E. B. Nelson, Well cementing, 1990.

A. Lavrov and M. Torsaeter, Physics and mechanics of primary well cementing, SpringerBriefs in petroleum geoscience & engineering, 2016.
DOI : 10.1007/978-3-319-43165-9

S. Ghabezloo, J. Sulem, S. Guédon, F. Martineau, and J. Saint-marc, Poromechanical behaviour of hardened cement paste under isotropic loading, Cement and Concrete Research, vol.38, pp.1424-1437, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00315563

A. Bois, Cement sheath integrity for CO 2 storage-An integrated perspective, Energy Procedia, vol.37, pp.5628-5641, 2013.
DOI : 10.1016/j.egypro.2013.06.485

URL : https://doi.org/10.1016/j.egypro.2013.06.485

S. Ghabezloo, J. Sulem, and J. Saint-marc, Evaluation of a permeabilityporosity relationship in a low-permeability creeping material using a single transient test, International Journal of Rock Mechanics and Mining Sciences, vol.46, p.13651609, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00336706

S. Ghabezloo, J. Sulem, and J. Saint-marc, The effect of undrained heating on a fluid-saturated hardened cement paste, Cement and Concrete Research, vol.39, p.88846, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00327730

M. H. Vu, J. Sulem, and J. Laudet, Effect of the curing temperature on the creep of a hardened cement paste, Cement and Concrete Research, vol.42, p.88846, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00735104

M. H. Vu, Time-dependent behaviour of hardened cement paste under isotropic loading, Cement and Concrete Research, vol.42, pp.789-797, 2012.

S. Ghabezloo, Association of macroscopic laboratory testing and micromechanics modelling for the evaluation of the poroelastic parameters of a hardened cement paste, Cement and Concrete Research, vol.40, p.88846, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00466680

S. Ghabezloo, Multiscale modeling of the poroelastic properties of various oil-well cement pastes, Journal of Multiscale Modelling, vol.2, pp.1756-9737, 2010.

S. Ghabezloo, Micromechanics analysis of thermal expansion and thermal pressurization of a hardened cement paste, Cement and Concrete Research, vol.41, p.88846, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00561857

S. Ghabezloo, Effect of the variations of clinker composition on the poroelastic properties of hardened class G cement paste, Cement and Concrete Research, vol.41, p.88846, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00627515

T. C. Powers and T. L. Brownyard, Studies of the physical properties of hardened Portland cement paste in, Journal Proceedings, vol.43, pp.101-132, 1946.

P. D. Tennis and H. M. Jennings, A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes, Cement and Concrete Research, vol.30, pp.855-863, 2000.

S. Lesko, E. Lesniewska, A. Nonat, J. Mutin, and J. Goudonnet, Investigation by atomic force microscopy of forces at the origin of cement cohesion, Ultramicroscopy, vol.86, pp.11-21, 2001.

K. Scrivener and A. Nonat, Hydration of cementitious materials, present and future, Cement and Concrete Research, vol.41, p.88846, 2011.

H. Brouwers, The work of Powers and Brownyard revisited: Part 1. Cement and Concrete Research, vol.34, p.88846, 2004.

H. M. Jennings, J. Thomas, . Rothstein, and J. Chen, Cements as porous materials. Handbook of Porous Solids, pp.2971-3028

J. W. Bullard, Mechanisms of cement hydration. Cement and Concrete Research 41, pp.1208-1223, 2011.

H. F. Taylor, Cement chemistry, 1997.

K. K. Aligizaki, Pore structure of cement-based materials: testing, interpretation and requirements, 2005.

G. G. Litvan, Variability of the nitrogen surface area of hydrated cement paste, Cement and Concrete Research, vol.6, pp.139-143, 1976.

R. S. Mikhail and S. A. Selim, Adsorption of organic vapors in relation to the pore structure of hardened Portland cement pastes. Highway Research, Board Special Report, 1966.

J. J. Thomas, H. M. Jennings, and A. J. Allen, The surface area of cement paste as measured by neutron scattering: evidence for two CSH morphologies, Cement and Concrete Research, vol.28, pp.897-905, 1998.

H. M. Jennings and P. D. Tennis, Model for the Developing Microstructure in Portland Cement Pastes, Journal of the American Ceramic Society, vol.77, pp.2-7820, 1994.

R. F. Feldman and P. J. Sereda, A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties, Materials and structures, vol.1, pp.509-520, 1968.
DOI : 10.1007/bf02473639

URL : http://nparc.cisti-icist.nrc-cnrc.gc.ca/eng/view/accepted/?id=53e1e9d1-4148-4dbe-a0e9-443ac9e59c42

R. Feldman and P. Sereda, A new model for hydrated Portland cement and its practical implications, Engineering Journal, vol.53, pp.53-59, 1970.

R. F. Feldman and V. S. Ramachandran, Differentiation of interlayer and adsorbed water in hydrated Portland cement by thermal analysis, Cement and Concrete Research, vol.1, pp.607-620, 1971.
DOI : 10.1016/0008-8846(71)90016-0

URL : http://nparc.cisti-icist.nrc-cnrc.gc.ca/eng/view/accepted/?id=b4ac3998-e414-488a-b168-c01216200b3c

F. Wittmann, Interaction of hardened cement paste and water, Journal of the American ceramic society, vol.56, pp.409-415, 1973.

C. Ferraris and F. Wittmann, Shrinkage mechanisms of hardened cement paste, Cement and Concrete Research, vol.17, pp.453-464, 1987.
DOI : 10.1016/0008-8846(87)90009-3

H. M. Jennings, J. J. Thomas, D. Rothstein, and J. Chen, Handbook of porous solids, pp.2971-3028, 2008.

H. M. Jennings, A model for the microstructure of calcium silicate hydrate in cement paste, Cement and Concrete Research, vol.30, p.88846, 2000.

A. J. Allen, J. J. Thomas, and H. M. Jennings, Composition and density of nanoscale calcium-silicate-hydrate in cement, Nature materials, vol.6, pp.311-316, 2007.
DOI : 10.1038/nmat1871

R. Feldman, Helium flow characteristics of rewetted specimens of dried hydrated Portland cement paste, Cement and Concrete Research, vol.3, pp.777-790, 1973.

H. M. Jennings, Refinements to colloid model of C-S-H in cement: CMII, Cement and Concrete Research, vol.38, p.88846, 2008.

M. B. Pinson, Hysteresis from Multiscale Porosity: Modeling Water Sorption and Shrinkage in Cement Paste, Physical Review Applied, vol.3, pp.2331-7019, 2015.
DOI : 10.1103/physrevapplied.3.064009

URL : http://dspace.mit.edu/bitstream/1721.1/97464/1/PhysRevApplied.3.064009.pdf

S. Papatzani, K. Paine, and J. Calabria-holley, A comprehensive review of the models on the nanostructure of calcium silicate hydrates, Construction and Building Materials, vol.74, p.9500618, 2015.

G. Constantinides, F. J. Ulm, and K. Van-vliet, On the use of nanoindentation for cementitious materials, Materials and structures, vol.36, pp.191-196, 2003.

G. Constantinides and F. Ulm, The effect of two types of CSH on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling, Cement and concrete research, vol.34, pp.67-80, 2004.

O. Bernard, F. Ulm, and E. Lemarchand, A multiscale micromechanics hydration model for the early-age elastic properties of cement-based materials, Cement and Concrete Research, vol.33, pp.1293-1309, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00139284

K. L. Scrivener, Microstructure of concrete. Materials Science of Concrete III, I, 1 pp, p.127, 1989.

I. Richardson and G. Groves, Models for the composition and structure of calcium silicate hydrate (C S H) gel in hardened tricalcium silicate pastes, vol.22, pp.1001-1010, 1992.

K. O. Kjellsen, Heat curing and post-heat curing regimes of high-performance concrete: influence on microstructure and CSH composition, Cement and Concrete Research, vol.26, pp.295-307, 1996.
DOI : 10.1016/0008-8846(95)00202-2

S. Bae, Soft X-ray Ptychographic Imaging and Morphological Quantification of Calcium Silicate Hydrates (C-S-H), Journal of the American Ceramic Society, vol.98, pp.1551-2916, 2015.
DOI : 10.1111/jace.13808

URL : https://hal.archives-ouvertes.fr/hal-01484137

S. Brisard, Analyse morphologique et homogénéisation numérique: application à la pâte de ciment PhD thesis, 2011.

J. J. Beaudoin, On the Validity of Colloidal Models for Hydrated Cement Paste

J. J. Beaudoin and R. Alizadeh, A discussion of the paper "Refinements to colloidal model of C-S-H in cement: CM-II, Cement and Concrete Research, vol.38, pp.1026-1027, 2008.

J. J. Beaudoin, R. Alizadeh, M. Hamlin, J. J. Jennings, J. S. Thomas et al., A discussion of the paper "A multitechnique investigation of the nanoporosity of cement paste, Georgios Constantinides and, vol.37, p.1373, 2007.

M. C. Juenger and H. M. Jennings, The use of nitrogen adsorption to assess the microstructure of cement paste. Cement and Concrete Research 31, pp.883-892, 2001.

. Korpa and R. Trettin, The influence of different drying methods on cement paste microstructures as reflected by gas adsorption: comparison between freeze-drying (F-drying), D-drying, P-drying and oven-drying methods, Cement and Concrete Research, vol.36, pp.634-649, 2006.

N. Collier, J. Sharp, N. Milestone, J. Hill, and I. Godfrey, The influence of water removal techniques on the composition and microstructure of hardened cement pastes, Cement and Concrete Research, vol.38, p.88846, 2008.

D. Snoeck, The influence of different drying techniques on the water sorption properties of cement-based materials, Cement and Concrete Research, vol.64, pp.54-62, 2014.

K. Scrivener, R. Snellings, and B. Lothenbach, A Practical Guide to Microstructural Analysis of Cementitious Materials, 2016.

J. J. Thomas, H. M. Jennings, and A. J. Allen, Determination of the neutron scattering contrast of hydrated Portland cement paste using H 2 O/D 2 O exchange, Advanced Cement Based Materials, vol.7, pp.119-122, 1998.

L. Zhang and F. Glasser, Critical examination of drying damage to cement pastes, Advances in cement research, vol.12, pp.79-88, 2000.

S. Mantellato, M. Palacios, and R. J. Flatt, Impact of sample preparation on the specific surface area of synthetic ettringite, Cement and Concrete Research, vol.86, pp.20-28, 2016.

J. J. Beaudoin, Solvent replacement studies of hydrated Portland cement systems: the role of calcium hydroxide, Advanced Cement Based Materials, vol.8, pp.56-65, 1998.

E. Knapen, O. Cizer, K. Van-balen, and D. Van-gemert, Effect of free water removal from early-age hydrated cement pastes on thermal analysis, Construction and Building Materials, vol.23, pp.3431-3438, 2009.

J. I. Escalante-garcia and J. H. Sharp, Variation in the Composition of C-S-H Gel in Portland Cement Pastes Cured at Various Temperatures, Journal of the American Ceramic Society, vol.82, pp.3237-3241, 1999.

B. Lothenbach, F. Winnefeld, C. Alder, E. Wieland, and P. Lunk, Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes, Cement and Concrete Research, vol.37, p.88846, 2007.

S. Lesko, E. Lesniewska, A. Nonat, J. Mutin, and J. Goudonnet, Investigation by atomic force microscopy of forces at the origin of cement cohesion, Ultramicroscopy, vol.86, p.3043991, 2001.

P. Barnes and J. Bensted, Structure and Performance of Cements, p.203477782, 2002.

L. Eilers and R. Root, Long-term effects of high temperature on strength retrogression of cements in, SPE California Regional Meeting, pp.7-9, 1976.

A. M. Gajewicz, Characterisation of cement microstructure and porewater interaction by 1H Nuclear Magnetic Resonance Relaxometry PhD thesis, 2014.

E. Gallucci, X. Zhang, and K. Scrivener, Effect of temperature on the microstructure of calcium silicate hydrate (C-S-H), Cement and Concrete Research, vol.53, p.88846, 2013.

I. Richardson, The calcium silicate hydrates. Cement and Concrete Research 38, p.88846, 2008.

J. J. Kim, M. K. Rahman, and M. M. Taha, Examining microstructural composition of hardened cement paste cured under high temperature and pressure using nanoindentation and 29Si MAS NMR, Applied Nanoscience, vol.2, pp.445-456, 2012.

I. S. Del-bosque, S. Martínez-ramírez, . Martín-pastor, and M. Blancovarela, Effect of temperature on C-S-H gel nanostructure in white cement, Materials and structures, vol.47, pp.1867-1878, 2014.

I. Richardson, Tobermorite/jennite-and tobermorite/calcium hydroxidebased models for the structure of CSH: applicability to hardened pastes of tricalcium silicate, ?-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaolin, or silica fume, Cement and Concrete Research, vol.34, pp.1733-1777, 2004.

K. O. Kjellsen, R. J. Detwiler, and O. E. Gjørv, Pore structure of plain cement pastes hydrated at different temperatures, Cement and concrete research, vol.20, pp.927-933, 1990.

A. Bentur, R. L. Berger, J. H. Kung, N. Milestone, and J. Young, Structural properties of calcium silicate pastes: II, Effect of curing temperature, Journal of the American Ceramic Society, vol.62, pp.362-366, 1979.

G. J. Verbeck, Structures and physical properties of cement paste, 5th International Symposium on the Chemistry of Cement, pp.1-32, 1968.

K. L. Scrivener, The effect of heat treatment of inner product C S H, Cement and Concrete Research, vol.22, pp.1224-1226, 1992.

K. O. Kjellsen, R. J. Detwiler, and O. E. Gjørv, Backscattered electron imaging of cement pastes hydrated at different temperatures, Cement and Concrete Research, vol.20, p.88846, 1990.

C. Famy, K. Scrivener, and A. Crumbie, What causes differences of CSH gel grey levels in backscattered electron images?, Cement and Concrete Research, vol.32, pp.1465-1471, 2002.

H. M. Jennings, J. J. Thomas, J. S. Gevrenov, G. Constantinides, and F. Ulm, A multi-technique investigation of the nanoporosity of cement paste, Cement and Concrete Research, vol.37, pp.329-336, 2007.

R. Holly, E. Reardon, C. Hansson, and H. Peemoeller, Proton spin-spin relaxation study of the effect of temperature on white cement hydration, Journal of the American Ceramic Society, vol.90, pp.570-577, 2007.

M. Bourissai, F. Meftah, N. Brusselle-dupend, . Lecolier, and G. Bonnet, Evolution of the Elastic Properties of an Oilwell Cement Paste at Very Early Age under Downhole Conditions: Characterization and Modelling
URL : https://hal.archives-ouvertes.fr/hal-00864247

, Oil & Gas Science and Technology-Revue d'IFP Energies nouvelles, vol.68, pp.595-612, 2013.

B. Lothenbach, T. Matschei, G. Möschner, and F. P. Glasser, Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement, Cement and Concrete Research, vol.38, p.88846, 2008.

M. Zacak, S. Garrault, J. Korb, and A. Nonat, Effect of temperature on the development of CSH during early hydration of C3S in 12 th International Congress on the Chemistry of Cement, pp.1-06, 2007.

A. Zaoui, Continuum micromechanics: survey, Journal of Engineering Mechanics, vol.128, pp.808-816, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00111366

L. Dormieux, D. Kondo, F. Ulm, and . Microporomechanics, , 2006.

P. Suquet, Continuum micromechanics, 2014.

F. Ulm, . Constantinides, and F. Heukamp, Is concrete a poromechanics materials?-A multiscale investigation of poroelastic properties. Materials and structures, vol.37, pp.43-58, 2004.

J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems in, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.241, pp.376-396, 1957.

T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta metallurgica, vol.21, pp.571-574, 1973.

A. Hershey, The elasticity of an isotropic aggregate of anisotropic cubic crystals, Journal of Applied mechanics-transactions of the ASME, vol.21, pp.236-240, 1954.

R. Hill, A self-consistent mechanics of composite materials, Journal of the Mechanics and Physics of Solids, vol.13, pp.213-222, 1965.

B. Pichler and C. Hellmich, Upscaling quasi-brittle strength of cement paste and mortar: A multi-scale engineering mechanics model, Cement and Concrete Research, vol.41, pp.467-476, 2011.

B. Pichler, Effect of gel-space ratio and microstructure on strength of hydrating cementitious materials: An engineering micromechanics approach, Cement and Concrete Research, vol.45, pp.55-68, 2013.

P. Termkhajornkit, Q. H. Vu, R. Barbarulo, S. Daronnat, and G. Chanvillard, Dependence of compressive strength on phase assemblage in cement pastes: Beyond gel-space ratio-Experimental evidence and micromechanical modeling, Cement and Concrete Research, vol.56, pp.1-11, 2014.

E. Stora, ,. He, and B. Bary, Influence of inclusion shapes on the effective linear elastic properties of hardened cement pastes, Cement and concrete research, vol.36, pp.1330-1344, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00693745

B. Pichler, C. Hellmich, and J. Eberhardsteiner, Spherical and acicular representation of hydrates in a micromechanical model for cement paste: prediction of early-age elasticity and strength, Acta Mechanica, vol.203, pp.137-162, 2009.

B. John, G. Class, and H. Basic, Oil Well Cements. World Cement, 1992.

C. Chen, A mineralogical approach to use the non-qualified fine aggregates in asphalt concrete pavement PhD thesis, 2016.

M. A. Aranda, A. G. De-la-torre, and L. Leon-reina, Rietveld Quantitative Phase Analysis of OPC Clinkers, Cements and Hydration Products, Reviews in Mineralogy and Geochemistry, vol.74, pp.1529-6466, 2012.

D. L. Bish and J. E. Post, Quantitative mineralogical analysis using the Rietveld full-pattern fitting method, American Mineralogist, vol.78, pp.932-940, 1993.

B. H. Toby, R factors in Rietveld analysis : How good is good enough ? International Centre for diffraction Data Data, pp.67-70, 2006.

L. Saoût, G. Kocaba, V. Scrivener, and K. , Application of the Rietveld method to the analysis of anhydrous cement. Cement and Concrete Research 41, p.88846, 2011.

,. De-noirfontaine, F. Dunstetter, M. Courtial, G. Gasecki, and M. Signesfrehel, Polymorphism of tricalcium silicate, the major compound of Portland cement clinker, Cement and Concrete Research, vol.36, p.88846, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00337404

R. Snellings, A. Salze, and K. Scrivener, Use of X-ray diffraction to quantify amorphous supplementary cementitious materials in anhydrous and hydrated blended cements, Cement and Concrete Research, vol.64, p.88846, 2014.

R. Snellings, A. Bazzoni, and K. Scrivener, The existence of amorphous phase in Portland cements: Physical factors affecting Rietveld quantitative phase analysis, Cement and Concrete Research, vol.59, p.88846, 2014.

G. L. Saoût, T. Füllmann, V. Kocaba, and K. Scrivener, Quantitative study of cementitious materials by X-ray diffraction/ Rietveld analysis using an external standard in 12th, International Congress on the Chemistry of Cement, 2007.

K. Scrivener, T. Füllmann, E. Gallucci, G. Walenta, and E. Bermejo, Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods, Cement and Concrete Research, vol.34, p.88846, 2004.

R. Jenkins and R. Snyder, Introduction to x-ray powder diffractometry, 1996.
DOI : 10.1002/9781118520994

Y. Suda, T. Saeki, and T. Saito, Relation between chemical composition and physical properties of CSH generated from cementitious materials, Journal of Advanced Concrete Technology, vol.13, pp.275-290, 2015.

F. Nishi, Y. Takeuchi, and I. Maki, Tricalcium silicate Ca3O [SiO4]: the monoclinic superstructure, Zeitschrift für Kristallographie-Crystalline Materials, vol.172, pp.297-314, 1985.
DOI : 10.1524/zkri.1985.172.14.297

W. Mumme, R. Hill, . Bushnell-wye, and E. Segnit, Rietveld crystal structure refinements, crystal chemistry and calculated powder diffraction data for the polymorphs of dicalcium silicate and related phases, Neues Jahrb. Mineral. Abh, vol.169, 1995.

L. Alarcon-ruiz, G. Platret, E. Massieu, and A. Ehrlacher, The use of thermal analysis in assessing the effect of temperature on a cement paste, Cement and Concrete research, vol.35, pp.609-613, 2005.

V. Kocaba, Development and evaluation of methods to follow microstructural developments of cementitious systems including slags PhD thesis, 2010.

K. J. Krakowiak, Nano-chemo-mechanical signature of conventional oil-well cement systems: Effects of elevated temperature and curing time, Cement and Concrete Research, vol.67, p.88846, 2015.

Q. Zeng, K. Li, T. Fen-chong, and P. Dangla, Analysis of pore structure, contact angle and pore entrapment of blended cement pastes from mercury porosimetry data. Cement and Concrete Composites, vol.34, pp.1053-1060, 2012.

Q. Zeng, K. Li, T. Fen-chong, and P. Dangla, Pore structure of cement pastes through NAD and MIP analysis, Adv Cem Res, vol.28, pp.23-32, 2016.

R. A. Cook and K. C. Hover, Mercury porosimetry of hardened cement pastes, Cement and Concrete research, vol.29, pp.933-943, 1999.
DOI : 10.1016/s0008-8846(99)00083-6

R. A. Cook and K. C. Hover, Mercury porosimetry of cement-based materials and associated correction factors, Construction and Building Materials, vol.7, pp.231-240, 1993.

S. Diamond, Mercury porosimetry: An inappropriate method for the measurement of pore size distributions in cement-based materials. Cement and Concrete Research, vol.30, pp.1517-1525, 2000.

V. Baroghel-bouny, Water vapour sorption experiments on hardened cementitious materials: Part I: Essential tool for analysis of hygral behaviour and its relation to pore structure, Cement and Concrete Research, vol.37, pp.414-437, 2007.

V. Baroghel-bouny, Water vapour sorption experiments on hardened cementitious materials. Part II: Essential tool for assessment of transport properties and for durability prediction, Cement and Concrete Research, vol.37, pp.438-454, 2007.
DOI : 10.1016/j.cemconres.2006.11.019

F. Brue, C. A. Davy, F. Skoczylas, N. Burlion, and X. Bourbon, Effect of temperature on the water retention properties of two high performance concretes, Cement and Concrete Research, vol.42, pp.384-396, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00669722

J. M. De-burgh and S. J. Foster, Influence of temperature on water vapour sorption isotherms and kinetics of hardened cement paste and concrete, Cement and Concrete Research, vol.92, pp.37-55, 2017.

E. Barrett, L. Joyner, and P. Halenda, The determination of pore volume and area distributions in porous substances. 1-Computations from nitrogen isotherms, J. Am. Chem. Soc, vol.73, pp.373-380, 1951.

J. Hagymassy, I. Odler, M. Yudenfreund, J. Skalny, and S. Brunauer, Pore structure analysis by water vapor adsorption. III. Analysis of hydrated calcium silicates and portland cements, Journal of Colloid and Interface Science, vol.38, pp.20-34, 1972.
DOI : 10.1016/0021-9797(69)90132-5

R. Badmann, N. Stockhausen, and M. J. Setzer, The statistical thickness and the chemical potential of adsorbed water films, Journal of Colloid and Interface science, vol.82, pp.534-542, 1981.

J. M. De-burgh, S. J. Foster, and H. R. Valipour, Prediction of water vapour sorption isotherms and microstructure of hardened Portland cement pastes, Cement and Concrete Research, vol.81, pp.134-150, 2016.

J. Hagymassy, S. Brunauer, and R. S. Mikhail, Pore structure analysis by water vapor adsorption: I. t-curves for water vapor, Journal of Colloid and Interface Science, vol.29, pp.485-491, 1969.

F. Rouquerol, L. Luciani, P. Llewellyn, R. Denoyel, and J. Rouquerol, Texture des matériaux pulvérulents ou poreux. Techniques de l'ingénieur, Analyse et caractérisation, vol.2, pp.1050-1051, 2003.

B. Wang, P. Faure, M. Thiéry, and V. Baroghel-bouny, H NMR relaxometry as an indicator of setting and water depletion during cement hydration, Cement and Concrete Research, vol.45, pp.1-14, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00946068

P. Faure and S. Caré, Suivi par IRM et par T 1 de l'effet du couplage hydratation-séchage sur la microstructure de pâte de ciment, Comptes Rendus Chimie, vol.9, pp.548-555, 2006.

P. F. Faure, S. Caré, J. Magat, and T. Chaussadent, Drying effect on cement paste porosity at early age observed by NMR methods, Construction and Building materials, vol.29, pp.496-503, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00655748

P. J. Mcdonald, . Rodin, and A. Valori, Characterisation of intra-and inter-C-S-H gel pore water in white cement based on an analysis of NMR signal amplitudes as a function of water content. Cement and Concrete, Research, vol.40, pp.1656-1663, 2010.

P. Mcdonald, J. Korb, . Mitchell, and L. Monteilhet, Surface relaxation and chemical exchange in hydrating cement pastes: a two-dimensional NMR relaxation study, Physical Review E, vol.72, p.11409, 2005.

B. Blümich, Essential NMR: for Scientists and Engineers, 2005.

R. M. Lynden-bell and R. K. Harris, Nuclear magnetic resonance spectroscopy, 1969.

P. T. Callaghan, Translational dynamics and magnetic resonance: principles of pulsed gradient spin echo NMR, 2011.

D. Orazio, F. Bhattacharja, S. Halperin, W. P. Eguchi, K. Mizusaki et al., Molecular diffusion and nuclear-magnetic-resonance relaxation of water in unsaturated porous silica glass, Physical Review B, vol.42, p.9810, 1990.

S. W. Provencher, A constrained regularization method for inverting data represented by linear algebraic or integral equations, Computer Physics Communications, vol.27, pp.213-227, 1982.

A. and C. , 39, Standard test method for compressive strength of cylindrical concrete specimens, Annual book of ASTM standards, p.4, 1996.

R. F. Feldman, Factors affecting Young's modulus-porosity relation of hydrated Portland cement compacts, Cement and Concrete Research, vol.2, pp.375-386, 1972.

A. Gajewicz, E. Gartner, K. Kang, P. Mcdonald, and V. Yermakou, A 1 H NMR relaxometry investigation of gel-pore drying shrinkage in cement pastes, Cement and Concrete Research, vol.86, pp.12-19, 2016.

I. Maruyama, Y. Nishioka, G. Igarashi, and K. Matsui, Microstructural and bulk property changes in hardened cement paste during the first drying process, Cement and Concrete Research, vol.58, pp.20-34, 2014.

É. Nauleau, Évolution au cours du temps des propriétés physiques et mécaniques des matériaux cimentaires d'un puit géothermique basse énergie PhD thesis, 2013.

W. Kurdowski, , pp.978-94, 2014.

B. Z. Dilnesa and ;. Lausanne, Fe-containing hydrates and their fate during cement hydration: thermodynamic data and experimental study PhD thesis, 2011.

M. Vespa, E. Wieland, R. Dähn, and B. Lothenbach, Identification of the Thermodynamically Stable Fe-Containing Phase in Aged Cement Pastes, Journal of the American Ceramic Society, vol.98, pp.2286-2294, 2015.

G. Geng, D. A. Kilcoyne, .. J. Benmore, and P. J. Monteiro, Multitechnology Investigation of the Atomic Structure of Calcium Silicate Hydrates Multi-technology Investigation of the Atomic Structure of Calcium in 14th International Congress on the Chemistry of Cement, 2015.

J. I. Bhatty, Compositional Analysis by Thermogravimetry, 1988.

Z. ?auman, Carbonization of porous concrete and its main binding components, Cement and Concrete Research, vol.1, p.88846, 1971.

A. Morandeau, M. Thiéry, and P. Dangla, Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties, Cement and Concrete Research, vol.56, p.88846, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00922073

J. Branch, D. Kosson, A. Garrabrants, and P. He, The impact of carbonation on the microstructure and solubility of major constituents in microconcrete materials with varying alkalinities due to fly ash replacement of ordinary Portland cement, Cement and Concrete Research, vol.89, pp.297-309, 2016.

T. F. Sevelsted, J. Skibsted, C. Carbonation-of, and C. Samples, sup 13C, sup 27Al and sup 29Si MAS NMR spectroscopy, vol.71, 2015.

J. Rivas-mercury, P. Pena, A. De-aza, and X. Turrillas, Dehydration of Ca 3 Al 2 (SiO 4 )y(OH) 4(3?y) (0 < y < 0.176) studied by neutron thermodiffractometry, Journal of the European Ceramic Society, vol.28, p.9552219, 2008.

K. Garbev, B. Gasharova, G. Beuchle, S. Kreisz, and P. Stemmermann, First Observation of ??Ca 2

, Phase Transformation upon Thermal Treatment in Air, Journal of the American Ceramic Society, vol.91, pp.1551-2916, 2008.

X. Cong and R. Kirkpatrick, Effects of the temperature and relative humidity on the structure of C-S-H gel, Cement and Concrete Research, vol.25, p.88846, 1995.

M. Königsberger, Multiscale microstructural modeling in cement and concrete : from hydration to poroelasticity, creep, and strength PhD thesis, 2016.

R. J. Pellenq, A realistic molecular model of cement hydrates, Proceedings of the National Academy of Sciences, vol.106, pp.16102-16107, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00447710

C. Plassard, E. Lesniewska, I. Pochard, and A. Nonat, Intrinsic elastic properties of Calcium Silicate Hydrates by nanoindentation in 12th International Congress on the Chemistry of Cement, p.44, 2007.

P. Acker, Micromechanical analysis of creep and shrinkage mechanisms. Creep, Shrinkage and Durability Mechanics of Concrete and other quasi-brittle Materials, pp.15-25, 2001.

P. J. Monteiro and C. Chang, The elastic moduli of calcium hydroxide, Cement and Concrete Research, vol.25, pp.1605-1609, 1995.

F. Holuj, . Drozdowski, and M. Czajkowski, Brillouin spectrum of Ca (OH) 2, Solid State Communications, vol.56, pp.1019-1021, 1985.

C. Haecker, Modeling the linear elastic properties of Portland cement paste, Cement and Concrete Research, vol.35, pp.1948-1960, 2005.

S. Speziale, Single-crystal elastic constants of natural ettringite, Cement and Concrete Research, vol.38, pp.885-889, 2008.

S. Kamali, Comportement et simulation des matériaux cimentaires en environnement agressifs: lixiviation et température PhD thesis (Cachan, Ecole normale supérieure, 2003.

B. O&apos;neill, J. D. Bass, and G. R. Rossman, Elastic properties of hydrogrossular garnet and implications for water in the upper mantle, Journal of Geophysical Research: Solid Earth, vol.98, 1993.

A. Bentur, Effect of curing temperature on the pore structure of tricalcium silicate pastes, J. Colloid Interface Sci, vol.74, issue.2, pp.549-560, 1980.

K. O. Kjellsen, R. J. Detwiler, and O. E. Gjørv, Backscattered electron imaging of cement pastes hydrated at different temperatures, Cem. Concr. Res, vol.20, issue.2, pp.308-311, 1990.

K. O. Kjellsen, R. J. Detwiler, and O. E. Gjørv, Pore structure of plain cement pastes hydrated at different temperatures, Cem. Concr. Res, vol.20, issue.6, pp.927-933, 1990.

E. B. Nelson, Well Cementing, 1990.

S. Ghabezloo, J. Sulem, S. Guédon, F. Martineau, and J. Saint-marc, Poromechanical behaviour of hardened cement paste under isotropic loading, Cem. Concr. Res, vol.38, issue.12, pp.1424-1437, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00315563

A. Bois, M. Vu, S. Ghabezloo, J. Sulem, A. Garnier et al., Cement sheath integrity for CO 2 storage-an integrated perspective, Energy Procedia, vol.37, pp.5628-5641, 2013.

B. Lothenbach, F. Winnefeld, C. Alder, E. Wieland, and P. Lunk, Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes, Cem. Concr. Res, vol.37, issue.4, pp.483-491, 2007.

K. Scrivener and A. Nonat, Hydration of cementitious materials, present and future, Cem. Concr. Res, vol.41, issue.7, pp.651-665, 2011.

H. Taylor, Cement Chemistry, Thomas Telford Services Ltd, 1997.

S. Lesko, E. Lesniewska, A. Nonat, J. Mutin, and J. Goudonnet, Investigation by atomic force microscopy of forces at the origin of cement cohesion, Ultramicroscopy, vol.86, issue.1-2, pp.11-21, 2001.

P. Barnes and J. Bensted, Structure and Performance of Cements, 2002.

L. Eilers and R. Root, Long-term Effects of High Temperature on Strength Retrogression of Cements, SPE California Regional Meeting, pp.7-9, 1976.

E. Gallucci, X. Zhang, and K. Scrivener, Effect of temperature on the microstructure of calcium silicate hydrate (C-S-H), Cem. Concr. Res, vol.53, pp.185-195, 2013.

I. Richardson, The calcium silicate hydrates, Cem. Concr. Res, vol.38, issue.2, pp.137-158, 2008.

I. Richardson, Tobermorite/jennite-and tobermorite/calcium hydroxide-based models for the structure of C-S-H: applicability to hardened pastes of tricalcium silicate, b-dicalcium silicate, Portland cement, and blends of Portland cement with blast-furnace slag, metakaol, Cem. Concr. Res, vol.34, issue.9, pp.1733-1777, 2004.

S. Ghabezloo, J. Sulem, and J. Saint-marc, Evaluation of a permeability-porosity relationship in a low-permeability creeping material using a single transient test, Int. J. Rock Mech. Min. Sci, vol.46, issue.4, pp.761-768, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00336706

S. Ghabezloo, J. Sulem, and J. Saint-marc, The effect of undrained heating on a fluid-saturated hardened cement paste, Cem. Concr. Res, vol.39, issue.1, pp.54-64, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00327730

M. H. Vu, J. Sulem, and J. Laudet, Effect of the curing temperature on the creep of a hardened cement paste, Cem. Concr. Res, vol.42, issue.9, pp.1233-1241, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00735104

M. H. Vu, J. Sulem, S. Ghabezloo, J. Laudet, A. Garnier et al., Time-dependent behaviour of hardened cement paste under isotropic loading, Cem. Concr. Res, vol.42, issue.6, pp.789-797, 2012.

S. Ghabezloo, Association of macroscopic laboratory testing and micromechanics modelling for the evaluation of the poroelastic parameters of a hardened cement paste, Cem. Concr. Res, vol.40, issue.8, pp.1197-1210, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00466680

S. Ghabezloo, Multiscale modeling of the poroelastic properties of various oil-well cement pastes, J. Multiscale Model, vol.2, issue.3-4, pp.199-215, 2010.

S. Ghabezloo, Micromechanics analysis of thermal expansion and thermal pressurization of a hardened cement paste, Cem. Concr. Res, vol.41, issue.5, pp.520-532, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00561857

S. Ghabezloo, Effect of the variations of clinker composition on the poroelastic properties of hardened class G cement paste, Cem. Concr. Res, vol.41, issue.8, pp.920-922, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00627515

I. Richardson, The nature of C-S-H in hardened cements, Cem. Concr. Res, vol.29, issue.8, pp.1131-1147, 1999.

H. Brouwers, The work of Powers and Brownyard revisited: part 1, Cem. Concr. Res, vol.34, issue.9, pp.1697-1716, 2004.

H. Brouwers, The work of Powers and Brownyard revisited: part 2, Cem. Concr. Res, vol.35, issue.10, pp.1922-1936, 2005.

A. J. Allen, J. J. Thomas, and H. M. Jennings, Composition and density of nanoscale calcium-silicate-hydrate in cement, Nat. Mater, vol.6, issue.4, pp.311-316, 2007.

B. Lothenbach and A. Nonat, Calcium silicate hydrates: solid and liquid phase composition, Cem. Concr. Res, vol.78, pp.57-70, 2015.

H. M. Jennings and P. D. Tennis, Model for the developing microstructure in Portland cement pastes, J. Am. Ceram. Soc, vol.77, issue.12, pp.3161-3172, 1994.

H. M. Jennings, A model for the microstructure of calcium silicate hydrate in cement paste, Cem. Concr. Res, vol.30, issue.1, pp.101-116, 2000.

H. M. Jennings, Refinements to colloid model of C-S-H in cement: CM-II, Cem. Concr. Res, vol.38, issue.3, pp.275-289, 2008.

S. Papatzani, K. Paine, and J. Calabria-holley, A comprehensive review of the models on the nanostructure of calcium silicate hydrates, vol.74, pp.219-234, 2015.

J. Zhang and G. W. Scherer, Comparison of methods for arresting hydration of cement, Cem. Concr. Res, vol.41, issue.10, pp.1024-1036, 2011.

K. K. Aligizaki, Pore Structure of Cement-based Materials: Testing, Interpretation and Requirements, 2005.

N. Collier, J. Sharp, N. Milestone, J. Hill, I. Godfrey et al., The influence of water removal techniques on the composition and microstructure of hardened cement pastes, Cem. Concr. Res, vol.38, issue.6, pp.737-744, 2008.

M. A. Aranda, A. G. De-la-torre, and L. Leon-reina, Rietveld quantitative phase analysis of OPC clinkers, cements and hydration products, Rev. Mineral. Geochem, vol.74, issue.1, pp.169-209, 2012.

D. L. Bish and J. E. Post, Quantitative mineralogical analysis using the Rietveld fullpattern fitting method, Am. Mineral, vol.78, issue.9, pp.932-940, 1993.

B. H. Toby, R factors in Rietveld analysis: how good is good enough ? International Centre for diffraction Data Data, pp.67-70, 2005.

G. L. Saoût, V. Kocaba, and K. Scrivener, Application of the Rietveld method to the analysis of anhydrous cement, Cem. Concr. Res, vol.41, issue.2, pp.133-148, 2011.

M. De-noirfontaine, F. Dunstetter, M. Courtial, G. Gasecki, and M. Signes-frehel, Polymorphism of tricalcium silicate, the major compound of Portland cement clinker, Cem. Concr. Res, vol.36, issue.1, pp.54-64, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00337407

R. Snellings, A. Salze, and K. Scrivener, Use of X-ray diffraction to quantify amorphous supplementary cementitious materials in anhydrous and hydrated blended cements, Cem. Concr. Res, vol.64, pp.89-98, 2014.

R. Snellings, A. Bazzoni, and K. Scrivener, The existence of amorphous phase in portland cements: physical factors affecting Rietveld quantitative phase analysis, Cem. Concr. Res, vol.59, pp.139-146, 2014.

G. L. Saoût, T. Füllmann, V. Kocaba, and K. Scrivener, Quantitative study of cementitious materials by X-ray diffraction/Rietveld analysis using an external standard, 12Th International Congress on the Chemistry of Cement, 2007.

K. Scrivener, T. Füllmann, E. Gallucci, G. Walenta, and E. Bermejo, Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods, Cem. Concr. Res, vol.34, issue.9, pp.1541-1547, 2004.

R. Jenkins and R. Snyder, Introduction to X-ray Powder Diffractometry, 1996.

K. Scrivener, R. Snellings, and B. Lothenbach, A Practical Guide to Microstructural Analysis of Cementitious Materials, 2016.

Y. Suda, T. Saeki, and T. Saito, Relation between chemical composition and physical properties of CSH generated from cementitious materials, J. Adv. Concr. Technol, vol.13, issue.5, pp.275-290, 2015.

F. Nishi, Y. Takeuchi, and I. Maki, Tricalcium silicate Ca 3 O [SiO 4 ]: the monoclinic superstructure, Z. Krist. Crystalline Mater, vol.172, issue.1-4, pp.297-314, 1985.

W. Mumme, R. Hill, G. Bushnell-wye, and E. Segnit, Rietveld crystal structure refinements, crystal chemistry and calculated powder diffraction data for the polymorphs of dicalcium silicate and related phases, Neues Jb. Mineral. Abh, vol.169, issue.3, 1995.

L. Alarcon-ruiz, G. Platret, E. Massieu, and A. Ehrlacher, The use of thermal analysis in assessing the effect of temperature on a cement paste, Cem. Concr. Res, vol.35, issue.3, pp.609-613, 2005.

V. Kocaba, Development and Evaluation of Methods to Follow Microstructural Developments of Cementitious Systems Including Slags, 2010.

K. J. Krakowiak, J. J. Thomas, S. Musso, S. James, A. Akono et al., Nano-chemo-mechanical signature of conventional oil-well cement systems: effects of elevated temperature and curing time, Cem. Concr. Res, vol.67, pp.103-121, 2015.

S. Diamond, Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based materials, Cem. Concr. Res, vol.30, issue.10, pp.1517-1525, 2000.

A. Muller, K. Scrivener, A. Gajewicz, and P. Mcdonald, Use of bench-top NMR to measure the density, composition and desorption isotherm of C-S-H in cement paste, Microporous Mesoporous Mater, vol.178, pp.99-103, 2013.

B. Lothenbach, T. Matschei, G. Möschner, and F. P. Glasser, Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement, Cem. Concr. Res, vol.38, issue.1, pp.1-18, 2008.

É. Nauleau, ÉVolution au cours du temps des propriétés physiques et mécaniques des matériaux cimentaires d'un puit géothermique basse énergie, 2013.

W. Kurdowski, Ch. Special Cements), pp.603-659, 2014.

B. Z. Dilnesa and ;. Lausanne, Fe-containing Hydrates and Their Fate During Cement Hydration: Thermodynamic Data and Experimental Study, 2011.

M. Vespa, E. Wieland, R. Dähn, and B. Lothenbach, Identification of the thermodynamically stable fe-containing phase in aged cement pastes, J. Am. Ceram. Soc, vol.98, issue.7, pp.2286-2294, 2015.

G. Geng, D. A. Kilcoyne, .. J. Benmore, and P. J. Monteiro, Multi-technology Investigation of the Atomic Structure of Calcium Silicate Hydrates. Multi-technology Investigation of the Atomic Structure of Calcium, 14Th International Congress on the Chemistry of Cement, pp.13-16, 2015.

J. I. Bhatty, K. J. Reid, D. Dollimore, G. A. Gamlen, R. J. Mangabhai et al., The Derivation of Kinetic Parameters in Analysis of Portland Cement for Portlandite and Carbonate by Thermogravimetry, Compositional Analysis by Thermogravimetry ASTM International, 1988.

Z. ?auman, Carbonization of porous concrete and its main binding components, Cem. Concr. Res, vol.1, issue.6, pp.645-662, 1971.

A. Morandeau, M. Thiéry, and P. Dangla, Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties, Cem. Concr. Res, vol.56, pp.153-170, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00922073

J. Branch, D. Kosson, A. Garrabrants, and P. He, The impact of carbonation on the microstructure and solubility of major constituents in microconcrete materials with varying alkalinities due to fly ash replacement of ordinary Portland cement, Cem. Concr. Res, vol.89, pp.297-309, 2016.

T. F. Sevelsted, J. Skibsted, C. , C. , and C. Samples, sup 13c, sup 27al and sup 29si MAS NMR spectroscopy, vol.71, pp.56-65, 2015.

J. Rivas-mercury, P. Pena, A. De-aza, and X. Turrillas, Dehydration of Ca 3 Al 2 (SiO 4 ) y(OH) 4(3 ?y) (0 < y < 0.176) studied by neutron thermodiffractometry, J. Eur. Ceram. Soc, vol.28, issue.9, pp.1737-1748, 2008.

, ) 2 phase transformation upon thermal treatment in air, J. Am. Ceram. Soc, vol.91, issue.2, pp.263-271, 2008.

B. Dilnesa, E. Wieland, B. Lothenbach, R. Dähn, and K. Scrivener, Fe-containing phases in hydrated cements, Cem. Concr. Res, vol.58, pp.45-55, 2014.

R. F. Feldman, Factors affecting Young's modulus-porosity relation of hydrated Portland cement compacts, Cem. Concr. Res, vol.2, issue.4, pp.375-386, 1972.

A. Bentur, R. L. Berger, J. H. Kung, N. Milestone, and J. Young, Structural properties of calcium silicate pastes: II, effect of curing temperature, J. Am. Ceram. Soc, vol.62, issue.7-8, pp.362-366, 1979.

M. B. Pinson, E. Masoero, P. A. Bonnaud, H. Manzano, Q. Ji et al., Hysteresis from multiscale porosity: modeling water sorption and shrinkage in cement paste, Phys. Rev. Appl, vol.3, issue.6, p.64009, 2015.

H. M. Jennings, J. J. Thomas, J. S. Gevrenov, G. Constantinides, and F. Ulm, A multi-technique investigation of the nanoporosity of cement paste, Cem. Concr. Res, vol.37, issue.3, pp.329-336, 2007.

A. Bentur, R. L. Berger, J. H. Kung, N. Milestone, and J. Young, Structural properties of calcium silicate pastes: II, effect of curing temperature, J. Am. Ceram. Soc, vol.62, issue.7-8, pp.362-366, 1979.

H. M. Jennings, J. J. Thomas, D. Rothstein, and J. J. Chen, Handbook of Porous Solids, Cement as Porous Materials, pp.2971-3028, 2008.

J. I. Escalante-garcia and J. H. Sharp, Variation in the composition of C-S-H gel in Portland cement pastes cured at various temperatures, J. Am. Ceram. Soc, vol.82, issue.11, pp.3237-3241, 1999.

M. C. Lewis, Heat Curing and Delayed Ettringite Formation in Concretes, Imperial College London, 1996.

I. Richardson and G. Groves, Models for the composition and structure of calcium silicate hydrate (C-S-H) gel in hardened tricalcium silicate pastes, Cem. Concr. Res, vol.22, issue.6, pp.1001-1010, 1992.

J. Escalante-garcia, G. Mendoza, and J. Sharp, Indirect determination of the Ca/Si ratio of the CSH gel in Portland cements, Cem. Concr. Res, vol.29, issue.12, pp.1999-2003, 1999.

A. Muller, K. Scrivener, A. Gajewicz, and P. J. Mcdonald, Densification of C-S-H measured by 1h NMR relaxometry, J. Phys. Chem. C, vol.117, issue.1, pp.403-412, 2013.

J. J. Thomas and H. M. Jennings, A colloidal interpretation of chemical aging of the C-S-H gel and its effects on the properties of cement paste, Cem. Concr. Res, vol.36, issue.1, pp.30-38, 2006.

X. Cong and R. Kirkpatrick, Effects of the temperature and relative humidity on the structure of C-S-H gel, vol.25, pp.1237-1245, 1995.

I. G. Richardson, Model structures for C-(A)-S-H(I), Acta Crystallogr. Sect. B: Struct. Sci. Cryst. Eng. Mater, vol.70, issue.6, pp.903-923, 2014.
DOI : 10.1107/s2052520614021982

URL : http://journals.iucr.org/b/issues/2014/06/00/hw5035/hw5035.pdf