl If all stable vectors admit representations on unit spheres relative to norms (Theorem
2.3.8 by Samorodnitsky and Taqqu (1994) [117]), it is shown here that this not the case when it comes to
representations on unit cylinders relative to semi-norms. This chapter hence starts with the preliminary
study of the representability of general stable vectors, and of paths X; in particular, on such unit cylinders.
As often arises when working with stable distributions, the case o = 1 requires special attention in the
presence of asymmetry. This case is considered as well in the fourth chapter and the results are similar,
however for expository purposes, we will assume in the following that o # 1. It is shown that for any
semi-norm || - || on R?, an arbitrary stable vector (X1, ..., X4) will admit a representation on Cc‘ll'” if and

only if'°
F({s €Sy: |8l = o}) ~0. (1.33)

This condition can be understood as follows. Intuitively, in view of (1.30), the spectral measure of a
stable vector encodes the information about the tail dependence of its components by assigning mass to
the directions of the space.17 A stable vector is completely characterised by this distribution of mass on
the directions of the space, which is usually expressed in terms of a measure on a unit sphere relative to a
norm. As unit spheres are in bijection with the set of all directions of the space, measures thereon are able
to characterise any potential tail dependence of a stable vector. On the contrary, unit cylinders are not in
bijection with the set of all directions of the space, and measures thereon cannot describe the tail dependence
of certain stable vectors. Condition (1.33) indicates that a stable vector will be representable on C’lll'“ provided

1
61n the asymmetric a = 1 case, a slightly stronger necessary and sufficient condition holds, namely that fS | In||s|| ‘F(ds) <
d

+00. The latter in particular implies (1.33) given that | In ||s|] | = +oo for any s in the kernel of the semi-norm.
17By «directiony, it is meant the equivalence class of R? for the relation «=» defined by: u = v if and only if there exists

X > 0 such that u = \v, u,v € R¢
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the pathological directions —the ones belonging to the kernel of the semi-norm— are uninformative to describe
its tail dependence. In dimension 2, a vector (X7, X2) with spectral measure I' on the Euclidean unit sphere
will be representable on the cylinder {(s1,s2) € R? : |s1| = 1} provided that F({(O, -1), (O,—H)}) =0,
that is, if the vector (X1, X2)/1/X? + X3 has probability zero of tending towards (0,41) when its norm
VX7 + X3 grows infinitely large. In other terms, F({(O,fl), (O,Jrl)}) = 0 indicates that realisations
(X1, X2) where X, is extreme and X is non-extreme occur with probability zero.

After considering the case of general stable vectors, we focus on paths of a stable moving average (X3)

of general form (1.31) for which we only require the summability condition

0< Z |dg|® < 400,  for some s € (0,a)N]0,1]. (1.34)
kez

The moving average is hence not a priori assumed anticipative. Property (1.30) will be applicable to study

the conditional distribution of (X;) only if there are paths of the form

Xt = (Xt—ma .- 7XtaXt+17 L 7Xt+h)?

m—+1
observations  prediction horizons

which are representable on C I for a semi-norm satisfying (1.32). Several cases arise according to the

m~+h-+1

kernel of the semi-norm. To fix ideas, we consider in this chapter semi-norms such that

I(Zmy -y o, @1,y x2p)|| =0 <= z_p=... =20 =0,
for any (x_,,...,zy) € R™T+1 which in particular satisfy (1.32).
Letting M ={m >1: 3k €Z, dyym=...=drs+1 =0, di # 0}, and
sup M, si M #D,
mo =
0, si. M =10,
it is shown using (1.33) that the paths X, will be representable on CvHﬁl-Lh-H for all m > mg, h > 1 if and
only if
my < 400, (135)

Hence, (X;) will induce paths representable on Cllr;u_h 41 only if any sequence of consecutive zero values in
the coeflicients (dj) is either finite, or infinite «to the left». Astonishingly, although no assumption were
imposed regarding the causality or noncausality of (X3), it is thus shown that only anticipative moving
averages induce paths X; representable on unit cylinders that are appropriate for prediction purposes.
This representability condition sheds a new light on the predictability of extremes events of an a-stable

process. Intuitively, the path X; will be representable on C I

‘mah1 Provided any extreme event affecting the

h last unobserved components cannot occur independently of an extreme event on the m 4+ 1 first observed

ones (condition (1.33)). In other terms, all incoming extreme event must manifest early visible signs. The
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difference between anticipative and non-anticipative processes is obvious from this perspective. For the latter
(e.g., the non-anticipative stable AR(1) Y; = pY;—1 + ), extreme events erupt suddenly, without warning,
under the form of jumps which magnitudes follow an infinite variance power-law. For the former on the
contrary, extreme events are reached gradually and are identifiable in advance from trends and patterns that
precede and betray their incoming occurrence (the inflation of bubbles in the anticipative AR(1) model).
For autoregressive processes, which were the starting point of this thesis, the representability condition of

paths simplifies. Consider (X;) an ARMA process defined as the stationary solution of
VF)OB)X, = O(F)H(B)er, = "~ 8(a,,0,0),

where 9, ¢, ©, H are polynomials satisfying (1.22) with ¢ and © (resp. ¢ and H) sharing no common
root. It is then shown that (X;) will induce paths representable on unit cylinders that are appropriate for

prediction purposes if and only if

deg () > 1.

In this framework, non-anticipative AR processes are hence typically pathological. A strength of this ap-
proach is to naturally encompass processes resulting from the linear combination of a-stable moving averages,

coined stable aggregates and defined as

J
X = Zﬂij,t, Xje = Zdj,k€j,t+k, eje K" S(a, B;,1,0), (1.36)
=1 keZ

where the 7;’s are positive real numbers, J > 1, and where each coefficients sequence (d; )i satisfies the
summability condition (1.34). Exploiting a relation similar to that of (1.29) obtained in the third chapter,
it is established that paths of aggregated processes (X;) will be representable on unit cylinders provided all
the latent moving averages (X, ;) are anticipative in the sense of (1.35). By analogy, we will refer here to

such stable aggregates as anticipative.

Once conducted the preliminary study of paths representability, the analysis of the conditional distribu-
tion can start. The choice of Borel set B C Cllih-s—l appearing in the conditioning of (1.30) has to be adapted
to the prediction framework, i.e., the event {X /|| X|| € B} has to be independent of the h unobserved
realisations. Keeping in mind that || X¢|| = ||(X¢—m, ..., Xt,0,...,0)||, assume that for a certain Borel set V/
on the unit sphere Srlln'u_l = {(5—ms--150) ER™ L1 |[(5_ms- .., 50,0,...,0)] = 1} of R™*1'® the following

event is observed:

The largest Borel set in which the complete vector X, /|| X¢|| € C”'L‘_Hl lives is then

m

B(V):=V xR" c cll'l

b1 (1.37)

18 . . . . c s .
The set Sllnl_L_l is the unit sphere of R™*1! relative to the restriction of the semi-norm || - || to the m -+ 1 first components.
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This is the type of Borel sets that will be used to appear in the conditioning of (1.30). For an
a-stable aggregate (X;) defined by (1.36), it is shown that the spectral measure of paths X, =

(thmm s 7Xt7Xt+l7 s 7Xt+h) on C‘ !

b1 writes

J
THE=3" 3" "wjonflldy ] *6 dd . )
j=19=+1keZ I, ]
with (5{} the Dirac mass, dj,k = (dj,k—l-my S ,dj7k, dj,k—h e 7dj,k—h)7 Wj9 = (1 + ﬂﬂj)/Q, and if dj7k =
(0,...,0), the term vanishes by convention from the sum. Property (1.30) then yields

Tl (Am B(V))

plll (Xt, A‘B(V)) = 1}»( X

X
EA‘ X, > =, BV)
Tz € A1l > ey € B0

for all Borel sets A  Cl'l

muni1 and «observation» V' such that il (B(V)) > 0 (and satisfying certain

I'lI'l-continuity conditions).

It is now possible to explore the conditional distribution during extreme events by evaluating the asymp-
totic probability in different regions of the space and for different conditionings. Only the main lines of
the analysis will be drawn here, and the general case will be illustrated with the help of the aggregation of
anticipative AR(1) with positive coefficients p;’s

One notices first and foremost that the spectral measure I'l'l only charges the points of the form
+d;/||d; k| for k € Z and j = 1,...,J. These points themselves correspond to deterministic «pathsy
extracted from the coefficients sequences of the latent moving averages (X;;). By setting A to be an
arbitrarily small neighbourhood around all the points (+d; x/||d; ||);jk, one can see that the asymptotic

«unconditional» probability19 equals 1:

lim Pl (X A‘C” 1.

T—+00 +h+1)

Therefore, during an extreme event, the path followed by the process (X;) is necessarily «of the same shape»
as one of the deterministic paths +d; i /| d; |-

For the aggregated AR(1) (1.28), the coefficients sequences of the latent moving averages are of the form

19 s . . . . .
Conditional on the uninformative Borel set B(Sanl-l- ) = cll and on the fact that an extreme event is observed (i.e.,

m—+h+1
Xl > ).
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(p?ﬂ{kzo})k, which yields for all j =1,...,J that

m-+1 h
—
(p5*™, ... p;,1,0,...,0,0,...,0)
(5™, .. ps,1,0,...,0,0,...,0)]

, for ke{-m,...,—1},

m+1 h
(p‘];+m)"'7p.];l:7p‘l;_17'"7pj71707"'70)
H(p?JrTH""7p§:7p‘];_17"'7pj71707"'70)”

djr
;.|

, for ke{0,...,h—1},

m+1 h
(p;n+h5'7p?7p?_17'5pj71) f k>h
mh h h—1 Y or Z
H(pj 7"'apj,p‘ 7“';/)]7 )”

The above deterministic paths correspond to pieces of diverging exponentials stopped at a certain coordinate
(for —m < k < h — 1) and remaining at zero afterwards.” Thus, during an extreme event, the trajectory of
the aggregated anticipative AR(1) necessarily follows an explosive exponential path of a certain growth rate
p}l, possibly ending on a return to non-extreme levels. The behaviour that Gouriéroux et Zakoian (2017)
[63] intuitively conjectured, that is, that bubbles of different growth rates would appear on the trajectories,
is hence formalised and the occurrence probability of each type of bubble can be obtained explicitly. In
particular, on notices that for J = 1, that is, for the non-aggregated anticipative AR(1), a single growth
rate is possible and the process only generates a single type of bubble. This makes apparent that non-
aggregated processes have dynamics limited to a single pattern, recurrently appearing from one extreme
event to another. Aggregated processes do not suffer this limitation and generate trajectories which can
feature different patterns through time.

More than unconditional occurrence probabilities, one can evaluate the probability that the process will
follow a certain path given that the past trajectory, consisting of m + 1 observations, is observed to be in a
neighourhood V' on SJ‘,;L. The condition 'l (B(V)) > 0 indicates that one can only condition on Borel
sets V that contain at least one «plausible» piece of trajectory of the process (X;). For general anticipative
stable aggregates, these «plausible», or «observable» trajectories of length m + 1 are necessarily of the form

(dj,k-‘,-m) RN dj,k)
1kl

+

20 . . .
For k < —m, dj , = (0,...,0) and these indexes k do not intervene in the spectral measure ri-I.
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In the case of the AR(1), one obtains

m—+1
(p]?-"_m,...,pj,l,O,...,O)
k+m] : , for ke{-m,...,—1},
||(p] 7""p]7]‘707"'7030""7O)H
h
(djtms > dik) _ mt
;x|
m—+1
m
(pj 7~~~7pj31) for k>0
1T+ ps,1,0,...,0,0,...,0)| -7
_—
m+1 h

The «observable» trajectories consist either in an uninterrupted exponential trend or in an exponential
trend followed by a return at zero. Intuitively, the uninterrupted exponential trend is easily identified with
an observed «inflation phase» of a bubble, that is, for a certain jo € {1,...,J}, with an event of the form

Ko, -, X0) (PG> Pio )
[ Xl (o, jos 1,0,...,0)]]

Conditionally on such an observation, what are the potential future paths and their likelihoods of occur-

eV, for V some neighbourhood of

rences? To answer this question, one first needs to identify the elements of V x R” to which I'l'l assigns a
positive mass, that is

B(V)* = {s eV xR Tl({s}) > 0}.

B(V)+={dj0”“: kzo},
o,k

and one deduces from (1.38) that with probability 1, asymptotically, the complete path X, /|| X || will belong

It is shown in this case that

to an arbitrarily small neighbourhood of the points (d;, «/||d, k|| x>0, which were explicited above. Thus,
the future path will necessarily follow an exponential trend of same growth rate pjj)l as that of the observed
trajectory, eventually followed by return to non-extreme levels at any date in the future. If the «crash» date
of the bubble remains uncertain, one can nonetheless evaluate the probability that it occurs at any given

future horizon. On the one hand, considering A an arbitrarily small neighbourhood of

m+1 h
k+m k k—1
P; v P Py a"'vplvlaoa"'ao
(i‘lm 10’ - ].0 ! ) , forsome ke{0,...,h—1},
||(pj0 v"'vpjoapjo o+ Pjos 70370)H

the event on the complete vector {X /|| X¢|| € A} corresponds to that for which the peak of the bubble is

reached in exactly k periods, 0 < k < h. It is shown for this choice of A that

Tl (A N B(V)) R (A N B<v>+)

PUI (X0, A|B(V)) - = 12| (1 = 1pjo ).
z—too || (B(v)) Tl (B(v)+)
On the other hand, for A an arbitrarily small neighbourhood of
m+1 h
(p;z+h7'"7p?0,p_};0_17""pj071)
[ Y N o
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the event {X /|| X¢|| € A} corresponds to the peak of the bubble being reached in h periods or more. One
gets
-l (A n B(V)+)

IPL['\I(Xt,A‘B(V))JCjOO FH-H(B(V)+) = lpjol*"-

Therefore, conditionally on the inflation phase of a bubble being observed, say, of growth rate p;Ol, the
probability that the peak will be reached in exactly k periods, 0 < k < h is given by |p;o|**(1 — |pjo|%),
whereas the probability that it will be reached in h periods or more is given by |p;,|*". The interpretation

of the conditional moments from the third chapter is retrieved with more ﬂexibility.21

The approach followed here illustrates the use of Property (1.38) in the case of the aggregation of
anticipative AR(1) but can be deployed to study any type of stable process, provided it is anticipative. An
interpretation of path prediction in terms of pattern identification in trajectories emerges. Other processes
are considered in the fourth chapter, and in particular a bivariate process, to highlight the potential of the

proposed framework.

21 s . - . P .
In the third chapter, the forms of the conditional moments of X; 5 given X; were similar to that a two-point distribution:
either the bubble will have collapsed strictly before h periods, either the bubble will survive h periods or more. The respective
probability of both events were 1 — |p|®" et |p|*" which are indeed compatible with the distribution obtained in the fourth

chapter.
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Chapter 2

Mixed Causal-Noncausal AR
Processes and the Modelling of
Explosive Bubbles

Sébastien Fries and Jean-Michel Zakoian

Abstract Noncausal autoregressive models with heavy-tailed errors generate locally explosive processes
and therefore provide a natural framework for modelling bubbles in economic and financial time series. We
investigate the probability properties of mixed causal-noncausal autoregressive processes, assuming the errors
follow a stable non-Gaussian distribution. Extending the study of the noncausal AR(1) model by Gouriéroux
and Zakoian (2017), we show that the conditional distribution in direct time is lighter-tailed than the errors
distribution, and we emphasize the presence of ARCH effects in a causal representation of the process. Under
the assumption that the errors belong to the domain of attraction of a stable distribution, we show that a
causal AR representation with non-i.i.d. errors can be consistently estimated by classical least-squares. We
derive a portmanteau test to check the validity of the estimated AR representation and propose a method
based on extreme residuals clustering to determine whether the AR generating process is causal, noncausal

or mixed. An empirical study on simulated and real data illustrates the potential usefulness of the results.

Keywords: Noncausal process, Stable process, Extreme clustering, Explosive bubble, Portmanteau test.
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2.1 Introduction

In the analysis of prices of financial assets such as stocks, it is common to observe phases of locally explosive
behaviours, together with heavy-tailed marginal distributions and volatility clustering. Such features seem
incompatible with classical linear models (namely the class of autoregressive-moving average (ARMA) mod-
els) which rely on the second-order properties of a time series. On the other hand, nonlinear models such
as ARCH or stochastic volatility models are designed to capture volatility clustering, not to produce locally
explosive sample paths mimicking bubbles in financial markets. However, the dynamic limitations of ARMA
models are reduced if noncausal components (i.e. AR or MA polynomials with roots inside the unit disk)
are introduced. For instance, all-pass models' are linear time series with nonlinear behaviours, in particular
ARCH effects (see [15] and the references therein). More recently, Gouriéroux and Zakoian (2017 [63], GZ
hereafter) showed that a simple noncausal AR(1) process with heavy-tailed errors is able to produce typical
nonlinear behavior observed in the prices of financial assets.

Noncausal processes or random fields have been thoroughly studied in the statistical literature [3, 112],
and have been applied in various areas, including deconvolution of seismic signals [45, 74, 124] and analysis
of astronomical data [119]. Recent years have witnessed the emergence of a significant line of research on
noncausal models in the econometric literature (see e.g., [24, 26, 42, 67, 68, 69, 70, 86, 87, 122]). The
distinction between causal and noncausal processes is only meaningful in a non-Gaussian framework, and
the increasing interest in Mixed causal-noncausal AR processes (MAR) parallels the widespread use of non-
Gaussian heavy-tailed processes in economic or financial applications. Besides, rational expectations models
in economics have been shown to admit solutions with noncausal components when departing from the finite
variance assumption (see [61]).

One important reason for introducing noncausal components in AR processes is to provide a mechanism
for generating financial bubbles. GZ showed that the sample paths of a stationary noncausal AR(1) process
with heavy-tailed errors may have locally explosive phases. Other recent researches have focused on data
generating processes that are able to produce explosive behaviours and model bubbles in financial markets.
For example Phillips , Wu and Yu (2011) [106], Phillips , Shi and Yu (2015) [105] and more recently, in a
continuous time framework, Chen, Phillips and Yu (2017) [27] investigated mildly explosive processes. Apart
from the generation of bubbles, noncausal AR(1) processes with stable distributed errors exhibit surprising
features such as a predictive distribution with lighter tails than the marginal distribution, a martingale
property in the causal representation when the errors follow a Cauchy distribution, or the presence of
GARCH effects. It is of interest to know whether these structural properties extend to higher-order models.
Indeed, first-order models are clearly not sufficient to capture complex behaviours of economic series, such
as the occurrence of locally explosive behaviours with different rates of explosion, or different types of
asymmetries in the growth and downturn phases of the bubbles.

The aim of this paper is to analyze the class of mixed causal-noncausal AR processes with heavy-tailed

1All—pass are ARMA models in which all roots of the AR polynomial are reciprocal of the roots of the MA polynomial.
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errors. The probability structure is studied under the assumption that the errors follow stable non-Gaussian
distributions. Properties of the Least-Squares (LS) estimator are derived under the less stringent assumption
that the noise distribution is in the domain of attraction of a non-Gaussian stable law. The paper is organised
as follows. Section 2.2 studies the sample paths and the marginal distribution of MAR processes with
stable errors. Sections 2.3 analyzes the conditional distributions through conditional moments. Conditional
heteroscedasticity effects are depicted and causal representations are exhibited. Section 2.4 derives the
asymptotic properties of the LS estimator, deduces a portmanteau test, and studies identification of the
strong representation based on the analysis of extreme residuals clustering. Sections 2.5 and 2.6 propose
numerical illustrations based on simulated and real data, respectively. Section 2.7 concludes. Proofs are

collected in Section 2.8 and complementary results are provided in an Appendix.

2.2 Stable MAR(p, q) processes

MAR processes have been considered, among others, by Lanne and Saikkonen (2011) [87], Gouriéroux and
Jasiak (2016) [59], Hecq, Issler, and Telg (2017) [66].2 A MAR(p, q) process (X;) is the strictly stationary

solution of the difference equation
Y(F)$(B)X, =&, where $(F)=1=Y F, ¢(B)=1-Y ¢B, (2.1)
i=1 i=1

B and F are the usual lag and forward operators (Bk'Xt =X, 1, FFX, = Xiik, k € Z), (¢) is an independent
and identically distributed (i.i.d.) sequence, the polynomials ¢ and ¢ have all their roots outside the unit
circle and are such that ¢, # 0 and ¢, # 0. When ¢ = 0 (resp. p = 0), the model is called purely noncausal
(resp. causal).

We assume that the errors £; follow a stable non-Gaussian distribution but the assumption will be
relaxed for the statistical inference. The generality and convenience of this class of distributions is now well
established.” Stable laws are easily characterised through their characteristic function: ; is said to follow a

stable distribution with parameters a €]0,2[, 5 € [-1,1],0 > 0, pu € R, denoted &; ~ S(a, 3,0, p), if
Vs € R, E(e't) = exp{ —o%s]* (1 — i Bsign(s)w(a, s)) + isu}, (2.2)

where w(a, s) = tg (%), if @ # 1, and w(l,s) = —%ln\s\, otherwise. A stable random variable X has
regularly varying tails in the sense that P(X < —x) ~ ¢o(1 — B)z~* and P(X > z) ~ co(1 + B)x™* as

x — 00, with ¢, > 0 and 8 € (—1,1).

2See the latter reference for additional motivations on the use of MAR processes in time series econometrics. The first two
references develop forecasting procedures for noncausal MAR, processes.

3See for instance [47, 117] for the main properties of stable distributions. A major justification for using stable distributions
rather than other classes of heavy-tailed distributions (such as the Student’s ¢, the hyperbolic distributions) is that they are the
only possible limit distributions for properly normalized and centered sums of i.i.d. random variables (giving rise to generalized
Central Limit Theorems). Moreover, they are sufficiently flexible to accommodate asymmetry as well as fat tails. Finally,

moving average processes based on stable variables also follow stable distributions, as will be detailed below.
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Figure 2.1: Examples of trajectories of MAR(1,1) (left panel) and MAR(2,2) (right panel) processes with different parameters

(nc: inverse of noncausal roots; c: inverse of causal root).

2.2.1 Sample paths

Examples of trajectories of four noncausal MAR processes are displayed in Figure 2.1. It can be seen that
the trajectories feature locally explosive trends which are suited for the modelling of bubbles and positive
feedback loop phenomena. Bubbles can be trending either upward or downward depending on the value of 5.
When g = 1, the density of the errors is maximally skewed towards positive values, yielding trajectories like
(a) and (c) which could be suited to model prices or volatilities. In particular, trajectory (a) displays bubble
patterns similar to those of real prices (see for instance Figure 2.4 below). The influence of a smaller tail
parameter « is visible when comparing trajectories (¢) and (d): the extreme events of the former (o = 1.3)
are more recurrent and further away from the central values than those of the latter (o = 1.6).

Under the assumptions made on the AR polynomial, (X;) admits a two-sided MA (co) representation4

+oo
Xt: Z dk€t+k~ (23)

k=—o0

*1t follows from Proposition 13.3.1 in Brockwell and Davis (1991) that the infinite sum in (2.3) is well defined under the

stable law assumption, which ensures the existence of El|e¢|® for s < a.
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A simple index change X; = Z erd,_¢ allows to interpret the sample path of X; as a linear combination of

TEZL
baseline paths, t — d,_;, weighted by stochastic i.i.d. coefficients €. Figure 2.2 depicts such baseline paths

for four different MAR processes. The first panel illustrates the well-known impulse response function of a
classical causal AR(1). The second panel displays an explosive exponential trend followed by a downward,
faster decay and corresponds to the baseline path of a MAR(1,1) process. The remaining panels show
more complex trajectories: the third one depicts the baseline path of a MAR(2,2) with dented upward and
downward trends whereas the last one, corresponding to a noncausal AR(4) with two real and two conjugated

complex roots, shows an upward trend with oscillations of increasing amplitudes and fixed pseudo-periods.

dT—t

T

Figure 2.2: Examples of baseline paths ¢t — dr_; of MAR processes with characteristic polynomials, from left to right:
1-0.7B; (1 -09F)(1—-0.7B) ; (1 —0.8F)(1+ 0.4F)(1 — 0.7B)(1 + 0.5B) ; (1 — 0.99F)(1 — 965F)(1 — 0.98¢%0-0457 ) (1 —
0.986_i0'0457rF).

2.2.2 Marginal distribution

Our first result characterises the marginal distribution of the stable MAR(p, q).

Proposition 2.2.1 Let (X;) the strictly stationary solution of the MAR(p,q) Model (2.1) where the roots
of the polynomials v and ¢ are outside the unit disk and e ~ S(«, 8,0, ). Then X; has a stable stationary
distribution, X, ~ S(&, 8,5, fi) where

22 o ldi| @ sign(dy,)

~ s k=—oc0
a = q, = 5
r= 7o il
+o0 é [ 9 +oo
5 = a T R P 1 |dyl.
o=0 (k_z_oo'd’“' ) ! A= G~ Me=nzfo 2 dilnld]

It is worth noting that the tail index « of X; is that of the error term. In particular, E|X;|* < 400 for s < «
and E|X|* = +o0.

2.3 Predictive distributions

In the presence of a noncausal component in the AR polynomial, the predictive density of a future observation
given a sample of consecutive observations is generally not available in closed form. We start by showing

that the Markov property holds whatever the error distribution.
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Proposition 2.3.1 Let (X;) the strictly stationary solution of the MAR(p,q) Model (2.1) where the roots
of the polynomials v and ¢ are outside the unit disk and (g;) is an i.i.d. sequence (not necessarily stable).

Then (X:) is a homogeneous Markov chain of order p + q.

In the rest of the section, we will derive properties of the conditional distribution of X; in direct time when
the errors are stable-distributed. We will focus on (i) the existence of conditional moments; (ii) explicit
derivation of predictive formulas for X;; and (iii) the presence of ARCH effects in the case of the MAR(1,q)

process. More specific results will be detailed for the MAR(1,1) process.

2.3.1 Existence of moments of the conditional distribution

It follows from Proposition 2.2.1 that E|X;|®* = oo for s > «. The next result shows a different behaviour

for the conditional moments, generalising the result obtained for the AR(1) by GZ.

Theorem 2.3.1 If (X;) is the MAR(p, q) solution of Model (2.1) with ey ~ S(«a, 8,0, 1), we have
E[|X:|"| Xt—1, Xt—2,...] <00, a.s., whenever 0<~y<2a+ 1.

The conditional distribution in direct time, that is with respect to the past observations, thus has lighter tails
than both the marginal distribution and the distribution conditional on the future. In particular, whatever

the heaviness of the tails of ¢;, the conditional expectation of X; always exists. The conditional variance in
direct time also exists provided that the tails of the errors distribution are not too fat (o > 1/ 2).5

2.3.2 Prediction of future values for the MAR(1, q) processes.

Prediction at any horizon can be fully characterised for the symmetric MAR(1, ¢) process. The next propo-
sition extends in a non trivial way the prediction formula obtained by GZ for the noncausal AR(1), i.e. for
the MAR(1,0). Let .%; = o(Xy, Xi—1,...) the canonical filtration of process (X;). For z # 0 and r € R, let

x <" = sign(x)|z|".

Proposition 2.3.2 Let the MAR(1,q) process (1— ¢ F)$(B)X; = €, under the assumptions of Model (2.1),
with e, ~ 8(«,0,0,0). Then there exists for any h > 0 a polynomial &y, of degree q such that

E[Xin| Fi1] = Pn(B)Xi—1.
For h =0, the above formula holds with

Po(B)X—1 = PN g+ (1- ¢<a71>B)(¢’1Xt—1 + o g Xi—g),

5A discrepancy between conditions of existence for marginal and conditional moments also holds for many nonlinear causal
models: for instance GARCH (see e.g. Francq and Zakoian (2011), Chapter 2), or models for time series of counts (Davis and

Liu, 2012).
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and we have the semi-strong causal representation
(1= ¢<*"B)¢(B)X; = ns, (2.4)
with E [T]t‘ yt—l] =0.

The proof is based on: i) disentangling pure causal and noncausal components of the MAR process (in the
spirit of Lanne and Saikkonen (2011) [87], Gouriéroux and Jasiak (2016) [59]); ii) using the closed-form
expression of the conditional expectation of the pure noncausal component, and (iii) invoking the Markov
property.6

It is worth noting that the conditional expectation is linear in the past and can be explicitly computed.
By comparison with finite variance AR processes, the semi-strong representation (2.4) is surprising. Indeed,
in the L? framework, if (X;) is mixed causal-noncausal satisfying ¢(F)¢(B)X; = &, then there exists a
causal version of (X;) given by ¥(B)¢(B)X; = Z;, where (Z;) is uncorrelated with zero mean and finite
variance (see for instance [19], Section 4.4).7 In our framework, the noncausal component (1 — ¢ F'), with
|| < 1, is transformed into the causal component (1 —<~1>B).

In the Cauchy case (o = 1) we get, when ¢ > 0,
E[Xt’e%—l} =X 1+ 1 =B)( 1 Xi—1+ ...+ 0 Xi—y), (2.5)

with by convention ¢ = ... = ¢, = 0 when ¢ = 0. Hence, the martingale property established by GZ
(Proposition 3.3), E[X;|.#;_1] = X;_1, only holds for the noncausal AR(1) (i.e. when ¢ =0).

The asymptotic behaviour of the conditional expectation -when the horizon h tends to infinity- is highly
dependent on the tail index «. Proposition 2.3.2 allows us to distinguish different behaviours summarised

in the following Corollary.

Corollary 2.3.1 Under the assumptions of Proposition 2.3.2, we have almost surely

0 if a€(l,2),
’E [Xt+h‘ ﬁt—l] ’ h:}o / f 1
t—1 ? a =1,

where ;1 is an Fy_1-measurable random variable. Moreover, when o € (0,1) and g =1,
‘E[Xt+h| gzht_l] ’ — OQ.
h—o00

If a € (1,2), that is for lighter tails within the stable family, the conditional expectation always tends
to 0 which is the unconditional expectation. This is consistent with the L? framework ([19], p.189). For
a = 1, the absolute value of the conditional expectation tends to a finite limit whereas the unconditional
expectation does not exist. The general case when « € (0,1) is more intricate and is detailed in Appendix.

SThe inherent complexity of the pure noncausal component when p > 1, for which no such closed-form expression exists,

does not allow us to go beyond p = 1 for the results of this section.

—ixy(2
"The equality ¢ (F)Z; = ¢ (B)e¢ indeed implies that (Z;) has a spectral density given by fz(\) = g % = g where

02 = Var(et). Therefore, (Z¢) is also a white noise with the same variance o2 as ;.
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2.3.3 Conditional heteroskedasticity of the Cauchy MAR(1,q)

All-pass models are well known examples of strong linear models displaying ARCH effects (namely the
correlation of the squares). However, such effects are difficult to characterise without an explicit specification
of the errors specification. The following result provides an explicit characterization of ARCH effects through
the conditional variance of MAR processes with Cauchy innovation, extending again the results obtained by

GZ for the noncausal AR(1).

Proposition 2.3.3 Let X; be a MAR(1,q) process (1 — Y F)d(B)X; = ¢ with &4 g S(1,0,0,0). Then,

for any h > 0, there exists a polynomial Qp(z) = Z?:o qi.nz" such that
2

Fir) = (0 xe? + =7 ) (o (@utsim w)).

v(e e

with cn = Y2 Soh—o @ity (sign )+ |~ minl) =
Polynomials @, (z), for h > 0, are defined in the Appendix. The causal representation (2.4) can then be

completed and reveals quadratic ARCH effects in the Cauchy MAR(1, ¢) process.

Corollary 2.3.2 Under the assumptions of Proposition 2.5.3, there exists a sequence (n) of random vari-
ables such that,
(1 — sign(¥)B)p(B) Xt = o,
o} = (|;| - 1) (Xio1 — 01 X2 — oo — 0 Xi—g-1)?
where E[n| %:—1] =0, E [nt2| ﬁt,l] =1.

0.2

T

The process e; = o1, is however not an ARCH in the strict sense: first, because the errors n; are not i.i.d.,
and second, because the volatility is a function of the X;_; (not of the e;_;). This representation is actually
closer to the Double Autoregressive model studied by Ling (2007) [96] (see also [104] for a multivariate

extension).

2.3.4 The MAR(1,1) process.

The results of this section can be made completely explicit for the MAR(1,1) model defined by

(1—¢F)(1—¢B)X, =e;, with & "X S(a,B,0,p), (2.6)
with |¢| < 1and 0 < |3| < 1. The coefficients of the MA (oc0) representation (2.3) are given by: dj = 11[11;1”,
for any £ > 0, and dj, = %, for any k < 0. Then X; ~ S (a,B,&,ﬂ) with
G=p (1 - Sign(aﬁ)WI“) (1 - Sign(w)%/fo‘) (1 - Sign(cﬁ)lqﬁla)
e 1— [y 1—g]* ’
= (il
L—gyp \(1= )1 —1g]*)/) ~
i= p 1 200 [WHM n ¢lnf¢|  (1—¢¢)In|l — ¢
T=9)1=9) “Ta-90) (-0 T 1-¢2  1T-¥)1-9)
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In particular, when v, ¢ > 0 and the errors are Cauchy distributed, that is when &, S S8(1,0,0,0), then
o
the above formulae simplify and X; ~ S| 1,0, ———————, O).
' (1-¢)(1~9)
We now derive an explicit prediction formula for the MAR(1,1) process when 8 = u = 0. Proposition 2.3.2
yields for any h > 0,

h

E[Xppn|[ Zioa] = 6" X0y + (Xir = 90X 2) (<0 12)" S(eu =),
=0
<a—=1>\h+1 _ sh+1
_ ¢h+1Xt71 + (w . ¢2/}<1a>¢ (thl _ ¢Xt72), if <lf)w<1—a> £1,
O [X g+ (h+ 1) (Xyo1 — 6 Xi_0)], it pyp<ima> 1.

When ¥ > 0 and a = 1, Corollary 2.3.2 yields

0.2

(1-B)(1-9¢B)X; = Ut\/(w_l — (X1 — 60Xy 2)* + (1 =)’

where E [n:| #—1] = 0 and E [nﬂ ft_l] = 1. The conditional variance at horizon h in Proposition 2.3.3

takes the more explicit form, for any h > 0,

V(Xt+h‘ﬁt_1) = [Ch - (11__(;5}:;1)2] ((Xt—l —¢X; 9)? + (1(_7@2),

where

B ) A e )L i
"TU—e)1—0%) (1)1 -¢d)  (1-¢)(1-¢2)

2.4 Statistical Inference

This section is devoted to the LS estimation of the MAR(p, ¢) model
Yo(F)do(B) Xt = e, (2.7)

where ¢g(z) =1 =30 Y0i2", do(2) =1 =31, doiz", with ¥o(2) # 0 and ¢o(z) # 0 for |z| < 1.

Contrary to other estimation methods such as Maximum Likelihood (ML)8, LS do not require full spec-
ification of the errors distribution. We relax the assumption that (e;) is an a-stable sequence and rather
assume that the law of £; belongs to the domain of attraction of a stable distribution. Specifically, we assume
that there exists a function L which is slowly varying at inﬁnity9 be such that

P
P(leo| > z) = 27 “L(x), and lim (g0 > )

Jlim sy 2 ee [0,1]. (2.8)

8See [3] for asymptotic properties of the ML estimator of both causal and noncausal AR processes with non-Gaussian a-
stable distribution. In the finite variance setting, ML estimation of MAR models based on Student’s ¢ distribution was studied
by Hecq et al. (2016) [67].

e, limgo oo L(tz)/L(z) = 1,Vt > 0.
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This more general assumption on the errors distribution encompasses in particular the fully parametric a-
stable framework under which the properties of the previous section were derived. Replacing a-stable laws
by their domain of attraction alleviates the risk of misspeciﬁcation.lo

We will first derive the asymptotic properties of estimators of an "all-pass causal representation" of
the MAR(p, ¢) process. Then, we will develop a portmanteau test for checking the validity of the estimated
representation. Finally, we will consider selecting the true model, among the different specifications admitting

the same all-pass representation, based on properties of extreme clustering.

2.4.1 All-pass causal representation

A difficulty in the inference of mixed causal-noncausal AR processes, is that many representations with
seemingly uncorrelated errors hold. Breidt, Davis and Trindade (Section 4.3, 2001) [15] showed that if
(Xt) is the strictly stationary solution of Model (2.7)-(2.8), then for any polynomial n;(z) obtained from

Yo(z)do(z) by replacing one or several roots by their inverses, we have
no(B)Xe = ¢, (2.9)

where (¢}) is an all-pass process.11 Such representations (2.9) will be called all-pass in the following. In the
set of all-pass representations, one is characterized by a polynomial 7y having all its roots outside the unit
disk
p+q .
m(B)Xy=C,  where no(B) = to(B)¢o(B) =1-> B, (2.10)
i=1
and (¢;) is an all-pass process. In the sequel, we call (2.10) the all-pass causal representation of (X;).
Now, let p(h) = (X pe_ o didi—n) / (e oo d3) for h € Z, where the dj’s are the MA(oco) coefficients
in (2.3).

Proposition 2.4.1 Let (X;) be the strictly stationary solution of model (2.7) under (2.8). Then, the p(h)’s

satisfy the recursion
p+q

p(h) = moip(h —i), Vh >0, (2.11)
i=1
where the coefficients ng; are obtained from (2.10).

It is worth noting that, although the autocorrelations of X; do not exist, the empirical autocorrelations
can be computed and converge to the coefficients p(h), which satisfy the usual Yule-Walker equations.
Such equations explain why the coefficients of the all-pass causal representation of (X;) can be consistently
estimated by LS.

10The same assumption was considered in the context of causal AR processes for the study of least-absolute deviation (LAD)
estimators by An and Chen (1982) [1], and for M-estimators by Davis, Knight and Liu (1992) [38].

11VVhen the second-order moments are finite, all-pass processes are uncorrelated. Andrews and Davis (2013) showed that this

property continues to hold "empirically" in the infinite variance case, in the sense that the sample autocorrelations converge to

zero as the sample size goes to infinity.
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2.4.2 Least-squares estimation

We consider LS parameter estimation of the all-pass causal representation (2.10), based on observations
Xi,..., X, of the MAR(p, ¢) model (2.7). A LS estimator of g = (101, - - -, M0,p+q)’ 1S

f) = arg min L, (n), (2.12)

neRr+a
where
n p+q 2
L5(n) = Z (Xt - Zthz) . (2.13)

t=p+q+1 i=1
For h > 0, let 4(h) = Z;:Oh X Xi+n and denote p(h) = 4(h)/4(0) the mean-unadjusted sample autocorre-
lation of order h. The LS estimator of 1, coincides, up to negligible terms, with the Yule-Walker estimator
and is given by

A A_lx\

A=T, 4., To=0A0—-Dijetiprar Fn =Tzt piq- (2.14)

Proposition 2.4.2 Let (X;) be the strictly stationary solution of model (2.7)-(2.8). Then the LS estimator

1] is consistent: 1) — 1 in probability, as n — oo.

To derive the asymptotic distribution of the LS estimator of 1, we introduce the sequences
an = inf{z : P(leo| > ) <n~'}, and a, =inf{z:P(|eoe1| > ) <n "'}, (2.15)

defined by Davis and Resnik (1986). Let J the (p+q) x (p+¢) shift matrix, with ones on the superdiagonal and
zeros elsewhere. For 0 =1,...,p+qlet K9 = J*+'J¢ (with KP*9 = 0). Let L= [K K® ... KP+9]
We start by providing the asymptotic behaviour of the LS estimator under the simplifying assumption that
the distribution of e; is symmetric. This assumption will be relaxed in the next section. The following result

is a consequence of Davis and Resnik (1986) [41].

Proposition 2.4.3 Let (X;) be the strictly stationary solution of Model (2.7) with symmetric i.i.d. errors
(¢) satisfying (2.8) and E|g;|* = cc.

Then, letting p = [p(i)li=1,...p+q: B = [p(i — J)i.j=1,....p+q>
= (7 — o) % R_l{Ierq _L(Ip+q®R_1p)}Zv where  Z = (Zh,...,Zp+q), (2.16)

Zi =S {pk + 1) 4 p(k — 1) — 2p(1)p(k)} Si/So, for k =1,....p+q, and So, S1,Sa, ... are independent
stable random variables; Sy is positive with index o/2 and Sj, for j > 1, has index o. If the law of |e4| is

asymptotically equivalent to a Pareto, (2.16) holds with a2 /a, = (n/Inn)/®,

The a-stable domain of attraction assumption on (e;) impacts the asymptotic behaviour of the LS estimator
2

in two important aspects: t) the limiting distribution depends on « and «t) the convergence rate is g—" ~

n'/®L(n), for some slowly varying function L (see p.551, Davis and Resnick, 1986 [41]). Requiring E|e;|* = oo

ensures that the law of €ge; belongs to the a-stable domain of attraction (see [34], Theorem 3.3 iv) p. 80).
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Example 2.4.1 (MAR(1,1) process (continued)) For the MAR(1,1) process, Proposition 2.4.3 allows
to compute the asymptotic distribution of the LS estimator of (¢g + 1o, potbo), using

1+ ¢otho (1 + odo)* + (Yo + ¢0)?  —(wo + ¢o)

R YI,-L(I, o R! =
{I2 = L(I> 2 (L =95) (1= 08) \  —2(bg + do)(1 +odo) 1+ thodho

This matrix can be straightforwardly estimated by plugging LS estimators of ¢g+1¢ and ¢g1pg. From the esti-
mated asymptotic distribution, at a given confidence level a € (0, 1), we can deduce an asymptotic confidence
region, A, o say, such that P[(¢g + 1o, ¢ot0) € Apn o] = 1 — . Denote by 71 < 75 the inverses of the roots
of no(z) (thus r; € {po, %o} for i = 1,2), that is (r1,r2) = (7701 — \/m,nm + \/M) /2 =
f(mo1,m02). By the delta method, an asymptotic confidence region can be deduced for (ri,r): let R, o
such that P[(r1,72) € Rual = 1 — a. Thus, P[{(¢0,%0), (%0, %0)} C Rna] = 1 — a. Finally, letting R, ,
the symmetric set of R, o around the line 71 = 73, we get an asymptotic confidence region for (¢, %o):

P[(djOawO) S Rn,g U R;{hg] > 1- .

The knowledge of index « is not required for the computation of the LS estimator, but the asymptotic
distribution, as well as the normalizing constants a, and a,, depend on a. The presence of this nuisance
parameter renders inference difficult for this class of model. Having estimated the AR coefficients, one could
overcome this hurdle by using a standard estimator for the tail index «. For instance, for a random sample
(X1,...,Xn), the so-called Hill (1975) [71] estimator of 1/a based on m + 1 upper order statistics is defined

as:

1 & X
A—1 (%)
a-l=_—_ E 1 )

X(m+1)
where X(;) > 0 is the ith order statistic in decreasing order (X(1) > X2y > ... X(5)). Mason (1982) [100]
proved that the Hill estimator is a consistent estimator of 1/«, provided n — oo, m — oo and m/n — 0,
in the case of i.i.d. variables. Consistency and asymptotic normality under serial dependence conditions -
including ¢-dependence, S-mixing, ARCH - were established by various authors (see e.g. [43, 72] and the
references therein). An alternative to the estimation of the asymptotic distribution is to base inference on
bootstrap. Recently Cavaliere, Nielsen and Rahbek (2018) [24] proposed bootstrap schemes for noncausal
AR models with infinite variance, and showed their usefulness for hypothesis testing. Extension of this

approach to mixed AR models remains an open issue.

2.4.3 Relaxing the symmetry assumption

In the previous section, we derived the asymptotic behaviour of the LS estimator of 7y assuming the errors
(e¢) were symmetrically distributed. We here relax the symmetry assumption and only require (¢;) to satisfy
(2.8). The asymptotic behaviour of the LS estimator remains unchanged in the case 0 < a < 1, and holds

for 1 < a < 2 after a mean—adjustment.12

12A bias term appears in the case @ = 1 when departing from the symmetry assumption (See Davis and Resnik (1986),

Theorem 4.4).
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Let 7(h) = Y770 ( Xy — X)(Xypn — X) where X = 1/n 3" X;, and denote j(h) = 7(h)/5(0) the mean-
adjusted sample autocorrelation of order h. Similarly to (2.14), define the mean-adjusted Yule-Walker
estimator 1 by

~ ~—1_ ~ J . ~ S
n=0C, %, Tn=[Hl- J)}i7j=17~-,p+qv Yn = ['Y(Z)}i=1,---,p+q- (2.17)

Proposition 2.4.4 Let (X;) be the strictly stationary solution of Model (2.7), where (g¢) s an i.7.d. sequence
satisfying (2.8) and Ele:|* = co.

e If0< <1, then (2.16) holds.

o If1 < a<2, then (2.16) holds with 7 replaced by the mean-adjusted estimator 7.

2.4.4 Diagnostic checking

Validity of the estimated model can be assessed by studying the sample autocorrelations of the residuals.
Once the parameters of the all-pass representation (2.10) have been estimated by LS, with ) = (9;)i=1,... p+q>
the corresponding residuals are defined by

pt+q
Ct:Xt_ZﬁiXt—i7 t:p+q+177n (218)
i=1

A N ¥¢(h) ~ n c x 2 ~
Let, for h > 0, p¢(h) = pe(—h) = ZéW where Ys(h) = 3271, pi g1 GtCe—n and §e(—h) = ¢(h). For a fixed
integer H > 1, let p; = [pg(1), ..., pe(H)]".

Proposition 2.4.5 Under the assumptions of Proposition 2.4.3, the vector of residual empirical autocorre-
lations satisfies
2
[N d
dip& — y(0)AuZ, where Z = (Zi,...,ZH1ptq),
n
where y(0) = >_po___di, the Z;’s are as in Proposition 2.4.3, and Ay is a non random H x (p+ q+ H)

matrixz function of the sole AR coefficients (not of the error distribution).

Details regarding matrix Ay are available in the proof. Note that the symmetry assumption can be
relaxed as in Section 2.4.3. It is now possible to propose a portmanteau test to check for residuals autocor-

relations based for instance on the statistic

H
o~ ~ [ d
Ty =ani, > o)) —= [v(0)AuZ|;, (2.19)
=1

n—-4oo

with ||z]l; = >_ |z;| for any vector @ = (z;). Practical implementation of the test finally requires simulat-

ing/bootstrapping the estimated asymptotic distribution in (2.19) (see Section 2.4.2).

2.4.5 Model selection based on extremes clustering

The all-pass causal representation (2.10) is compatible with all MAR(p', ¢’) models of the form (2.9) (with

P + ¢ =p+¢q). Such models could have generated the observations, and it is important to detect which
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one is the true model. A distinctive feature of the latter is that the errors are i.i.d., not only "asymptotically
empirically non-autocorrelated" as in (2.9) (see footnote !!). Having estimated the coefficients of the poly-
nomial ng, a natural strategy for assessing the validity of a candidate model, with polynomial ng, is to test

the independence of the ¢ in (2.9). We propose an approach based on extreme clustering of the residuals.'®

Point process of exceedances

This dependence materialises here in an important feature known as extreme clustering (see e.g. [73, 99],
and [25] for a literature review) which yields a way to identify the strong representation among the all-pass
alternatives. Let us introduce a linear process (Y;) with two-sided MA (co) representation Y; = 3, ) creiq,
where (e¢) is an i.i.d. sequence satisfying (2.8), >, |cx|® < +oo for some 0 < s < a, s < 1, and assume
max |ci| = 1 for convenience. In our context, Y; will typically be substituted for the errors €; of the strong
representation and the errors ¢; of competing all-pass representations.

We can study the time indices for which a,, 'Y} falls outside the interval (—x, z), for # > 0. The corresponding

point process converges as the number of observations n grows to infinity (see Davis and Resnick, Section

3.D, 1985 [40])1 )
d
; 5(k/n,a;1Yk) ( - N Bm) — ];1 fképk, (220)

where § is the Dirac measure, B, = (0,400) X ((—oo,—x) U (x,—l—oo)), {T'k,k > 1} are the points of a
homogeneous Poisson Random Measure (PRM) on (0, +00) with rate :17*"‘,14 and &, = Card{i € Z : Ji|c;| >
1} where {Ji, k > 1} are i.i.d. on (1,+00), independent of {I'y}, with common density:

f(2) = 27 (1 400y (2). (2.21)

The sequences {T'y} and {{;} are interpreted (see for instance [89]) as describing respectively the occurrence
dates of clusters of extreme events and the size of these clusters (i.e. the number of co-occurring extreme
events). We now outline some reasons for analysing extreme event clustering and the potential for model

selection amongst competing representations.

Analysing the error processes of competing models

Let (X¢) be the MAR(p, q) strictly stationary solution of Model (2.8)-(2.7) and assume the order p + ¢ and

the roots of 1y are known. There is a finite number of competing representations among which the strong

13 . . . . . .
Alternative approaches based on non-parametric and rank-based tests have been proposed for testing iid-ness of innovations
(see for instance [18, 46]). However, the validity of these tests requires \/n-consistent estimators of the model parameters, which
is not the case in the a-domain of attraction framework as shown in Proposition 2.4.3.

14866 [37]: {T'x,k > 1} are the points of a homogeneous PRM on (0, 400) with rate x~% if and only if, for any ¢ > 1,

nonnegative integers ai,...,ap and by,...,by such that a; < b; < a;41,7=1,...,¢, and any nonnegative integers ni,...,ng:
2
= %b; — a;)|"
P(N(ai,bi] =ngi=1,... 75> = H %GXP {*xfa(bz‘ - ai)} ;
il

i=1
where N(a;,b;] denotes the number of terms of {I'y, k > 1} falling in the half-open interval (a;, b;], i =1,...,¢.
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one lies. Denoting (g;) of the errors of the strong representation and generically ({;°) the errors of any specific

all-pass representation, we can analyse their extreme clustering behaviour using (2.20).

Error process of the strong representation The i.i.d. errors (e;) of the strong representation admit
the trivial MA form &; = ), ., cktqx With ¢g = 1 and ¢ = 0 for k # 0. Thus, substituting Y; for ¢, (2.20)
holds with & = Card{i € Z : Ji|c;| > 1} = 11;,~13 = 1. The random variables (&) describing the size of
the cluster of extremes are degenerate in this case: the extreme errors (¢¢) tend to appear isolated from each

other.

Error process of an all-pass representation The (rescaled) errors ¢, of an all-pass representation
always admit an infinite one-sided or two-sided MA form, say ¢ = > WQH« Denote (c(x))x>1

kEZ (. -
the sequence obtained by sorting (|ck|)kez in descending order. Substituting Y; for ¢, (2.20) holds with

&, = Card {z >1: Jk% > 1} = arg max;>;{Jy > c&)lc(l)} and from (2.21), we deduce that for any £ > 1:

P(ﬁk > e) = ]P’(Jk > c@§c(1)> = cfpeas- (2.22)

In this case, the &’s can take arbitrarily high values with non-zero probability, indicating as expected that

the extremes of ({;°) tend to cluster.

Errors at higher horizons Considering the extreme clustering of errors at further horizons can provide
additional discriminating information. For simplicity, consider the noncausal AR(1) model. There are two

competing models, yielding the same all-pass causal representation (2.10):
X =thoXep1 + &, and Xy = o X1 + G- (2.23)

For any h > 1, expansions of these equations at horizons h read:

Erinlt = X¢ — Y Xen = ¢ + Yot + - + V) erin—1, (2.24)
h—1

Cornpt o= Xepn — 00 X0 = (0" —g) Z Voerk — Vg Z ot tk- (2.25)
k>h k=0

We can deduce that the point processes of excedances of the errors €,y and (;yp); at horizon h will

exhibit clusters of random sizes &, = Card {z €l J—lal > 1} where ¢; = 9 if 0 < i < h —1 for the

max; [c;]
strong model, whereas for the all-pass model, the sequence (|c;|) reads: [tho|", ..., [P ™1, 1 — 3", |ho|(1 —
20, o |2 (1 —1p3"), .. .. Thus, the extreme realisations of the errors (2.24) will appear by clusters of at most

h consecutive observations, whereas the errors (2.25) will likely appear by larger clusters (see Appendix for
illustration). This analysis can be extended to general MAR processes by disentangling the pure causal and

noncausal components of each competiting model (as in the proof of Proposition 2.3.1).
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Application to model selection

The previous section highlights that the extreme errors of all-pass representations are likely to appear in
large clusters, contrary to the extreme errors of the strong representation that tend to appear isolated.
Selecting the strong MAR(p, q) representation, assuming only p + ¢ known, can thus be achieved by looking
for evidence of extreme clustering in the errors of all competing representations. In principle, such evidence

shall be found in the errors of all representations but the strong one.

2.5 A Monte Carlo study

We conducted three types of experiments in order to gauge the sample properties of the LS procedure applied
to the all-pass causal representation. On synthetic data generated from a MAR(1,1) process, we assessed ¢)
the consistency of the estimators of the roots and the convergence in distribution of the LS estimators of the
backward AR(2) specification, ¢¢) the empirical size of the portmanteau-type statistic, and cct) the extreme

clustering in the residuals of the four competing models that the LS estimation implies.

2.5.1 LS estimation

We simulated 100,000 paths with lengths 500, 2000 and 5,000 observations of a-stable MAR(1,1) processes
solution of (1 — o F)(1 — ¢poB)X; = e with 99 = 0.7, ¢g = 0.9 and tail indices @« = 1.5, 1 and 0.5. We
computed the LS estimator (#;,72) and deduced estimators (z/?,gz@) by taking the inverses of the zeros of
1—MmX —72X2 (we imposed || < |@| for the sake of identifiability when the roots are real). For each model,
Table 2.1 reports the empirical frequencies of estimators that are sufficiently close to the actual values of the

roots. As expected, the accuracy increases with n but, more strikingly, it increases sharply as a approaches

Zero.

a=1.5 a=1 a=0.5

n a=01 a=005 a=001]a=01 a=005 a=001 | a=01 a=005 a=0.01
(¢) 99.8% 94.6% 33.3% 99.7% 96.4% 48.5% 99.1% 97.5% 71.4%
() 78.2% 55.2% 18.7% 83.8% 69.7% 33.0% 86.2% 79.9% 58.6%

2000  Pa (o) 99.9% 98.9% 54.3% 99.9% 99.2% 74.3% 99.8% 99.4% 90.3%
(¥) 96.3% 87.2% 34.6% 96.0% 91.5% 60.4% 96.4% 94.5% 84.6%
(¢)
(¥)

500 Pa(e

99.9% 99.8% 74.4% 99.9% 99.7% 88.4% 99.9% 99.7% 95.8%
98.7% 96.3% 53.6% 98.5% 96.9% 78.9% 98.6% 97.8% 93.2%

5000  pa

Table 2.1: Accuracy of the roots-estimation through backward LS: p,(#) denotes the frequency of estimations 6 belonging
to the set {‘é - 90| < a} N {é S R}, for 6 = ¢ or v, for a = 0.01, 0.05, 0.1 and over 100,000 simulated paths of the a-stable

MAR(1,1) process (X¢) solution of (1 —oF)(1 — ¢9B)X¢ = ¢, with 1o = 0.7 and ¢o = 0.9.

Turning to the asymptotic distribution of (71, 7j2), results reported in Appendix file show that the finite

sample distribution approaches its asymptotic behaviour much slower for lower values of «. In the same line,
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a direct implementation of the portmanteau test using the statistics (2.19) also showed heavy distortions in
finite sample. These distortions were expected as they were already reported by Lin and McLeod (2008) [94]
in the pure causal AR framework. To alleviate the problem, they suggested a Monte Carlo test which relies on
simulations of the estimated causal AR model to approximate the distribution of the portmanteau statistics
under the null hypothesis of correct specification. An important difference in our framework is that, under
the null, the estimated causal AR is only an all-pass representation of the process and we use its estimated
coefficients to simulate paths of the corresponding pure causal AR as if it were the strong representation.
Given that the residuals autocorrelations of this pure causal AR have the same asymptotic distribution as
those of the all-pass causal representation, the procedure remains valid."> We therefore proceeded with this
methodology (see Appendix). The empirical sizes of the 1, 5 and 10% nominal tests for lags H = 1,...,10
are reported in Table 2.2. It can be seen that using the Monte Carlo procedure, the portmanteau test is

much better behaved in finite sample, especially for a = 1.5, which is a realistic value for financial series.

a=15 a=1 a=0.5
H 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 1.30 5.80 10.5 1.25 5.40 10.4 1.45 4.10 7.35
2 1.55 5.65 10.9 1.60 5.25 9.65 1.35 3.90 7.05
3 1.40 5.35 10.9 1.30 5.05 9.40 1.20 4.45 6.95
4 1.50 5.45 10.5 1.35 5.00 9.90 1.20 4.35 7.00
5 1.25 5.50 9.85 1.20 4.90 9.20 1.10 4.20 7.30
6 1.30 5.00 10.1 1.05 4.70 9.40 1.10 4.25 7.40
7 1.20 5.25 9.75 1.05 4.40 9.15 1.20 4.00 7.50
8 1.10 5.25 9.75 1.15 4.55 8.70 1.05 3.70 7.25
9 1.25 5.10 9.80 1.30 4.30 8.60 1.05 3.75 7.50
10 1.35 5.10 10.1 1.20 4.55 8.70 0.90 3.65 7.15

Table 2.2: Empirical sizes (%) of the portmanteau statistics (2.19) implemented by the Monte Carlo test procedure. The
empirical size was calculated based on 2000 simulations of the a-stable MAR(1,1) process (X¢) solution of (1 — ¢oF)(1 —
¢oB) X = e¢, with 99 = 0.7 and ¢9 = 0.9. Each Monte Carlo test was performed with 1000 simulations.

2.5.2 Selection based on extreme residuals clustering

We now gauge the usefulness of the results of Section 2.4.5 by simulating paths of the a-stable MAR(1,1) pro-
cess (1—1oF)(1—¢oB)X; = ¢; with different parameterisations and analysing the residuals of the competing

1
5It can indeed be noticed that the asymptotic distributions of the LS estimator and of the residuals autocorrelations remain

unchanged whether X; is defined as the solution of 1o (F)¢o(B)X: = et or 9o(B)po(B)Xt = &¢ in (2.7).

99



representations. There are four competing models yielding the same all-pass causal AR(2) representation:

Pure causal AR(2): (1 —oB)(1 — ¢oB)X, = (,, (2.26)
MAR(1,1): (1—YoF)(1 — ¢oB)X; = ey, (2.27)

MAR(1,1): (1 —oB)(1 — poF) X, = 11, (2.28)

Pure noncausal AR(2): (1= oF)(1 = ¢poF)X; = wy, (2.29)

where ({;), (1) and (w;) denote the sequences of errors of each all-pass representation. More specifically for
each estimated model, we compute the errors at several horizons h (as in (2.24)-(2.25) for the AR(1). For each
MAR(1,1) alternative, we disentangle the causal and noncausal components and compute their respective
error series). For each errors series and a given threshold x > 0, we identify the clusters of consecutive
extreme values, i.e., errors larger than x in modulus. As explained in Section 2.4.5, for any horizon h, we
expect all-pass representations to display larger clusters of extreme errors than the strong model, for which
clusters larger than h have zero probability. Letting é;m(a:) denote the number of consecutive exceedances

)16

for the k-th cluster, we therefore propose an Excess Clustering (EC) indicator defined as:

> (éc,h(ﬂf) - h)

B k/Ek n(z)>h

. . if Card{k: &, n(z) >ht >0, else ECp,=0. 2.30
Card{k : & p(z) > h} {k = Sn(@) } " ( )

We start by generating 10,000 sample paths of MAR(1,1) processes. For each path, we fit a backward
AR(2), estimate the set {¢g, 10}, and for each of the four competing models we compute the indicator
(2.30) for h = 1,...,20. We refer to vectors (EC1,. .., ECy) as estimators of the term structure of residuals
excess clustering. Averaging model-wise across the 10,000 simulations yields the typical excess clustering
behaviors of the residuals of each competing model. We perform this experiment for several MAR(1,1)
processes and display the results of two parameterisations in Figure 2.3 (see Appendix for additional results
and details regarding the methodology).

It can be noticed that the all-pass models feature excessively clustering residuals at any horizon whereas
the residuals of the strong model barely deviate from no excess clustering. As we could expect from (2.22),
the heavier the tails the easier it is to identify dependent residuals. This is in line with the findings of Hecq,
Lieb and Telg (2016) [67] who are concerned with identification of causal/noncausal models using the LAD
estimator. Noticeably, even with very heavy tails (o = 0.5), the residuals at any horizons of the strong
representation still barely deviate from no excess clustering. These experiments highlight in addition the
usefulness of considering residuals at various horizons, instead of focusing only on basic residuals. Indeed,
all the term structures of excess clustering show that the contrast between the competing models does not

L0For a given h, EC), defined at (2.30) corresponds to the average size of clusters larger than h, from which we subtract h,
and is 0 if all the clusters are smaller than h. It is related to the Extremal Index, more common in the literature, which is the

reciprocal of the average size of clusters. Also, the choice of clustering scheme, i.e. how the sequence (ékh(a:))k is constructed,

can have an impact on the estimated excess clustering : more elaborate clustering schemes could be considered (see for instance

48, 109)).
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arise for h = 1 but rather tends to peak for intermediate values of h.

Last, we assess how well we can discriminate between the all-pass models and the strong repre-
sentation by exploiting the excess clustering feature. For each of the 10,000 simulations, we rank the four
competing models according to the area under the term structure curve of excess clustering (AUC) and
select the candidate with least AUC. Table 2.3 reports the true positive rates of this procedure. For a = 1.5
and n = 500, the strong representation was correctly identified in above 88% of the 10,000 simulated paths

and this proportion increases with n.

n=9500 n=2000 n =5000
88.4% 95.8% 97.5%

Table 2.3: Correct model selection rates based on least excess clustering across 10,000 simulated paths of the MAR(1,1)
process (X¢) solution of (1 —0.7F)(1 — 0.9B) X = &¢ with i.i.d. 1.5-stable noise.

1o =07 &1
¢o = 0.9
a=15

n = 500 w0

Yo = 0.7
¢ = 0.9
a=05

n = 500

Mean excess cluster size

T T T T T T
5 10 15 20 5 10 15 20
horizon horizon

Figure 2.3: Across 10,000 simulations of the a-stable MAR(1,1) process (X¢) solution of (1 — toF)(1 — ¢poB)X: = e, the
plots show the average of the term structure of excess clustering of the linear residuals of the four competing models (2.26)
(squares), the strong representation (2.27) (points), (2.28) (triangles) and (2.29) (diamonds). The parameterisations and path

lengths are indicated on each panel.

2.6 An application to financial series

In this section, we illustrate the adequacy of MAR models for real economic series. We fitted MAR models on
six financial and economic series: cotton price (monthly, USD/pound, August 1972 to July 2017)17
price (monthly, USD/bushel, January 1973 to May 2006)18

1962 to August 2018)"°

, soybean
, sugar price (monthly, USD/pound, November
, coffee price (monthly, USD/pound, April 1976 to May 2018)20, Hang Seng Index

! 7https: //www.macrotrends.net/2533/cotton-prices-historical-chart-data
1 . . .
8 https://www.macrotrends.net/2531/soybean-prices-historical-chart-data

1
9 https://www.macrotrends.net /2537 /sugar-prices-historical-chart-data
20 https://www.macrotrends.net /2535 /coffee-prices-historical-chart-data
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)21

(HSI) (monthly, HKD, November 1986 to Mars 2017)"", and the quarterly Shiller Price/Earning ratio (Q1

1881 to Q2 2017)22. In the following study, a linear trend is fitted and subtracted from the HSI series and

the other series are centered. These series are depicted on Figure 2.4.

2.6.1 AR estimation and validation using the Monte Carlo Portmanteau test

We start by investigating the appropriate total AR order (r = p + ¢) for each series using the Monte Carlo
portmanteau test of Section 2.5.1. For each series, starting from total AR order 1, we estimate all-pass
causal representations of increasing order by LS and perform the portmanteau test with H = 50 lags using
the Monte Carlo portmanteau procedure of Lin and McLeod (1000 paths were simulated for each test). The
results of the portmanteau test, reported in Table 2.4, allow to discard non-admissible low order models at
the level 5%. We retain for the following the lowest orders (indicated in bold) which pass the portmanteau

procedure: cotton: 2; soybean: 5; sugar: 4; coffee: 4; HSI: 3; Shiller P/E: 6.7

Total AR order r Cotton Soybean Sugar Coffee HSI  Shiller P/E
1 0.30 1.50 0.30 0.70  4.50 0.10
2 6.60 0.90 3.30 0.80  4.50 0.20
3 1.60 4.50 4.00 7.10 0.20
4 2.60 8.20 7.99 0.40
5 15.4 1.00
6 5.90

Table 2.4: P-values (%) of the Monte Carlo portmanteau tests with H = 50 lags for increasing AR order r. Rejection if
P-value < 5%.

2.6.2 MAR selection based on extreme clustering

For each of the mentioned series, we apply the methodology of Section 2.5.2: we fit all possible MAR models
of total order r = 1,...,6, compute the term structure of excess clustering of the residuals of each competing
model and the associated term structure of EC and we then rank the competing models according to the area
under the term structure curve. In Table 2.5, we report for each total AR order r the MAR(p, q) specification
which displays the lowest AUC of excess clustering and the median AUC of its competitors. We can notice
that overall, excess clustering decreases as r increases. Combining the results from the portmanteau tests of

the previous section and of the extreme clustering analysis, we select a final specification for each series as

https://finance.yahoo.com/quote/%5EHSI /history ?p=%5EHSI
2 https://www.quandl.com/data/multpl/shiller__pe_ ratio_month-shiller-pe-ratio-by-month
s procedure yields as a by-product the McCulloch quantile estimates of the tail index « (see McCulloch (1986)) for the
six series. Values of &: cotton: 1.53 ; soybean: 1.41 ; sugar: 1.35 ; coffee: 1.39 ; HSI: 1.34 ; Shiller P/E: 1.49. In all the cases,

the infinite variance hypothesis is plausible.
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Figure 2.4: Financial series paths: cotton (8/1972 to 7/2017), soybean (1/1973 to 5/2006), sugar (11/1962 to 8/2018), coffee
(4/1976 to 5/2018), Hang Seng index (HSI, 11/1986 to 3/2017) and Shiller’s P/E ratio (Q1/1881 to Q2/2017). All series are
monthly except the latter which is quarterly. A linear trend is fitted and subtracted from the HSI series and the other series

are centered.

follows. For a given series,
o Assign the total AR order r validated by the portmanteau test (see Table 2.4).

o For the assigned order r, select then the least excess clustering competing representation (see the
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favoured specifications in Table 2.5).

The selection is reported in Table 2.6 which shows the causal and noncausal orders as well as the (inverted)
roots of the corresponding polynomials. For all series, mixed models with non-trivial causal and non-causal
components are favoured, which is compatible with the upward/downward trends displayed by most extreme

events featured in the trajectories.

Total AR order Cotton Soybean Sugar Coffee ~HSI  Shiller P/E
Favoured specification (0,1) (0,1) (1,0) (0,1)  (0,1) (1,0)
1 AUC Excess Clustering 23.3 6.50 28.2 9.53 7.75 15.7
Median of competitors 29.7 7.03 41.7 13.6 16.5 51.9
Favoured specification (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)
2 AUC Excess Clustering 8.25 3.9 22.3 5.35 5.75 8.54
Median of competitors 16.1 6.10 29.1 8.97 9.33 26.4
Favoured specification (1,2) (2,1) (1,2) (1,2)  (1,2) (1,2)
3 AUC Excess Clustering 6.20 2.30 21.4 2.83 0.50 2.13
Median of competitors 10.5 3.45 83.1 9.60 6.17 124
Favoured specification (1,3) (3,1) (3,1) (1,3)  (1,3) (1,3)
4 AUC Excess Clustering 5.83 2.42 6.67 3.00 0.50 1.63
Median of competitors 10.1 3.38 14.8 5.06 5.66 6.25
Favoured specification (1,4) (2,3) (2,3) (1,4) (3,2) (3,2)
5 AUC Excess Clustering 3.00 1.75 3.17 3.00 2.00 2.08
Median of competitors 8.30 3.00 13.3 5.38 5.67 5.17
Favoured specification (1,5) (2,4) (2,4) (3,3) (1,5) (2,4)
6 AUC Excess Clustering 3.00 1.40 4.82 2.50 0.50 1.33
Median of competitors 8.30 3.61 17.3 6.30 4.20 4.67

Table 2.5: Selection based on extreme clustering.

Series | Final specification  Noncausal (inverted) roots Causal (inverted) roots
Cotton MAR(1,1) 0.92 0.17
Soybean MAR(2,3) 0.37 £ 0.407 0.87, —0.60 , —0.07
Sugar MAR(3,1) 0.94, —0.08 + 0.49 0.52
Coffee MAR(1,3) 0.55 0.92, —0.29 + 0.21
HSI MAR(1,2) 0.37 0.89, —0.26
Shiller P/E MAR(2,4) 0.58 £ 0.29¢ 0.97, —0.70, —0.21 £ 0.60¢

Table 2.6: Selection of the MAR specification for each financial series among the favoured ones of Table 2.5 based on the
total AR order determined in Table 2.4. The MAR(p, q) specifications indicate the noncausal p and causal g orders as well as

the (inverted) roots of the corresponding polynomials.
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2.7 Concluding remarks

Noncausal models may provide better understanding of the dynamic features of a time series that are not
perceived via causal models. Even the addition of a very simple noncausal component to an arbitrarily
complex classical causal AR is sufficient to profoundly alter its motion and this in turn impacts the way
we infer its future. Building on Gouriéroux and Zakoian (2017) [63], we showed in this paper that several
important properties of the pure noncausal AR(1) with stable errors extend to mixed AR models: the Markov
property, the existence of a conditional mean whatever the size of the tails of the errors distribution, and the
presence of ARCH effects in the Cauchy case. On the other hand, if the unit root property continues to hold
when « = 1, the martingale property is lost when a causal part is present in the model. A more complete
description of the conditional distribution would require deriving higher-order moments, in particular to
study the conditional skewness and kurtosis. We leave this issue for further research.

In the statistical part of the paper, we showed that LS estimation of a causal representation of the
process allows to consistently identify the roots of the MAR polynomials, though not to distinguish causal
and noncausal roots. Such identification issues were addressed by Hecq at al. (2016) [67] for MAR processes,
and by Cavaliere et al. (2018) [24] using bootstrap inference for pure noncausal processes. We proposed an

alternative strategy based on extreme clustering and leave its asymptotic properties for further investigations.

2.8 Postponed proofs

2.8.1 Proof of Proposition 2.2.1

Using the MA(00) representation (2.3) of X; and the assumption that &; i S(a, 8,0, 1), it follows that

+o0o
] s Z A€tk +oo ]
Vs €R, tx,(s) =E[e"¥] =E |e == = H E [efsdrertk]
k=—o0
—+oo
= H exp {—o“|dks|* (1 — ifsign(dis)w(a, dgs)) + idgsp} .
k=—o00
If a # 1, then,
= T
Vs e R, Invyx,(s)= k_z_ —o®|dgs|” (1 — ifsign(dys)tg (7)) +idgsu
+oo .
> |di|*sign(dk) . Lo
~ . pk=—o00 . .
=—c%s|*|1-1ip = sign(s)tg (7) +isp Z dy,.
> e —
k=—oc0
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Whereas if a = 1, then, for any s € R

2
Inyyx,(s) = Z —o|dgs]| (1 +i5sign(dks)ln|dk5|> + idgsp
T

+oo

= 2 kgoodk = 2 =

=—lslo | > |dxl L+i=f——sign(s) Ins| | +is > dipp =~ > diln|di |-
k=—o00 Z |dk| k=—00 k=—o0

k=—o0

The conclusion follows from the characterization of stable laws in (2.2).

2.8.2 Proof of Proposition 2.3.1

We decompose (X;) into its pure causal AR(q) and noncausal AR(p) components (see [59, 87]) respectively
(v¢) and (ut), defined by

U = ¢(B)Xt < 1/)(F)ut = &g, (231)
vy = w(F)Xt < ¢(B)Ut = &¢. (232)

We first show that (u;) is a Markov process of order p. When there is no risk of ambiguity we denote by f a
generic density, whose definition can change along the proof. Since by (2.31), uy = Y141+ . . +VpUitp+£t,

for k > p, the conditional density of u; given its k past values is

f(ut’ut_l,...,ut_k) — f(utv“-aut—k)

f(utfla-“autfk)
f (utsz Ut—k+1y-- - 7ut7k+p) f (Um e 7ut+17k)
f (Ut—k Ut—Fot1s - - - ,ut—k+p) flug—1, . ugp1-k)
f (Ut, e 7ut7p)
= Zf(utut,l...ut,)
f(ut_l,...,ut_p) ’ ’ pJo

where the second equality follows from the Bayes formula and (2.31), that is u; = ¢(B)X;, and the third
equality is obtained by decreasing induction on k. We now turn to the MAR process (X;). From u; = ¢(B) X4,

we have X; = >°7 | ¢; Xy—; + u;. Thus, with obvious notation, for any z,z1,...,2p4q € R,

th (x‘thl = x17Xt72 =T2,.. )
= fTL‘+Z?=1 iz (l"Xt,l = T1,.- )

q q q
= fu, |7 — E GiTi|Us—1 = T1 — E DiT14i, Ug—2 = Tg — g GiTatiy- -
im1 i1 i=1
q q q
= fu, |z — E GiTi | U1 = T1 — E GiT1qiy -y Upp = Tp — E GiTpri
i=1 i=1 i=1

using the Markov property of (u;). The latter quantity is a function of (x,x1, ..., Zp4+4), showing that process

(X) is Markov of order p + q.
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2.8.3 Proof of Theorem 2.3.1

We first show that the theorem holds for ¢ = 0 and we then extend it to general MAR(p, q) processes.

Lemma 2.8.1 Let (X;) be an «a-stable pure noncausal AR(p) process solution of X; = 1 Xep1 + ... +

VpXitp + €1, where the roots of Y(z) are outside the unit circle. Then,
E[\XtP‘Xt,l, . ,Xt,p} < +o0, forany € (0,2a+1).

Proof. Suppose p > 1 (the result is already known from GZ for p = 1). For any (zo,...,z,) € RPFL
XX es1 o Xegp)=(@1,.sy) (T0) = fe(To — Y171 — o0 = Yp1y),

because ¢; is independent from X;.1,..., X;1,. By the Bayes formula,

Xl (X Xy ) =(@0snap1) ()

th|(Xt+17...,Xt+p):(11 ..... Ip)(xo) - th+17“_7Xt+p (Il’ o 7xp) th,.H,Xt+p71(x07 e 7xp71)‘
Thus,
IX il (Xt Xespe1)=(@0reszp—1) (Tp) =
Je(wo — 1z — .0 — wpxp)fx (xp)fXHl,...,Xter,l|Xt+p::1:p (w1,... 7xp—1) (2.33)
Xt Xeppo1 (T05 oo Tp_1) ' .

On the one hand, when z, — +o0,

fx(p) ~ C(mp)|$p|_a_1a (2.34)

felzwo — iz — ... —Ypayp) ~ C*(mp)|xp|*a*1, (2.35)

where C(z,) and C*(x,) are constants depending on x,, which may change according to whether x,, — 400

or x — —oo. On the other hand, we show that

th+17--<7Xt+p71|Xt+p:(L'p (Ih cee vmp—l) \a:p;ioo 0. (236)
Let Zt = Xt — ’(/)1Xt+1 — = ¢p—1Xt+p—1- Conditionally on Xt+p = Tp, W€ have Zt = ¢p$p + &¢. Since

Xi4p and e, are independent and 1, # 0, we have |Z;| — +00 a.s. as |zp| — +0o. Therefore, for any zp € R

and any neighbourhood V,, of zp, when |z,| — 400,

IP’(Zt €V,

Xisp = 2y)—0,  which implies, P((Xi,..., Xip-1) € Va

Xt+p = ﬂfp) —>07

for any point € R? and neighbourhood V,, around this point. Hence the convergence in Equation (2.36).

Combining Equations (2.33), (2.34), (2.35) and (2.36), we obtain, for |z,| large enough,

th+pI(Xty--th«prl):($07'--7J3p—1)(xp) = 0<|xp|72(a+1))'

Thus Lemma 2.8.1 is established.
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Let us now prove Theorem 2.3.1. Let v € (0,2a+1). Decomposing (X¢) into its pure causal and noncausal

components (v;) and (u¢), defined in (2.32) and (2.31), we have the equivalence between the information sets
(thh “e ,Xt,p,q) and (Ut,h sy Ut—py Vt—p—1y v+ ’Ut,p,q),

and the independence between (u¢—1,...,u—p) and (Vs—p—_1,...,Vi—p—q) (see Lanne and Saikkonen (2011),

Gouriéroux and Jasiak (2016)). From Equation (2.31), we have for v > 1 by the triangle inequality,

1/~
(E[|Xt|V’Xt,1, o Xt,,,,q]) (2.37)
1/
= (B[jn — o1 Xem1 = o = 6 X[ Xio1, o Xy )
1/~
<61 KXo+ o+ 6 Xamgl + (B[l Xoor, o, Xipog] )
1/y

= |¢1Xt—1 +...+ ¢th—q| + (E {lut‘w‘ut—h cees Ut—py, Vt—p—1,- -+ avt—p—q:|)

1/y
=1 X1+ ..+ P Xi—g| + (E{|Ut\7‘ut—17 e 7Ut—pD , (2.38)

which is finite almost surely by Lemma 2.8.1 since (u;) is an a-stable pure noncausal AR(p) process. If
¥
€ (0,1), by the inequality (a+b)” < a?+b" for any a,b > 0, we have that |a+b|7 < (|a|+|b|) < la|"+|b|7,

for any (a,b) € R. Thus, similarly to (2.38), we show that
]E{|Xt|7‘Xt—1, e 7Xt—p—q] S Xeor+ o+ D X" + E[‘Utp‘ut—ly ey Ut—p}

which completes the proof.

2.8.4 Proof of Proposition 2.3.2
The following Lemma will be useful for the proofs of Proposition 2.3.2 and Corollary 2.3.1.

Lemma 2.8.2 Let (X;) be a MAR(p,q) process with ¢ > 0. For any h > 0, there exist polynomials Py, and
Qp with d°(Py) = q— 1 and d°(Qy) = h, such that for any t € Z,

Xt+h = Ph(B)Xt_l -+ Qh(F)’U,t, (239)
where (uy) is defined in (2.31).

Proof. We prove (2.39) by induction on h. In view of (2.31) we have X; = >°¢ | ¢;X;—; + u; from. Thus
(2.39) holds for h = 0, with Py(B) = 3970 ¢;iy1B* and Qo(F) = I. Assume that the property holds up to
the order h—1, for h > 1. For r = min(h, q), Xepn = > iy Gip1 Xetn—i + ZLTH Giv1 Xty h—i+ uprp, where,
by convention, the second sum vanishes if » = ¢q. Thus
T q r
Xevn =Y bis1Poi(B)Xe1+ D Gir1Xegn—i+uepn+ Y Quoi(Fus,
i=1 i=r+1 i=1
which is of the form (2.39) with
T q ) r
Pu(B) =) ¢i1Pai(B)+ D ¢iaB" Qu(B)=F"+ > Quni(F). (2.40)
i=1 i=1

i=r+1
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Therefore, (2.39) is established.

We now extend Theorem 2.3.1 in the case p = 1, by showing that for any A > 0,
]E{|Xt+h\’y‘Xt_1,...,Xt_q_l} < 400 whenever 0 < v < 2a + 1. By Lemma 2.8.2 we have, proceeding
as for Equation (2.38) and letting Qn(z) = Z?:o qin?",

1/~ h 1/~
(]E[|Xt+h"y)Xt—1a e aXt—q—1:|) < [Pr(B)Xi-1]| + E i1 (E[|ut+h|w‘ut—l}> :
i=0

which is finite almost surely for any h > 0 whenever 1 < v < 2a + 1 by GZ (Proposition 3.2) since (u;) is
a noncausal AR(1). For v € (0,1), we proceed similarly using the inequality |a + 0|7 < |a|¥ + |b]7, for any
(a,b) € R. We now turn to the conditional expectation of X, . We have by the independence between wu;_1

and (’Ut_g, ey Ut—q—l)

h _
]E{Xt+h‘Xt—1v e vXt—q—l} = Pp(B)X¢—1 + ZQi,hE Up i | Xg1,--- 7Xt—q—1]
i=0 )
h _
=P, (B)Xi-1 + ZQi,h,E Uptq|Up—1, V2, - - - 7Ut—q—1}
i=0 )
h _
= PuB) X1 + Y ainE[urss ut_l]. (2.41)

=0

By GZ (Proposition 3.3), we have for any i > 0,

<a—1> i+l
E[Uuﬂ' Ut—1:| = (77/1 ) Up_1,

and therefore,

h

E[Xern| X1y Xicgoa | = PalB)Xioa + 052 P01 Y o (w50
=0

= (P(B) + =22 Qu(e=""2)6(B) ) X1

= ﬁh(B)Xt_l.
To conclude, we invoke the fact that (X;) is a Markov chain of order g + 1, which gives the equality
E[Xt+h‘xt_1, . ,Xt_q_l} = E[Xt+h’9t_1] The formula for b = 0 is obtained by noting that Py(B) =
S0 i1 B and Qo(F) = 1.

2.8.5 Proof of Corollary 2.3.1

We will derive the asymptotic behaviour of &), (B)X;_1 = (Ph(B) + z/J<a’1>Qh(z/J<°"1>)¢(B))Xt,l when
1 < a < 2. We start by a result giving details about the behaviours of the coefficients of the polynomials
Py, and @y, defined in Lemma 2.8.2. Denote Pp,(z) := Zg:_ol a;pz’ and Qp(z) = Z?:o binz'.
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Lemma 2.8.3 For h > q, the coefficients of polynomial P, and Qp verify:

qg—i—1
a(),h = Cl(h))\}f 4+ ...+ Cg(h)A’;’ ai7h = Z a07h_j_1¢i+1+j, fOT 0 S ’L S q— 1,
§=0
bi,h = A0,h—i—1, fOT‘ 0 S ) S h, ap,—1 = 1,
where the A1, ..., \s are the distinct (inverse of the) roots with multiplicities mq,...,ms of ¢ and C1,...,Cj

are polynomials with degrees mi —1,...,ms — 1.

The proof is relegated to Appendix.
The proof of Corollary 2.3.1 involves several steps.
i) Equivalent of ag_p,
Without loss of generality we can assume that the (inverses of the) roots of ¢(z) are ordered: 0 < || <
- < |A1] < 1. For ease of notation, we drop the indexes of the largest root (in modulus) A; and m; and we
will denote also by C' the coefficient associated to the monomial of highest degree of C;. We thus have

aop,p =~ Ch™ A" and laon| — 0. (2.42)
h—+oco

h—+oco

Zl) Limit of Ph(B)Xt,1

From Lemma 2.8.3, it appears that Py (B)X;_1 = Zg;ol a; n Xi—iz1 h% 0.
— 400

#4i) Limit of Q(p<2~1>)

h—1
h—1 .
Qnp<a—1>) § :a()h i (pe1>)i = (1/)<a71>) {¢<a71> +§ :a07i(¢<1704>)1
i=0
Let us study the general term of the above series. We have

a0$i(¢<1—a>)i lﬁ:jroo Cim_l)\i(’t/}<1_a>)i — CSign(Aw)iim_l(|)\||’¢|1_a)i. (243)

Different cases arise.

t) Assume a = 1. According to Equation (2.43) for a = 1, |ag;(¢<'72>)! ~ |Cli™~|\[*

which is the general term of an absolutely convergent series. Thus, |Qn(¥<%"1>)| = |Qx(sign(v))| =
sign(¢) + 170 ag sign (1)) T D, for some D > 0.
1—> 100
In A
L) Assume1<o<<1+ | ‘
In [¢)]
Then |Qh(w<o¢ 1>)| — |w|(a 1)(h—1) ’w<a 1> +Zz o @0,i (,(/)<17a>)i _+> 0-D=0.
1—> 100
In ||
tee) Assume o =1 + .
) in o
For i > ¢, there exists a positive constant A such that
q . .
lao.i| = | D Ci(0)N;| < Ai™ A" (2.44)

Jj=1
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Thus, since |A|[[17® =1,

h—1
< A‘w‘(a—l)(h—l) Zim‘)‘|i|w|(l_a)i

=0

SA‘w‘(a—l)(h—l)hm-‘rl —5 0.

h—-+o0o

h—1 4
Z aO,i(¢<1_a>)z

=0

|¢|(a—1)(h—1)

In|A
v) Assume « > 1+ 1n|1/)|| From Equation (2.44),
n

h—1 4
Z a07i(,¢}<1—a>)1

=0

h—1
< A‘w‘(a—l)(h—l) Z Z'm‘)\|1'|w|(1—a)i
=0

|,(/)|(a—1)(h—1)

o L
L= [Al[gp[t =

AR™ || (a—1)} h
< 0 a-bh _ — 0.
< T maer=s (¥ AI") 0

< AW}‘(afl)(hfl)hm

The proof of the diverging conditional expectation in the MAR(1, ¢) case with a € (0,1) is provided in
Appendix.

2.8.6 Proof of Proposition 2.4.1

The p(h)’s are only function of the AR coefficients and coincide with the theoretical autocorrelations of

the process Y po _ dpZi_i, where (Z;) is an i.i.d. noise (with finite variance). Thus, the p(h)’s are the

theoretical autocorrelations of the stationary solution (Y;) of the AR model ¢o(F)po(B)Y: = Z;. We
know from Brockwell and Davis (1991, Proposition 3.5.1) [19] that (Y:) satisfies the causal AR model
Yo(B)do(B)Y; = Z;, for some white noise sequence (Z;), from which the recursion on the coefficients p(h)

is deduced. The conclusion follows.

2.8.7 Proof of Proposition 2.4.2

The consistency of 7 follows from Davis and Resnick (1986, Section 5.4) [41].

2.8.8 Proof of Proposition 2.4.3

q-ny = R (p-p)+(R -Rp=R {(p-p)+R-RRp}. (2.45)

We have R — R = S"P79{p(i) — p(i) } K9 Tt follows that

(R—R)R'p=—L(I,1,© Rp)(p — p). (2.46)

~—1 2

Thus, since R~ — R~ in probability as n — oo, %(ﬁ — 1) has the same asymptotic distribution as
2

R YI, LI, ,® R_lp)}gfn(b — p). The convergence in distribution in (2.16) is a direct consequence

n

of Davis and Resnick (1986) [41] who showed that g—i(i) - p) 4 7.
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2.8.9 Proof of Proposition 2.4.4

The case 0 < a < 1 is a direct consequence of Theorem 4.4 (i) by Davis and Resnick (1986) [41].

Consider the case 1 < a < 2. From the proof of Corollary 1 p. 553 by Davis and Resnick (1986) [41], we
know that p(h) — p(h) = op(ana,?) for h > 1. Given p(h) % p(h), it holds that p(h) 5 p(h) for h > 1.
Following the proof of Proposition 2.4.3 with obvious notations, it can then be shown that a,'a2(j — 1)
has the same asymptotic distribution as R™{I,4; — L(Ip4q ® R_lp)}%(i) — p). The conclusion follows
from Corollary 1 by Davis and Resnick (1986) [41].

2.8.10 Proof of Proposition 2.4.5

Write, fort =p+q+1,...,n,

N p+q rtq ptaq
Go=—> noiXei— Y (hi—moi)Xewi == > _moiXe—i — (A —n) X441,
i=0 i—1 i=0

with ngo = -1 and X1 = (X4—1,...,X1—p—q)". Hence

d_1a2 n p+q
a, tanpe(h) = % Z Z 070 Xt—iXt—h—;
T —pra+1 (=0
rt+q
+(H = m0) > m0i(Xe—i Xyp1 + Xt—h—iXt—l)} +op(1),
i=0

with by convention X, = 0 for s < 0. Let the (p+q+1) x (p+¢+ 1) matrices Ry, = [p(h+i— )i j=o.... pt+a>
Ry, = [p(h +i— j))ij=0,...p+q, and for any strictly positive integers, m, m’ such that m < m/’, let p,,,.,., =

[p(Di=m,...m" and py.p = [p(i)]i=m,....ms. Then,

n p+q p+q
Z Z n0iN0j Xe—iXi—n—j = 4(0) Z noinojp(h +j — i) +op(1)
t=p+q+114,j=0 1,j=0
p+q
= 4(0) Y noinmog{p(h +j — i) = plh+j — i)} + op(1)
i,j=0

= 4(0)mg (Rh - Rh)no +op(1)

= 5(0) (nf @ np ) vec(Rn — Rn) +0p(1),

where the second equality follows from (2.11). Moreover,

n p+q
Z (1 —no)’ Z Noi(Xe—iXt—n—1+ Xe—n—iX¢-1)
t=ptq+1 i=0
p+qp+q
=5(0)> > "(finj — m05)m0i (ﬁ(h i)+ ph+i— j)) +op(1)
i=0 j=1

O)m) (Bn+ By,) (7 = o) + 0r (D).
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Let the (p4 ¢+ 1) x (p+ ¢ + 1) matrices D; = J? and D_; = *J* for i > 0. We have:

ptq—h
Ry~ Rn=> (96) = p(i))(Dn-s + Dnsi)
=1
h+p+q
+ Y (ﬁ(i)—p(i))Dh,i, if 1<h<p+q-—1,
i=p+q—h+1
h+p+q
Rp-Rn= Y (#)=p(i))Dis. if h>pta
i=h—p—q

Thus, with
Ly = {vec(Dh_l + Djy1)...vec(Dap—p—g + Dprq) vec(Dap—p_g—1)...vec(D_p,_,)|, if 1<h<p-+gq,
Ly, = {vec(Dp_,_q) . .Vec(D_p_q)} ) if h>p+gq,
we can write
vec (Rh - Rh) =Ly (ﬁ1:h+p+q - pl:h+p+q)7 if 1<hs<p+tq
vee (Rh - Rh) =Ln (ﬁhfpfq:hﬂwq - pl"wpfq:thqu)7 if h>p+q+l

The two last expressions point to the fact that (ﬁg(h)) will depend on (ﬁ(z) - p(z))

h=1,...H i=1,....H+p+q
We therefore rewrite vec (Rh — Rh> as

vec (Rh - Rh) = LpMp (ﬁl:H+p+q - P1:H+p+tJ>’

with M}, being the matrix of size (h+p+q) x (H+p+¢q)if0<h<p+qgand (2(p+q)) x (H+p+q) if
h > p+ q + 1 picking the appropriate components of (ﬁ1:H+p+q — p1:H+p+q>. More explicitly,

My = (Ih+p+q 0h+p+q><H7h)» if 0<h<p+g,
M;, = (02(p+q)+1><h—p—q—l I2(p+q)+1 02(p+q)+1><H—h)7 if h> p+q+ 1.

Thus, using equations (2.45) and (2.46),

-1 94 __1 92 700 N NN
nla’ipg(h) = anla’i AA((O)) ( 6 & TIG)Lth + 776 (Rh + R;;,)P‘| (p1:H+p+q - pl:H+p+q> + OP(]-)v
¢
. Ixp+q | A1 —1
with P := R {I,.,—L(I,.,®R 'p)}Mp.
p+q
Finally, letting Ag = (776 ® n6)Lth +n (f%h + RL)I:’] denote the matrix resulting from the
h=1,...H

vertical piling of vectors, we have

a? +a,%4(0)
h = A2 a;1a2<ﬁ - p1. )+0 1).
P~ A )t Pt = Pratpsa) +or(l)
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By Theorem 4.2 by Davis and Resnick (1985) [40], Theorem 4.4 by Davis and Resnick (1986) [41] and Lemma

N 0
2.85 below, P P = | P RUI, .. — LI, ® R p)} My,
p+q
PN (ng ®n6)Lth +ngR;lP1 = Ap and p; ~ 1(0)Ap Z where Z = (Z1,..., Ziipiy),
h=1,....H

and where the (Z;) are defined at Proposition 2.4.3.
Lemma 2.8.4 Under the assumptions of Proposition 2.4.5, a,? (ﬁ(h) — 'y(h)’yg(O)) 250.

IO

Lemma 2.8.5 Under the assumptions of Proposition 2.4.5, a_Q‘yé(O)
2.8.11 Proof of Lemma 2.8.4

We have

Z X Xop = Z SN didiersicijn = Z SN didjincipice + Z > didipneiy;

t=1i€Z jEZ t=1 i€Z j#i t=1 i€Z

From Proposition 4.2 by Davis and Resnick (1986) [41], we have

a;Q Z Z Z didj+h5t+i5t+j i> 0. (247)

t=1 i€Z j#i

A direct extension of Proposition 4.3.ii by Davis and Resnick (1986) [41] (see also the proof of Proposition
4.3 by GZ in the AR(1) case) yields

a,’ (Z > didipnet =) s?) 0. (2.48)
t=1

t=1 i€Z

Combining equations (2.47) and (2.48), we get a2 (ﬁ(h) - 'y(h)%(O)) 25 0.
2.8.12 Proof of Lemma 2.8.5
2
n p+q p+q
a,” ZQ =a,’ Z <Xt Z’?oth it Z (771 WOz)Xt z)
n p+q p+q p+q
= a;Q Z <Xt — Z nOiXt—i> +2 Z ( 7701) X X — Z nont—iXt—j

t=1 i=1 j=1
pt+aptq
+ Z Z (ﬁi - 770z‘) (ﬁj - an)Xt—iXt—j]
i=1i=1
ptaq pt+q pt+q
l Z Moi¥(— Z Mo | () — Z Mo; (i — J)
j=1
p+qp+q
+ ZZ (ﬁz - T’Oi) (ﬁj - 770;‘)’3’(1' - ])] .
i=1 i=1



Using Lemma 2.8.4, the fact that § — n, — 0 in probability and the convergence in distribution of the
vector a2 (ﬁ(i), 0<i< L) for any integer L, we get:
p+q p+q p+q

a,3£(0) = a;,*4¢(0) [7(0) =2 m0v(=3) = 3 mos [ 7@) = D mov(i =) | |+ or(1).

From Proposition 2.4.1, we have that 1y(B)v(i) = 0 for any ¢ > 1 and n,(B)y(0) = 1. Thus

-2 o, _,4(0
0 5600) = 07360) 0r (1) = 729 1)

(0]



2.9 Appendix

This Appendix consists of six sections of additional results: 2.9.1) asymptotic prediction of the MAR(1, q)
when a € (0,1) and an explicit example in the MAR(1, 1) case; 2.9.2) expectation of MAR(p, ¢) processes
conditionally on a linear combination of past values and proof of the unit root property; 2.9.3) conditional
correlation structure of noncausal AR(1) processes, proofs of Proposition 2.3.3 and of the conditional variance
of the MAR(1,1); 2.9.4) proof of Lemma 2.8.3; 2.9.5) recursion over polynomials P, and Qp; 2.9.6) Cluster
size distribution, an illustration with the noncausal AR(1); 2.9.7) complementary results on the empirical
study and details about the estimation of excess clustering term structures; 2.9.9) Complementary estimation

of the financial series using the R package '"MARX".

2.9.1 A complement to Corollary 2.3.1 in the case o € (0,1) and ¢ > 1
Under the conditions of Proposition 2.3.2, when « € (0,1), we have almost surely
0 Zf 1/}<a 1> +Z ao.; (w<17a>)i :0’
E[Xiin| Fioa]| — =0
h=too | 400 else,

where the ag;’s are defined in Lemma 2.8.5.

Proof.

To complete the proof of Corollary 2.3.1 in this case, we will derive the limit of Qj(y<"'>) =

h— ,
(¢<a—1>) [w<“ > 4 ZZ 0 aol(w<1_a>)l} when a < 1. Recall that we have shown ag e
Chm=L)h,

In this case, we have |A||¢|17® < 1, thus ‘w@‘ 1> —|—Z -0 Y ag,(p<172>)i| —s D, where D is a nonnegative

1—+00
constant.

o Assume D > 0. Then |Q(1)<*"'>)| — 400 as h tends to infinity, since ||(*~DP=1 - 400,

o Assume D = 0. We will show that |Q,(¢<*"1>)| — 0.

Indeed, we have

“+oo
w<a71> + ZQO,i(¢<lia>)i =0

w<o¢ 1>_’_Za01 ¢<1 a> ZGOz ¢<1 a>

=0
Thus,
h—1
|Qh(¢<a_1>)| — |'€/J|(a_1)(h_1)‘w<a_1> + Zao,i(¢<1_a>)i
=0

400 .
= |¢|(Ot—1)(h—l)‘ Z aO,i(¢<l_a>)l
i=h

—+o0
< |1/}|(a71)(h71) Z |a07i||w|z(lfa),

i=h
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and

—+oo —+o0
D laal [0~ JOIY A
i=h i=h

We will show that for any x € (0, 1), and any integer r > 0,
oo
) r.h -1
~ 1-— 2.4
;th_)Jroohx( x), (2.49)

which will imply
+o0
(a—1)(h—1) . i(l—a) — m—1|yh
0 - laoall 0= = O@m AR,

i=h
and thus |Q(¢<*"1>)| — 0, yielding the conclusion.

and ( (i—=1)...(i—

r+ 1):6’) are equivalent as i tends to infinity and are both general terms of absolutely convergent
K3

Let us now prove Equation (2.49). Notice that for z € (0,1), the sequences (irx )

7

series. Thus,
+oo

Zz ~ Zi(i—l)...(i—r—i—l)xizﬂc"g(r)(as),

h—
i=h oo i=h

where g(z) := Z+ Lot =al(1—z)7h

By Leibniz formula, we obtain

" Rl —j)! xh=i hrah—r
(h=3)! (I =)=t hotoo 1 -z’

9" (z)

and thus,

Z hrxh—r hrxh
i ~ = :

h—>+oo 1—x 1—x
Substituting = by |A||]!~® concludes the proof.

In the case a € (0,1), i.e. for the heavier tails within the stable family, the absolute conditional expecta-
tion tends to +oco in modulus whenever the quantity ¢ <®~1> + ZZ 5 @0,i(¥<'7*>)" does not vanish. This
divergence is coherent with the fact that the unconditional expectation of (X;) does not exist when a < 1.
It would be striking to have a case for which the above quantity is exactly zero, which would imply that
the conditional expectation vanishes even for this class of particularly extreme processes. However, as the

following example shows, all MAR(1,1) feature diverging conditional expectation when a < 1.

Example 2.9.1 (Asymptotic predictions of the MAR(1,1) process) Let (X;) be defined by Equa-
tion (2.6). From the explicit predictions formulated in Section 2.3.4, we deduce the asymptotic equivalents

as the horizon h tends to infinity:

(1/)<a71>)h+1
e it gl <yl
L(X e ¢ ) it |g| > |t
E [Xt+h‘ﬁt71] e~ ¢ —p<a=i> =1 t=2 ) )
h—4o00 el 1+ (_1)]1 . )
(rb + (Xt—l - #(Xt—l — qf)Xt_Q)) R if ¢ — 7,¢J<a >7
(h + 1)¢’H—1(Xt,1 — ¢Xt,2)7 if ¢ = ,(/}<oz—l>'
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Noticing that the condition |¢| < |¢|*~! is equivalent to o < 1+ 112 IIZ‘I , with :r?l‘i‘l > 0, it can be seen that the

three asymptotic limits of Corollary 2.3.1 are consistent with these equivalents. In particular, when o = 1,

we always have |¢| < 1 = [1|*~1 and we get that, almost surely,

Xi—1— 90Xy
1 — sign(v)¢

‘E [ Xegn| Xe—1, Xi—o] W b1 =

2.9.2 Unit root property and extension

The equality E[Xt‘Xt_l] = X;_1 for the noncausal Cauchy AR(1) with positive AR coeflicient shows the
existence of a unit root. Indeed, we have X; = X;_1 +n, where E[n;|X;_1] = 0. We show in this section
that this property actually extends to more general MAR processes. The next result provides the conditional

expectation of X; given X;_ 1.

Proposition 2.9.1 Let X; be the MAR(p, q) process solution of (2.1) with symmetric a-stable errors, 1 <

a < 2. Denoting (di) the coefficients sequence of its MA(oo) representation, we have

Z dk (dk+1)<a71>
keZ

> ldi4|®
keEZ

E[X| Xo1] = X1,

The condition for the existence of a unit root is now straightforward.

Corollary 2.9.1 Under the assumptions of Proposition 2.9.1,

E[X¢| X;-1] = Xia = D i (di )= = e
kEZ kEZ

The case a < 1 is more intricate because the expectation on the left-hand side of (2.50) might not exist.
However, the conditions for existence can be established using Theorem 2.13 of Samorodnistky, Tagqu (1994)
[117]. This is left for further research. Proposition 2.9.1 is a consequence of the more general conditional

expectation of X; given any linear combination of the past that we provide in the next result.

Proposition 2.9.2 Let X; be the MAR(p,q) process solution of (2.1) with symmetric a-stable errors, 1 <
a < 2. Denote (dy) the coefficients sequence of its MA(co) representation. Then for any h > 0, k > 1, and
ai,...,ay such that there exists £ € 7, a1dg41 + ... + apderr, # 0, we have

k <a—1>
ZZEZ d[—h, (ijl (Zjdg+j>
o (a1 X1+ ..+ apXi—p). (2.50)

k
E[XtJrh‘ Zant_J} - k
j=1 > ez ‘Zj:l ajdet;

Proposition 2.9.1 is obtained for k=1, a; = 1.

Proof.

Let us introduce Y;_1 5 = a1 X;—1 + ... + apXy—p. Let o(u,v) = E [ei"Y‘*L“’”X“rh] . For any (u,v) € R?
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we have,

[ k
¢(u,v) =E |exp {ZU Z aj ) degipe—j+v Z dz€t+e+h}
i =1 tez ter
=FE [exp( 1 UZ ajdey; +vde—p | Etqe
i tez \ j=1

«

LEL Jj=1
Thus,
L <a—1>
0
65 (u,v) = —ac®p(u,v Z Za]d“_] uZajdg_,_j +vdy_p, ,
ez \ j=1 j=1
and
8@ a, <a—1> :
u = —ac®u (mO)Z Za]—dzﬂ-
v=0 LeZ |j=1
We also have
& <a—1>
0
aff(u, v) = —aaaw(uﬂ)) ng,h uZajngrj + vdy_p, ,
= j=1
<a—1>
a a o—
sz B ST 0,00 ) den Zaﬂdfﬂ
v=0 LET
Therefore,
<a—1>
Oy Zeez de—n (Z] 1 a]dg+]) dp (2.51)
ov |, _ ez ‘ijl ajduj‘ ou|,_qg
On the other hand, for u # 0:
dy . Y Oy , iuY;
_r — E Y, MUYtk , _r — E X UY1Kk .
au v=0 ' [ ' Lke ] 81] v=0 ' [ e ]
Therefore, for u € R*:
<a—1>
> ez de—n (2?21 ajdz+j> -
E | Xten — Yioip | e ttR ] =0. (2.52)

k} «
> ez ‘Zj:l ajdet;

Hence, from Bierens (Theorem 1, 1982) [12]: Thus

<a—1>

k
> ez de—n (Zj:l ajdfﬂ')
k} «
> ez ‘Zj:l ajdet;

E[Xitn|Yic1 6] = Y1 k-
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2.9.3 Conditional heteroscedasticity of the MAR(1,q) process

In order to prove Proposition 2.3.3, we need to show some preliminary results about the conditional covariance
of noncausal AR(1) processes. We will then turn to the conditional covariance of a MAR(1, ¢) process from

which the conditional variance will be obtained.

Conditional correlation structure of the MAR(1,q)
Lemma 2.9.1 Let X; be a noncausal AR(1) process satisfying Xy = v X1 + e, with & i S8(1,0,0,0).
Then, for any nonnegative integers h and T:
. T o o2 o2
Xt—l} = (sign ) [|¢| bt (Xt2—1 + (1— |¢|)2) o (1— W)DQ]

Remark 2.9.1 From the previous result, it is possible to derive the whole conditional correlation structure

E [Xt-i-hXt-i-h-i-r

of (X¢). It can be shown that for any ¢ € Z, and any positive integers h and 7:

Cov (Xt—&-ha Xithtr Xt—l)

\/V(XH;Z’th) \/V(XH,W

which, when 7 — 400, is asymptotically equivalent to (sign ©)7||7/2y/1 — [[F*1 for any h > 0, and

ol -1
BT =T

= (sign ¥)"

thl)

to (sign ¥)7|1|7/? when h becomes large. Although in our infinite variance framework, the unconditional
correlation is not defined, empirical correlations can always be computed. We know from Davis and Resnick
(1985,1986) [40, 41] that they converge in probability towards the theoretical autocorrelations that would
prevail in the L? framework. Given n observations of process (X;), we have for any 7 > 0,

n—7+1
t=1 XtXt—i-T V4
Z?:l Xt2 n—-+oo

T

Surprisingly, the "unconditional" autocorrelations of (X;) do not converge to the conditional ones when

n — 400, and vanish at a much slower rate (|1)|7/? instead of |t|7).

We now turn to the MAR(1, ¢) process.

Proposition 2.9.3 Let X; be a MAR(1,q) process, q > 0, solution of Equation (2.1) with & b

S8(1,0,0,0). Then, for any positive integers h and 7, there exist polynomials Py, Phi,, both of degrees
q—1, and Qp, Qn+r of respective degrees h and h + T such that

B[ XtpnXirnir| Fio1] = (Pa(B)Xi—1)(Phir (B) Xi-1)

+ sign(v)(¢(B)Xi-1) {(Ph(B)Xt—l)QhH(SZ'gn ) + (Prir (B) X1 —1)@n(sign )

+ Ch,r ((¢(B)Xt—1)2 + (1 _O.|¢|)2> o (]_ _U|,¢|)2 Q’L(Sign WQHT(S@” ¢),

with ¢p r = Z?i(; Z?:() Gi,htrQj,n(sign ) || 7MY and Qy(2) = Zf:o Gi k2", for any k > 0.

This result yields Proposition 2.3.2 by taking h = 7 = 0, with Py(B) = ¢1+¢2B+...+¢,B% and Qy(B) = 1.
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Proof of Lemma 2.9.1

Consider ¢(z,y, z) := E(emx“rk“‘iyx’f“‘”zxf*l) with 0 < ¢ <k, X; =9 Xi41 + e and g i S(a,0,0,0).
We have

o(r,y,2) =E (ei Z"GZW"”“+yd"’”2d"“)5””’) = exp {—oa Z |wdyn—i + ydn—¢ + zdn+1|“} .
nez

Thus, on the one hand,

0 _
(97;’0 = oo % dn+1($dn—k + ydn—é + Zdn+1)<a 1>90(‘T’ Y, Z)’
n

2

02 _

aizf = (aga)Z <Z dn—&-l(xdn—k + ydn—f + Zdn+1)<a 1>> Sp(xaya Z)
neEZ

- Oz(Oé - 1) Z di+1|xdn—k’ + ydn—£ + Zdn-ﬂ—l‘aiQQD(xa Y, Z)a

ne”Z
8290 2(a—1) a—2 a
S2l =P (Y sl ) 9(0,0,2) — ala = DIz Y [dua [*6(0,0,2).
528 nez nez

And on the other hand,

0
87?: = —aoc® Z dn_[(l’dn_k + ydn—f + Zdn+1)<a71>50(x7 Y, Z)7
nez

92
Y _ (ao®)? (Z dp—o(xdp—k + ydn—o + Zdn+1)<0‘_1>>

nez

X <Z dnfk(xdnfk + ydnfl + Zdn+1)<a_1>> QD(I', Y, Z)
nez

- OZ(CV - 1) Z dnffdnfkkxdnfk + ydnfé + Zdn+1|a7290(xa Y, Z)a

neZ
82§0 _( ‘ |2a 1) d <a 1> d (d )<a71> (O 0 )
8{1;‘6:[/ = OéO' 4 Z n— Z n+1 Z n—k\Un+1 w\y,u, 2
528 nez nez
- a(a - 1)|Z|0(72 Z dnfldnfk|dn+l‘a72§0(07 07 Z)
neZ
Hence,
o ||~ @A V0(0.0.2) | = —aa = DI 2p(0.0.2),
2=3
1 82(:0 a a— [
1 |55~ (0" AP p(0,0.5)] = —ala — DI 00,0,2),
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with

Al — <Z dn€<dn+1)<a_1>> <Z dnk(dn+1)<a_1>> ,

neZ nez

A2 = Zdnfédn7k|dn+1|a_27

neZ
A3 = Z ‘dn+1|a.
ne”Z
Therefore,
1 82@ o o 1 8230 N o
T o] (o PAE00.0.9)| = 5 | TE — (o AP Dp(0.0.)].
v=0 1
This yields for a =1,
1| &y 2 1 [0%p
_ — A I I 2A2 )
Ay | 0z0y|,_, 7 A19(0,0,2) As |02 7 5%(0,0,2)
y=0 i

Taking into account that d,, = ¢"1,>¢y for the noncausal AR(1) and noticing that

92 ,

ax;’y = —E [Xpsn Xepee™ 1],
3290 12X¢

52— E (X7 e X],

we get for any z € R*:
E [{Xerrx,y, — (sign )" (j9| 77X, +6%) =67} "] =0,

with & = From Bierens (Theorem 1, 1982) [12]:

_o
1— [l
E [XHkXHe]Xt_l] = (sign )" (Jo| T H(X2, +6°) - 67),

which concludes the proof.

Proof of Proposition 2.9.3

Let k£ and ¢ be two positive integers such that ¢ < k. From Lemma 2.8.2, we know that for any h > 0, there

exist two polynomials P, and @, of respective degrees ¢ — 1 and h such that:
Xivn = Pu(B)Xi—1 + Qn(F)uy.

Thus, using the same device as in the Proof of Proposition 2.3.2,

E{XtJrkXtH‘th, e ,thqﬂ} =E (Pk(B)th + Qk:(F)Ut) (PZ(B)th + Qe(F)ut)

Xt717 s 7th1] )

- (Pk(B)Xt—1> (Pe(B)Xt—l)

+ (Pe(B) X1 )E[Qu(F)ur|usa] + (Pe(B)Xoo1 ) E[Qu(F ) s

E 0
+ Z Z ¢iq;E [Ut+iut+j

i=0 j=0

ut_1:| .
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The second and third terms can be expressed as:
(Pe(B)X i1 )E[Qu(F)uafui-a ] + (Pe(B) Xoo1 ) E[Qu(F)ur w1 | =
sign(4) (qﬁ(B)Xt_l) [Qg(sign b) (Pk.(B)Xt_l) + Qu(sign ) (Pg(B)Xt_lﬂ ,

whereas the fourth term can be rewritten using Lemma 2.9.1:

ko ko
Z Zqiqu{ut-‘riut-‘rj ut—l} = Z Z%‘%‘(Sign $) I [Wrmin(i’j)_l ((¢(B)Xt—1)2 + 52) - 52} )

i=0 j=0 i=0 j=0

— 5> Qu(sign ¥)Qu(sign ¥)
k

.t
+ ((¢(B)Xt—1)2 + 52) ZZ iq; (sign 1)+ g~ minG) =1,

Proof of Proposition 2.3.3

The result of Proposition 2.3.3 is obtained by substituting E {XtJrh‘ﬁt,l] and E[Xf+h‘ﬁt,1} in
2
(tali) =3[ - (|70’
using the formulas of Propositions 2.3.2 and 2.9.3.

Details on the conditional variance of the MAR(1,1) of Section 2.3.4

By Lemma 2.8.3, the polynomial @)}, intervening in Proposition 2.3.3 reads in the case of the MAR(1,1)

h
Qn(z) =) "'
=0

Applying Proposition 2.3.3, we know that
2

V(Xen|#i1) = <(Xt_1 — $Xia)* + (1_"W> <ch, ~ (Qu(sign ¢>)2>,

with ¢j, = Z?:o Z;L:O i.nqj.n(sign )77 ||~ M@= Using the explicit form of the g; s, the coefficients

of polynomial @, we can deduce that for ¢» > 0

1 — ph+1
Qn(signy) = %’
h h
e =vT Y Y @l
i=0 j=0

which can be simplified by elementary calculations after splitting the sums according to whether i > j or

j>i.
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2.9.4 Proof of Lemma 2.8.3

For h = 0, Equation (2.39) holds with Py(B) = ¢1 + ¢2B? ...+ ¢,B7~ ! and Qo(B) = 1. We have

q—1 h
Xepn = aonXe1+ Y ainXiic1+ Y bintisgi
i=1 i=0
q—1 qg—1 h
= o, (Z Pit1Xi—i—2 + Ut1> + Z a; pn Xi—i—1 + Z bi h Uit
i=0 i=1 i=0
q—2 h
= (ai+1,h + aO,}L¢i+1)Xt—i—2 + ag,nPgXi—q—1 + ao,nUt—1 + Z bihUtti-
i=0 i=0
Since this last formula holds at any ¢ € Z, this last equation yields
q—2 h+1
Xivht1 = Z (ai+1,h + aO,h¢i+1)Xt—i—1 + ag,nPqXi—q + ao nus + Z bi—1,nUs s
i=0 i=1

However, we also have by definition

q—1 h+1
Xitnt1 = Pri1(B) X1 + Qpyr (Fluy = Z i hy1Xt—i—1 + Z bi b1 Witi-
i=0 i=0

Thus, by identification,

Aq—1,h+1 = aO,h¢qa
Qi ht1 = Gip1,h + a0n¢iy1, for 0<i<q—2,
ao,n = bo,h+t1,

biny1 =bi—1p, for 1<i<h+1
We deduce from these equations that for any h > 0,

bihy1 = aop—i, for 0<i<h+1,
min(g—i—1,h)
Gingr= Y, Gonjdit14s, for 0<i<g—1,
i=0

with the convention ag 1 = 1. We obtain that (ag ) is the solution of the linear recurrent equation of order

q

A0, h+q = ¢1a0’h+q,1 + ...+ (bqa()’h, for h >0, (253)
with initial values (a0, - - -,a0,4—1) that could be expressed as functions of ¢1,. .., ¢,. Denote Aq,..., A, the
distinct roots of the polynomial F9¢(B) with respective multiplicities my, ..., ms, with s < ¢, m;+...+m, =

q. Since ¢ has all its roots outside the unit circle, we know that |A;| < 1 for all i. Therefore, there exist

polynomials C1, ..., C, of respective degrees my, ..., ms such that for any h > ¢,

aon = Cr(R)NF 4 ...+ Cy ()]
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2.9.5 A recursive scheme for computing polynomials P, and (), of Lemma 2.8.2

Lemma 2.9.2 Polynomials Py, and Qp of Lemma 2.8.2 satisfy the following recursive equations:
BPp41(B) = Pu(B) — Pu(0)6(B), Qni1(F) = FQu(F) + Pu(0), (2.54)
with initial conditions Qo(B) =1, Py(B) = ¢1 + ¢p2B+ ... + ¢,BI 1.
Proof. By applying polynomial ¢(B) to (2.39), we get by (2.31)
O(B)Xiin = Pr(B)o(B)Xi—1 + Qn(F)d(B)us,
B™"uy = BPy(B)us + Qn(F)o(B)ut,

which implies B"*! P, (B) + B"Qy(F)#(B) = 1. The same holds at rank h + 1. Thus, denoting Q;,(F) =
S o qinFand Q5 (B) := BMQu(F) = X0 qn—i.nB', we also have: B2 Py 1 (B)+Qp11(B)y*(B)¢(B) =
1. Subtracting the expressions at ranks h and h 4 1 yields:

B (BPy (B) ~ Pu(B)) + 6(B)(Qisa (B) - Qi(B)) = 0. (2.55)

We can notice that the term of degree zero in this expression is: ¢(0) (QZ+1 (0)7Q2(0)> = 0, hence gp41 h4+1 =
gh,n. Focusing on the next terms of degrees ¢ = 1,..., h, we can iteratively show that gp+1-;i h+1 = gh—i.n-
Finally, focusing on the term of degree h + 1, we now deduce that —FP},(0) + ¢1, n+1 — go,», = 0. This leads us
to the equality

Qi1 (B) = Qi(B) + B P, (0), (2.56)

or equivalently Qp1(F) = FQp(F)+Pr(0), which establishes the right-hand side equation of (2.54). Finally,
replacing (2.56) in (2.55) concludes the proof of Lemma 2.9.2.

85



2.9.6 Cluster size distribution: the noncausal AR(1) case
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Figure 2.5: Theoretical tail probability given by Equation (2.22) of cluster sizes of extreme errors (2.24) (strong representation,
points) and (2.25) (all-pass representation, triangles) for a = 1.5, 1o = 0.9 at different horizons h.

We illustrate the extreme clustering behaviours of the two error sequences (2.24) and (2.25) for various
horizons and parameter values a = 1.5, 99 = 0.9. From equations (2.24) and (2.25), we deduce the sequence
(c(xy) and compute the tail probability distributions of the cluster size using (2.22). As depicted in Figure

2.5, the contrast between the errors of the all-pass representations and those of the strong representations is



the highest for intermediate values of h.

2.9.7 Monte Carlo study: complementary results and methodology

Asymptotic distribution of the LS estimator

a=15 %»=07 ¢=09 a=1 =07 6=09
n q0.1 q0.25 Median q0.75 qo0.9 q0.1 q0.25 Median q0.75 qo0.9
500 5 -2.759 -1.338 -0.527 -0.061 0.231 -12.69 -3.569 -0.731 0.012 0.691
52 -0.265 0.038 0.495 1.284 2.653 -0.873 -0.049 0.694 3.430 12.13
2000 §; -1.558 -0.746 -0.226 0.086 0.417 -6.321 -1.732 -0.221 0.247 1.382
82 -0.448 -0.105 0.214 0.730 1.521 -0.662 -0.320 0.001 0.322 0.655
5000 &, -1.188 -0.565 -0.132 0.156 0.513 -4.564 -1.269 -0.097 0.387 1.824
82 -0.536 -0.172 0.125 0.561 1.177 -2.098 -0.469 0.096 1.357 4.749
0o 5 -0.726 -0.252 0.000 0.246 0.719 -5.470 -0.856 0.000 0.954 5.686
32 -0.762 -0.264 0.000 0.268 0.768 -6.687 -1.110 0.000 1.006 6.503
a=05 =07 ¢=09 a=17 =03 ¢=04
500 5 -1307 -114.6 -5.247 0.157 14.06 -1.003 -0.513 -0.042 0.408 0.870
82 -21.31 -0.412 5.176 114.8 1239 -0.958 -0.484 -0.008 0.466 0.956
2000 & -524.3 -40.97 -0.493 2.804 54.63 -0.662 -0.328 -0.016 0.290 0.618
82 -74.37 -4.171 0.506 46.28 563.9 -0.662 -0.320 0.001 0.322 0.655
5000 &, -385.3 -28.11 -0.109 5.402 96.34 -0.641 -0.313 -0.008 0.292 0.608
82 -127.1 -7.493 0.111 33.07 445.0 -0.647 -0.318 -0.001 0.316 0.648
0o 51 -1546 -31.43 0.000 32.34 1614 -0.555 -0.235 0.000 0.231 0.554
32 -2129 -42.88 0.000 41.63 2068 -0.614 -0.257 0.001 0.261 0.621

a 1
Table 2.7: Characteristics of the empirical distribution of §; = (L> e (f; — Mo;), for i = 1,2 over 100,000 simulated paths

Inn

of a-stable MAR(1,1) processes (X¢) solution of (1 — ¢ F)(1 — ¢B)X; = ¢ with four different parametrisations («, %o, ¢o) €
{(1.5,0.7,0.9), (1,0.7,0.9), (0.5,0.7,0.9), (1.7,0.3,0.4)}. The empirical a-quantile is denoted g,. The results for n = oo are
obtained by simulations of the asymptotic distribution in (2.16). [See Example 2.4.1]

Direct implementation of the Portmanteau test

We conducted an experiment to assess the direct implementation of the portmanteau test (without Monte
Carlo) and focused on o = 1.5. We computed the residuals of the 100,000 simulated paths based on the all-
pass causal AR(2) fits, evaluate the statistic (2.19) for h =1, ..., 10 and simulate its asymptotic distribution.
For each path, we performed the test at three different nominal sizes 1%, 5% and 10% by comparing the
statistics to the appropriate quantile of the asymptotic distribution. The empirical sizes are reported in
Table 2.8. The test suffers heavy distortions, especially in smaller samples, which was expected from the
results by Lin and McLeod (2008) [94] in the pure causal AR framework. It is generally oversized for small
lags and progressively becomes undersized as more lags are included. The empirical sizes slowly approach
the nominal sizes as the number of observations increases and the discrepancy between few and more lags

also gets smaller.

87



n = 500 n = 2000 n = 5000

H 1% 5% 10% 1% 5% 10% 1% 5% 10%
1 6.69 21.2 31.7 3.08 9.42 17.0 1.92 6.28 12.5
2 4.54 16.4 27.1 2.40 7.80 14.7 1.60 5.77 11.6
3 3.40 13.4 22.8 1.96 6.41 12.4 1.36 4.84 10.1
4 2.65 10.7 19.0 1.64 5.38 10.3 1.17 4.17 8.74
5 2.11 8.96 16.2 1.37 4.58 8.96 1.04 3.59 7.61
6 1.61 7.58 13.8 1.16 3.93 7.94 0.91 3.20 6.84
7 1.24 6.49 12.1 1.01 3.51 7.17 0.80 2.86 6.22
8 0.96 5.66 10.6 0.89 3.19 6.58 0.70 2.62 5.73
9 0.74 5.08 9.62 0.81 2.94 5.99 0.64 2.42 5.30
10 0.57 4.55 8.74 0.75 2.70 5.50 0.60 2.26 5.00

Table 2.8: Empirical sizes of portmanteau tests with nominal sizes 1%, 5% and 10% using the first H lags, H = 1,...,10
of the residuals’ autocorrelations of 100,000 simulated paths of process (X¢) solution of (1 — 0.7F)(1 — 0.9B)X; = &, with

1.5-stable noise.

2.9.8 Extreme residuals clustering
Estimating the term structure of excess clustering

In practice, for one simulated path of the MAR(1,1) process (X;) and one horizon h, we have six series of
residuals (fg Y e, @ = 1,...,6, one each for the pure causal and noncausal AR(2) competitors, and two
each for the two MAR(1,1) competitors (one for the causal component, one for the noncausal component).
To compute the cluster sequences (é;ih(x))k as defined in Section 2.5.2 for each residuals series, we need to
choose a threshold x > 0. It would be desirable to use thresholds such that we can harmoniously compare
the clustering behaviours of the six series of residuals. For the experiment detailed below, we worked with
the autostandardised series of residuals
G

ﬁ;+h\t = W ) (2.57)
s s+hl|s

which lie between 0 and 1, and for each horizon h, we used the threshold

e~ i:rrlle}?.(6qa(\@z+h‘t|)7 (2.58)

where ¢,(-) the a-percent quantile. In our experiments, a = 0.9 was used.

Outline of the experiment
For a given parameterisation («a, ¢, ¢g) and path length n, we simulate 10000 paths of process (X;) solution
of (1 —¢oF)(1 — ¢oB)X; = &; and conducted the experiment as follows. For each simulated path of (X})
and a given horizon h > 1:

) Estimate the regression X; = i1 Xy 1 + 72 X2 + ét.

1) Obtain the set of (inverted) roots {1, ¢} by solving for the zeros of 7j(z) = 1 — A1z — 222
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we) For each of the four competing models (2.26)-(2.29), decompose the process into pure causal
and noncausal components and compute (9! +h‘t), the series of autostandardised errors at
horizons h as in (2.57).
w) Compute z, as in (2.58) and obtain the cluster sizes sequences (é}ch(mh))k for each series
(@§+h‘t), i=1,...,6.
v) Compute the Excess Clustering at horizon h of each residuals series as in (2.30).
vt) For the two MAR(1,1) competitors, average the Excess Clustering indicators obtained
from the residuals of the causal and noncausal components.
For a given simulated path (X;), we repeat the above steps for horizons h = 1,..., H and obtain four
term structures of Excess Clustering, one for each of the competing models (2.26)-(2.29). Across the 10000
simulated paths of (X;), one can then either:
(i) average model-wise across the obtained term structures to gauge the typical excess clustering behaviour
of each competing model (as in Figures 2.3 and 2.6), or
(ii) for each of the simulated paths (X;), compute the area under the four term structures, select the least

clustering model and evaluate the rate of correct selections (as in Table 2.3).

Excess clustering for additional parameterisations

We evaluated the residuals excess clustering behaviours of the four alternatives (2.26)-(2.29) for additional
parameterisations and sample sizes of the MAR(1,1) data generating process. Excess clustering in all-
pass residuals is apparent even for small sample sizes. The contrast between the residuals of the strong
representation and those of the all-pass increases as the sample size grows (see the left panel of Figure 2.3
and the two upper panels of Figure 2.6). Also, even with a much smaller noncausal parameter ¢ = 0.2
(lower right panel of Figure 2.6), the strong representation still clearly displays the least excess clustering
compared to the three other competitors. We can nevertheless notice in this case that the pure causal
AR(2) alternative is not far from the strong representation (points). This is coherent with the fact that the
noncausal parameter v is relatively small, especially compared to the causal parameter ¢, yielding much

weaker dependence across the residuals of the misspecified pure causal AR(2).

2.9.9 Real data: complementary results using the R package "M ARX’
Total AR orders selection by Information Criterion

The portmanteau procedure of Section 2.6.1 allowed to discard non-admissible low order models for the
six financial and economic time series considered. Portmanteau tests are however not designed to select
an «optimal» model. To go further, we report in Table 2.9 the orders that minimise Akaike’s information
criterion (AIC) using the R package 'MARX’ available on CRAN (see Hecq, Telg and Lieb (2017b)). The

validity of such AIC’s for innovations in the domain of attraction of a stable law has been studied by Knight
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Figure 2.6: Across 10,000 simulations of the a-stable MAR(1,1) process (X¢) solution of (1 — +¢oF)(1 — ¢poB)X; = e, the
plots show the average of the term structure of excess clustering of the linear residuals of the four competing models (2.26)
(squares), the strong representation (2.27) (points), (2.28) (triangles) and (2.29) (diamond). The parameterisations and path

lengths are indicated on each panel.

(1989). Except for the HSI, the results of the two procedures are compatible, the AIC criterion tending to

select higher optimal orders.

Cotton Soybean Sugar Coffee HSI Shiller P/E
Selected total AR order 3 8 7 9 1 8

Table 2.9: Optimal order minimising the AIC criterion.

2.9.10 Identification of causal and noncausal roots

Given the lowest total AR orders validated by the portmanteau procedure (see Table 2.6.1), we used the
routine marx.t of the '"MARX’ package to fit MAR models on the six series by t-Student ML. The results
are presented in Table 2.10. Except for the HST and the sugar series, the causal/non-causal orders obtained
are equal to those of the final specifications in Table 2.6. The estimated roots are also similar, but we note

some discrepancies in their causal/non-causal allocations.
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Series | Final specification | Noncausal (inverted) roots | Causal (inverted) roots
Cotton MAR(2,0) 0.93, 0.11 -

Soybean MAR(2,3) 0.16 £ 0.42¢ 0.94, —0.55, 0.30
Sugar MAR(2,2) 0.29 £ 0.414 0.96, —0.43
Coffee MAR(1,3) 0.41 0.95, —0.23 £0.20

HSI MAR(3,0) 0.92, 0.28, —0.21 -
Shiller P/E MAR(2,4) 0.95, —0.48, 0.50 + 0.23: —0.21 +£0.434

Table 2.10: Estimation of the MAR(p, q) specification for each financial series by t-Student ML using the routine marx.t of
the '"MARX’ package. This routine requires as input the total AR order p + ¢, for which we used the validated orders given by

Table 4.
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Chapter 3

Conditional Moments of Anticipative

a-Stable Markov Processes

Sébastien Fries

Abstract The anticipative a-stable autoregression of order 1 (AR(1)) is a stationary Markov process under-
going explosive episodes akin to bubbles in financial time series data. Although featuring infinite variance,
integer conditional moments up to order four may exist. The conditional expectation, variance, skewness
and kurtosis are provided at any forecast horizon under any admissible parameterisation. During bubble
episodes, these moments become equivalent to that of a two-point distribution charging complementary
probabilities to two polarly-opposite outcomes: pursued explosion or collapse. Parallel results are obtained
for the continuous time anticipative a-stable Ornstein-Uhlenbeck process. The proofs build on and extend
properties of arbitrary, not necessarily symmetric a-stable bivariate random vectors. Other processes are

considered such as the anticipative AR(2) and the aggregation of anticipative AR(1).

Keywords: Anticipative processes, Stable processes, Stable random vectors, Conditional moments,

Explosive bubbles

MSC classes: 60G52, 60E07, 60G25
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3.1 Introduction

Dynamic models often admit solution processes for which the current value of the variable is a function of
future values of an independent error process. Such solutions, called anticipative, have attracted increasing
attention in the financial and econometric literatures. In particular, anticipative processes have been shown
to be convenient for modelling speculative bubbles [24, 51, 61, 63, 67, 68, 69, 70] (see also [3, 26, 87, 88]).
However, lack of knowledge about the predictive distribution of anticipative processes is impeding the ability
to forecast them, thus limiting their use in practical applications. Partial results have been obtained in [63]

for the anticipative stable AR(1), defined as the stationary solution of

Xt = pXt+l + €4, €t Z'?Vd 8(05,670-’ O)a (31)
where 0 < |p| < 1 and S(a, 8, 0,0) denotes the univariate a-stable distribution with tail parameter a € (0, 2),
asymmetry 5 € [—1,1] and scale o > 0. Figure 3.1 depicts a typical simulated path of an anticipative stable
AR(1) featuring multiple bubbles.

10

Xt

T T T T T T T
0 50 100 150 200 250 300

Figure 3.1: Sample path of the solution of (3.1) with &; g &§(1.7,0.8,0.1,0) and p = 0.95.

This paper proposes a complete characterisation of the conditional moments at any horizon, when exist-
ing, for the stable AR(1) process and two related models: the anticipative Ornstein-Uhlenbeck (OU) process
and the aggregated stable process, defined as a linear combination of a-stable anticipative processes of the
form (3.1). Explicit expressions of the conditional moments generally have a complex form. However, we
will show that the conditional distributions of X;,p, say, given X; = z displays dramatic simplifications
when & — £o00, which provides illuminating interpretations on the behaviour of the process during bubble
episodes.

Section 3.2 starts by recalling characterisations and properties of multivariate stable distributions and
then provides our results on the anticipative stable AR(1) and OU processes. Section 3.3 analyses the

aggregation of AR(1). Section 3.4 finds a new upper bound for the existence of conditional moments of
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anticipative AR(2) processes. Complementary results on bivariate stable vectors are stated in Section 3.6.

Postponed proofs are collected in Section 3.7.

3.2 Anticipative a-stable Markov processes

Before analysing the anticipative a-stable AR(1) and OU processes, we begin by recalling some characteri-

sations of multivariate stable distributions which will be the cornerstone of our proofs.

3.2.1 Characterisation of a-stable random vectors

Stable random vectors are defined in a similar way as when considering stable variables on the real line.

Denote by «2y the equality in distribution between two random variables.

Definition 3.2.1 A random vector X = (X1,...,Xq) is said to be a stable random vector in R? if for any

positive numbers A and B there is a positive number C' and a non-random vector D € R? such that
AXW 4+ Bx® L ox 4 D,

where X and X@ are independent copies of X. Moreover, if X is stable, then there exists a constant

o € (0,2] such that the above holds with C = (A* + B*)Y/*, and X is then called a-stable.

We exclude the intensively-studied Gaussian case (o = 2) from our analysis. Let Sy be the unit sphere of
R? equipped with the Euclidean norm || - || induced by the canonical scalar product, denoted (-,-). The
distribution of stable random vectors are characterised (see Theorem 2.3.1 in [117]) by a unique pair (T, u),
where T is a finite measure on the unit sphere Sy and a vector u° € R%. Let 0 < a < 2, then X =
(X1,...,X4) is an a-stable random vector if and only if there exists a unique pair (', u°) such that, for any

u € R?, the characteristic function of X writes
px(w) = B[ 0)] = exp{ ~ [ sl (1= st sl ) ) Plas) + u0>}, (32)
Sa

where w(a,s) = tg (%), if @ # 1, and w(l,s) = —2In|s| otherwise, for s € R. The finite measure I' is
called the spectral measure of X and captures the information about the scale, asymmetry and dependence
between its components. The non-random vector u is a location parameter and is called the shift vector.
The pair (T, u°) is said to be the spectral representation of the random vector X. In the univariate case,

(3.2) boils down to

ox (1) = exp { — oyl (1 —iB sign(u)w(a,u)> + iuu},

for some o0 >0, § € [-1,1] and p € R.
Stable distributions are known to have very little moments. However, the distribution of one component

conditionally on the others can have more moments according to the degree of dependence between them. A
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sufficient condition for the existence of conditional moments of bivariate a-stable vectors (X7, X2) is given

in the following Proposition.

Proposition 3.2.1 (Samorodnistky and Taqgqu (Theorem 5.1.3, 1994)) Let X = (X3, X2) be an a-

stable random vector with spectral measure ', satisfying

|s1|7"T(ds) < 400, for some v > 0. (3.3)
Sa

Then, IE[|X2P)X1 = x} < 400 for almost every x if
0 <~ < min(a+v,2a+1).

The less concentrated around the points (0,1) and (0, —1) of the unit circle is the spectral measure, the
higher the moments of X5|X;. In the next section, condition (3.3) will be shown to hold for any v > 0 for
the vector (X¢, Xtyp) when (X) is the solution of (3.1).

3.2.2 Discrete time: the anticipative a-stable AR(1)

Operating the arsenal of properties of multivariate a-stable distributions we provide in the previous section
and Section 3.6.1, we analyse in detail the predictive distribution of the anticipative a-stable AR(1) solution
of 3.1), X¢e = > 450 p¥esy 1. The following result shows that when the noise sequence (&) in (3.1) is a-stable

distributed, then (X, Xy45) is itself an a-stable random vector with a very specific spectral representation.

Proposition 3.2.2 Let (X;) be the anticipative AR(1) solution of (3.1) with 0 < a < 2, B € [—1,1] and
lp| < 1. Then, for any h > 1, (X¢, X¢4n) is a-stable and its spectral representation, denoted (T, pu®) with
p® = (19, 1l), is such that

a” ah [ h 2 3 /2 2
'y = 5 Z [( o] (1 — (p=*>) )ﬁg)é{(ﬂ,o)} + (1 + ‘p‘m) (1 +q95)5{193h}], (3.4)
vES
oo 1— a
where Sy = {—1,+1}, d;4y is the Dirac measure at point & € R2, 6% = |a, B = 5 |£L> <> =

h
1
(= 1) € Sy. Moreover, if a # 1, then u® = (0,0), and if a = 1

Vi

sign(y)|y|” for any y,r € R and s, =

then,

2 _cplnjp “h- P
e el py=p"p Uﬂlnlpl<h+>-
™ (1-p) P

with @ = —%ph In (1 + p_Qh).

It can be noticed from the previous Proposition that the spectral measure of (X, X;yp) is discrete and
concentrated on at most four points of the unit circle: (+1,0) and +(p",1)/+4/1 + |p[?". Tt collapses on

exactly two points when p > 0 and 8 = 1 (resp. 8 = —1), that is, when the marginal distribution of X; is
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totally skewed to the right (resp. to the lefzf).1 In particular, for any fixed h > 1, I'j, is always charging zero
mass to sufficiently small neighbourhoods around the points (0,41), which leads to the following result and

. .. 2
the existence of conditional moments.

Lemma 3.2.1 Let (X;) be the anticipative AR(1) solution of (3.1) with 0 < a < 2, f € [-1,1] and
0 < |p| < 1. Then, for any h > 1, the spectral measure of (Xy, X¢1pn) is such that

/ |s1|7"Th(ds) < +o00, for any v > 0. (3.5)
Sa

Proof.

Let v > 0 and h > 1. Decompose the integral of (3.5) into two parts

/ [51]7/ T (ds)
Sa

_ / I51]~“ T (ds) + / Is1| /T (ds).
S2N{s€Sa:|s1]<|pl"/2y/1+]|p|*"} San{s€Sy:|s1]>[p|"/24/1+|p|?"}
In view of (3.4), the second term on the right-hand side is finite while the first one is zero. 0

Corollary 3.2.1 Let (X;) be the anticipative AR(1) solution of (3.1) with 0 < a < 2, 8 € [-1,1] and
0 < |p| < 1. Then, for any h > 1,

E[\Xt_‘_hP‘Xt,Xt_l, .. } < 400, a.s. forany 0<-~vy<22a+1.

Proof.
As the anticipative AR(1) is a Markov process (see Proposition 2 in [63]), we have E [|Xt+h|7 ’Xt, Xi—1,.. ] =
E[|Xeinl

Xt] for any h and . The existence of conditional moments up to order 2« + 1 is now a direct

consequence of Lemma 3.2.1 and Proposition 3.2.1. O

Analytical formulae were so far available only for the first and second conditional moments of the
anticipative stable AR(1) processes, moreover only in the symmetric (8 = 0) and Cauchy (o = 1 and 8 = 0)
cases [63]. Thus we extend the formulae to any admissible parameterisations (a, 5) € (0,2) x [-1,1] and
also provide the forms of the third and fourth conditional moments in the next Theorem. For expository
purposes, the more intricate case a« = 1 has been singled out in Section 3.6.2. Recall that the anticipative
AR(1) is a Markov process and that integer conditional moments may exist only up to order four under the
most favourable dispositions of Corollary 3.2.1.°

"When p > 0 and 8 = 1 (resp. 8 = —1), we have from Gouriéroux and Zakoian (2017) that the marginal distribution of X; is

1—|p|*

univariate a-stable with asymmetry parameter 1 = f————
1— p<o¢>

=1 (resp. f1 = —1). Zolotarev (1986) call such distributions
totally skewed to the right (resp. to the left).

2VVhile the existence of conditional moments has been established in Chapter 2 based on techniques from [63], the proof
here differs and relies solely on stable vector properties.

3Higher conditional moments may however exist in some boundary cases, such as when X; is totally skewed either to the

right or left.
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Theorem 3.2.1 Let (X;) be the anticipative a-stable AR(1) solution of (3.1) with B € [-1,1] and 0 < |p| <
1. Let h > 0.

For a€(0,2), a#l,

1 a(A — B1K1) 1—xzH(x)
E[XtJrh‘Xt - x] = met S b+ . (3.6)
For «a€(1/2,2), a#1,
A2 — P1kK2) 1—2xH(x)
E[X20[ X = o] = a0® ac(d — firs) ik ool 2] .
[ th | At l’] Kox” + 1+ (aB)? aprr + Tx (@) (3.7)
a?oie
— 2,0;x).
fo(l‘)H( 7617$)
For « € (1,2),
2(\3 — P1K3) 1—xH(x)
[ Prn| Xt x] Kax T+ (aBy)? aprx (@) (3.8)
oot .
e [w(z,az,x) +a017-l<3,93,x>}
For «€ (3/2,2),
3(\g — B1Ka) 1—xH(x)
E|x3 ‘X: _ gt B Qe = Bika) o) .
[ t+h | Xt $] KaT™ + 1+ (aB1)? aBir + () (3.9)
a?o?e [z axo® a?o?e
- {211(2,04,93) + 1 (3,05:) + 7—[(4,06,3:)].
Here, a = tg(ma/2), and
@ a 1—|p|* ah —h a>\h —h
A= BTz =TT =6 (e) e
forp € {1,2,3,4}. Furthermore, for anyn € N, 0; = (0;1,0:2) € R%, x € R, H is defined by
+m [e3 @
H(n,0;;x) = / e oTu M) (011 cos(ux — afrofu) + O sin(ux — aﬁlafuo‘)>du, (3.10)
0

and we denote H(-) :=H(0,(0,1); -), and fx == 2H(0, (1,0); -).4 Finally, 61 = (011,012) in (3.7) is given
by

011 = KT — a®A] + a®Brg — ko, 012 = a(Ag + Prka) — 2aM 1K1, (3.11)

and the remaining 0;’s in (3.8)-(3.9), which depend only on «, B1, and the ky,’s and A,’s above, are given in
(3.66)-(3.75) in Section 3.7. If a« <1 and p1 =1 (resp. p1 = —1), Relations (3.6) and (3.7) are well defined

only for x >0 (resp. © <0).

Remark 3.2.1 In the special cases considered in [63], the conditional expectation and variance are respec-

tively linear and quadratic functions of the past. This does not appear to be the case in general. For

4Notice that fx is the density of X; ~ S(«, 81,01,0) when a # 1.
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instance, a necessary and sufficient condition for the linearity of the conditional expectation (3.26) requires
that Ay = S1k1. In the case of the anticipative AR(1), this holds if and only if at least one of the following

istrue: t) B=0, w) p>0, or we)hiseven.

Remark 3.2.2 From a computational perspective, note that the above moments can be inexpensively cal-
culated for various horizons h and conditioning values x. Notice indeed that the functions ’H(n,@;x),
n = 2,3,4, can be decomposed into apu,(x) + bpv,(x), where a and by, are constants depending only on
h -and fixed parameters of the process-, and u,(z) = H(n,(0,1);z) and v, = H(n,(1,0);x) are simple
integrals which depend only on x. The constants a; and by, can be inexpensively computed for any horizons

while the simple integrals w, () and v, (z) need only to be computed once for a given conditioning value.

Let us denote by u(z, h), (2, h), v1(x, h) and v(z, h) the conditional expectation, variance, skewness and

excess kurtosis respectively. When they are well defined, we denote for z € R and h > 0,
e, h) = E[Xia| X, = o], (3.12)

oz, h) = E :(Xml )’

X, = :c] (3.13)

(e, h) = E (th—/t(xh)f

0’(1‘7 h) Xt = m] s (314)

S

Xevn — pl(z, h)>4
o(x,h)

X, = 4 - 3. (3.15)

To illustrate the results of Theorem 3.2.1, the conditional moments of the anticipative 1.7-stable AR(1) with
p=10.95 8 =0.8 and o = 0.1 are depicted on Figure 3.2 as functions of the past observation X; = x and the
horizon h. Notice in particular that the conditional volatility o( -, k) appears naturally smile-shaped, which
reproduces a well-known stylised fact of implied volatilities and news impact curves on financial markets.
Although X, is marginally stable-distributed, the conditional distribution of X;i, given X; is typically
non-stable. For p > 0, a clear interpretation of the distribution X;,|X; = z appears during explosive/bubble

episodes, that is, as  becomes large relative to the central values of process (X;).

Corollary 3.2.2 Let (X;) be the anticipative strictly stationary solution of (3.1) with p > 0 and 8 € [—1,1].
If 11| = 1, let By — 400, and if |B1]| # 1, let x — +00.” Also, let s =1 ifx — 400 and s = —1 if x — —o0.

Then, for any h > 1, as v — :l:oo,6

p(x, h) ~ (p~ ") p", if «€(0,2),
o?(w,h) ~ (p~"2)?p" (1 = poh), if ae(1/2,2),
1 —2p2h ,
’Y]_(.’E,h) %Sw, Zf (OS] (1,2),
1 1 .
’YQ(J?,h)Hﬁ‘FW—G, 'Lf 0(6(3/2,2)

®See Remark 3.6.3 for details regarding the different behaviours when |81| # 1 and |B1] = 1.
b For f,9 : R — R, g not vanishing in some neighbourhood of a = oo, we denote f(z) ~ g(z) when f(z) —g(z) = o(g(x)).
r—ra
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Figure 3.2: Conditional moments u(-), o(-), 71(+), 72(+) given by (3.12)-(3.15) of the stable anticipative
AR(1) solution of (3.1) with &, S S§(1.7,0.8,0.1,0) and p = 0.95, for horizons h = 1,...,30 and conditioning

values X; = x € (—10,10). Lower is darker, higher is whiter.

Remark 3.2.3 The strikingly simplistic forms of the conditional moments during explosive/bubble episodes
yielded by Corollary 3.2.2 are characteristic of a weighted Bernoulli distribution charging probability p®"
to the value p~"z and probability 1 — p®* to 0. It is thus natural to interpret p®" as the probability
that the bubble survives at least h more time steps, conditionally on reaching the level X; = 2" This
interpretation surprisingly implies that the survival probability does not depend on the past longevity of
the bubble neither on its current height. The bubbles generated by the stable anticipative AR(1) appear to

display a memory-less property.

Remark 3.2.4 Corollary 3.2.2 also echoes the bubble model that was initially proposed in [13] and further

7The interpretation of p®" as a survival probability of bubbles can also be reached using point processes under the more

general assumption that the errors of (3.1) belong to the domain of attraction of an a-stable distribution (see Section 3.6.3).
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studied recently in [77]. The approach therein consists in modelling X; as
Xy =s5p"Xp_1+1m, for t>1, (3.16)

given initial values Xo = 79, so = 0, and where p* > 1, (;) is a finite variance i.i.d. sequence and s;
is a 0 — 1 Bernoulli taking value 1 with probability p € (0,1). The stable anticipative AR(1) (3.1) is
reminiscent of (3.16) in two aspects. On the one hand, it is the unique solution of the linear recursive
equation Xy = p*X;_1 + ¢ with explosive AR coefficient p* = 1/p > 1. On the other hand, Corollary
3.2.2 shows that the anticipative AR(1) also behaves as a two-point conditional distribution during bubble

episodes.

3.2.3 Continuous time: the anticipative a-stable Ornstein-Uhlenbeck

Financial applications are often inclined towards continuous-time representations and efforts are deployed to
advance discrete- and continuous-time techniques side-by-side, including when it comes to bubble modelling
[27]. A continuous time analogue of the AR(1) is the well-known Ornstein-Uhlenbeck process. When it is
driven by a Brownian motion (a-stable Lévy process with o = 2), it is the only continuous in probability
stationary Markov Gaussian process. However, when driven by an a-stable Lévy process with 0 < a < 2, at
least two distinct processes arise that are continuous in probability, stationary and Markov : the direct time
OU and its reverse time counterpart (see Chapter 3 Section 6 in [117]8).

Let us first introduce the objects upon which continuous time a-stable moving averages are defined. We
borrow from the very concise introduction in [81]. Let (€2, F,P) be the underlying probability space and
Lo(92) be the set of all real random variables defined on it. Let also (E, £, m) be an arbitrary measurable

space, §: E — [—1, 1] be a measurable function and define the set & = {A € £ : m(A) < +o0}.
Definition 3.2.2 An independently scattered o-additive set function M : &y — Lo(Q2) such that for each

Ae&
~Sla fA B(x)m(dx) m 1/a
M(4) s( JAEEE () ,o>

is called a-stable random measure on (E,E) with control measure m and skewness intensity 3.

Independent scatteredness means that for any disjoints sets A1, Ao, ..., A, € &, n € N, the random variables
M(Ay),...,M(A,) are independent. One can consider random processes of the form
X, = / f(@—t)M(dz), tER, (3.17)
E

where f : E — R is a measurable function such that [ |f(z)|*m(dz) < 400 and in the case o = 1,
additionally, [, |f(z)B(x)|In|f(x)lm(dx) < +oc0. As underlined in [81], the integral in (3.17) is constructed
in the natural way by approximating the function f by simple functions in Chapter 3 Section 4 in [117].

We will focus on random processes for which £ = R and m is the Lebesgue measure.

8Two—sided OU processes are also mentioned in [21, 128], where it is noticed they admit higher conditional than marginal

moments. Anticipative stable OU are also alluded to in [23].
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Definition 3.2.3 Let A\ > 0 and M be an a-stable random measure with Lebesgue control measure and
constant skewness intensity § € [—1,1]. The non-anticipative and anticipative a-stable Ornstein-Uhlenbeck,

denoted X, and X, respectively, are defined as

t
X () = / M N (dr), tER, (3.18)
-
X, (t) = / e AN (dx), teR. (3.19)
t

Remark 3.2.5 The non-anticipative and anticipative a-stable OU are Markov processes. Indeed, for s < t,
Xpa(t) —e 29X, (s) = fst e =B M (dx) and Xo(s) —e 29X, (1) = fst e~ *==9) M (dzx). By Theorem
3.5.3 in [117], we have the independence between X,,(t) — e **#~%) X, ,(s) and the o-algebra generated
by {Xna(u),u < s} on the one hand, and between X,(s) — e~ *(*=%) X, () and the o-algebra generated by
{X.(u),u < s} on the other hand.

Close to this framework, generalised OU processes driven by Lévy processes (not necessarily stable) are also
defined in integral forms and studied in [95]. In [97], these Lévy-driven OU are pointed out to be solutions
to stochastic differential equations (SDE) of the form dV; = V,-dU; + dL;, where (U, L) is a bivariate Lévy
process. It was moreover shown in [9] that the latter SDE may admit anticipative solutions.

The two definitions of the OU processes in (3.18) and (3.19) are very practical in our context as they can
be readily embedded in the bivariate a-stable vector framework. Similarly to the discrete time case, we will
consider for any ¢t € R and h > 0 the vectors (X;(t), X;(t + h)), for i = a,na. Just as for the a-stable non-
anticipative AR(1), the non-anticipative OU does not feature more moments than the marginal distribution,
namely E[| X, (t + h)[?| Xna(t)] = +00 whenever p > a. It displays infinite variance, and the expectation is
also ill-defined when 0 < o < 1. On the contrary, the anticipative OU features conditional moments up to
2a + 1. From now on, we shall focus solely on the anticipative OU, hence we drop the subscript «a» and
simply denote the process satisfying Equation (3.19) as X, for ¢t € R. The next Lemma shows that, just as
for the discrete time counterpart of the anticipative OU, the spectral measure of (X, X;1) is concentrated

on either two or four points of the unit circle.

Proposition 3.2.3 Let {X;,t € R} be the anticipative a-stable OU process defined by (3.19) with A > 0 and
M an a-stable random measure with Lebesque control measure and constant skewness intensity 8 € [—1,1].
Then, for any h € R* | (X4, X;1p) is a-stable and its spectral representation, denoted (Tp, u°), with p° =
(19, 19), is such that

1 1498
I, — —
h a)\z 2

(1= =) oo + (1+ 62%)&/25{19%}] :

vES,
ith s), = (1) M ‘ 1, then p° = (0,0), and if a =1 th
w Sp = W oreover, ZfOC 7é 5 en pu- = ( 9 )} an Zfa - en,
) 2
0 _ 0 Ah =
M1 “+/\7rﬁ’ H2 =€ M+/\7Tﬁ( AR,

where [i = _)\ﬂe_/\h In(1 + e2Ah).
s
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The following Theorem summarises the previous considerations and gives the expressions of the conditional

moments in the case a # 1. The case a = 1 has been singled out in Proposition 3.6.8 for expository purposes.

Theorem 3.2.2 Let {X;,t € R} be the anticipative a-stable OU process, o # 1, defined by (3.19) with
A >0 and M an a-stable random measure with Lebesgue control measure and constant skewness intensity
B € [=1,1]. Then, for any h € R%_, the following hold

t) The anticipative a-stable Ornstein-Uhlenbeck is a Markov process.

w) If 0<y<2a+1, then, E[\XHhP‘Xt} < 400.

we) The first four moments of Xi1n|X:, when they exist, are given by Theorem 3.2.1 with

off = — 81 =8, Kp = e~ Mla=p), Ap = Bkp, for pe{l,2,3,4}.
The expressions of the conditional moments simplify during explosive/bubble events.

Corollary 3.2.3 Let {X;,t € R} be the anticipative a-stable OU as defined in Theorem 3.2.2. If |51 =1,
let 1z — +oo, and if |/1]| # 1, let © — +00.” Also, let s =1 if © — +oo and s = —1 if z — —oo. Then,
for any h € R% |

p(x, h) ~ (Nx)e A, if a€(0,2),
o2(z,h) ~ (eMz)2e M (1 — gm M), if ae(1/2,2),
1— 2€—aAh )
v1(x, h) — 8\/efa)\h(1 —=) if ae(l,2),
1 1 .
Yo(z, h) — =3 + sy 6, if a€(3/2,2),

where the left-hand side quantities are defined in (3.12)-(3.15).

Remark 3.2.6 Echoing Remark 3.2.3, the anticipative OU behaves as its discrete time counterpart in that

Xiyn|X: = , as © becomes large, can be interpreted as a distribution charging probability e=** to the

value e’z and probability 1 — e~ to 0. Focusing on the limiting behaviour of the conditional kurtosis, it
1 1
can be easily seen that the function h — + — 6 is strictly convex and diverges to infinity
e—aih 1 — e—arh

as h — 400, but also as h — 0, illustrating that the paths of the anticipative OU are continuous only in
probability. It reaches its global minimum at hg such that e=®*'0 = 1/2 yielding hy = 12—3, and takes
value —2 corresponding to the lowest achievable excess kurtosis amongst all probability distributions. Last,
the horizon hg achieving the minimum is further away in the future for heavier-tailed and more persistent

processes.

3.3 Aggregated anticipative AR(1)

Heavy-tailed anticipative AR processes generate trajectories that feature locally explosive phenomena such

as financial bubbles. The higher the order of the AR process, the more complex patterns it is able to mimic

9See Remark 3.6.3 for details regarding the different behaviours when |31] # 1 and |31] = 1.
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(see [51] for some examples). However, a given AR(p) process is constrained by the fact that it is specific
to one particular explosive pattern which occurs recurrently through time. It is proposed in [63] to consider
processes resulting from the aggregation of multiple AR(1) with different autoregressive coefficients. More

formally, a process from this family can be defined by

J
Xe=cY mXje, Xjo=pXjemn+ei, 0<lpl<l, j=1....m (3.20)
j=1

where ¢ > 0, m; € (0,1) for any j, Z}'le m; =1 and (€j¢)tez YR S(a, Bj,05,0) are mutually independent
sequences of i.i.d. noise. Process (X;) will generate explosive/bubble episodes with rates of increase 1/p;.
Unlike the latent X ;’s however, it is not a Markov process, and nothing is known about the predictive
distribution of Xy, given its past. We now give results regarding the conditional distribution of X;
given X, by first noticing that (X, X¢+p) can also be embedded in the multivariate a-stable framework.
For j = 1,...,J, denote (Tjn, ul), u§ = (4,449 ;) the spectral representation of (Xj;, Xj¢4n) given by
Proposition 3.2.2. For each j = 1,...,J, denote also o1, b1, kp; and Ap; the quantities defined at

Theorem 3.2.1 where p, o and 8 are replaced by p;, o; and ;.

Lemma 3.3.1 Let (X;) be defined according to (3.20) with 0 < o < 2. Then, for any h > 1, (X, Xeqp) is

a bivariate a-stable vector and its spectral representation, denoted (U'p,, u°) with pu® = (u9, 13), is such that

J
Fh =c” E ﬂ?FjJu
Jj=1

and,

J

J
P P
p=c> m (M?,j — a1y 01561510 |C7Tj|>7 py=cy m (#g,j ~ L=ty o151, 1In |C7Tj\>-
j=1 j=1

The techniques used in the previous sections are therefore available here as well and we are able to characterise
the moments of Xy, given X;. As previously, we provide here the moments for « # 1, the remaining case

being given in Proposition 3.6.9.

Proposition 3.3.1 Let (X;) be defined according to (3.20) with 0 < oo < 2. Let h > 1.
W) If y < 20+ 1, then E[|Xt+h|7’Xt - x] < +oo.
w) The first four moments of X¢yn|Xt, when they exist, are given by Theorem 8.2.1 with

J
off =c* > wfol, 81 = E(B), Kp = E(K)), Ay = E(L,), for pe{1,2,3,4}

(e

J
qujﬁ,

Proof. ¢) From Lemma 3.3.1, we know that the spectral measure of (X¢, Xi1p) writes I', = ¢® 375 5

for 0 < a < 2, where the I';;’s are the spectral measures of (X, X +1n), with the X;,’s being simple
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AR(1) processes. We know by Lemma 3.2.1 that for any j, any h and any v > 0,

|s1] 77T n(ds) < +o0.
Sa

Hence, for any v > 0,
J

/|51|—vrh(ds):caz7r§/ 31|~V T'; n(ds) < +o.
Sa j=1 Sa

The existence of conditional moments follows from Proposition 3.2.1.

tt) The form of the conditional moments follow from Theorems 3.6.1, 3.6.3, 3.6.5 and 3.6.6. The param-

eters of the X;’s are obtained by first noticing that,

g;v:/ (52/51)7|51/° T (ds) c“Zw / (s2/51)"|s1]"Tjn C“ZW?U%'
Sa

j=1 2 j=1
And thus, for instance,
1 oo ~ iy
kp = —5 [ (s2/51)"[s1|"T'n(ds) ZW 52/81) |51[°Tjn(ds) = > —F>—>—kp,;. O
01 JS, =1 2uim1 T 0T

Remark 3.3.1 For the non-aggregated anticipative AR(1) considered at Section 3.2.2, linearity of the con-
ditional expectation occurs when p > 0. However, assuming p; > 0 for j = 1,...,J for the aggregated
process X; does not guarantee linearity in general. Indeed in Proposition 3.6.1, linearity is achieved if and

only if \; — f1x1 = 0, which is equivalent to
Cov(B, K1) +E|B(|K1| - K1) | =0,
since Ly = B|K|. Hence, if p; >0 for j =1,...,J, then K; > 0 a.s. and this condition becomes
Cov(B, K;) = 0.

Remark 3.3.2 It is easy to construct examples for which IE[XLH_h ’X jit = x} are all linear in x for any
7 and h, and yet such that y — E[XHh’Xt = y} is a non-linear function of y. In view of the previous

Remark, this can be achieved by taking for instance J =2, p; = 81 = 0.1 and pa = 2 = 0.9 in (3.20).

3.4 A higher bound for the moments of X;3| X5, Xj

To the best of our knowledge, Proposition 3.2.1 is the only result quantifying up to which order the conditional
moments of a stable random vector may exist.'? Tt is however restricted to the bivariate framework and
whether this bound holds for higher dimension of the conditioning space is unknown. In this section, we
take advantage both of the Markov property of anticipative AR(2) processes as shown in [51] and the result

10 . s . s . . . . . .
Sufficient conditions for the finiteness of the conditional variance are also known in higher dimensions (see [49] for instance)

but do not tell anything about higher, possibly fractional, orders.
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of Proposition 3.2.1 to show that a higher sufficient bound may hold when the dimension of conditioning is

at least 2. Let (X;) be the strictly stationary solution of
ii.d.
Xe =1 X1 + 2 Xpo +e, &~ S(a, B,0,0), (3.21)

where 1(2) := 1 — ¢12 — ¥22? = (1 — a12)(1 — asz) for some real numbers a;, as such that 0 < |a;| < 1
for i = 1,2. We exclude the uninteresting case 11 = 0 since it implies that {Xo;,t € Z} and {Xo¢11,t € Z}
are independent AR(1) processes. Under these conditions, X; admits the moving average representation

X, = Zkzo dketrk, with di = (otlf"'1 — a’§+1)/(a1 —ap), if a1 # ag, and di = (k + 1), if a; = az = a.
Proposition 3.4.1 Let X; be the anticipative strictly stationary solution of (3.21) with 0 < o < 2. Then,
E[|Xt|7‘Xt,1,Xt,2} < 400, a.s. forany 0<-~<3a+2. (3.22)

Remark 3.4.1 Proposition 3.4.1 in particular demonstrates that for some a-stable random vectors
(X1, X2, X3), the moments of X5|X5, X7 may exist up to order 3o + 2 € (2,8). Obtaining bounds such
as the latter and the one of Proposition 3.2.1 for general a-stable random vectors (X7, X2, X3) is partic-
ularly delicate. Attempting a proof as in [30, 33] would require the sixth derivative of the characteristic
function of X3|Xs, X1, knowing that in the bivariate case, the fourth derivative is already a sum of more

than 20 terms requiring a two-page classification.
Proof. For any (xg,21,22) € R3,

X (X1, Xrr0)=(a1,a2) (T0) = fe(®o — Y171 — Pom2),

because ¢; is independent from X1, X;12. By the Bayes formula,

th+2\(Xt,Xt+1):(I07I1)(‘T2)
th+1,Xt+2 (1’1, xQ)

th‘(Xt+17Xt+2):(wl’w2) ($0) = th7Xt+1 (33‘0, .%‘1).

Thus,

Je(wo — Y121 — Yax2) fx, 0| X i1 =21 (2) [x,n (1)

th7Xt+1 (1‘0, '7;1)

th+2\(Xth+1):(moym1)(xQ) =

On the one hand, when |z3| — +00,

fe(x0 — 171 — Poxa) = O(|ma| ™7 1),

thus, for any v > 0,

22| fX o (X0 X)) =0,z (T2) = O <|$2|7_a_1fxt+2|xt+1:zl (962)> : (3.23)

|z2| =400

On the other hand, we will show that x —— [2[" fx,_,|x,, =z, () is integrable on R for any r < 2a+1, from

which the conclusion will follow.
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The integrability of the later function is equivalent to the finiteness of E[|Xt|T’Xt_1 = xl} which we will

show using Proposition 3.2.1. From Lemma 3.7.1, (X, Xy41) is a-stable and

+oo
/ |81|_Vr(ds) =% (1 + Z |dk|_u(d% + d%1)(a+y)/2>.
Sa

k=1
Given the form of the coefficients dj’s for X; satisfying (3.21), we have for k large enough say |dy| ~ C(k)|a|
where |a| € (0,1) and C is a polynomial with degree 0 or 1. It is easy to see that |dx_1/di| — ¢, for some

£ > 0. Hence,
el ™ (A + ) % = (14 (dir fdi)?) T2 e O(R) al (14 £2)( 072,

which is the term of an absolutely convergent series for any v > 0. Thus, fsz [s1]7¥T'(ds) < +oo for allv > 0

and we conclude invoking Proposition 3.2.1. |

3.5 Concluding remarks

Our results constitute a first step towards a quantification of the odds of crashes of bubbles, which could
be valuable for risk/portfolio managers and regulators. Specifically in a portfolio allocation context, where
managers would decide both the composition of their portfolios and when to pull out from speculative
assets for instance, the functional forms per se of the higher order moments could be valuable [65, 80]. Our
results also open the possibility for alternative point predictors for the stable anticipative AR(1) and OU
processes that exploit higher order conditional moments, as opposed to other predictors that were proposed
to circumvent the infinite variance of a-stable processes, such as as minimum L®-dispersion or maximum

covariation ([81] and the references therein).

3.6 Complementary results

This section is composed of three subsections. The first provides the form of the conditional moments for
arbitrary bivariate stable vectors (X1, X5). The second subsection completes Theorem 3.2.1 and Propositions
3.2.3, 3.4.1 in the case & = 1. The third provides an interpretation of the quantity p®" in Corollary 3.2.2

using point processes.

3.6.1 Conditional moments of bivariate a-stable random vectors

The conditional moments stated in Theorem 3.2.1 for the particular AR(1) case originate from the broader
bivariate a-stable framework that was much studied in a series of papers in the 90s [30, 31, 32, 33, 64,
116, 117, 128] (see also [21, 23, 49, 103]). In this section, we give formulae for the conditional moments
up to order four of arbitrary (not necessarily symmetric) a-stable bivariate vectors (X1, X2), that is, up to

the maximum admissible integer order under the most favourable dispositions of Proposition 3.2.1. Only
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the first and second order moments received attention in the literature, the later besides, mostly in the
Symmetric a-Stable (SaS) case. The conditional expectation of arbitrary a-stable bivariate vectors is the
most comprehensively understood (see for instance [64, 116]. See also [23]). We suppose in the rest of this
section that the shift vector pu® = (ul,19) is zero. This can be done without loss of generality because,

assuming the conditional moment of order p exists,
E[XS'Xl = x} = E[(Xz —pp+ ug)p‘)ﬁ —p = uﬂ
p . . ~ ~
S cspe il -]
j=0
where & = x — p9, and (X1, Xo) = (X1 — 19, Xo — p9) has the same spectral measure as (X1, X») and zero

shift parameter. For a-stable bivariate vectors with arbitrary spectral measure I', the constants of Theorem

3.2.1 will be replaced by the following quantities

5747 T(ds)
U?:/ |s1|“T'(ds), 51:]521—0" (3.24)
Sa 01
S2/51)P|s1|*T'(ds 59/51)Ps~“>T'(ds
_ Jss/sisioTs) \, _ Jalse/srsiT(ds) 525)
01 01

for p € {1,2, 3,4}, when they exist. We will assume of* > 0 so that the random variable X is not degenerate.
Notice that 1 is also known as the covariation of two stable random variables in the literature. We start

with the conditional expectation in the case o # 1.

Theorem 3.6.1 (Samorodnistky and Taqqu (Theorem 5.2.2, 1994)) Let (X1, X2) be a-stable, a €
(0,2) \ {1}, with spectral representation (I',0). If 0 < a < 1, let T satisfy (3.3) for some v > 1 — a. Then,

for almost every z,
a(A — Bik1)
1+ a?f3?

]E|:X2'X1 = x} = rix + afrx + MH(I)] , (3.26)

TerI (.’1?)

where a = tg (%) and o1, P, the k,’s and the A\,’s are as in (3.24) and (3.25).
If a <1 and 1 =1, Relation (3.26) is well defined only for x >0, and if « <1 and B; = —1, it is well
defined only for x < 0.

The conditional expectation in the case a = 1 has also been considered in the literature and is more intricate.

Theorem 3.6.2 (Samorodnistky and Tagqu (Theorem 5.2.3, 1994)) Let (X1, X3) be a-stable with

a =1 and spectral representation (I',0) satisfying (3.3) with v > 0. Then, for almost every x,

E[Xg’Xl = x} = f%qo +ri(x — 1) + AliTﬂml (x — 1) — 01% ) (3.27)
Zf Bl 7é 07 and
- . 20’1 20’1 V((E)
]E|:X2‘X1 —1':| —77q0+/€1(x7‘u1)77)\1m, (328)
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if 1 =0. Here a =2/7, o1, b1, the k,’s and the Ap’s are as in (3.24) and (3.25), and

—+o0
/ e~ %tgin t(w — 1)+ aalﬂltlnt) dt,
0

+oo
/ e (1 + Int) cos ( (x—p1) + aalﬁltlnt>dt,
0
1
go=— [ s2ln|si|T'(ds), 1 = fa/ s11n|s1|T(ds).
g1 S So

Ifa<1and By =1 (resp. 1 = —1), Relation (3.26) is well defined only for x >0 (resp. x <0).

Regarding the conditional variance, studies have focused most exclusively on the SaS case (see [21, 49, 128]).
One notable exception is Theorem 3.1 in [31] which states without proof the functional form of the conditional
variance for an arbitrary, skewed bivariate a-stable vector for a # 1. We therefore provide a proof for the

second moment as well and fill the gap for a = 1. We start with the case o # 1.

Theorem 3.6.3 Let (X1, X5) be a-stable, o € (1/2,2) \ {1}, with spectral representation (I',0), where T

satisfies (3.3) with v > 2 — . Then, for almost every x,

azx(Aa — B1K2) 1—zH(x) a’oie
X5 X1 = = _— — 2,01; 2
|: 2‘ 1 :,C:| I€2£L‘ —‘r 1—|—(aﬂ) aBrx + ﬂ'le(JS) 7er1( )7‘[( R 1,1‘)7 (3 9)
where a = tg (W;) 0, = (611,012) with
011 = kT — a®A + @®Bi s — ko, 012 = a(A2 + Bik2) — 20\ k1,

and o1, P, the k,’s and the A\,’s are as in (3.24) and (3.25).
Ifa<1and By =1 (resp. B1 = —1), Relation (3.29) is well defined only for x >0 (resp. x <0).

We now give the formulae for the second conditional moment when « = 1. As for the conditional expectation
when (X1, X5) is not S15, two different results hold according to whether the marginal distribution of X;

is skewed or symmetric.

Theorem 3.6.4 Let (X1, X5) be a-stable, with o = 1 and spectral representation (T',0), where T' satisfies
(3.3) with v > 1. Then, for almost every x,

201 A A
E[X3]x1 = ] = 030’ — w) + 75 (oum —aao(w — )} + 32 (2 = m)? — o)
+ (GUIQO()\I — B1k1) + (k1A — A2) (= M1)>m
+ (A2 + Bk — 261A1 + a®o1 B (A] — 51)\2>W($)) #;(x)’

if 1 #0, and

]E{Xg‘Xl = :c] = U%(@ +a? QO - /‘51) 2a01K1q0 (7 — p11) + Ka(x — Ml)
Fx (z)—1/2 a1
x, (@) / n 1A1

+ aoq ()\2 — 2)\1,‘61) fX (17) 7TfX (CC

] [2 (aalqo —ky(z — ul))V(x) +aoci MW ()|,
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if 1 = 0. Here, a =2/, o1, B1, the kp’s and the \,’s are as in (3.24) and (3.25), U, V, qo and p1 are as
in Theorem 3.6.2 and

+oo
W(z) = /0 e (1 +1nt)? cos (t(:c — p1) +ao1 Brtln t) dt.

Remark 3.6.1 Note that when a = 1, nfx, (z) = OJFOO e 7t cos (t(a: — p1) + ao1 frtn t) dt. If in addition
£1 = 0, then X; is marginally Cauchy distributed and its density and cumulative distribution function are

known explicitly.

Remark 3.6.2 The conditional variance when (X7, X2) is S1S (derived in [31]) is encompassed by the second
statement of the Theorem. Indeed, when (X7, X3) is S18S, its spectral measure satisfies I'(—A) = I'(A) for
any A € Ss and it can be shown that 8 = u1 = qo = A; = 0, for ¢ = 1,2. This then yields

V(Xg‘Xl = a:) = (kg — KJ%)(LL’Q + 0%).
We now provide the analytical form for the third conditional moment.

Theorem 3.6.5 Let (X1, X5) be a-stable, a € (1,2), with spectral representation (I',0), where T' satisfies

(3.3) with v > a — 3. Then, for almost every x,
1-— xH(:v)}

- - aLL'Q(/\g — ﬂ1:‘£3)
E[XS‘)Q —x} _%3x3+1+(a,31)2[a51x+ﬂ'fx1(1?)

2 20 ) [m’}-{(2,02;x) n aalaH(3,03;x)], (3.30)

e
27 fx, (x

where the 0;’s are given in (3.72)-(3.75) in Section 3.7.12 with o1, B1, the k,’s and the A,’s as in (3.24) and
(3.25).

Finally, under the most favourable dispositions of Proposition 3.2.1, the fourth conditional moment exists

and its analytical form is given in the following Theorem.

Theorem 3.6.6 Let (X1, X2) be a-stable, a € (3/2,2), with spectral representation (T',0), where T' satisfies
(3.3) with v > o — 4. Then, for almost every x,
az®( Ay — P1k4)
1+ (afh)?
o {12
L [ )+
mfx,(z)] 2 4
where the 0;’s are given in (3.66)-(3.71) in Section 8.7.12 with o1, b1, the ky’s and the A\,’s as in (3.24)
and (3.25).

E{X%‘Xl = z] = raxt +

{aﬂlz 1= :z:H(:c)]

7TfX1 (‘T)

« 2 2«
W 5,051 + ©

7—[(4, eﬁ;x)}, (3.31)

The previous expressions of the conditional moments simplify when one considers the asymptotics with

respect to the conditioning variable, as X; = x becomes large.
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Proposition 3.6.1 Let p € {1,2,3,4} and let (X1, X5) be a-stable with o € (0,2), and spectral representa-
tion (I',0) such that the conditional moment of order p exists. If |f1| # 1, then

A
PR =] — ¥ Ap
T—+00 1—{—61
-p Ply, — fp = Ap
T E[XQ‘Xl fz} o T

and if |81| =1 and B1x — +o0, then,

o PR {Xé’

X = x} —Kp.

Remark 3.6.3 The difference between the cases |51| = 1 and |81] # 1 can be seen as a consequence of the
different tail behaviours that prevail. When |S;| # 1, both the left and right tail of the density of X; display
power law decay as O(|z|~®~1). However, when 3; = —1 for instance, the distribution of X is said to be
totally skewed to the left. The left tail still decays as O(]z|~*71), but the right tail decays much faster and

another asymptotics holds.""

3.6.2 Complementary results for a =1

Theorems 3.2.1, 3.2.2 and Proposition 3.3.1 give the conditional moments of the three considered processes
in the case a # 1. We provide here the remaining more intricate case a = 1. As can be seen in Propositions
3.2.2, 3.2.3 and Lemma 3.3.1, the bivariate vectors (X, X¢45) of each process are a-stable and their spectral
representations display a non-zero shift parameter u°. For the sake of simplicity, we cancel this shift by

considering the vector (X, X¢yn) = (X, Xeon) — pu°. We start with the anticipative AR(1).

Theorem 3.6.7 Let (X;) be the anticipative a-stable AR(1) solution of (3.1) with a =1, g € [-1,1] and
0 <|p| <1. Leth>1. Then, E{XHh’X} = x} and IE[XEJF}L‘X} = x] are given respectively by Theorem
3.6.2 and 3.6.4 with,

o 1- |p| 1 h _92h 1 —on
- - . In(1 - (1
o1 = pr=8 e 1 7T0151P n(l+p="), qo 2[31 n(l+p=")
kp = lpl" o™, N =B, for pe{1,2}.

Theorem 3.6.8 Let {X;,t € R} be the anticipative a-stable OU process, with a = 1, defined by (3.19) with

A > 0 and M an «a-stable random measure with Lebesgue control measure and constant skewness intensity

11If X1 ~8(a,—1,1,0), and £ — +o0, then by Theorem 5.2.2 in [131]

(a=2)/2(a—1)
frr @)~ e { - afta/@ 0L i s,
2rall — af
1 r—1
fx,(x) ~ 76Xp{7 — e‘”‘l}, if a=1.
V2T 2

If o < 1, the support of fx, is R and conditioning by = > 0 makes no sense. Note however that when x — 0, a formula

similar to the case & > 1,z — 400 holds.
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p € [=1,1]. Let h € R%. Then, E{Xt_kh‘f(t = 3:} and E{Xtah‘f(t = x} are given respectively by Theorem
3.6.2 and 3.6.4 with,

1 1
o1 =1, B =48, = %ef*h In(1 + e*"), go = —5BIn(1+e*")
Kp = e M=) Ap = BEkp, for pe{1,2}.
In addition to o1 ;, B1,5, kp,; and A, j, denote for each j =1,...,J, the quantities gy ; defined at Theorem

3.6.7 where p, o and 3 are replaced by p;, o; and ;.

Theorem 3.6.9 Let (X;) be the aggregated anticipative AR(1) defined according to (3.20) with « = 1. Let
h > 1. Then, IE[XH;L‘X} = ac] and E[XEM‘X} = x] are given respectively by Theorem 3.6.2 and 3.6.4 with,

J J
01 :Czﬁjﬂl,j, pr =E(B), Ha :Czﬂjﬂl,g‘, 90 = E(Qo)
j=1 j=1
rp = B(Kp), Ap = E(Lyp),

for p € {1,2}, where B, K,, L, and Ky are discrete random variables such that ]P’((B,KP,LP,QO) =

01 5 , .
(ﬁlﬁj,mp,j,)\p,j,qoﬁj)) =wj and w; = —>—2— for j=1,...,J. stable random noise

ijl 01,
3.6.3 Interpreting p°" using point processes

The quantity p®" appearing in Corollary 3.2.2 has the intuitive interpretation of a survival probability at
horizon h of a bubble generated by (3.1). This conclusion can also be reached using point processes under
the less restrictive assumption that the errors of (3.1) belong to the domain of attraction of an a-stable
distribution. Consider n observations X1, ..., X, of (3.1) where now (g;) is an i.i.d. sequence of random

variables such that:

R . ]P)(€0 > .’E)
P(leo| > x) = ™ L(x), and xl;ngo Plleo] > 2)

— c€[0,1],

with L a slowly varying function at infinity. Let a,, = inf{u : P(|eg| > u) < n~!'}. Then, adapting Section
3.D in [40], we can study the time indexes k € {1,...,n} for which a, !X} falls outside the interval (—z, z),
for z > 0, that is, the time indexes for which (X;) undergoes extreme events. The corresponding point

process converges as the number of observations n grows to infinity:

n 400
Zéoc/n,a;le)( - N BZ) i> Z§k5Tk,
k=1 k=1

where § is the Dirac measure, B, = (0,+00) X ((—oo, —z) U (m,—i—oo)), {YTk,k > 1} are the points of a
homogeneous Poisson Random Measure (PRM) on (0, +00) with rate 2=, and & = Card{i € Z : Ji|p| >

25ee [37]: {Yk,k > 1} are the points of a homogeneous PRM on (0, +o0) with rate ¢ if and only if, for any £ > 1,

nonnegative integers ai,...,a¢ and by,..., by such that a; < b; < a;41,¢=1,...,¢, and any nonnegative integers ni,...,ng:
2
= %b; — a;)|"
P(N(ai,bi] =ngi=1,... 75> = H %GXP {*xfa(bz‘ - ai)} ;
il

i=1
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1} where {Ji,k > 1} are i.i.d. on (1,+00), independent of {Y}}, with common density:

f(2) = 27 (1 400y (2). (3.32)

The sequences {Y;} and {&,} are interpreted (see [89]) as describing respectively the occurrence dates of
clusters of extreme events and the size of these clusters (i.e. the number of co-occurring extreme events,
which here corresponds to the duration of bubble episodes). Since & = Card{i € Z : Ji|p'| > 1} =
arg max;>,{Ji > [p|~"}, we can obtain explicitly the distribution of the bubble duration using (3.32). For
any h > 1,

P& > h) =P(J > ol ™) = o],

which as announced, is precisely the probability parameter of the Bernoulli variable intervening in the

suggested interpretation of Corollary 3.2.2.

3.7 Postponed proofs

3.7.1 Proof of Proposition 3.2.2

To prove Proposition 3.2.2, we begin with a Lemma that gives the forms of the spectral measure and
shift vector for more general, discrete time vectors of linear moving averages driven by a-stable noise. Let
€ bl S(a, 8,0, 1), m an integer such that m > 2 and let {dy;,k € Z,i =1,...,m} be a real deterministic
sequence verifying
forany i =1,...,m, Z |di,i|® < +o0, forsome s<a, s<I1. (3.33)
kez
Consider the vector
Xe=(X14oo, Xna), with Xiyp = dpigpsn, for i=1,...,m. (3.34)
kezZ
It follows from Proposition 13.3.1 in [19] that the infinite series converge almost surely and X is well defined.

Denote dy, = (di1,--.,dgm) for any k € Z and u = (uq, ..., uy) € R™.

Lemma 3.7.1 Let 0 < a < 2 and let X satisfy (3.33) and (3.34). Then, X is an a-stable random vector

in R™, with spectral measure I' on the unit sphere S,, and location vector u° € R™ such that

1+p 1-5
I'=0¢" di||“6 +o“ dp||%0y —ax 1\, 3.35
5 %H kol [ 5 k%” Al () (3.35)
2
NO — deu — ﬂ{a:l};UﬂZ di In ||d]|,
keZ kEZ
where O¢, is the dirac measure at point v € R and by convention, if for some k € Z, dy, = 0, i.e. Ildi|l = 0,

then the kth term vanishes from the sums.

where N (a;,b;] denotes the number of terms of {Yy, k > 1} falling in the half-open interval (a;,b;], i =1,...,¢.
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Proof. The characteristic function of X, reads, for any u € R™:
@Xt( ) = exXp Zuj gt = H E|: Zu]'dk-d Et+k
keZ j=1
We obtain that for a # 1,
e T T~
vx,(u) =exp ZO‘ \Zu]dkﬂ 1 —zﬁ&gn(Zujdk,j)tg? —&—zZujde,j,u . (3.36)
kez  j=1 j=1 j=1  kez
Ifa=1,

vx,(u) =exp —Za|2ujd;”\ 1+i8— &gn(Zujd;”)ln)Zujko’

keZ 7j=1

+iY u Y dip g (3.37)
j=1 keZ

Replacing (3.35) in (3.2) allows to retrieve the two above formulae. ad

Let us now prove Proposition 3.2.2. From Lemma 3.7.1, taking X; = (X, X;yn), we have for the
anticipative AR(1), dx = (p* 10, p* "1x>p) for any h € Z and h > 1, and

A1
o 1+93 kia ok, 20k—h)|*?
Ip=o Z 2 Z'p | 5{19 (o"\:)} +Z’P tr 9 (ok,ph—T)
veSL L k=0 Ipl k>h W
1+ 098 [ 2 a/2
=0 Y —5 | 2l st + (1 + |P|*2h) > Ipla’“(?wsign(p)msh}]
9ES, L k=0 k>h
po [h=1
=3 [Z pl** > (1 +19Sign(f0)k/3)5{(19,0)}
k=0 veS,
—on\ /2 ak : k+h
(11l 72) TS el S (14 O sign(p) ) bga s,
k>h vES,
h
o [(1= bl 1 ()
=5 ) [(FW Ml e HICXON
vES,

ah <a> 98
. ol (=)
+(1+ 1o 2h) <1|p| Fsign(0)' 2 o
h
1— |p|ah 1— (p<a>)
=5 2 [(1—|p|a Ml e RGN

YES,
a/2 1 0]
1 2h ) .
() (e ) {"“h}]

From Proposition 3.7.1, we also have u® = 0 for a # 1 (since = 0 in (3.1)). For a = 1, we have

)
Q

2 2
pi = —=0BA, py = —=0BA,,
v iy
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with

400 1 400 +o0o 1 +o0
Ar=Inlp| Y kpt +5n (1 + Ipl‘%) Sk Ay=p7" [ln Y _ kot + 5 n (1 + Ipl‘%) > pk}-
k=0 k=h

k=h k=h
hph ph+1
It is easily shown that Z::;L kpk = 1 + il 2 for h > 0. Substituting in A; and As yields the
—p -p

conclusion.

3.7.2 Proof of Theorem 3.2.1

From Proposition 3.2.2, we know that (X, X;45) is an a-stable vector with spectral representation denoted
(T'n, 0). Corollary 3.2.1 gives a sufficient condition for the existence of conditionals moments and Theorems
3.6.1, 3.6.3, 3.6.5 and 3.6.6 give their analytical forms in terms of the spectral measure. Given I'y, as in (3.4),
the constants o1, 31, the x,’s and A,’s simplify. For instance:

off = |s1|°Trh(ds)
Sa

_o _|ylah _(<a>\M\ 972 o on\ /2 5 197,0h
—2%1[(1 ol (1= (=)o o1 + (14 o) (1+ﬁﬁ)’m

«
‘|:O'a.

We will give the proof for the excess kurtosis. The other limits and equivalents are obtained in a similar

3.7.3 Proof of Corollary 3.2.2

manner. Letting a € (3/2,2) ensures the existence of the fourth order moment.
Since we assume p > 0, it follows that A\, = Sk, for p = 1,2,3,4. Using Proposition 3.6.1, it is

straightforward to show that as x tends to infinity

Ka — 4K1K3 + 6/1%/-@2 — 3/—1‘11

2
(/{2 — m%)

Substituting the x,’s by the expressions in Theorem 3.2.1 and rearranging terms yields the conclusion.

Yo(x, h) — - 3.

3.7.4 Proof of Proposition 3.2.3

The a-stable random vector (X;, X;45) admits the integral representation

(X0 Xpan) = ( /R iz — H)M(dz), /]R fg(x—t)M(da;)>, (3.38)
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where fi(z) = 67}‘1’]1{9520} and fo(z) = fi(x — h), for z € R. Let w = (u,us) € R%. For a # 1, by

Proposition 3.4.1(i) in [117], its characteristic function reads

Elexp {ijiuj/Rij(dx)}]
:exp{/R{—‘g:lujfj]a+ia5(§2:ujfj)<a>}dx}

j=1
h
= exp / {— ‘ule_’\gﬂ
0

+oo a <a>
+ / { - ’ule*M + uze*’\@*h)‘ + iaf (ule*)‘w + uze*)‘(w*h)) ] dm}
h

[ <a>
+ iaf (ule_’\gj) }dx

1767a)\h
= exp (= | +iafui™> ) —

—alh
+ (|u1 + ugeM|* +ia(uy + uge)‘h)<°‘>) ea)\}

~ exp {al)\ Z 1+98 |:< — [9uy|* + ’L'LL(19U1)<Q>)(1 _ e—a)\h)

2
vES,
e~ 9 a
+{ = ’m =y + U2 =y
) Ye~ 9 <a> Coan ) @7/2
+ ia <u1 = + uo =y 6—2)\h> ) (1 +e ) ]

= eXp{ -/ [(u, )" — ia(<u,3>)<a>l“h(d5)}7
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with a = tg(ma/2) and Ty, as in the Proposition. If « = 1, then with a = 2/7, we have by Proposition
3.4.1(ii) in [117]

2

E lexp {z j;uj /R ij(dx)}
2 2 2
exp{ —/]R U ZUjfj‘ +iaﬂ<2ujfj) ln’Zujfdex}
Jj=1 j=1 Jj=1
exp{ — /h Uule_’\gj ]dac
0
“+oo
— / “ule_MC + uze_A(x_h’)‘
h

+ iaf (uleﬁ‘z + uge#‘(z*h)) In ‘ulef)‘z + uge AER) ” dx}

+iaf (ule_’\’”) In ‘ule_/\x

h h
=exp { - (|u1| +iaf(uy)In |u1|) / e Mdx 4 ialBuy / re  Mdx
0 0

+oo
— (|u1 + ugeM| +iaB(ur + uge™) In |uy + U2€)\h|> / e Mdx
h
+oo
+ia B (uy + uge) / re  Mdg
h
1 1+ 9
= exp{ -5 Z +2 b [(|19u1| +ia(duq) In |19u1|) (1 - e”‘h)
vES,
Je b 9
+ ‘ul VIt e D T Us- v ‘

Je Ah Y Je Ah Y
V14 o2
Sireon AT e—%\h) n ‘ul N ey D Lte ]
“+o0

In(1 —2\h +oo
—iaﬂ(u1e_’\h+u2)(h+ n(l+e ))+ia)\6(u1/ xe—Adm+u26Ah/ xe—mz) 7

+1a <u1

and
+oo +oo
)\(ul / ze T 4 uze)‘h/ xe*)‘dg”) =u A"+ us(h + )\*1),
0 h
In(1 —2X\h
b n( +2§ ) —In(1 + 2.
Hence,

E[exp {i(iaxi + i) }] - exp{ = [ 1w s)l -+ (. s)) I, )T () +z’<u,u0>},
Sa
with T'j, and p° as claimed for o = 1.

3.7.5 Proof of Theorem 3.2.2

Let {X;,t € R} be the anticipative OU defined in (3.19) with A > 0 and let A > 0. Since, the Markov

property of the anticipative OU has already been discussed in the relevant section, let us focus on the
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points two last points, namely the existence and the form of the conditional moments. The proof could be
done similarly to those of the discrete time AR(1) using the expression of the spectral measure obtained at
Proposition 3.2.3. However, we propose another proof which has the advantage of illustrating how a-stable
vectors with different integrand functions f; and fo in (3.38) could be considered. Formulae are given by
Proposition 3.1 in [116] for expressing the constants like the ones we introduced in Equations (3.24) and

(3.25) in terms of these integrand functions. The condition (3.3) can be translated in terms of fi and fo as

| fa(z)|** M e A e
/ |s1|""Th(ds) < +o0 <= = dr=e (aJ”’)/ e~ dx = < 400,
S> r, |f1(2)] h al

which is satisfied for any v > 0, hence (¢¢). Let us turn to point (cet). The conditional moments are given by
Theorems 3.6.1, 3.6.3, 3.6.5 and 3.6.6 for an arbitrary spectral measure I". From the proof of Proposition 3.1
in [116], we know how we can rewrite the constants o¢, 51, K, and A, for p € {1,2,3,4} which are expressed
in terms of an integral of s1, so and I into expressions involving f1, fo and the Lebesgue measure. It can

be shown that

+oo o 1
ol z/R\fl(xﬂ dx:/t e dx:a,

gy e B@ @A Jayds
o of
oy Je, (folx /fl(a)) [fi(@)|"de % +oo (eA_(“;mh))peamdx _ M),
o o Jn e
e, (@) (@) fr(@)[ <7 B(x)dx fﬂh fa(@)/ fr(@)?| fr(x)|*dw
D o « = BKZN
of 91
Jo, fo(@)B() In |- |da %
g = Ry /2 (@) +f3 () _ 16/+ efA(mfh) hl(]. + €2>‘h)d£€ _ 71ﬂh’1(1 + 62}\h).
g1 2 h 2

3.7.6 Proof of Lemma 3.3.1

Using the independence between the X ,’s and denoting X ; = (X ¢+, Xj 14+n),

J J
exp {zucz ;i X+ ivcz 7rij7t+h}]

j=1 j=1

E |:6iuXt+i7JXt+h:| — K

exp{ (uer;, X ;)

J
1
lf[ { / |(ucrj, s)|” (1 — isign((ucm;, s))w(a, (uer;, s))) Ljn(ds)

+ i (ucr;, u0>},
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When o # 1, then w(a, ) = tg(ra/2) and

J

E eiuXt—‘rivXtJrh] = exp { —c” Z?‘('Ja /s [{u, s)|* <1 — isign({u, $))w(a, (u, s)))FLh(ds)}

= exp { - [{u, s)|* <1 — isign((u, $))w(a, (u, s>)) Fh(ds)}.
Sa

When a = 1, with a = 2/7,

J
E[eiuXt+iUXt+fL:| = H exp{ - /s l(ucrj, s)| + ta(ucn;, s) In|(ucn;, s)|T; n(ds) + i (ucnj, ,u?))}
i=1 2

J
- exp{ - C/sz [(u, 8)| + ia(u, s) In|(u,s)] Y mT;4(ds)

Jj=1

J
+1 Z ((u, cmu% —acmjln|en;| [ (u, s)Fj,h(ds)) },
i=1 2
and
i (w,em;pu?) —acrjln|er;| | (w,s)Tj4(ds)) = (n? —aln|er;| [ sT;n(ds)))
) CTj b5 j j ) grh Jj\ My j grh
j=1 Sa S

J

J
i(u,cZﬂ
j=1
J
'<u7cZ7r u?—a011j1n|c7rj| Pri ))
Jj=1 Lj

oS

3.7.7 Preliminary elements for the proofs of the main results

Notations for the proofs of Theorems 3.6.3-3.6.6 and Proposition 3.6.1
Let X = (X;,X2) be an a-stable vector, with 0 < o < 2, @ # 1, and spectral representation (I",0). Its

characteristic function will be denoted ¢ x (¢,7) for any (t,r) € R?, and reads

wx(t,r) = exp { /52 g1(ts1 + T'SQ)F(dS)} , (3.39)

where g1(z) = |2|* —iaz<*> for z € R, and a = tg(7wa/2). As we assume o1 > 0 so that X7 is not degenerate,
the conditional characteristic function of X, given X; = x, denoted ¢x,|(r) for r € R, equals

_
27TfX1 (Z‘)

where fx, denotes the density of X; ~ S(a, 51,01,0). The following notation of the H family function will
be more handy than that in (3.10): for any y > —1 and 8 = (61, 602) € R?, define the function H(y, 0; -) for

Gxala(r) =1+ /R emits (gpx(t,r) - <pX(t,O))dt. (3.40)

r€Ras
+Oo o, o
H(y,0;x) = / e Tt Y (01 cos(ux — afrofu®) + Oy sin(ux — aﬂlaf“ua))du, (3.41)
0

For z € R, denote also,

ga(2) = 2~ —ja|z|*! (3.42)

g3(2) = |2|*72 —iaz<""%>, (3.43)

)
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Often, we shall invoke functions of the form
r— / e Mo () [Pt 1) L fPm (tr)dt, (3.44)
R

where m < 3 and the f;’s will be functions of the type f;(t,r) = f82 gj. (ts1 + rsa)stisy T(ds), for j; = 2,3,
k;, ¢; € Z for which f; is well defined and positive integer exponents p;’s. As a shorthand when no ambiguity

is possible, we shall denote functions like (3.44) by

P1 p2
kl él k2 eZ
A</ Gj. 51 52> (/ G 51 52>
Sz SZ

Lemma 3.7.2 Let (X1, X3) be an a-stable vector, 0 < o < 2,« # 1, with conditional characteristic function

bx,)2 as given in (3.40). Letr e R. If1 <a <2, orif0 <a <1 and (3.3) holds with v > 1 — «, the first

up to the m*™ term.

derivative of ¢x,|, is given by

¢§i\z(7’) = 27erO:(x)A</S2 9252>~ (3.45)

If1/2 < a < 2 and (3.3) holds with v > 2 — «, the second derivative is given by

_ ﬁf‘(x) ixA(/32 ggsgsfl) +a{A(/52 92335;1) (/32 9281> —A(/52 9285)2}]7 (3.46)

If 1 < a <2 and (3.3) holds with v > 3 — «, the third derivative is given by

6% (1)

B —Q
o 27TfX1 (:L’)

</ ggsgsf1>, I :A(/ ggsgsf1> (/ g38281>,
So Sa Sa
I = A</ 9252>( 925351_1>, Is = A</ 9251) </ 935351_1>7

SQ Sz Sz SQ

3
(/ 9232> , I =A</ 9282> (/ g3S§>,

So Sa Sa
Iy = A</ 9251> (/ 9252> (/ 928381_1)-

So So So

If3/2 < a < 2 and (3.3) holds with v > 4 — «, the fourth derivative is given by

6. (r) (ix((a ) - a12> +a?(Is — Iy) + ala — 1)(Is + Is — 217)>, (3.47)

with

—

() = P fx (@)

[ i (a (3J1 - 2J2> Y (a—1) (2J3 —3J+ J5))
+az?Js — (o — 1)z2 Ty
—|—O¢2(Oé—1) <J8+J9+J10 —3(2J11 + J1o —J13)> (348)

+ a(a — 1)2 <4J14 — 3J15 — J16)

+a? (3J17 — Jig — J19>] ;
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with

=a( [ m)( [ )

oA o) ([ o) ([ o)
s [ ) ([ ).

s [ wits?)( [ ).

o a( [ o) [ oen)
([ ) ().

Jr = A(/S gsstsi?),

st ) ([ ).
([ o) () (],
oA [t ([ on)

3.7.8 Proof of Lemma 3.7.2

For each of the derivatives, the proof involves two main steps: 1) computation of the derivative 2) justifying
inversion of integral and derivation signs. Regarding computation, we detail only the case of the second

derivative, whereas for the justification, we detail only the case of the third. Those cases are representative

of the main techniques employed for the others.

Computation: second derivative Note that if f(z) = |z|°, for 2,0 € R, b # 0, then for x # 0,
f(z) = bz<t~'> and if f : z — 2<0> then f’(z) = bJx|*~!. This can be shown by distinguishing the cases

z > 0 and z < 0. Formal computation of the second derivative yields divergent terms when 1/2 < o < 1

Ji2 =

and a special manipulation called «appropriate integration by parts» in [30] (p.106) is needed.
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_ 1 .
= 7(1 lim — [/ / e pox (t,r + h)ga(tsy + (r + h)sg)soI(ds)dt
Sa
- / / e Mo (t,7)ga(tsy + TSQ)SQF(dS)dt‘|
Sa

%bj()h»oh//& it pr(t r+h) —ox(t, r)}gg(tler( + h)sy)soT(ds)dt

+ ﬁ lim - ; / /S2 e Moy (t,1) {92(1551 + (r+ h)s2) — ga(ts1 + 7’82):| sol'(ds)dt

= A + As.

The first limit can be straightforwardly obtained:

2

A = & —itx ¢ " r(d 2dt
l—m/R@ (PX( 77")(‘/5292( S1 +T52)32 ( S))

a? 2
= o/, <x>A</52 g) |

The second one requires «appropriate integration by partsy. With the change of variable t/ =t + —=,

42 = 27TfX1 h—>0 h [/32 / x(t,7)g2(ts1 + (r + h)s2)s2dtl(ds)
f/ /e*itwgax(t,r)gz(tsl +r52)52dtI‘(ds)]
S JR
h82
—Q 1 —z‘(t——)x hso
e - S _ hsg
o fx (@) A T [ /S /Re L ox (£ = ) ga(tss + rsa)sadiT(ds)

—/ /e_“zgox(t,r)gg(tsl +r82)52th(ds)]
S5 JR

o 2 —1 . 1 ﬂ'(t*
5381 g2(ts1 +rs2) lim —— e 51
S JR h—0 —?12

- 27 fx, ()
—e o (t, 7")] dtT’(ds)

« 2 _—1 - —itx —itx a
= tsy + — t,r)+ — t dtI'(d
7 Fx /S2 /]1{5251 g2(ts1 7‘52){ ixe ex(t,r)+e atcpx( ,r)} (ds)

—iox —itx 2.—1
= e t,r §5S ts1 +1rs9)'(ds) |dt
Qfol(x)/R ex( )</s2 21 g2{tor 2 )>

s [ ot ([ stess +roar(as)) ([ st autes + roatas)

. 2
_ e 271 - 257!
Ay = 7 x. (x)A</sz 25551 > o fx, (x)A(/sz 925351 )(/52 9231)

Combining the expressions obtained for A; and As yields the second derivative.

122



Justifying inversion of integral and derivation signs: First derivative Case a € (0,1)

Assume « € (0,1). We begin with the first derivative of the imaginary part of ¢ x,|,.
d
ar (Im¢lew<T>)

|t81+(l+h)52|“‘l“(ds) s _ cas
27er1 %%h/[ (tw G/SQ(tSl‘f'(T—Fh)sz) F(ds))

e f52 [ts1+7s2|“T(ds) sin (t:C . a/ (ts1 + 7'52)<(">F(d8)> ]dt
Sa

1 lim 1 sin <tx - a/ (ts1 + (r+ h)52)<a>F(dS))
h R So

B 21 fx, (x) =0

— sin (tx - a/ (ts1 + 7‘82)<O‘>F(ds)>
Sa

X exp{ - / [ts1 + T32|QF(ds)}dt
Sa

1 1 .
_m}nl—%ﬁ/R [e"p{— . |ts1 + (1 4 h)sa| F(ds)}

— exp { - lts1 + T52|O‘F(ds)}
Sa

X sin (tm - a/ (ts1+ (r+ h)32)<°‘>F(d8)> dt
Sa

The integrand of I; converges to

—aa cos (ta: - a/ (tsy + 7“52)<Q>F(ds)) %
5

|ts) + rsg|* tsol'(ds) x exp{ - / |ts1 + r82|°‘1"(d8)}
2 Sa So

Using the mean value theorem, the triangle inequality and the inequality —|z + y|® < —|z|* + |y|* when

0 < a < 1, the integrand of I; can be bounded for any h, |h| < |r|, by

’COS(Q)‘ ()Z‘ /S2 ‘(tsl + (14 h)s2)=7 — (ts1 +1782)~ F(ds)) exp { /S2 —[tsi|* + |r52|af(ds)}

< 2|alelml" o2 e=oTIH" |ts1 + 72| (ds), (3.50)
Sa

1/«
where oy = <f52 |32|0T(ds)) , ¥ € R, and we used the bound

< 2ltsy + 78| sal, (3.51)

‘ (ts1 + (7 + h)s2) <> — (tsy + rsg) <>
h

for ts1 + rse # 0, which is a consequence of ||1 4 z|<*> — 1| < 2|z|, for z € R (see Lemma 3.7.5 (¢t) below).

Bound (3.50) does not depend on h and is integrable with respect to t. Indeed, invoking Lemma 3.7.7 with
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n=a—-1,b=p=0,and (3.3) withv >2—a>1—-«

/ e—of‘ma/
R Sa

a—1 ala
t+7asﬁ‘ |S1‘O‘_1F(ds)dt—// eorlt |t|a_1‘81|a_1r(ds)dt
51 R JS;

a|y|a a—1
< |sl|o‘_1/e_"1 1 e 4 22| 7" Z get|aerds)
Sa R S1
< const [ |s1|* 11| 7VT(ds)
Sa
Sconst/ [s1|~"T(ds)
Sa
< +o0, (3.52)

and the integrability with respect to t follows from the fact that [, et |t]*=1dt < +oo. Hence the
Lebesgue dominated convergence theorem applies to I; and we can invert integration and derivation. Fo-

cusing on I, its integrand tends to

—a/ (tsy + rsy) <2717 s5T(ds) exp {—/ ts1 + r82|°‘1"(ds)} sin (tw —a
SQ S2

Using the inequality

[ts1 + 7‘32<a>1"(d5)> .
Sa

(ts1 + (r + h)s2)™ — (ts1 + rs2)®
h
for ts; + rsa # 0, which is a consequence of ||1 + z|* — 1] < |z]|, for z € R (Lemma 3.7.5 (¢) below) and the

‘ < |tsy 4+ rs2|* sz,

inequality |e=* — e~ Y| < e Yel*~¥l|z —y|, for x,y € R, we can bound the integrand of I for any || < |r| by

exo{- [ E rsal*T(as) pesp { }

1
— [ts1 + (r + h)sa|™ — |ts1 + rs2|*T'(ds)
< ezm%sefmt\”/
Sa

h /s,
The integrability with respect to ¢ is deduced as for (3.52) using Lemma 3.7.7 with n = a— 1, b =p = 0.

/ [ts1 4+ (r+ h)sa|™ — |ts1 + rs2|*T(ds)
Sa

X

a—1
t+rs—2’ 151/ 10 (ds).
S1

Thus, the Lebesgue-dominated convergence theorem applies to Is and we can invert integration and
derivation. The real part of ¢x,|,(r) can be treated in a similar way, allowing us to derivate under the

integral.

Case a € (1,2)
Assume « € (1,2). Just as for the case o € (0, 1), the imaginary part of ¢x,|, is given by (3.49)

% (Imqﬁxﬂx(r)) =1 + I

The integrands of I; and I still converges to the same limits, however a different argument is needed to
bound them. For |h| < |r|, the mean value theorem, the triangle inequality and the inequality of Lemma

3.7.6, yield the following bound for the integrand of I

(BN

(tsy + (r+ h)s2)<*” — (ts1 + 7’52)<°‘>’F(d5)> elrl®eos =210t 1tl" (3.53)
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where y € R. By the triangle inequality and the mean value theorem, we have for some u € (min <t31 +

(r+ h)sa, tsy + 7“52) ,max (t51 + (r+h)sa,ts1 + 7“52))

‘ / (ts1 + (1 + h)s2) <Y — (tsy + rs2)<*7T'(ds)
Sa

= ’/ ahsy|u|*~ T (ds)
Sa

< a|h|‘/s 1121 1 2]r|o~ 1T (ds)
< alh[D(So) ([t + 227 (3.54)
Thus, (3.53) can be bounded by
ala|T(Ss)el™ "8 e =2 o T (|gjo=1 4 g|p|a1),

which is certainly integrable with respect to ¢t on R for @ > 1. Let us now turn to I,. We have again by the

mean value theorem,

‘ |ts1 + (r + h)sa|® — |ts1 + rso|®

| < a2,

if |h| < |r|, and thus

'e fsz |ts14+(r+h)sz| “T(ds) - f52 |ts1+rs2|*T(ds)

h
< max <e f52 [ts1+(r+h)s2|*T(ds) - f32 t51+r52aF(ds))
" / [ts1 + (7 + h)sa|® — [ts1 + 782|® I'(ds)
So h
< F(52)6|2r|a0§‘e—21*0‘0‘f|t|°‘a(|t|a—1 + 2‘T|O‘_1), (3.55)

by Lemma 3.7.3 (3.77) and Lemma 3.7.6. The latter bound is again integrable with respect to ¢ on R. Hence
d

the dominated convergence theorem applies to I, I and therefore to e (Im¢X2|I(r)) and we can invert
r

the integration and derivation signs. Similar arguments show the dominated convergence theorem applies

to the real part of the conditional characteristic function as well.
Justifying inversion of integral and derivation signs: Second derivative Case o € (1/2,1)

(1)

In an expanded fashion, ¢ (r) can be written,

Xo|z
o0, (r) = ﬁam Iy = ady = ilJs + ady)]. (3.56)
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with,

/ (tsy + 1rsg)<*”T(ds) (tsy 4 1rsy)<*" 1> 5,1 (ds)dl,

Sa

EP\

— |ts +r52|°‘1"(ds
r):/e f32 ! tr—a
R

s1+rsa|*I(ds
/ f (tsrtrsalT0) o [ — a/ tsy + rs2) <" T(ds) / |ts + rso|* sol'(ds)dt,

n
n
I}

2

te — a/ (ts1 +1s2)<*"T(ds )

2
t “I'(d
/ f |[ts14rsa|“T( 5) <tx—a/ t81 +T82 <a>1’\ dS
Sa

/ f [ts1-+rsa]*T(ds) (

/ (tsy + rsy) <217 5,1 (ds)dt,

2

n
n

|t31 + 789|* 15,1 (ds)dt.

To obtain ¢> Xo ‘z( r), we will show that the dominated convergence theorem applies to Jj. Let us consider,

<a>
lim S, (ts1 + (r + h)s2) F(ds))

= hm [exp / [ts1 + (r + h)sﬂ“l"(ds)} cos (ta: - a/
Sa
X / (tsy + (1 + h)sg) <> 1> s, (ds)
Sa

— exp{ — /S [ts1 + T82|ar(d3)} oS (tx - G/S (ts1+ r32)<“>1"(d5)>

2

X / (ts1 + 7*32)<a1>32F(ds)] dt
Sa

= lim % [exp{ — /s [ts1 + (r + h)52|oT(ds)} - exp{ - [ts1 + r52|°‘F(ds)}]

h—0 R Sg

X COS (tx - a/ (ts1 + r52)<a>1"(d5)> / (tsy + rso) <0~ 1> s, (ds)dt
S2 SZ

+ lim % Rexp{ - /52 [ts1 + (r + h)SQ\aF(ds)} (3.57)
X [cos (tx — a/s2 (ts1 + (r+ h)52)<a>F(ds)>

— cos (tx - a/ (ts1 + 7"52)<Q>I’(ds))1
Sa
></ (tsg + rsg) <12 soT(ds)dt
Sa

[ts1 + (r + h)sz\af‘(ds)} cos (tm - a/ (ts1 + (r+ h)82)<0‘>f‘(ds)>

1
lim - {—
T P s,

Sa
X [/ (tsy + (1 + h)sg) <175, (ds) — / (ts1 + r52)<"_1>82f(ds)1 dt
Sz SQ
= K1 +K2+K3 (358)

It can be shown that the dominated convergence theorem applies to K; following the proof in [30] (p.105)
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for I;. Consider Ks. The integrand converges to

aa( |ts1 + r52|°‘_152f(ds)> (/ (ts1 + r82)<“_1>52f(d8)>
Sa Sa
X sin (tx - a/ (ts1 + 7"52)<0‘>F(d3)) exp{ - / [ts1 + ’I“82|aF(dS)}.
Sa Sa

Using the mean value theorem, (3.51) and the triangle inequality, we can bound the integrand for any

|h| < |r| by
|}1L/ (ts1 + (7 + h)s2) <" — (tsy + rs2) <" T'(ds)
Sa

y |Sin(y)|62lr|“oé’ef\tl%i’/
Sa

52 a—1 a1
t+ 22 gl a2 (ds)
1

1 2
< 2¢2Irl" o2 (/ }tMiQ‘ |sl|"_1F(ds)> eIt (3.59)
So 51

where y € R. The bound (3.59) does not depend on h and is integrable with respect to t: invoking (2.9)
Lemma 2.2 in [30],

a—1 / —
i 22 o 2 s T (3.60)
Sa 52 51
7// / e 711" 22T (ds)T(ds”)
R SQ SZ
a—1 ! Ta—1 a—1 a—1
T At Kt [ RS B e (N R
s, Js, R S1 57 S1
sg (o=l ja—l 202 /
+lt+r20 ] = diT'(ds)T'(ds")
S1

< [ [ et e
Sa JSa R

! a—1
“t+r8,2‘ — Jtfot
51

‘t—&—rs—Q

a—1
+ “t-l—rsz [t
S1

|t|a—1] dtT'(ds)T(ds")

2
< const |s1|* 1T (ds)

Sa
< 400, (3.61)

where const is a constant depending only on « and of*. The integrability of (3.59) follows from (3.61), the
fact that [, e U7 #2724t < 400 and (3.3) with v > 2 —a > 1 — a. Hence the dominated convergence

theorem applies to Ky. Let us now turn to K3: «this [a] case when appropriate "integration by part" is
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/

h
needed» ([30]). With the change of variable ¢’ = ¢ + é,
51

K3 = lim 1 l/ exp{ — [ |tsi+(r+ h)sﬂ”‘I‘(ds)} cos (tm - a/ (ts1+ (r+ h)32)<a>F(ds))
h—0 h R So So

/ A
51 51

/ /
X / (t+ hsy + DB2y<a1> g o <am>pog ey gy
S2
— / exp{ - / [ts1 + (r + h)32|“1"(ds)} cos (ta: - a/ (ts1+ (r+ h)32)<0‘>1"(ds))
R o Sa

/
></S (t+%)<a_1>8/28/1<a71>1—‘(d8/)dt
2 1

[e3

(t - h—fé)sl +(r+h)ss

1
ilzlg%)h/ﬂg/sz [exp{/sz sh
h512 h5/2 <a>
><cos<(ts/1)xa/s2 <(t 5 )51+(r+h)52> I(ds)
- exp{ - / [ts1 + (r + h)82|°‘F(ds)} cos (tm — a/
S, s

8/ <a—1> 1
X <t+r,2) shs) ST D(ds")dt
51

1 1 hsh hsl <oz
_}£%h/HQLQh%lcos<(t—%)x—a/sg <( —8,1)31—&—(7‘—1—h)52) ' (ds)

S1

F(ds)}

2

(ts1 + (r + h>s2><“>r<ds>)]

— cos (tm - a/S (tsy + (r + h)52)<a>r(d5))1

7\ <a—1>
[ts1 + (r + h)sﬂ“F(ds)} <t + 1"2/2) 3’22\3’1|a*2r(d5’)dt

xexp{—
1

Sa

+ i ! !
m — - X —
o b Jy Js, 25 | TP s,

°1

hsh,
(- ?)sl + (r + s

X cos <(t _ }:2)1‘ _ a/sg <(t - h;f)sl +(r+ h)SQ) <a>r(ds)>

Sl <a—1> 9
X (t—i-r;) 57|81 * 72T (ds”)dt
1

R e A h)swr(ds)}]

= K31 + Kas.

The case of Ko is similar to that of Iz in [30] (p.106-108), the dominated convergence theorem applies. We

focus on K3;. Its integrand converges to

sin | tax — a/ (ts1 +1sy)<*T(ds) | exp{ — [ts1 + rsa|“T'(ds)
S2 SQ
X (x —aa [ |ts;+ 7“52|O‘_151F(ds)> (/ (ts} + rs’2)<o‘_1>s’228’1_1f(d5’)>.
Sa Sa

Using the mean value theorem and Lemma 3.7.5 (1), we can bound the integrand of K3y for any |h| < |r|
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by

a—1
5417

|Sin(y)|e2lr\“0§€—ltl"0?/
S2

/
s
t—i—r—,Q
51

1 hs), hs} sz
— || - SRz~ a/ (t - —)81 + (r+ h)sz — (ts1 + (r + h)s2)=*"T(ds) | |T'(ds")
% 51 Sa 81
1
a_«a o _a / ol 2 52 a—l
< e2Irltog oIt on / t+r ,2 sh |12 x| + Qa/ t+(r+h)—=| [s1|l'(ds) |I'(ds)
So 1 Sa 51

a—1
)

t—i—r— ?|s) |22 (ds')

e e
< |afe?lnI" oz et 01/
. .

+ 2ge2lres o1t al/ /

Sa

The integrability with respect to t of the first (resp. second) term is obtained in the same way as for (3.52)

a—1

a—1
e+ e 2| a1 "D ()T ().

/

Sy
t+r—
s

(resp. (3.61)) and concluding using (3.3) with v > 2 — a. Thus, the dominated convergence theorem applies
to K31, which finally shows that the dominated convergence theorem applies to J;. The other J’s can be

treated in a similar fashion.
Case a € (1,2)

After derivation, (bgglm(r) is given by (3.56) with functions J’s of the form

- “T(d
/6 f52 [ts147sz| (S)trig<tx—a |tsl+T82|<a>F(d8)>/ (t81+7ﬂ82)<a71> or ailSQF(dS)dt,
R Sa Sa

which are similar to deal with. Consider for instance Ji(r). It’s derivative can be written as in (3.58)
Ji(r) = K1+ K> + K3.
For the integrand of K7, we can use (3.55) and the triangle inequality to bound it by
F(Sg)emlagg67217%?“‘@@(|t|0‘71 +2Jrj*h / |ts1 4 752]|*Ys2|T(ds).

Sa

Since 0 < v — 1 < 1, we can further bound it by
T(Sy)el?rI" o8 =2 T g (o1 4 2|2 1)2,

which is integrable with respect to t. The same bound can be obtained for the integrand of K5 using the
mean value theorem, (3.54) and Lemma 3.7.6. As for K3, there is no need to perform "appropriate integration

by parts" since 0 < a — 1 < 1. Its integrand converges to

(a—1) exp{ - (ts1 + r82)<0‘>1"(ds)) |ts) + rsq|* 2521 (ds).

Sa

[ts1 + 7“82|°T(ds)} cos (tm - a/

SQ SQ
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Using Lemmas 3.7.6 and 3.7.5 (ut), it can be bounded for any |h| < |r| by

2 «@ [e3 — [e3 «
71‘(52)6\27’\ 026—21 o[t / |t51+r32\“_2|h52|1‘(ds),
|h| Sa
o _a —a _« « a—2
< T(Sp)el2r17o8 =2 ot 1t / t+ 217 s |02 (ds).
S2 51

We can show that this bound is integrable with respect to ¢ using Lemma 3.7.7 with n = a — 2, b = 0 and
p =0, the fact that [ e=2' " oMo =24t < 400 for a € (1,2) and (3.3) with v > 2 — a. The dominated

convergence theorem thus applies and we get

—Q

¢g?§|x(’“) = e (@) [— a/Re‘”%X (tﬂ“)(/SZ g2(ts1 + rsQ)SQF(ds)>2dt

F(a—1) /Refitmcpx (t,r)(/s2 g3(ts1 + TSQ)SgI‘(ds))dt] ) (3.62)

= |<a=2> or a=2 inyolved

with g3(z) = |z —iaz<*"2> for z € R. Integrating by parts the terms |ts; + rso
in the expression [, e™"ox(t,r) ( Js, 93(ts1 + 7‘52)35F(d5))dt yields the expression (3.46) obtained in the
case a € (1/2,1). Hence, the same representation for the second order conditional moment of Proposition

3.6.3 holds when a > 1.

Justifying inversion of integral and derivation signs: third derivative Let « € (1,2) and let (3.3)
hold with v > 3 — . Starting from the second derivative of ¢§?3|x(7“) given at (3.46), with obvious notations

o —Q
27 fx, (2)

On the one hand, it can be shown that the dominated convergence theorem applies to I using the usual

() w0 (1) + alLs(r) - ()

arguments the fact that (3.3) holds with ¥ > 3—«. On the other hand, after some elementary manipulations,

we get that

—itz+ia (ts1+rs2)<*"T'(ds) — [ts1+rs2|“T'(ds)
13—.[2:/6 f52 e f52
R
X / / {(tsl + 759) <O (ts] 4+ 1sh) T — aP|tsy + 18| ts) 4 rsh|T!
Sy J Sy

- ia<|t31 + 7’52|a71(t8/1 + T55)<a71> + (ts1 + 7n52)<a71>|ts/1 + rs'2|a1> }
X [8381—18/1 - stlz}f‘(ds)f‘(ds’)dt

The previous expression can be decomposed into terms of the form

/R/S2 /S2 trig( —tx + a/92(t81 +r82)<°‘>1“(ds)>

o f52 [ts1+rs2|*T(ds)

X |t81 + 7"82‘<a71> or a—1 X |t8/1 + 7,.8/2‘<0471> or a—1

x [sgsl_ls'l - SQS&}F(dS)F(dS/)dt,
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where «trig» is to be replaced by a sine or cosine function. Each of these terms can be treated in a similar

way to show that the dominated convergence theorem applies. We will consider

= / / / Ccos <tx — a/ (ts1 + r52)<a>F(ds)>e f52 [tsi+rs2|“T(ds)
R SQ S2 S2

X |tsy + rso|® L (ts) 4 rsh) <O [s%sfls/l - SQS/Q}F(dS)F(dSI)dt.

We have

_}Ll—%h//SQ/Sg l (x—a/SQ(tsl+(r+h)82)<°‘>F(ds))
— oS (tw - a/82 (ts1 + 7“52)<Q>F<d3))]

xe fsQ [tor-+(rth)sz| F(ds)\tsl + (r 4 h)so|* L (ts] + (r 4+ h)sh) 1>

5%5{13'1 - 828,2} ['(ds)T(ds’)dt

+ lim — / / / cos (tac — a/ (ts1 + r82)<0‘>F(ds))
h—0 h So J Sy So

X

- fs2 |ts1+(r+h)s|“T(ds) - f52 |t51+r52|°‘1"(ds)‘|

X |tsy + (r + h)sg|* H(ts) + (r + h)sh)<*—1> [833;18’1 - szs'z}f‘(ds)l"(ds')dt

1 — s1+rsa|® s
+ lim f/ / / cos (tx — a/ (tsy +7“82)<0‘>F(ds)>e fsz [ts1+rs2|*T(ds)
h—0 h RJSy JS, 5o

ts1 + (1 + h)so|* ™t — |ts; + 7“52|0‘_1]

X (ts} + (1 + h)sh) <~ 1>[s§s;131—szsg}r(ds)r(ds')dt

1 - s1+rs2|® s
+ lim f/ / / CcoSs (tx - a/ (t51 +7”82)<O‘>F(ds)>e f52 [ts1+rsa|*T'(ds)
h=0h /g S2 /.82 Sa

(ts) + (r+ h)sp) <71 (ts’1+rs’2)<a—1>]

X |tsy 4 78]t [8581_18/1 - 323,2:|F(d3)r(d3/)dt

2:K1+K2+K3+K4.

We will show that we can apply the dominated convergence theorem to the K;’s. Let us begin with K;. Its

integrand converges to

- °r(d
aa/ sin (tx - a/ (ts1+ r52)<a>f‘(ds)>e J, tertrsal T (ds)
S2><S2><32 S2

X |ts1 + 1rso| @7 (ts) + rsh) <> |ts! 4 rsy |2 sl [s%sl lg) — SQS&]F(dS)F(dS’)F(dSH).

For any h, |h| < |r|, the integrand of K7 can be bounded using the mean value theorem on the cosine and
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Lemma 3.7.6 by

la|
Id

201708 =21 g )"

/ (t51 4 (r + h)52)<®> — (tsy + 152)<°>T(ds)
Sa

x . (3.63)

/S |ty (o ol o ()5S |37 51 — 5255 | T (ds)T(ds)
2 2

Hence, by inequality (3.54) and given that 0 < a — 1 < 1, the quantity (3.63) can be bounded by

a|a|1—\(52)62°‘\r\“a§’6—21""af‘|t|“( tla—l + 2|,r|oz—1)

X

/S i ts1 + (1 + h)so|* L (tsh + (r + h)sh)<>"1> [sgsflsll - 523’2] I'(ds)T'(ds")
2 2

< a‘a“—\(SQ)eZd|r|("02&e—21*‘101&|t\a (‘tla—l + 2|r‘a—1)3 <F<52) + |81|_1F(d8)>

Sa

< const 6_217(1‘7?‘“01(|t|°‘_1 + 20|73,

where const is a finite nonnegative constant because of (3.3) with v > 3 — @ > 1 and the fact that T' is
a finite measure. This last bound, independent of A, is integrable with respect to t on R. The dominated

convergence theorem applies to K;. Consider now K». Its integrand converges to
— s1+rs2|*T'(ds
a/ cos (ta: - a/ (ts1 —|—T32)<°‘>F(ds)>e sz [ta1Fro2[*L(ds) (3.64)
Sa XS X Sa Sa
X [tsy 4 80| *TH(tsh 4 rsh) ST (ts) + rsh) <> sl [8351_18/1 - SQS&}F(dS)F(dS,)F(dSH)
By (3.55), the integrand of K5 can be bounded by
1—\(52)6\271“036—21’“01”\t\“a(ma—l + 2|T‘(X—1)

‘ /S i ts1 + (1 + h)sa|“ L (tsh + (r + h)sh)<>"1> [sgsflsll — 5955 |T'(ds)T'(ds")
2 2

Which can be further bounded by an integrable function of ¢ in a similar way as for the integrand of Kj.

The dominated convergence theorem applies to Ks. Consider now Ks. Its integrand converges to

(a — 1)/ / cos <tm — a/ (ts1 + T52)<a>r(ds)) e fsz [ts1+rs2|*T(ds)
S2 Sz SZ

X (ts1 4 1rsg) <72 (ts) + (1 + h)sh) 7 sy {5351_15'1 — SQS/Q]F(dS)F(dS/)
Using Lemmas 3.7.6, 3.7.5 () and the triangle inequality, the integrand of K3 can be bounded by

1 _
melrlaag"e—zl aa?lt\a/ / ‘h32||t81+7“82|a_2|t8/1+(T+h)5/2|a_1’8381_18/1 — 595
Sa J Sa

['(ds)T'(ds")

< e\r\%?r(&)/ €2 T sy sy 21 4 20 |1+ || T(ds)

Sa
To show the integrability with respect to ¢ of the last bound we make use of Lemma 3.7.7 with =
a—2,b=0a—-1and p =0 and the fact that with 1 < a < 2, [, e 2 ol H”

t|*72dt < 400 and
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fR e2 ot lt” [t]2e=3dt < 40

Sa

—a _ay|a S a—2
1—|—|51|_1‘/6_21 ot It |31\a_2‘t+rs—2’ (1121 + 2|r|*= V)T (ds)
R 1

[e3 « —« « [e3 a72
< e\r| oy F(52>/ 14+ |81|—1‘|81|o{—2 / 6_21 of' |t t+ Tsj _ |t|a—2 + |t|a—2 |t|a—1dt
Sa R S1
-« « [e3 a_2
4 2r|>t / e=2 "ot ‘t + 7“2—2 S I dt] I'(ds)
R 1

a o —a oo a—2
< e\r| o5 F(SQ) / ‘1 + |sl|—1‘|81|a—2 / 6_21 of |t “t + Tsj o |t|a—2 |t|a_1dt
Sa R S1

+2\r|°‘_1/e_217%?‘t|a dt
R

+ / 6721_"0‘1’\t|° |t\2a’3dt
R

a—2
t+ 2] T o2
S1

+2r|a1/621‘“U?tl“|t|ath]r(ds)
R

1+ |s1|72]]s1]2~20(ds)

< const /
Sa

< const ( / 151|720 (ds) + / |sl|a*3r(ds)),
SQ 82

which is finite because of (3.3) with v > 3—a. Hence, the dominated convergence theorem applies to K3. The

case of K, is similar, using Lemma 3.7.5 (1) instead of (¢) to bound the term |(ts] + (r+h)sh)<*=2> — (ts| +

<a—2>

rsh) . The dominated convergence theorem applies to all the K;’s and we can invert the integration

and derivation signs in J'.

Justifying inversion of integral and derivation signs: Fourth derivative Showing that the domi-
nated convergence theorem holds when differentiating (3.65) is the most delicate for the terms: Iy, Ig3 and
I75 -the terms involving the function gs, that is, |ts1 + rsa| to the power o — 2. Arguments and bounds that
have already been encountered can be used for the other ones.

Let us show the dominated convergence theorem applies to I5. The cases of Ig3 and I73 are similar. We

decompose I5 into terms of the form

// / trig(—tx+a/ (t51+r52)<a>r(ds)>ef52 [ts1+rs2|*T(ds)
RJSy JSo So

X [tsy + rsg|*TL O <O gg] 4opsh T2 O 02> 25 gl §1 T (ds)T(ds')dt.

Consider for instance

J(r) ::// / cos(—tw—i—a/ (ts1 +7“52)<‘X>F(d3))e_f52 |ts1+7s2|*T(ds)
R Sz Sz S2

X [tsy + 7so| @ tsh 4 rsh|* 2535 Lshsi T (ds)T(ds')dt.
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We have

h—0 h

J'(r) = lim — // / {|t51 (1 + h)sh|*™2 — |tsh + rsh|*™ 2] |ts1 + (7 + h)sa|*
S5 J 5,

X coS ( —tr+a /SZ (ts1+ (r+ h)52)<a>F(ds))

Xe fsg \t51+(r+h)52|aF(dS)8581_18,28,1 I'(ds)['(ds’)dt

1
+ lim - / / [tsh 4 sy ([tsy + (14 h)so| 7! — [tsy +rso|* T
h—0 h Sy J S,

X cOS ( —tx + a/s2 (ts1+ (r+ h)52)<a>F(ds)>

— s r+h)s2|*T'(ds
X e f Port(rt Rz T )355;15’25’1 ['(ds)T'(ds")dt

li t a— 2t a—1

X [cos < —tx + a/s2 (ts1 + (r+ h)52)<a>F(ds)> — cos ( —tx+ a/sz (ts1 + T52)<"‘>F(ds)>]

X eif tort(rh)ss| F(ds)sgsflsgs’l ['(ds)['(ds’)dt
1
+ lim — / / |ts) +rsh| 22|ty + 8ot
h—0 h RJSy JSs
X COS ( —tr + a/ (ts1 + 7"52)<a>1‘(ds)>
Sa

X le‘ Jo, ltortrmssloT@e) _ = [, tsﬁmlur(“)] s3sy ' shsiT(ds)T(ds')dt

=K1+ Ko+ Kz + Ky

The integrand of K4 can be bounded using inequality (3.64), (3.55) and invoking Lemma 3.7.7 and (3.3)
with v > 4 —a. The integrand of K3 can be bounded using (3.54) Lemma 3.7.6, and concluding with Lemma
3.7.7 and (3.3) with v > 4 — a. Focus now on K5. Using Lemmas 3.7.6 and 3.7.5 (1), its integrand can be
bounded by

(l2rl@og ~2' ot rs L T T Tl

’H—

51
The later bound does not depend on h and can be shown to be integrable with respect to ¢ using (3.3) with
v >4 —a, Lemma 3.7.8 with n = a — 2, 290 = z4 = 0, p = 0 and the fact that fR e’c|t‘a|t|2(”"2) < 400 for

a € (3/2,2). Let us now turn to the term K; which is more intricate. Appropriate «integration by parts»
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h

’
)
Iy
S1

is required. With the change of variable ¢t =t +

A
h—)oh 52 S2 R
hs, hsh <oz
X COS ((t—sl)x—a/sz ((t—s,l)81+(7"+h)sz> I'(ds)

1

@

T'(ds) B e— fSQ |tsl+(r+h,)32|af(ds)1

’
(t— hj,Q ) s1+(r+h)ss2
°1

a—1

|ts) + rsh|*2s2s L shs| dtT (ds)T(ds')

(t - hg—%)sl + (r+ h)ss2

1
+ lim l/ / /e_ f32 [ts1+(r+h)s2|“T'(ds)
h—0 h SQ 52 R

oo (=)o (=) ) rian)

|

X [ts] + rsh|* 2535y L shs)diT(ds)T(ds)

4 Jim l/ / /67 f32 |ts1+(r+h)ss|*T(ds)
h—0 h S2 S2 R
/

X [cos ((t - hjf)a: - a/92 ((t - ]?)sl +(r+ h)52> <a>1—‘(ds)>
— cos (t:v - a/s2 <t81 +(r+ h)SQ) <a>1"(ds)>]

x |tsy+ (r+ h)sz‘a_lhfs’l + rsh| 225257 shs| ditT (ds)T(ds)

X

a—1

tsy + (r+ h)sg

hs)
X U(t — ?>31 + (r+ h)s2

=K1 + K2 + Ki3.

It can be shown that the generalised Lebesgue convergence theorem applies to the terms K17 and Ko

following the proof in [33] (p.50-52). Regarding the integrand of K3, using the mean value theorem on the

cosine, Lemma 3.7.6 and (3.54), we get for |h| < |r|

1 a_a —o_aj e _
TC\QH P 6_21 91 |t‘ |t81 —|— (T + h)82|a 1|t8/1 + T'S/2|O(_2S%|81‘_1|8/2|2
2

/7
51

<a>

! ! <a>
L‘f?era/ ((t %)51 + (r+h)52> — <t51 + (r+h)52) I'(ds)
Sa

51 1

X

1 a_a —o_aj e _
— e|27’\ o3 6_21 ot | |t$1+(7’+h)82‘a 1|t8/1+TS/2‘Q_QS%|81|_1|S/2|2
s

<

o

=~

Is1||ts1 + (r + h)52|a1F(ds)]

!
51 1

hs! hs!
X ‘ 21’ + ‘a—,2
S So

! a—2
2|0 —21 o |t 'Sy 20 =102 ja—2
§e| T|%of o ar |t t+ —2 82|81| s |sl‘a

< (17 + 12077 o] + lalD(S2) (1817 + |27‘|‘”_1)]~
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The last bound can be shown to be integrable with respect to ¢ using Lemma 3.7.9 with n = a — 2,
b=0,a—1,2(c—1), p=0and (3.3) with v > 4 — a. We established that we can invert the derivation and

integration signs in all the K;’s, hence in J'.

A special manipulation to obtain the fourth derivative Fourth derivative

Before derivating qﬁ Xolz WE follow the advice stated in [33] (p.48) and integrate by parts the terms containing
fsg g3(ts + 7s2)s3s7'T(ds) and f52 g3(ts1 + 782)s3T(ds), namely I, Is and I7;. This is done in order to
guarantee the validity of the representation of the fourth derivative when (3.3) holds for any v > 4 — a.
If we did not do this step first, the obtained fourth derivative would be valid only when (3.3) holds with

v > 5 — a. We obtain
S _ _ 2
¢X2\z( r) = 27 e, (2) [20696(111 I + Is2 2172) xIy2

a? (13 ) 161) tala—1) (15 — Igs + 2173)1 , (3.65)

where, in addition to I, I3, Iy and I5 defined in the Lemma,

I :A</ ggsgsf2> (/ gzsl>, A(/ 923231 >
S5 So S,
2
Iy :A(/ 928381_2) (/ 9281> ; I = (/ G25557 1)( 9281) (/ 9282)7
S, So So A
Is2 =A</S 923381_2> (/S 9281>, Iz = A(/ 925351 )( 9282),
Ig3 A</ 928351_2> </ 935%>, I3 A(/ 925351_1> (/ 935251)~
So So S So

The fourth derivative is obtained from this representation by techniques similar to those used to get the first

A

and second derivatives.
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3.7.9 Proof of Theorem 3.6.3

The second order derivative of the characteristic function of X5|X; = x is given by (3.46) in Lemma 3.7.2.
Evaluating it at » = 0 yields
E[X%‘Xl - x}
2
= =¢%,.(0)

a / —itztiaoy Bt —of|t|*
— e e
27er1 (x) R

’ [mgﬂ@ﬁab —iadolt|* ") — a0 (k=T —da [t 7)?

+ o (kat <71 —jado|t|*H (<> — iaﬁ1|t|a1)] dt
_ OZU? /e*itx+iacr?ﬂ1t<a>efaf‘\t|a
27er1 ('T> R
X [xax\2|t|°‘_l + ao{|t/HeD (/{2 —a?Brrg — K3+ a%\f)

+izrat<eT> 4 z'oza{’ﬁd(a_l)> (2(1)\1/11 —a(As + 61/12)] dt

aof

= m axhoCy (CL’) + KawSy (.%')

— a0t (K — @2\ + a2Bida — 12 Cala) — a0 (a(ha + ) — 2a)\1f€1)52(x)] :

where the ;’s and \;’s are given at (3.25). Invoking Lemma 3.7.10 (cut) yields

E{X%‘)ﬁ B m} - ﬁ [(‘12/\251 + o)z +a(Ae — ”2*81)%]

azafo“ )
_ m?—[(?(a - 1),01,35)
al‘()\g — ﬁllig)
1+ (aB)?

_ 2 2«
= kox® + . JCH(HC)] - = H(2(O‘—1)a91;w),

Pt T | @)

where H is given in (3.41) with

011 = I'i% - a2)\§ + a261)\2 — K9, 010 = a()\g + 51/@2) — 2aM\K1-
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3.7.10 Proof of Theorem 3.6.5

The third order derivative of the characteristic function of X5|X; = «x is given by (3.47) in Lemma 3.7.2. Tt

K3, —G/)\?,) ;

L,—aK),

can be shown that the I’s evaluated at r = 0 write
_2017-[( 2,0{;:5), 9! =
2a — 1), 0% ) 0! =
3(a—1),0% ), 0L = [ aXi(3K2 — a®X2), k3 — 3a2/<;1)\%),
il = il; = 203°H (20 - 3,64 ), 6! =

iI@ = 20

(
(e (
(o (
ily = 20° H<3 ), 0L ) 9! = (a K+61L>,L—a261K>,
( (
g (

20 — 3, 06, >7 0{3 = a()\3+51f€3),f€3—a251)\3)a

with K = k1\g + A1ke and L = k1ky — a®A Ae. Hence,

IE[XS’Xl - x} = i), (0) = Wf%(x) - x((a C1K — aKQ) +a?Ks + ala — 1)K4],
with
Klzo??’-l(a—2,9{(;x)7 with 6% = ¢!,
) = o2 (2 ), with 0% = 6!,
Ky = (3 1), 0%, ) with 0% =9l _ ¢!
Ky = o2° <2a 3,605, ) with 0% =@l _g!.

Invoking Lemma 3.7.10 (¢2) for n = 1,2 and regrouping the terms, we get
2

} _ % (9@01(@ —~ 0{%&(%))

a aroi®
+ [ R cz(x)(—z(aﬁ +a519{g) +29§§—9g>

]E[Xg"Xl -z

Tfx, ()

aroi®

52()( 26015 — a0 ) + 2655 +941>

0‘20%& K K K

+ Cs(x)| 2037 + 047 + aB1055
a2‘7%a K K K

+ S3(z)| 2055 + 015 — ap1byy | |-
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Using Lemma 3.7.10 (cwet) yields the conclusion with 85 = (021, 622), 83 = (631, f32) such that

021 = 3(L + a251/\3 — Hg),
022 = 3a(As + Biks — K),
0y = a</\3(1 — a?B2) + 2B1k3 + 201 (32 — a2X2) — 3(K + 61L)),

O30 = Kg(l — GQB%) — 2a2ﬁ1)\3 + 2(/43:15 — 3&2:‘61)\%) + S(ClgﬁlK — L>7

with K = Iil)\z + I'ig)\l, L= R1K2 — a2)\1)\2.

3.7.11 Proof of Theorem 3.6.6

The conditional moments are obtained by evaluating the derivatives of the conditional characteristic function
at r = 0. We provide here the proof for the fourth order, which yields the expressions of the vectors 8,4, 05
and O appearing in Theorems 3.2.1 and 3.6.6. The fourth order derivative of the characteristic function of

X2| X1 =z is given by (3.48) in Lemma 3.7.2. It can be shown that the J’s evaluated at r = 0 write

iy = 203 (3 (a—1), ) Ji = Jis = 20K (3a 4,07, )

iJy = 203°H (3 1),03; ), Jig = 202K (2a 4,07, )

iy = 2029 (Za 3,07 ) Jis = 2029 (2a 07 )

iy = iJs = 202 (Qa 3,07 ) Jie = 202°H (Qa 4,07 )
Jo = 203°H (2 1),6¢; ) Jir = 201N (4( - 1), 917;33)’
Jy = 20 (a _2 07;x), Jis = 2049 (4( —1), 0{8;95),
Js = Jo = Jio = 2015047{(3@ _4 eg;x), Jig = 2010‘%(4( —1), efg;x),

J10 = QU%Q’H (3a —4, 0‘1]0;56),
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where 8] = (87,6%), fori =1,...,19,

and K = k13 + A\ik3, L = K1Kk3 — a2)\1)\3. Hence,

J
011

I
S

(
03, = a(K + 61L),
(

04, = a( Prra + >\4)7

J

0y, = aK,
J _

061 - L7

J

971 = Ka,

0, = L — d*B1K,
0y, = ka(1 — a®B2) — 241 Ay,
91J11 = ei]zv
0 =L,
0751 = K5 — a®A3,
0{61 = R4 — a2ﬁ1>\47
9{71 = 9{2 - a519i]17
9‘1]81 = /{‘11 — 6a2/<;%)\% + a4)\‘11,

l9‘1]91 = L(l - 0255) - 20251Ka

E[X4x: = 2] =6, 0)

where

—Q

K, :J%O‘"H(?)(afl),O{(;x),
K» :ofo"H(Qa—i%,Oé(;x),
Ky :ai”aH(sa—zL,of;m),
K, :a%aﬁ(m—zx,ef;x),
Ky — a;*aH(z;(a -~ 1)705;95)7
Kg = a%a’;-t(2(a - 1)705;35),
K7:U?H(a—2,0§{;x),

Ao(k] — a?AP) + 2:%1/%'2)\1)’

= (@ [am(afﬁ + (a— 1)K2) + az?Kg — (0 — 1) K7 + o (o — 1) K3 + aa — 1)2 K4 + o

140

07, = ko(K2 — a®2\2) — 2a%k1 M1 \s,
052 =L- &261[(,

J 2
932 = K4 —a“ By,

04{2 = L7
0fy = —aK,
07, = —a\y,

b, = —a(K +B1L),
0702 = —a()\4(1 —a®B}) + 251’%)7

J J
0112 - _0115

071, = —aK,
070 = —2aka\
152 = T4aK2A2,
91]62 = —a()\4 + ﬂ1f€4)»
077y = =07, + abi,,
9‘1]82 = —4a/$1)\1(/<;% — a2/\%)7

Bro0 = fa(K(l — a8 + 261L),

with 0K =307 — 207,

with 05 =207 — 6)),

with 06X =6/, — 30/, — 67,
with 0K =497, — 307, — 07,
with 0K =307, — 07, — 0,
with 0 = 9677

with X =@7.

b



Invoking Lemmas 3.7.10 (wt) for n =1,2,3 and 3.7.11, we get

—Q
E[x3|x%) =2 = E— [x ot (015C1 () — 055 51 (=) )
azlo?® a—1
+ g Cale )< 085 + 2685 — 2(65 + ap10}5 ) - 2a_395>
axlo?e a—1
LS (@ )(95{ + 2085 — 2(085 — aB16% ) - 20_3915)]
3
O )<69 +3(05 +ap1085) — 20 + 55— (a61941 94{{2))
042 3a
LSy (a) (60 +3 (0% aﬂlem) 42085 + 50— (015 + a0l ))
0430411(1 a2
+ 3 Cu(x)( 03] + aB1055 + — %0 (941( B7) Jr2CLB1042 + 305,
ool a—1
+ 0q S4( )(agg — aﬂlﬁg + m (Gﬁ(l — a2B12) — 2aﬂ19£{1> + 395[);)‘| .

Using Lemma 3.7.10 (cee) yields the conclusion. The coefficients 8’s in the expression of Proposition 3.6.6,

are deduced from the 8%’s and 6”’s as follows:

a—1 4

01 = —0%5 + 208 — 2(05 +apr0f5) — 0K,

01z = 055 + 2085 — 2(0%5 — ap10) —

a—1
— - pK
20( 374

051 = 6015 + 3055 + ap0fy ) — 2005 + 5 — 7 — (a6 — 05).

52 = 6085 +3(045 — 0B ) + 2005 + 5

a
01 = 0% + aB10%, +

062 = 0?2 — aﬁleﬁ =+

1

%o (941 +ap 942)

: 3 (941(1 —a?f7) + 2@51942) + 3035,

a—1
2(1_3(9412(1—

a?87) — 206105 ) + 305,

3.7.12 Vectors 6, and 05 of Theorems 3.2.1 and 3.6.5

(3.66)
(3.67)
(3.68)
(3.69)
(3.70)

(3.71)

We provide here the expressions of 03 = (621, 022), 05 = (031, 032), which intervene in the form of the third

conditional moments:

021 = 3(L + a®B1 A3 — K3),

022 = 3a(As + fiks — K),

O3y = a()\g(l —a?B2) + 2Bk + 20 (32 — a2)2) — 3(K + ﬁlL)),

932 = Hg(]. — (L25%) — 2&2[31)\3 + 2(

with K = 1%1)\2 + I’\?Q)\l and L = R1R2 — (12)\1>\2.
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(3.72)
(3.73)
(3.74)

(3.75)



3.7.13 Proof of Proposition 3.6.1 in the case o # 1

First assume that |S8;| # 1. We will focus on the case x — +o00. The case x — —oo can be obtained by
considering the vector (X7, X2), whose parameter are 55 = —f;1, k] = —k1 and A} = A; and noticing that
E[Xg’Xl = x] = IE[XQP‘ - X, = f:v]. For p = 1, the result is already known (see [64]). For p = 2, 3,4, we
have from the proofs of Propositions 3.29, 3.30 and 3.31, that

L?) {xpl’}-[(a — 1, (aXp, Kp); x) + ibi,px:ﬂi?—[ (i(a - 1), Vi%x)} J

E[X§’X1 :x} B 7 fx, (x

for some coefficients b’s. From the proof of Corollary 3.2 in [64], we deduce the following limit:

xH (a — 1, (aXp, Kp); x) o (np + )\p) sin (?)F(a).

Tr—+00

We also have

2y (@) — %Uf(1+ﬂ1)sin<%)F(1+a). (3.76)

xr——+00
Hence,

o, .p—1
_pQO1 T

aoyz?” Kp+Ap
7TfX1 (I)

1+6 7

Do bipt? M (i(a —1),v;; :c)
I) 0. By Theorem 127 in
xp—1H<a — 1, (aXp, kp); x) F o

H(a — 1, (aNp, Hp);.%') —

as ¢ — +oo. It remains to be shown that
[118], for i = 2,3,4,

'H(i(a—l),l/i;x) = O(m_i("_l)_l).

r——+00

Hence,

2PN (i(oz —1),vy; JC)

= O(az"‘(l_i)) — 0.

T—r+00

J:P_lﬁ(a -1, (a\p, Iip);x)

Now assume that |81] = 1. For instance if 8; = 1, the distribution of X; is totally skewed to the right.
On the one hand, we have A\, = 81k,. On the other hand, the right tail of fx, still decays as (3.76), yielding

the conclusion. O

The following elementary Lemmas, stated without proof, are used to establish Theorems 3.6.3-3.6.6.
Lemma 3.7.3 For x,y € R,

|e—m _ e—yl <e min(ﬂﬂ»y)|x _ y|’ (3.77)

le™® —e7Y| < e YelrYl|z —y. (3.78)
Lemma 3.7.4 Fora>1 and xz,y € R,
max (217 — |y, 20yl — J21) < Jo + gl <227 (le)” + yI?).
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Lemma 3.7.5 Forze Rand 0 <b< 1,
@ st -1 <,
(10) ‘|1+z|<b>—1’ < 2z].
Lemma 3.7.6 (Lemma 3.3, Cioszek-Georges and Taqqu (1998)) For a > 1 and t,r € R,
exp{ —/S [ts1 + 7“32|°T(ds)} < exp{|r|*0S} exp{—2' "o |t|*}.
>

Lemma 3.7.7 (Lemma 3.1, Cioszek-Georges and Taqqu (1998)) The following inequality holds for
c>0,0<a<?2, -1<n<0and -1—-n<b:

/R exp(—clt])

[t + 2|7 — |t|"‘|t\bdt < const. |z|P
with
0<p<b+n+1 for —1—-n<b<0,

and

0<p<n+1l or b<p<b+n+n+1,p<1l for 0<b.

const. depends only on ¢, o, 1, b and p.

Lemma 3.7.8 (Corollary 3.1, Cioszek-Georges and Taqqu (1998)) The following inequality holds
fore>0,0<a<2, —-1/2<n<0and0<p<2n+1:

/R exp(—cl*)

where const depends only on ¢, a, n and p.

[t + 21|t + 23|" — [t + 22|"|t + 2z4|"|dt < const. (|21 — z2|P + |23 — 24]P),

Lemma 3.7.9 (Lemma 3.12, Cioszek-Georges and Taqqu (1998)) The following inequality holds for
c>0,0<a<2,-1<n<0,b>0and0<p<n+1:

/R exp(—clt])

where const depends only on ¢, o, n, b and p.

[t 4+ 21| — |t + 22|7||t[°dt < const. |z — 2P,

Lemma 3.7.10 Let a € (1,2), b > 0, ¢ € R. Define forn>1 and x € R
+o0 o +o0 o
Cn(z) = / et @) cos(ta — ct®)dt, F,(z) = / et e D=L cog(ta — ct®)dt,
0 0
+oo o +oo N
Sp(x) = / e e gin(to — ct®)dt, Gp(x) = / et D=L gin(te — ct®)dt.
0 0
) Then the following hold for any n > 1 and z € R

Fo(z) = ﬁ [a(an_H(x) S () + xSn(a:)] ,

G(z) = ;) [a (cCrsa(@) + b8 () - an(x)} .

n(a—1
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w) Foranyn>1, 01,0, € R and x € R:

«

[cn+1(x) (061 + 02 ) + S () (062 601>]

n ﬁ [ — 0,C,(z) + elsn(x)] -

we) We have for x € R, b= 0 and ¢ = af10§:

1
Ci(z) = ot (1 + (aB:)?) {aﬂlxﬂfxl (@) +1—aH (x)} :
1
Si(z) = m {mrfxl () —af1(1 — .TH(J?))] .

Lemma 3.7.11 Let o € (3/2,2), b > 0, ¢c € R. Define for x € R
+oo o +o0 N
he(x) = / e P24 cos(ta — ct®)dt, hs(x) = / e M2 dgin(ta — ct®)dt.
0 0

Then for any 61,02 € R and x € R,

01he(x) + Ozhs(z) = 320 _zj(a ) [04(95) (91(1)2 — 3y 2b092) + S4(2) (02(1)2 _y— 2b091>}
6020 753)55(06 ) [Cs(x) (091 - b92) + S5(z) (bgl n 062)}

1‘2

" 220 -3)(a-1) [9102(@ + 9252(x>] .

3.7.14 Proof Theorem 3.6.4

Let X = (X1, X2) be an a-stable vector with @ = 1 and spectral representation (T',0). Its characteristic

function, denoted ¢x (t,r) for any (¢,7) € R?, reads
ox(t,r) = exp {—/ [ts1 + 7rsa| +ia(tsy + rs2)In|ts; + 7’52|F(ds)} , (3.79)
Sa

with a = 2/7. The conditional characteristic function of X5 given X; = x, denoted ¢x,|,(r) for r € R, is

still given by (3.40).

Lemma 3.7.12 Let (X1, X2) be an a-stable random vector with o = 1 and spectral representation (T',0). If
(3.3) holds with v > 0, the first derivative of ¢x,|, is given by

¢X2‘x( ) = <A1 + iaA2>,

-1
27er1 (1‘)
with
e Moy (/ so(ts1 +rsa) <O>F(ds)>dt, (3.80)

Sa

/
A2:/e—itac (/ s2(1+1n|ts; + rs2|)T(ds )dt (3.81)
R S2
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If (3.3) holds with v > 1, the second derivative of ¢x,|. is given by

@ y__ —l (_B B B) 3.82
d)Xz\w(r) 2'/TfX1(l') 1 +w@xbs + D3, ( . )
where,
' 2
By = [ e ™px(t,r) / so(ts) +152) " +iasy(1+1In|tsy + TSQF(ds)> dt,
Sa

—itz

e ox(t,r)

&
I

&
[l
— 5

U (1) </ ((t51 +752)<%> +ia(l +1In|ts; + r32|)s§sl_1f(ds)) dt,
Sa
</ s1(ts) +152)<°> +ias; (1 +In|ts; + ’I"SQF(dS))
Sa

X (/ ((tsl +1r59) % +ia(1 +In|ts; + 7"82|)8§811F(d8))dt.
Sa

Justifying inversion of integral and derivative signs First derivative

The terms depending on r in the right-hand side of (3.79) are of the form (omitting the factor 1/27 fx, (x))

/ o f32 t51+rszl“(ds)trig< — ity — a/ (tsy + rs2)In|ts; + 7“82|F(d3)> dt.
R Sa

Consider for instance the term obtained by replacing trig by the cosine function, denoted I;.

1 — S T S S _ s rs s
I(r) = }Lii%, A [e sz lts1H(rth)s2|D(ds) fs2 |ts1+rsa|T(d )]

X COS (tz + a/ (ts1+ (r+ h)s2)In|tsy + (r + h)52|F(ds))dt
Sa

1 — S s S
+ lim — / e Js, svtresiids) lcos (tx + a/ (ts1 + (r+h)se)In [tsy + (r + h)82|F(d8)>
h—0 h R So

— cos (tx + a/ (ts1 + rse)In|ts; + r@F(dS))] dt
Sa

=111 + 112
The integrand of I1; converges to
— s1+rs d
I A (m + a/ (s + 7s2) In [ts, + r52|F(ds)> / sa(tsy + rs2)<0>T(ds).
Sz SZ

Using (3.78) we can bound the integrand of I1; by

ﬁ = fsz |tsl+r52|F(ds)e| fsz |tsl+(r+h)52|7|tsl+r52|F(ds)’.

/ lts1 + (r + B)sa| — [ts1 + rsa|T(ds)
Sa

By Lemma 3.7.5 (¢) and the triangle inequality, we can further bound it for || < |r| by
0.2602(1+|7"\)—01\t|,

which does not depend on h and is integrable with respect to ¢ on R. The dominated convergence theorem

applies to I;;. Turning to s, its integrand converges to

—ae f52 |ts1+rsa|T(ds) sin <tx + a/ (ts1 +rse)ln|tsy + 7‘32|F(ds)) / so(1+1n|tsy + rsa|)T(ds).
Sz SZ
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Using the mean value theorem on the cosine, its integrand can be bounded by

167 f52 [ts1+rs2|T(ds)
1]

Saeazwmmi/
Al Js,

.— qel2lrl=aoltl (Ql 4 Qz)’ (3.83)

/ (ts1+ (r+ h)s2)In|tsy + (r + h)sa| — (ts1 + rs2) In|ts; + rs2|T'(ds)
Sa

(ts1 + (r+ h)s2)In|tsy + (r+ h)sa| — (ts1 + rs2) In|ts; + rsa|

T'(ds)

where the two terms Q1 and (2 involve integrals over Sa N {s : |ts1 +rs2| > 2|h|} and SoN{s: |ts1 +7sa| <
2|h|}. Focus on Q3. Introduce the function f : Ry — R, defined for any z > 0 by f(z) = z|Inz|. It is such
that f(0) = 0 and for z small enough (0 < z < e™!), f is monotone increasing. Since |ts; + 7s2| < 2|h|, we

also have |ts; + (r + h)sz2| < 3|h|. Thus, for 0 < |h| < (3e¢)™!, the integrand of Q2 can be bounded by
h? (\f<|3h|>] " |f<|2h|>\) < 20|~ (]3] < 6fimf3n]
Using Lemma 3.7.13, we can bound the later quantity for any v > 0 by
61;*1(2 + 3R] + |3h|*“>.
From [ts; + 7s2|/2 < |h| < (3e)™!, we deduce that |3h|~? < (3|t31 + 7'52|/2) " and
6v! (2 +[3h])" + \3h|_”) <6v! (2 +e '+ (3\t51 + 1"32|/2) _v> < consty + consty|ts; + rsa| 7Y,

for some nonnegative constants const; and consty. Hence, the term involving ()2 in 3.83 can be further
bounded for any v > 0 by

t+ 22 7v|51|_”F(ds)). (3.84)
S1

ae?2!1=o1lt] (constl + consty /
Sa

The term with const; is clearly integrable with respect to ¢ on R. Letting (3.3) hold with v > 0, choose
some v € (0, min(v,1)). We show that the second term is bounded by an integrable function of ¢ as we did
in Equation (3.52) using Lemma 3.7.7 with = v, b = 0, p = 0, the fact that fR ettt 7vdt < +oo and
(3.3) with v > v > 0. There remains to be bounded the part involving ()1 in (3.83). For this term, we apply

the mean value theorem to the function z — zIn |z| and get that

\h|_1 (ts1 4+ (r+ h)s2)In|tsy + (r + h)sa| — (ts1 + rs2) In|tsy + 72

< |1 s 1+ 1n Jul

)

§1+‘ln|u\

for some u € [ts1 + (r + h)sa Atsy +182,t81 + (r + h)sa V ts1 + rss]. Since @ is an integral over So N {s:
|ts1 + rsa| > 2|h|}, we have |u| € [w, 2|tsy + rszq, and because of the quasi-convexity of the function

z— ‘ln|z|

, we can bound the above term by

ts1 + 1S9
2

1+ |ln + [In|2(ts1 + 7rs2)]

< const + 2| In |ts; + 7s2]|.

146



Using Lemma 3.7.13, we can bound this term for any v > 0 by
—v
const 4 207! (2 + |ts1 + rsa|” + |ts1 + 7"32\*”) < consty + consta|[t|” + COHStg‘t + @‘ [s1]7"
S1
Hence, the term in (3.83) involving Q; can be bounded for any v > 0 by
o2|r|—o1 |t v rSo|~Y v
ae’? ! (const1 + consts|t|” + consts t+ —| s F(ds)). (3.85)
S2 51

which can be shown to be integrable with respect to ¢ on R as we did above for the term with Q3. The
dominated convergence theorem applies to I12 and thus to I;. We can derivate ¢x, |, under the integral sign.
Second derivative

Let us start with Ao, which is the most delicate. It is composed of terms of the form

/ e f32 |tsl+mzlr(ds)trig< —tx — a/ (tsy + rs2)In|ts; + 7‘32|F(ds))
R Sa

X </ so(1+1In|tsy +7’52|)F(ds)>dt,
Sa

where «trig» stands for sine or cosine. Denoting the one with cosine as K5, we have

1

o f52 |ts14+(r+h)sz|D(ds) . f52 [ts1+rsa|T(ds)
h—0 R

X cos (m ta /S (ts1 4+ (r + B)sa) In|tss + (r + h)32|F(ds))
x (/S so(1 +1In [tsy + (r + h)SQ)F(ds)>dt

1 — S TS8e S
+ lim — / e Js, tsrtreaiTide) lcos (tx + a/ (ts1+ (r+h)s2) In[ts; + (r + h)52|F(d8))
h—0 h R So

— cos (tm + a/ (tsy + rse)In|ts; + rszf(ds)>1
Sa

x (/S so(1+Intsy + (r + h)SQ)F(ds)>dt

1 - S TSs S
+ lim — / e sz ftortroall(d8) g <tx + a/ (tsy +rs2)Infts) + T52|F(ds)>
h—0h Jp Sa

X [/ soln|tsy + (r+ h)sa| — s2ln|ts; + 7“82|F(d3)] dt
Sa
= Ka1 + Koz + Ko3.
The integrand of K converges to

. 6_ f52 [ts1+rsa|T'(ds) cos <t;[; -+ a/ (tsl + 7’82) In |t81 + T82|F(d5)>
Sa

y (/S saltsr + r32)<0>F(ds)) </S so(1+ Ints: + r52|)I‘(ds)).

Using (3.78), the triangle inequality and (3.7.6), it can be bounded by

0_2602(1+‘T‘)*0'1|ﬂ / |52|‘1 —|—1H|t$1 + (T+h)82|’F(dS) (386)
Sa
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The integrand of the above expression can be bounded using Lemma 3.7.13 for any v > 0 by

140! (2 + sy + (7 4+ R)sal? + |ts1 + (r + h)szrv)

r+h)sa |7V, _,

( ) 2‘ ‘81|
S1

)

< const; + consta|t|” + consts ’t +
hence, (3.86) is bounded by

. (r—|—h)82‘*v

ape2(LtIrh—anlt] (constl + consta|t|” 4 consts /
Sa

|31\_’T(ds)>.

The terms involving const; and conste are clearly integrable with respect to ¢. The last term is more
intricate as it still depends on h. We will show that the generalised Lebesgue dominated convergence
theorem (Theorem 19, p.89 in [113]) applies. Denoting

r+h)sa 7Y, _,
t_,_@‘ |s1]77,

T — —01|t\
(h) = e -

it can be shown that T'(0) is integrable with respect to t on R and I" on Sy invoking the usual arguments.

Also, choosing some v € (0,1), with have by Lemma 3.7.9 with n = —v,b=0and 0 <p < 1 — v,

i -ro]s [ [

h82 ‘

(r+ h)52 789

‘t+

th(ds)

< const [s1]7 I'(d

Sa

< const |h|p/ |s1|~"7PI(ds) " 0,
—

2

because (3.3) holds with v > 1 and v+p < v+1—v < 1. Since T'(0) is integrable and limy,_,o [ T'(h) = [ T(0)

the generalised dominated convergence theorem applies to Ka;. We turn to Koo. Its integrand converges to

— s1+rs d
— ae f52 a1 trasllide) i (tm + a/ (ts1 +7rs2)In|ts; + r52|I‘(ds)>
Sa

x </S s(1 +In [tsy +7’52|)F(ds)>2.

With the usual inequalities and Lemma 3.7.13, it can be bounded for any v > 0 by

a —
= eo2lr|—arlt|

7] / (ts1+ (r+ h)s2)In|tsy + (r+ h)sa| — (ts1 + rs2) In|ts; + rso|T'(ds)
Sa

< /52(1+1n|t51+(r+h)52|)F(ds)
Sa

< qeo2Irl=onlt] (Ql + Qz) <02 + /s ’ In|ts; + (r + h)52|’F(d8))

(r+h)ss ‘—U

< qeo2Irl=oult] (Q1 + Qg) (const1 + consto|t|” + constg/ ‘t + |81|_”F(d8)>,
Sa

where, similarly to (3.83), the two terms @1 and @ involve integrals over Sy N {s : |ts; + s3] > 2|h|} and
SaN{s : |ts1 + rsa| < 2|h|}. After expansion, the terms with const; and consty are readily dealt with by
following the method developed for (3.83). Focus on the remaining term

r+h)s v
% |s1|7“T(ds).

a/ eoz\T\*mltl(Ql + Qo) |t +
Sa
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In view of the bounds (3.84) and (3.85), the integrand can be bounded (up to a multiplicative constant) by

—v h)sh |—v
U(h) = o+ 22|y TR vy
S1 S1
Choosing some v € (0,1/2), we can invoke Lemma (3.7.8) with n» = —v, p = 0 and the fact that

Jpe ot M¢[=2vdt < 400 to show that U(0) is integrable on the one hand. On the other hand we can
again invoke Lemma (3.7.8), this time with n = —v, 0 < p < 1 — 2v, and the fact that (3.3) holds with
v>1>v+1-2v>v+ptoshow that [U(h) — [U(0). The generalised dominated convergence theorem
applies to Kis.

We turn to Ks3 for which «appropriate integration by parts» is required. After obvious manipulations,

hslz) +
Koz = hm / / shIn[ts) +rsh||e f ( )
Sa

hs} hs}
X COS (t——,)a:+a (t——)31+7’52 In
51 Sa s1
1 — S rs S
h—0 h R J S,
hs, hs},
X | cos (t——/)x—i—a (t— ,)sl—i—rsz In
51 So 51

— cos (tx + a/ (tsy + rse)In|ts; + rszf(ds)>] I'(ds)
Sa

T(ds) - f52 tsl+r52F(ds)‘|

/

hsg
(t — —)81 + 782
s1

(ds)) I'(ds")

)

/

hs}
(t - —)51 + 7589
s

= L1 + L2.
Starting with L, its integrand converges to

6_ fs2 [ts1+rs2|T(ds) oS (tl’ + a/ (tSl + 7“82) In ‘tsl —+ ?"82|F(d8))
Sa

X (/ s1(ts1 +r32)<0>1"(ds)) (/ In |tsq +r82|32251_1I‘(ds)>
Sg S2

It can be bounded using (3.77) and Lemma 3.7.5 (¢) by

{ min (/ ‘ 51 +7“82‘ (ds), . |ts1 +7"82|F(d5))}

hsh
(t - —)sl + 789

shln [ts] + rsh|
h

X / — |ts1 + rs2|[(ds)
S2 s
h hs:
<eIMexp{ — oy min ( 82 ) so1n [ts] / 2% 1‘I‘(ds)
s, | s
th

< el exp { — o1 min (

>}‘lnt51

=V (h).

We follow a similar procedure as the one used in [33] (p.51) to deal with the min inside the exponential.
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h82 . ..
Focus on the case —= > 0 (the converse case is similar). We have
51

h8/2 : !/ /
. hs) ‘ —=1, if t> hsh/2s],
min ’t -] [t] ]| = 51
! It], if ¢ < hsh/2s).
Thus, up to a multiplicative constant,
T itz 2 1 -5 t 2 1
/V(h)dt:/ ool ‘1n\tsl+rs2|)|s2| E dt+/ o1l |‘ln|t51+r52\‘|32\ 15|~ Lt
R g:f —o0
+oo h 7%
=/ el ln’tsl +rss+ E‘ \32|2|51|71dt—|—/ ol In |ts; —|—7'52|’|52|2|51\71dt
sz S1 — o

T 251

= /Re_‘fl\tl “ In|ts; + (r+ h)32|‘]1{t2_h52/251} + ‘ In|ts; + r82|’]l{t§_hs2/251}] |s2]%[s1| " dt.
Thus, using Lemma 3.7.13, we can bound the integrand for any v > 0 and |h| < |r| by
e—olt] U In|ts; + (r + h)$2|’ + ‘ In |ts; + 7‘52|” |sa|?]s1] 7!
<y lemonltl [Constl + consto|t|”

r+h)sg|=v, _
%‘ ‘81| v:||82|2|81 1.

rSo |~V —w
+ consts ‘t + —‘ |s1|7" + consty |t +
S1

Clearly, the terms involving const; and consty are integrable with respect to ¢t and I'. Denoting the last

T+ h)sa ‘*
S1

v
term as Vj(h) := el ‘t + ( |s2|?s1] 717", we show that the generalised dominated convergence

-1
theorem applies. As (3.3) holds for some v > 1, choose v = VT >0 if v < 2, and some v € (0,1) if v > 2.
The integrability of V4(0) (and at the same time, of the term involving consts) is obtained from Lemma 3.7.7

with n = —v, b =0, p = 0 and the fact that [, e~ 1H|¢t|=vdt < +o00. Doing so indeed yields

[ fsaPlsaf e [ e
So R

rs
t+ —
S

< / / e_gl‘“
Sz JR

<const [ |si|7V|s1|" " TV (ds)
Sa

< const/ [s1|7"T'(ds)
Sa

= [t]7"|s2[?|s1| 7 TVt T (ds)

—v
t+ 22 g
S1

dtT’(ds)

< 400,

-1
since v — 1 —v = VT >0ifve(l,2)andv—-1—v >v—2>0if v > 2 The convergence

J Va(h) — [ V4(0) can be obtained from Lemma 3.7.9 with n = —v, b = 0 and 0 < p < v. The generalised

dominated convergence hence applies to L.
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We turn to Ly. Its integrand converges to

o f52 [ts1+rs2|T(ds) sin (t:l? + a/ (tsy +rso)In[tsy + TSQF(dS)>
Sa

12 -1

X (ac + a/ s1(1 +1n|ts; + r82|)F(ds)> In |ts] + rsh|sh”s)
Sa
Applying the mean value theorem to the cosine function and the usual bounds, we can bound it by

e2Irl=onltl 2 =11n |ts) + rs)|

1 hst hst hst
—T| ngra/ ((t g)sl JrrsQ) 1n’<t— ?)51 +7sa| — (tsy + rsa) Injts; + rso|T'(ds)
:/2 sh S5 sh ]

1

oa|r|—o1|t]| /2 /-1 / 1
<e s5 81 In|ts] 4 rsh|

a
ol + 777 |
| o

1

/

hst h
((t — %)sl —|—r82) ln’(t — %)51 +r82’ — (tsy + rs2)In|tsy + rss
1 1

F(ds)).

(3.87)

The term involving |z| can be treated using the usual arguments. The one with the integral is of course the

most delicate. Let us split this integral into two parts as:

/ 1
’

s, | M52
S

1

/

hst h
<<t - 2)51 + r52> In ' (t — é)sl + 7“52‘ — (ts1 + rs2)ln|tsy + rsa|
51

. I'(ds)

= Q1+ Q2,

where @1 and Q2 involve integrals over SoN{s : |ts1+rsa| > 2|hshy/s|} and SoN{s : |ts1 +rsa| < 2|hsh/s]|}
respectively. We will first majorise Q1 and ()2, and then use these bounds in inequality (3.87). Consider Q2
and define the function g such that for any z > 0
f(z)=z2lnz|, if 0<z<e™}

2(2+1Inz), if z>e L
It is easily checked that g is continuous, strictly increasing and such that for any z > 0, 0 < f(z) < g(z2).
The integrand of Q5 can be bounded as

() o)) = (- 5

A

+ ‘g(tsl +r32)(>

1 3hsh 2hsh
<
— | hs) <‘g<‘ 8/1 )‘—’_‘g(‘ S1
51
2 3hst
S h’/ g( /2)'
S2 57

By Lemma (3.7.13), with bound further the right-hand side for any v > 0 by

hv 3hsh|—v

/
2 (3h52
Sl

3hs
) < constq + COIlStQ‘ ;

1

+ COHStg‘

!
1
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3hsh

/
51

On the one hand if ' <71, given that (3|tsy + 7s2|/2)7" > (3hsh/s}) ™",

/

3hsh

consty + consto 7
S
1

/

v 3hs,
+ const3‘

/
1

v 789 |~V e
< const; + constg‘t + 7’ ls1]7".
S1

3hs}
,82‘ > e~ ! then for |h| < |r|,
51

On the other hand if ‘

/ /

v —v

< consty + consty|s]| ™. (3.88)

/
1

/
1

consty + constg‘ + COHStg’

Focusing now on )1, we can use the mean value theorem to bound its integrand by

)

|sl\‘1—|—ln|u\

for some u € [tsl +rso—hshsy /8| Ats1+rse, ts) +r32—h5’251/s’1\/t81+r52] Given that |ts;+rsa| > 2|hsh/s!],
we have |u| € [%, 2|tsy + r52|} and thus, we further bound the above inequality using Lemma 3.7.13

for any v > 0 by

s1|( consty 4 consty|ts] + rsg| + constz|tsy + rsa|
to|t v t3|t v

—v
< consty + consto|t|” + constglt + @‘ N (3.89)
S1

Hence, using (3.88) and (3.89) in (3.87), and making use again of Lemma (3.7.13) to bound ‘ln [ts} + rsh]

—v
)|sa|1v

—v
X (|x| + consty + consts|t|” + constg|s)| ™Y + cons‘w‘t + @‘ |511_”)
S1

)

we can bound integrand of Lo for any v > 0 by

rsh
B*UIM (COHStl =+ COHStQ‘ﬂU + COHStg ’t + —2

/
1

It can be shown that all the terms obtained after expansion can be bounded by functions integrable with
respect to t and I' using the usual combinations of either Lemma 3.7.7 or Lemma 3.7.8 with n = —v, b =0,
p = 0, the fact that [ et —Y < 400, I e~1IH|t|=2¥ < 400 for appropriately chosen values v > 0,
and (3.3) with v > 1. The detail we have to pay attention to is precisely to chose an appropriate exponent
v > 0 so that it satisfies the constraint (3.3) and ensures the finiteness of the two integrals in ¢. The later
imposes us to have v € (0,1/2). Regarding the former, we identify that the most negative power of which
|s1| appears in the above bound after expansion is —1 —2v. We need v —1 —2v > 0. Choosing v = (v —1)/4
if 1 <v < 3andanyv e (0,1/2) if v > 3 enables to satisfy both constraints, validating the use of the
dominated convergence theorem for Lo, and finally, for By in (3.81).

The proof is essentially similar, somewhat easier, for By in (3.80) for which the only difficulty is to perform

the «appropriate integration by parts» when it comes to differentiating the term involving (ts; + rs3)<%>.
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Evaluating at r =0 Since E[X%‘Xl = m] = _¢%\x(0)7 we evaluate (3.82) at 7 = 0 and get

ox (t,0) = exp{—o1|t| — tac1 1t In || + itps },
41/2 =03 (5} — @) Ho(0) + 20100 H,(0))
+ 2a)\1crf( — agoH.(1) + mHs(l)> —a\202H,(2),
i42/2 = 01— akyHo(0) + ko Hy(0)) — adoo Ho(1),
A3/2 = o ((amg + apky ) Ho(0) + (oyaky — m@)HS(O))
+aoy (()\2H1 —ao1frki)He(1) +o1(A2 + 5152)Hs(1)> — d*07B1reH.(2),
where k; = o7 " fsz (s2/s1)?s11ns1|[(ds), and the H.’s and Hy’s are defined at Lemma 3.7.14. Using the

result of the same Lemma under 5; # 0 and 81 = 0, and regrouping the terms allows to retrieve the two

formulae of Theorem 3.6.4.

3.7.15 Proof of Proposition 3.6.1 in the case a =1

Case (81 # 0 The conditional second order moment when a = 1 has a particular form. We only consider
the case |f1] # 1 and @ — +oc0. Since |z| — 400, we have © — p; ~ 2 and we may assume that p; = 0.

From [64], we know that U(z) ~ z~!. Notice that
+oo
W(z) = / e 7 (1 +1n t)2 cos(aoq Pt Int) cos(tx)dt
0
—+oo
_ / e 7 (1 4+ Int)*sin(acy B1tInt) sin(tx)dt.
0

Because the factors of cos(tx) and sin(tz) are integrable, we have by the Riemann-Lebesgue Lemma that

W(z) — 0. Having also

T—+00
1+ _
le(x) - 01( - Bl)x 27
we deduce the following limits
O'1U(J}) _9 2(/431/\1 — )\2)
2 AL — 2(k1 A1 — A —_— —_— "
( ao190(A = Bra) + 2 A 2)96) Binfx, ()" wotee (14 B1)Br

—2

/\2 + ﬂlﬁg — 2:‘61)\1
Ao + Biks — 261 A1 + 20181 (A2 — B W (z) ) -22E
(R B =2 + B8 = B)W()) 25— S

Hence,

_ A 2(51)\1 — )\2) )\2 + Bllig — 2/431)\1 Ko + )\2
E[x3| X =] — 24 + =
! { 2 m] eotoo B (14 B1)B (1+51)B 1+

Case 1 =0 From [64],
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hence,

V(z)
7TfX1 (.’t)

2001\ (aalqo —ki(x — ,ul)) 72 — arA\ K.

Moreover,
Fx,(z)—-1/2 _, 1
ac]———————1 ° — —am(Ay — 2K1A1).
0 27t )

It can be shown that W (x) — 0. Therefore,

1
$_2E|:X22‘X1 = .13:| —+> Ko + §&ﬂ-()\2 — 2%1)\1) 4+ amkiAl = Ko + Ao
Tr—r+00

Lemma 3.7.13 For anyxz >0 and v >0
1 _
|[Inz| < 7(2+m”+x ”).
v
We provide here two Lemmas which are used in the proof of Theorem 3.6.4.
Lemma 3.7.14 Let for any n > 0,
“+o0
H.(n) = / e 7" (1 +1Int)™ cos (t(m — 1) + aalﬁltlnt)dt,
0
+oo
H(n) = / e (1 + Int)" sin (t(z —p1) +aoy fitln t) dt.
0

Then; 7/f ﬁl 7é 0,

Ho(1) = Miﬂl (01H.(0) — (& — ) H(0)).,  HL(1) = Miﬂl (1= 0 He(0) — (2 — ) Hy(0)).
If 1 =0,
H.(0) = mfx, (),
H,(0) = = Frmfx, ()
HL(1) - T ) = T,

Proof. The equalities of Lemmas 3.7.10-3.7.14 can be obtained by integrating by parts. We provide
details for the last equality of Lemma 3.7.14 when 8; = 0. Integrating the exponential by parts, we obtain

1 [T
H,(1) = o | e 7t sin (t(x - u1)>dt +

T — M1
01

He(1)

Denote A(z) = O+°o e 71t Lsin (t(x - ,u1)>dt for z € R (A is well defined since e=71*¢~ ! sin (t(x — ,ul)) —

x —p1 as t — 0). It can be shown that we can derivate A under the integral sign and get

Al(x) = /0+00 e 7! cos (t(a: - ,u1)>dt =rfx, (z),
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Since X; is Cauchy distributed when o =1 and 3, =0,

r — U1
o1

A(x) = nFx, (z) + const = Arctg( ) + g + const,

and evaluating the integral form of A at u1, we deduce that const = —m/2. Thus, A(z) = 7r(FX1 (x) — 1/2).
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Chapter 4

Path prediction of aggregated a-stable
moving averages using semi-norm

representations

Sébastien Fries

Abstract For (X;) a two-sided a-stable moving average, this paper studies the conditional distribution of
future paths given a piece of observed trajectory when the process is far from its central values. Under
this framework, vectors of the form Xy = (Xi—pm, ..., X¢, Xew1, -« -, Xewn), m > 0, h > 1, are multivariate
a-stable and the dependence between the past and future components is encoded in their spectral measures.
A new representation of stable random vectors on unit cylinders —sets {s € R™*"+1 . |s|| = 1} for | - ||
an adequate semi-norm-— is proposed in order to describe the tail behaviour of vectors X; when only the
first m + 1 components are assumed to be observed and large in norm. Not all stable vectors admit such
a representation and (X;) will have to be «anticipative enough» for X; to admit one. The conditional
distribution of future paths can then be explicitly derived using the regularly varying tails property of stable
vectors and has a natural interpretation in terms of pattern identification. The approach extends to processes
resulting from the linear combination of stable moving averages which feature much richer dynamics and

applied to several examples.

Keywords: Anticipative processes, Noncausal processes, Stable processes, Stable random vectors,

Spectral representation, Pattern identification, Prediction

MSC classes: 60G52, 60E07, 60G25
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4.1 Introduction

Stochastic processes depending on the «future» values of an independent and identically distributed (i.i.d.)
sequence, often referred to as anticipative, have witnessed a recent surge of attention from the statistical and
econometric literatures. This gain of interest is driven in particular by their convenience for modelling exotic
patterns in time series, such as explosive bubbles in financial prices [24, 35, 51, 52, 61, 63, 67, 68, 69, 70]
(see also [3, 9, 10, 26, 59, 60, 87, 88, 115]). The attractive flexibility of anticipative processes cannot yet be
fully leveraged however, as their dynamics, and especially the conditional distribution of future paths given
the observed past trajectory, remains largely mysterious. A remarkable exception is that of the anticipative
a-stable AR(1) for which partial results were obtained in [63] and further completed in [52]. Even in this
simplest case within the family of anticipative processes however, future realisations feature a complex
dependence on the observed past, which is reflected in the functional forms of the conditional moments
obtained in [52]. Interestingly, the dynamics of the anticipative stable AR(1) simplifies during extreme
events where it appears to follow an explosive exponential path with a determined killing probability. This
naturally raises the question of whether and under which form such a behaviour could be found in more
general stable processes.

For Xy = ) ,cz dkéryr a two-sided moving average with (;) an i.i.d. a-stable sequence and (dx) a
non-random coefficients sequence, this paper analyses the conditional distribution of future paths given the
observed trajectory, say (X¢i1,..., Xern) given (Xi—m, ..., X¢), m > 0, h > 1, when the process is far from
its central values. Only mild summability conditions are assumed on the sequence (di) and, in particular,
we do not presume anything upfront on the anticipativeness or non-anticipativeness of (Xt).1 Under this
framework, any vector of the form X; = (X;_m, ..., X¢1p) is multivariate a-stable and its distribution is
characterised by a unique finite measure I' on the Euclidean unit sphere Sy, 1411 = {s € R™ L. 5], =
1}, where ||- || denotes the Euclidean norm (Theorem 2.3.1 in [117]). The measure I in particular completely
describes the conditional distribution of the normalised paths X /|| X¢||, the «shape» of the trajectory, when
X is large according to the Euclidean norm and given some information about the observed first m + 1
components. A straightforward application of Theorem 4.4.8 by Samorodnitsky and Tagqu (1994) [117]
indeed shows that

T'(ANB)

P(X0/IXille €A | IXille > and X/ X))l € B) —> )

(4.1)

for any appropriately chosen Borel sets A, B C Sy, 4ht1- As such however, (4.1) is of little value for prediction
purposes where only X;_,,, ..., X; are assumed to be observed, given that the conditioning generally depends
on the future realisations X;11, ..., X¢yn, mainly through the Euclidean norm of X;. The idea developed

here is to obtain a version of (4.1) where the Euclidean norm is replaced by a semi-norm || - || satisfying

H(:r—m7'"aan‘Tlv"'7xh)H = ||($_m7...7170,07...,0)”, (42)

1That is, we do not presume anything on the zeros of (dy), e.g., dp = 0 for k > 0 (purely non-anticipative case) or k < 0

(purely anticipative case).
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for any (z_m,...,o5) € R™Tr+1 In this view, a new representation of stable random vectors on the
«unit cylinder» Ciln',‘_Lh_H = {s € Rm™*th+1 . ||s|| = 1} is thus explored, where || - || is such a semi-norm.
Contrary to representations involving norms (see Theorem 2.3.8 in [117]), not all stable random vectors
admit representations on unit cylinders and a characterisation is provided. It is shown that only if (X;) is
«anticipative enough» will Xy admit a representation by a measure T'l'l on Cﬂ;t‘rhﬂ. Property (4.1) is then
shown to hold with an adequate semi-norm and with T" (resp. Sy,+r+1) replaced by il (resp. CM;LH) The
problem finally boils down to choosing appropriate Borels B in (4.1) reflecting that only the past «shape»
(Xe—m, -, Xt)/|| X¢] is observed.

The use of (4.1) to infer about the future paths of (X;) has connections with the so-called spectral
process introduced by Basrak and Segers (2009) [8] which has opened a fruitful line of research (see for
instance [7, 44, 78, 79, 102, 107]). This spectral process is defined as the limit in distribution of a vector
of observations of a multivariate regularly varying time series conditionnally on the first observation being
large. The approach followed here differs in that it operates at the representation level of a-stable vectors,
establishing a link between the spectral representation and the tail conditional distribution of stable linear
processes and shedding light on the (un)predictability of their extremes. A natural interpretation of path
prediction in terms of pattern identification emerges from Property (4.1) applied to stable linear processes,
similar to what Janssen (2017) [78] pointed out in a framework close to that of Basrak and Segers [8].
The results are extended to encompass processes resulting from the linear combination of a-stable moving
averages, coined stable aggregates, and illustrated on several examples. Contrary to non-aggregated moving
averages, which trajectories recurrently feature the same pattern from one extreme episode to another, stable
aggregates appear flexible enough to accomodate trajectories exhibiting various patterns through time.

Section 4.2 characterises the representation of general a-stable vectors on semi-norm unit cylinders and
shows that Property (4.1) can be restated under this new representation. Focusing first on a-stable moving
averages and then on linear combination thereof, Section 4.3 studies under which condition on the process

X;) the vector (X¢_,,, ..., X¢1n) admits a representation on the unit cylinder ol The anticipativeness
+ Y

m-+ht1
of (X;) surprisingly arises as a necessary condition for such a representation to exist. Section 4.4 then exploits
Property (4.1) to analyse the tail conditional distribution of general stable aggregates and of some particular
processes: the aggregation of anticipative AR(1), the anticipative AR(2) and the anticipative fractionally
integrated process. Section 4.5 finally considers a simple bivariate process to illustrate an extension to vector
moving averages. New properties emerge in higher dimensions where, in particular, the presence of a non-

anticipative component does not rule out the existence of adequate semi-norm representations. Section 4.6

concludes. Proofs are collected in Section 4.7.
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4.2 Stable random vectors representation on unit cylinders

This section starts by recalling the characterisation of stable random vectors on the Euclidean unit sphere
before exploring the case of unit cylinders relative to semi-norms and reformulating the regularly varying

tails property.

Definition 4.2.1 A random vector X = (X1, ..., Xq) is said to be a stable random vector in R? if and only
if for any positive numbers A and B there is a positive number C and a non-random vector D € R% such
that

AXW 4+ BxX® L oX + D,

where X and X@ are independent copies of X. Moreover, if X is stable, then there exists a constant

o € (0,2] such that the above holds with C = (A* + B)'/*, and X is then called a-stable.

The Gaussian case (a = 2) is henceforth excluded. For 0 < « < 2, the vector X = (Xi,...,Xy) is an
a-stable random vector if and only if there exists a unique pair (T, u%), I' a finite measure on Sy and u° a

non-random vector in R?, such that,
E[e“u’?ﬂ] = exp{ —/ |(u, s)|® (1 — isign((u, s))w(a, (u, s>))F(ds) +i (u,,uo>}, Vu e RY (4.3)
Sa

where (-,-) denotes the canonical scalar product, w(a,s) = tg(Z2), if @ # 1, and w(l,s) = —21n|s|
otherwise, for s € R. The pair (I, u%) is called the spectral representation of the stable vector X, T is
its spectral measure and u° its shift vector. In particular, X is symmetric if and only if u° = 0 and

I'(A) =T(—A) for any Borel set A in Sy (Theorem 2.4.3 in [117]), and in that case

E[ei<u7x>] - exp{ —/S |<u,s>|OT(ds)}, Vu € R (4.4)

In the univariate case, (4.3) boils down to

E[emx} _ exp{ -~ o_a|u|oz(1 —iB sjgn(u)w(a,u)) + iuu}, Vu € R,

for some o > 0, § € [—1,1] and p+ € R. The representations (4.3) and (4.4) of a stable random vector involves
integration over all directions of Rd,2 here parameterised by the unit sphere relative to the Euclidean norm.
Proposition 2.3.8 in [117] shows that the unit sphere relative to any norm can be used instead, provided
a change of spectral measure and shift vector. We study alternative representations where integration is
performed over a unit cylinder relative to a semi-norm. For a given semi-norm, not all stable vectors admit
such a representation, which motivates the following definition.

By direction of R%, it is meant the equivalence classes of the relation «=» defined by: w = v if and only if there exists

X > 0 such that u = v, for u,v € R,
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Definition 4.2.2 Let || - | be a semi-norm on R%, C’(‘il'H :={s € R?: |s| =1} be the corresponding unit
cylinder, and let X = (X1,...,X4) be an a-stable random vector.
(Asymmetric case) In the case where X is not symmetric, we say that X is representable on Cu‘ll'” if there

exists a non-random vector ‘u(\JI-H € R? and a Borel measure T'llI'll on C’g‘“ satisfying for all u € R?

/ |(u, s)|°TI"(ds) < +o0, (4.5)
C

-1l
d

ifa#1,and if a =1,
[ sl [l [T ) < . (46)
Cy

such that the joint characteristic function of X can be written as in (4.3) with (Sg,T', u°) replaced by
(R YE

il H,uﬁ_”).

(Symmetric case) In the case where X is symmetric a-stable (SaS), 0 < «a < 2, we say that X is representable

onC Cll"” if there exists a symmetric Borel measure I'l'll on C (g'” satisfying (4.5) such that the joint characteristic

function of X can be written as in (4.4) with (Sg4,T') replaced by (CC!‘H,F”'”).

Remark 4.2.1 As unit cylinders are unbounded sets, the integrability conditions (4.5)-(4.6) ensure the

sanity of the above definition.
We start by characterising stable random vectors that are representable on a given semi-norm unit cylinder.

Proposition 4.2.1 Let || - || be a semi-norm on R and C’g” be the corresponding unit cylinder. Denote
KW' = {z € Sy : ||z|| = 0}. Let also X be an a-stable random vector on R? with spectral representation

(T, u°) on the Euclidean unit sphere (with pu° = 0 if X is SaS). If a # 1 or if X is S18, then
X is representable on Cc‘ll'“ = I‘(K”'”) =0.

If a =1 and X is not symmetric, then

X is representable on C’L‘il'H — / In ||s]| ‘F(ds) < +o00.
Sa

Moreover, if X is representable on C’(ll"”, its spectral representation is then given by (F”'“,uﬁ,u) where

rll(ds) = ||s]|-T o T”ful(ds)

with Tjj.y = Sa \ K — Ccll"” defined by T).(s) = s/||s||, and

0 uo, if a#l1 or if X s S1S,
N =
I pl 4+ i, if a=1 and X is not symmetric,
- - - 2 .
= (), and fij =—— sjIn[[s[(ds), j=1,....d.
T JS Kl
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Remark 4.2.2 The representability condition in the case [ = 1 and X not symmetric] is slightly stronger
than that in the other cases. Indeed, [, ‘ In ||| ‘I‘(ds) <Js,
(K1) = 0 since ‘ln ||s||’ = +oo for s € KII'll.

In ||s|| ‘I‘(ds) < 400 necessarily implies that

Remark 4.2.3 The case d = 2 is insightful. In view of (4.1), the spectral measure of the a-stable vector
(X1, X5) describes its likelihood of being in any particular direction of R? when it is large in norm. As
unit spheres relative to norms span all the directions of R?, spectral measures on such spheres can describe
any potential tail dependence of (X7, X3). Unit cylinders however do not span all directions of R? and
spectral measures thereon necessarily encode less information. Consider for instance the unit cylinder C’Q'” =
{(s1,52) € R?: |s1| = 1} associated to the semi-norm such that ||(x1,x2)|| = |21 for all (21, 25) € R2. Tt is
easy to see that C’” I spans all directions of R? but the ones of (0, —1) and (0,+1). A stable vector (X7, Xs)
will admit a representation on C’JH provided these directions are irrelevant to characterise its distribution,
that is, if T’ ({(O, —1), (0, +1)}) = 0. In terms of tail dependence, the latter condition intuitively means that
realisations (X7, X5) where X is extreme and X; is not almost never occur (i.e., occur with probability

7€ero) 2

Provided the adequate representation exists, Property (4.1) then holds with semi-norms instead of norms,

providing the cornerstone for studying the tail conditional distribution of stable processes.

Proposition 4.2.2 Let X = (X1,...,X4) be an a-stable random vector and let || - || be a semi-norm on R?.
If X is representable on Ccli"”, then for every Borel sets A, B C Cc‘ll'H with Tl <8(A N B)) =Tl (5‘B) =0,
and TI'I(B) > 0,

Tl (AN B)

(4.7)

where OB (resp. O(AN B)) denotes the boundary of B (resp. AN B), and

) X
P, 418) = P ey < 411 > = ey < ).

4.3 Unit cylinder representation for paths of stable linear pro-

cesses

Given a semi-norm, Proposition 4.2.2 is only applicable to stable vectors that are representable on the
corresponding unit cylinder. This section investigates under which condition on an stable moving average
(X¢) vectors of the form (Xy—m, ..., X¢, Xig1,. .., Xetn) admit such representations. A characterisation is

3The conditions F({(O7 -1), (0,+1)}) = 0 and fS2 ’1n||sH ‘F(ds) < 400 can also be related to the stronger condition
ensuring the existence of conditional moments of X> given X obtained in [30, 33] (see also Theorem 5.1.3 in [117]) and which
requires I not to be too concentrated around the points (0,+1). Namely, assuming fS2 [s1]7¥I(ds) < 4oo for some v > 0,

then E[|X2|7|X1] < 400 for v < min(a+ v, 2a+ 1), despite the fact that E[|X2|%] = +oo. If the previous holds for some v > 0,

then necessarily both of the aforementioned conditions are satisfied.
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proposed and is then extended to linear combination of stable moving averages. Any semi-norm satisfying
(4.2) could be relevant for the prediction framework mentioned in introduction. However to fix ideas and

avoid numerous cases with respect to all the possible kernels, we restrict to semi-norms such that
Iy To, @1,y xp)|| =0 <= 2oy =... =20 =0, (4.8)
for any (x_p,, ..., zy) € R™T+1 which in particular satisfy (4.2).

Example 4.3.1 Semi-norms on R™*+"+1 satisfying (4.8) can be naturally obtained from norms on the m+ 1

first components of vectors. For any p € [1, +0o0], one can consider for instance semi-norms || - || defined by
0 1/p
(@ s T, T1s - -y n)|| = ( 3 |xi|1’) :
for any (€, ..., %0, 1, ..., xp) € R™1 with by convention (Y0_ |z [?) Y7 sup || for p = +oo0.
—m<i<0
4.3.1 The case of moving averages
Consider (X;) the a-stable moving average defined by
i.i.d.
X, = de5t+k, et ~ S, B,0,0) (4.9)
k€EZ
with (dy) a real deterministic sequence such that
if a#1 or (a,8)=(1,0), 0< Z |di|® < 400, for some s € (0,a)N[0,1], (4.10)
ke
and
if a=1 and B#0, 0<Z|dk|’1n|dk\‘<+oo. (4.11)
kEZ
Letting for m >0, h > 1,
Xp = (Ximms s Xo Xigrse oo, Xegn), (4.12)

it follows from Proposition 13.3.1 in Brockwell and Davis (1991) that the infinite series converge almost
surely and both (X;) and X are well defined. The random vector X is multivariate a-stable: denoting
di = (dk+m,---,dg,di—1,...,dg_p) for k € Z, the spectral representation of X; on the Euclidean sphere
reads (T, u°) with

F=o">" qusdkllﬁ{ ddy, } (4.13)

9eS1 kEZ ||dkHe

2
0 1, = di In ||dg||e
7 {a_1}wﬁ01€ezz ke In [|d| e,

where wy = (14+9p)/2, S;1 = {—1,+1}, J is the dirac mass and by convention, if for some k € Z, d;, = 0,
i.e. ||di|le = 0, then the kth term vanishes from the sums. Notice in particular that for 8 = 0, it holds that
w_1 = wy1 = 1/2, u® = 0, and both the measure I' and the random vector X; are symmetric. The next

result characterises the representability of X; on a unit cylinder for fixed m and h.
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Lemma 4.3.1 Let X, satisfy (4.9)-(4.12) and let || - || be a semi-norm on R™T"*1 satisfying (4.8). For

a#1 and (o, ) = (1,0), the vector Xy is representable on Clln',‘_l_h_s_l if and only if
Vk € Z, [(dk+m,...,dk):o — W<k-1, dg:o]. (4.14)

For a=1 and 8 # 0, the vector Xy is representable on Cﬂihﬂ if and only if in addition to (4.14), it holds
that

> llaxlle[ 1o (lldill /Il )| < +oo. (4.15)

kEZ

In the cases @ # 1 and («, 8) = (1,0), the representability of X; on a semi-norm unit cylinder depends on
the number of observation m + 1 but not on the prediction horizon h. Moreover, it is easy to see that if
(4.14) is true for some m > 0, it then holds for any m’ > m. The case « = 1, 8 # 0 is more intricate, the
roles of m and h in the validity of the additional requirement (4.15) not being as clear-cut.

A key distinction appears between moving averages according to whether finite length paths admit
semi-norm representations. This distinction especially matters for the applicability of Proposition 4.7 when
studying the conditional dynamics of a given process. The following definition thus introduces the notion of

past-representability of a stable moving average.

Definition 4.3.1 Let (X;) be an a-stable moving average satisfying (4.9)-(4.11). We say that the stable
process (X3) is past-representable if there exists at least one pair (m,h), m > 0, h > 1, such that X; =
(Xe—my - Xey Xeg1, ..., Xean) is representable on Cﬂihﬂ for some semi-norm satisfying (4.8). For any

such pair (m, h), we will say that (X;) is (m, h)-past-representable.

Remark 4.3.1 It can be noticed that if Xy = (Xi—m, ..., Xt, Xea1,---, X¢rn) is representable on C’T‘Llhﬂ
for some semi-norm satisfying (4.8), then it is representable on unit cylinders relative to any other semi-
norms satisfying (4.8). This holds because (4.8) ensures that all these semi-norms have the same kernel. The

notion of past-representability can thus be defined independently of the particular choice of a semi-norm.”

The following proposition provides a characterisation of past-representability.

Proposition 4.3.1 Let (X;) be an a-stable moving average satisfying (4.9)-(4.11).
(1) With the set M={m >1: 3k €Z, dyym =...=dry1 =0, dy # 0}, define

o — sup M, if M £, (4.16)
0, if M=0.

(a) For a # 1 and (o, B) = (1,0), the process (X¢) is past-representable if and only if

mo < +00. (4.17)

4This will not be true in general under the weaker assumption (4.2) and different notions of representability of a process

could emerge depending on the kernels of the semi-norms.
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Moreover, letting m > 0, h > 1, the process (X;) is (m, h)-past-representable if and only if (4.17)

holds and m > my.

(b) For « = 1 and 8 # 0, the process (X;) is past-representable if and only if in addition to (4.17),
there exist an m > mg and an h > 1 such that (4.15) holds. If such a pair (m,h) exists, (Xt) is then

(m, h)-past-representable.

(ee) Let || - || a semi-norm satisfying (4.8) and assume that (X:) is (m, h)-past-representable for some m >
0, h > 1. The spectral representation (T pl 1) of the vector Xy = (X¢—m, ... Xe, Xeg1,---, Xegn) on

Crllrih“ is then given by (4.13) with the Euclidean norm || - ||. replaced by the semi-norm || - ||.

Remark 4.3.2 Note in particular that mo = 0 if and only if for some ko € ZU{—o0}, dj, # 0 for all k > ko
and di = 0 for all & < k.

Remark 4.3.3 Proposition 4.3.1 shows that for an a-stable moving average to be past-representable, se-
quences of consecutive zero values in the coefficients (dg) have to be either of finite lengths, or infinite to the
left. This surprisingly places the anticipativeness of a stable moving average as a necessary —and sufficient
for @ # 1 and (e, 8) = (1,0)— condition for its past-representability. The less anticipative a moving average
is, in the sense of the larger the gaps of zeros in its forward-looking side, then the higher m has to be chosen
so0 as to have the representability of (X;_,,, ..., X¢, X¢y1, ..., X¢yn) on the appropriate unit cylinder. Purely

non-anticipative moving averages are in particular immediately ruled out.

Corollary 4.3.1 Let (X;) an a-stable moving average satisfying (4.9)-(4.11). If (X;) is purely non-

anticipative, i.e., dp = 0 for all £k > 1, then (X;) is not past-representable.

Remark 4.3.4 This fault line between anticipativeness and non-anticipativeness sheds light on the pre-
dictability of extreme events in linear processes. Consider for illustration the two following a-stable AR(1)

processes defined as the stationary solutions of

Xt = pXt+1 + Et, Vit € Z, (418)

Y = pYio1 +m, vt € Z, (4.19)

where 0 < |p| < 1, and (&), (n:) are independent i.i.d. stable sequences. While (X;) generates bubble-
like trajectories —explosive exponential paths eventually followed by sharp returns to central values—, the
trajectories of (Y;) feature sudden jumps followed by exponential decays. In both processes, an extreme
event stems from a large realisation of an underlying error €, or 7., at some time 7. On the one hand for the
non-anticipative AR(1) (4.19), a jump does not manifest any early visible sign before its date of occurrence
as it is independent of the past trajectory. Jumps in the trajectory of (¥;) are unpredictable and one only has

information about their unconditional likelihood of occurrence. On the other hand for the anticipative AR(1)
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(4.18), extremes do manifest early visible signs and are gradually reached as their occurrence dates approach.
The past trajectory is informative about future extreme events, and in particular more informative than
their plain unconditional likelihood of occurrence. Building on the «information encoding» interpretation
of spectral measures given in Remark 4.2.3, the fact that (X;) (resp. (Y%)) is past-representable (resp. not
past-representable) can be seen as a consequence of the dependence (resp. independence) of future extreme

events on past ones.

The condition for past-representability simplifies for ARMA processes and is equivalent to the autoregressive

polynomial having at least one root located inside the unit circle.

Corollary 4.3.2 Let (X;) be the strictly stationary solution of

VE)S(B)X, = O(F)H(B)er, & "~ S(a,8,0,0),
where 1, ¢, ©, H are polynomials of arbitrary finite degrees with roots located outside the unit disk and
F (resp. B) is the forward (resp. backward) operator: FX, := X;1; (resp. BX, := X;_1). We suppose
furthermore that ¢ and © (resp. ¢ and H) have no common roots. Then, for any a € (0,2) and g € [-1, 1],
the following statements are equivalent:
(¢) (X) is past-representable,
() deg(®) > 1,
(ter) mo < +o0,
with mg as in (4.16). Moreover, letting m > 0, h > 1, the process (X;) is (m, h)-past-representable if and

only if m > mg with mg < +o0.

Remark 4.3.5 For ARMA processes, we can notice in particular that the discrepancy between the cases
[ # 1 or (a,8) =(1,0)] and [a = 1, 8 # 0] vanishes. Also, only the roots of the AR polynomial matter for

past-representability, the MA part having no role.

4.3.2 Aggregation of moving averages

As will be seen in the next section, stable moving averages of the form (4.9) generate trajectories bound
to feature the same pattern ¢ — cd,_; (up to a scaling ¢ and a time shift 7) recurrently through time.
This can be seen as a strong limitation when it comes to time series modelling as argued by Gouriéroux
and Zakoian (2017) [63] in the context of explosive bubbles. They suggest to alleviate this restriction by
considering processes resulting from the linear combination of different models. These aggregations feature
richer dynamics but little results are available to describe them (see for instance [52] for the aggregation
of stable anticipative AR(1)). Linear combinations of stable moving averages will fit naturally into our

framework and the results will extend.

Definition 4.3.2 Let (X1.),...,(X ) be J > 1 stable moving averages, each satisfying (4.9)-(4.11), for

some coefficients sequences (d; ), and mutually independent error sequences ¢, ¢ bt S(e, 84,1,0), j =
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1,...,J. Let also (7;);=1,....s be positive numbers and define (X;) as
J
Xp =Y m X, for t € Z.
j=1
We will call such process (X;) a stable aggregated moving average, an aggregated process, or simply, a stable

aggregate, and call (X;), j =1,...,J the latent moving averages of (X;).

We provide the spectral representation of paths of the aggregated process (X;) on the Euclidean unit sphere

in the next lemma.

Lemma 4.3.2 Let (X;) an a-stable aggregate with latent moving averages (X14), ..., (X¢) as in Definition
4.3.2, and let Xy as in (4.12) for any m > 0, h > 1. Then, X, is a-stable and its spectral representation

(T, u%) on the Euclidean unit sphere Sy, 1 pi1 writes

J
P=3 3 > wiomlidislo { dd } (4.20)

=19€S1 k
IEL s heR lldjklle

J

2
p’ = a1y — SO wiBid;kIn |mid;
=1 keZ

where dj’k = (dj,k+m; .. .,dj’k,dj’kfl,. . ~;dj}k7h)7 Wj,9 = (1 +19BJ)/2, fOT any ke Z, j =1,.. .,J, g e Sl,

le,

and if d; , = 0, the term vanishes by convention from the sums.

Remark 4.3.6 Notice that I' = ijl 73 L'j, where I'; denotes the spectral measure of the path X ;; from

the moving average (X;), j = 1,...,J, which is of the form (4.13).

If all the X, ,’s are symmetric (8; = 0 for all j), then X, and I" are symmetric as well, but the reciprocal
however does not hold true. The measure I" will be symmetric if and only if ijl s (Fj(A) - Fj(fA)) =0
for any Borel set A C S;,+n+1- The latter condition is necessary and sufficient for X; to be symmetric in
the case where o # 1, whereas for a = 1, it guarantees that X; will be symmetric up to an additive shifting,
as 10 may be non-zero. The symmetry of paths intervenes in the representability conditions provided in the

following lemma.

Lemma 4.3.3 Let (X;) an a-stable aggregate with latent moving averages (X14), ..., (Xy) as in Definition
4.8.2. Let m >0, h > 1, X, as in (4.12), and || - || be a semi-norm on R™"+1 satisfying (4.8).

When either o # 1 or X S18S, the vector X is representable on CM—h-H if and only if (4.14) holds with m
for all sequences (d; i)k, j=1,...,J.

For a =1 and X; asymmetric, the vector X, is representable on Crllrih“ if and only if (4.14) and (4.15)

hold with m and h for all sequences (d; i)k, 7 =1,...,J.

The notion of past-representability in Definition 4.3.1 straightforwardly encompasses the case of stable
aggregated processes and the next proposition provides a characterisation. In view of Lemma (4.2.1), the
condition for the representability of a path X; on a unit cylinder changes according to whether it is symmetric

or not in the case a = 1.
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Proposition 4.3.2 Let (X;) an a-stable aggregate with latent moving averages (X14),...,(X ) as in Def-

inition 4.3.2.

(v) Define for j =1,...,J the sets Mj ={m>1: 3k €Z, djprm=...=d;jp41 =0, dj,#0}, and
sup M, if M; #0,

mo,; = (421)
0, if M;=0.

(a) For a # 1, the aggregated process (X;) is past-representable if and only if (X;.) is past-
representable for all j =1,...,J, i.e.,
sup mg,; < +o00. (4.22)
J=1sesd
Moreover, letting m > 0, h > 1, (X}) is (m,h)-past-representable if and only if (4.22) holds and
> i
M= IEx s
(b) For ao =1, the process (X;) is past-representable if and only if (4.22) holds and there exists  a pair

(m,h), m > max mo,;, h > 1 such that either

Jj=1,...,
X, is S18, or, X asymmetric and (4.15) holds for all sequences (d; ),
where X generically denotes a vector as in (4.12). If such a pair exists, then the process (Xi) is

(m, h)-past-representable.

(ue) Let || - || a semi-norm satisfying (4.8) and assume that (X;) is (m, h)-past-representable for some m >
0, h > 1. The spectral representation (DIl w1y of the vector Xy = (Xi—my- ., Xoy Xeg1s -+ Xegn) on

Cﬂﬂrhﬂ is then given by (4.20) with the Euclidean norm || - ||e replaced by the semi-norm || - ||.

Remark 4.3.7 The necessary condition (4.22) extends what was noticed in the case of non-aggregated
moving averages, namely, that anticipativeness is a minimal requirement for past-representability. A single
non-anticipative latent moving average is enough to render the aggregated process not past-representable,

regardless of the other latent components.

Remark 4.3.8 For a # 1, the past-representability of an aggregated process is equivalent to that of its
latent moving averages, but this does not seem to hold in general for & = 1. In the latter case however, if
all the latent moving averages are symmetric, that is, 1 = ... = 85 = 0, then the paths X; are S1S for any

m >0, h > 1 and (¢)(b) collapses to (¢)(a).

The representability condition also simplifies in the case of aggregated ARMA processes and requires each

latent ARMA process to be anticipative.

Corollary 4.3.3 For any j = 1,...,J, let (X;,) be the ARMA strictly stationary solution of

Vi(F)¢;(B)X,+ = ©,;(F)H;(B)ej+, as in Corollary 4.3.2, with mutually independent sequences ¢; ; S
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S(a,B;,1,0). Define X, = Y7

i=1 X for any positive scalings (mj);j. Then, for any a € (0,2),

B1,---,B7) € [-1,1]7, the following statements are equivalent:

(
(1)  (Xi) is past-representable,
() intdeg(yy) > 1,
(eer) sjqp mo,; < +00,

with th]e mo,;’s as in (4.21). Moreover, letting m > 0, h > 1, the aggregated process (X;) is (m, h)-past-

representable if and only if for any j =1,...,J, mg ; < +oo, and m > maxmyg ;.
J

4.4 Conditional tail distribution of stable aggregates

In this section, we will derive the tail conditional distribution of linear stable processes for which Proposition
4.2.2 will be applicable. The case of a general past-representable stable aggregate is considered as well as
particular examples.

To be relevant for the prediction framework, the Borel set B appearing in Proposition 4.2.2 has to be chosen
such that the conditioning event {||X¢| > =} N {X¢/||X¢|| € B} is independent of the future realisations
Xii1, .-y Xeon. For || - || a semi-norm on R™*"+1 gatisfying (4.8), denote Syl‘n.l-‘u ={(s—m,---,80) € R™F1:

[(s—m,---380,0,...,0)|| = 1}.5 Then, for any Borel set V' C S,H,;Url, define the Borel set B(V) C C’llihﬂ as
B(V)=V xR"

Notice in particular that for V = Sllr;l_Ll, we have B(V) = C’,lll'u_l. In the following, we will use Borel sets of

the above form to condition the distribution of the complete vector X /|| X¢|| on the observed «shape» of

the past trajectory. The latter information is contained in the Borel set V', which we will typically assume
to be some small neighbourhood on Sllr;l_Ll. It will be useful in the following to notice that
V xR = {sECT”,;Uth : f(s) EV}7
where f the function defined by
Rm+h+1 — Rm—i—l

[ : (4.23)

(Tomy oy @Oy X1y ey y) > (T, e, X0)

4.4.1 Stable aggregates: general case

Let (X;) an a-stable aggregate as in Definition 4.3.2 (possibly a moving average if J = 1). Assume (X})
is (m, h)-past-representable, for some m > 0, h > 1 and let Xy as in (4.12). Denoting T!I'll the spectral
measure of X; on the unit cylinder C' I for some semi-norm satisfying (4.8), we know by Proposition

m+h+1
4.3.2 (u), that Tl is of the form

J
il = Z Z ij,ﬁﬁf|dj,k|a5{ 9d; } (4.24)

j=19€8S1 keZ
Il
Proposition 4.4.1
The set STHJA corresponds to the unit sphere of R™*1 relative to the restriction of || - || to the first m + 1 dimensions.
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Under the above assumptions, we have

- {Mﬂc ca. i) eV}
ld; k|l Ikl

Bl (Xt’A‘B (V)) 25 too0 7 (4.25)
Tl {Mm el . Udin) v}
il — T d; k]
for any Borel sets A C CT”,;UF}LH, VvV C SL‘;L such that { ﬁi;ljlc” c CJJ:v:‘—li-h-&-l : W c V} 29, Tl (8(/10
” "

B(V))) = TII(@B(V)) = 0, where B(V) =V x R" and f is as in (4.23).

Remark 4.4.1 (1) Setting V = SJL’L, and A an arbitrarily small closed neighbourhood of all the points
(¥d; i/l|d; k9,56, we can see that CEEI_POOIP’(Xt/HXtH € A‘HXtH > x) = 1. In other terms, when far
from central values, the trajectory of process (X;) necessarily features patterns of the same shape as some
9d; 1/ ||d; k||, which is a finite piece of a moving average’s coefficient sequence. The index j indicates
from which of the J underlying moving averages the pattern stems from, the index k points to which
piece (dj ktms---sdjk,djk—1,--.,d;,—n) of this moving average it corresponds, and ¢ € {—1,+1} indicates
whether the pattern is flipped upside down (in case the extreme event is driven by a negative value of an error
(€j,+)). The likelihood of a pattern dd; x/||d; x|l can be evaluated by setting A to be a small neighbourhood
of that point. In particular, only one pattern dy/||dk|| can appear through time for J =1 (up to a time shift
and sign flipping). This is no longer the case in general for J > 2, where the shape of each extreme event
appears as if being drawn from a collection of patterns.

(et) In view of point (¢), the observed path (Xi—p, ..., Xi—1, X¢)/|| X¢|| will a fortiori be of the same shape
as some U(dj k+m., - - - dj k+1,djk)/||d; k|| when an extreme event will approach in time. Observing the initial
part of the pattern can give information about the remaining unobserved piece: the conditional likelihood

of the latter can be assessed by setting V' to be a small neighbourhood of the observed pattern.

Remark 4.4.2 The tail conditional distribution given in (4.25) highlights three types of uncer-

tainty /approximation for prediction:6

(t) In practice, events of the type {(X¢—m,...,Xe—1,X0)/[| Xell = O(djrsms---djrr1,djn)/l|djel}
have probability zero of occurring, and only noisy observations such as (X¢—m, ..., Xi—1, Xe)/|| X¢l]| =
Hdj ktm, - - djk+1,d56)/||dj k]| are available on a realised trajectory. The choice of an adequate condi-

tioning neighbourhood V in (4.25) given a piece of trajectory will thus have to rely on a statistical approach.
One could envision tests of hypotheses to determine whether a piece of realised (noisy) trajectory «is more
similar» to a certain pattern 1 or to an other pattern 2, or whether it «is more similar» to a certain pattern
1 rather than any patterns in a certain collection.

(11) Even for an arbitrarily small neighbourhood V' —that is, even if the observed path can be confidently

identified with a particular pattern— uncertainty regarding the future trajectory may remain. It could indeed

6The considerations developed in this remark focus solely on the probabilistic uncertainty of the prediction assuming that

the process (X¢) is entirely known, that is, no parameter nor any sequence (d; ;) has to be inferred from data.
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be that several patterns 9d; /||d; x|l coincide on their first m + 1 components, but differ by the last h. The
stable anticipative AR(1) and its aggregated version are typical examples of this phenomenon that will be
studied in the next section.

(cet) The tail conditional distribution (4.25) is an asymptotic behaviour as the (semi-)norm of X grows
infinitely large. It is thus only an approximation of the true dynamics during extreme events. It would be
interesting to obtain a finer asymptotic development in x of the above convergence to gauge the approxima-
tion error of the true conditional distribution. It would be especially useful to quantify how far from/how

variable around the predicted patterns the future path can be.

4.4.2 Aggregation of AR(1)

We now consider (X;) the aggregation of stable anticipative AR(1) processes introduced in [63] defined by
J

Xt:ZWij,ta Xjt=pjXjt+1+eie, 0< |pj| <1, j53=1,...,J (4.26)
j=1

bt S(«, B4,1,0) are mutually independent i.i.d. sequences. We

where m; > 0 for any j, and (g;¢)iez
assume without loss of generality that the p;’s are distinct. For each anticipative AR(1) with parameter
pj, the moving average coefficients are of the form (P?ﬂ{kzo})k, and thus, mg; = 0 for all j, where the
my,;’s are given in (4.21). By Corollary (4.3.3), we know for any m > 0, h > 1, the aggregated process (X;)

is (m, h)-past-representable. The spectral measures of paths X, simplify and charge finitely many points.

Their forms are given in the next lemma.

Lemma 4.4.1 Let (X;) be an aggregation of a-stable anticipative AR(1) processes as in (4.26). Letting X4

as in (4.12) for m >0, h > 1, its spectral measure on ¢l 1 for a semi-norm satisfying (4.8) is given by

m-+h-+
J h—1 7
. o o Wj.9 «
I‘“ I - Z w195{(19,0,...,0)} =+ Z?T] (U)j719 Z Hd_],kH ] ﬁdj,k + 1_‘|77p|a||d],h” 0 19dj,h >] )
b=t { sl } ’ { ;] }
7, s

(4.27)
where for alld € Sy, j€{1,...,J} and —-m+ 1<k <h,
djx = (P;Hmﬂ{szm}’ e ,P?ﬂ{kzo}vpf_lﬂ{kzu, . ,Pf_h
wjy = (1+755)/2,

J
o
wy =Y m w9,
j=1

w9 = (1+95;)/2,

Tie>ny),

By =B
J Jl_‘pj|a’

and if h =1 and m = 0, the sum Zz;l_m_H vanishes by convention.
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The next proposition provides the tail conditional distribution of future paths in the case where the p;’s

are positive. Let us first introduce useful neighbourhoods of the distinct charged points of T'l'l. Denote
m+h+1

e N .
do._m = (1,0,...,0) so that the charged points of T'l'l are all of the form 9¥d;  /||d; x| with indexes (¥, j, k)
in the set Z := 57 x ({1, o Jx{=m,h} U{(0, fm)}>. With f as in (4.23), define for any (9o, jo, ko) € Z,
the set Vp as any closed neighbourhood of 9o f(dj, k. )/ ||djo k|| such that

V' f(dj x) V' f(djr)  Pof(djy ko)

il lledjokoll

v, 5 K) €T,
SANALY Ty

€W

(4.28)

In other terms, Vy x R? is a subset of Cllih 41 in which the only points charged by LIl all have the first
(m+1)"™ coinciding with 9o f(dj, .k )/ || djo.ko |- Define also Ay ; 1, for any (9, 4, k) as any closed neighbourhood
of ¥d; 1./||d; || which does not contain any other charged point of T'l'l| that is,

ﬁldj/’k/

v(ﬁlvjlvk/) GIv T AT
11l

S Aﬂ,j,k - (19/7.7/7 kl) = (ﬁajv k) (429)

Proposition 4.4.2 Let (X;) be an aggregation of a-stable anticipative AR(1) processes as in (4.26) with
p; € (0,1) for all j’s. Let Xy, the dji’s and the spectral measure of Xy be as given in Lemma 4.4.1, for
anym >0, h > 1. Let Vi be any small closed neighbourhood of 9o f(dj, 1y)/||djo ko |l in the sense of (4.28)
for some (Yo, jo, ko) € T and let B(Vy) = Vo x R". Then, with Ay jx an arbitrarily small neighbourhood of
some Vd; 1 /||d; 1] as in (4.29), the following hold.
(t) Case m > 1.

(a) If 0 < kg < h:

|pj0|ak(1 - |pj0|a)5190(19)5j0(j)7 0<k<h-— 17
plll (Xt,Aﬁyjyk‘B(Vo)) N

Tr—00

|p.10|ah5’l90(19)5_10(])a k = h

(b) If —=m < ko < —1:
PRI (Xe, Ag k| BO)) = 600 (9)850 (7)1, ().

(1) Case m = 0.

J o
Zi:1 T3 Wi, s

{19 }(’19)7 k - 0
Z;jzlpiﬂ?o ’
. by, « e
PU (X, Ao BOR)) = & 22—y (1 = 1ps1")0pny (9), 1<k <A1,

rree > im1 Pivo

Pj,00

mmﬂahfs{ﬁo}(ﬁ), k=h,
1=11"%,Vo

with pj.o, = 75wj0,/(1 = [pj|)-
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Remark 4.4.3 For m > 1, that is, if the observed path is assumed to be of length at least 2, there is a
significant difference between whether kg € {0,...,h} or kg € {—m, ..., —1}. For the latter, the asymptotic
probability of the whole path X,/|| X¢|| being in an arbitrarily small neighbourhood of ¥d; /||d; x| is 1 if
and only if ¥ = ¥y, j = jo, K = ko: given the observed path, the shape of the future trajectory is fully
determined. For the former, this probability is strictly positive if and only if ¥ = ¥y and j = jp, but the
observed pattern is compatible with several distinct future paths. One can see why this is the case from the
form of the sequences d; i /|d; k|| and of their restrictions to the first m + 1 components f(d; x)/||d; k|- On
the one hand (omitting ¥),

m+1 h
k+m k k-1
ckm R k=l 5 10,....0
(pi-s-m pi pi_l & ) , for k€ {0,...,h},
d H(pj RERRY N a"'apj,]-aov"wo)”
.k
djkll
! (P5™, . psy 1,0,...,0,0,...,0)
k+m ) for ke {—m, ey —1}
(o5, P, 1,0,...,0,0,...,0)
m+1 h

We can notice that all the above sequences are pieces of explosive exponentials, terminated at some coordi-
nate. For k € {0,...,h}, the first zero component —the «crash of the bubble»—, is situated at or after the
(m + 2)'" component, whereas for k € {—m,...,—1}, it is situated at or before the (m + 1)*®. Using the
homogeneity of the semi-norm and (4.2), we have on the other hand that

m—+1

o
(p_] 7"'7pja1)
1o}, pj1,0,...,0,0,...,0)|’
—_———

for  ke{0,... h},

| S —
m—+1 h
fldjx) _
lldjell mtl
k+m
ctm 51,0, ,0
k+(75] Pi ) , for ke{-m,...,—1}.
||(p‘j 7"'7pj71703"'70307""0)”
——
m+1 h

Thus, conditioning the trajectory on the event {f(Xy)/||Xtll = f(djo.ko)/ldjok0ll} for some ko €
{—=m,...,—1} amounts to condition on the burst of a bubble being observed in the past trajectory with
no new bubble forming yet, which allows to identify exactly the position of the pattern on the ;' moving
average’s coefficient sequence.

When conditioning with kg € {0, ..., h} however, the crash date is not observed and can happen either in the
next h — 1 periods, or after the h*". However, the shape of the observed path is that of a piece of exponential
with growth rate ,oj_1 regardless of the remaining time before the burst, which leaves several future paths
possible. One can quantify the likelihood of each potential scenario: the quantity |p;|**(1 — |p;|®) corre-
sponds to the probability that the bubble will peak in exactly k periods (0 < k < h), and |p; |*" corresponds
to the probability that the bubble will last at least h more periods.
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Remark 4.4.4 (1) The previous remark confirms the interpretation of the conditional moments proposed
in [52] for the stable anticipative AR(1) case (J = 1). It also extends it in two ways: (:) by accounting for
paths rather than point prediction, (1) by showing that the aggregation of AR(1) processes also features
killed exponential explosive episodes but with various growth rates and crash probabilities. Proposition 4.4.2
furthermore shows that asymptotically, as few as two observations are sufficient to identify the growth rate
p}l of an ongoing extreme episode,7 and the conditional dynamics within this given event will be similar
to that of a simple AR(1) with corresponding parameter. An identification of the growth rate in the early
developments of the bubble appears possible, allowing to infer in advance the odds of crashes.

(¢¢) Notice that for m = 0 (only the present value is assumed to be observed), no pattern can be observed
but only the sign of the shock. Hence, the growth rate p{o1 of the ongoing event is unidentifiable, which is
reflected in the fact that the asymptotic probabilities of paths with growth rates pj_l7 j # jo, are positive
(case (tt) of Proposition 4.4.2).

4.4.3 Two examples: the anticipative AR(2) and fractionally integrated AR

We focus here on two processes which both share the peculiar property of having a 0-1 tail conditional
distribution whenever the observed path is of length at least 2 (i.e., m > 1): the anticipative AR(2) and
the anticipative fractionally integrated AR. For an adequate choice of the parameters, the former can gen-
erate bubble-like trajectories with accelerating or decelerating growth rate and the latter can accommodate
hyperbolic bubbles. In contrast with the anticipative AR(1), these bubbles do not display an exponential
profile but still feature an inflation-peak-collapse behaviour. The two processes are defined as follows.
Anticipative AR(2)

The anticipative AR(2) is the strictly stationary solution of

(1= MF)(1 = XF)X; =&, e " S(a, 8.0,0), (4.30)

where \; € C and 0 < |\;| < 1 for i=1,2. In case \; € C\ R, i = 1,2, we impose that A\; = \y to ensure
(X¢) is real-valued. We further assume that A\; + Ay # 0, to exclude the cases where (Xo;) and (Xo¢41) are
independent anticipative AR(1) processes. The solution of (4.30) admits the moving average representation
Xt = ez Akeyr with

)\k“rl _ )\k?“rl
g — ﬁ Lig>op, it A # Ao,
= _

(k + DA 10y, it A=A = A

(4.31)

Anticipative fractionally integrated AR

7This holds asymptotically in the (semi-)norm of the observed path, but in practice it can be expected that the noise
surrounding the trajectory will make this identification difficult with only two observations. Longer path lengths (higher m)
may provide robustness to the identification, but could also incorporate some bias by taking into account past extreme events,

such as now-collapsed bubbles. One can suspect a bias-variance trade-off when searching for an optimal choice of m.
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The anticipative fractionally integrated AR process can be defined as the stationary solution of
(1-F)iX, = e, er "N S(a, 8,0,0), (4.32)

with a(d — 1) < —1. The solution of (4.32) admits the moving average representation X; = 3320 dxes ik
with

T'(k + d)

do =1 d dp= ——-12 9
o=1 an FT T (k+1) 0P

for k #0, (4.33)

where I'( - ) denotes ~here only— the Gamma function.

It can be shown that both process are necessarily (m, h)-past-representable for m > 1 and h > 1. The 0-1
tail conditional distribution property when the observed path is of length at least 2 is exhibited in the next

proposition.

Proposition 4.4.3 Let (X;) be the a-stable anticipative AR(2) (resp. fractionally integrated AR) as
in (4.30)-(4.31) (resp. (4.32)-(4.33)). For any m > 1 and h > 1, let X¢ as in (4.12) and di, =
(dktms - - dig,dig—1, - .., di—p) where (dy) is as in (4.31) (resp. (4.33)). Let Vo a small neighbourhood of
Yodi, /||dk, || as in (4.28) —where we drop the indexes j— for some 9y € S1, ko > —m, and let B(Vy) = VoxR".
Then,

1 . ﬁodko

) Zf )

plll (Xt,A‘B(VO)) s [, |
e 0, otherwise,

for any closed neighbourhood A C Clﬂrhﬂ such that OAN{Idy/|dg| : 9 € S1, k > —m} = 0.

Remark 4.4.5 Contrary to the anticipative AR(1), the trajectories of the anticipative AR(2) and fraction-
ally integrated processes do not leave room for undeterminancy of the future path. Asymptotically, given any
observed path of length at least 2, the shape of the future trajectory can be deduced deterministically. This
holds even if the peak/collapse of a bubble is not yet present in the observed piece of trajectory. Therefore,
provided the current pattern is properly identiﬁed78 it appears possible in the framework of these models to

infer in advance the peak and crash dates of bubbles with very high confidence —in principle, with certainty.

4.5 A step towards multivariate processes

A simple bi-dimensional process is considered in this section to highlight that the approach developed in this
paper can be brought to the multivariate framework and that new properties can also emerge. In essence, the
process considered is a vector where each univariate component consists respectively of a stable anticipative

AR(1) and a stable non-anticipative AR(1), and dependence between both is allowed. Surprisingly, the

8See point (¢) of Remark 4.4.2.
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presence of a non-anticipative component will not be pathological here contrary to the univariate case

studied above, and Proposition 4.2.2 will be applicable. Formally, define (X) for all ¢t € Z as

X, = (X1, Xoy),
X1t =p1Xi41 +E1, (4.34)
Xoy = p2Xos_1+eny,

e = (e1,4,€2,4)" 11.d. SaS with spectral measure I'; on S, and zero shift vector,

where 0 < |p;| < 1,4 =1, 2.7 We again have in mind applying Proposition 4.2.2 to a vector composed of past
and future realisations of (X). Limiting ourselves to the simplest m = 0 and h = 1 case, we will consider
a vector of the form X, := (X}, X{,,)’, where X, is the present observation and X1, the one-step ahead
realisation to predict. The next result shows that X, is a-stable, in fact Sa.S, and it provides a necessary

and sufficient condition on I'y for its representability on an appropriate unit cylinder.lo

Proposition 4.5.1 Let (X;) as in (4.34), the semi-norm ||-|| on R* such that ||(x1, z2, x5, 24)|| = /23 + 22
for any (x1,x2,23,24) € R, and denote CJ'H its corresponding unit cylinder. The vector X, is then Sa.S,

and it is representable on CJJ'” if and only if

I, ({(o, ~1),(0, +1)}) = 0. (4.35)

The representability condition (4.35) appears in sharp contrast with Remark 4.3.4 and is also reminiscent of
Remark 4.2.3. It intuitively means that the joint vector X, will admit a representation on the unit cylinder
provided realisations (e1,€2) where €24 is extreme and €1 ; is not occur with probability zero. If this
holds, then, intuitively, every jump in the trajectory of (Xs,;) necessarily coincides with a bubble peak in the
trajectory of (X;,), and each incoming jump in the former is thus betrayed by the early build-up of a bubble
in the latter.” When considered univariately, (X2) features sudden, unpredictable bursts —and is thus
not-past-representable—, but this unpredictability appears to fade away when (X5 ;) is considered jointly
with the «informative» process (Xi,.). The next proposition provides the tail conditional distribution of
X1 given (a large in norm) observation X, and shows that these heuristics are essentially correct. The
anticipative component does inform about incoming jumps in the other component, and, quite surprisingly,
the non-anticipative component also brings information about the anticipative one. For expository purposes,
we distinguish several cases according to the conditioning event. The proposition is followed by a detailed

interpretation of each case.

9The SaiS assumption on the i.i.d. sequence (e¢) is made for the sake of simplicity and implies that I's is itself symmetric.

1OFor expository purposes, the form of the spectral representations on the Euclidean unit sphere and on the unit cylinder are
relegated in the proofs in Appendix.

11Note that extreme realisations of €1y may nevertheless occur alongside non-extreme realisations of e2¢, as
T ({(71,0), (+1,0)}) can a priori be positive. Thus, intuitively, a bubble peak may be reached in (X1 ) with no jump

occurring in (Xa¢).
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Proposition 4.5.2 Let (X,) as in (4.34) and assume that (4.35) holds. Forng > 0 and 0y €] —7, 7], define
Vo = {(cosu,sinu) € Sy : u € [0y — 1,00 + no]} and let B(Vy) = Vo x R2. Define also, for § €] — 7],
n >0, and P any closed set of R2,12

Agpp = {(cosu,sinu,O,pg sinu) + (0,0, z,y) € C’!'” s uw€l@—n,0+n] and (z,y) € P},

and Vg, = {(cosu,sinu) € So: we[f—n,0+n]}.
(1) Assume that Vo N {(£1,0),(0,+1)} = 0. Then,

PU (X, Ao p|B(V))  — W5{<0.0)}(P>~

Tr— 400
(1e) Assume (0,9) € Vo, for some 9 € {—1,+1}, and Vo N {£(1,0), (0, —9)} = 0. Then,

oy |p2|®
22 2L 17 r (V mv)
21— |pa® (0,03 (Vo) + T2 Vo, N Vo

T—>+00 0.204 ‘p2|a (
7 el ()
2 T—fpofe 2\

(tee) Assume (9,0) € Vp, for some ¥ € {—1,+1}, and Vo N {%£(0,1), (—=9,0)} = 0. Then,

Pyc.” (XtaAG,n,P’B(VO)> (5{(0,0)}(]3).

Pl (Xn Ae,n,P‘B(Vo))

o& 2c «
(21 1|_pl||pl|a5{0}(P2) + p;'01?132)5{(19,0)}(%,71)5{19,)11}(P1) +1 (Ve,n N VO) 9{(0.0)3(P)

T— 400 Ufé ‘pl
2 1—|pl|*

| ’

+ (Vo)

1/«
where Py = {z : (z,y) € P}, o ={y: (z,y) € P} and 01}, = (/ 51|QF2(ds)> with S(Py) :=
S

{j%ﬁ;e&:ye&}

Interpretation of Proposition 4.5.2

(P2)

In the spirit of this proposition, Vj is typically a small neighbourhood on the unit sphere Ss accounting
for the observed realisation of (Xi;, Xa+)/(/X7,+ X3, that is, the relative magnitudes of X;; and
X27t.13 The smaller the neighoubourhood V;), the more «accurately» we assume to observe these relative
magnitudes. The proposition considers three main scenarii: case (1) X;; and X5, are of comparable
magnitudes, case (1t) Xs, is much larger -possibly infinitely larger- than X, and case (vt) X; ¢ is much
larger -possibly infinitely larger- than X5 ;. Each of these three conditioning leads to different odds regarding

12 This ensures that Ag, p = {(0,0)} x P+ {(cosu,sinu,0, ppsinu): u € [0 —7,8+n]} defines a proper Borel set,
which could fail if P was a general Borel set [36]. One could assume more generally that P is an F, set, but a closed set will

be enough for our purpose here.
13 s . . . . .
Recall that the results are always conditional on /X12 + X22 . being large: either X ¢ is extreme, either X3 ¢ is extreme,

or both are.
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the potential outcomes at t + 1.

Case (¢) To fix ideas, let us assume that X; ; and Xo; are observed to be of same signs and approximately
of equal magnitudes, that is, V5 is a small neighbourhood of ¢(1,1) € Sy, with ¢ = 2/v/2 (i.e., fy = 7/4 and
1o > 0 small). Now, evaluating the tail conditional probability at Ag, . p for P an arbitrarily small closed
neighbourhood of (0, 0), for instance P = [—e1, €1] X [—€2, €3] for €1, €3 > 0 small, we obtain that

pl| (L,Aem,p’B(Vo)) 1

r—+00

Intuitively during an extreme event, if X; ; and X5, are observed to be of approximately equal magnitudes,
then the vector (X1 ¢, Xoy, X1.041, X2,441)/ X%t —|—X22’t will belong with certainty to a small neighbour-
hood of ¢(1, 1,07p2).14 This straightforwardly extends to the case when X;; and X3 are of comparable
magnitudes but not necessarily equal ones, i.e., when Vj is instead a small neighbourhood of (cos g, sin 6p).
Then, (X1, Xo4, X141, X2,041)/ Xlzyt +X22’t will belong with certainty to a small neighbourhood of
(cos by, sin by, 0, pa sinby).

This reveals that if at any date in time both series are simultaneously extreme, then, with certainty, the
anticipative component will collapse at the immediately following date, and the non-anticipative component

will decay by po.

Case (tt) Let us assume here that V; is an arbitrarily small neighbourhood of (0,1), i.e., X5, is observed
positive and much larger in magnitude than X; ;. Evaluating the conditional probability at Ag, . p with
P =[—e€1,€1] X [—€2, €3] an arbitrarily small neighbourhoods of (0,0), we have that

pl| (X“AQMO,ID’B(VO)) NS

Tr—+00

Thus, if during an extreme event, Xo; is observed to be much larger than Xj 4, then the vector X, /|| X,||
will belong with certainty to a small neighbourhood of (0,1,0,p2). Observing at date ¢ an extreme in
the non-anticipative component alongside a much smaller, possibly non-extreme value on the anticipative
series indicates that at ¢ + 1, with certainty, the non-anticipative component will decay by ps whereas the

anticipative component will remain small.

Case (wet) Again to fix ideas, assume that Vp is an arbitrarily small neighbourhood of (1,0), i.e., X1,
is observed positive and much larger in magnitude than X,,. Contrary to (¢) and («t) where, practically,
a single outcome captures all the probability mass, several clearly distinct potential outcomes share the

14The size of this neighbourhood will be commensurate to the accuracy of the observed relative magnitudes: for smaller Vj
(higher observation accuracy), smaller neighbourhoods around ¢(1,1,0, p2) will provide the same level of certainty. For a fixed
Vo, one can also evaluate the conditional probability over smaller neighbourhoods within Vy by considering sets Ag,, p with

[0—mn,6+mn] C[00—no,00 + no] for instance, which leads to the ratio in terms of I's as in the proposition. Note that P can be

taken arbitrarily small regardless of Vp without affecting the conditional probability, provided it contains (0, 0).
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likelihood in this case.
Letting Ag, n,,p With P = ([pfl — €1, pfl + €] U [—e, 61]) x R for €; > 0 arbitrary small, we obtain after

elementary computations that

]}DLL'H (Xt»Ae,nﬁP‘B(Vow — 1.

Tr—r 00
Thus, the probability mass appears to be localised in a main region, which is a neighbourhood of the points

(1,0,0,2), (1, O,pfl,z), z € R. Within this main region, the probability mass can be further localised into

two distinct areas:

o |plr|(21(V0) , for P=[—€,€] % [—€,e€],
PG +I'2(Vo)

P (L’AG’"’P’B%D e of |pa|®
o |2pl\1(’_ il , for P= [Pfl - 61,Pf1 +e1] X R,
21— + T2 (Vo)

for €1, €3 > 0 small. Given that the two areas have complementary probability masses, it appears that with
certainty: X, /|| X ;| will either (1) belong to a small neighbourhood of (1,0,0,0), or (2) belong to a small
neighbourhood of the points (1,0,p1_1,z), z € R. The area corresponding to (1) yields a straightforward
interpretation:

(1) The outcome {Xt/HXtH belongs to a small neighbourhood of (1,0,0, 0)} corresponds to an event
in which the anticipative component is extreme at date ¢ and collapses at ¢ + 1 while the non-anticipative
series is small both at ¢ and ¢ + 1. The conditional likelihood of this outcome can be arbitrarily large or
small according to how much weight I's charges on the neighbourhood V; of (1,0).

(2) Contrary to the previous case, the probability mass on the area (1,0, p7*, 2), z € R does not appear to
be localised in an arbitrarily small neighbourhood but can in general be dispersed over all z on the real line.
This family of events describes outcomes for which, from date ¢ to date ¢ + 1, the anticipative component
increases by a factor p; ! while the non-anticipative series remains either non-extreme or jumps to some
extreme value.

One can evaluate the probability mass of events corresponding to specific jumps sizes of the non-anticipative

components. For any closed set P, C R, one has

o 2ce «
3 1 Do+,
Pu“ (Xt)AO,n,P‘B(VO)) — Uapl |P ‘a y for P = [p1_1 — 61,p1_1 —|—€1] X P2.
r—r00 1 1
———— + T2 (W,
2 T— [ T 120
o Taking for instance Py = [M,+oo] (resp. Py =] — 0o, —M] U [M, +o0]), for some M > 0, one gets

the conditional likelihood of events (1,0, p~1,2), for |z| > M, i.e., outcomes for which the anticipative

component increases by a factor pl_1 and the non-anticipative jumps above the positive threshold M
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(resp. outside the interval | — M, M|):
|a

o1 [ Jsileraas
2 Jspy

| ’

IPL'C'“ (XuAe,n,P‘B(V(J)) for P=[p™" —e1,p" + 1] x Py,

«
z—oo 07 |p1

——— 4+ 12 (W
2 1—|[py|* T I2(Vo)
ith S(Py) = { LY 8, yePb.
wi ( 2) {\/m 20 Y 2
o For P, = [—€3,€3] with eo > 0 small, one can gauge the conditional likelihood of the anticipative

component increasing by a factor pl_1 from ¢ to t + 1 while the non-anticipative component remains

close to non-extreme.

«a 2c @
01 ‘,01| . + |p1| / |51|°‘F2(ds)
-1 2 1—|pi] 2 Jsp)
PU (X, Ao p|B(Vo)) —
’ h e Il g
2 1—|pi|® ’

for P=[p7! —e1,p7 ! +€1] X [—€2, €2].

Remark 4.5.1 Further insights can be drawn from case (cet) if T'o((£1,0)) = 0, i.e., if realisations (€1 ¢,€2,1)
where €1 is extreme and e is not almost never occur. Then, I';(Vy) becomes arbitrarily close to 0 for

15

Vo an arbitrarily small neighbourhood of (¥,0) In that case, neglecting the difference and assuming

'y (Vy) =T2((¢,0)) = 0, we have

0, for P =[—¢€1,€1] X [—e€2,€],
PU(X0 0| BOR) =
1, for P=[p;" —e,p;' +e] xR,
which indicates that a bubble in (X ;) necessarily reaches its peak at a jump date in (X3:). The bubble
peak is always «signaled». Observing X; ; extreme and X5 ; non-extreme thus implies that the bubble will
last at least one more period.
Taking now Py =] — oo, M] U [M, 4o0[ for M > 0 (resp. P = [—e€2, €3] for €2 > 0) arbitrarily small, notice
that the integral fS(Pz) |o1|*T'2(ds) can be made arbitrarily close to o — I'2((£1,0)) (resp. I'2((£1,0)) ).
Again, assuming that I's((£1,0)) = 0 and neglecting the difference, this yields that

L—|p|® for P=[p;' —e,pi! + €] x (] — 0o, M]U [M, +0c0]),
PIN (X, Avrr | BOR) —
Tr—r0o0
;| for P=[p;' —e,py! +e] X [~ €,
for M > 0 and €5 > 0 arbitrarily small. One recognises the probability of a bubble surviving one or more

period, and its complementary, in the univariate anticipative AR(1) model."®

Table 4.1 summarises the potential outcomes of each specific conditioning event and illustrates the typical
profile of the trajectory of (X;) in each case.

1
5This holds because I's is a finite measure.
16Here7 it would be more accurate to speak about the probability of a bubble in (X1 ;) surviving at least two more periods,

given that it will survive at least one more.
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ob i (K10Xed) Potential outcomes Conditional - |
servation —=—=——=- 0 ajectorial interpretation
VAL X (neighbourhood of) probability
»—KGO +no
Vo
o — 0
(cosu, sinu, 0, py sinu)
1
J vzt
X1 and X5 both extreme X2,t
Bubble peak signaled by jump
™ Vo T X1 t
3 + 1o 5 70 ’
/W\ L
w e 1 \
\
\\
| X1e| << [Xo4l Xoyt

SN b

Post crash, jump decaying

Table 4.1: For each case considered in Proposition 4.5.2 (first column), the potential outcomes for X, /|| X, ||

is provided (second column), alongside the asymptotic conditional probability mass over the corresponding

outcomes (third column). Each case can be related to specific events in the trajectory of (X), which

are illustrated and labeled in the last column. The solid lines represent past trajectories and the present

dates are symbolised by points. In the outcome (l,O,pl_l,z), z € R, the bubble survives at least one

more period, but could survive more. Also, when the peak will be reached, a jump of a priori any size

(including zero) may occur and then decay. Multiple potential paths are thus represented in dashed lines

oriented by arrows, and the grey shaded area symbolises the jump size distribution. Here: w; = I'y(V}) and

wa = o7 lp1|/ (201 = |oa]?) ).
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Ob " (K10Xe) ¢y Potential outcomes Conditional |
servation — === 0 Trajectorial interpretation
VLN (neighbourhood of) probability
1,0,0,0 -
( 9y Uy Uy ) w1+w2
Xot
o Bubble peak, no jump signal
Vo
Tlo .-.
A
/)
A
1
Sl
[ X1,e| >> | Xo] 21 i
X1 '| i !
|
|
+ 4:’ * LI B
[
[
o
l__L_)J.__) _______
—1 I
(1707/)1 72) w2 Ir\j\
for z € R w1 + w2 i\*
a
>
Pl
bt
Il
Ly:
1 : N
Y :
L
I 4
;,?

Pre-peak bubble inflation,
potential peak/jump at t 4 1
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4.6 Concluding remarks

By reformulating the path prediction problem of a-stable processes into a semi-norm representation problem
of a-stable random vectors, we obtain the conditional distribution of future paths during extreme events.
In this framework, our approach reveals that instead of their attractive «causal» interpretation, non-
anticipative processes appear to rather presume, by construction, the unpredictability of extreme events.
Anticipative processes however, instead of «depending on the futurey, rather assume that future events fea-
ture early visible signs betraying their incoming occurrences. These early signs take the form of emerging
trends and patterns that an observer can identify and use to infer about future potential outcomes. Whether
extreme events in some time series data feature early visible signs or not is arguably an intrinsic property
of the natural phenomenon being measured rather than one of the modelling. One can nevertheless see
that enforcing a non-anticipative process on any given time series data mechanically leads to a model which
assumes that extremes are not inferrable beyond their unconditional likelihood of occurrence. It appears
in addition that modelling a time series by a single, say, AR recursive equation, entails assuming that the
considered series is determined by a single pattern appearing recurrently through time."”

In the univariate framework, processes resulting from linearly aggregating anticipative processes thus cir-
cumvent two implicitly «built-in» limitations of classical time series modelling, at least from a probabilistic

standpoint. Numerous questions and perspectives remain nevertheless open, especially on statistical aspects:
e How variable can the future trajectory be around its predicted deterministic paths ?
o How can such processes be estimated/learnt from time series data ?
o What conditioning neighbourhood V' in (4.25) to select given an observed piece of trajectory ?
e How many past observations m 4+ 1 to include in the prediction exercise ?
e What can be said when such processes are not far from their central values ?

The multivariate framework, which we only illustrated on a simple example, already displays the richness
of interactions that can exist between several time series. Non-anticipative components sharing adequate
dependence with anticipative ones become more predictable when both are considered jointly and can even
bring information about future outcomes of the latter. The general case remains open as well and additional

properties could emerge.

Last, it is often argued that linear processes suffer intrinsic limitations with regards to their dynamics
and the type of patterns they can capture or reproduce. Proposition 4.4.1 and its subsequent remarks

however show that not only are linear processes actually able to generate trajectories featuring any number

1
7At least in the heavy-tailed framework. In lighter-tailed frameworks, patterns are more weakly observed, if at all, and the

dynamics is dominated by the persistence of the past trajectory [110].
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of any kind of patterns through time, by the tuning of J and of the sequences (d;x) upon which only
very mild assumptions are imposed, but that their conditional dynamics is moreover tractable. Future
developments could even extend the notion of stable aggregates from the linear combination of a finite
number of moving averages to a countable or a continuum of moving averages, as was done in [63] in the
case of the anticipative AR(1). If the linearity assumption surely entails certain dynamical restrictions,
the pattern-complexity of trajectories cannot be counted among these weaknesses. We conclude with an

illustration of a linear process exhibiting strophoidal —looping-like— patterns.

Consider for a,b positive real numbers the horizontal strophoid S = {(z(t),y(t)) € R?* : t € R},
where for any ¢ € R,

b—t? . _a(b+1)

t) = —at—— =7
‘T() a1+t27 y() 1+t2

Figure 4.1 provides an illustration of the horizontal strophoid for a = 100, b = 5. Letting for any (z,y) € R?
I (y) ==y —a(b+3)y” + (2” + a*(2b + 3))y — (b + 1),

a Cartesian equation of the locus of the strophoid is given by II,(y) = 0. Construct now a non-random
sequence (dy) in the following way: for a given k € Z, draw an element uniformly at random in the set
{y € R: IIx(y) = 0} —which may contain either one, two or three elements— and assign it to di. Define
then the process X; = >, ., dresyr for (g4) an iid. a-stable sequence, 1/2 < o < 2."® Tt can be checked
that the process (X;) is (m, h)-past-representable for any m > 0, h > 1. Proposition 4.4.1 applied to
Xt = (Xi—my -y Xegn) with V= Sy, 41 shows that X /|| X¢| is asymptotically of the form +dy, /| dx, |,
for some ko € Z. Given the construction of (d), we deduce that the linear process (X;) features looping-like
patterns in its trajectories, as depicted on Figure 4.2 for the choice of parameters ¢ = 100 and b = 5. Its

thorough analysis is left for further research.

S An elementary analysis shows that lim |z(t)] = +oo, lim y(t) = 0 if and only if t1 = foo and t2 = +oo, and that
t—tq t—ta

y(t)/22(t) = (b+1)/a for t — Foo. Thus, dy : ‘N const k=2 and (X3) is well defined for 1/2 < a < 2.
k|— o0

184



100 200 300 400 500 600

0

T T T T
-1000 -500 0 500 1000

Figure 4.1: Horizontal strophoid for a = 100, b = 5.

Figure 4.2: Sample path of a linear 1-stable process featuring strophoidal patterns (a = 100, b = 5).

185



4.7 Postponed proofs

4.7.1 Proof of Proposition 4.2.1

Consider first the case where either o £ 1 or X is S1S. We only provide the proof for a # 1 as it is similar
under both assumptions.
Assume that T'(K'l) = 0 and let us show that X admits a representation of the unit cylinder C’LHI relative

to the semi-norm || - ||. The characteristic function of X writes for any u € R?, with a = tg(ra/2),

ex(u) = exp{ - [ (1wl — a2 )(as) +i<u,u°>}
:exp{— / oy {81 a8 <7 ) () >}

exp{— [ (1 o =t )= ) + <u,u0>}
exp{ -/ . (O e

- exp{ -/ (1801 a5 ) Isllz*T o T ) 44 <u,u°>}

Tl (ds)

3/

18"l

I'oT) |(ds)—|—i<u,p,0>}

where we used the change of variable s’ = T|.;(s) = s/||s|| between the third and fourth lines, which yields
the representation on X (g‘“.
Reciprocally, assume that X is representable on CJJ'”. By definition of the representability of X on C{g'“,

there exists a measure /'l on Cc‘l"” and a non-random vector mﬁ_” € R such that
px(u) = exp{ - [, (st = ia((a5)=) 7 ) +z‘<u,m?-|>}.
d
With the change of variable s’ = T‘ill(s) = s/|s]le,

ox(u) = exp{ - /C o (It o = ol m>><a>)||su?w“'“<ds> +z‘<u’m°|-|>}

8/
1[Il

(I, )"~ ia((u. 8)<) ‘

Il H
H H (Ca

{ Yo Ty (ds”) + i (u, mi), |>}
= exp{ (o)1 — (. )= ) s}~ o T (ds) + <“vm(|)-||>}
Sa\K Il

= exp
Sd\KH I

(16w, )| — ia((u, $))<*>)1(ds) + i {u, m°|.,>},

where y(ds) := ||s|| =4Il o T} (ds). Letting now 7(A) := v(AN (Sg\ K'l)) for any Borel set A of Sy, we

have

px(u) =exp { — /s <|<u73>|a —ia({u, s>)<a>>7(ds) +1 (u,m?ﬁ}.
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By the unicity of the spectral representation of X on Sy, we necessarily have (T, u°) = (¥, mﬁ'”). Thus, ¥

and I' have to coincide, and in particular
F(KH-II) - W(K“'“) - ,Y(KH-H N (Sg\ KH-H)) =~(0) =0.

Given that T' =7 and I'(K'l) = 0, we can follow the initial steps of the proof to show that ~IlI'l = Tllll,

Consider now the case where & = 1 and X is not symmetric. Assume first that |, S, ‘ln IIs|l ‘F(ds) < +o0,

that is, [(KI'l) = 0 and de\KH'H ’ln IIsl ‘F(ds) < +o0. With a = 2/7,

ox(u) = exp{ - /S (|(u7s>| +ia{u, s)In |<u,s)\)F(ds) | <u7uo>}

_ exp{ S N (8 = LR A S [
+i(u, pu°) —ia /Sd\K.” (u,s)In |s||I‘(ds)}
We have de\KH'H (u, s) In||s||T'(ds) = Zle Us de\K”‘H s;In||s||T'(ds) = (u, 1), and thus,
o) i [ ) ) = i )

The condition de\KH'” ‘111 ||s||‘F(ds) < 400, ensures that |u(|)‘,”\ < +00. Again with the change of variable
s'=T).(s) = s/|s|, we get

_ exp{ -/ (1801 + dafu ) 1 . s>|) lsllz°T o T3 (ds) +i<u,u°|.|>}

Tl (ds)

ro T (ds) +i{u, NW}

Reciprocally, assume there exists a measure v/l on C (g'” satisfying (4.6) and a non-random vector mﬁ,” €

R4 such that

SDX(U) = exp{ - AII-II (|<u7 S>| + ia<u7s> In ‘<u7 S>|>’7”H(d8) +i <u’m0||>}

First, we can see that

u) = ex — 1a 5 nui s ia(u, 8)In ||s (s
ox(u) p{ /C [(|< ) it oyl T sl + dadu, 8) ] Mw (ds)

: 0
+1 (u,ml.”>}.
We will later show the following result:
Lemma 4.7.1 Let 'l a Borel measure on Clll'H satisfying (4.6). Then,

/ Islle|1n s
cl

Al (ds) < +oo. (4.36)
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Assuming  Lemma  4.7.1  holds, then by the Cauchy-Schwarz inequality, we  have

Sy (s )1 [l |31 (ds) < 400, and thus
d

S

u) =expq — w, 1a{u n|(u, —— sy (ds
ox () p{ /C (I g1+ e ) s ) )l ds)

i(u,mi,) —ia usnse“"ls7
i, ml,) /C<,>1 Islley <d>}

-1l
d

_ exp{ 7/5 " (\<u,s/>| +ialu, s') In|(u, s’>|>fy(ds')

+i<u,mﬁ,‘|> —ia/

SA\K Il

(u,s’) In IIS’W(dS’)},

where we used the change of variable s’ = T”7”1(3) = s/|slle, and y(ds) = ||s|| = yII'l o T} (ds). Letting
then F(A) := y(AN (Sy\ KI') for any Borel set A of Sy and m := (1) with 7m; = fsd\KII'H siIn||s||7(ds),
j=1,...,d, we get

ex(u) = exp{ - /S (16, 8)] + dafus, ) In | {u, ) )7 (ds) + i (. mf} - am>},

and X admits the pair (7, mﬁ.H —am) for spectral representation on the Euclidean unit sphere. The unicity
of the spectral representation of X on Sy implies that (I', u®) = (¥, mﬁ_H —am). Thus, 7 and T have to

coincide, and in particular
DO = () = 4 (K1 1 (84 K1) = 4(0) =0,

mi:/ siln||s|IT(ds), i=1,...,d.
Sa\K "I

In ||| |yl (ds) < +o00 (Lemma 4.7.1) and T'(K!I'l) = 0, we have by a change of variable

Last, as fc/ﬂ'” l|s]le

[ Il sl sy = [ sl sl o 7y ds)
cl SA\KII

= [ |wlslrcas
Sa\K Il

:/ 1n||s||‘l"(ds)
Sa
< 400,
which concludes the proof of Proposition 4.2.1.
Proof of Lemma 4.7.1
Notice that there exists a positive real number b such that for all s € C’C‘ll'”, Islle > b because ||s|| = 1.

Letting M > 0, we have for all u € R?

[ sl it p ) = [ +f —L+D
;! cllnp<isl<ary el Ingis).>my
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We will show that both I; and I are finite. Focus first on I5. From (4.6), we know that for all u € R?

[ s w5l ds) = [ + < +oo. (4.37)
el chlnpp<slle<my  Jeh In{|s|. >y

and thus, in particular

/ Il |<“,3>\‘ln|<u, 3>|”Y“‘“(ds)
{s'eCy’": |8/ lle>M}

s
-/ ot )| sl + I G, )| [ ds) < oo, (438)
{s'ec'l: |ls'||.> M)} lIslle
By the triangular inequality, for all u € R,
s
/ ot )| 0 sl + D ar, 2 31 )
{s'ec'l: ||s'||.> M) Islle
1
- / ()] 1 [ 1+ L o] ’7"'(ds)
(srec! . |1s7)lo> M} In sl
1 e
> [ L [ e i C SRR
{s'ecl: ||s'||.>M} In sl
Let us now partition the space R? into subsets Ry,..., Ry such that, for any i = 1,...,d and any s =
(s1,...,84) € Ry, sup|s;| = |si|.19 We have by (4.38)-(4.39) that for any i = 1,...,d, any u € R,
J
1
/ e 1 | P2 g < e
{srectV: |Is'|.>M}NR; In[|sle
Denoting (e1, ..., eq) the canonical orthonormal basis of R¢, evaluate now the above at u = e;. We get that
1 iy e .
/ w8} m sl ||1 - “'</””>" A1 (ds) < +o0. (4.40)
{s'ec!l. ||s’||.>M}NR; In|s|l
Let us show that s — In|(e;, s/||s||c)| is a bounded function for s € {s’ € Cg'” :||8'le > M}NR;. Ad

absurdum, if it is not bounded, then for any A > 0, there exists s € {s’ € C’(ll"” 2 |I8'|le > M} N R; such that
In [(ei, s/l|s]le)[] > A.

Taking the sequence A,, = n for any n > 1, we get that there exists a sequence (s,), s, € {s’ € C(E'H :

[Is'lle > M} N R; such that
In [{es, 5 /llsalle)]| > .
Thus, for all n > 1

0 < (e sn/llsnlle)l < e

19 . . . s . Lo
Strictly speaking, (R1,...,Rq) is not a partition of R% as the R;’s may intersect because of ties in the components of

vectors. This will not affect the proof.
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and

(essu/llsnl)l — 0.

—+o0
Consider now the decomposition of s, /||sy||c in the orthonormal basis (eq,...,eq),
d
s/l 8nlle = Z<eja sn/llsnlle)e;
Jj=1

As s, € R; for all n > 1, we also have that s,,/||sn|le € R; for all n > 1, and thus, for any j =1,...,d

0 < [(ej, 8n/lIsnlle)] < |(€is sn/llsnlle)] — 0.

—4o0

Hence, s,,/||sn]le = 0, which is impossible since ‘ el =1 forall n > 1. The function s —
n——+0oo €
In|{e;, s/||s|le)| is thus bounded on {s € C’ﬂ'u o |Islle > M} N Ry, say ‘ln [{ei, s/]Is]|e)]| < A for some A > 0.

Provided M is taken large enough (e.g., M > 2A), we will have in (4.40)

In|(e;, s/||s] I‘ _ |InKes, s/llsle >|‘ A
1- Z 1——> 07
In ||| In[|s]le M
which thus yields for all i =1,...,d
/ ews)] I(ds) < +oc.
{srech'l: s’ |c>M}NR;
As |(e;, 8)| > ||s|lce™, we further get that
/ y(ds) < 400,
{s'ec) Vs’ |le>MYINR;
and because |J R; =RY,
i=1,.,d
- [ lsle [ 1n sl [y as)
{secyl: |ls'||> M}

d

<

B / I 7 (ds) < oo
i—1 J{s’eC; " ||s'||le>M}NR;

Let us now show that [ is finite. Assuming for a moment that
A ({s ecll . b<ys|. < M}) < to0,
we get

h :/ -1 HsHe‘1n||8||€"y”"|(ds)
{s/ecd :bSHS/HeSM}

< [I-1l ! Il . < ! <
< (Ig[% x|lnx|) ~ ({s echl: b<|s HG_M}>,
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because 2 — x|Inz| is a bounded function on [b, M], and thus I; < +o00. We now show that /'l is indeed
finite on the set {s’ € C[li"” b < |8l < M}

Proceeding as in the case of I, it can be obtained that for ¢ = 1,...,d, the function s — In|{e;, s/||s||c)|
is bounded on the set {s" € C'(Q'” b < ||s|le £ M} N R;. Say, again, that |In|(e;, s/|s|le)|| < A for some

A > 0. Then, |{e;,s)| > ||s|lce™4, and for any A > 2b~'e?, we have
[(Aei, s)| = 2,
foranyi=1,...,d,se{s € C’U‘ll'” : b < |8l < M} N R;. From (4.37), we have for any u € R?

/ (. 5)1|1n|(w, )| |7 (ds) < +o0,
{s'echl b<|s|le<M}

and thus, for any u € R,

/ at, )| |G, )] [ ) < o0,
{s'ecl: b<|ls'||.<M}NR;

for any i = 1,...,d. Evaluating the above in particular at u = \e;, for any X > 2b~'e?, we get

/ Aew. )| In] (e, 8)] [ (ds) < +ov.
{s'echl: b< s | <MINER;

Noticing that © — z|lnz| is increasing on [1,+00) and that [(\e;, s)| > 2 for any s in the domain of

integration, we have |(u, s>|’ In |(u, s)\‘ >2In2, and

/ A (ds) < +o0,
{s'ec!l: b<|ls’|.<MINR;
for any i = 1,...,d. Hence,
/ CE | I(ds) < +oc,
{s’ecl: b<||s||. <M} = Jsrea! N b5’ | <MINR;
and A1l ({s/ eIl p< ). < M}) is finite. 0

4.7.2 Proof of Proposition 4.2.2

The proposition is an immediate consequence of Bayes formula and of the following result, which is an

adaptation of Theorem 4.4.8 by Samorodnitsky and Taqqu (1994) [117] to semi-norms.

Proposition 4.7.1 Let X = (X1,..., X4) be an a-stable random vector and let || - || be a semi-norm on R?
such that X is representable on C(Q'H. Then, for every Borel set A C C(g"l with F”'“(@A) =0,

X
: a — II-1
lim z IP’(HXH >z, X € A) C,I'M(A4), (4.41)

r——+o0

11—«

with Ca = I'(2 — a)cos(ma/2)

ifa#1, and Cy = 2/7.
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Proof.

We follow the proof of Theorem 4.4.8 by Samorodnitsky and Taqqu (1994) [117]. The main hurdle is to
show that, with || - || a semi-norm, KI'l = {s € S; : |s]| = 0}, and TII(KI) = 0, we have the series
representation of X, (Xy,...,Xy) 4 (Z1,...,2Z4) where

7y, = (C, Tl (I ) /e i[r;l/as§k> —bir(a)], k=1,....d, (4.42)
i=1

with S; = (Si(l), . .,Si(d)), i > 1, are i.i.d. C’J}’H—valued random vectors with common law I‘“'“/F”'”(Cy'”)
and the b; j(4)’s are constants.
By Proposition 4.2.1, we know that X admits a characteristic function of the form (4.3). This allows to
restate the integral representation Theorem 3.5.6 in [117] on the semi-norm unit cylinder as follows: with the
measurable space (E,&) = (C(lil'”,Borel c-algebra on Cg‘“), let M be an a-stable random measure on (E, &)
with control measure m = Tl skewness intensity 3(-) = 1 (see Definition 3.3.1 in [117] for details). Letting

also f; : C’L‘il'H — R defined by f; ((81,...,sd)> =s;,j=1,...,d, then

d

X £ ( i f1(s)M(ds), ... fd(s)M(ds)> 4l

’ ol
This representation can be checked directly by comparing the characteristic functions of the left-hand and
right-hand sides. We can now apply Theorem 3.10.1 in [117] to the above integral representation with
(E,&,m) the measure space as described before, and m = ]."”'”/F“"'(C,JII'”). This establishes (4.42). The
rest of the proof is similar to that of Theorem 4.4.8 in [117]. We rely on the triangle inequality property of

. . . . oo .20
semi-norms and the fact that any norm is finer than any semi-norm in finite dimension. ]

4.7.3 Proof of Lemma 4.3.1

From Proposition 4.2.1, we know that a necessary condition for the representability of X; on Cﬂn'ih 41 s
(K =0, where KII'l = {s € S, 4041 :||8]| = 0}. This condition is also sufficient when either @ # 1 or

a =1, f =0. Using the fact that I" only charges discrete atoms on Cl‘r;”rhﬂ,

DKM =0 < {s€Smnin:T{s}) >0 nKll =79
= VS € Sminet, |T({s) >0= ||s] > o}
— VkeZz, _||dk\|e >0 = |ds| > 0}

= VkeZ, [ldi] =0= |dxl. = 0]

<

VkeZ, [|di] =0=>dy= 0]

= VEkeZ, [(drim,... de) = 0= (dism, ... dx_n) :o},

2 . . . . s
OWe say that a norm N is finer than a semi-norm Ny if there is a positive constant C' such that Ng(z) < CN(z) for any
z € R4
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by (4.8). Now assume that the following holds:
vk € Z, [(dkm, cody) = 0 = (s, dpn) = 0]. (4.43)
Then, if for some particular kg € Z, we have
(dig+my -+ di) = 0.
It implies that
(dko+m, - -+ dkg—n) = 0,

and especially, as we assume h > 1,

(d(ko—1)+m>- -+ dro—1) = 0.
Invoking (4.43), we deduce by recurrence that for any n > 0,

(d(kg—n)tm>- -+ drg—n) = 0.
Therefore, (4.43) implies

Vk € Z, [(dk+m,...,dk) —0—=W<k—1 d :o]

The reciprocal is clearly true. This establishes that (4.14) is a necessary and sufficient condition for X; to

be representable on Cy'” in the cases where either « 2 1, or a =1, 5 = 0.

In the case @ = 1, 8 # 0, Proposition 4.2.1 states that the necessary and sufficient condition for repre-
sentability reads de ‘ln IIs]] ‘F(ds) < +00. That is

I‘(K”'”) =0 and / ‘ln IIs]] ’F(ds) < +00.
Sa\KI-

Substituting I' by its expression in (4.13), the above condition holds if and only if (4.14) is true and

vdy,
o Z ng\|dk||e In TEA ‘ < 400,
V€S, kEL klle
the latter being equivalent to
d
kez klle

4.7.4 Proof of Proposition 4.3.1

By Definition 4.3.1, (X;) is past-representable if and only if there exists m > 0, h > 1 such that the vector
(Xe—my - Xoy Xig1,. .., Xppn) is representable on ol

mani1- Consider first point (¢)(a), that is, the case
a#1, (a,8) =(1,0). By Lemma 4.3.1,

(X:) is past-representable <= There exist m >0, h > 1, such that (4.14) holds

— Hmzo,VkEZ,[de:...:dk:O — Wi<k—1, dg:()]

193



Thus,

(X:) not past-representable <= Vm > 0,3k € Z,dpsmn=...=dp =0 and ¥ <k—1, dy #0
— VYm>0,3k€Z,dpym=...=dr =0 and dp_1 #0
— Ym>1,3k € Z,djym = ... = dir1 =0 and dj, £ 0
<~ sup{m>1: Jk€Z, diym=...=dgy1 =0, di # 0} = +o0,

hence (4.17).
Regarding the last statement of point (¢)(a), assume first that my < +o0o and m > my. Property (4.14)
necessarily holds with mg. Indeed, if it did not, there would exist k € Z such that

ditmeg =...=dp =0, and d; #0, forsome ¢<k—1,

and we would have found a sequence of consecutive zero values of length at least mg + 1 preceded by a

non-zero value, contradicting the fact that
mo=sup{m>1: 3k €Z, dyym=...=dry1 =0, and dj # 0}.

As (4.14) holds with my, it holds a fortiori for any m’ > mg. Thus, X = (Xs—m, -+, Xe, Xew1, -« -, Xewn) 18
representable for any m’ > mg, h > 1 by Lemma 4.3.1, and (X}) is in particular (m, h)-past-representable.

Reciprocally let m > 0, h > 1 and assume that (X;) is (m, h)-past-representable. The process (X;) is thus
in particular past-representable, which as we have shown previously, implies that mg < +o00. Ad absurdum,
suppose now that 0 < m < my < +o0o. If mg = 0, there is nothing to do. Otherwise if my > 1, by definition,

there exists a k € Z such that
dk—i—mg =...= dk+1 = 0, and dk 7& 0. (444)

Because (X;) is (m, h)-past-representable, we have by Lemma 4.3.1 that (4.14) holds with m. As m < mg
and diymo = ... = dg+1 = 0, we thus have that dp = 0 for all £ < k + 1, and in particular dj = 0, hence the

contradiction. We conclude that m > mg.

Consider now point (¢)(b), i.e., the case @« = 1 and § # 0. From Lemma 4.3.1,
(X;) is past-representable <= There exist m > 0, h > 1, such that (4.14) and (4.15) hold
From the previous proof, we moreover have that

mo < +00

3Im > 0, such that (4.14) holds <= my < +0 <= V'm' > myg, (4.14) holds

V'm' < mg, (4.14) does not hold
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Hence

Im >0, h > 1, such that (4.14) and (4.15) hold

my < 400

V'm' > mg, (4.14) holds

V'm' < mg, (4.14) does not hold

Im >0, h > 1, such that (4.14) and (4.15) hold.

The latter in particular implies mg < 400 and the existence of m > mg, h > 1 such that (4.15) holds.

Reciprocally,

mop < 400

Im > mg, h > 1, such that (4.15) holds

mo < +00
= { ¥m' >my, (4.14) holds
Im > mg, h > 1, such that (4.15) holds,

which in particular implies that there exists m > mg, h > 1 such that both (4.14) and (4.15) hold. Hence

the past-representability of (X3).
In view of Definition 4.3.1, point («¢) is a direct consequence of the second part of Proposition 4.2.1.

4.7.5 Proof of Corollary 4.3.1

Letting ko be the greatest integer such that dy, # 0 (such an index exists by (4.10)), then immediately, for

any m > 1, diotm = ... = dgy+1 = 0 and therefore my = +o00.

4.7.6 Proof of Corollary 4.3.2

We first show that deg(v) > 1 if and only if mg < +oc.
Clearly, if deg()) = 0, then X; = ZZ[):foo dieiry for some kg in Z and mg = +oo0.

Reciprocally, assume deg(¢)) = p > 1. Let us first show that (4.17) holds.
Denote ¢(F)¢(B) = 3_7__ @iF* and O(F)H(B) = Y_;_ . 0;F’, for any non-negative degrees ¢ = deg(¢),
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r =deg(H), s = deg(0©). From the recursive equation satisfied by (X), we have that

P s
Y eiXini= Y Orerin

i=—q k=—r
p s
— Z ‘Pizdkgt+k+i = Z Orcitr
i=—q kEZ k=—r
p s
= Z ( Z (pidk_i)zft_;,_k = Z OkEtik (4.45)
keZ “Mi=—q k=—r

Proceeding by identification using the uniqueness of representation of heavy-tailed moving averages (see

[62]), we get that for |k| > max(r, s),

P
> pidi_; = 0. (4.46)

1=—q

Ad absurdum, if (X;) is not past-representable, then by Proposition 4.3.1
sup{m>1: 3k €Z, dyym=...=drs1 =0, dp #0} = +o0.

Thus, there exists a sequence {m, : n > 0}, m, > 1, lim,_, ;- = +00, satisfying: for any n > 0, there is

an index k € Z such that
di—p #0 and dy_py1 =dg—pr2 = ... = dkgm, =0.

We can therefore construct a sequence (k;) such that the above relation holds for all n > 0. This se-

quence of integers in Z is either bounded or unbounded. We will show that both cases lead to a contradiction.

First case: sup{|kn|:n > 0} = +o0
There are two subsequences such that mg,y — 400 and |kg(,,)| — 4-o00. For some n large enough such

that (4.46) holds and mg(,) > p + ¢, we have both

P
Z i, —i = 0.

i=—q
and
Dryry=p # 00 iy —p+1 = -+ = dity)+q = 0-
Hence,
@pdkg(n)—p =0,

which is impossible given that dy, ., —p # 0 and ¢, # 0. Indeed, denoting Y(z) = 14+ iz+ ...+ 2P,
1, # 0 because deg(¢)) = p, it can be shown that ¢, = ¢,.
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Second case: sup{|k,|:n > 0} < 400
Given that (k) is a bounded sequence, there exists by the Bolzano-Weierstrass theorem a convergent
subsquence (kg(n)). As (kg(n)) takes only discrete values, it necessarily holds that (k,,)) reaches its limit at

a finite integer ng > 1, that is, for all n > no, ky,) = limp, s 40 kg(n) = =k € Z. Thus, for all n > ng

dg #0, and dp,,, =0,

g(n)

and as mg(,) — +00, we deduce that
dp #0, and dp,,=0, forall £>1.

The process (X;) hence admit a moving average representation of the form

> digisn, teZ. (4.47)

k=—o0
However, we also have by partial fraction decomposition
O(F)H(B)
Y(F)o(B)
=0O(F)H

Xt:

t

BP
D riEiam)
bi(B) | ba(B)
Brg(F) — ¢(B)
b1(B) = BPby(B)
W(F) — #(B)
for some polynomials bl and by such that 0 < deg(b;) < p—1, 0 < deg(b2) < ¢ — 1 and ¢(B)b1(B) +

BPby(B)y(F) = 1. We can write in general

— O(F)H(B)B"

Et,

— O(F)H(B)

O(F)H(B)
( )¢EF k_z_zl CkEt+k;
@(F)H;?)prQ k_z;oo €kEttk,

for some sequences of coefficients (¢x), (ex), and where ¢; is the degree of the largest order monomial
in B of O(F)H(B)by(B) (recall that F = B~!) and /5 is the degree of the largest monomial in F of
BPO(F)H(B)by(B). By (4.47), we deduce by identification that there is some £ € Z such that ¢; = 0 for all
k>/¢+1and

Necessarily, £ > ¢, otherwise ©(F)H (B)b,(B)y~'(F) = 0 which is impossible as all the polynomials
involved have non-negative degrees. Thus, we deduce that there exist two polynomials P and @ of non-
negative degrees such that

@(z_l)H Z ot = Pz +Q(),  zeC,
Pz~ Mar®
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which yields
O(z HH(2)bi1(2) = (2 H(P(z™) + Q(2)), z e C. (4.48)

As deg(¥)) = p and ¢(z) = 0 if and only if |z| > 1, we know that there are p complex numbers z1, ..., 2,
such that 0 < |z;| < 1 and 1/1(2{1) =0fori=1,...,p. Evaluating (4.48) at the z;’s, we get that

@(zi_l)bl(zi) =0, for i=1,...,p,

because H has no roots inside the unit circle and P and @ are of finite degrees. From the fact that

deg(b1) < p— 1, we also know that for some z;,, b(z;,) # 0 which finally yields

Oz, 1) =0.

10
We therefore obtain that i and © have a common root, which is ruled out by assumption, hence the
contradiction. The sequence (k) can thus be neither bounded nor unbounded, which is absurd. We conclude

that
mo=sup{m>1: Ik €Z, diym=...=dry1 =0, dp#0} < +oo.

Hence the equivalence between (t) and (wee).
Let us now show that whenever mg < 400, then (4.15) holds for any m > my.

As mgy < 400, we have that for any m > mg and h > 1, ||di|| > 0 as soon as d # 0, for all k € Z
(recall di, = (dgam, - - dk, dg1, - - -, dg—p)). For ARMA processes, the non-zero coefficients dy, of the moving
average necessarily decay geometrically (times a monomial) as k — +oo. To fix ideas, say dj e akb Ak,
for constants a # 0, b a non-negative integer, and 0 < |A| < 1, which may change according to whether
k — +o0o or k — —oo (if deg(¢) = 0, then d_x = 0 for k¥ > 0 large enough, however, since we assume

deg(v) > 1, it always holds that |dg| e akP\F, for the non-zero terms dj,). Hence,

—+00

d, ~ akP\d,,

k—*4oo

for some constant vector d. such that ||d.|| > 0 (which may change according to whether k¥ — 400 or

k — —o00). We then have that
k| l[d.]]

dille k—oo [ldulle =

and

1 e

tn (11l

~  const K°AF.
k—4oc0
Therefore, for any m > mg, h > 1,

> ldelle

keZ

In (/1. )

< 400
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The equivalence between (¢) and (tet) is now clear: on the one hand, if mg < 400, then (4.15) holds for
all m > mg, h > 1, which yields the (m, h)-past-representability of (X;—, ..., X¢, Xt41,..., Xi4n) for any
m > mg, h > 1, by Lemma 4.3.1. In particular, (X;) is past-representable. On the other hand, assuming

(X}) is past-representable, then necessarily my < +oo.

Regarding the last statement, it follows from the above proof that the condition mg < 400 and m > my is
sufficient for (m, h)-past-representability. It is also necessary, as (4.14) never holds with m < mq (a fortiori,

with m < mg = +00), concluding the proof.

4.7.7 Proof of Lemma 4.3.2

Denote X+ = (X t—my .-, Xjts Xj 41, .- -, Xjt+n) the paths of the moving averages (X; ), forj =1,...,J.
The X ;;’s are independent a-stable random vectors with spectral representations (I';, u?) of the form (4.13).
We consider only the more delicate case « = 1 and §; € [—1,1] for j =1,...,J. Because of the independence
between X1 4,..., X j;, we have with a = 2/7

]E[euu,x,,)} _ E[ei<u7Zj:17rij,t>} _ ﬁE[eimu,xj,t)]

Jj=1

Il
.;‘

xp{ - /S (1675w, 8)] + ia(mju, s) In| (msu, 8)] ) T; (ds) + i<wju,uj0>}
:exp{—/s (12t 8)] + iau, ) I (u, 5) )ZWJ
+i zj: <(u,7rjuj0) —am; ln7rj/s (u, s)Fj(ds)> }

Focusing on the shift vector, we have
J

Z (<u,7TjHjO> —am;j lnwj/s

j=1 m+h+1

with fi; = (fij¢) and fij, = meJth sLj(ds), ¢ = —m,...,0,1,.. .,h. Using the form of T'; in (4.13), i.e

B —alnmjfi;)),

H'M&

(u, s)T; ds):

Uy =2 ves, ke wj,ﬂde,kHe‘s{ 0d; }, we get

ldj klle
_ Vd; jotr
Bro= [ty = 3 S w5 S s, €= e
Smth+1 9€EST kET kEZ

Hence, fi; = ;> .z djk, and using the form of u? as given in (4.13),

J
Z’ITJ —alnw]uj) Z (ﬂjZdjklanije alnwjﬂjZd]k>

j=1 keZ keZ

=a Z Z 7 Bidj In[|mid; k||

j=1kez

= .
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Therefore,

]E|:ei<u,Xt>j| :exp{ _/S"LMJrl (\(u 8)| + ia(u, s) In |(u, s) )ZW] (ds) +i(u, p >}

and the random vector X, is 1-stable with spectral measure

Z”JF —ZZZ%,M 1d; k1 5{ e },
Jj=19€S1 k€eZ

l1djsle

by (4.13), and shift vector as announced in the lemma.

4.7.8 Proof of Lemma 4.3.3

With the usual notations, let the X ;’s be the paths of the moving averages (X;;)’sandletT';, j=1,...,J,
their spectral measures on the Euclidean unit sphere. Let I" the spectral measure of X;. By Lemma (4.3.2),
I'= ZJ 1 3 T';. Thus, by Proposition 4.2.1, in the cases where either o # 1 or X is symmetric, the vector

X; is representable on CH I +her if and only if

J
MKy =0 « > w1kl =0

— TyKlh=0 vj=1,...,J

Given that the I';’s are the spectral measures of paths of non-aggregated moving averages, it has been
shown in the proof of Lemma 4.3.1 T';(K!I'l} if and only if (4.14) holds for m and the sequence (d; ;). The

conclusion in that case follows. The case o # 1 and X; asymmetric is similar.

4.7.9 Proof of Proposition 4.3.2

If a # 1, we have by Lemma 4.3.1 and the proof of Proposition 4.3.1,

(X:) past-representable <= I m >0, (4.14) holds with m for all sequences (d; )
— Vi=1,...,J, mo,; < +00

< Vj=1,...,J, (Xj;) past-representable.

For a given series (d; )k, (4.14) holds with m > mg ; and does not hold with m < mg ;. Regarding the
last statement, we know that for (X;) (m,h)-past-representable, (4.14) holds with the same m for all the

sequences (d; i)k, J =1,...,J. This holds if m > maxmy ; and cannot hold for if m < maxmg ;.
J j

In the case where @ = 1, again by Lemma 4.3.1 and denoting generically by X; a vector
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(Xt—m7 . 7Xt,Xt+1, e 7Xt+h) of size m + h + 1,

(X:) past-representable

X S1S and (4.14) holds with m for all sequences (d; x )
<~ dm>0,h>1, or
X, asymmetric and (4.14)-(4.15) hold with m, h for all sequences (d; 1)
X, S1S

or

= Viji=1,...,J, my; <+oc,anddm >0,h >1,
X, asymmetric and (4.15) hold

with m, h for all sequences (d; 1)k

We conclude again by noting that the necessary condition (4.14) holds for m > maxmg ; and is violated for
J

m < maxmg, ;.
J

4.7.10 Proof of Corollary 4.3.3

The equivalence between (¢2) and (cee) follows from Corollary (4.3.2). From the proof of Corollary (4.3.2),
we also know that, for any j, if mg; < 400, then (4.15) holds for the sequence (d; )i for any m > my ;.

Hence,

supmg; < 0o == (4.15) holds for any sequence (d; ) for any m > my ;
J

= (4.15) holds for any sequence (d; ;)i for any m > maxmg ;jmo ;
J
Thus, (tet) implies (¢). The reciprocal is clear.
Regarding the last statement, notice that (X;) if (m, h)-past-representable for some m < maxmy ;, there
J

would then exists some j such that m < mg ;. Hence, (4.14) does not holds with m for some particular

sequence (d; )k, which is impossible by Lemma 4.3.3.

4.7.11 Proof of Proposition 4.4.1

By Proposition 4.2.2

| rllAn B(V))
e

The conclusion follows by considering the points of B(V) and A N B(V) that are charged by the spectral

measure Tl in (4.24).
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4.7.12 Proof of Lemma 4.4.1

By Proposition 4.3.2, we have

J
rh=3" %" ij,m;vndj,kua(s{ }

j=19€S; keZ lidj, k1l

with d;, = (p§+m]l{k+m20}, . ,pffh]l{k_hzo}) forany j =1,...,J and k € Z. Thus, forany j € {1,...,J}

0, it k<-m-—1,
d; = (p§+m,...,pj,1,o,...,0), if —m<k<h,
P, if k> h
Therefore,
J h—1
=33 Wﬁ“l 2 Il v E 3 IS e, ]
j=19€S; k=—m Hd] Al k=h {W%h“}
Moreover,
J
S5 wans 3o o ¢yl e
j=19€5, k=h { sign(p) de','hu}
J
=2 2 mlldial [lem“‘ "+ 05, Z el h]
j=19€S; { de,hH }
J
Z Z ||dg nll® ww5{ i }
j=19€8; T,
Finally, noticing that for k = —m and any j € {1,...,J}, d; = (1,0,...,0)
J r h—1 _
R e T WS ey T }]
— o Pj
s bk [kl ||dg,h||
r h—1
3D 3 TR S PPN e P PPN
moes L SN (o i)
J h—1 _
= Z [wgd{(ﬁ)o’...70)} + Z?T]O»é (wj7,,9 Z |d,'7k||a5{ Id; } + ﬁ”d h” 5{ 'L9dj7h })] .
veS Jj=1 k=—m+1 Pj
lldj.rl ld;.nll

4.7.13 Proof of Proposition 4.4.2

Lemma 4.7.2 Let Tl be the spectral measure given in Lemma 4.4.1 and assume that the p;’s are all
positive.
Letting (Y, jo, ko) € Z, consider

Iy = {ﬁ'dj',k’ o Vi) Yof(djy ko)
lldjr el Ikl o ko |

for (¢,5',K') € I} .
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Form >1, and 0 < kg < h, then

Iy = {‘90"-70”“’ C0<K < h}
o |l

Form >1, and —m < kg < —1, then

{ﬁodjo”“ﬂ}, if —m+1<ko<-1
||dj0’ko||

Iy

Yod .
{ 0 07’“0}:{(190,0,...,0)}, if ko= —m.
([ o,k ||

For m =0, then

Io = {190dj’,k’ (LK) e{t,..., ) x{1,...,h} U {(070)}}~

e i
Proof.
Case m > 1 and ko € {0,...,h}
If ¥ € {~m,...,—1}, the (m + 1)*" component of f(d; x/) is zero, whereas the (m + 1) component of

F(djor) T pj0 # 0. Necessarily, o' f(djer) /||y o || # Do (jo,ko)/ Il ko || and

Odjy 9 fdjg)  Yof(d,
]O:{ i Y Hdyw) _ Vol (ko) g (ﬁ’,j’,k’)6{—1,+1}><{L...,J}x{o,...,h}}.
lld el [l x| o kol

Now, with &' € {0,...,h}, we have that

f(dj';k’) = (p_l;'+m7 s 7P§/+17 p?’)a

k ko+1 Kk
f(djmko) = (Pj§+m7“'7pjg+ 7/)]‘3)7

and by (4.8) we also have that

h
’ ’ v /_/H
e el = (o5 ™, Pl 05,0, 0)

k ko+1 kK
||dJ0]€0|| = ||(pj(())+nlu"'7pj:;+ 7pj:))707 70)
h

I

Thus,

Vf(dy ) Dof(djoko)
1w | 1o kol

9ol f (djro) _ Dopse f (djo0)

Lol ¥ lldje ol |pjol¥olldso 0l
V4 4
V' pj Yops,

<= = {=0,....m
Idj ol lldjpoll’ T

d; 2%
ﬁ,ﬁoll ool _ (Pao> . (=0,....m
lld; ol Py’

pjr = pj, and ¥y =1

!

J'=jo and ¥ =9,

11
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because the p;’s are assumed to be non-zero and distinct.
Case m > 1 and kg € {—m,...,—1}
By comparing the place of the first zero component, it is easy to see that

ﬁ/f(dj'7k') _ 190f(dj0,/€0)

= =k = ko.
1w 1o ko
m+1 h
—

fdjw) = (5™, pjr,1,0,...,0,0,...,0),

f(djmko) = (p_l;g+ma"'7pj07130a"'30a07~'-aO)v

N——
m—41 h
and we also have that
m+1 h
'4m —
e il = 15 ™, py,1,0,...,0,0,..., 0)],
_ ko+
||d]'07k0|| - ||(P]§ ’ma <o Phos 1,0, s a0707 tt 70)”
m+1 h
As k' = ]4;0 < —1,
V' f(djr k) _ Pof(djoko)
ldjr |l [ ko |
¥ pt, Jop’
= Pir D0 , £=0,...,m+ko, and K =k
”dj',koH demkon

¢

d_ .

— 19’190H oo | = (p]0> , £=0,...,m+ko, and k' = ko.
lldjr ko l Py

Now if —m+1 < ky < —1,

d. N\
19/19()'307"“(3':(%“) , £=0,1,...,m+ky, and k' =kg
[l ko pj’

— ¥ =49 and j' =jo and K = ko.
If kg = —m, given that (dg, jo, ko) € Z = S1 X ({L...,J} x {—m,...,—1,0,1,...,h} U {(0, —m)}), then
necessarily jo = 0. Furthermore, as ¥ = ky = —m, we similarly have that j' = jo = 0 and thus d;/ x, =

djy ko = do,—m = (1,0,...,0). Hence

d. N\ ¢
gogliokoll _ (Pi\" o and K = ko= —m and §' = jo =0,
e kol Py’

— ¥ =19 and k' =kg=-m and j =4y =0

Case m =0

If k‘o S {1,...,h} then f(djo,ko) = p?(? and by (48), dekaH = |pjo|k0. Thus, ﬂof(djo,ko)/”djo,kon = 190.
If kp = —m = 0, then jo = 0 and f(dj,.x,) = 1 and Jof(dj, ko)/l|djo.kell = Po. The same holds for
(¢',5', k') € T and we obtain that

VI dirw) _ VoS (diko) g
1w | 1o kol
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Let us now prove Proposition 4.4.2. By Proposition 4.4.1,

! ! ’ ! ’
i v dj L S Aﬁ’j,k : v f( L ) eV
" [y el
PU (X0, Ao k| BOG)) —

T—00 ’l9ld'/ Iy . ﬁ/f(d/ k’) ’
Tl { L= CH I : 3’ eV
( Ty el € Cmomtt s T €7

Focusing on the denominator, we have by (4.28)

NIsZran V' f(dyr i) o[ f Ve VH(dyr)  Dof (digi)
rl {m coll ey V) o ([ 2w gl jrar) _ VoS (djony
o]~ T dg el gl T dy | (o ko |

We will now distinguish the cases arising from the application of Lemma 4. 7 2. Recall that we assume for

(03
this proposition that the p;’s are positive. Thus, sign(p;) = 1 and 3; = ﬂj = |'ij(l> B; and w;.9 = wjy
r;

(4.49)

in (4.27) for all j’s and ¥ € {—1,+1}.
Casem >1and 0< kg < h

By Lemma 4.7.2,
. Vdjr g . ﬁlf(d/ k’) ﬁOf(d ki )
Tl {mecl o jr) _ Do (djo.rg
gl T ld | 1ejo ko

_ i {190‘11‘071«' C 0<k < h}
o

h—1
)
=75, [wjo7ﬂo > ldjo w1 + %”dﬂo nll® ]
k’'=0

By (4.8), for ¥’ € {0,1,...,h}

k E'+1 K
L I [ Y S )]
h
k' —h h h+1 _h
= ijo| ”(p;r:Jr ,~~~aPJO+ 7pj0707~~‘70)||
h

/_
= 1pso|" " lldjo.nll-

Thus,
0 djr g 9 f(djw)  of (djo,) = oawn 1
]_"” I { Cyﬂn” . 7", _ Jo,ko — 7% ws 9 ||d hHa pot( )+
ldjr x| i el [ jo ko JomJonR0 0, ,CZ T L —|pj|*
o o losl ="
= T W, 00 || hjo | 7j| E
J
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Similarly for the numerator in (4.49), by (4.29),

0 djr g ' f(dyjr 1)
Tl { IR e Ay ERLEAN N
Idg el 07 gl 0

Dodjy ko
_ i ({M €Agjn: O0<K < h})
05

Yod;
r|-|<{m}>, if j=jo and ¥ =4y,
- J05

INRI() if j#jo or O # o,

T wjo 90 1o 1 | %1050 | F 600031 (9)0 (503 (), i 0<k<h-—1,

5 Wio 90| djo,nl|* 090y (0040 (),  if k=h.

1- ‘pjo ‘a
The conclusion follows.
Casem > 1land —m < kg < —1

We have by Lemma 4.7.2

: V'dji g : V' f(djr)  Dof(dj k) . Yodj, k
pl {MGCII : jrk) _ joko) VY _ it [ Podioko |\
ldjpel| — il l[jo ko l l[jo ko l
If—m+1 S]{,‘Og—l,
. Podj, o o
ri <{M}> = gl I
'Jo,Ro
and

] 9 f(dyip)
Ll {““eA Vi)
Idgll 7070 Tyl 0

Yod,
_ i 4, -m{ 0 ao»ko}
” ||dj07k0||

Tl {W}) if j=jo and ¥ =1, and k= ko,
Jo,~o

Tl (@), it j#jo or 9 #9g or k# ko,

= 750 Wiio 09 | o ko | 01903 (9)0 501 () I ko (K)-

If ko = —m, then djmko = dO,—m = (1,0, .. .,O), and
od;
Tl {Oak} P ({9y(1,0,...0)}) = wp,
deo,kOH ( ) ’
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and

o [y V' f(djxr)
il { L R eV
Iy gl 0 Tdy /,k/n 0

Dod,
i A, ‘m{ 0 ak}
” demko”

Tl (AWm{ﬁoa,o,.._,o)}), if 9=y, and k=ky—=—m, and j=jo =0
i), if 9#Jy or k#ko, or j#jo

= W, 0(90} ()00} (5) I (koy ()

The conclusion follows as previously.
Case m =0

By Lemma 4.7.2, as the p;’s are positive

rl {ﬂ'dj',k/ el . V) ﬁof(djo,ko)}
gl — 7 ldg | 1ejo ko

=Tl ({ﬂ(fj’”f’ echl, o GLK)Y e {1, .., T} x{0,...,h}U {(0,0)}})

Given that wg, = 327 _, mSwj g, and |dj || = [pj0] M oforany 1< j/ < J, 1<k <h,

J

V'dj g : Vf(djw) _ Vof(djoko)
Tl {],k coll jra) _ Do f (dio kg
gl T ld | [l o ko

o ldjnl®
= Wy, + ZWW%[ZI%L@II 1= oy

k'=1

o Ip\

k'=1

J
2K
EJ: /w]/ﬁ0[1—|ﬂj'|"h+ lpjr|*" ]
S
2K

/190

1- |pj’|a 1- |p]/|a

1
W50 P Er———
T oy |
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Similarly, by (4.29),

Vdj g O f(djo g
Ll {““eA U fldiw)
Il =70 Tyl

19 d'/ ’ . .
=l <A197j,k n {M echl, o (G K) el I} x{0,...,h} U {(0,0)}})
7%

= lldj k|
rikl@), it 9 % o,
3o T W;9,0 190y (9), if k=0,
= TEwj,lpi|* 9,y (0), if 1<k<h-1,
|p;| " )
W00 T T ¥ f k=h.
ﬂ—] w.]w"s() 1 _ |pj|a6{190}( )7 1

The conclusion follows.

4.7.14 Proof of Proposition 4.4.3
Lemma 4.7.3 Let X; be the a-stable anticipative AR(2) (resp. fractionally integrated AR) as in (4.30)
(resp. (4.32)). With f as in (4.23), and for any m > 1, h >0,

f(W1dk) _ f(V2dy)
(x|l lldell

Yk, 0> —m, V91,95 € S, { k=¢ and 191192}

Proof.
The result is clear for both processes for —m < k,¢ < —1. For k, ¢ > 0,

f(hdi) _ f(02de) {Vi —0,...m, ki 192‘1“1']

[l |l e il lide]
di  dg1 [ d|
— = =...=%9 . 4.50
de ~ dpis ] (50
d d
The last statement in particular implies that Tk Tkt
de  depr

For the anticipative AR(2), if A; # Az, we then have

k+1 k+1 k+2 k+2
d  dpp AL B (B2

de  depa A= ASTE AT NS

k—¢ k—¢
= AT =)

— k=V/

This case A\; = Ay = A is similar. For the anticipative fractionally integrated AR, given that I'(z+1) = 2I'(z)
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for any z € C, we have

di i T(k+dT(+1) T(k+d+ DI +2)

— =
de  deya re+drk+1) TE+d+1DT(k+2)
— T(l+d+1)I(k+2) T(k+d+1)I(+2)
Ff+dT(k+1)  T(k+dI(+1)
— (k—0)d-1)=0
— k=2
Therefore, in all cases,

di _ di4a ||

— = =...=Hhv = k=/{ and %y =1.

de  depa el o

Let us now prove Proposition 4.4.3. The spectral measure of X; writes
il = o Z Zwﬁ”dkHaé Vdy s
veS, kEZ W}

where the sequences (dy) are given respectively by (4.31) and (4.33) for the anticipative AR(2) and fraction-

ally integrated processes. By Proposition 4.2.2,

| rll(An B(Vp))
U (X A[BO) =2 iy

On the one hand, we have by definition of B(Vp), Vy and Lemma 4.7.3,

r(B(vy)) = Tl ({ fddk“ € BW): (9,k) e {-1,+1} x Z})
k

i ({ﬁj” el s P oy ke (—141) Z})
k

Al
9d . 9f(dy)  Vof(d
=Tl <{|d:H echl, - {ékﬁ) = T|J;(k ’|“|°), (9,k) € {—=1,41} x Z})

o)

Similarly, it is easily shown that
AN BVy) =T | An {190(1’“3} )
[k, |

The conclusion follows.

4.7.15 Proof of Proposition 4.5.1

We start with a lemma showing that X, is indeed Sa.S and providing the form of its spectral measure on

the Euclidean unit sphere. The representability condition on the unit cylinder C’JH will follow.

209



Lemma 4.7.4 Let (X) as in (4.34). Then, the vector X, = (X1,4, X2 ¢, X1.141, X2441)" is SaS with zero
shift vector and spectral measure given by
Fy=A+T41+T4o.

Here,

(0%

g, lpil®
= § (1 a/Q O s /|| O s ||
Z 5y Ltp Py |a( fa/llzill} T Of—ai/ il });

with o = f52 |s:|*T'a(ds), points x1 = (1,0, p7*,0), x = (0,1,0, p2),
Ty1(ds) = || Bs||;*Ta,1 0 Tp(ds),

Tyo(ds) = ||Cs|| T4z 0 Te(ds),

with T : Sq4 — Sy is defined by Ta(8) = As/|As||e, for any invertible matriz A of dimension 4,
1 0 0 0 1 0 —p1 O
0 1 0 0 1 0 0
B= , and C = )
0 0 1 0 0 0 1 0
0 —ps 0 1 0 0 0 1

and l:‘4,i(-) =T90hi(S4; N ), i = 1,2, where Sy1 = {(81,52,0,0) € Sy : (s1,82) € Sa2}, Sp2 =
{(0,0,83,84) € Sy : (83,84) € Sa}, and hy, ha : Sy — Sy are the functions defined by hq((s1, $2,83,84)) =
(s1,82) and ha((s1, 82, 83,84)) = (83, 84).

Proof.

Let u = (uf), u})" € R* with w; = (u1,4,u2,)’, i = 0,1. The characteristic function of X, reads
1

1
p(w) = Elexp{i(u, X,)}] = Elexp{i ) _(u;, Xv4;)}] = Elexp{i Y Y " (u;, Aversrss)}]

§=0 k€Z j=0
= H E exp{z Z Ak ]uj7€t+k>}]
keZ
where for all k € Z
k1 0
Ak _ P1L{k>0} .
0 P2 Lik<oy
Thus,
—In (p Z I Akuo + Ap_q1uq, s >|0‘F2(d3)
keZ
Z / |P2 ug,0 + paus,)s2|*Ta(ds) + Z/ |P1 (pru1,0 4+ u1,1)s1|*T'2(ds)
k<-1 k>2

+ / lu1,081 + (u2,0 + pauua,1)s2|“Ta(ds) + [(prut,o + u11)s1 + uz152|°T'2(ds)
Sa

\P1|

|pa]®

a ‘p2|a

2 m lp1uto +up1|®

lu 20+PQU21|Q+011

|’LL1 0S1 + (Ug 0 + pP2U2, 1)52| FQ dS / | P1UL,0 =+ uq 1)81 =+ U9 152| Fg(ds) (451)
Sa
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where o := fsz |si|*T'2(ds), i = 1,2. We notice that the characteristic function of X, is real. Hence, X,
being a-stable is equivalent to X, being symmetric a-stable, and therefore, by Theorem 2.4.3 in [117], X,
will be a-stable if and only if there exists a unique symmetric finite measure I'y on the Euclidean unit sphere
such that

—Inp(u) = [ Ku,s)[ls(ds). (4.52)
Sa
We will thus rewrite (4.51) to exhibit such a symmetric measure. The two first terms are easily rewritten

with charged atoms on Sy: for all u € R*,

o 1p|® lp1|®

09— [u2,0 + pauz1|* + of ~lpruro tuia|* = [ [(u,s)|*Ads), (4.53)
1—|p2 1 —|p1] Sy
a |
where A = ZZ_:M %’(1 + pg)a/2%(5{Zi/|mi|e} + 06—, /||z:|.})- The third and fourth terms in (4.51)

can also be rewritten as integral over S;. Starting with the third term, notice that the integral over Sy can
be seen as an integral over S; with a spectral measure f‘471 coinciding with I's on Ss1 = {(s1, $2,0,0) € Sy :

(s1,82) € S2} and having zero mass outside:

|u1,081 + (ug,0 + paug1)s2|*Ta(ds) = / |u1,081 + (ug,0 + pau2,1)s2 + w1183 + U2,184|af4,1(d§)7
SQ S4

with f‘4’1( -)=T90h1(Se1N -), where hy : Sy — So is the function defined by hi((s1, 2, $3,54)) = (51, S2).
Thus,

lu1,081 + (ug,0 + pausg1)s2|*T2(ds) = / [(bu, 8)|°T'4 1 (ds)
Sy

Sa
= | (w,b's)|*T41(ds), (4.54)
Sy
with
1 0 0 O
0 01 O
0 0 0 1

As the matrix b’ is invertible and B = b'~!, where B is as stated in the lemma, we notice that T, 1=
Ty -1 = Ty, where Ty : Sy — Sy is the transformation such that Ty (s) = b's/||b's||.. Performing a change
of variable in (4.54) using Ty, we get
1,051 + (u2,0 4 p2uz,1)s2| T2 (ds) = / (e, 8)|*(|6" 8] ~*Ta,1 0 Ty-1 (ds)
Sz S4

= [ [u,s)|*T4;1(ds). (4.55)
Sy

Similarly for the fourth term in (4.51), we have
/ [(pruio +u11)s1 + uz152/°T2(ds) = / |u1,081 + ug,082 + (p1u10 +u1,1)s3 + U2,1S4|af4,2(d8)
Sg S4

= | lcu,)|*T42(ds)
Sa

= |<g, C/§> |af4,2(d§)7
Sa
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with f472( ) = FQ o h2(5472 n- ), where hg : 54 — SQ is the function defined by hg((Sl, S92, 83, 54)) = (83, 54),
5472 = {(0,0,83,84) €8y (83,84) S 52}, and

1 00 0
0 10 0
Cc =
pp 01 0
0 00 1

With a change of variable using T/, and since ¢/~ = C,
(o + un)sn + uzasalTalds) = [ (w98~ Faz o T (ds)
SQ 54

= [ [{u,8)|"T42(ds). (4.56)
Sy

Finally, by (4.51), (4.53), (4.55) and (4.56), we have that (4.52) holds with I'y = A +T41 +I's 2. One can
check that Ty is indeed symmetric: for any transformation g among {Ts,Tc, h1, ha}, we have g(—s) = —g(s)
for any s € Sy, and as I'y is symmetric by assumption, it is easy to check that the measures I'y ; and I'y 2

are also symmetric. The case of A is obvious. m]
Return to the proof of Proposition 4.5.1
By Lemma 4.7.4 and Proposition 4.2.1, we know that X, will be representable on CJJ'” if and only if
ry(K ) = o,
where KI'l = {s € §*: ||s|| =0} ={s € S*: 5, =5, =0} = Sy. We have
F4(KH~II) - A(KH-H) + F4’1(KH‘H) + p472(KH‘H)7

with A, Ty, and T'y 5 are as in Lemma 4.7.4. Given the points charged by A, it is easily seen that A(K ') =
0. Turning to Ty (KII'l); we have

T (K1 = /KM IBs|-Fa1 o Tp(ds) = Tat o T(K ).
Given that Tg(KI'l) = KI'h and Sy ; N K"l = @), we have Ty 3 = 'y 0 hy(Ss1 N KI'l) = 0. Last, we have
Taz(K ) = /K | NCsl12oTaz 0 To(ds) = Paz o Te(K M),
with
To(KI) = {(_/)18370783’84) : V(s3,84) €ER?, 82+ 5% = 1}
(1+ pP)s3 + si

_ (_1018370’53754)
(14 pi)si + 53

.= K’ U{(0,0,0,-1),(0,0,0,+1)}

: V(s3,54) €R?, 53 +57 =1 and s3 # 0} U {(0,0,0,+1)}
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Given that K’ N Sy = (), we have by the o-additivity of I'y o,
IV (TC(K”'”)) = Tya(K") + s ({(o, 0,0,-1),(0,0,0, +1)})
= Ty 0ha(S12 N K') + T 0 ha({(0,0,0, —1), (0,0,0, +1)})
=TI2({(0,-1),(0,+1)})

Hence, T4(KII') =T, ({(0, —-1), (0, +1)}> and the representability condition for X, follows.

4.7.16 Proof of Proposition 4.5.2

To prove Proposition 4.5.2, will make use of Proposition 4.2.2. We first provide the form of the spectral

representation of X, on CJJ"‘ in the next lemma.

Lemma 4.7.5 Under the assumptions of Proposition (4.5.1) and assuming in addition that (4.35) holds,

then the characteristic function of the random vector X, can be written as

Blette ] = eXp{‘/ : |<u,s>“FL"<ds)}, for all u € B,
.,

4

where
= Aty 4y )
Here,
a 2« a [eY
Al — a1 |p1 s 5 Ui% 5 5 A58
21— |p1‘a( fe1} T 0 ml})+ 91— |p2‘a( {za} T 04 wz}), ( )
with points x1,xo as in Lemma 4.7.4, and
I} {(ds) = |Bs||; T 0 T o Ty (ds), (4.59)
I{(ds) = |Cs]|;*Tu2 0 Te o Ty (ds). (4.60)
Moreover, for any Borel set A C C’JH}
Til(A) =Tooh (TB o (AN CJJ,'{‘)), (4.61)
ria) = Ipl\“/ o sl T2 0 ha(ds), (4.62)
TeoT) H(AnC] )
where
CJJ"J‘ = {(51,52,0,p280) € CL 1+ (s1,85) € s}, (4.63)
Y =010, s el sy e R 0 € {-1,+1}} (4.64)
Proof.

Starting from I'y as given in Lemma 4.7.4 and applying a change of variable using Tj. yields (4.57)-(4.60).
To show (4.61), consider

FM(A):/A||Bs|\gaf‘471oTBoTl‘_.Hl(ds),
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and perform the first change of variable s’ = T”__Hl(s) = s/||sl|le and get

i) = [ 1B T o Ta(ds),
II-1l

With the second change of variable s = T (s’) = Bs'/||Bs'||., we obtain

FM(A)Z/ BTl Ty (ds),
Tt (4)

Given that f‘4,1( )=T30hi(- NSy1),

rll(a) = / |B~1s| Ty (ds),
TBoT”ill‘(A)ms4,1

and noticing that for any s € Sy 1, B~'s = s and [|s| = 1, we get

i) = oo (Ts o T4 0 51).

and using the fact that T o TH_H1 is bijective, we have

Tp o T} (A) N Sa1 = Tp o T (AN Ty 0 T3 (S41)) = T o Ty (AN C),

and (4.61) follows. We proceed similarly for (4.62) using in addition the fact that I' ({(0, —1), (0, +1)}) =0.

O

Return to the proof of Proposition 4.5.2

(1) As (4.35) holds, we know by Proposition 4.5.1 that X, is representable on leHl. By Lemma 4.7.5, we
further know that its spectral measure FL"” satisfies (4.57)-(4.58) and (4.61)-(4.62). Thus, by Proposition
422,

T (4,0, 0 B(V))
H

PI (X0, Ag g, p | B(VD))

and

)1 (40 p 0 B))  [Al1 4T+ T (40,0 0 B(VW))

cfi(sow)  [areril el (o)

(4.65)

From (4.58), (4.61)-(4.62), we can see that for any Borel set A C C’!'H,

AllA) = AM(A N {£2q, +25)),
rii(4) =ThiAncy)
rii4) =rijncly),
where CJJ"{‘, Clgl are given in (4.63) and (4.64). We thus proceed in three steps: (1) we derive the form of sets

in the right-hand side of the above equations in the case A = B(Vp), (2) we then consider A = Ay, pNB(Vp),
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(3) we finally evaluate the mass over the obtained sets to derive the numerator and denominator in (4.65).
Let us consider the denominator. Because we assume Vo N {(£1,0), (0,£1)} = 0, it is easy to see that
B(Vp) N{xay, Tx2} = 0,
B(Vp) N CLM = {(cosu,sinu,0, pasinu) : u € [0 — 10,00 + Mo},
B(Vo) NCy; =

Thus, by (4.61),

i (B0w) =i (Bow n )
=Tyoh (TB o Ty (B(Vo) N Cﬂ,’l‘))

=To0Mh ({(cosu,sinu,0,0) : u € [fg —mno, b0 + no]})

For the numerator, we have

Vou NVo, if (0,0) € P,

Anr (BB NCL = 0 if (0,0) ¢ P
) 1 )

The conclusion follows.

(1) We proceed as in point (¢). Given the assumptions on Vp, we have

B(‘/o) N {:l:wh:l:mg} = {19.’E2},
B(Vy) N C’JM‘ = {(cos u,sinu, 0, pasinu) : u € [fy — 1o, b + 10 }

B(Vo)nely =0.
Thus,

Fl\l (B(Vo)) _ A”'H({ﬂwz}) + Fl,! (B(VO) N Czll‘,'ﬂ)

a8 |pal®

=—=—— +T5(V).
2 T |ppr 12

Turning to I‘L"“ <A97n7p N B(V0)>, consider

A97777P n B(‘/o) N {:I:xl, :|:£U2} = Ag,n,p N {19332}

= {9(0,1,0, p2)} N {(cosu,sinu, 0, pssinu) + (0,0, z,y) : uw € [0 —n,0+n] and (z,y) € P}.
Noticing that for any « such that (cosu,sinu) # (0,4), necessarily

¥(0,1,0, p3) # (cosu,sinwu, 0, pg sinu) + (0,0,2,y), forall (z,y) € P,
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we have

if (cosu,sinu) = (0,9),
{Wz2} N {dz2 + (0,0,2,y) : (z,y) € P}, [ ]
for some u € [0 —n,0 + 1],
{19:132} n Ag,n,p =

otherwise.

=

Hence

{Vz2}, if (0,9) € Vp, and (0,0) € P
AH,n,P N B(Vo) N {:l:l’l, :|:(E2} = n
0, otherwise.

Similarly, we have

VonNVo, if (0,0) € P,

ApnpN BV nCll =
! o 0, it (0,0)¢ P,

Agn N BVy)nCll = 0.

The result follows by evaluating FH'H on the above sets.

(wet) Proceeding as above, we first have that

B(Vo) n {:l:il’l, iwg} = {’191171},
B(Vh)N C’Jllglu = {(cosu,sinu,0, pesinu) : u € [0y — 1o, 0o + Mo },

B(Vo) N YY) = {0(1,0,p7",54) : 54 €R}.

Hence,
af |pi[*

-1 — 21 B

+To(Vo) + Dih({9(1,0,p" 50) : 54 € RY),
Given that

—1
To o1 (B nCl) = { 900000

Il sqs €R 3 = {(0,0,51,82) : (51,82) S SQ, 8119p1 > 0},
the third term in FL“” can be rewritten using (4.62) as

P00 50) s sie R = |oif* [ 51/ T ds).
{(s1,52)€82: s19p1>0}

Since, by assumption, I's is symmetric and does not charge masses at (0, +1),
1
/ °Ta(ds) =5 [ [s:["Ta(ds) = o /2
{(s1,82)ES2: s19p1>0} Sa

and thus
o |p1** ot
—————— + Ty (V >
2 T— || +2(Vo) + |p1 5
o p1]®
2 1—|p|*

ol (B(W)) =

= FQ(VO) +
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We last turn to I'y (Ae,n,p N B(VO)). We have

Ag7n7p n B(V()) n {:I:a:l, ﬂ:l‘g} = A97n7p n {19%1}
= {9(1,0,p7*,0)} N {(cosu,sinu, 0, pasinu) + (0,0,z,y) : u€ [ —n,0+n] and (z,y) € P}
{0z} N {Y(1,0,0,0) + (0,0,z,y) : (z,y) € P}, if (9,0)€ Vo,
0, otherwise.

{9z}, if (9,0) € Vg, and (9p;',0) € P,

0, otherwise.

As previously, we also have that

) Vo, NVy, if (0,0) € P
Agn.p NB(Vh) HCM‘ = { n@ it (0.0)¢ P
b 1 b
Finally,

Agp NBVo)NCLY = gy p N {9(1,0,p7 Y, 54) - 54 € R}

{9(1,0,p7 %, 84) © 84 € R}N{9(1,0,0,0) + (0,0, 2,y) : (z,y) € P}, if (9,0)€ Vg,
0, otherwise.

{9(1,0,p7 ,y) : y€ P}, if (9,0) € Vy,, and d9p;' € Py,
0, otherwise,

and

- - 0,0,p; ",

TCOT.1<{19(170,p11,y): y€P2}): ﬂw: yePyp.
lI-I = 5
Pty
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Chapter 5

Conclusion and Perspectives

5.1 Conclusion

This thesis focuses on estimation and conditional dynamics aspects of a class of anticipative a-stable
time series. In the framework of AR processes, it is shown that conditional moments of higher order
than marginal ones exist provided the autoregressive polynomial admits at least one root inside the
unit circle. The forms of the first and second order conditional moments and causal representations are
exhibited in special cases for AR processes with roots both inside and outside the unit circle. The case
of the stable anticipative AR(1) introduced by Gouriéroux and Zakoian (2017) [63], and for which only
partial results were available, is revisited. It is shown that any two realisations at different time points
on a trajectory form a bivariate stable random vector with a specific spectral measure charging either
two or four atoms on the unit circle. The theory of bivariate stable random vectors applies: a different
proof for the existence of higher-order conditional moments is provided and the form of the conditional
expectation can be derived for any parameterisation of the process. We contribute to the literature on
general bivariate stable vectors by providing the functional forms of the conditional variance, skewness
and kurtosis under any admissible parameterisation. These results are applied to pairs of realisations on
trajectories of the anticipative AR(1) and yield the functional forms of the first four conditional moments
of the process. During extreme events, these moments are shown to be asymptotically equivalent to those
of a weighted Bernoulli distribution charging two polarly-opposite future paths: exponential growth or
collapse. A similar behaviour is shown to hold for the continuous time counterpart of the AR(1), the
anticipative a-stable Ornstein-Uhlenbeck process. From the moments perspective, the conditional dynamics
of anticipative stable AR processes differs sharply from that of their non-anticipative counterparts. Yet,
on sample trajectories, the classical Least Squares estimation method is unable to identify whether the
autoregressive polynomial admits roots inside the unit circle. We establish that the LS procedure provides
a consistent estimator of an all-pass causal representation of the process, the validity of which can be

tested by a Monte Carlo portmanteau-type test. All the roots of this all-pass representation lie outside
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the unit circle and each corresponds either to a root of the original representation of the AR process,
or to its reciprocal. We justify, based on point-process arguments, that the two types of roots can be

discriminated by searching for evidence of extreme clustering in the residuals of other all-pass representations.

For a-stable infinite moving averages, the conditional distribution of future paths given the observed past
trajectory during extreme events is obtained on the basis of a new spectral representation of stable random
vectors on unit cylinders relative to semi-norms. Contrary to the case of norms, such representations yield
a multivariate regularly varying tails property that is appropriate for prediction purposes, however not all
stable random vectors can be represented on semi-norm unit cylinders. A characterisation is provided and
finite length paths of a-stable moving averages, which are themselves multivariate a-stable, are embedded
into this framework. We show that such paths admit semi-norm representations that are appropriate for
prediction purposes if and only if the moving average process is «anticipative enough». The gap between
anticipative and non-anticipative processes stems from the fact that for the latter, future extreme events
are independent of the past trajectory, whereas for the former, future extreme events are not independent
of the observed trajectory, their incoming occurrences being signaled by early trends and patterns. The
approach extends to processes resulting from the linear combination of a-stable moving averages, coined
stable aggregates, which can accommodate very rich dynamics. For eligible processes, that is, anticipative
ones, the conditional dynamics during extreme events is derived and their trajectories are shown to follow
precise patterns whose forms are determined by the moving averages coefficients sequence. In particular,
it is noticed that non-aggregated moving averages generate trajectories which can only feature a single
pattern, recurrently from one extreme event to another, whereas trajectories of aggregated moving averages
can display any number of different patterns. The path prediction problem then translates into a pattern
identification task: given a piece of observed trajectory, what piece of pattern does it correspond to and
what are the potential future paths compatible with this pattern ? Provided the spectral representation
on the corresponding unit cylinder is known, our results can be used to evaluate the respective odds of the

potential future paths conditionally on the identified pattern.

5.2 Perspectives

Future lines of research could focus on several opened questions, both on probabilistic and statistical aspects.

1. The conditional distribution of aggregated moving averages holds asymptotically in the (semi-)norm of
the observed trajectory being large. Could we evaluate the approximation error made when using the
asymptotic distribution in lieu of the finite distance one for prediction 7 What could be said about the
conditional distribution when the process is close to its central values ? A perhaps dual question would
be: could we evaluate how variable the future trajectory may be around the predicted deterministic

paths ? One could expect in particular that this variability may increase with the prediction horizon.
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2. For practical use in applications, estimation/learning methods need to be developed to infer the struc-
ture of «a best approximating» aggregated moving average to some time series data. This requires
identifying the coefficients sequences of the moving averages involved in the aggregation (which charac-
terise the shape of patterns appearing during extreme events), the number of moving averages involved
(the number of different patterns) and the distribution parameters of the i.i.d. errors driving the
process. Recovering the patterns amounts in the general case to estimating an infinite number of pa-
rameters and one is likely to seek instead a parsimonious, low-dimensional structure in the coefficients
sequence. This structure need not assume that the coefficients of the moving averages satisfy some
linear recursive relation, as in the case of ARMA processes. Complex patterns can be achieved even
with few parameters, as illustrated by the strophoid-generating process defined at the end of Chapter

4, which coefficients sequence is characterised by only two parameters.

3. The conditional distribution derived in Chapter 4 obviously requires to provide a conditioning Borel
set, which represents the information about the shape of the observed trajectory. This piece of observed
trajectory can be viewed as a single noisy realisation of a piece of pattern generated by the process,
which leaves room for uncertainty in the identification of that pattern. The choice of an adequate
conditioning Borel should thus rely on a statistical method. One could envision for instance tests
of hypotheses to determine whether the observed trajectory is «more akin» a certain pattern 1 or
another pattern 2, or to any other pattern of a certain collection. Moreover, the length of the observed
trajectory does not have to remain fixed: shorter observation windows closer to the present date may
contain more «up-to-date» information, less influenced by now vanished past extreme events on the one
hand, but on the other hand could also be more subject to noise and make the pattern identification
more difficult. Conversely, wider observation windows may provide more robust pattern identification
but may also incorporate biased information, being influenced by now irrelevant past events. One

could envision looking for event-driven optimal window length based on a bias-variance trade-off.

4. A multivariate extension is illustrated on a simple bivariate process with one purely anticipative and
one purely non-anticipative component. New properties already emerge, such as the fact that while
univariate non-anticipative processes never induce paths representable on unit cylinders, their paths
may nonetheless be representable in higher dimensions when considered alongside an «informative»
anticipative process. Both components are more predictable when considered jointly rather than
univariately. The general multivariate framework can be readily embedded in the approach of Chapter

4 but numerous potential interactions between univariate components render the task challenging.

5. It is known for infinite variance moving averages that empirical autocorrelations tend towards the
theoretical autocorrelations that would prevail in the finite variance case as the sample size grows to
infinity [40, 41]. In the case of stable aggregated moving averages, to the best of our knowledge, it is

both unknown what the «theoretical» autocorrelations would be, as well as what asymptotic behaviour
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would hold for the empirical ones. One may moreover aim at inferring the autocorrelation structures
of the latent moving averages involved in the aggregation, rather than that of the observed process
itself. If the latent moving averages are by definition unobserved, they recurrently reveal themselves
during extreme events. A localised autocorrelations estimator may enable to recover the information

about the latent components.

. The conditional dynamics of the continuous time stable anticipative Ornstein-Uhlenbeck was shown to
be similar to that of its discrete time counterpart, at least from the moments perspective. The approach
followed for discrete time stable aggregates in Chapter 4 could be applied to paths of continuous time

processes, viewed as vectors of arbitrarily spaced points on a trajectory.

. Aslong as a single tail index « prevails for all moving averages involved in the definition of an aggregated
process, or across all the components of a multivariate stable process, one can undoubtedly expect to
work with some multivariate a-stable distribution downstream. Allowing for different tail indexes
would be appealing in order to alleviate a certainly undue limitation. This may prove however difficult
to work with, as the sum-stability property which is very convenient when working with linear processes

would be lost.
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Résumé : Dans le contexte des séries tempo-
relles linéaires, on étudie les processus strictement
stationnaires dits anticipatifs dépendant potentielle-
ment de tous les termes d'une suite d'erreurs a-
stables indépendantes et identiquement distribuées.
On considére en premier lieu les processus auto-
regressifs (AR) et 'on montre que des moments
conditionnels d’ordres plus élevés que les moments
marginaux existent des lors que le polyndéme ca-
ractéristique admet au moins une racine a l'intérieur
du cercle unité. Des formules fermées sont obte-
nues pour les moments d’'ordre un et deux dans
des cas particuliers. On montre que la méthode des
moindres carrés permet d’estimer une représentation
all-pass causale du processus dont la validité peut
étre vérifiée par un test de type portmanteau, et
I'on propose une méthode fondée sur des propriétés
d’extreme clustering pour retrouver la représentation
AR originale. LAR(1) stable anticipatif est étudié en
détails dans le cadre des vecteurs stables bivariés et
des formes fonctionnelles pour les quatre premiers
moments conditionnels sont obtenues pour toute
paramétrisation admissible. Lors des événements
extrémes, il est montré que ces moments deviennent

équivalents a ceux d'une distribution de Bernoulli
chargeant deux évolutions futures opposées: accrois-
sement exponentiel ou retour aux valeurs centrales.
Des résultats paralléles sont obtenus pour 'analogue
de ’AR(1) en temps continu, le processus d’Ornstein-
Uhlenbeck stable anticipatif. Pour des moyennes mo-
biles «a-stables infinies, la distribution conditionnelle
des chemins futurs sachant la trajectoire passée est
obtenue lors des événements extrémes par le biais
d'une nouvelle représentation des vecteurs stables
multivariés sur des cylindres unités relatifs a des
semi-normes. Contrairement aux normes, ce type de
représentation donne lieu a une propriété de varia-
tions réguliéres des queues de distribution utilisable
dans un contexte de prévision, mais tout vecteur
stable n'admet pas une telle représentation. Une ca-
ractérisation est donnée et 'on montre qu’un chemin
fini de moyenne mobile «-stable sera représentable
pourvu que le processus soit "suffisamment anticipa-
tif”. Lapproche s’étend aux processus résultant de la
combinaison linéaire de moyennes mobiles «a-stables,
et la distribution conditionnelle des chemins futurs
s'interpréte naturellement en termes de reconnais-
sance de formes.

Title : Anticipative a-stable linear processes for time series analysis: conditional dynamics and estimation
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Abstract : In the framework of linear time series ana-
lysis, we study a class of so-called anticipative strictly
stationary processes potentially depending on all the
terms of an independent and identically distributed a-
stable errors sequence. Focusing first on autoregres-
sive (AR) processes, it is shown that higher order
conditional moments than marginal ones exist pro-
vided the characteristic polynomials admits at least
one root inside the unit circle. The forms of the first
and second order moments are obtained in special
cases. The least squares method is shown to provide
a consistent estimator of an all-pass causal represen-
tation of the process, the validity of which can be tes-
ted by a portmanteau-type test. A method based on
extreme residuals clustering is proposed to determine
the original AR representation. The anticipative stable
AR(1) is studied in details in the framework of biva-
riate a-stable random vectors and the functional forms
of its first four conditional moments are obtained un-
der any admissible parameterisation. It is shown that
during extreme events, these moments become equi-
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valent to those of a two-point distribution charging two
polarly-opposite future paths: exponential growth or
collapse. Parallel results are obtained for the conti-
nuous time counterpart of the AR(1), the anticipa-
tive stable Ornstein-Uhlenbeck process. For infinite a-
stable moving averages, the conditional distribution of
future paths given the observed past trajectory during
extreme events is derived on the basis of a new re-
presentation of stable random vectors on unit cylin-
ders relative to semi-norms. Contrary to the case of
norms, such representation yield a multivariate regu-
larly varying tails property appropriate for prediction
purposes, but not all stable vectors admit such a re-
presentation. A characterisation is provided and it is
shown that finite length paths of a stable moving ave-
rage admit such representation provided the process
is “anticipative enough”. Processes resulting from the
linear combination of stable moving averages are en-
compassed, and the conditional distribution has a na-
tural interpretation in terms of pattern identification.
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