M. Al-ghzaiwat, A. Foti, A. Nuesslein, L. Halagacka, J. Meot et al.,

&. M. Roca-i-cabarrocas and . Foldyna, Toward efficient radial junction silicon nanowire-based solar mini-modules, Physica Status Solidi (RRL)-Rapid Research Letters, p.1800402, 2018.

M. Al-ghzaiwat, M. Foldyna, T. Fuyuki, W. Chen, E. V. Johnson et al., Large area radial junction silicon nanowire solar mini-modules, Scientific Reports, vol.8, p.1651, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01908687

S. J. Fonash, W. J. Nam, J. C. Dornstetter, M. Al-ghzaiwat, M. Foldyna et al., A solar cell architecture for enhancing performance while reducing absorber thickness and back contact requirements, IEEE Journal of Photovoltaics, vol.7, issue.4, pp.974-979, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01640079

Z. Mrázková, M. Foldyna, S. Misra, M. Al-ghzaiwat, K. Postava et al., In-situ Mueller matrix ellipsometry of silicon nanowires grown by plasma-enhanced vaporliquid-solid method for radial junction solar cells, Applied Surface Science, vol.421, pp.667-673

. , Deposition parameters at each process step of fabrication of RJ SiNWs in PLASFIL reactor on FTO/SLG substrates

. , Corresponding electrical parameters and conversion efficiency extracted from the J-V characteristics

. , 56 4.2 P2 laser scribing parameters used for the selective removal of RJ SiNWs, p.61

. , Deposition parameters at each process step of fabrication of RJ SiNWs in Plasfil reactor on 5×5 cm 2 FTO/SLG substrates

. , Corresponding electrical parameters and conversion efficiency extracted from the J-V characteristics

, Deposition parameters at each process step of fabrication of RJ SiNW solar minimodules in PECVD reactors on 5×5 cm 2 FTO/SLG substrates, p.84

. , Corresponding electrical parameters and conversion efficiency extracted from the I-V characteristics

. , Deposition parameters at each process step of fabrication of RJ SiNW solar minimodules in PLASFIL reactor on 5×5 cm 2 FTO/SLG substrates in a single pumpdown process. The deposition parameters of extra p-type a-Si:H shell are highlighted in the green color

. , Corresponding electrical parameters and series resistance extracted from the I-V characteristics

, Deposition parameters at each process step of fabrication of RJ SiNWs in PLASFIL reactor on 5×5 cm 2 FTO/SLG substrates in a single pump-down process, p.98

. , Corresponding electrical parameters and series resistance extracted from the I-V characteristics

. , Corresponding electrical parameters and conversion efficiency extracted from the I-V characteristics

, Bp statistical review of world energy, 2017.

U. S. , Energy Information Administration (EIA), 2017.

, Renewables 2017 global status report, 2017.

, Climate change 2014: Mitigation to climate change. contribution of working group iii to fifth assessment report to the intergovernmental panel on climate change, 2014.

J. F. Mitchell, The greenhouse effect and climate change, Reviews of Geophysics, vol.27, issue.1, pp.115-139, 1989.

G. W. Crabtree and N. S. Lewis, Solar energy conversion, Physics today, vol.60, issue.3, pp.37-42, 2007.

L. A. Weinstein, J. Loomis, B. Bhatia, D. M. Bierman, E. N. Wang et al., Concentrating solar power, Chemical reviews, vol.115, issue.23, pp.12-797, 2015.

H. Sharon and K. Reddy, A review of solar energy driven desalination technologies, Renewable and Sustainable Energy Reviews, vol.41, pp.1080-1118, 2015.

L. L. Kazmerski, Photovoltaics: A review of cell and module technologies, Renewable and sustainable energy reviews, vol.1, issue.1-2, pp.71-170, 1997.

M. A. Green, Photovoltaics: technology overview, Energy Policy, vol.28, issue.14, pp.989-998, 2000.

C. E. Fritts, On a new form of selenium cell, and some electrical discoveries made by its use, American Journal of Science, issue.156, pp.465-472, 1883.

D. M. Chapin, C. S. Fuller, and G. L. Pearson, Solar energy converting apparatus, p.765, 1957.

K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi et al., Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nature Energy, vol.2, p.17032, 2017.

F. Schindler, B. Michl, P. Krenckel, S. Riepe, J. Benick et al., Optimized multicrystalline silicon for solar cells enabling conversion efficiencies of 22%, Solar Energy Materials and Solar Cells, vol.171, pp.180-186, 2017.

M. Stuckelberger, R. Biron, N. Wyrsch, F. Haug, and C. Ballif, Progress in solar cells from hydrogenated amorphous silicon, Renewable and Sustainable Energy Reviews, vol.76, pp.1497-1523, 2017.

J. Bailat, E. Vallat-sauvain, L. Feitknecht, C. Droz, and A. Shah, Microstructure and opencircuit voltage of n-i-p microcrystalline silicon solar cells, Journal of Applied Physics, vol.93, issue.9, pp.5727-5732, 2003.

W. Yin, J. Yang, J. Kang, Y. Yan, and S. Wei, Halide perovskite materials for solar cells: a theoretical review, Journal of Materials Chemistry A, vol.3, issue.17, pp.8926-8942, 2015.

P. V. Meyers, Design of a thin film cdte solar cell, Solar Cells, vol.23, issue.1-2, pp.59-67, 1988.

R. Chittick, J. Alexander, and H. Sterling, The preparation and properties of amorphous silicon, Journal of the Electrochemical Society, vol.116, issue.1, pp.77-81, 1969.

W. Spear and P. L. Comber, Substitutional doping of amorphous silicon, Solid state communications, vol.17, pp.1193-1196, 1975.

D. E. Carlson and C. R. Wronski, Amorphous silicon solar cell, Applied Physics Letters, vol.28, issue.11, pp.671-673, 1976.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Fay et al., Potential of amorphous and microcrystalline silicon solar cells, Thin Solid Films, vol.451, pp.518-524, 2004.

A. Lambertz, F. Finger, R. E. Schropp, U. Rau, and V. Smirnov, Preparation and measurement of highly efficient a-si: H single junction solar cells and the advantages of µc-siox: H n-layers, Progress in Photovoltaics: Research and Applications, vol.23, issue.8, pp.939-948, 2015.

J. Müller, B. Rech, J. Springer, and M. Vanecek, Tco and light trapping in silicon thin film solar cells, Solar energy, vol.77, issue.6, pp.917-930, 2004.

C. Haase and H. Stiebig, Thin-film silicon solar cells with efficient periodic light trapping texture, Applied Physics Letters, vol.91, issue.6, p.61116, 2007.

M. Stuckelberger, M. Despeisse, G. Bugnon, J. Schüttauf, F. Haug et al., Comparison of amorphous silicon absorber materials: Light-induced degradation and solar cell efficiency, Journal of Applied Physics, vol.114, issue.15, p.154509, 2013.

D. Staebler, C. Wronski, ;. Staebler, and C. R. Wronski, Optically induced conductivity changes in dischargeproduced hydrogenated amorphous silicon, Journal of Applied Physics, vol.31, issue.4, pp.3262-3268, 1977.
DOI : 10.1063/1.328084

G. Conibeer, Third-generation photovoltaics, Materials today, vol.10, issue.11, pp.42-50, 2007.
DOI : 10.1016/s1369-7021(07)70278-x

URL : https://doi.org/10.1016/s1369-7021(07)70278-x

G. Niu, X. Guo, and L. Wang, Review of recent progress in chemical stability of perovskite solar cells, Journal of Materials Chemistry A, vol.3, issue.17, pp.8970-8980, 2015.

M. Boccard, M. Despeisse, J. Escarre, X. Niquille, G. Bugnon et al., High-stable-efficiency tandem thin-film silicon solar cell with low-refractive-index silicon-oxide interlayer, IEEE Journal of photovoltaics, vol.4, issue.6, pp.1368-1373, 2014.
DOI : 10.1109/jphotov.2014.2357495

B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha et al., Innovative dual function ncsiox: H layer leading to a¿ 16% efficient multi-junction thin-film silicon solar cell, Applied Physics Letters, vol.99, issue.11, p.113512, 2011.
DOI : 10.1063/1.3638068

H. Sai, T. Matsui, and K. Matsubara, Stabilized 14.0%-efficient triple-junction thin-film silicon solar cell, Applied Physics Letters, vol.109, issue.18, p.183506, 2016.

R. Cariou, J. Benick, P. Beutel, N. Razek, C. Flötgen et al., Monolithic two-terminal iii-v//si triple-junction solar cells with 30.2% efficiency under 1-sun am1. 5g, IEEE Journal of Photovoltaics, vol.7, issue.1, pp.367-373, 2017.
DOI : 10.1109/jphotov.2016.2629840

URL : https://doi.org/10.1109/jphotov.2016.2629840

R. Cariou, J. Benick, F. Feldmann, O. Höhn, H. Hauser et al., Iii-v-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration, Nature Energy, p.1, 2018.
DOI : 10.1038/s41560-018-0125-0

URL : https://hal.archives-ouvertes.fr/cea-01882171

Y. Kuang, M. D. Vece, J. K. Rath, L. Van-dijk, and R. E. Schropp, Elongated nanostructures for radial junction solar cells, Reports on Progress in Physics, vol.76, issue.10, p.106502, 2013.
DOI : 10.1088/0034-4885/76/10/106502

S. Misra, L. Yu, W. Chen, M. Foldyna, and P. Roca-i-cabarrocas, A review on plasmaassisted vls synthesis of silicon nanowires and radial junction solar cells, Journal of Physics D: Applied Physics, vol.47, issue.39, p.393001, 2014.
DOI : 10.1088/0022-3727/47/39/393001

URL : https://hal.archives-ouvertes.fr/hal-01083484

S. Misra, L. Yu, M. Foldyna, and P. Roca-i-cabarrocas, New approaches to improve the performance of thin-film radial junction solar cells built over silicon nanowire arrays, IEEE Journal of Photovoltaics, vol.5, issue.1, pp.40-45, 2015.
DOI : 10.1109/jphotov.2014.2366688

URL : https://hal.archives-ouvertes.fr/hal-01230111

S. Misra, L. Yu, M. Foldyna, and P. Roca-i-cabarrocas, High efficiency and stable hydrogenated amorphous silicon radial junction solar cells built on vls-grown silicon nanowires, pp.90-95, 2013.
DOI : 10.1016/j.solmat.2013.07.036

A. S. Togonal, M. Foldyna, W. Chen, J. X. Wang, V. Neplokh et al., Core-shell heterojunction solar cells based on disordered silicon nanowire arrays, The Journal of Physical Chemistry C, vol.120, issue.5, pp.2962-2972, 2016.
DOI : 10.1021/acs.jpcc.5b09618

URL : https://hal.archives-ouvertes.fr/hal-01401074

V. Schmidt, H. Riel, S. Senz, S. Karg, W. Riess et al., Realization of a silicon nanowire vertical surround-gate field-effect transistor, small, vol.2, issue.1, pp.85-88, 2006.
DOI : 10.1002/smll.200500181

K. Hosomi, T. Kikawa, S. Goto, H. Yamada, T. Katsuyama et al., Ultrahighaspect-ratio si o 2 deeply etched periodic structures with smooth surfaces for photonics applications, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, vol.24, issue.3, pp.1226-1229, 2006.
DOI : 10.1116/1.2194942

Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science, vol.293, issue.5533, pp.1289-1292, 2001.
DOI : 10.1126/science.1062711

H. Liu, D. Biegelsen, N. Johnson, F. Ponce, and R. Pease, Self-limiting oxidation of si nanowires, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, vol.11, issue.6, pp.2532-2537, 1993.
DOI : 10.1116/1.586661

W. Chen and H. Ahmed, Fabrication of high aspect ratio silicon pillars of¡ 10 nm diameter, Applied physics letters, vol.63, issue.8, pp.1116-1118, 1993.
DOI : 10.1063/1.109798

K. J. Morton, G. Nieberg, S. Bai, and S. Y. Chou, Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (¿ 50: 1) silicon pillar arrays by nanoimprint and etching, Nanotechnology, vol.19, issue.34, p.345301, 2008.

C. Hsu, S. T. Connor, M. X. Tang, and Y. Cui, Wafer-scale silicon nanopillars and nanocones by langmuir-blodgett assembly and etching, Applied Physics Letters, vol.93, issue.13, p.133109, 2008.

E. Garnett and P. Yang, Light trapping in silicon nanowire solar cells, Nano letters, vol.10, issue.3, pp.1082-1087, 2010.

K. Peng, Y. Yan, S. Gao, and J. Zhu, Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry, Advanced Materials, vol.14, issue.16, pp.1164-1167, 2002.

A. Togonal, L. He, and P. Roca-i-cabarrocas, Effect of wettability on the agglomeration of silicon nanowire arrays fabricated by metal-assisted chemical etching, Langmuir, vol.30, issue.34, pp.10-290, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01230704

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz et al., Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles, The Journal of Physical Chemistry B, vol.103, issue.45, pp.9846-9853, 1999.

Z. Huang, H. Fang, and J. Zhu, Fabrication of silicon nanowire arrays with controlled diameter, length, and density, Advanced materials, vol.19, issue.5, pp.744-748, 2007.

M. Foldyna, A. S. Togonal, and P. R. Cabarrocas, Optimization and optical characterization of vertical nanowire arrays for core-shell structure solar cells, Solar Energy Materials and Solar Cells, vol.159, pp.640-648, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01401086

R. Wagner and W. Ellis, Vapor-liquid-solid mechanism of single crystal growth, Applied Physics Letters, vol.4, issue.5, pp.89-90, 1964.

R. Wagner, W. Ellis, K. Jackson, and S. Arnold, Study of the filamentary growth of silicon crystals from the vapor, Journal of Applied Physics, vol.35, issue.10, pp.2993-3000, 1964.

Z. Pan, Z. Dai, L. Xu, S. Lee, and Z. Wang, Temperature-controlled growth of silicon-based nanostructures by thermal evaporation of sio powders, The Journal of Physical Chemistry B, vol.105, issue.13, pp.2507-2514, 2001.

P. Werner, N. D. Zakharov, G. Gerth, L. Schubert, and U. Gösele, On the formation of si nanowires by molecular beam epitaxy: Dedicated to professor dr. knut urban on the occasion of his 65th birthday, Zeitschrift für Metallkunde, vol.97, issue.7, pp.1008-1015, 2006.

L. Schubert, P. Werner, N. Zakharov, G. Gerth, F. Kolb et al., Silicon nanowhiskers grown on¡ 111¿ si substrates by molecular-beam epitaxy, Applied Physics Letters, vol.84, issue.24, pp.4968-4970, 2004.

Y. Zhang, Y. Tang, N. Wang, D. Yu, C. Lee et al., Silicon nanowires prepared by laser ablation at high temperature, Applied physics letters, vol.72, issue.15, pp.1835-1837, 1998.

V. Schmidt, J. V. Wittemann, S. Senz, and U. Gösele, Silicon nanowires: a review on aspects of their growth and their electrical properties, Advanced Materials, vol.21, pp.2681-2702, 2009.

E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. Mcgehee, Nanowire solar cells, Annual Review of Materials Research, vol.41, pp.269-295, 2011.

Y. Cui, X. Duan, J. Hu, and C. M. Lieber, Doping and electrical transport in silicon nanowires, The Journal of Physical Chemistry B, vol.104, issue.22, pp.5213-5216, 2000.

Y. Wu and P. Yang, Direct observation of vapor-liquid-solid nanowire growth, Journal of the American Chemical Society, vol.123, issue.13, pp.3165-3166, 2001.

S. Kodambaka, J. Tersoff, M. Reuter, and F. Ross, Germanium nanowire growth below the eutectic temperature, Science, vol.316, issue.5825, pp.729-732, 2007.

A. I. Hochbaum, R. Fan, R. He, and P. Yang, Controlled growth of si nanowire arrays for device integration, Nano letters, vol.5, issue.3, pp.457-460, 2005.

T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz et al., Synthesis of vertical high-density epitaxial si (100) nanowire arrays on a si (100) substrate using an anodic aluminum oxide template, Advanced Materials, vol.19, issue.7, pp.917-920, 2007.

E. Lefeuvre, K. Kim, Z. He, J. Maurice, M. Châtelet et al., Optimization of organized silicon nanowires growth inside porous anodic alumina template using hot wire chemical vapor deposition process, Thin Solid Films, vol.519, issue.14, pp.4603-4608, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00601287

S. Hofmann, C. Ducati, R. Neill, S. Piscanec, A. Ferrari et al., Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition, Journal of Applied Physics, vol.94, issue.9, pp.6005-6012, 2003.

H. Hamidinezhad, Y. Wahab, Z. Othaman, and A. K. Ismail, Au-catalyzed silicon nanoneedles synthesized from pure silane gas at various rf powers on silicon substrate by vhf-pecvd, Plasmonics, vol.6, issue.4, p.791, 2011.

J. Cervenka, M. Ledinsk`ledinsk`y, H. Stuchlíková, J. Stuchlík, Z. V`-yborn`yborn`y et al., Ultrasharp si nanowires produced by plasma-enhanced chemical vapor deposition, physica status solidi (RRL)-Rapid Research Letters, vol.4, issue.1-2, pp.37-39, 2010.

A. Lugstein, Y. Hyun, M. Steinmair, B. Dielacher, G. Hauer et al., Some aspects of substrate pretreatment for epitaxial si nanowire growth, Nanotechnology, vol.19, issue.48, p.485606, 2008.

M. Becker, V. Sivakov, U. Gösele, T. Stelzner, G. Andrä et al., Nanowires enabling signal-enhanced nanoscale raman spectroscopy, Small, vol.4, issue.4, pp.398-404, 2008.

W. Shockley and W. Read, Statistics of the recombinations of holes and electrons, Physical review, vol.87, issue.5, p.835, 1952.

M. Jeon, H. Uchiyama, and K. Kamisako, Characterization of tin-catalyzed silicon nanowires synthesized by the hydrogen radical-assisted deposition method, Materials Letters, vol.63, issue.2, pp.246-248, 2009.

L. Yu, F. Fortuna, B. Odonnell, G. Patriache, and P. Roca-i-cabarrocas, Stability and evolution of low-surface-tension metal catalyzed growth of silicon nanowires, Applied Physics Letters, vol.98, issue.12, p.123113, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00596147

S. Misra, L. Yu, W. Chen, and P. Roca-i-cabarrocas, Wetting layer: the key player in plasmaassisted silicon nanowire growth mediated by tin, The Journal of Physical Chemistry C, vol.117, issue.34, pp.17-786, 2013.

F. Iacopi, P. Vereecken, M. Schaekers, M. Caymax, N. Moelans et al., Plasma-enhanced chemical vapour deposition growth of si nanowires with low melting point metal catalysts: an effective alternative to au-mediated growth, Nanotechnology, vol.18, issue.50, p.505307, 2007.

L. Yu, B. Odonnell, P. Alet, S. Conesa-boj, F. Peiro et al., Plasma-enhanced low temperature growth of silicon nanowires and hierarchical structures by using tin and indium catalysts, Nanotechnology, vol.20, issue.22, p.225604, 2009.

J. Cho, B. O'donnell, L. Yu, K. Kim, I. Ngo et al., Sn-catalyzed silicon nanowire solar cells with 4.9% efficiency grown on glass, Progress in Photovoltaics: Research and Applications, vol.21, pp.77-81, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00778960

L. Yu, F. Fortuna, B. Odonnell, T. Jeon, M. Foldyna et al., Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells, Nano letters, vol.12, issue.8, pp.4153-4158, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00757353

I. Zardo, L. Yu, S. Conesa-boj, S. Estradé, P. J. Alet et al., Gallium assisted plasma enhanced chemical vapor deposition of silicon nanowires, Nanotechnology, vol.20, issue.15, p.155602, 2009.

V. Nebol'sin and A. Shchetinin, Role of surface energy in the vapor-liquid-solid growth of silicon, Inorganic materials, vol.39, issue.9, pp.899-903, 2003.

V. Schmidt, J. Wittemann, and U. Gosele, Growth, thermodynamics, and electrical properties of silicon nanowires, Chemical reviews, vol.110, issue.1, pp.361-388, 2010.

R. Olesinski and G. Abbaschian, The si-sn (silicon-tin) system, Bulletin of Alloy Phase Diagrams, vol.5, issue.3, pp.273-276, 1984.

H. Okamoto and T. Massalski, The au-si (gold-silicon) system, Bulletin of Alloy Phase Diagrams, vol.4, issue.2, pp.190-198, 1983.

M. K. Sunkara, S. Sharma, R. Miranda, G. Lian, and E. Dickey, Bulk synthesis of silicon nanowires using a low-temperature vapor-liquid-solid method, Applied Physics Letters, vol.79, issue.10, pp.1546-1548, 2001.
DOI : 10.1063/1.1401089

E. Givargizov, Morphology of silicon whiskers grown by the vls-technique, Journal of Crystal Growth, vol.9, pp.326-329, 1971.
DOI : 10.1016/0022-0248(71)90250-8

H. Fang, X. Li, S. Song, Y. Xu, and J. Zhu, Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications, Nanotechnology, vol.19, issue.25, p.255703, 2008.
DOI : 10.1088/0957-4484/19/25/255703

D. Kumar, S. K. Srivastava, P. Singh, M. Husain, and V. Kumar, Fabrication of silicon nanowire arrays based solar cell with improved performance, Solar Energy Materials and Solar Cells, vol.95, issue.1, pp.215-218, 2011.
DOI : 10.1016/j.solmat.2010.04.024

X. Lin, X. Hua, Z. Huang, and W. Shen, Realization of high performance silicon nanowire based solar cells with large size, Nanotechnology, vol.24, issue.23, p.235402, 2013.
DOI : 10.1088/0957-4484/24/23/235402

H. Savin, P. Repo, G. Von, P. Gastrow, E. Ortega et al., Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency, Nature nanotechnology, vol.10, issue.7, p.624, 2015.
DOI : 10.1038/nnano.2015.89

URL : https://aaltodoc.aalto.fi:443/bitstream/123456789/16406/4/A1_savin_hele_2015.pdf

V. Sivakov, G. Andrä, A. Gawlik, A. Berger, J. Plentz et al., Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters, Nano letters, vol.9, issue.4, pp.1549-1554, 2009.
DOI : 10.1021/nl803641f

P. W. Voorhees, Ostwald ripening of two-phase mixtures, Annual Review of Materials Science, vol.22, issue.1, pp.197-215, 1992.
DOI : 10.1146/annurev.matsci.22.1.197

S. Misra, Single and tandem radial junction silicon thin film solar cells based on PECVD grown crystalline silicon nanowire arrays, 2015.

A. Sarker, C. Banerjee, and A. Barua, Preparation and characterization of n-type microcrystalline hydrogenated silicon oxide films, Journal of Physics D: Applied Physics, vol.35, issue.11, p.1205, 2002.
DOI : 10.1088/0022-3727/35/11/317

S. Abolmasov, H. Woo, R. Planques, J. Holovsk`holovsk`y, E. Johnson et al., Substrate and p-layer effects on polymorphous silicon solar cells, EPJ Photovoltaics, vol.5, p.55206, 2014.
DOI : 10.1051/epjpv/2014007

URL : https://hal.archives-ouvertes.fr/hal-01230707

A. Lambertz, T. Grundler, and F. Finger, Hydrogenated amorphous silicon oxide containing a microcrystalline silicon phase and usage as an intermediate reflector in thin-film silicon solar cells, Journal of applied physics, vol.109, issue.11, p.113109, 2011.

H. Sai, T. Matsui, H. Kumagai, and K. Matsubara, Thin-film microcrystalline silicon solar cells: 11.9% efficiency and beyond, Applied Physics Express, vol.11, issue.2, p.22301, 2018.

J. , D. Majumdar, and I. Manna, Laser material processing, International materials reviews, vol.56, issue.5-6, pp.341-388, 2011.

K. Durose, S. E. Asher, W. Jaegermann, D. Levi, B. E. Mccandless et al., Physical characterization of thinfilm solar cells, Progress in Photovoltaics: Research and Applications, vol.12, issue.2-3, pp.177-217, 2004.

B. Strahm and C. Hollenstein, Powder formation in sih 4-h 2 discharge in large area capacitively coupled reactors: A study of the combined effect of interelectrode distance and pressure, Journal of Applied Physics, vol.107, issue.2, p.23302, 2010.

N. Itabashi, N. Nishiwaki, M. Magane, S. Naito, T. Goto et al., Spatial distribution of sih3 radicals in rf silane plasma, vol.29, p.505, 1990.

T. Saga, Advances in crystalline silicon solar cell technology for industrial mass production, NPG Asia Materials, vol.2, issue.3, p.96, 2010.
DOI : 10.1038/asiamat.2010.82

URL : https://www.nature.com/articles/am201082.pdf

S. Haas, A. Gordijn, and H. Stiebig, High speed laser processing for monolithical series connection of silicon thin-film modules, Progress in Photovoltaics: Research and Applications, vol.16, pp.195-203, 2008.
DOI : 10.1002/pip.792

D. Bonnet, Manufacturing of css cdte solar cells, Thin Solid Films, vol.361, pp.547-552, 2000.
DOI : 10.1016/s0040-6090(99)00831-7

A. Compaan, I. Matulionis, and S. Nakade, Laser scribing of polycrystalline thin films, Optics and Lasers in Engineering, vol.34, issue.1, pp.15-45, 2000.

K. C. Phillips, H. H. Gandhi, E. Mazur, and S. Sundaram, Ultrafast laser processing of materials: a review, Advances in Optics and Photonics, vol.7, issue.4, pp.684-712, 2015.

H. Swoboda, Femtosecond fibre laser for material processing, 2008.

P. Gecys and G. Raciukaitis, Scribing of a-si thin-film solar cells with picosecond laser, European Physical Journal-Applied Physics, vol.51, issue.3, pp.5-5, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00618492

P. Gecys, G. Raciukaitis, A. Wehrmann, K. Zimmer, A. Braun et al., Scribing of thin-film solar cells with picosecond and femtosecond lasers, Journal of Laser Micro Nanoengineering, vol.7, issue.1, p.33, 2012.

T. Kim, J. Lee, D. Kim, and H. Pahk, Ultra-short laser patterning of thin-film cigs solar cells through glass substrate, International Journal of Precision Engineering and Manufacturing, vol.14, issue.8, pp.1287-1292, 2013.

Q. Bian, X. Yu, B. Zhao, Z. Chang, and S. Lei, Femtosecond laser ablation of indium tinoxide narrow grooves for thin film solar cells, Optics & laser technology, vol.45, pp.395-401, 2013.

S. Krause, P. Miclea, S. Schweizer, and G. Seifert, Optimized scribing of tco layers on glass by selective femtosecond laser ablation, Photovoltaic Specialists Conference (PVSC), pp.2432-2435, 2013.

J. Hanak, Laser processing technique for fabricating series-connected and tandem junction series-connected solar cells into a solar battery, 1981.

S. Haas, G. Schöpe, C. Zahren, and H. Stiebig, Analysis of the laser ablation processes for thin-film silicon solar cells, Applied Physics A, vol.92, issue.4, pp.755-759, 2008.

T. Kim, H. Pahk, H. K. Park, D. J. Hwang, and C. P. Grigoropoulos, Comparison of multilayer laser scribing of thin film solar cells with femto, pico, and nanosecond pulse References durations, International Society for Optics and Photonics, vol.7409, p.74090, 2009.

P. Westin, U. Zimmermann, and M. Edoff, Laser patterning of p2 interconnect via in thin-film cigs pv modules, Solar Energy Materials and Solar Cells, vol.92, issue.10, pp.1230-1235, 2008.

P. Ge?ys, G. Ra?iukaitis, M. Ehrhardt, K. Zimmer, and M. Gedvilas, ps-laser scribing of cigs films at different wavelengths, Applied Physics A, vol.101, issue.2, pp.373-378, 2010.

P. Roca-i-cabarrocas, Deposition techniques and processes involved in the growth of amorphous and microcrystalline silicon thin films," in Physics and technology of amorphouscrystalline heterostructure silicon solar cells, pp.131-160, 2012.

M. Labrune, silicon surface passivation and epitaxial growth on c-Si by low temperature plasma processes for high efficiency solar cells, 2011.
URL : https://hal.archives-ouvertes.fr/pastel-00611652

P. Alet, Hybrid thin-film solar cells based on nano-structured silicon and semiconducting polymer, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00367528

P. Roca-i-cabarrocas, J. Chévrier, J. Huc, A. Lloret, J. Parey et al., A fully automated hot-wall multiplasma-monochamber reactor for thin film deposition, J. Vac. Sci

, Technol. A, vol.9, issue.4, p.2331, 1991.

S. Company, Solems's thin-film solar devices, pp.2018-2026

S. Swann, Magnetron sputtering, Physics in technology, vol.19, issue.2, p.67, 1988.

P. J. Kelly and R. D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum, vol.56, issue.3, pp.159-172, 2000.

F. Kurdesau, G. Khripunov, A. Da, M. Cunha, A. Kaelin et al., Comparative study of ito layers deposited by dc and rf magnetron sputtering at room temperature, Journal of non-crystalline solids, vol.352, issue.9, pp.1466-1470, 2006.
DOI : 10.1016/j.jnoncrysol.2005.11.088

E. Terzini, P. Thilakan, and C. Minarini, Properties of ito thin films deposited by rf magnetron sputtering at elevated substrate temperature, Materials Science and Engineering: B, vol.77, issue.1, pp.110-114, 2000.

K. Ellmer, Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties, Journal of Physics D: Applied Physics, vol.33, issue.4, p.17, 2000.

D. Maurya, A. Sardarinejad, and K. Alameh, Recent developments in rf magnetron sputtered thin films for ph sensing applicationsan overview, Coatings, vol.4, issue.4, pp.756-771, 2014.
DOI : 10.3390/coatings4040756

URL : http://www.mdpi.com/2079-6412/4/4/756/pdf

, Scanning electron microscope-Wikipedia, the free encyclopedia, vol.28, 2018.

S. M. Sze and K. K. Ng, Physics of semiconductor devices, 2006.
DOI : 10.1002/0470068329

URL : http://cds.cern.ch/record/1092737/files/9780471143239_TOC.pdf

H. J. Round, A note on carborundum, Electrical World, vol.49, pp.879-879, 1907.

J. Haynes and H. Briggs, Radiation produced in germanium and silicon by electron-hole recombination, Physical Review, vol.86, issue.4, pp.647-647, 1952.

T. Fuyuki, H. Kondo, T. Yamazaki, Y. Takahashi, and Y. Uraoka, Photographic surveying of minority carrier diffusion length in polycrystalline silicon solar cells by electroluminescence, Applied Physics Letters, vol.86, issue.26, p.262108, 2005.

K. Wang, M. Silver, and D. Han, Electroluminescence and forward bias current in p-i-n and p-b-i-na-si: H solar cells, Journal of applied physics, vol.73, issue.9, pp.4567-4570, 1993.
DOI : 10.1063/1.352772

B. Yan, D. Han, and G. J. Adriaenssens, Analysis of post-transit photocurrents and electroluminescence spectra from a-si: H solar cells, Journal of applied physics, vol.79, issue.7, pp.3597-3602, 1996.

A. Tani and T. Fuyuki, Direct assessment of series resistance in thin film solar cells utilizing electroluminescence, Photovoltaic Specialists Conference (PVSC), p.35, 2010.

, IEEE, pp.1-689, 2010.

T. Tran, B. Pieters, M. Schneemann, T. Müller, A. Gerber et al., Local junction voltages and radiative ideality factors of a-si: H solar modules determined by electroluminescence imaging, MRS Online Proceedings Library Archive, vol.1536, pp.105-111, 2013.

E. Tekin, H. Wijlaars, E. Holder, D. A. Egbe, and U. S. Schubert, Film thickness dependency of the emission colors of ppe-ppvs in inkjet printed libraries, Journal of Materials Chemistry, vol.16, issue.44, pp.4294-4298, 2006.

K. Kordás, T. Mustonen, G. Tóth, H. Jantunen, M. Lajunen et al., Inkjet printing of electrically conductive patterns of carbon nanotubes, Small, vol.2, issue.8-9, pp.1021-1025, 2006.

P. Beecher, P. Servati, A. Rozhin, A. Colli, V. Scardaci et al., Ink-jet printing of carbon nanotube thin film transistors, Journal of Applied Physics, vol.102, issue.4, p.43710, 2007.

H. Lee, K. Chou, and K. Huang, Inkjet printing of nanosized silver colloids, Nanotechnology, vol.16, issue.10, p.2436, 2005.

Y. Noguchi, T. Sekitani, T. Yokota, and T. Someya, Direct inkjet printing of silver electrodes on organic semiconductors for thin-film transistors with top contact geometry, Applied Physics Letters, vol.93, issue.4, p.273, 2008.

G. Cummins and M. P. Desmulliez, Inkjet printing of conductive materials: a review, Circuit World, vol.38, issue.4, pp.193-213, 2012.

R. S. Das and Y. Agrawal, Raman spectroscopy: recent advancements, techniques and applications, Vibrational spectroscopy, vol.57, issue.2, pp.163-176, 2011.

H. Fujiwara, Spectroscopic ellipsometry: principles and applications, 2007.

J. A. Woollam-company, M-2000 ellipsometer, pp.2018-2026

W. Beyer, J. Hüpkes, and H. Stiebig, Transparent conducting oxide films for thin film silicon photovoltaics, Thin Solid Films, vol.516, issue.2-4, pp.147-154, 2007.

B. Zhu, Y. Yang, W. Hu, J. Wu, Z. Gan et al., Transparent conductive f-doped sno2 films prepared by rf reactive magnetron sputtering at low substrate temperature, Applied Physics A, vol.123, issue.4, p.217, 2017.

F. De-moure-flores, A. Guillén-cervantes, K. Nieto-zepeda, J. Quinones-galvan, A. Hernandez-hernandez et al., Sno2: F thin films deposited by rf magnetron sputtering: effect of the snf2 amount in the target on the physical properties, Revista mexicana de física, vol.59, issue.4, pp.335-338, 2013.

H. Kim, R. Auyeung, and A. Piqué, Transparent conducting f-doped sno 2 thin films grown by pulsed laser deposition, Thin Solid Films, vol.516, issue.15, pp.5052-5056, 2008.

J. Bae, S. Lee, and G. Yeom, Doped-fluorine on electrical and optical properties of tin oxide films grown by ozone-assisted thermal cvd, Journal of The Electrochemical Society, vol.154, issue.1, pp.34-37, 2007.

Z. Remes, M. Vanecek, H. Yates, P. Evans, and D. Sheel, Optical properties of sno2: F films deposited by atmospheric pressure cvd, Thin Solid Films, vol.517, issue.23, pp.6287-6289, 2009.

C. Agashe, M. Takwale, B. Marathe, and V. Bhide, Structural properties of sno2:f films deposited by spray pyrolysis, Solar Energy Materials, vol.17, issue.2, pp.99-117, 1988.

Y. Ren, G. Y. Zhao, and J. Shen, Preparation of fluorine doped tin oxide film by ultrasonic spray pyrolysis, Materials Science Forum, vol.695, pp.594-597, 2011.

T. Fukano, T. Motohiro, T. Ida, and H. Hashizume, Ionization potentials of transparent conductive indium tin oxide films covered with a single layer of fluorine-doped tin oxide nanoparReferences ticles grown by spray pyrolysis deposition, Journal of applied physics, vol.97, issue.8, p.84314, 2005.

N. Kikuchi, E. Kusano, E. Kishio, and A. Kinbara, Electrical and mechanical properties of SnO 2 :Nb films for touch screens, Vacuum, vol.66, issue.3, pp.365-371, 2002.

A. Sharma, M. Tomar, and V. Gupta, Enhanced response characteristics of SnO 2 thin film based NO 2 gas sensor integrated with nanoscaled metal oxide clusters, Sensors and Actuators B: Chemical, vol.181, pp.735-742, 2013.

S. Ito, T. N. Murakami, P. Comte, P. Liska, C. Grätzel et al., Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%, Thin solid films, vol.516, issue.14, pp.4613-4619, 2008.

N. Ahn, D. Son, I. Jang, S. M. Kang, M. Choi et al., Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead (ii) iodide, Journal of the American Chemical Society, vol.137, issue.27, pp.8696-8699, 2015.

R. Crandall and W. Luft, The future of amorphous silicon photovoltaic technology, Progress in Photovoltaics: Research and Applications, vol.3, issue.5, pp.315-332, 1995.

J. H. Thomas and I. , X-ray photoelectron spectroscopy study of hydrogen plasma interactions with a tin oxide surface, Applied Physics Letters, vol.42, issue.9, pp.794-796, 1983.

S. Hamma and P. Roca-i-cabarrocas, Low-temperature growth of thick intrinsic and ultrathin phosphorous or boron-doped microcrystalline silicon films: Optimum crystalline fractions for solar cell applications, Solar Energy Materials and Solar Cells, vol.69, issue.3, pp.217-239, 2001.

J. Wallinga, W. Arnoldbik, A. Vredenberg, R. Schropp, and W. Van-der-weg, Reduction of tin oxide by hydrogen radicals, The Journal of Physical Chemistry B, vol.102, issue.32, pp.6219-6224, 1998.
DOI : 10.1021/jp981447l

B. , Plasma grown silicon nanowires catalyzed by post-transition metals and applications in radial junction solar cells, 2012.

L. Yu, B. O'donnell, P. Alet, and P. Roca-i-cabarrocas, All-in-situ fabrication and characterization of silicon nanowires on tco/glass substrates for photovoltaic application, Solar Energy Materials and Solar Cells, vol.94, issue.11, pp.1855-1859, 2010.

B. Drevillon, S. Kumar, P. Roca-i-cabarrocas, and J. Siefert, In situ investigation of the optoelectronic properties of transparent conducting oxide/amorphous silicon interfaces, Applied physics letters, vol.54, issue.21, pp.2088-2090, 1989.

S. Kumar and B. Drevillon, A real time ellipsometry study of the growth of amorphous silicon on transparent conducting oxides, Journal of Applied Physics, vol.65, issue.8, pp.3023-3034, 1989.

R. Banerjee, A. De, S. Ray, A. Barua, and S. Reddy, Hydrogen plasma degradation of sno2: F films prepared by the apcvd method, Journal of Physics D: Applied Physics, vol.26, issue.12, p.2144, 1993.

Z. Mrázková, M. Foldyna, S. Misra, M. Al-ghzaiwat, K. Postava et al., In-situ mueller matrix ellipsometry of silicon nanowires grown by plasmaenhanced vapor-liquid-solid method for radial junction solar cells, Applied Surface Science, vol.421, pp.667-673, 2017.

C. Kim and D. Riu, Raman scattering, electrical and optical properties of fluorinedoped tin oxide thin films with (200) and (301) preferred orientation, Materials Chemistry and Physics, vol.148, issue.3, pp.810-817, 2014.

M. Wang, J. Cheng, M. Li, and F. He, Raman spectra of soda-lime-silicate glass doped with rare earth, Physica B: Condensed Matter, vol.406, issue.20, pp.3865-3869, 2011.
DOI : 10.1016/j.physb.2011.07.014

J. Perez, J. Villalobos, P. Mcneill, J. Prasad, R. Cheek et al., Direct evidence for the amorphous silicon phase in visible photoluminescent porous silicon, Applied physics letters, vol.61, issue.5, pp.563-565, 1992.

D. Han, J. Lorentzen, J. Weinberg-wolf, L. Mcneil, and Q. Wang, Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition, Journal of Applied Physics, vol.94, issue.5, pp.2930-2936, 2003.

M. Al-ghzaiwat, M. Foldyna, T. Fuyuki, W. Chen, E. V. Johnson et al., Large area radial junction silicon nanowire solar mini-modules, Scientific reports, vol.8, issue.1, p.1651, 2018.
DOI : 10.1038/s41598-018-20126-5

URL : https://hal.archives-ouvertes.fr/hal-01908687