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Valorisation optimale asymptotique avec risque
asymétrique et applications en finance

Résumé : Cette thése est constituée de deux parties qui peuvent étre lues indépendamment.

Dans la premiere partie de la these, nous étudions des problemes de couverture et de valorisation
d’options liés a une mesure de risque. Notre approche principale est l'utilisation d’une fonction
de risque asymétrique et d’'un cadre asymptotique dans lequel nous obtenons des solutions
optimales a travers des équations aux dérivées partielles (EDP) non-linéaires.

Dans le premier chapitre, nous nous intéressons a la valorisation et la couverture des options
européennes. Nous considérons le probléme de I'optimisation du risque résiduel généré par une
couverture a temps discret en présence d’un critere asymétrique de risque. Au lieu d’analyser le
comportement asymptotique de la solution du probléme discret associé, nous avons étudié la
mesure asymétrique du risque résiduel intégré dans un cadre Markovian. Dans ce contexte, nous
montrons I'existence de cette mesure de risque asymptotique. Ainsi, nous décrivons une stratégie
de couverture asymptotiquement optimale via la solution d'une EDP totalement nonlinéaire.

Le deuxiéme chapitre est une application de cette méthode de couverture au probleme de
valorisation de la production d’une centrale. Puisque la centrale génére de cofits de maintenance
qu’elle soit allumée ou non, nous nous sommes intéressés a la réduction du risque associé aux
revenus incertains de cette centrale en se couvrant avec des contrats a terme. Nous avons étudié
I'impact d’un co(it de maintenance dépendant du prix d’électricité dans la stratégie couverture.

Dans la seconde partie de la thése, nous considérons plusieurs problémes de contréle liés a
I’économie et la finance.

Le troisiéme chapitre est dédié a I'étude d’une classe de probleme du type McKean-Vlasov
(MKV) avec bruit commun, appelée MKV polynomiale conditionnelle. Nous réduisons cette classe
polynomiale par plongement de Markov a des problemes de controle en dimension finie. Nous
comparons trois techniques probabilistes différentes pour la résolution numérique du probléme
réduit : la quantification, la régression par randomisation du controle et la régression différée.
Nous fournissons de nombreux exemples numériques, comme par exemple, la sélection de
portefeuille avec incertitude sur une tendance du sous-jacent.

Dans le quatrieme chapitre, nous résolvons des équations de programmation dynamique associées
a des valorisations financieres sur le marché de ’énergie. Nous considérons qu'un modele calibré
pour les sous-jacents n’est pas disponible et qu’un petit échantillon obtenu des données historiques
est accessible. En plus, dans ce contexte, nous supposons que les contrats a terme sont souvent
gouvernés par des facteurs cachés modélisés par des processus de Markov. Nous proposons
une méthode nonintrusive pour résoudre ces équations a travers les techniques de régression
empirique en utilisant seulement l'historique du log du prix des contrats a terme observables.

Mot-clés : Couverture discrete, Risque asymétrique, Optimalité asymptotique, Gestion des
colits, Equations aux Dérivées Partielles Non-linéaires Controle du type McKean-Vlasov, Classe
polynomiale, Quantification, Régression différée, Randomisation du contrble, Equations de
programmation dynamique discretes, Régression empirique, Méthodes de ré-échantillonnage,
Modeles multi-facteurs, Marché d’électricité.






Asymptotic optimal pricing with asymmetric risk and
applications in finance

Abstract: This thesis is constituted by two parts that can be read independently.

In the first part, we study several problems of hedging and pricing of options related to a risk
measure. Our main approach is the use of an asymmetric risk function and an asymptotic
framework in which we obtain optimal solutions through nonlinear partial differential equations
(PDE).

In the first chapter, we focus on pricing and hedging European options. We consider the
optimization problem of the residual risk generated by discrete-time hedging in the presence
of an asymmetric risk criterion. Instead of analyzing the asymptotic behavior of the solution to
the associated discrete problem, we study the integrated asymmetric measure of the residual
risk in a Markovian framework. In this context, we show the existence of the asymptotic risk
measure. Thus, we describe an asymptotically optimal hedging strategy via the solution to a
fully nonlinear PDE.

The second chapter is an application of the hedging method to the valuation problem of the
power plant. Since the power plant generates maintenance costs whether it is on or off, we are
interested in reducing the risk associated with its uncertain incomes by hedging with forwards
contracts. We study the impact of a maintenance cost depending on the electricity price into the
hedging strategy.

In the second part, we consider several control problems associated with economy and finance.

The third chapter is dedicated to the study of a McKean-Vlasov (MKV) problem class with
common noise, called polynomial conditional MKV. We reduce this polynomial class by a Markov
embedding to finite-dimensional control problems. We compare three different probabilistic
techniques for numerical resolution of the reduced problem: quantization, control randomization
and regress later. We provide numerous numerical examples, such as the selection of a portfolio
under drift uncertainty.

In the fourth chapter, we solve dynamic programming equations associated with financial
valuations in the energy market. We consider that a calibrated underlying model is not available
and that a limited sample of historical data is accessible. In this context, we suppose that hidden
factors modeled by Markov processes govern the forward contracts. We propose a non-intrusive
method to solve these equations through empirical regression techniques using only the log price
history of observable futures contracts.

Keywords: Discrete hedging, Asymmetric risk, Asymptotic optimality, Cost management, Non-
linear Partial Differential Equations, McKean-Vlasov control, Polynomial class, Quantization,
Regress later, Control randomization, Discrete dynamic programming equations, Empirical
regression, Resampling methods, Multi-factor models, Electricity market.
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Introduction générale

Le présent travail est consacré a la solution des problemes de valorisation et de couverture des
options liées au marché de I'électricité. Il est également dédié aux méthodes numériques pour
une classe de problemes de controle stochastique du type McKean-Vlasov liés a des questions
financieres, comme par exemple, la sélection de portefeuille sous incertitude de tendance du sous-
jancent. Dans une derniére partie, n’ayant aucun accés a un modeéle multifactoriel complétement
calibré pour les prix a terme, nous proposons un algorithme Monte Carlo stratifié non-intrusif
pour résoudre le probleme de valorisation des options Bermudéennes et Swing.

Dans la Partie I, nous étudions des problémes de couverture et de valorisation des options
européennes en tenant compte d’'une mesure de risque asymétrique. L’approche principale est
l'utilisation d’un cadre asymptotique afin d’obtenir des politiques de valorisation/couverture
optimales a travers des équations aux dérivées partielles nonlinéaires.

Dans le Chapitre 1, nous considérons l'erreur résiduelle produite par un trading en temps discret.
Nous supposons qu’un trader veut trouver des stratégies pour le portefeuille de couverture de
sorte que l'erreur de discrétisation soit faible pénalisant les scénarios de pertes plus ceux de
gains : nous cherchons a obtenir une politique de valorisation/couverture avec un grand nombre
de dates de rebalancement du portefeuille pour laquelle I'erreur de couverture induite dans le
cadre d’'une mesure de risque asymétrique est minimisée. Plus précisément, nous définissons
une stratégie optimale en terme de la solution d’'un probleme d’optimisation lié a I'erreur
asymptotique. Dans ce cas, la fonction valeur optimale (resp., couverture) est la solution (resp.,
le gradient de la solution) d’une EDP totalement non linéaire, dont le terme nonlinéaire dépend
de la dérivée seconde de la solution. En fait, ce terme de nonlinéarité caractérise notre stratégie
asymptotiquement optimale. En dimension 1, une formulation quasi-explicite pour ce terme est
obtenue.

Dans le Chapitre 2, nous étudions le probléme d’évaluation d’une centrale électrique en tant
qu'une application de la méthode de couverture précédente avec de faibles cotits proportionnels
par pas de temps. Considérant que certains cotits (d’entretien) doivent étre payés indépendam-
ment du fait qu'une centrale électrique produise ou non de I'électricité, nous sommes intéressés
a valoriser un revenu associé a la vente de sa production dans le futur. En fait, le propriétaire
de I'usine est prét a réduire le risque d’'un revenu incertain en effectuant des opérations de cou-
verture sur le marché a terme. Par conséquent, la stratégie de couverture optimale est obtenue
en minimisant le risque asymptotique associé a une erreur de discrétisation, y compris les cofits
proportionnels par pas de temps. Nous avons étudié 'impact des cofits (de maintenance) dans la
stratégie de couverture, lorsque ces cofits dépendent du prix de I'électricité.

Dans la Partie II, nous avons étudié plusieurs méthodes numériques pour résoudre une classe de
problémes de contrdle associés a des interactions a champ moyen avec informations partielles.
Nous avons également étudié une méthode de ré-échantillonnage stratifiée non-intrusive pour
résoudre des équations de programmation dynamique discretes en présence de peu de données
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historiques.

Dans le Chapitre 3, nous étudions une classe de contréle du type McKean-Vlasov (MKV) en
présence d’un bruit commun, appelé MKV polynomial conditionnel. Cette classe est une gé-
néralisation de la classe de contr6le MKV stochastique linéaire quadratique. Ces problemes
découlent de la formulation asymptotique d’un équilibre coopératif dans une large population de
joueurs avec une interaction a champ moyen ou d’un probléme de contréle avec fonction de cofit
dépendant d’une fonctionnelle nonlinéaire de la distribution du processus d’état. Aprés avoir
réduit cette classe polynomiale par un plongement de Markov a des problémes de contrdle en
dimension finie, nous proposons une discussion et une comparaison de trois méthodes probabi-
listes différentes pour la résolution numérique du probléme réduit : quantification, régression par
controle aléatoire et régression différée. Nous avons résolu numériquement plusieurs problémes
liés a ce contréle MKV polynomial : la sélection et la liquidation du portefeuille sous incertitude
de la tendance ainsi qu'un modeéle de risque interbancaire systémique avec observation partielle.

Dans le Chapitre 4, nous nous intéressons a la résolution d’équations de programmation dyna-
mique (DPE) associées a une valorisation financiére sur le marché de I'énergie. En particulier,
nous nous concentrons sur le pricing des options Bermudéennes et Swing, ou les actifs sous-
jacents sont des contrats a terme. Nous recherchons une méthode stratifiée non-intrusive pour
résoudre ces équations en utilisant uniquement des données historiques, sans un modeéle sous-
jacent calibré. Sur le marché de I'énergie, les contrats a terme sont souvent gouvernés par
des facteurs de Markov cachés (modélisation multifactorielle). Par conséquent, le probleme de
valorisation de ces options produit des DPE dépendants de ces facteurs non observables. Puisque
Nnous avons acces aux prix a terme mais pas aux facteurs cachés, nous proposons une méthode
de rééchantillonnage uniquement sur les contrats observables.

I. Mesure de risque asymétrique pour la valorisation et couverture
d’options

1. Valorisation et couverture d’options a l’aide d’'une mesure de risque asymé-
trique : Optimalité asymptotique

En finance, la valorisation et la couverture des flux financiers futurs sont des préoccupations
majeures. D’un point de vue théorique, ces problémes sont bien établis (voir par exemple [KS98]).
En pratique, les traders couvrent leurs contrats en échangeant uniquement a des dates discretes,
disons tg = 0 < t; < ... <ty =T, ce qui génere un risque résiduel. Ici, ils ont I'intention de
couvrir le flux Hp a I'instant T en utilisant d produits de couverture dont les prix sont indiqués
par X = (XU ... X)) Pour cela, nous définissons le risque local &, associé aux dates de
trading ¢, et t,,,1 donnés par

g'fl = ‘/;/nJrl - ‘/tn - ’19tn ’ th+1 - Xt”’
ot V désigne le processus d’évaluation, ¥ = (91, ..., 9(4) indique le processus de couverture

avec ¥ étant le nombre d’actions investi dans le i-éme instrument de couverture.

Nous cherchons a trouver les régles d’évaluation/couverture (V) minimisant ce risque résiduel
en utilisant une fonction de risque ¢. En comparaison des résultats existants (voir par exemple,
[Sch99], pour la minimisation du risque local quadratique), nous choisissons une fonction ¢
pénalisant les profits (£, < 0) et les pertes (£, > 0) de maniére asymétrique. Dans ce

2



contexte, nous étudions le risque local intégré Ry sous la forme

N-1
NV 9) = > E[((E)],

n=0

ou la fonction de risque / est choisie comme
ly(y) = (L+ v sgu(y))*y?/2, v e (0,1).

Le parametre v, dans la fonction de risque /., représente 'aversion au risque des investisseurs
pénalisant davantage les pertes que les profits (voir la Figure 1.1).

Approche asymptotique standard. Dans ce contexte, nous visons a étudier 'asymptotique du
minimum
min Ry (V) ¥), (D
(Vid)eA
avec un grand nombre N de dates de couverture dans le cas équidistant ¢,, = nAt avec pas de
temps At = T'/N. Le minimum (1) est calculé sur 'ensemble A de toutes les paires de processus
(V, ) intégrable, adaptées a la filtration (F;):>0, sous la contrainte de réplication Vi = Hy.

Il existe dans la littérature quelques résultats dans cette direction :

 Dans [Pha00], 'auteur étudie une fonction LL,, de risque des pertes et avec un nombre fixe
des dates de couveture;

* Dans [AM11], les auteurs analysent des stratégies pseudo-optimales et obtiennent des
résultats asymptotiques dans le cas d’une fonction de risque de classe C3.

Nous remarquons que la discontinuité de la dérivée seconde /7 rend l'analyse difficile et
change completement la nature des résultats ultérieurs. En bref, les références précédentes
prennent en compte des contextes et difficultés différents des notres.

Approche asymptotique avec évaluation par EDP. Au lieu de résoudre le probléeme (1)
dans le régime asymptotique N — +o0, nous abordons un probléme modifié en utilisant une
évaluation par EDP. Nous supposons que les instruments de couverture X sont modélisés par

dX; = ,u(t, Xt) + O‘(t, Xt) th,

ou W est un mouvement brownien et les flux financiers futurs sont de la forme Hy = g(Xr).
Ensuite, nous supposons que le flux aléatoire est évalué de maniére exogéne par un processus
d’évaluation V; = v(t, X}), pour une fonction v donnée. La fonction v joue le réle d’'un prix
de référence. Compte tenu de cette valorisation exogéne, le trader déterminera comment se
couvrir sur chaque intervalle [¢,, t,+1] en choisissant une regle d’évaluation/couverture adaptée
(Vi,, D1, et en considérant le risque local conditionnel R, .,

Ry, = E[gw(vtnﬂ - Vt - étn Xt — Xt,) } thn]~

n

Inspiré par la relation entre les valorisations dynamiques des risques et les équations différen-
tielles stochastiques rétrogrades nonlinéaires (voir par exemple [Cre13]), le trader paramétrise
sa regle de valorisation/couverture par une fonction f, éventuellement non linéaire, telle que

‘7tn = uthrl(tn?th)a ﬁtn = D:Uutn+1(tna th)7

3
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ol u!n+! est la solution définie sur 'intervalle [t,,t,+1] de la f-EDP suivante :

e La fonction ut"+1 : [t,, t,11] x R? — R satisfait

Wt ) + = Tr[aaTD2 uln (¢, @) + ft, @0 (8, x), Dyuts+ (t,x), D2ul™+i (t,x)) = 0,
(2)
pour tout (¢t,7) € [t,,t,1[xRY, avec condition terminale u'"+!(t,,1,7) = v(tyy1,7) &
l'instant ¢, 1 ;

* Pour des fonctions continuous o : [0, 7] x R — R4 f:[0,T] x R x R x R% x R¥*¢ — R;
et un prix de référence v(t,11,-) a I'instant ¢,,,1 ;

Dans ce contexte, il est maintenant naturel d’analyser le comportement asymptotique du risque
local conditionnel intégré aprés une renormalisation appropriée

N-—
RN,'y v, f Z n’y

Notre contribution principale au Chapitre 1 est le résultat suivant (voir Théoreme 1.6, page 34).

Résultat Principal 1 (Theoréme 1.6). Soit B : [0,1] x Q — RY un autre mouvement brownien
standard indépendant de W. Sous les hypothéses 1.1-1.5, la limite

R, (v, f) = lim Ry, (v, f)

existe et est donnée par
0
J f e f B}, G, dBy—F§ FEH—th B;,thBg/—i—HGtBQHQ/Q dé dt|,
0

F, = f(t, Xy, v(t, Xy), Dov(t, X;), D2v(t, X;)) € R,
Gy = (oT(D2v)o)(t, Xy) € R¥*,

Par conséquent, nous discutons de I'existence d’un terme de nonlinéarité optimal pour la f*-EDP
telle que I'évaluation par f*-EDP minimise le risque asymptotique dans le sens : R, (v, f*) <
R, (v, f), pour toute nonlinéarité admissible f. De plus, ce terme de nonlinéarité optimal f* est
quasi-explicit en dimension 1 (voir (1.22), page 39) et dépend du parametre de risque v, de la
dérivée seconde valorisation de référence et de la volatilité du processus de prix. Par conséquent,
un choix naturel et consistant pour la regle de valorisation/couverture peut étre la solution a la
f*-EDP (2) avec le payoff g : R? — R étant la condition terminale & I'horizon 7.

Ce chapitre est tiré d’'un article rédigé en collaboration avec Emmanuel Gobet et Xavier Warin
[GPW18].

2. Mesure de risque asymmétrique asympotique : Application a valorisation des
actifs physiques

Dans le Chapitre 2, nous fournissons des politiques d’évaluation/couverture pour les revenus

futurs liés a la production de centrales électriques a I'aide d’une évaluation asymétrique du
risque . Depuis la déréglementation des marchés de I'énergie, plusieurs marchés spot et futurs
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ont été créés pour échanger de I’électricité. Aprés cela, les propriétaires de centrales électriques
commencent a faire face au probléeme de I’évaluation la production de leur centrales, qui
dépend du prix spot de I'électricité dans le futur.

En pratique, les propriétaires des centrales effectuent une couverture discréte a des dates,
to=0<1t; <...<ty =T en utilisant un actif de couverture X afin de réduire le risque associé
a un aléa. revenu Hp a une date future 7'. Cette couverture discrete génére un risque résiduel :

N-1

5 = HT - Z /lgtn (th+1 - th)’
n=0

* ¢ indique le nombre d’actions investies dans le actif de couverture;

* X est un contrat a terme F'(-,T") avec livrasion 7T'.

Ensuite, ils cherchent a trouver la regle d’évaluation/couverture en tenant compte du bilan local
&, pénalisant &, < 0) via une fonction de risque asymétrique ¢ :

En = Vinir = Vo — 9, (Xt — Xt),

n+1 n+1

ou V représente le processus d’évaluation sous la contrainte de réplication Vi = Hp. Notez que
les propriétaires des centrales :

* veulent obtenir un risque résiduel £ avec un petit écart-type;
» préferent les scénarios profitables ou &,, > 0.

En réalité, la centrale génere des cofits fixes, qu’elle produise de 1’électricité ou non. Ces cofits
sont appelés ici cofits fixes :

* ils comprennent les cofits d’investissement et d’amortissement ;
* ils excluent les cofits de carburants (charbon, gaz, uranium).

Les producteurs d’électricité sont contraints de trouver aujourd’hui un prix équivalent au revenu
futur généré par leur centrale afin de I'enregistrer dans leur bilan comptable.

En fait, ils ne font face a aucun risque financier en raison de ce revenu. D’autre part, parce
qu’ils ne peuvent pas augmenter leur revenu en influencant le prix spot de ’électricité S, ils
préferent obtenir une valeur certaine en vendant leur production future au lieu de recevoir le
montant aléatoire positif Hr = g(St).

Sur le plan économique, lorsque le prix spot de I’électricité est élevé, nous exigeons que la
centrale fasse face a une demande plus élevée. En effet, un prix élevé est produit par une
demande croissante. Par conséquent, nous augmentons la production en démarrant plus souvent
la centrale électrique. C’est la raison pour laquelle nous supposons une dépendance des cofits ¢
sur le prix au comptant de 'électricité S.

Valorisation asymmétrique de risque. Considérant les temps de couverture équidistants
t, = nAt avec le pas de temps At = T'/N, nous prenons en compte les cofits fixes proportionnels
au pas de temps At en soustrayant ¢(S;, )At du bilan locale &,. Dans un cadre analogue au
Chapitre 1, nous étudions I'asymptotique du risque intégré Ry

1 N—-1
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Ici, nous définissons
Gy(y) = (1+ 7 sen(y))*v?/2, 7ve(—1,0),

ou le parametre ~y représente le désir du producteur de réduire I'aléa des revenus futurs. Contrai-
rement au parametre de risque du Chapitre 1, ce parametre v prend des valeurs dans (—1,0)
(voir Figure 2.1).

En vue d’étudier le risque intégré Ry - dans le régime asymptotique N — +oc0 avec une fonction
de risque asymétrique £, nous suivons une approche d’évaluation de EDP décrite au Chapitre
1. Nous supposons I'existence d’un processus d’évaluation exogene V; = v(¢t, X;) défini par une
fonction v. Par exemple, v est un prix de référence obtenu par le producteur d’électricité lorsque
aucun cof(it n’est pris en compte. Maintenant, le propriétaire de la centrale détermine sa position
de couverture sur chaque intervalle [¢,, t,+1] en choisissant une regle d’évaluation/couverture
adaptée (V;, , 9, ). Pour cela, nous considérons le risque conditionnel R, , en utilisant la fonction
de risque ¢,

Rn,'y = E[é'y <‘/tn+1 - ‘Zn - 515" (th+1 - th) - C(Stn)At> ‘—Ftn] .

Cette fois, la régle d’évaluation/couverture (V;,, gtn) du producteur d’électricité est donnée par
‘/tn = ut’ﬂ+1(tn’th)7 ﬂtn = ut$n+1(tn?th)7

et est paramétrée par une fonction f, éventuellement non linéaire, a travers la solution u!»+! :
[tn,tns1] x R dela f-EDP avec condition terminale u'"+1(¢,11, ") = v(t,41,-) & I'instant ¢,,,1 (de
facon analogue a la version unidimensionnelle de (1.5) mais avec terme de diffusion égal a
(t,T)z, avec une fonction de volatilité 5 (¢, T) = gge—%(T—1).
Ainsi comme dans le Chapitre 1, nous analysons le régime asymptotique du risque conditionnel
intégré

N—1

1
RN,’Y(va) = Kt Z E[Rn,’y]v
n=0

lorsque le nombre N des dates de couverture tends ver I'infini.

Notre contribution principale au Chapitre 2 est le résultat suivant (voir Théoreme 2.9, page 71).
C’est une version du Théoréme 1.6 en présence de cofits fixes proportionnels au pas de temps.

Résultat Principal 2 (Théorém 2.9). Soit B : [0,1] x Q — R un autre mouvement Brownian
standard indépendant de W. Sous les hypothéses 2.3-2.8, la limite de Ry ~(v, f) quand N — oo
existe et est donnée par

B2 ¢

T r1
Rw(v,f)=E[ jo jo €Q<J1<v,<t,xt>> — o, <t,Xt>>e>

(ugw, (8, X026 — T, (6 X0) I 0, (X 22 1 4o <t,Xt>>|ZBf> a0 dt],

Jo(v, (8, X1)) = f(t, X, v(t, X¢), va(t, Xp), vaa(t, Xt)) + c(Xy) € R,
J1(v, (t, X1)) = 6%(t, T) X2 vee (t, X¢) € R.

Comme dans le Chapitre 1, I'idée est d’obtenir un terme de nonlinéarité optimal f* minimisant
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le risque asymptotique :
R, (v, [*) < Ry(v, f),

pour toute nonlinéarité admissible f. Une fois de plus, ce terme de nonlinéarité optimal f* est
explicite et dépend de +, de la dérivée seconde de v et de la fonction de cofit ¢(x). Enfin, le
producteur d’électricité choisira la regle suivante

‘/tn = U* (tn? th )7 ﬁtn = 'U; (tn? th )7

ol v* est la solution v* : [0, 7] x R? de la f*-EDP avec la condition terminale v*(T,-) = g(-) &
l'instant 7.

Pour les résultats numériques, nous prenons un cofit fixe dépendant du niveau du prix spot
de l’électricité comme une fonction convexe (ou concave) c(x). Nous calculons la solution
numérique de la f*-EDP pour une fonction payoff du type call et differents modeles pour c(x).

Ce chapitre est tiré d’un article en cours d’écriture en collaboration avec Clémence Alasseur,
Emmanuel Gobet et Xavier Warin.

II. Méthodes numériques en controle stochastique

3. Probleme de controle du type McKean-Vlasov avec bruit commun : Quelques
méthodes probabilistes numériques

Dans le Chapitre 3, nous nous intéressons au probléme de contréle du type McKean-Vlasov (MKV)
sous observation partielle et bruit commun. La formulation est décrite de la maniére suivante.
Sur un espace de probabilité (2, F,P) équipé de deux mouvements browniens indépendants B
et WY, nous considérons la dynamique stochastique contrdlée du type McKean-Vlasov dans R” :

dX, — b(XS,P)Vf°, ozs) ds + a(XS,IP’XWO, a5>st + o0 (XS,IP)V(VO, ozs) dw?,

. IP’E{VO indique la distribution de X conditionnellement & W?;
o FO = (F?);>0 est la filtration naturelle générée par W;

e le contrdle « est FO-progressive a valeurs dans un espace polonais A.

La fonction de cofit associée a I'’équation stochastique du type McKean-Vlasov (9) pour un
controble « est

T
WO WO
J(a) = E[ L FC P ) + (X, BV |
et l'objectif est de minimiser sur un ensemble admissible A de controdles la fonctionnel de coft :

o=

Notre but est d’étudier certaines classes de problemes de contréle MKV, qui peuvent étre
réduits a des problemes de dimension finie en vue d’une résolution numérique.

Une classe de modéles polynomiaux et un plongement markovien. Premiérement, nous
considérons une classe de modeles ot les coefficients de 'équation MKV sont linéaires par rapport
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la variable d’état X (voir (3.9)), alors que les fonctions de cofit courant et de cofit terminal sont
polynomiales dans la variable d’état dans le sens suivant

7 g( —90 Z

pour un entier p > 1. Deuxiemement, nous supposons que tous les coefficients dépendent de y a
travers ses premiers moments p (voir (3.10)).

f(xnu'a ) fO M, a

i M%

Etant donné le processus contrdlé X = X< solution de la dynamique stochastique du type
McKean-Vlasov (9), nous notons

v} = EQXFWOl, k=1,....p.

A partir des hypothéses linéaires et polynomiales (par la formule d’Ito et les espérances condi-
tionnelles), nous dérivons la dynamique de (Y!,Y?2,... YP) comme

{ d}/tk = Bk(ytlﬂy;?v'--’y;fpaat)dt+Ek(}/tl?yggv---vnpaat)dwtov k= 1"'-71)7 (3)

pour certaines fonctions By, ¥, (voir page 95) dépendant des moments conditionnels (Y, Y2,
.., YP), alors que la fonctionnelle de cofit est écrite sous une forme réduite

T
J(a) = E”O FL Y2, YR a)dt + g(YE, YA, ,Y;)]. 4

Le probleme de controle du type McKean-Vlasov est réduit dans ce cadre polynomial a des
problémes de contréle fini-dimensionnels avec des variables controlées (Y!, Y2, ... Y?) qui
sont F-adaptées.

Méthodes numériques probabilistes. En vue de résoudre le probléme réduit (3)-(4), nous
choisissons la formulation suivante. Soit Z = (Y}, Y?2,...,YP) un processus contr6lé par un
controle adapté o prenant des valeurs dans A, solution de I'équation

dZ§ = b(Z7 an)dt + o0( 27, ar) AW

et

T
Itz 0) = E[ [ sz aos + gizp|z - ]
t

une version dynamique de la fonctionnelle de cofit J(«).

En ayant une discrétisation en temps 0 = ¢, t1, ..., ty = T, nous écrivons 'approximation
d’Euler de Z;* :

Z =28 + (27, o, ) At + 00( 27, ay, ) AW,

n+1

et 'équivalent discret de J(¢, z, o) :

J(tp, 2z, ) = [Zth,at)AlH-g( )

=n

Z& = z].

\

Maintenant, la fonction valeur V(tn,2) = sup(, )N c4J(tn, 2, ) est représentée a travers
I’équation de programmation dynamique suivante, étant donnée la condition terminale g(z)
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connue,

V(Tn, z) = g(2),

5
V(tn, 2) = sup {f(Zg, )AL + Bo[V (tut1, Zi, 1) | Ze, = z]}. )

L’équation de programmation dynamique (5) conduit a des méthodes numériques qui approchent
itérativement la fonction valeur de maniére rétrograde, a partir de la condition terminale. La
principale difficulté dans la mise en ceuvre d’une telle approche réside dans I’estimation des
espérances conditionnelles E, [V (t,1, Zy,,., @)|Zt, = z].

Notre premiére contribution dans le Chapitre 3 est la description (voir Section 3.3) et I'application
(voir Section 3.4) suivantes.

n+1

Résultat Principal 3. Nous décrivons trois méthodes numériques résolvant des problémes du type
MKYV conditionnels (dans leur version réduite) :

* les techniques de régression de Monte Carlo (par randomisation de controle et par régression
différée) sont une famille d’algorithmes dont Uefficacité repose sur le choix des fonctions de
base utilisées pour projeter les futures fonctions valeur (voir Algorithmes 1 et 2) ;

* les techniques de quantification approchent le processus controlé Zi' avec une chaine de
Markov particuliére a états finis pour laquelle les espérances peuvent étre rapidement estimées
(voir Algorithme 3).

Nous appliquons chacune de ces méthodes a trois applications issues de problémes de controle
du type polynomial MKV sous hypothése d’observation partielle et de bruit commun :

* |'Optimisation de portefeuillle sous l'incertitude de tendance (voir Sous-section 3.4.1), ou
la tendance de I'actif sous-jacent est inconnue et inobservable. D’abord, nous considérons
le probleme d’un trader prét a liquider un grand nombre de parts d’actif dans un temps
fini T en faisant face a un colt d’exécution et a un impact sur les prix du marché. Ensuite,
nous regardons le probleme de sélection d’une stratégie de portefeuille maximisant I'utilité
de la richesse finale.

* le Risque intersystémique avec observation partielle (voir Sous-section 3.4.2). Nous
supposons que les réserves monétaires des N banques, prétant et empruntant les unes
aux autres, satisfont un systéme de diffusion avec une interaction a champ moyen et
un bruit commun. Ensuite, un planificateur social (la banque centrale, par exemple) en
observant seulement le bruit commun agit sur 'intensité des interactions interbancaires
afin de minimiser I'écart entre la réserve de chaque banque et la moyenne globale.

Résultats numériques. Notre deuxieme contribution au Chapitre 3 est les expériences numé-
riques suivantes (voir Section 3.5). Nous avons présenté les résultats de trois exemples différents
d’applications résumées ci-dessous

* Nous avons constaté que les algorithmes de régression de Monte Carlo fonctionnent
correctement dans les problemes de contrdle de la tendance. Dans ces problemes, ils sont
beaucoup plus rapides que la quantification pour une précision similaire. En particulier,
nous avons remarqué que la Régression différée (regress later) est plus fiable que la
randomisation de contréle : le choix d’'une distribution uniforme des points d’apprentissage
sur un intervalle approprié suffit pour obtenir des estimations de haute qualité.
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* D’autre part, la Randomisation du contréle est sensible au choix de la distribution du
contréle randomisé et peu de répétitions sont nécessaires avant de trouver une bonne
distribution de contréle. Nous avons également essayé d’utiliser les méthodes d’itération
de performance ou de re-calcul de trajectoires. Mais, sur les exemples considérés, ces
méthodes prenaient beaucoup de temps et ne contribuaient pas beaucoup a la précision.

* Les techniques de Quantification ont fourni les résultats les plus stables et les plus précis
pour les trois différents cas de problemes de contrdle. De plus, nous pouvons choisir la grille
pour quantifier le processus controlé. Il est possible d’exploiter cette fonctionnalité lorsque
nous avons une idée approximative de 'endroit ou le processus controlé doit étre guidé
par la stratégie optimale (voir le probleme de Liquidation de portefeuille). Par conséquent,
nous devrions construire une grille avec de nombreux points situés la ou le processus est
censé aller.

Ce chapitre est tiré d'un article rédigé en collaboration avec Alessandro Balata, Come Huré,
Mathieu Lauriére et Huyen Pham [BHL*18].

4. Un schéma de ré-échantillonnage stratifié non-intrusif pour les modeles multi-
facteurs : Application en marché de I’énergie

Les équations stochastiques de programmation dynamique sont liées a la résolution de problemes
non-linéaires (contréles stochastiques ou EDP non-linéaires) qui se posent dans presque tous les
domaines de la science, de la gestion des réservoirs d’eau a la finance.

Dans le Chapitre 4, nous visons a résoudre des équations de programmation dynamique (DPE)
liées a des évaluations financiéres sur le marché de I’énergie. Nous nous intéressons ici, par
exemple, a la valorisation des options Bermudéennes ou Swing, ot les actifs sous-jacents sont
des contrats a terme. Ensuite, nous prévoyons de développer un algorithme nonintrusif pour
résoudre ces DPEs en utilisant uniquement les données observables sans la calibration complete
d'un modele.

Dans un premier temps, nous traitons une DPE discrete prenant la forme suivante :

Yn = gn(Xn),
Y; =E[gi(YiH,...,YN,Xi,...,XN) |Xi], i=N-—-1,...,0,

ou X est une chaine de Markov dans R"; et gy, §; sont des fonctions réelles dépendant du
probléme considéré.

Dans notre contexte, le nombre M de données historiques est généralement petit comparé a Nyc.
Ainsi, I'étape de calibration donne une erreur plus grande que celle de régression empirique. C’est
la raison pour laquelle nous effectuons une approche directe consistant a rééchantillonner les
données observées et obtenir directement les fonctions de régression (voir Figure 4.1 décrivant
le passage de 'approche statistique a 'approche avec rééchantillonnage) .

Modéle multi-factoriel pour les contrats a terme. Dans le marché de I'énergie, nous mo-
délisons habituellement le prix a I'instant ¢ d’'un contrat a terme F'(¢,7') comme étant dirigé
par des facteurs de Markov cachés X. Nous obtenons du marché des données observables O a
différents moments ¢ ; typiquement O, est 'ensemble des log prix a terme log F'(¢,T). Lorsque
nous réécrivons le DPE en termes de F'(-,T") sous-jacent (aussi une fonction de X'), nous obtenons
des fonctions de contréle ou des fonctions valeur dépendant des facteurs cachés X . Puisque
ces processus de Markov X ne sont pas observables (nous n’avons aucun acces direct), nous ne
pouvons pas appliquer une méthode de rééchantillonnage (proposée dans [GLZ18], sous le nom
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de Non-Instrusive Stratified Resampler) régénérant chacun de ces facteurs individuellement.
Pour traiter ce probléme, nous modifions le schéma stratifié non-instrusif mentionné ci-dessus
et proposons une méthode de rééchantillonnage uniquement sur les données observables O.

Maintenant, I’équation de programmation dynamique discréte (DDPE) prend une autre forme en
préparation a la méthode de rééchantillonnage sur des données observables O :

Yn = gn(On), (6)
Yi :E[gi(}/i-i-l?"'aYN?Oi?’"7ON> | O’L]7 i:N_lu"'707

oli le processus O est & valeurs dans R.

Approche par rééchantillonnage des données historiques. Pour garantir un schéma précis,
les méthodes de régression Monte Carlo nécessitent généralement que le nombre de simulations
Nyc soit beaucoup plus grand que la dimension de I'espace vectoriel £ (nombre de coefficients).
Notez que les entrées O .= Ol ... ONwc sont échantillonnées & partir d’'un modele estimé
a partir de données de taille M seulement. Dans ce contexte, puisque M est petit, 'erreur du
modele peut étre une préoccupation importante.

Dans [GLZ18], les auteurs concoivent un schéma ot les Ny simulations sont remplacées par
les données observées de taille M. Pour surmonter le probléme des nombreux coefficients a
calculer (malgré le petit nombre de données), ils combinent 'approche de rééchantillonnage avec
une stratégie de stratification et d’approximation locale, appelée schéma NISR (Non-Intrusive
Stratified Resampler). Le point clé dans la partie non-intrusive du schéma est de supposer que
seule la structure du modele pour les données observables O est connue, mais pas leurs valeurs
de parameétre/coefficient. Par ailleurs, la force de la partie stratifiée est le fait que nous avons
des problemes locaux indépendants sur un espace d’approximation de faible dimension. Ensuite,
nous avons une double amélioration : (1) un petit nombre de coefficients a calculer sur chaque
probleme local et (2) la qualité de 'approximation agrégée n’est pas détériorée lorsque le nombre
K de problemes locaux augmente.

Briévement, si nous avions observé les facteurs X, nous les aurions rééchantillonné et utilisé
directement dans le schéma NISR. Dans notre cas, nous n’avons acceés qu’a O, une transformation
affine et partiellement inconnue de X (voir Hypothése 4.1). Nous avons ensuite proposé une
extension du schéma NISR natif prenant seulement O comme entrées. De plus, nous considérons
que le modele multi-factoriel est décrit comme un process d’Ornstein-Uhlenbeck (OU) multidi-
mensionnel (voir Hypothese 4.2), dont les parametres de retour a la moyenne sont supposés
connus (mais pas ceux de volatilité/corrélation).

Notre contribution au Chapitre 4 est le schéma NISR suivant (voir Section 4.3). Nous présen-
tons l'algorithme de régression Monte Carlo NISR en supposant l'accés complet aux données
observables.

Résultat Principal 4 (Schéma NISR sur le processus observable O). Nous avons les étapes
suivantes pour la résolution du DDPE (6)

* A partir de la relation linéaire entre O et X (voir (4.3)), la dynamique de O est aussi un
processus OU (voir Proposition 4.4) :

-~ t
0 = e L4, f T gali=s) (ids +6dW,), forall0<i<j<N,
t;

pour certains coefficients & € R?, ji € R? and & € R¥*™ (oll & est supposé connu).

* En suivant la solution de O (voir (4.7)), nous extrayons la source aléatoire U d’une réalisation
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de I’échantillon de base {O}" : 0 <1i < N} de la maniére suivante

U{Z = O;” — e_d(tj—ti)O;n’ forall0 <i<j<AN.

Inversement, a partir de la seule réalisation de la source aléatoire U™, nous obtenons une
trajectoire correspondante partant & Uinstant t; du point z € R¢

@m‘ (Z, Um) = 676‘(1‘7 )Z +un

4,57 fOFalZO<Z<]<N

Maintenant nous pouvons rééchantillonner plusieures trajectoires partant de différentes condi-
tions initiales (t;, z) grdce a la fonction flux ©; ; (see (4.12)).

Dans K ensembles différents H, (appelés strates) d’une partition de Uespace RY, nous effectuons
une approximation par régression Monte Carlo. Pour cela, nous considérons une mesure de
probabilité v telle que sa restriction vy sur Hy,

est utilisée pour rééchantillonner des trajectoires a partir de différents points initiaux sur Hy.

Selon la Proposition 4.7, la distribution tensorielle du type Pareto v donnée dans UEquation
(4.15) satisfait a une propriété de stabilité de la norme : il existe K > 1 telle que, pour toute
fonction ¢ : R* - R e L2(v), on a

JIEM)( vEPr(dz) KJ v(dz), ie€{0,...,N —1},

nécessaire pour obtenir une correcte propagation des erreurs.

En utilisant la distribution vy, nous obtenons un M-échantillon sur chaque strate H;, a partir
du temps t; jusqu’au temps ty,

O;km = @”(Oka um), forall1 <m < M,

\

ou Ozkm est échantillonné selon la distribution vy indépendamment de i, k, m ;

A partir du M-échantillon Ol ™ nous calculons approximation de la fonction valeur y; dans

Uespace des fonctions de base lmeaires par morceaux Ly, = span{ly,, z11ly,, ..., zqly, }. Ici,
par simplicité, dim(Ly) est indépendant de k, c’est-a-dire, dim(Ly) = d + 1.

Pour Uapproximation locale de y;, nous introduisons Uopérateur Moindres Carrés Ordinaires

(OLS) approximant la fonction C' : R¥*? — R sur Uespace Lj en utilisant I'échantillon
k,1:

O' ) .

2:1+1

OLS ((J, zk,ofﬁfl”) ~ arg min 2 ‘C oty _ g(oikm?

zz-‘rl )

De maniére rétrograde en temps a partir de ¥ = g, nous définissons gM = S 4 AM k].”,l-[k,
ou

~M,k
9 =yl v 6MF A [yileo,
Mk = OLS(CM, Ly, 0L M),

CM(2i501) = g5 (U1 (2i41), Zizisn)-

12



On obtient alors une approximation ¥ de la fonction de régression y; pour tout i dans
{0,...,N}.

Dans I'Algorithme 4, nous observons que I'échantillon source O est une donné d’entrée pour
le schéma de rééchantillonnage stratifié nonintrusif (voir Définition 4.8) a travers la source
aléatoire UM Par conséquent, I’existence de 'approximation de l'algorithme est conditionné
au fait que, pour tout i € {0,..., N}. les données observables O; sont en effet observées. En
outre, nous proposons une version modifiée de ’Algorithme 4 dans le cas ou certains log prix a
terme log F'(¢,T) sont manquants (voir Sous-section 4.4.1).

Ce chapitre est tiré d’un article en cours d’écriture en collaboration avec Emmanuel Gobet et
Jorge Zubelli [GPZ18].
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General Introduction

The present work is devoted to the solution of problems of pricing and hedging of options related
to the electricity market. It is also dedicated to the numerical methods for a class of McKean-
Vlasov stochastic control problems related to financial questions, e.g., the portfolio selection
under drift uncertainty. In the last part, having no access to a fully calibrated multi-factor model
for forward prices, we propose a non-intrusive stratified Monte Carlo algorithm to solve the
pricing problem of Bermudan and Swing options.

In Part I, we study the pricing and hedging of European options taking into account an asymmetric
risk measure. The main approach is the use of an asymptotic framework in order to obtain
optimal pricing/hedging policies through nonlinear partial differential equations.

In Chapter 1, we consider the residual error produced by discrete-time trading. We suppose a
trader wants to find strategies for the hedging portfolio such that the discretization error is small
and penalizing the losses scenarios more the profits ones: we search to get a valuation/hedging
policy at a large number of portfolio rebalancing dates for which the induced hedging error
under an asymmetric risk measure is minimized. More precise, we define an optimal strategy in
terms of the solution to the optimization problem related to the asymptotic expected-error. In
this setting, the optimal value (resp., hedging) function is the solution (resp., the gradient of the
solution) to a fully nonlinear PDE, whose nonlinear term depends on the second-order derivative
of the solution. In fact, this nonlinearity term characterizes our asymptotically optimal strategy.
In dimension 1, a quasi-explicit formulation for this term is derived.

In Chapter 2, we study the valuation problem of a power plant as an application of the previous
hedging method with small costs proportional to the time step. Considering that some (mainte-
nance) costs need to be paid regardless of the fact that a power plant is producing electricity
or not, we are interested to evaluate an income associated to the selling of its production in
the future. In fact, the plant’s owner willing to reduce risk of a uncertain income by hedging
in the forward market. Therefore, the optimal hedging strategy is obtained by minimizing the
asymptotic risk associated to a discretization error including time-step-proportional costs. We
studied impact of the (maintenance) costs into the hedging strategy, when those costs depends
on the electricity price.

In Part II, we investigated several numerical methods to solve a class of control problems
associated to mean-field interactions with partial information. We also studied a non-intrusive
stratified resampler to solve discrete dynamic programming equations in the presence of a small
historical data.

In Chapter 3, we study of a McKean-Vlasov (MKV) control class in the presence of a common
noise, called polynomial conditional MKV. This class is a generalization of the linear quadratic
stochastic MKV control class. Those problems raise from the asymptotic formulation of a
cooperative equilibrium in a large population of players with mean-field interaction or from
control problem with cost function depending on a nonlinear functional of the distribution
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of the state process. After reducing this polynomial class by a Markov embedding to finite-
dimensional control problems, we provide a discussion and a comparison of three different
probabilistic methods for numerical resolution of the reduced problem: quantization, regression
by control randomization and regression by regress later. We solved numerically several problems
related to this polynomial MKV control: the selection and the liquidation of portfolio under drift
uncertainty; and systemic interbank risk model with partial observation.

In Chapter 4, we are interested in solving dynamic programming equations (DPE) associated with
a financial valuation in the energy market. In particular, we focus on the pricing of Bermudan and
Swing options, where the underlying assets are forward contracts. We search for a non-intrusive
stratified method to solve these equations using only historical data, without a full calibrated
underlying model. In energy market, forward contracts are often driven by hidden Markov
factors (multi-factor modeling). Consequently, the problem of pricing of those options produces
DPEs depending on those unobservable factors. Since we have access to the forward prices but
not to the hidden factors, we propose a resampling method only on observable contracts.

I. Asymmetric risk measure for pricing and hedging of options

1. Option pricing and hedging using asymmetric risk measure: Asymptotic opti-
mality

In finance, the pricing and hedging of contingent claims are major concerns. In theoretical point
of view, those problems is well established (see [KS98], for instance). In practice, traders hedge
their contracts by trading only at discrete times, say t) = 0 < t; < ... < ty = T, yielding a
residual risk. Here, they intend to hedge the claim Hy at time 7 using d hedging securities
whose price are denoted by X = (X1, ..., X(@), For that, we define the local risk &, associated
with the trading times ¢,, and ¢,,.1 given by

gn = %n+1 - ‘/tn - ﬁtn : th+1 - th’
where V' denotes the valuation process; ¥ = (91, ..., 9(@) denotes the hedging process with

9 being the number of shares invested in the i-th hedging instrument.

We aim to find the valuation/hedging rules (V. «) minimizing this residual risk using a risk func-
tion £. From the existing results (for instance, [Sch99], for the quadratic local risk minimization),
we choose a function ¢ penalizing profits (£, < 0) and losses (&, > 0) asymmetrically. In
this context, we study the integrated local risk R under the form

N—-1
Ry (V,0) = Y] E[U(E)],
n=0

where the risk function 7 is chosen as
0(y) = (1+vsen(y)®y?/2, ve(0,1).

The parameter v, in the risk function /., represents the investor risk aversion penalizing losses
further than profits (see Figure 1.1).

Standard asymptotic approach. In this setting, we aim to study the asymptotics of the mini-
mum

min Ry (V) 4), (7
(V,9)eA
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with a large number N of trading dates in the case of equidistant trading times ¢, = nAt
with time step At = T/N. The minimum (7) is computed over the set A of all adapted to
the underlying filtration (F;);>¢ and appropriately integrable pair (V,¢}), under the replication
constraint Vo = Hrp.

There exists in the literature a few results in that direction:

 In [PhaOO0], the author deals with a L, risk function of the losses and a fixed number
trading dates;

* In [AM11], the authors study pseudo-optimal strategies and get asymptotic results in the
case of a risk function in class C3.

We remark that the discontinuity of the second derivative ¢) complicates the analysis and fully
changes the nature of subsequent results. In short, the previous references consider different
settings and difficulties from ours.

Asymptotic approach with a PDE valuation. Instead of solving the problem (7) in the asymp-
totic regime N — +o0, we tackle a modified problem using a PDE valuation. We suppose the
hedging instruments X are modeled by

dX; = u(t, Xy) +o(t, X¢) dWy,

where W is a Brownian motion and the contingent claims is of the form Hr = g(Xr). Then, we
assume that the contingent claim is evaluated exogenously by a valuation process V; = v(t, X;)
for some function v. The function v acts as a reference price. Given this exogenous valuation,
the trader will determine how to hedge on each interval [¢,,t,+1] by choosing an adapted
valuation/hedging rule (V;,,, ﬁtn) and considering the related conditional local risk R,

RTL,’Y = E[K'Y(‘/%nJrl - ‘7tn - ’gtn ' th+1 - th) | ‘Ftn]'

Inspired by the connection between dynamic risk valuations and nonlinear Backward Stochastic
Differential Equations (BSDE) (see for instance [Crel3]), the trader parametrize its valua-
tion/hedging rule through a function f, possibly nonlinear, such that

‘h)tn = ut7b+1 (tn? th)’ rétn = Dxutn+1 (t77/7 th)?
where u'n+1 is the solution defined in the interval [¢,,t,.1] to the f-PDE below.
e The function ut"+1 : [t,, t,11] x R? — R satisfies

1
ui”“(t,x) + B Tr[UUTDiut"“](t,x) + f(t,z,uln1(t, ), Dou'n+1 (¢, ), Diut"“(t,m)) =0,
€)

for all (¢, z) € [ty, tn41[ xR with the terminal condition u‘"+1(t,41,2) = v(t,41,2) at the
time ¢, 1;

* For some continuous functions o : [0, 7] x R — R4 . [0, 7] x R? x R x RY x R¥*4 — R;
and a reference price v(t,,+1,) at t,4+1;

In this context, it is now natural to analyze the asymptotic behavior of the integrated conditional
local risk after appropriate renormalization

| N-1
Ryy(v, f) = A7 Z E[Ry, 5]
n=0
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Our main contribution in Chapter 1 is the following result (see Theorem 1.6, page 34).

Main Result 1 (Theorem 1.6). Let B : [0,1] x 2 — R< be another standard Brownian motion
independent from W. Under the Assumptions 1.1-1.5,

RW(”? f) = ]\P—Enoo RN,”/(U? f)

exists and is given by,

T r1 0 0
R (v, f) = E[ J J zg( J BILG, ngl—FtH) (FtQH—Ft J BLG, dB9/+|Gth|2/2> a0 dt],
0 0 0 0

where

Fy = f(t, Xi,v(t, Xy), Dyo(t, Xy), D20(t, X¢)) € R,
Gy = (oT(D2v)o)(t, Xy) € R¥*4,

Consequently, we discuss the existence of an optimal PDE nonlinearity f* such that the f*-PDE
valuation minimizes the asymptotic risk in the sense: R (v, f*) < R (v, f), for any admissible
nonlinearity f. Additionally, this optimal PDE nonlinearity f* is quasi-explicit in dimension 1
(see (1.22), page 39) and it depends on the risk parameter ~, on the reference valuation second
derivative and on the price process volatility. Consequently, a natural and consistent choice for
the valuation/hedging rule may be the solution to the f*-PDE (8) with the payoff g : R? — R
being the terminal condition at the horizon time 7.

This chapter is based on a paper written in collaboration with Emmanuel Gobet and Xavier Warin
[GPW18].

2. Asymptotic asymmetric risk measure: Application to physical asset valuation

In Chapter 2, we provide valuation and hedging policies for future incomes due to the production
of power plants using an asymmetric risk valuation. Since the deregulation of energy markets,
several spot and future markets were created to exchange electricity. After that, power plant
owners start to face the problem of evaluating their plant production, which depends on the
electricity spot price in the future.

In practice, power plant owners perform a discrete hedging at trading times, tp = 0 <t; < ... <
ty = T using a hedging security X in order to reduce the risk associated to a random income
Hyp at a future time T'. This discrete hedging produces a residual risk:

N-1
£=Hp— > 9, (X, — X1,),

n=0

where

* ¢ denotes the number of shares invested in the hedging security;

* X is a forward contract F'(-,T") with delivery time T'.

Then, they search to find the valuation/hedging rule taking into account the local balance &,
penalizing &,, < 0) through an asymmetric risk function ¢:

gn = ‘/;fn+1 - ‘/tn - 19tn (th-H - th)7
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where V' stands for the valuation process under the replication constraint V' = Hp. Notice that
plant owners:

* want to obtain a residual risk £ with a small standard-deviation;

 prefer profitable scenarios where &, > 0.

In reality, power plant generates some fixed costs whether it is producing electricity or not. Those
costs are called here fixed costs:

* they include the investment and depreciation costs;

* they exclude the fuel costs (coal, gas, uranium).

To record in their balance book, power producers are constrained to find today an equivalent
price to the future income generated by their power plant.

In fact, they do not face any financial risk due to this income. On the other hand, because they
can not increase their income by influencing the electricity spot price S, they prefer to obtain a
certain value due to the selling of their future production instead to receive the random positive
amount Hy = g(Sr).

Economically speaking, when the electricity spot price S is high, we require the power plant to
face a higher demand. In indeed, a high price is produced by an increasing demand. Therefore,
we increase the production by starting more often the power plant. That is the reason why we
assume a dependence of the costs ¢ on the electricity spot price S.

Asymmetric risk valuation. Considering equidistant trading times t,, = nAt with time step
At = T/N, we take into account the fixed costs proportional to the time step At by subtracting
¢(Sy,, ) At from the local balance &,. In a setting analogous to Chapter 1, we study the asymptotic
of the integrated risk Ry

N-1
1
RN = 7 E[E(%n+l - ‘/tn - ﬂtn (th+1 - th) o C(‘S'tn)At>:|7

n=0

Here, we set
Cy(y) = (1+ 7 sen(y))*v?/2, 7ye(—1,0),

where the parameter ~ represents the producer’s desire of reducing the randomness of future
income. Unlike the risk parameter in Chapter 1, this parameter v takes values in (—1,0) (see
Figure 2.1).

In view of studying the integrated risk Ry, in the asymptotic regime N — +oo with an
asymmetric risk function /., we follow an approach by PDE valuation described in Chapter 1.
We assume the existence of exogenous valuation process V; = v(t, X;) defined by some function
v. For example, v is a reference price obtained by the power producer when no cost is taken
into account. Now, power plant owner determines its hedge position on each interval [¢,,, t,+1]
by choosing an adapted valuation/hedging rule (V;,, ;). For that, we consider the related
conditional risk R,, - using the risk function ¢,

R, = 1[»3[f7 (Vias = Vi = 01 (X = X2,) = el(S1,)A) ’ftn].

This time, the valuation/hedging rule (XN/tH, 5tn) of the power producer is given by

~

‘/tn = utn+1 (tn; th)v 525” = utxn+1 (tna th)v
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and is parametrized by a function f, possibly nonlinear, through the solution u!n+ : [t,,,¢,.1] x R
to the f-PDE with terminal condition ur+!(t,,1,-) = v(t,.1,-) at time ¢,,1 (analogously to
the one-dimensional version of (1.5) but with diffusion term equal to & (¢, 7))z, with a volatility
function & (t,T) = gge~%(T=1),

As in Chapter 1, we analyze the asymptotic regime of the integrated conditional risk

1 N-1

RN,’V(Uaf) = E Z E[Rn;y]a
n=0

as the number N of trading dates goes to infinity.

Our main contribution in Chapter 2 is the following result (see Theorem 2.9, page 71). This is a
version of the Theorem 1.6 in the presence of fixed costs proportional to the time step.

Main Result 2 (Theorem 2.9). Let B : [0,1] x Q — R be another standard Brownian motion
independent from W. Under the Assumptions 2.3-2.8, the limit of Ry (v, f) as N — oo exists and
is given by

B2 ¢

T r1
R»y(v,f)=ﬂ'*3[ jo jo eg<Jl<v,<t,Xt>> — o, <t,Xt>>e>

(um (8, X076 — T, (6, X0) 0, (X 22 1 4o <t,Xt>>|ZBf> a0 dt],

where

Jo(v, (t, X1)) = f(t, X, v(t, X¢), va(t, Xp), Ve (t, Xt)) + c(Xy) € R,
J1(v, (t, X1)) = 6%(t, T) X*ves (t, X;) € R.

As in Chapter 1, the idea is to obtain an optimal PDE nonlinearity f* minimizing the asymptotic
risk:
R"/(v’ f*) < R'Y(Uﬂ f)u

for any admissible f. Once more, this optimal PDE nonlinearity f* is explicit and depends on ~,
on the second derivative of v and on cost function ¢(x). Finally, the power producer will choose
the following rule

‘/%n = 'U* (tn? th )7 ﬁtn = 'U; (tn7 th)?
where v* is the solution to v* : [0, 7] x R? to the f*-PDE with terminal condition v*(T,-) = g(-)
at time 7.

For the numerical experiments, we take a fixed cost depending on the level of the electricity spot
price through a convex (or concave) function ¢(z). We compute the numerical solution to the
f*-PDE for a call payoff and different models for ¢(z).

This chapter is based on a work in progress in collaboration with Clémence Alasseur, Emmanuel
Gobet and Xavier Warin.
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II. Numerical methods in stochastic control

3. Polynomial conditional McKean-Vlasov control problems: Some probabilistic
numerical methods

In Chapter 3, we are interested to the McKean-Vlasov (MKV) control problem under partial
observation and common noise. The formulation is described as follows. On a probability
space (2, F,P) equipped with two independent Brownian motions B and W', we consider the
controlled stochastic McKean-Vlasov dynamics in R":

dX, = b(XS,IP’ZO,as) ds + a<XS,PXWs°,a5)dBS + o (X PV’ o )dWO ©)

Xs

where

. IP’E{VO denotes the conditional distribution of X, given W?;
o FO = (F)s> is the natural filtration generated by W9,

* the control « is FO-progressive valued in some Polish space A.

The cost functional associated to the stochastic McKean-Vlasov equation (9) for a control process
« is
T wo Wwo
=E 0 f(Xta]P)Xt ,Oét)dt+g(XT,]P)XT) 3

and the objective is to minimize over an admissible set .A of control processes the cost functional:

= inf .
o=

Our purpose is to investigate some classes of MKV control problems, which can be reduced
to finite dimensional problems in view of numerical resolution.

A Class of polynomial models and Markovian embedding. First, we consider a class of
models where the coefficients of the MKV equation are linear w.r.t. the state variable X (see
(3.9)), while the running and terminal cost functions are polynomial in the state variable in the
following sense

f(xnu’a ) fO w, a +2fl€ w, a ’ g( _90 +ng )

for some integer p > 1. Second, we assume all the coefficients depend on x through its first p
moments (see (3.10)).

Given the controlled process X = X solution to the stochastic McKean-Vlasov dynamics (9), we
denote
VP = EXFWO], k=1,...,p

From the linear/polynomial assumptions (by It&’s formula and conditional expectations), we
derive the dynamics of (Y!,Y?2 ... YP) as

{avF = Bp(Y} Y2, . Y ap)dt + Sp(Y Y2, Y a)dW, k=1,....p, (10)
for some functions By, ¥, (see page 95) depending on the conditional moments (Y!,Y?2, ... YP),
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while the cost functional is written in a reduced form

T
Te) = B[ | F00 YRV e+ g0 VE YD) a

The McKean-Vlasov control problem is reduced in this polynomial framework into a
finite-dimensional control problem with F°-adapted controlled variables (Y2, Y2, ... YP).

Probabilistic numerical methods. In view of solving the reduced problem (10)-(11), we
choose the following setting. Let Z = (Y'!,Y2,...,YP) be a controlled process by an adapted
control « taking values in A, solution to

dZ = b(Z§, on)dt + 00(Zf", ) AW

and .
J(t 2 a) = E[ [ szz.a0as + gz
t

Zy = z},
be a dynamic version of the cost functional J(«).

On a time discretization 0 = ¢, ¢1, ..., ty = T, we write the Euler approximation of Z;*:

ZOC

tn+1

=Z2 +b(Z o) At + o(Z8, au, ) AW,

and the discrete equivalent of J(¢, z, «):

N
It 210) = E[ S (28 ) At + g(Z5,)

=n

Zt‘izz].

Now, the value function V (¢, 2) = sup,, y¥ ¢4 J(tn, 2, ) is represented alternatively through
the following dynamic programming equation, given the known terminal condition g(z),

V(Tn, z) = g(2),

12
V(tn, 2) = sup {f(Zg, )AL+ Bo[V (tui1, Zi, )| 2, = z]}. (12)

The dynamic programming equation (12) inspires numerical methods that approximate the
value function iteratively backward in time, starting from the terminal condition. The main
difficulty in implementing such approach lies in the estimation of conditional expectations
EolV (tns1, 28 )| 21, = 2]

Our first contribution in Chapter 3 is the following description (see Section 3.3) and application
(see Section 3.4).

Main Result 3. We describe three numerical methods solving conditional MKV problems (in their
reduced version):

* the Regression Monte Carlo techniques (by control randomization and by regress later) are
a family of algorithms whose effectiveness relies on the choice of the basis functions used to
project future value functions (see Algorithms 1 and 2);

* the Quantization techniques approximates the controlled process Z;* with a particular finite
state Markov chain for which expectations can be approximated quickly (see Algorithm 3).

We apply each of these methods to three applications arising from polynomial MKV control
problems under partial observation and common noise:
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* the Portfolio optimization under drift uncertainty (see Subsection 3.4.1), where the drift
of the underlying asset is unknown and unobservable. First, we consider the problem of
a trader willing to liquidate a large number of shares within a finite time 7" and facing
execution cost and market price impact. Then, we see the selection problem of a portfolio
strategy maximizing the utility of the terminal wealth.

* the Intersystemic risk with partial observation (see Subsection 3.4.2). We suppose the
monetary reserves of NV banks lending to and borrowing from each other satisfy diffusion
system with mean-field interaction and a common noise. Then a social planner (the central
bank, for example) only observing the common noise acts on strength of the interbank
interaction in order to minimize the spread between each bank’s reserve and the average.

Numerical results. Our second contribution in Chapter 3 is the following numerical experi-
ments (see Section 3.5). We presented the results of three different examples of applications
summarized below

* We found that the Regression Monte Carlo algorithms perform correctly in problems of drift
control. In those problems, they are much faster than Quantization for similar precision.
In particular, we noticed that Regress Later is more reliable than Control Randomization:
the choice of a uniform distribution of the training points on a suitable interval suffices to
obtain high-quality estimations.

* On the other hand, Control Randomization is sensitive to the choice of the distribution of
the randomized control and few repetitions are necessary before finding a proprer control
distribution. We have also tried to use the performance iteration or path re-computation
methods. However, on the considered examples, those methods were time-consuming and
did not help much in terms of accuracy.

* Quantization techniques provided the most stable and accurate results for the three
different cases of control problems. Moreover, we are able to choose the grid to quantize
the controlled process. It is possible to exploit this feature when we have a rough idea of
where the controlled process should be driven by the optimal strategy (see the Portfolio
liquidation problem). Therefore, we should build a grid with many points located where
the process is supposed to go.

This chapter is based on a paper written in collaboration with Alessandro Balata, Come Huré,
Mathieu Laurieére et Huyen Pham [BHL*18].

4. A non-intrusive stratified resampler for multi-factor models: Application in
energy market

Stochastic dynamic programming equations are related to the resolution of non-linear problems
(stochastic controls or nonlinear PDEs) arising in almost all areas of science, from water reservoir
management to finance.

In Chapter 4, we aim to solve dynamic programming equations (DPE) related to a financial
valuation in energy market. Here, we are concerned, for example, in the pricing of Bermudan or
Swing options, where the underlying assets are forward contracts. Then, we plan to develop a
non-intrusive algorithm to solve those DPE using only the observable data without a full model
calibration.

In a first moment, we deal with a discrete DPE taking the following form:
YN = gn(Xn), (13)
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}/i:E[gi(yi+17"‘7YN7X’£7"‘7XN) |XZ]7 i:N—l,...7O,

where X is a Markov chain in R"; and gy, §; are some real functions depending on the problem
under consideration.

To solve the discrete DPE (13), we first observe a historical data O of size M in view of calibrating
the parameter values for some stochastic model describing X. Then, we perform regression
Monte Carlo (MC) algorithms with Ny sampled points X to obtain the regression functions y;
such that Y; = ¢;(X;).

In our context, the number M of historical data is usually small compared to Ny. Thus, the
calibration step gives a more substantial error than the empirical regression one. This is the
reason why we perform a direct approach consisting in resampling the observed data and
obtain directly the regression functions (see Figure 4.1 describing the change from the statistical
approach to the resampling one).

Multi-factor model for forward contracts. In energy market, we usually model the price
at time ¢ of a T-forward contract F'(¢,T) as driven in terms of hidden Markov factors X. We
get from the market some observable data O at different times ¢; typically O; is the set of log
forward prices log F'(t, 7). When we rewrite the DPE in terms of the underlying F'(-,T") (also a
function of X), we get control or value functions depending on the hidden factors X. Since these
Markov process X are not observable (we have no direct access to them), we can not apply a
resampling method (proposed in [GLZ18] under the name of Non-Intrusive Stratified Resampler)
regenerating each one of those factors individually. To deal with this problem, we modify the
non-instrusive stratified scheme mentioned above and propose a resampling method on the
observable data O.

Now, the discrete dynamic programming equation (DDPE) takes another form in preparation for
the resampling method on observable data O:

Yn = gn(On), (14
Y’i :E[gi<Yi+17"'7YN7Oi7'"7ON) ‘ OZ]7 i:N—l,...,O,

where the process O takes values in RY.

Approach by historical-data Resampling. To ensure accurate scheme, the regression Monte
Carlo methods usually need that the number of simulations Nyc has to be much larger than
the dimension of the vector space £ (number of coefficients). Note that the inputs O Mvc :—
0!, ..., OMvc are sampled from a model which is estimated from M -size data only. In our setting,
M is small, then model error may be a significant concern.

In [GLZ18], the authors design a scheme where the Ny simulations are replaced by the M -size
observed data. To overcome the problem of numerous coefficients to compute (despite the
small number of data), they combine resampling approach with a stratification and local-
approximation strategy, called the Non-Intrusive Stratified Resampler (NISR) scheme. The
critical point in the non-intrusive part of the scheme is to assume that only the model structure
for observable data O is known, but not their parameter/coefficient values. While the strength
of the stratified part is the fact that we have independent local problems on a low-dimensional
approximation space. Then, we have a double-fold improvement: (1) a small number of coeffi-
cients to compute on each local problem and (2) the quality of the aggregated approximation is
not deteriorated when the number K of local problems increases.

Briefly, had we observed the factors X, we would have resampled it and used directly in
the NISR scheme. In our case, we have only access to O, a affine and partially unknown
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transformation of X (see Assumption 4.1). Then we have proposed an extension of the native
NISR scheme taking O as inputs. Additionally, we consider that the factors model is described
as multidimensional Ornstein-Uhlenbeck (OU) (see Assumption 4.2), whose the mean-reverting
parameters is supposed known (but not the volatilities/correlation).

Our contribution in Chapter 4 is the following NISR scheme (see Section 4.3). We present the
NISR-regression Monte Carlo algorithm assuming the complete access to the observable data.

Main Result 4 (NISR scheme on the observable process O). We have the following steps to the
resolution of the DDPE (14)

From the linear relation between O and X (see (4.3)), the dynamics of O is also a OU (see
Proposition 4.4):

-~ t
0; = e 8O, 4+ f T eali=s) (ids +6dW,), forall0<i<j<N,
t;

for some coefficients & € R?, fi € R? and & € R4*™ (where é is supposed known).

Following the solution of O (see (4.7)), we extract the random source U from one realization
of the root sample {O]" : 0 < i < N} as follows

U = O — e *GOM, forall0<i<j< N.

Inversely, from the one realization of the random source U™, we obtain a corresponding path
starting at time t; from point z € R?

Oij(2,U™) == e bt 4 UM forall 0<i<j<N.
Now we can resample multiple paths from different initial conditions (t;, z) thanks to flow
function ©; ; (see (4.12)).

In K different sets H, (called strata) from a partition of the space R? we perform a regression
Monte Carlo approximation. For that, we consider a probability measure v such that its
restriction vy, on Hy,

_ 1Hk(’z)y P
~ v(H) (d2).

is used to resample paths starting from different initial points on Hy.

vy (dz)

According to Proposition 4.7, the tensor product Pareto-type distribution v given in (4.15)
satisfies a norm-stability property: there exists a constant I > 1 such that, for any ¢ : R —
R € L2(v), it holds

| Blom)Pra) < & [ jo@Pu(dz), i€ o, N -1,
R4 Rd

required to obtain the well-behaved propagation of errors.

Using the distribution vy, we obtain a M-sample on each stratum Hy, from time t; until time
tn:

'7k7
e ™), foralll <m < M,

i,k,m
oFm = 6;;(0

where O;‘km is sampled according to the distribution vy independently from i, k, m;

From the M-sample Oz’k’m, we compute the approximation of the value function y; in the space

of piecewise linear basis functions Lj, = span{ly,,z11y,, ..., 241y, }. Here, for simplicity,
dim(Ly) is independent from k, i.e., dim(Ly) = d + 1.
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* To the local approximation of y;, we introduce the Ordinary Least Square (OLS) operator

approximating the function C' : R%*2 — R on the space L}, using the sample Offﬁlw ;

, 2
k71:M z k m i,k,m
OLS (O, Ly, OBy — g genﬁli E ‘(J phamy _ g(08Rm)
« Backwardly in time starting from g3 = gy , we set gM = S5 gMF1, where

~M,k
0 = —lyiloo v ™MF A |yiloo,

oME = OLS(CM, £y, O M),
CM(Zi:i-i-l) = gi(ﬁg%1(zi+l)7 Zi:i-i—l)-

Then we obtain an approximation 4 of regression function y; for every i in {0,..., N}.

In the Algorithm 4, we observe that the root sample O'*M is an input to the non-intrusive stratified
resampler (see Definition 4.8) through the random source U, Therefore, the existence of
algorithm’s approximation is conditioned to the fact that for any i € {0, ..., N} the observable
data O; is indeed observed. In addition, we propose a modified version of Algorithm 4 in the
case where some log forward prices log F'(¢,7") are missing (see Subsection 4.4.1).

This chapter is based on a work in progress in collaboration with Emmanuel Gobet and Jorge
Zubelli [GPZ18].
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Asymmetric risk measure for pricing
and hedging of options
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Chapter

Option pricing and hedging using asymmetric risk measure:
Asymptotic optimality

This chapter is based on the paper [GPW18].

Abstract

Discrete time hedging produces a residual risk, namely, the tracking error.
The major problem is to get valuation/hedging policies minimizing this error.
We evaluate the risk between trading dates through a function penalizing
asymmetrically profits and losses. After deriving the asymptotics within a
discrete time risk measurement for a large number of trading dates, we derive
the optimal strategies minimizing the asymptotic risk in the continuous time
setting. We characterize the optimality through a class of fully nonlinear
Partial Differential Equations (PDE). Numerical experiments show that the
optimal strategies associated with discrete and asymptotic approach coincides
asymptotically.

1.1 Introduction

The valuation and hedging of contingent claims are major concerns in finance, both from a
theoretical and a practical point of view. The continuous-time theory is well established (see
[KS98], for instance). But, in practice, hedging can be performed only at discrete trading times,
say top =0 < t; <... <ty =T, yielding a residual risk. Here, we intend to hedge the claim Hy
at time 7' using d hedging instruments with price processes X = (X1, ... X(4) So the local
risk &, associated with the trading times ¢,, and ¢, 1 writes

En=Vier — Vi, — 04, - Xy — Xt (1.1

Here, V stands for the valuation process and 9 = (9(1), ... 9(@) for the hedging process, Also,
¥ denotes the number of shares invested in the i-th hedging instrument. Up to considering
discounted prices, we suppose the non-risky asset has zero drift.

In high-frequency hedging, the impact of discrete-time hedging compared to continuous-time one
is small (see, for instance, [GT01] for results about convergence rate). In low-frequency hedging
such as in energy markets [CDM17], the local residual risk is slightly bigger and may become
an issue. Our aim is to find the valuation/hedging rules (V) minimizing this risk. We differ
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from the existing results (for instance, those related to the quadratic local risk minimization
[FS88, Sch99]) by dealing with a risk function ¢ penalizing asymmetrically profits (£, < 0) and
losses (£, > 0). So the integrated local risk R under study takes the form

N-1
Ry(V,9) = ) E[U(&)].

n=0

The simplest case of such a risk function ¢ is

0y(y) = (1+ sgn(y))® y*/2 (1.2)

where v € (0, 1) to penalize losses further than profits (see Figure 1.1). We define the above sign
function as sgn(y) = 1y~0 — 1,<0-

In this setting, our aim is to study the asymptotics of the minimum

min Ry (V1) (1.3)
(V9)eA

as the number N of trading dates becomes larger. To simplify we take equidistant trading times
t, = nAt with time step At = T/N. The minimum (1.3) is computed over the set A of all
adapted to the underlying filtration (F;);>¢ and appropriately integrable pair (V, ), under the
replication constraint Vi = Hrp.

There are a few results in that direction. In [Pha00], the author deals with a L,, risk function of
the losses and a fixed number trading dates. In [PB04], the authors consider expected shortfall
risk function. Their research concentrates on numerics for a fixed number of dates and does not
handle any asymptotic analysis. In [AM11], the authors study pseudo-optimal strategies and
get asymptotic results under the condition that the risk function is of class C®. So their analysis
discards the prototype risk function (1.2). Indeed, the discontinuity of the second derivative /7,
complicates the analysis and fully changes the nature of subsequent results. In short, the existing
references consider different settings and difficulties from ours.

PDE valuation. The minimization problem (1.3) appears attractive, but its study in the asymp-
totic regime N — +o0 is tough in the case of asymmetric risk function (1.2). To tackle this
problem, we slightly modify the approach.

First, we suppose the hedging instruments are modeled by a Stochastic Differential Equation
(SDE) with drift ;1 and diffusion 0. We also consider contingent claims of the form Hy = g(X7).
Second, we suppose that the contingent claim is evaluated exogenously by a valuation process
Vi = v(t, X;) for some function v. For instance, v is given by a mark-to-model value promoted
by the regulator or the Central Counterparty (CCP). The latter imposes its minimum margin
requirement to which the hedging entity has to comply with. Given this exogenous reference
valuation, the trader will determine how to hedge on each interval [¢,,t,+1] by choosing an
adapted valuation/hedging rule (V;, ,9;,) and considering the related conditional local risk Ry, .,

Rn,'y = E[KV(%n+l - ‘zn - &tn ’ th+1 - th) | ’Ftn] (1'4)

To clarify, the valuation/hedging rule of the trader will be parametrized by a function f, possibly
nonlinear. Inspired by the connection between dynamic risk valuations, nonlinear Partial
Differential Equations (PDE) and nonlinear Backward Stochastic Differential Equations (BSDE)
[EPQ97, Pen04, Crel3], we introduce the concept of the f-PDE valuation. Let

o:[0,T] xRT - R4 £:[0,T] x RY x R x R x R4 - R
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Figure 1.1 — Risk function ¢, for different risk parameter ~.

be continuous functions. Let 7 € (0, 7] be a time horizon and let v(7, -) be a reference valuation
at the time 7. Given 7 and v(7, -), the function u” : [0, 7] x R? — R is a solution to the f-PDE, if
it satisfies

1
uz—(t, x) + 5 TI'[UO'TDgquT] (tv x) (1.5)

+ f(t,z,u7 (t, ), Dou’ (¢, ), D2u (¢, x)) = 0,

for all (t,z) € [0, T] x R? with the terminal condition u™ (7, z) = v(7, x) at the time 7. The f-PDE
valuation is the mapping from (7, v(r,-)) to the f-PDE (1.5) solution «"; this is typically the
nonlinear valuation/hedging rule of the trader. We refer to f as the PDE nonlinearity and f = 0
corresponds to the usual risk-neutral valuation [KS98], other nonlinearities appear in [EPQ97]
for instance. Then, in the conditional local risk expression given by (1.4), we naturally set

fktn = u(n+1) (tn7th)a ﬁtn = DCEU(n+1) (tn,th)a

where we denote ("1 = yln+1,

Our contributions. Our first main result is to prove the existence (Theorem 1.6) of the
following limit, called the asymptotic risk,

N—+00

1 N-1
R, (v, f) = lim NT;OE[R,W]. (1.6)

Moreover, we give an explicit expression for R, (v, f) depending on v, v, f, o, X and 7T'. Then,
we discuss the existence of an optimal PDE nonlinearity f* such that the f*-PDE valuation
minimizes the asymptotic risk in the sense

R"/(v)f*) <R’Y(Uaf)a (17)

for any admissible f. In dimension 1, this optimal PDE nonlinearity f* is explicit (see (1.22))
and it depends on the risk parameter ~, on the reference valuation second derivative and on the
price process volatility.

Now, a natural choice for the reference valuation may be the solution to the f*-PDE (1.5). Here,
the payoff g : R — R is the f*-PDE terminal condition at the time 7. We denote by v* the

31



CHAPTER 1. OPTION PRICING AND HEDGING USING ASYMMETRIC RISK MEASURE: ASYMPTOTIC OPTIMALITY

resulting valuation. In dimension one, this PDE takes the form
1
Vi (t2) + 50% (L 2) v, (1) + 10 () (v5, (8 7))+ — e20”(t, 2) (v, (8, 7)) - = 0

for some constants ¢; > 0 and ¢y < 0 depending on the risk parameter +. In higher dimension,
v* solves a fully nonlinear PDE with a nonlinear term depending on the Hessian D2v* (see the
nonlinear PDE (1.19)).

It gives somehow a consistent way to valuate the claim g by accounting for local hedging errors
measured with the asymmetric risk function /,. To the best of our knowledge, this work is an
original contribution, where local hedging errors are analyzed with asymmetric risk function.
We perform the asymptotics of a large number of trading dates and we derive an optimal
valuation/hedging policy.

Summing up, instead of minimizing (1.3) and then taking the limit in IV after rescaling by At, we
take first the limit in IV of the cumulated integrated local risk for a wide class of f-PDE valuation
and then minimize over all nonlinearities f. We do not prove that inverting minimization and
limit holds true in this setting. In other words, we do not state the limit of the minimum (1.3)
rescaled by At corresponds to R, (v*, f*). However, our numerical tests in dimension one seem
to corroborate this fact. Proving this result rigorously is, so far, an open problem, that we expect
to handle in the next future.

This chapter is structured as follows. In Section 1.2, we present the notations, the stochastic
setting and the assumptions. The Section 1.3 is reserved to the main result: the existence of
the asymptotic risk. The proofs are gathered in Section 1.4. Section 1.5 contains our numerical
experiments. Some technical results are collected in Appendix 1.6.

1.2 Notations and assumptions

Usual notations. Let d € N* and let a,b in R?. We denote by a-b = Zf;l a;b; the scalar
product on R¢, adopted for both row or column vectors a and b. We set |a| = /a - a. We denote
by M the set of all d x d matrices with real entries. By S* we denote all symmetric matrices in
M. Let Ae M? we denote Tr[A] and AT respectively the trace and the transpose of a matrix
A. For A in M, we set |A|| = \/Tr[AAT].

Let E, E’ be two generic Euclidean space and let ¢ : [0, 7] x E be a E’-valued function. In this
work, we say ¢ satisfies a local regularity condition in time and space if for some real ¢ > 0 the
coefficient

|@[ 120 == sup sup lo(t, z) — o(t', ")
s cuvetoimyosaen (6= 1+ |z — (1 + o+ [

is finite, then ¢ is said to be in C\/*! . We are aware that |¢] ;121 depends on ¢ but in the

loc,pol*
loc,pol
following, the precise value of ¢ is unimportant and we prefer to avoid the reference to ¢ in the
notation ||¢[ 121 for the sake of simplicity.
loc,pol

Observe that ¢ € Cllo/fl’;o1 means that ¢ is locally 1/2-Hoélder continuous in time and Lipschitz

continuous in space; and it has polynomial growth in space uniformly in time. Furthermore, we

assert that for any ¢; and ¢s in Cﬁ)/fl’)lol, the product ¢, ¢9, the pair (¢1, ¢2) and the composition
1/2,1

w.r.t. the space variable ¢1(t, ¢2(t,-)) are also in C| Dol

The set C12([0,T] x E, E') denotes the set of functions ¢ : [0,7] x E — E’ such that the partial
derivatives 0;¢, 0z, ¢, 0z, 0., ¢ exist and are continuous, for any 1 < i,j < d. When £ = R? and
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the domain E’ is unambiguous, we simply write C2([0, T] x R?).
For every function ¢ € C1%([0,T] x R% R), we denote its gradient in space by a row vector
D¢ = (¢z,)1<i<a and its Hessian by D2¢ = (¢z, 2;)1<i j<d- Also, let Z¢ : [0,T] x R? — R be
given by
1
L) = dult,2) + 3 [0 D20] (1, ).

Notice that ¢, ¢y, Dy, D3¢ € Cllo/c2£JIOI is a sufficient condition to have ¢ € C'? and be able to
apply Ito’s formula.

Probabilistic model. We fix a finite time horizon 7' > 0. Let W = (W ... W) . [0,T] x
Q) — R? be a standard Brownian motion on a probability space (2, F,P). Let F = {F;, t € [0,T]}
be the augmented and completed filtration generated by 1. We consider the F-adapted process
X =(xW,... X@):[0,T] x Q — R? satisfying the following stochastic differential equation
(SDE)

dX; = M(tth) dt + O'(t,Xt) th, (1.8)

with initial value X = x € R%. The coefficients p : [0, 7] x R? — R¢ and o : [0,T] x R — M4
are Lipschitz in space uniformly in time (see Assumption 1.1 later).

Given N € N* equidistant hedging times {tp = 0 < ¢; < ... < ty = T} on the interval [0, T],
with ¢, = nAt and At = T'/N, we write

oV = sup {t,, | tn < t}, @ = inf {t, | t, >t}

and the increment of X from ¢, to t,,41 as AX,, = Xy, — X4,.
In the following we systematically consider the risk function /., as defined in (1.2). It is a convex
and continuously differentiable function satisfying ¢, (0) = ¢.,(0) = 0 and £,(y) = {—(~y). In
addition, it is symmetric if and only if v = 0. Further, ¢/, is a piecewise continuously differentiable

function with £ being discontinuous as soon as v # 0:

C(y) = (1+7sgn(y)’y, (y) = (1+7sgn(y))?, (1.9)

where /7 is extended to zero as ¢7(0) = 1, owing to sgn(0) = 0 (see Figure 1.2). In all the sequel,
we assume vy € [0, 1).

For a payoff function g : R? — R, the input of our approach are a reference valuation v :

15~ pd 16
e
/ '
ya //
1.0 /// T4
[ ,»"(///
e
ey
[ s 125
s
05 s
L s
7
L ,,/*/
L~ 1.0
&
| I . . I I
30 ~05 = | 05 1.0
e L 081
e
g
T -05} r
— t 06}
1 n n L n 1 n n " n E n n n n 1 n n n n 1
L -1.0 -0.5 E 0.5 1.0
y=0.1 y=0.2 y=0.3 y=0.1 y=0.2 y=0.3

Figure 1.2 — Risk function ¢, derivatives for different risk parameter : Elv (left) and ¢” (right).
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[0, 7] x R — R such that v(T),-) = ¢(-) and a PDE nonlinearity f : [0,7] x R x R x R% x §¢ — R.
Both are assumed to be smooth functions (see Assumptions 1.2 and 1.3). So we associate the
f-PDE valuation giving rise to the family of functions u*+! : [0,¢,.1] x R — R indexed by
hedging times ¢,1. These functions are the solutions to the PDE (1.5) with Cauchy boundary
condition u!m+1(t,41,) = v(tn41,-) at time horizon t, . Also, they are assumed to be smooth in
the sense of Assumption 1.4. In this context, we set u("*!) = y»+1 and define the local residual
risk &, : Q@ — R (see (1.1)) by

En = u" D (i1, Xt ) — uV(t,, Xy) — Dpu D (1, Xy )AX, (1.10)

and the conditional local risk
R, =E[(,(&) | Fi.]- (1.11)

As explained in introduction, our aim is to analyze the asymptotic behavior of the integrated
conditional local risk, after appropriate renormalization,

N—
Ry, (v, f) = Z R, ] (1.12)

Main assumptions. Here, we study the asymptotic risk R, (as defined in (1.6)) where a
reference valuation v and a PDE nonlinearity f are given. We state the following assumptions.

Assumption 1.1. The coefficients . : [0,T] x R? - R? and o : [0,T] x R? — M? are in Cli/fpiz

Assumption 1.2. The reference valuation v : [0, T] x R — R is in Ol/ - Further, Dyv and D2v

loc,p
1/2,1

exist and are in Clocr ol

Assumption 1.3. The PDE nonlinearity f : [0,T] x R? x R x R x 8% — Riis in Cpg sy

Assumption 1.4. For all T € (0,T], there is a unique classical solution u™ to the PDE (1.5) with
the terminal condition u” (7, -) = v(7, ) at the time 7. In addition,

T T T T T
ut’“z’i’u$i a:jvutxp ’U‘xia}j,$k7

. 1721
exist and are in CZOC, Dol

Assumption 1.5. A non-degeneracy condition: the symmetric matrix (o7(D2v)o)(t, X;) is not 0
dt ® dP-a.e.

1.3 Asymptotic risk: Existence of the limit Ry ,

For stating the asymptotic result below, we need to introduce an extra Brownian motion B,
independent of W, with the same dimension as 1. All these are defined on an extended
probability space with obvious definitions. Whenever necessary, the expectation w.r.t. the
distribution of B, or W, or both, is denoted by E?, or EW, or EV®5,

Theorem 1.6 (Existence of limy_, o Ry,). Let B = (BW, ..., B@) : [0,1] x Q@ — R? be
another standard Brownian motion independent from W. C0n51der RN,Y(U, f) given by (1.12) in

the following form
| Nt
Ry (v, f) = < DE[e

n=0
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where &, is given by (1.10). Under the Assumptions 1.1-1.5, the limit of Ry (v, f) as N — o
exists and is given by,

T rl 0
RW(U, f) = }E[J f ﬂ; (J BQT,Gt ngl — Ft9>
0 Jo 0

. (1.13)
X (FE@ — th Bg,Gt dBy + ||Gth2/2> dé dt],
0

where

Fy = f(t, Xy, v(t, Xy), Dyo(t, Xy), D20(t, Xy)) € R,
G = (O'T(D:%U)O') (t, X;) e $¢

The long and delicate proof is postponed to Section 1.4.

1.3.1 Asymptotic optimality through the PDE nonlinearity

Here, we study the optimization problem over the PDE nonlinearity f described in (1.7). To
precise the definition of optimal PDE nonlinearity f*, we rewrite the asymptotic risk in (1.13) as
a functional R : Q, x Qy — R given by

)

T
R’Y(U’ f) = E[f pr (Gt,Ft) dt

where L, : S x R — R is

L.(S,a) = E[Ll eg( (BJSB, — Tx[S]0) /2 — ae)

(1.14)
x (%0 — a (B]SBy — Tx[S10) /2 + (BSTSBy) /2) d9] ,
with 1/2,1 /2,1 /2,1
: 2 1/2, 1/2,
Q, = {U € Cloc,pol Dyv, DCEU € Cloc,pol}’ Qf - {f € Cloc,pol}'
We aim at proving the existence of minimizers to the variational problem
min R (v, f), (1.15)

fEQf
for all v € ,,. Observe that the minimizer f7(,z,v, z, A) defined by (for any fixed (¢, z,y, z, A))

1t @y, 2, A) = argmin Ly (07(t,2) Ao(t, 2), a)
ae

is also a minimizer to (1.15) under the condition to be in 2. Indeed, we just need to integrate
and to take the expectation in both sides of

L, (G(t, Xy), fT(t, Xe, 0(t, X¢), Dyv(t, Xi), D20(t, X1))) < Ly (G(t, Xy), F(t, X3)) -

This is why we seek a minimizer to a — L. (S, a) for a given symmetric matrix S.

We now prove the existence of a minimizer.
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Proposition 1.7. Let v € [0,1) and S € S Consider the minimization problem

minL, (S, a). (1.16)

aeR

Under the hypothesis of Theorem 1.6, there exists a global minimizer a* € R such that L., (S, a*) <
L,(S,a) forall a € R.

If a* is unique for each S, we define the mapping S — x*(S) = a*. Then a natural candidate for
f* is given by
(2 A) = X* (07 (4 2) Ao(t,z), (1.17)

for any ¢, z,y,2, A€ [0,T] x RY x R x R? x §%.
Proof. First, we show that the function L., (S, a) is coercive and continuous in a. For any 6 € (0, 1],

we consider qu “ = (B§SBy— Tr[S]0)/2 — ab. Through simple computations, we check that Z;q “
is continuous in a and integrable w.r.t. dP? ® dé.

1. Coercivity. We exhibit a coercive function which bounds L (.S, a) from below. Owing to the
boundedness of Eg, we estimate
(25 ( — aZ> 4+ |SBy|? /2) > (1- )2 (a20 + ||SBQH2/2>
— (1 +7)%al (|B}SBy| + | Tx[S]]0) /2,

dP? ® df-almost surely. By integrating in 6 and taking the expectation of the previous
estimate, we get

L, (,0) > (1 =) (a%/2 + TH[STS]/4) — (1 +7)%la| (BIGTSG] + | TH(S])) /4,

where G is a standard normal random vector. Then we conclude that a — L. (S,a) is
coercive.

2. Continuity. First we take S = 0 and we get
L, (0,a) = (1 + ysgn(—a))a?/2.

Therefore, a — L, (0, a) is a continuous and strictly convex function. Then we conclude that
there is a unique global minimizer given by a* = 0. Now we take S # 0 and decompose
L, (S,a) as follows

! a a 1 ! a
L,(S,a) = —E UO aZ; 02y )de] + 5B [ L (zy )\SBngde] . (1.18)

By replacing the expression of ¢, (see Equation (1.9)), we get
a — aZég’aﬁf;(Zég’a) =(1+ 72)aZég’a + 2'ya|Zé9’a|,

which is continuous dP” ® df-almost surely and bounded by (1 + 7)2|a||Z5 | (integrable
w.r.t. dPP ® dé locally uniformly in a). By the dominated convergence theorem, we
conclude the first term of the decomposition in (1.18) is continuous in a. Also, we estimate
e (Zf’“)|\SBe\\2‘ < (1 +42)|SBy|?, which is integrable uniformly in a. Following that
B} SBy has a density w.r.t. the Lebesgue measure (see the proof of Proposition 1.19 in
Appendix), we get qu @ 0, dPP ® df-almost surely. It holds that

a > 01(Z;")|S B
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is continuous dP” ® df-almost surely, due to the continuity of ¢7 on R*. Now, we conclude
the second term of the decomposition in (1.18) is also continuous in a, by applying again
the dominated convergence theorem. Therefore, we have proved that L. (.5, a) is continuous
in a.

Let a € R large enough such that K = {a : L,(S,a) < «a} is non-empty. Due to the continuity
and coercivity of L, (S, a), K is compact. Then, by Weierstrass’s Theorem, we conclude the
announced result. O

Here, we have just shown the existence of a minimizer «* to the Problem (1.16) for a given
symmetric matrix S. The regularity of x*(S) has not been analyzed, because the uniqueness
has not been proved. In fact, the uniqueness and smoothness of f* of the problem (1.15) is
challenging in the general case. Certainly, if x*(S) is unique, then we could define f* as in
(1.17). Then, a natural candidate for the self-consistent valuation/hedging rule is given by the
solution to nonlinear PDE

{vf(t,:p) + %Tr[aaTchv*](t,m) + x*(oT(t,z) D2v*(t,z) o(t,x)) = 0, (1.19)

v*(T,z) = g(x).
This PDE is fully nonlinear with a nonlinear term depending on the Hessian. Unfortunately, in
full generality, we are not able to prove the existence/uniqueness of a solution v* satisfying
Assumption 1.2. Also proving that the new PDE nonlinearity f* fulfills Assumption 1.3 is not
straightforward. Fortunately, the one-dimensional case provides us a quasi-explicit formulation

for x*, which hopefully is a first step in the analysis of the PDE (1.19). Further investigation is
left to future research.

1.3.2 Optimal PDE nonlinearity: Study in dimension 1

Here, we present a quasi-explicit formulation of the optimal PDE nonlinearity f* in the one-
dimensional case. Here, (B} SBy — Tr[S]6)/2 becomes (Bj — 6)y/2 for y = S € R. So, we rewrite
the function L, (S, a) given by (1.14) as

L. (y,a) = EU: o (y (B2—0) /2 ae) <a29 —ay (B2—0)/2+ y233/2> de].

Let x* € R a global minimizer of min,ecr L+ (y, a). In the following proposition, we sum up some
interesting properties of x*. We denote by ®, the cumulative distribution function (CDF) of the
standard normal distribution and ¢ = @/ its density.

Proposition 1.8. Let v € [0,1).
(@) Let ¢j € Rand c5 € R be global minimizers of

in L. (1 d minL (-1
minL,(1,¢) and minL,(-1,¢),

respectively. Then x*(y) = ¢jyly=o + c3yly<o is a global minimizer of

in L .
I;lelﬁ} ’Y(yaa)

(b) The mapping
c— Ly(1,¢) and ¢ — L, (-1, ¢c)
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are strictly convex. Thus, ¢§ and ¢ are unique characterized by
(1+9%) ¢ +9T(cf) =0and (1+~%)c5 —yT(c) =0,

respectively, where

T(c) = 2claci1<0 + (80 P (—v2c+1) — 4oy (V2e+1) V20 + 1 — zc) 1oc41>0-

Therefore, the minimizer x*(y) (defined through ¢} and c3) is unique.

Proof. (a) We start by the special case y = 0, we get L,(0,a) = (1 + vsgn(—a))?a?/2. So,
x*(0) = 0. Now we consider the more interesting case y # 0. By setting ¢ = a/y, we rewrite
L’Y (ya a)

L, (y,cy) =E [Jl Eg((Bg —0)/2 — c@) (029 —c(B} —0)/2 + Bg/2) dG} y* 1,0
0 (1.20)

E Uol gg( —(B2-8)/2+ 09) <020 (B2 6)/2+ Bg/z) de] 21,0

because £/ (y¢) = ¢4(¢) if y > 0 and £/ (y¢) = £5(—C) if y < 0, for any ( € R.

Consider a global minimizer ¢*(y) of min.r L (y,cy), then x*(y) = c*(y)y is also a global
minimizer of min,er L+ (y, a). Because (y, ¢) — L (y, cy) is multiplicatively separable on y > 0
and on y < 0, we write c¢*(y) = c{1y=0 + ¢3 1y<0, where ¢} and ¢ are respectively global
minimizers of min.eg Ly (1, ¢) and min.eg L, (-1, ¢).

(b) Let G be a standard normal random variable. It will be useful later to know E[G?1g-,] for
any real « : we have

E [G21G<a] = —aoy (a) + P (),
E[G*1gsa] = agn (—a) + O (—a), (1.21)
E[G*1_a<g<a] = =200y () + (Bx (@) — Oy (—a)).

It holds that By ~ +/0G for all § in [0,1]. From (1.20), we get

1+72 1+72

L,(1,¢) = Ti(c) +7Ta(e);  Ly(=1,¢) = Ti(e) =y Ta(c),

where

Ti(c) =E[c® — c(G* —1)/2 + G?/2| = & + 1/2,

Ty(c) =E[sgn ((G* —1)/2 = ¢) (¢* = c(G* = 1)/2+ G*/2)].
Considering a(c) = v/2¢ + 1, it holds

sgn ((G2 - 1)/2 - C) = 12c+1<0 + 12c4+1>0 (1G<—a(c) + 1G>o¢(c) - 1—a(c)<G<a(c)) :
From the expectations in (1.21), we deduce
TQ( = 1oct1<0 (C + 1/2)
+ 1act1>0 (CQ + 6/2) [1G<—a(c) + 1G>a(c) - 1—oz(c)<G<a(c)]
+ 1oe1150 (1/2 = ¢/2) E[G*Lac—a(e) + G*Llasa(e) — G*1 o) <G<a(o)]
= Loci1<0 (% +1/2) + Loci150 B(c),
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where
Ble) = (¢ +1/2) 3 =40y (a(c)) +2(1 = ¢) a(e)w (alc)) .

We easily check that L, (1, ¢) and L. (—1,c) are C° and piecewise C?. Let us compute their first
derivatives for ¢ < —1/2 and ¢ > —1/2

0Ly (1,¢) = (1 +79%) e+ 7 (Lacr1<02¢ + Locr150 B'(c))
= 1gei1<0 (1 +7)2c+ (L +7%) c+78(c) Lact1>0,

ocLy(—1,¢) = (1 + 72) c—r (1gc+1<0 2¢c+ 1oci1>0 B'(C))
= locr1<0 (1 —7)?c+ (L +42) c =7 8(c)) Lact1>0,

where

B'(c) = 8cPar(—V2c + 1) — 4gar(v2¢ + 1)v/2¢ + 1 — 2c.

Standard computations show that J.L. (-1, ¢) and d.L~(1, ¢) are continuous at ¢ = —1/2. More-
over, we see that 0.L,(1, ¢) and d.L-(—1, c) are strictly increasing on c under the condition that
|8”(c)] < 2o0n2c+ 1> 0. Indeed, we have

B"(c) =6—8dy (V2c+1)e[-2,2].

due to ®pr(v/2c + 1) € [1/2,1] for all 2¢ 4+ 1 > 0. Because L. (1, ¢c) , Ly(—1, ¢) are strictly convex,
the optimal values ¢} and ¢3 are unique and characterized respectively by d.L-(1,c}) = 0 and
dcLy(—1,¢5) = 0. O

We depict the global minimizer x* in Figure 1.3. We show the approximate values of ¢ and ¢
calculated by a root finding algorithm in Table 1.1.

Therefore, in the spirit of Equation (1.17), we set

Frta,y, 2, A) = f(0(t, ) A)

with f* denoting the optimal PDE nonlinearity in dimension 1:
'y g p ty

() = x*(y) = ciylyso + 3yly<o. (1.22)

1.4 Asymptotic risk: Proof of the main result

The proof is long and technical. For this reason, we split it into different stages.

3.0F

2.5; /‘N\
z .o N >

20t / SO P / /

1.0% 002‘\‘\ // 7 7 7/ 0.3

0.52— f%oz§<§\ L ' ’/'/ oyz
~~~~~~ a‘z_“_ﬁ_‘ 214 06 08 4 ° \\\?}\Q};\\ //‘

_0_5; —————————————————————— v &g&\:\ii%

(a) Plot of CT (’}/) (blue line) and C; (’}/) (purple (b) Plot of X* (77 y) on [0’ 03] % [717 1]

dashed) on [0.0,0.9].

Figure 1.3 — Global minimizer x*(y).
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Table 1.1 — Optimal slopes ¢} and c3.

Y i &)
0.1 0.1043 -0.09013

0.2 0.2262 -0.1684
0.3 0.3702 -0.2366

* First, we study the conditional local risk R,, 5 on the interval [t,,t,1], by using a time-
space rescaling argument (see Subsection 1.4.1). This rescaling turns out to be essential to
pass to the limit later.

* Second, we derive an explicit approximation of the conditional local risk R,, , (see Subsec-
tion 1.4.2).

* Finally, we prove that the remainder terms converge almost surely towards 0. For this, we
show that the Greeks of u” (¢, -) converge to those of v(7,) as ¢ 1 7 (see Subsection 1.4.2).
Also, we show that the set of discontinuity points of £ has measure zero under the
Assumption 1.5.

In the proof, we use several constants K, y({) depending polynomially on the space variable
¢ (uniformly in the interval [t,, t,+1] and in the number of time steps). To simplify, we note
K n(§) € Ko if for some real ¢ > 0,

|Kn,N(§)|
sup sup sup ————

< +oo.
NeN* 0<n<N—1¢gerd 1+ [€]7

This upper bound depends on the polynomial bounds on the functions yu, o, f, v and w.

1.4.1 Rescaling and conditioning

First, we start by a few observations.

* Thanks to the Markov property of the SDE and in view of our smoothness assumptions,
R, , is a continuous function of ¢, and X, only (see (1.11));

* R, goes to zero at rate At?, because we prove that the remainder of a second-order
stochastic Taylor expansion will be inside /,. Rescaling it by At, we expect to get a non-zero
limit for the aggregated value of R,, , (see (1.12));

¢ Note that Eg has a jump discontinuity at zero (see (1.9)). Then to decompose the conditional
local risk, we will need to apply a stronger version of Ito’s formula, known as, the Ito-Tanaka
formula.

In view of a Taylor-Ito expansion, we consider the process X2t = {X2, 6 € [0, 1]} satisfying
AXA! = Aty (t, + AL, XPY) A0 + At %0 (t, + 0AL, X5Y) dBy, X5 = €€ RY, (1.23)

where B is an extra Brownian motion independent from W. It is a time-space rescaling of the
original process starting from ¢ at ¢,,.
By denoting X"* as the SDE solution starting from ¢ at ¢, we notice that the processes {stfe Aps

0 €[0,1]} and { X4, 6 € [0,1]} have the same distribution. This is due to the fact both processes
satisfy the same SDE generated by Brownian motions both independent from F;,. Then we can
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rewrite R, , (see (1.11)) as a continuous function in terms of X;, and XeAt. Setting
P (ty,€) = At BP0, (D (140, XPY) = w0 D (1,€) = Do (1,€) (XD =€) )],
leads to
R, = A?PA(t,, Xy,). (1.24)
1.4.2 Stochastic expansion and approximation of sensitivities

Proposition 1.9 (Stochastic expansion of P2t(t,, X;)). Assume notations and assumptions of
Theorem 1.6. Denote F("*1) : [0,t,,1] x R - R and GV : [0,t,,1] x R* — S as

F(n+1) (t7 ) = f(ta K u(n+1) (tv ')7 D:Eu(n+1) (t7 ')7 D:%u(n+1) (ta ))7

1.25
GO (2, = (oT(D2u™ D)o ) (¢, ). (1.25)

For any t,, and ¢ € RY, let XeAt :[0,1] x Q@ — R? be the strong solution to the SDE (1.23) such that
X§ = ¢and let E8 1 [0,1] x Q — R be the stochastic process defined by
g8t =V (1, + 0AL, X)) — "D (t,,6) — DM (1, 6) - XP - € (1.26)

so that
PR(L,, &) = At2EP [0, (ERY)]. (1.27)

The following local risk decomposition holds

1
P2 (tn,§) = EP [ f 2 (E0(G D (10, €), FOD (10, €)) + B (1, €))
0

% Qo (GO (b, ), FU D (10,€)) 46| + K n ()AL,
where
0
Eo(S,y) = J BJ,S dBy — y, (1.28)
0
0
Qu(S.) =10~y | BRS By + |SBal*/2 (1.29)
0
R (1, €) = R /A = € (GO (10, €), F D (1,6) ) (1.30)

for some constant K, n(§) € Kpor.

The proof of Proposition 1.9 is delicate. We postpone it to Subsection 1.4.4. In order to perform
a second - order stochastic expansion, we need that «("*1) and D,u("*1) be in C'2 to apply
Ito’s formula. Additionally, we require o, D, u(®*1), D2q"+1), Dxugnﬂ) and D2D,u"*Y to
have polynomial growth to obtain proper integrability along the computations. Finally, we ask

. A1/21 N . . .
for o and D2u(™*1) to be in G O/C pol> which is useful at the stochastic expansion of the gradient

D,u(*+1 . All the above conditions are satisfied thanks to our assumptions.

Notice that the above expansion of P*¢(t,,, &) depends on u("*1), solution of the PDE (1.5) on the
subinterval [t,,, t,,+1], whose size goes to 0. Therefore, by invoking a small - time approximation
argument, we replace «("*1) and its first - second derivatives by its terminal value v(t, 1, -) and
its first - second derivatives. Notice that the reference valuation v is independent of At. This is
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the matter of following statement, proved in Appendix 1.6.2.

Proposition 1.10 (Approximation of sensitivities). Assume notations and assumptions of Theo-
rem 1.6. Then, there exists some constant K, n(§) € Ko such that

[ (1,€) = 0ltns1, €)] < Knw (€)ALY, (1.3D)
|Deu D (1, €) = Dav(tns1,€)| < Kun (AL, (1.32)
D2 D (1,€) — D2u(tni,€)| < Knn (€A, (1.33)

1.4.3 Aggregation and passage to the limit

We set

F(t,€) = (1, 0(t,€), Dyo(t,€), (Di0)(1,€)) € R

G(t,€) = (oT(D2v)o)(t, £) € S (1.34)

Replacing ¢ by X;, in the expansion of P?t(t,, ¢) in Proposition 1.9 leads to
1
PAY(t,, X, ) =EB L o (59 (G(”“)(tn,th),F("“)(tn,th)) + ReAt(tn,th)>
x Qg ( G (t,, Xy,), F("H)(tn,th)) d@] + K v (X, ) A2,

where K, v (X3,) € Kpol. By substituting (") (t,,, -) by its terminal value v(t,,11, ) in F® V) (t,,, )
and G(”Jrl (tn,-) (see (1 25)), we get F(ty+1,-) and G(t,41,) (see (1.34)). Hence,

1
P, X,,) =EP | [ €(80 (Gltasn, X2,). Fltnen, X,,)) + B (1, X0,))
0

% Qo (G(tns1, X,), Fltns1, X)) 40| + C2 (b, X1,) + Eon (X, ) A2,

where
Rt €) =Ep(G D (t,,,€), F T (1,,€)) — Eo(G(tns1,€)s Ftns1,€)) + R§ (tn, €)(1.35)

1
C’At(tnv é) ::EB L E{; <89(G(tn+17 6)7 F(tn+17 f)) + RGAt(tTM g)) (136)

% (QUG D t,€), F ) (t,6)) = Qo(Gltns1, ), Fltns1,))) cw]-

In the sequel, we require estimates of R2\(t,,, X;,) and C2(t,,, X3, ), summarized in the follow-
ing Proposition, proved later in Subsection 1.4.5.

Proposition 1.11 (Almost sure convergence of the remainder). Under the assumptions of Theo-
rem 1.6, for any p > 1, there exists a constant K, such that

(@ E [ SUPo<n<N—1SUPoe[0,1]
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p
} < KpAtp/z;

(b) supg<nen—1 E|CA (tn, Xi,)| < KAt

(©) Supgen<n—15UPgefo1] [Bg" (tns Xt,)] N 0, AP @ dPP-a.s.

From the definition of P2* in (1.24), we have Atianﬁ = P?!(t,, X;, )At. By summing it for
0 <n< N -1, we obtain

N-1 N-1 .
At—lE[ > Rm]z E[ > PAt(tn,th)At]z EUO pAt (wiv’Xgoiv) dt]
n=0 n=0
wen N N N BAt N
" _ _
=E ® |:L J;) g,)/(gg(G(SOt 7X¢£V);F(g0t 7X¢£V>> +R9 ((pt ’XQD,{V)> (137)
N-1

x Qo (G, X,p), F(#Y, X)) 46 dt]+ > B[O (b, X1, )AL + Koy (X0, ) A2
n=0

The last sum goes to 0 as N — +o0, owing to Proposition 1.11 and Proposition 1.9. It remains to
determine the limit of the first term in (1.37). We achieve this result by applying the dominated
convergence theorem.

Step 1. Because of o,v, D,v, D?v, f € 0110/3;01 (therefore, they are continuous in time and

space) and the path-continuity of X, we get dP"-a.s. for any ¢

(7 (D20)0) (). X ) — (o7 (D20)o) (1.0,
/ (@i\]?X(pévvU(@ivvX(pi\’)’Ddfv(@ivawi\’)7ng(@zjfva¢{\’)>

— f(t, Xe,v(t, Xy), Dyv(t, Xy), D2v(t, Xy)) -

N—o0

Hence, it holds dP" ® dPZ-a.s. for any 6, ¢

£ (G@Y Xop) F(2) X)) — & (Dt X)), F(t X0))

Qo (G(SEiVaX@éV)’F(@iV?XgpéV)) ]\:;O o) (G(taXt)aF(taXt)))

because & and Qy (see (1.28)-(1.29)) are continuous in S, y, dP? ® df-a.s. Also, from the item
(c) of Proposition 1.11, we have

sup  sup ‘RgAt(tn,th)‘ — 0,
0<n<N—19¢[0,1] N—aw

dPV ® dPB-almost surely.

Step 2. Seeing that the second derivative a is discontinuous at 0 and the set
A= {(w,t,0) € Q x [0,T] x [0,1] : & (G(t, X (w)), F(t, X¢(w))) (w) = 0} (1.38)
has measure zero (see Proposition 1.19 in Appendix), it holds
0 (&0 (G Xop) Pl Xn) ) + B3 @Y, X))
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/)

!
—)E’Y

N—

(& (G, Xt), F(t, X)),

dPV ® dPP ® dt ® df-almost surely.

Step 3. Because of the boundedness of /) and the polynomial growth of o, v, D,v, D2v, we
have

0 (&0 (D@, X o) F@Y Xn) ) + B (@0 X)) Qo (G, X ) F(& X))

>q

te[0,T]

0
< C’(l + sup |Xi| + | Byl + ‘J BypdB]
0

for some positive constants C' and g.

By the dominated convergence theorem, we conclude
T 1
= Uo | (o (e ) P X)) + B3N X))
x Q (T(@l, X ), F(ol, X)) a0 at

N—o

T r1
—, EW®B UO Lzz (& (T(t, Xy), F(t, X)) Qo (T(t, Xy), F(t, X;)) d dt].

This completes the proof of Theorem 1.6.

1.4.4 Proof of the stochastic expansion in Subsection 1.4.2.

Now we present the proof of the results related to the stochastic expansion of P2(t,, X; ) in
Subsection 1.4.2.

Proof of Proposition 1.9. For the sake of conciseness, we set u = u("*1). By substituting X/
in (1.23) into £5 in (1.26), we get

6
EY = (tn + OAL X5) — u(tn, &) — AtJ Dyu(ty, ) (tn + 0'At, X51) A6’
0
6
— Atl/QJ Dyu(ty, &) (tn + 0'At, X5") dBy, (1.39)
0

where D, u(-,-) is a row vector.
In the proof, we use the Ito-Tanaka formula to ¢, (59“) between § = 0 and § = 1 and we

perform some Taylor-Ito expansions in terms of At. Because u,u;, Dyu, D2u € 0110/31’3101, then
we CY2([tn, tas1] x R4, R). Applying Ito’s formula to u (¢, + AL, X5) yields
9

Uty + OAL, X5 — u(ty,, &) = Atlﬂf (Dyuo) (t, + 0'At, X5") dBy
0

6
+ AtJ (Lroaru) (tn + 0’ At XA't) de’
0

6
+ AtJ ((Dyu) ) (tn + 0’ AL, X51) dO'. (1.40)
0
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Here, we denote (AD,u)(t,() = Dyu(t,() — Dyu(t,,€) for any t € [t,,t,41] and ¢ € R%
Replacing (1.40) in (1.39) leads to

0
ERt = A2 f ((ADgu) o) (tn + 0'At, X5") dBy
0

0
+ Atj (Lo aru) (tn + 0'At, XA,t) de’
0

0
+ AtJ ((ADyu) p) (tn + 0'At, Xp") 0. (1.41)
0

Use that u solves the PDE (1.5) to simplify the second term above. Then, we apply the Ito-Tanaka
formula to the convex function ¢, (see Theorem 1.5 and Corollary 1.6 in [RY99, Chapter VI])
composed with the process £5* between § = 0 and ¢ = 1. Because . (y) = 5 (y)y for all y e R,
we get

1
0 (ERY) = —AtL ¢ (ERN) ERTFMTY (1, + OAL, XE) df

1
+ A2 f 0 (E51) £5 (ADu) o) (tn + 0AL, X§") dBy
0

1
LA fo 0 (ERY) ER (ADsu) pr) (b, + OAL X5) d6
I 2
oAl fo 2 (R [(ADsu) o) (b + 0AL, X7 a6,

Considering P*(t,,, ¢) in (1.27), taking the expectation of the above expression and dividing by
At? gives
P2 (ty, &) = PP (tn, €) + P53 (tn, €) + P (tn, ), (1.42)

where
1
PRty €) = —At'EP [ JO C(ER) EQTFTD) (¢, + OAL, X5) de] : (1.43)

1
Pt 6) = S AIEP [ L ¢ (€2 |(ADyu) o) (tn+9At,X9At)}|2d9], (1.44)

1
P2Y(t,, €) = AtTIEP U 0 (E81) €5 ((ADu) p) (tn + 0AL, X§) de} . (1.45)
0

Here we have used that the stochastic integral in A,(é'lm) has expectation zero, following

directly fI'OI‘l‘/l E Sé €M1 A0 < +oo and from the polynomial growth of o and D,u (because
L2

0, Dyu € loc,pol

i=1,2,3.

). Now we analyze the expansion of £2* and then apply it to T2 (¢,,, €) for

Step 1: Expansion of ((AD,u) o) (t, + 0At, X5*) and £5'. We approximate AD,u up to
order At'/2, by setting

(ADu) (tn + 0A, X51) = ALY2B] (o7 (D2u)) (tn, &) + ra, (1.46)
where AD,u and 5" are row vectors.

Lemma 1.12. Let p > 2. Under the assumptions of Theorem 1.6, it holds
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(@) supp<p<n—1SUPse[0,1] EB||rit|” < Ky N (AL,
(b) supg<n<n—15UPgefo E |(ADyu) (t + 0AL, X5 |7 < K, N () AP,

for some constant Kn’N(g) € Kpol

Proof of Lemma 1.12. (a) Because D,u, D,us, D?u, DD u € CY% then Dyu e CY2([tn, tni1] x

loc,pol’

R%) d. By applying Ito’s formula to D, u (tn + OAL, XgAt), we get
_ At f (Lo voraeDot + 0T (D20)) (6 + O'AL, XAY) dO/
N f AB], (o7 (D2u)) (tn + 0 AL X2Y) — (07 (D24)) (1. €)).

Owing to the Holder inequality, the BDG inequality and the polynomial growth conditions on
the functions (because o, D u, Dyug, D?u, D2Dyu € Cllo/c2£)1ol)’ we estimate

0
EB gt |" < 2p_1Ath EP| (L, soatDau + uT(D2w)) (t, + 0'At, X51)[" d6'0
0
0
+ 2P~ Cppg AP/ f EB| (o7 (D2u)) (t, + 0’ AL, X5") — (o7 (D2u)) (ta, &)[" 6.
0

Using the growth conditions from the assumptions and applying bounds (1.58) in Lemma 1.17

1/2,1 2,1
to aT(D:% )€ Clo/c ol (because ¢ and D2u are in Clo/c pol) we obtain the announced estimate.

(b) This item follows directly from Lemma 1.17 and from item (a), using standard computations.
a

By replacing the decomposition (1.46) into the expression of £, given in (1.41), we obtain
ER = ALEy (G, €), FO* (1, €) ) + ALRR (10, €), (1.47)

where

0
€0 (GO (b, ), F D (10, €)) = f B, G (tn, €) dBy — FU 1 (8, )0, (1.48)
0

and
0
R (0 = = | (0t + 080,650 = FO D (1,6)) o
0

0
" f B}, (o7 (D2u)) (tn, €) (0 (tn + 0' AL, X§*) — 0(tn, €)) dBy
0
0

+At1/QJ rgto (t, + 0'At, X5") dBy
0

0
+ Atlﬂf B, (O'T (D?Cu)) (tns E)p (tn + HlAt7X0A’t) de’
0

0
+ f gt (b, + 0' AL, X51) a6, (1.49)
0

Lemma 1.13. Under the assumptions of Theorem 1.6, it holds
2
() supgepo,1 E” |€s (Gt ), F (1, ©)) 7 < K (8);
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(b) supgeo.1) EP |RE (tn, €)|” < Knn(€)AL,

for some constant K, n(&) € Kpor.

Proof of Lemma 1.13. (a) From (1.48) we get

E” (¢ (07 (D2u)0) (1, €), FO*V 1,6) )|
2

0
< 2|F D (¢, €)260% + 2EB f B}, ((07(D2u)0)) (t, &) dBy
0

and we conclude owing to the Ito isometry and the growth conditions on the coefficients (because
o,u, Dyu, D2u, f € CY/21 ).

loc,pol

(b) From (1.49) we estimate
BB RS (£, €)|* < 5 L "o ‘F(”“) (tn + O'AL, Xp1) — F<n+1>(tn,g)]2 a6’
+ 5EP L 1 |B], (67 (D)) (tn,€) (0 (tn + 0'At, X321) — (£, €)) 2 A0/
+are? | rto (1, + 0'AL X8 0
= VBB B (o7 (D2) (tns )t (1o + 0'AL, X202 46
+5 Ll EZ |r3'u (t, + 0'At, X5) \2 d¢’,

forall ¢ e R%, ne{0,...,N —1} and 6 € [0, 1]. Now we conclude to the inequality (b) by using
that f, u, Dyu, D?u, o are in C/>!  and by applying Lemmas 1.17 and 1.12. O

loc,pol’

Step 2: Expansion of P (t,,¢) and P{(t,,€). From ¢(y) = ¢/ (y/At), for all y € R, and
the expansion of SHAt in (1.47), we get

o(ERp) = e <59 (G(”“)(tn,f), F("“)(tn,{)) + Rﬁt(tn,g)> . (1.50)
By combining this with (1.43) and (1.47), we obtain
1
PP (ta,€) = ~E” UO & <5«9 (G (40, ), FUH (20, ) ) + Bt 5))
X F(tn, ) (GO (b, €), FOD(1,6) ) d@] + CP (tn ©),
where
1
CP (b, €) 1= EB[ | e (80 (6Dt . O 0(00,) + R 00:6))
0
x R (tn, ©)FHD (3, + 0AL, X5M) de]
1
~EP { L 2 (&R (FOD) (1 + 088, X3 = PO (1,,6))

47



CHAPTER 1. OPTION PRICING AND HEDGING USING ASYMMETRIC RISK MEASURE: ASYMPTOTIC OPTIMALITY

x & <G<"+1>(tn,g),F<“+1>(tn,g)) de}. (1.51)

The estimates of C{(t,,, &) and P{(t,, ) are summarized in the following lemma.
Lemma 1.14. Under the assumptions of Theorem 1.6, it holds

(@) EB|CPU(tn, 8| < §ALY2,
() EB|PPY(t,, €)| < §)AL2,

for some constant KmN({) € Kpol

Proof of Lemma 1.14. (a) From (1.51), it readily follows that
1
O (tn, €)| < KEP U ‘F(”“) (tn + HAt,XeAt)‘ |R3 (tn, )| de}
0
1
+ KEP U ‘F("“) (tn + OAL XPT) — FOHD (1, 5)‘ ‘Eg (G (k. ), PO, E))‘ dH}
0

where K is an upper bound of /. For the first term above, use that F(®+1) has polynomial

growth in its arguments (because u(™*V), D, u(*D D2+ f e Cllo/fplol) and Lemma 1.13(b).

For the second term, apply the Cauchy-Schwarz with Lemmas 1.17 and 1.13(a). It yields
|CP (tn, ©)] < Ko n (€)ALY

as announced.

(b) Similarly, from (1.45) we write
| P (tn, €

<K J EB ’59 (G<"+1>(tn,§),F("“)(tn,g)) ¥ Rﬁt(tn,g)‘ ((AD,u) ) (tn + 9At,X9At)|] a6
0

1
< KJ \/]EB[ ‘50 (G(n+1)<tn7§)7F(n+1)(tN7§)) + RGAt(tn’g)f]
0

x \/IEB[ |((ADgu) ) (tn + 0AL, X2) |2] do.

It is now straightforward to conclude that the above is bounded by K, y(¢£)At'/2, using Lemmas
1.17,1.12 and 1.13. O

Step 3: Expansion of C5*(t,,¢). Using the expansion of AD,u in (1.46), we obtain

|(AD,u) o) (t, + AL X5
— At B (6T(D2w)) (tn, )0 (tn + 0AL X0 P + [reo (t, + 04, X2
+ 2AtY2 (B) (6T(D2u)) (tn, )0 (tn + OAL, X5)) - (gl (tn + 0AL X5)) .

Replacing the identity o(t,() = Ao (t, () + o(t,, ) into the first term of the previous equation,
we get

|(ADyu) o) (tn + 0AL, X200 = At|B] (67T(D2u)o) (0, )| + 5 (tn, € (1.52)

48



1.4. ASYMPTOTIC RISK: PROOF OF THE MAIN RESULT

where

3" (tn: )

— At B (6T(D21)) (tn, ©) A0 (tn + 0AL X0 [° + 8o (tn + 6AL X2 |

+ 2At (B} (6T (D2u)) (tn, §) A0 (tn + 0AL, X51)) - (B (0T(D2u)o) (t, €))

+ 2082 (B] (0T(D2u)) (tn, &) (tn + 0AL, X)) - (rdlo (tn + 0AL, X5)) . (1.53)

From (1.52) and (1.50), the expression of PQN in (1.44) becomes

P (t, €)
1 1
= 5E” [ |5 (20 (G40t €). PO 0(00,)) + B0 €)) |B] (07 (DRu)0) 1) dH]
0
+ C5 (tn, €),
where
1 1
O3 (tn, €) = SEP [ |5 (80 (G0, €0, PO 0(00,) + R (0 8)) A7 (08 de} .
0
(1.54)
The estimate of C5(t,, ¢) is summarized in the following lemma.
Lemma 1.15. Under the assumptions of Theorem 1.6, it holds

|8 (tn, €)| < K n(6) A2,

for some constant K, y (&) € Kpy

Proof of Lemma 1.15. From the expression cht(tn, ¢€) in (1.53), we write
EB |8 (ty, €)| < AEB|B] (07(D2)) (tn, )Ac (t, + 0AL, XA1) [
+EPrpMo (t + 048, X4
+ 204\/EB|B] (o7(D20)) (£, §) Ao (£ + 6L, X1) |2
< \JEB|B] (07 (D2u)0r) (1, €) |
+ 2082\ [EB | B] (07(D2u)) (£, )0 (tn + 92, X21)

\/IEBHT (tn + 00, X210 |?
< K n,N (g)At?)/Q‘

Again we have used the polynomial growth condition on o, D2v and the local regularity condition

ono e C O/C plol with Lemma 1.17, and Lemma 1.12 - (a). Consequently and in view of the

definition (1.54) of C’QAt(tn, €), we obtain the estimate

|C8 (. €)| < —|€”|00At Usup EP [cf(tn, )],
0e(0,1]

which leads to the announced result. O
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Step 4: Expansion of P2(¢,,¢). From (1.42) and the previous expansions of T2 (t,, £) for
i =1,2,3, we deduce

1
_ /" (n+1) (n+1) A
P (1, &) = EBHO (& (GO D (1, €), F* D (80,€)) + B3 (1, 6) )
x Qo (GOt €), F D (1, ) ) de]
+ OP (tn, €) + CP(tn, €) + PP (ty, ),

where Qj is defined in (1.29). Since CP(t,,, €), C&(tn, &) and P (t,, €) satisfy At'/? - bounds,
we get the result of Proposition 1.9. O

1.4.5 Proof of the almost sure convergence in Subsection 1.4.3
Now we present the proof of the results related to the the almost sure convergence of the
remainder R5\(t,, X;,) in Subsection 1.4.3.

Proof of Proposition 1.11. (a) From the definition of & in (1.28), it follows that

€0 (GO (0, X0,), FOD (10, X)) = €9 (Dt X, ), Fltus1, X))
< |ty Xy 0™ (0, X5, ), Do (b, X, ), D20 (1, X3, )

- f(thrla tha U(thrl’ th)a Dz’U(thrl, th)7 ng(tn+17 th))

o7 (D2uD) ) 10, X1,) = (07 (D20) 0) (bnsr. Xe,)

).

for some constant K, n(X¢,) € Kpol, where we have used Proposition 1.10 and the assumptions
on coefficients, prices and greeks. Owing to the Burkholder-Davis-Gundy (BDG) inequalities, we
conclude the proof of (a).

(b) From C**(t,,¢) in (1.36) we get

0
f By dB],
0

0
< K n(Xy, ) AtY? (1 + f By dB},
0

E[C™(t,, Xt,)| <

1
61 [ B|Q0 (6Dt Xi,). PO (00 X0,)) = Qo (Dltsn, Xe, ). Fltnsn, X2,))| 6.
0

Considering the expression of Qp in (1.29), we are able to apply the same arguments as for (a).
Further details are left to the reader. We are done with the estimate (b).

(c) Let p > 1 and set Zy := supp<,,<n—1 SUPpe[o.1] | B (tn, X1,,)|"- From the definition (1.35) of
R (t,,, €) we write

0<n<N—10¢[0,1

E[Zn] < 2p_1E[ sup sup ‘59 (G(”H)(tn,th),F("H)(tn,th))
]
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+2P1E[ sup  sup [RE(tn, X1,)

| < K,NAWP?
0<n<N—16e[0,1]

owing to (a) and Lemma 1.16 stated below. Last, apply Lemma 1.18 to the above Zy with p > 4:
we are done. O

In the proof, we have used the following result, useful to justify the almost sure. convergence to
0 of remainder terms. We postpone its proof to Appendix 1.6.1.

Lemma 1.16. Let R5(t,, &) be given by (1.30) and p > 1. Under the assumptions of Theorem 1.6,
there exists a finite positive constant K, depending on the coefficients p, o, f, w1 and its
derivatives such that

E[ sup  sup |R9At(tn,th)’p] < K,NA2,
0<n<N—10€[0,1]

Proof. We claim the following upper bound holds

EB[ sup |R9At(tn,g)|’2’] < Ko n()AtP (1.55)
0e[0,1]

for some constant K, x(§) € Kpol-

With this control at hand, we complete the proof by using the rough inequality

N-1
IE[ sup sup |R9At(tn,th)|p] < Z E[ sup !RQAt(tn,thﬂp] .
0<n<N—16e[0,1] 0e[0,1]

n=0
So, it is enough to show (1.55). Regarding the control with R\ (t,, &), we follow the proof
of Lemma 1.13 item (b). The adaptation is obvious since instead of taking p = 2, we take
p = 1. Then we handle the supremum over 6 inside the expectation using BDG inequalities.
Other arguments are unchanged, leading to the announced estimate. We leave to the reader the
details. O

1.5 Numerical results

In this section, we compute the numerical solution to the f-PDE (1.5) in dimension 1. In
Subsection 1.3.2, we have obtained a formulation for the optimal PDE nonlinearity f> (see
(1.22)). First, in Section 1.5.1, we present the numerical solution for different European
options. Then, in Section 1.5.2, we compute the asymptotic risk R, (v*, f) for different f €
{135 f31, f32, £33} confirming the optimality of fJ.

Finally, in Section 1.5.3, we compare the optimal f*-PDE solution with the solution to the
minimization problem (1.3). We aim to check the conjecture whether one can interchange the
limit in N and the minimization over strategies in our setting. In other words, we verify the
solution to the minimization problem in discrete time (see (1.3)) corresponds, as N large, to the
solution to the nonlinear f*-PDE (1.5).

1.5.1 Optimal PDE valuation of European options

Here, we assume that the hedging instrument X satisfies the SDE (1.8) with

u(t,x) =0, o(t,x)=0cx, 0<t<T, zekR

51



CHAPTER 1. OPTION PRICING AND HEDGING USING ASYMMETRIC RISK MEASURE: ASYMPTOTIC OPTIMALITY

Then, we show the numerical solution to the PDE (1.5) for different European options.

The forward f-PDE valuation in dimension 1. Consider the value function (¢,x) as the
solution to the f-PDE valuation

aa—ltl(t,x) = a(z)ug(t, ) + f La(z)ug(t, x)), 0<t<T, zelR (1.56)

in a forward form, where a(z) = 022%/2, r € R, and f : R — R is a real-valued function to be
chosen.

Seeing that (1.56) has a second-order partial differential in space and first-order in time, we
require for a numerical resolution one initial and two boundary conditions. Also, European
option with maturity 7', defined by a payoff function g(z), are used as initial time condition.

European option payoffs. Denote the mapping x — max(x, 0) by x,.. We choose the following
options:

* Call and put option with strike price Ky;
* Asset-or-nothing call and put option with strike price K ;

* Bull-spread and bear-spread option with strike prices Ky > Kj;

which is summarized below

Type Call Put
Vanilla (z — Ko), (Ko—x),
Digital x1g,—z<0 s Ky<0

Spread (z— K1), —(z—Kj), (Ky—2x), — (K1 —x),

In the following, we consider:

Set Type (Ko,Kl,KQ) o T
A Vanilla and digital (100, —, —) 0.3 1.0
B  Spread (—,90,110) 0.3 1.0

We examine the digital and the spread options because of the discontinuity and the change of
convexity, respectively, of their payoffs. Aware these payoffs do not satisfy the assumptions of
Theorem 1.6, we believe that these hypotheses are only sufficient and the previous asymptotic
analysis can also be applied to those payoffs.

Numerical scheme: space discretization. Let us detail our numerical scheme. We look for
a second-order approximation to the PDE (1.56) solution on a finite domain L = [0, Lyax]-
Let I € N. Therefore, we equally discretize L in I + 1 points {zg,z1,...,z7—1,x7} such that
Ax = Lyay/I and x; = iAx for each 0 < i < I.

Assuming that u is smooth enough, we get the second-order approximation of the second
derivative of u
ui+1(t> — 2111(75) + ui,l(t)
Az?

= u(t,a:)m|x:zi + O(Am2),
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forevery 1 <i < I — 1, with u,(¢) denoting u(¢, z;). Owing to the second-order approximation,
we obtain a semi-discretization from (1.56):

ie1(t) —2u,(t) + w1 (¢ ir1(t) —2u;(t) + w1 (¢
(1), = o M =20 1()+f(2ai““() i)t 1()>, (1.57)

for every 1 < i < I — 1, where the factor «; is a(x) evaluated in each z;.

Assuming that f in (1.56) is Lipschitz continuous, the system (1.57) is a second-order approxi-
mation of the PDE (1.56) and can be viewed in matrix form as

dU(t
0 _ av) + pAU®).
where A is the coefficient matrix and U(¢) = (uo(t),...,us(¢))7T the discrete solution.

Besides the system (1.57), U(t) also satisfies ug(t) = bmin(t) and uz(t) = bmax(t), where by, and
bmax represent a Dirichlet-type boundary condition imposed to the numerical solution. Therefore,
the matrix A is of form

Q;

20@
ii—1 = Az2’ -

Ax?’

&7

Ax?’

Ago = 0, A Ay = Ajiv1 = A =0.

After the space discretization, it remains a system of ordinary differential equations

dU (t)
dt

— AU(t) + F(t), U©0)=g, F(t):=f2AU(1)).

Numerical scheme: Time discretization. Now we apply a second-order method in time. Let
J € N. Divide the time interval [0, 7] in J intervals with a constant time step At = T'/.J.

Denote U7 (resp. F’) as the vector U(t) (resp. F(t)) evaluated at t = jAt. Due to the
nonlinearity of F'(¢) regarding U (¢), we use Adams-Moulton (AM) methods together with Adams-
Bashforth (AB) methods to construct a Predictor-Corrector algorithm with AM and AB of the
same order. Here we apply the second-order Adams-Bashforth (AB2) method to predict F7+!
giving F7+1/2 and we use F7+1/2 within the second-order Adams-Moulton (AM2) method to
correct Fi+1

1. With AB2, we predict (U7, Fi+1) giving us:

(Fj+1/2’ Uj+1/2) _ (f <2AUj+1/2> I+ At(i (AU? + F7) — % (AU7~! + Fi 1) >)

2. With AM2, we correct (U7*!, Fi+1) giving us:

(Fj—&-l’ Uj+1) _ <f (QAUJ'+1) U7+ At<; (AUj+1 + FJ‘+1/2) + % (AUJ' + FJ') >>

Since the algorithm looks two steps back, we will need some initialization steps. Therefore, we
use the AB1 (Forward Euler) and the AM1 (Backward Euler) method for the prediction and
correction part, respectively,

U2 = U0+ (AU + £(207)), Ut = U° 4 Ar(AUt + F2U12)),
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Notice that the chosen f is the optimal PDE nonlinearity f*

f*y) = cdys —cy-, VyeR,
as given in (1.22). Moreover, in Table 1.1, we find the computed constants ¢} and ¢ depending
on the risk parameter ~.
Parameters. Regarding the boundary conditions, we stipulate a space domain L = [0, Lyax],

where L.« is supposed to be large enough. Then, we use Dirichlet boundary conditions

u(t,0) = bmin(t) and u(t, Lax) = bmax(t), Yte[0,T].

We set the left and right boundary

bmin(t) = g(O) and bmax(t) = g(Lmax)a Vte [07 T]‘

Regarding the numerical solution, we fix

Lyax 1 J
400 200 200

In Figure 1.4, we show the vanilla option value plotted for different risk parameters v. We depict
analogous plot for digital and spread options in Figure 1.5 and 1.6, respectively. We remark
the numerical solutions are increasing in function of ~. Intuitively, whenever the seller’s risk
aversion increases, it will be more reasonable to asking him for a higher option price. According
to Proposition 1.8, we have y — f¥(y) is nonnegative for all v € (0, 1). Therefore, the nonlinear
source of PDE (1.56) is nonnegative whatever the sign of second derivatives. Our risk-aversion
valuation adds a risk premium to the risk-neutral one whenever the underlying price varies too
quickly, i.e., proportionally to the Greek Gamma.

1.5.2 Asymptotic risk: Dependence on the PDE nonlinearity

Here, we suppose the reference valuation v is given. Then, we test the asymptotic risk R (v, f)
(see (1.13)) for different PDE nonlinearity f.

Using the optimal f-PDE valuation in dimension 1. Let us consider as reference valuation
the function v} (t,-) = u(T —t,-), where u is the PDE (1.56) solution using the optimal PDE
nonlinearity f;k (see Proposition 1.8).

We confirm numerically the optimality of fJ for the reference valuation v3 by computing
R, (v}, f7) for a different risk parameter 4. To achieve that, we approximate R, (v, f) by
forward Monte Carlo simulations of X. In addition, we use the numerical PDE solution to
compute the partial derivatives of v;" present in the expression of R"Y(U:’ f,-’y") (see (1.13)).

Denote its estimate by f{N, M (7,7), where N is the number of time steps and M is the number
of paths {X;, }V_,.

Parameters. Set
c=03 N=20, M=5x10° and Xje {90,110}.
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(c) Put option: value function u
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(b) Call option: hedge function u,
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(d) Put option: hedge function u,

Figure 1.4 — Vanilla options: f*-PDE solution u for different risk parameter ~.
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(a) Asset-or-nothing call: value function u
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(c) Asset-or-nothing put: value function u
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(b) Asset-or-nothing call: hedge function u,
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(d) Asset-or-nothing put: hedge function u,

Figure 1.5 - Digital options: f*-PDE solution u for different risk parameter ~.
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R R T 60 e 10 10 0
y=0. y=0.1 y=0.2 y=0.3 y=0. y=0.1 y=0.2 y=0.3
(a) Bull spread: value function u (b) Bull spread: hedge function u,
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(c) Bear spread: value function u (d) Bear spread: hedge function u,

Figure 1.6 — Spread options: f*-PDE solution u for different risk parameter ~.

The number of time steps used in the PDE resolution between each time step of the MC algorithm
is 50. We study the following options:

OptiOl’l (Ko,Kl,KQ) T

Call (100,—,—) 1.0
Bear  (—,80,120) 1.0

Let v € [0,1) and X{ € R, fixed. Thanks to Theorem 1.6 and Proposition 1.7, we expect the
minimum of

¥ — Ry (7,7)

is attained at 4 = ~. In Table 1.2, we compute the numerical approximation R N, (7,7) for all
7,7 € {0.0,0.1,0.2,0.3} to verify this claim.

1.5.3 Optimal PDE valuation/hedging: Comparison with the discrete-time solu-
tion

Here, we compare the optimal f7-PDE valuation/hedging rule
@3 (t, ) = (V3(t, ), 005 (¢, ), Vte[0,T]
and the discrete time problem solution
go,)JY(tn, ) = (VWN(tn, -),ﬁffv(tn, ), Vnef{0,...N},
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Table 1.2 — Asymptotic risk estimate ﬁN, v for N =20and M =5 x 10°.

v 5 Xo=90 Xo = 110 v 5 Xo=90 Xo = 110
0 0 41.20+0.08 47.92+0.08 0 0 41.20+0.08 47.92+0.08
0 0.1 42.09+0.08 48.96+0.08 0 0.1 42.09+0.08 48.96+0.08
0 0.2 45414+0.09 52.82+0.09 0 0.2 4541+0.09 52.82+0.09
0 0.3 5249+0.10 61.05+0.10 0 0.3 5249+0.10 61.05+0.10
01 0 41.26+0.08 48.03+0.08 01 0 41.26+0.08 48.03+0.08
0.1 0.1 40.53+0.08 47.17+0.08 0.1 0.1 40.53+0.08 47.17+0.08
0.1 0.2 41.52+0.08 48.32+0.08 0.1 0.2 41.52+0.08 48.32+0.08
0.1 0.3 45.20+0.09 52.61+0.08 0.1 0.3 45.20+0.09 52.61+0.08
02 0 41.46+0.08 48.29+0.07 02 0 41.46+0.08 48.29+0.07
0.2 0.1 39.46+0.07 45.97+0.07 0.2 0.1 39.46+0.07 45.97+0.07
0.2 0.2 38.66+0.07 45.03+0.07 0.2 0.2 38.66+0.07 45.03+0.07
0.2 0.3 39.75+0.07 46.30+0.07 0.2 0.3 39.75+0.07 46.30+0.07
03 0 41.61+0.07 4851+0.07 03 0 41.61+0.07 4851+0.07
0.3 0.1 38.66+0.07 45.08+0.07 0.3 0.1 38.66+0.07 45.08+0.07
0.3 0.2 36.51+0.07 42.57+0.06 0.3 0.2 36.51+0.07 42.57+0.06
0.3 0.3 35.65+0.06 41.56+0.06 0.3 0.3 35.65+0.06 41.56+0.06

(a) R ~,m for a call option.

(b) ﬁN, u for a bear option.

where N is the number of hedging times. We approximate gpfyv by ng,V M by using a Regression
Monte Carlo (RMC) algorithm, where M is the number of Monte Carlo paths.

Principles of RMC methods. We present our RMC algorithm, which is a variation of the
Hedged Monte Carlo algorithm (proposed in [PBS01]) with a fixed-point stage. We determine
the option value by working step by step from 7" = N At to the present ¢ = 0, where At is the
time interval. We denote the underlying asset price X at time ¢,, = nAt by X,, and the option
value V,,(X,,) at time ¢,, only depends on the current asset price X,,. We introduce the hedge
¥, (X,), which is the amount of the underlying asset in the portfolio at time ¢,,, when the asset
price is X,,.

The average risk, over all paths of the underlying process, is given by

Rn = <€’Y (Vn+1(Xn+1) - Vn(Xn) - 1971()(71) (Xn+1 - Xn))>]\/[a

where the angled brackets ¢...),, denote the average over the sampled asset values. The
functional minimization of R,, with respect to V,,(X,,) and ¥,(X,,) gives us equations which
allow us to determine the option value and hedge provided that V,,,; is known. We generate a
set of M paths X", where n is the time index and m the path index. We decompose V;, and 9,
over a set of K basis functions L} and C}'. The use of local basis function in RMC is presented in
[GLWO5]. Therefore, we set L} and C}, respectively, as a piecewise linear and constant function
on each partition of real line. In addition, we use adaptive breakpoints as proposed in [BW12]:

K K
VE(z) =) apLi(x), 95 (z) = Y bpCi(x).
k=1 k=1

In other words, we reduce the original functional optimization problem (find the functions
V,, and 9,) to a numerical optimization (find the coefficients a}} and b}). We have a good
approximation of the true functional solution conditionally to K be large enough. We then solve
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N minimization problems backwardly in time from maturity 7', where Vi (x) is equal to the
payoff function g. For each step n, we minimize

S

1
M Z gry (ggm (Vn+1, an, bn))
m=1

where

ex (Voa,b) = V(X)) ZakL" Xm) Zbkck mo—Xm).

Weighted Least Squares. Thanks to the choice of the risk function ¢, we write £,(y) =
(y w,y(y))Z with a weight function w,(y) = 1 + 7 sgn(y). Then, for eachn e {N —1,...,0}, we
solve the following fixed-point problem starting from the quadratic optimal solution

| M
(an,07bn,0) = argminﬂ Z (Sffm (Vn+1,a7b))2’

(a,b) m=1
1 & 2
(a™P ! b™P*h) = argmin Z Vir1, @, ) wy (€, (Vag1, a™?,0™P)))7
(a;b) m:1
for every pe {0,..., P — 1}, where V,,,1 = Vn[i’f’

n+1,P yn+1 K,P n+1,P ~n+1
n+1 = Za Ly, 05 = Zbkz G/
k=1

The least square problem with weights is solved using standard procedures. From a practical
point of view, we have used a C+ + library called StOpt (see the documentation in [GLIW16]) to
implement this previous RMC with local basis function and adaptive breakpoints. Even though we
do not establish any theoretical convergence result, we know the previous algorithm is strongly

related to a RMC method for computing generalized BSDEs proposed in [LGW06, GT16]. In
~N,M

following, we denote the optimal strategy (Vii'r (), 957 () as oy (tn, ).
Discussion. Regarding the RMC algorithm, we set

M=8x10°, N=40, K=80 and P =20.

For the underlying process, we set

c=03, X9=100 and T =1.

Here, we compare the optimal valuation/hedging rule ¢ (¢,-) and the discrete-time solution
(pgyv (tn,-) for the call and bear option with

Ky=100, K; =80 and K, =120.

Thanks to the algorithm described before, we compute the option value IA/WN M( tn,-). Owing to
the finite difference scheme in Subsection 1.5.1, we have the value function v (%, -).

Here we consider the risk parameter ~ varying in {0.0,0.1,0.2,0.3} and the following discrete
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times ¢, € {0.1,0.3}. In Figure 1.7, we present the relative error

-1

PV (4
T — rerrN’M(x) =0 (tn, )

Vstn ”tﬁ (tn, )

for a call option. We show analogous plot for a bear spread option in Figure 1.8. We observe that
relative errors seem to confirm numerically the conjecture: the optimal price in discrete time for
large number of hedging times coincides asymptotically with the f*-PDE solution.

1.6 Appendix

In this appendix, we show the proof of some technical results used in previous sections.

1.6.1 Technical results about Section 1.4

Here, we gather the results related to the proof of Theorem 1.6 (see Section 1.4). First, we
present the result about estimating the increment | X2 — z.

Lemma 1.17. Let X (,At be the solution of the SDE (1.23) starting from x at time t,,. It holds, for
any p = 1, that

sup EP HXgAt — :ch < Ky (x)AtP2,
0e[0,1]

for some constant K,, n(x) € K,y depending on p.

Further; for any function ¢ : [0,T] x RY — R in cY2L it holds, for any p > 1, that

loc,pol’

sup E5 |¢ (tn + 0AL X2Y) — d(tn, O < Ky n(z) A2, (1.58)
0[0,1]

for some constant K, n(x) € K, depending on p.

Because this is quite standard, the proof is left to the reader.

Next, the following lemma gives a sufficient condition to ensure the almost sure convergence of
a sequence (Yy)n>1. Indeed, the expectation of the general term Y} decreasing with a speed
strictly greater than 1 suffices to obtain the result.

20

0.5

e y=0. & y=01 e y=02 o y=03 - e y=0. a y=01 o y=02 o y=03

(@ rerrfx;%(az) att, = 0.1. (b) rerrfy\{;tjy(x) att, =0.3

Figure 1.7 — Call option: Relative error function rerrjw\f ’t])f for M = 8 x 10°, N = 40
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L Lo
140 160

-0l —o5L
e y=0. & y=01 & y=02 o y=0.3 e y=0. & y=01 o y=02 o y=0.3

(a) rerrfy\{’t]:[(x) att, = 0.1. (b) rerrfy\{’t]:[(x) att, = 0.3.

Figure 1.8 — Bear option: Relative error function rerrfx ’tf\f for M = 8 x 10°, N = 40.

Lemma 1.18. Let (Yxn)n=1 be a sequence of positive real random variables. If Yy satisfies E[Yy] <

¢/N1+9 for some reals ¢ > 0 and § > 0, then Yy converges almost surely towards 0, i.e., Yy Na—s> 0.
—00

Proof. The argument is quite standard, and for the sake of completeness, we give it. Summing
up the expectation of Yy, we get > - E[Yn] < ¢D iy 1/N'*9 < 4o by hypothesis. Then
the positive random variable -, Y has a finite expectation. Owing to Fubini’s theorem, this
implies that ;. Yy < +co with probability 1. Therefore, the general term Yy converges
almost surely towards 0. O

This proposition is used to complete the proof of Theorem 1.6.

Proposition 1.19. Let & be defined in (1.28). Let F' and G be functions given by (1.34). Under
the assumptions of Theorem 1.6 (especially, Assumption 1.5), the set A given below

A={(w,t,0) € Qx[0,7] x [0,1] | &(G(t, X), F(t, X)) = 0}

and defined in (1.38) has measure zero w.r.t. APV @ dP? ® dt® dé.

Proof. From (1.28), we write & in the following form
Eo(A,y) = (BjABy — Tx[A]0)/2 — y0, V(0,A,y) € [0,1] x S x R.

From (1.34), we recall F and G

{F(t,x) = f(t,:c,v(t,:z:) va(t,x),ng(t,a:)), Yt z) € [0.1] x Re

G(t,x) = (6T(D2v)o)(t, x),
The announced result is equivalent to say

T rl
EWV®B [ fo L Le, (G(1,X0), F(t.x0))=0 40 dt] =0.

Applying Fubini’s theorem, the tower property of the conditional expectation and the Assump-
tion 1.5, the previous condition is equivalent to

T rl
|| B [P (sote 0. P e X0) = 0| ) a0 0 dt =0,
0 JO
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Claim 1.20. For A # 0 € S% y € R and 0 # 0, we claim that the random variable (A, y) admits
a density function w.r.t. the Lebesgue measure.

Therefore, for any triplet (A, y, ) satisfying the claim, we obtain P? (& (4,y) = 0) = 0. This
proves the announced result. O

Proof of the Claim 1.20. In view of the expression of £(A, y), we notice that showing &y(A,y)
admits a density function is equivalent to show that B] AB,/6 has a density function. The latter
has the same distribution as ZTAZ where Z is a standard normal random vector. Consider
the spectral decomposition of A: A = Zle Aiv;v], where v; are orthonormal vectors and
the eigenvalues \; are strictly positive. Since A # 0, I > 1. As a consequence, by setting
Zi=v]Z,weget ZTAZ = Zi]:l \;Z?%. The components Z; are independent and distributed as
standard normal random variables. To sum up, we have decomposed ZTAZ as a weighted sum
of independent y} random variables. Therefore, ZTAZ has a probability density given by the
convolution of x? random variables. O

1.6.2 Proof of the convergence of the sensibilities

Now we present the proof of the results related to the convergence of the sensibilities in
Section 1.4.

Proof of Proposition 1.10. Because the estimates are made on [t,, t,+1], We note w1 by w.
In the following, K, n(z) denotes a generic constant with polynomial growth in x (defined in
Section 1.4).

Initially, a strategy of proof could be to use the Feynman-Kac (FK) representations. Here, we
would represent the PDE (1.5) in terms of the SDE with zero drift and diffusion coefficient o.
Although natural, this approach is cumbersome at some points, especially, when one has to deal
with the derivatives of the SDE w.r.t. the initial condition. Instead, we take advantage of writing
a FK formula using directly a Brownian motion. For any ¢ € R?, we set

Wf"’é :fJFWt*th? tp <t <tpy1,

where W is a d-dimensional Brownian motion.

Now, the proof consists of applying Ito’s formula to u(-, W.t"’f) and estimating u(t,,§) —v(tp+1,§)-
Observe that W< is quite convenient for sensitivity computations because:

e the first-order derivative of W< w.r.t. ¢ is the identity matrix I; in R4*%;

¢ the second-order derivative of W€ w.r.t. ¢ is the null array 0 in R4*4*,

Proof of (1.31). Applying Ito’s formula to u(-, th,S) and taking the expectation leads to

]E[u(tn+1, th,g)] = u(tn,&) + E[Jth (ut + %Tr[Dgu])(t, th"vf) dt].

tn+1

Since D,u(t,z) has a polynomial growth in space (because D,u(t,x) € Cllo/c2£>101 ), we have used

that the stochastic integral is a martingale. By seeing that « is the solution of PDE (1.5) with
terminal condition u(t,+1,-) = v(tn+1, ), we get the FK representation

tn+1
u(tn,€) = E [v(th, WS + L o(t, W) dt] , (1.59)
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where
o(t,x) = f(t,:v,u(t,x), Dxu(t,av),Diu(t,a:)) + %Tr [((O'O'T)(t,$) - Id)(Diu)(t,x)] )

Subtracting v(¢,,+1, &) from (1.59) leads to
t tn+1 ¢
U(tn, f) - U(tn+1, é.) =K I:U<tn+17 Wt:_i) - U(tn+17 g)] + f E [(z)(ta th7£):| dt. (160)

Under the assumptions, ¢(¢,z) and v(¢, z) are in 2

Joc,pol* By using the estimates in Lemma 1.17
with p = 1, we get

tn+1
[ (tn; €) = v(tns1, )| < [0l o K v ()AL + f Ko n(€) dt < Ky n(§)AL?,

loc,pol

because the term related to the integral converges to zero at rate At. O

To obtain the other announced results, we need to bound the derivatives of the following
expectation E[¢(t, Wf”’g)]. The following lemma provides an estimate in the interval [¢,,, ¢, +1]-

Lemma 1.21. Let a = (aq, ag, . .. aq) be a d-dimensional multi-index with |«| = Z;-i:l «;. For any
function ¢ € CY21 it holds

loc,pol
IDEE[(t, W) < Ko n ()t — t) T2 4, <t <typr, ol =1,

for some constant K, n(§) € Ky

Proof of (1.32). Next, we estimate the first derivative of u(¢,, &) — v(tn+1,&) w.r.t. the initial
condition &. Differentiating (1.60) w.r.t. £ yields

tn+1
Deu(tn, €) = Dev(tns1,€) = E | Dyv(tns1, Wir5) = Devltni1,6)| + f DE |o(t, W) | dt.
' (1.61)
From our assumptions, ¢(¢, z) and D,v(t,x) are in Cﬁ)/fl’)lol. By using the Lemma 1.21 with |a| = 1
and the Lemma 1.17 with p = 1, we get
tn+1
| Deu(tn, §) = Dev(tni1, )| < [ Dav] 120 K v (§) AL + Ko (€)dt < K N (€)ALY

loc,pol tn

where the term related to the integral converges to zero at rate At¢. This implies the announced
result. O

Proof of (1.33). Analogously, we estimate the second derivative of u(,,§) — v(tn+1, &) by differ-
entiating (1.61) w.rt. €

tn+1
D2u(ty.€) ~ Divltasn,€) = B [D2ultrn, Wir) = Dioltass )] + | DEE[o(e, Wi ]

. 2 . 1/2,1
From our assumptions, ¢(t,z) and DZv are in Clocpol*

By using the Lemma 1.21 with |o| = 2
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and the Lemma 1.17 with p = 1, we get

tn+1 Kn
|DEu(tn, &) — Div(tns1,€)| < |Dv| 011/2,11KR,N(§)A751/2 + J (ttN(ﬁ)m dt < K, n(&)AtY?,
0c,po. — in

where the integral term is of magnitude At!/2. Therefore, we obtain the announced estimate. []

Proof of Lemma 1.21. Let |«| > 1. Differentiating E[¢(¢, Wf”’é)] w.r.t £ yields
DEE[G( W) = | ot.)Dep(t. &) do (162
= JRd(¢(t7$) - ¢<tn7€))D?p(tna§; t .CC) dz, (1.63)

where

) ! L g
Pl S0 = (g 1,72 <_2t—tn

is the transition density function of th"7€. To pass from (1.62) to (1.63), we used that
OZD?J p@mf;t?x)dw:f D?p(tn,g;t,(]})dx.
R R

In the following, we use the result in [Fri08, Section 6, Chapter 9] related to the bounds for
p(tn, &5ty ).

Proposition 1.22. Let |a| > 1 and p(t,,&;t, x) be the transition density function of the Brownian
motion th”’g. There exist two positive constants ¢ and K depending on « such that

a K L — 5 ?
|Dgp(tn, &5 t, )| < (t_ﬂwexp (_C”t—t>’ V(& tx) € ROx ]t tny1] x RY.
By using ¢ € Cllc>/c2f>lol and the estimate in Proposition 1.22, we obtain from (1.63)

DEE[o(t, W)

[t — ta] 12 + | — ¢ ( \:c—w) (1.64)
exp [ —c - dz,

< q q
< Klolgay [ 0+ lal + 1 =

for some real ¢ > 0. In the following, we use that any exponential decrease crushes any
polynomial growth: for any positive constants ¢ and ¢, there exist two other positive constants
¢ < c and K such that, it holds

(14 [y|9e™| < Ke™%, WyeR.
Therefore, we get from (1.64) that there exists a constant C' such that

|t — t,|'/?
(t _ tn>d/2+\oz|/2

DEE[G(t, Wi )]| < C(1+ [¢*)(t — t)¥? = O(1+ [€P)(t — t,)0—loDr2,

for any t,, < t < t,,,1, which completes the proof.
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Chapter

Asymptotic asymmetric risk measure: Application to physical asset
valuation

This chapter is based on the paper [AGPW18].

Abstract

Power producers are interested in valuing the future production of their power
plant. They seek to reduce the risk associated with an uncertain income by
trading into forward contracts. Also, their power plants generate fixed costs in
the future despite the fact that they will be operating or not. After spreading
those future fixed costs over the hedging period, we obtain staggered costs
proportional to the time step, and we add it to the replication error. Thus, we
obtain an optimal hedging strategy by minimizing the associated asymptotic
risk with asymmetric risk function. We study the impact of staggered costs
depending on the electricity spot price into the hedging strategy.

2.1 Introduction

This chapter provides valuation and hedging policies for future production of power plants using
an asymmetric risk valuation. After the deregulation process of energy markets in early 1990,
several spot and futures markets were created to exchange an almost non-storable commodity;,
the electricity. At the same time, power producers start to face the problem of evaluating their
power plant production, which is dependent on the electricity spot price in the future.

To tackle this problem, there exist at least two different approaches. First, having a realistic
model consistent with the electricity market data, we obtain a fair price by taking the expectation
of the future income due to the production sale under the risk-neutral probability. Another
approach consists of reducing the randomness of the future income by hedging with forward
contracts (which are related to the electricity spot price).

Here, we consider the second approach as an application of asymmetric risk valuation and
hedging to define an optimal pricing/hedging rule in an asymptotic framework (see [GPW18]).
In practice, power plant owners perform discrete hedging at trading times, tp = 0 <t; < ... <
ty = T using a hedging security X to reduce the risk associated to a random future income G at
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the time 7. This discrete hedging produces a residual risk:

N-1
E=G— > 9, (X, — X1,),
n=0
where 1 is the hedging process with ¢; denoting the number of shares invested in the hedging
security at time ¢. Here, we consider the hedging security as a forward contract with delivery
time 7.

From a theoretical point of view, the residual risk related to the discrete hedging becomes
narrower with the number N of trading times.However, in the electricity market context, the
power producer wants to perform its hedging at low-frequency rate (once a week, for example).
Then, we search to find the valuation/hedging rule taking into account the local balance &,
depending on its sign through an asymmetric risk function ¢:

En=V: —%n—ﬁtn(thJrl—th), 0<n<N-—-1,

n+1
where V' stands for the valuation process under the replication constraint V; = G. Notice those
plant owners are willing to obtain a residual risk £ with a small standard deviation (i.e., they
search for P&L histogram concentrated in a region). At the same time, they prefer the scenarios
where the local balance &, > 0, because we are averse to negative residues.

Fixed cost accounting. In this context, we take into account the fact that a power plant
generates some fixed costs, including maintenance and investment costs, and excepting the fuel
cost, whether it is producing electricity or not. In an accounting point of view, the power
producers are constrained to find today an equivalent price to the future income generated by
their power plant to be written in the balance book. Actually, they do not face any financial risk
due to a contingent claim. Since they can not influence the future electricity spot price St to
obtain a higher income, they prefer to ensure a certain value for the positive amount G = ¢g(Sr)
due to the sale of their future production.

For an illustration purpose, we give an estimation of those fixed costs for a nuclear plant.
Following the assumptions' of the World Energy Outlook (WEO) 2016 in [Int16], we consider

* an maintenance cost of $170 per kW (kilowatt) per yr (year);
* an investment cost of $6600 per kW;
 and an exchange rate at 0.90€/$ (for 2015 US dollar).

This means that a nuclear plant with 1 GW of installed capacity has cost $6.6 billion (5.9 billion €).
Also, we spend $170 million per year (153 million €) in maintenance. After that, we spread those
fixed costs over the plant lifespan (20 years). Thus, we obtain the following fixed costs of 51.40€
per MW of installed capacity and per life hour, which is detailed as:

* investment cost: 33.90€/MWh
* maintenance cost: 17.50€/MWh.

This means that for every 1 MW of installed capacity, one should pay each hour 33.90 € to repay
the investment and 17.50 € to maintain it. Note that interest rates are not considered here and
the investment cost is spread evenly over the life of the plant. Then, we look at the fixed costs
generated by a power plant during a period of 24 hours: 1233.60€ for each 1 MW of installed
power. Now, if we plan to hedge this production 1 year before, we must spread this cost over the
8760 previous hours and we get staggered costs of 0.14 € per MW (installed) per hour (hedging).

1For details on the WEO assumptions used here, see the database in the More Information on... section and
Investment in power generation subsection of the World Energy Model website: www.iea.org/weo/weomodel/.
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2.1. INTRODUCTION

In order to price the future income, they use the underlying forward market as a mark-to-
market way of reducing the randomness of ¢g(S7) by minimizing an asymmetric risk measure
R y. To simplify the analysis, we consider equidistant trading times ¢,, = nAt with time step
At = T/N. We include staggered costs proportional to the time step A¢ by subtracting ¢(S;, ) At
from the local balance &, . Here, the staggered cost function ¢ : R — R, ¢ € C(R) represents the
dependency of the spread fixed costs on the electricity spot price S;, at the time ¢,,.

In this setting, we study the asymptotic of the integrated risk Ry

1 N-1
Ry = T;O E[¢(£5)],

where
5761 = VYﬁn+1 - ‘/tn - ﬁtn (th+l - Xt’ﬂ) o C(St")At

In the following, we give two economic points of view to justify the dependence of staggered
costs ¢ on the electricity spot price. First, when the electricity spot price is high, we use more the
power plant to respond to higher demand. In indeed, a high price is generated by high demand,
which corresponds to high production, meaning that we have to start more often the power
plant. That is the reason why we assume a dependence of ¢ on the spot price. For example, we
can take ¢ = ¢(x) as an increasing convex or concave function of the spot price level z.

Second, the staggered costs related to maintenance are seasonal and higher during the refueling
stop of a power plant. Also, the producer prefers to stop its power plant when the demand is low
(i.e., when the spot price is low). In France, this occurs more often in summer than in winter. In
this sense, the staggered costs and the spot prices are negatively correlated. Additionally, the
maintenance team takes about 3 months to repair and refuel the power plant, and this refueling
procedure for a nuclear plant occurs approximately every 12 months. Therefore, we consider a
staggered costs ¢ depending on the spot price level x such that ¢(x) is decreasing, convex and
takes a finite positive value at = = 0.

Asymptotic risk by PDE valuation. For the risk function ¢ : R — R, we take the same as in
[GPW18]:

. 2
0 (y) = ﬂﬂ;gn(y))yz 2.1)

for v € (—1,0), where the sign function is defined as follows: sgn(y) := 1,~0 — 1,<0, y € R. Here,
the parameter ~ represents the producer’s desire of reducing the future income more often than
increasing it (see Figure 2.1).

In view of studying the integrated risk Ry - in the asymptotic regime N — 400 using the asym-
metric risk function /., we follow an approach by PDE (partial differential equation) valuation
described below. We suppose the hedging security X is modeled by a stochastic differential equa-
tion (SDE) with diffusion coefficient o. Then, we assume the existence of exogenous valuation
process V; = v(t, X;) defined by some function v € C([0,T] x R). For example, v is a reference
value function obtained by the power producer when no cost is taken into account. Now, with this
exogenous reference valuation in hand, the power plant owner determines its hedge position on
each interval [t,, t,+1] by choosing an adapted valuation/hedging rule (17;" , ﬁtn) and considering
the related conditional risk R, , using the risk function ¢.:

Ry = IE[& (gﬁ)

}'tn]. (2.2)
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(7
: y=—0.1
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Figure 2.1 — Risk level /, depending on the local balance y with different parameter . For
€ (—1,0), the risk function ¢ (y) penalizes further the negative than positive local balances.

where

~

& -,

— Vi, = g, (Xpsr — Xt,) — (St ) At

n+1
In fact, the valuation/hedging rule (V;, , 5tn) of the power producer is given by
‘Zn = utn-%—l(tn’ th)? 51&71, = ufcn+1(tn’ th)7

and is parametrized by a function f, possibly non-linear, through the solution u!"+1 : [t,,, ;1] xR
to the f-PDE (2.3) with terminal condition u'r+!(t,,11,-) = v(t,41,-) at the time ¢, 1.

Definition 2.1. Given a terminal time 7 > 0, a diffusion function o : [0,T7] xR — R, 0 €
C([0,T] x R), a PDE non-linearity f : [0,7] x R x R x R x R - R, f € C, a terminal condition
v(1,-) : R - R, v(r,-) € C(R), the function «” : [0,7] x R — R is solution to the f-PDE if it
satisfies

1
—uy — f(t,x,u”,ul,ur) = 50215;3; (2.3)

and the terminal condition
u' (1,2) = v(T,x).

Following the same path as in [GPW18], we obtain the limit R of the integrated conditional risk
Ry,

1 N1

RN/Y = Kt Z E[Rn7’7]7
n=0
as the number NV of trading dates goes to infinity. After obtaining an explicit expression for R,
depending, among others, on ~, v, f, o, we get an optimal PDE non-linearity f* minimizing the
asymptotic risk:
R, [v, f*] < Ry[v, f],

for any admissible f. Again, this optimal PDE non-linearity f* is explicit in dimension 1,
depending on ~, on the second-order derivative of v and on the staggered cost function ¢(+). In
the end, the power producer will choose the following rule

Vi = 0" (tn, X1,), b, = V3 (tn, Xu,),

n

where v* : [0,7] x R is the solution to the f*-PDE with terminal condition satisfying v*(7,x) =
g(x) at time T'. It is a consistent way of reducing the randomness of the future income G = ¢(St).

For the numerical experiments, we take staggered costs depending on the level of the electricity
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spot price through convex-concave functions. As an example, we compute the numerical solution
to the f*-PDE for a call payoff given a function ¢(x).

This chapter is structured as follows. In Section 2.2.1, we present the stochastic setting and
define the problem. In Subsection 2.2.2, we gather the assumptions used here. Subsection 2.2.3
is reserved to the main result: the asymptotic risk with staggered fixed costs, and Section 2.3
summarizes important points of the proof. Finally, two different staggered cost models are
provided in Section 2.4 and most numerical results are discussed in Section 2.5.

2.2 Setting

2.2.1 An asymmetric risk valuation with cost management

Here, we study the conditional risk R,, , using the risk function ¢, in the case of staggered
costs proportional to the time step. Analogous to [GPW18], we say ¢ satisfies a local regularity
condition in time and space if, for some real « > 0, the coefficient

Hng a1 = sup sup ”(b(t: IL') — ¢(t/7 .’L'/)“
Cloc,r;ol t#t/€[07T] r#x'eR (‘t — t/‘l/Q + |x — $/|)(1 + |x’°‘ + ’.’L‘l|a)

is finite, then ¢ is said to be in oYL Also, the set C12(]0,T] x R) denotes the set of functions
loc,pol ’

¢ :[0,T] x R such that the partial derivatives ¢, ¢,, ., exist and are continuous.

Probabilistic model. We consider a fixed horizon time 7" > 0. Let W = {W; : ¢t € [0,T]}
be a standard Brownian motion on a probability space (€2, F,P) endowed with the natural
filtration F = {F; : 0 <t < T} generated by W up to time 7". Moreover, we take a collection of
equidistant trading times {0 = ¢y < t; < t2 < ... <ty = T} on the interval [0, 7] such that the
time step is At,, := t 41 — t, = T/N, also denoted by At, for some N € N.

For simplicity, we assume that the interest rate is zero and that exist only one risk-neutral
measure given by the probability measure P. We consider the hedging security X as the forward
contract F'(-,T") with delivery time 7. We model F'(-,T) = {F(¢,T) : t € [0,T]} according to the
dynamics given by the (one-factor model) stochastic differential equation:

dF(t,T) = 6(t, T)F(t,T)dW;, 0<t<T, (2.4)

where the volatility function ¢ € [0,7] — & (¢, T') is continuous taking values in R* and satisfying
a(T,T)=a9>0.

For example, we could take 5(¢,7) = Gpe~ for some positive constant ag. The map
T — F(0,T) represents the initial forward curve.To be consistent with the definition of forward

contracts, we take the electricity spot price S; at the time ¢ as being the forward price with
immediate delivery, i.e., S; = F'(¢,t), for all ¢ € [0, T].

ag (T—t)

For a future income function g : R — R, g € C(R), we assume the existence of a reference
price v : [0,T] x R — R, v € C([0,T] x R), satisfying a compatibility condition v(T,-) = g(-).
Parameterizing valuation/hedging rule of the power producer, we have a function f : [0,T] x
R xR xR xR — R used as the source of non-linearity to the PDE (2.3). In fact, for each hedging
time ¢,,, we associate a function u‘+! : [t,,t,41] x R — R, the solution to

1
5\6(t,T)a:\2u§g;“, (2.5)

tn+1 tn41 tn41 tn+1)
—Uy —f(t,a:,u" 7“:):” 7uxge )_
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for all (¢,x) € [0, t,,+1[ xR, with terminal condition u!"+1(¢,,41,-) = v(tn+1, ) at the next hedging
time ¢, 1. In this context, after replacing the valuation/hedging rule

‘Zn = utn+1(tn’ th)7 5t = Ug};“(tm th)7

n

in (2.2), we obtain a conditional risk R,, , as follows:

RN,’Y -F [E'Y <Utn+1 (t”""l’ th+1) — ufr+ (tna th)
— Ul (b, X)) (Xtnar — Xt (2.6)

. c(th)At> ]-'tn},

Thanks to the relation between the electricity spot price S and the T-forward contract X, for
all t € [0, T], given an initial forward curve ¢t — F'(0,t), for all ¢ € [0, T], we have replace S;, by
X, in (2.2), for some continuous function ¢ : R — R.

Problem 2.2. Given a finite horizon time 7" > 0, a volatility function &(-,T) : [0,T] — R,
a(-,T) e C([0,T]), areference price v: [0,T] x R - R, v e C([0,T] x R) to the future income
function g : R — R, a PDE non-linearity f : [0,7] x R x R x R x R — R, an equidistant partition
{tn, = nAt : n € {0,...,N — 1}} of the trading interval [0, 7] with time step At = T/N, the
solution u'+1 : [t,, t,4+1] x R — R to the f-PDE (2.5) with terminal condition u'"+1(t,41,-) =
v(tn+1,-) for every n € {0,..., N — 1} and a cost function ¢ : R — R, ¢ € C(R), study the
asymptotic regime of the integrated conditional risk Ry

1 N-—1
RN,W[va] = Kt Z E[Rn,ﬁ/]a 2.7)
n=0

as the number NV of trading dates goes to infinity, where the conditional risk R,, , is given
in (2.6), the risk function ¢, in (2.1) and the diffusion process X = F'(-,T) in (2.4).

2.2.2 Main assumptions

In order to analyze the asymptotics of Ry - in (2.7) for a given reference valuation v and PDE
non-linearity f, we state the following assumptions.

Assumption 2.3. The volatility function t — o (t,T) is continuously differentiable.

Remark 2.4. Following the preceding assumption, we have that the map ¢t — & (¢,7T) is globally
bounded, and that its derivative ¢ — &;(¢,T") is locally bounded. Therefore, the diffusion function
(t,x) — o(t,xz) = a(t,T)x is Lipschitz in space and time, and it has linear growth in space
/21

loc,pol”

Assumption 2.5. The reference price v: [0, T] xR — R, its space derivatives v, vy, : [0, T] xR — R
and the PDE non-linearity f : [0,7] x Rx R x R x R — R are in C’li/fl;il. Additionally, the cost
function ¢ : R — R is locally Lipschitz with polynomial growth.

uniformly in time, which is in

Remark 2.6. The previous assumption is equivalent to Assumptions 1.2-1.3. Moreover, it implies
that the map

(t,z) — Ja(v, (t,z)) = f(t,z,v(t, ), vz(t, ), Vaz(t, ) + ()

o 1/21 o .
is in CIO/C bol- NOW, any estimation or convergence result valid for

(t,z) — Jo(v, (t,x)) = f(t,x,v(t,x),v:(t, T), Ve (t, x)),
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which is Clo/C o1 18 also valid for J(v, -).
Assumption 2.7. Let N > 1. For every n € {0,..., N — 1}, there is a unique classical solution

uln+1 : [0, t,41] x R — R to the PDE (2.5) with the terminal condition u'"+*(t,.1,-) = v(tps1,")
at the time t,,, 1. Moreover,
tn tn tn t’”« tn
ut +1vum +17uzx+1 ut +1auwx;1

1/2,1

exist and are in Cioen ol

Assumption 2.8. The volatility function (-,T') : [0,T] — R, the diffusion process X = F(-,T)
in (2.4), and the reference price v : [0,T] x R — R, v(t,-) € C?(R), satisfy a non-degeneracy
condition:

5(t, T) X¢|* vau (t, Xi) # 0

dt ® dP-almost everywhere.

2.2.3 Main results

For stating the corresponding asymptotic result below, we need to introduce an extra Brownian
motion B, independent of . Also, the expectation w.r.t. the distribution of B, or W, or both, is
denoted by EZ, or EW, or EV®EB,

2.2.4 Asymptotic risk with cost management

Theorem 2.9. Consider the setting of Problem 2.2 and suppose that Assumptions 2.3-2.8 hold. Let
B ={By : 0€0,1]} be another standard Brownian motion independent from W. Then, the limit
of Ry[v, f]l as N — oo exists and is given by

R’Y[Uaf] =

T 1 9
E“fa; (Jl(v, (zt,xt))B@2 b h (t,Xt))0>
00
: (mm (X2 ¢ o (1, X))

(2.8)

—Ji(v, (t, X)) J2(v, (¢, Xt)) Bgz_ 9) do dt] )

where the functionals Ji (v, (t,z)) and Ja(v, (¢, x)) are given by

T (v, (8, 2)) = o (t, T)2]? vea (t, ) 9
{JQ(U,( 2)) = f(t,z,0(t, z),va(t, ), vaa(t, ) + c(2). @9

Notice that Theorem 2.9 is a one-dimension version of Theorem 1.6 (Chapter 1) in the presence
of staggered costs proportional to the time step. The proof relies on the same techniques as
presented in Section 1.4 (Chapter 1) and is postponed to Section 2.3.

71



CHAPTER 2. ASYMPTOTIC ASYMMETRIC RISK MEASURE: APPLICATION TO PHYSICAL ASSET VALUATION

2.2.5 Optimal PDE non-linearity

Here, we obtain a quasi-explicit formulation for the optimal PDE non-linearity following the
same approach as [GPW18]. First, we write the asymptotic risk in (2.8) as a functional

T
R’y[v) f] = E[JL’Y (Jl (Uv (ta Xt))v JZ(U7 (tv Xt))) dt] )
0
in terms of L, : R x R — R given by

1
B — 0
L,Y(xl,xg) = EB[J‘gg <$1 92 - $29>

0

B2 B2 -0
X <|$1|220 + |:L‘2|20 — X1 X9 92 > d0],

Second, we aimed to prove the existence of minimizers to the variational problem

forall 1,72 € R x R.

JICIEI%ZI; R, (v, f], (2.10)

for all v € €,. The sets Q; and (2, are the set of all functions satisfying the Assumption 2.5.
Observe that f*(¢, z, yu, Yu, , Yu,,) defined by

for any fixed (¢, x, Yu, Yu, s Yu,.) € [0, T] x R x R x R x R, is also a minimizer to (2.10) under the
condition to be in ;. We integrate and take the expectation on both sides of

L’Y (Jl (Uv (ta Xt))? JQ*(Ua (t’ Xt))) < L’Y (‘]1(’0? (ta Xt))a JQ(’Uv (ta Xt))) )

where
J5 (v, (t,z) = f*(t, 2, 0(t, 2), va(t, ), vaa (t, 2)) + ().

Consequently, we seek a minimizer to the map x — L. (21, 22) for a given real z;. By denoting
x* € R as a global minimizer of min,,er L (21, z2), we finally showed (see Proposition 1.8) the
existence and uniqueness x*, written in the following form

X (@) = Obi(wl)Jr —a* (x1)7, (2.11)

for all z; € R, for some real a* and a* (depending on 7). Denoting by ®,r the cumulative
distribution function of the standard normal distribution and ¢, = @/ its density, those
constants a* and a* are respectively the unique solutions to

(L++%) a% +7T(a%) =0 (2.12)
(1+9%) aX =~ T(a%) =0,
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with

T'(a) = 2alaq11<0 + 2061241150
+ 8a O s (—\/ 2a + 1) 124110
—4v2a + 1¢x (V2a + 1) Laa4150.
Notice that Proposition 1.8 stands for « in [0, 1), but it is also for ~ taking negatives values strictly
greater than 1.

Because x* is unique, the optimal PDE non-linearity f* is indeed given by

f*(@xayuayuwyuw)
=x*(|o(t, T) 2*yu,,) — c(@)

. (2.13)
=ai<|a<t,T>x2yum> —ai(w(t,T)xPyum) ~efa),

for any ¢, x, Yu, Yu, s Yu,, € [0, 7] x R x R x R x R.

For numerical purposes, we present, in Table 2.1, the approximate values of a* and a* defined
in (2.12) calculated by a root finding algorithm. So we depict, in Figure 2.2, the global minimizer
x* of ming,er L (21, 22) in function of z;.

Table 2.1 — Optimal Positive/Negative-Part Constants

Parameter v PP constant a NP constant a*

-0.1 -0.0901 0.1044
-0.2 -0.1684 0.2262
-0.3 -0.2366 0.3702
-0.4 -0.2960 0.5434
-0.5 -0.3476 0.7567

Note. PP = Positive-Part. NP = Negative Part. Values obtained through the characteristic equation using the Mathematica

FindRoot function.

1 s s s s 1 s s s L e s s s s 1 s s s s 1 xl
-1 y@.s/ PR eSS 10
02}
-04f
—06} =01
r y=-0.3
---------- y=-05

Figure 2.2 — Global minimizer x* depending on z; with different parameter ~. For v € (—1,0),
the optimal function y*(z;) is negative and piecewise linear, with a positive (resp. negative)
slope for the strictly negative (resp. positive) values of x.
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2.3 Existence of the asymptotic risk.

Here, we review some important aspects of the computation of the asymptotic risk. First of
all, we consider a time-space rescaling of the hedging security dynamics in order to study the
conditional risk R,, , on each interval [t,,,¢,+1]. Then, we obtain an expansion of R,, , in terms
of the time step At. With expansion in hands, we aggregate the expectation of those conditional
R, - and take the limit, after dividing by At.

As explained in Section 2.2.1, we deal with one hedging instrument X, which is the forward
contract with delivery time T, satisfying the following SDE

X, = o(t, )X, dW,, 0<t<T, (2.14)

where W is a standard Brownian motion.

Rescaling and conditioning aspect. In view of the small-time approximations, we define a
version XQN of the solution X of the SDE (2.14)

0
XM =+ A2 Ja(tn + AL T)X5 dBy, 0<6<1, (2.15)
0

where B = {By : 0 € [0,1]} is an extra standard Brownian motion independent from W.
Depending on the trading dates, X! is also dependent on the number N of time steps. Also, it
was supposed the original probability space (2, F,P) is large enough to contain an additional
Brownian motion B.

Stochastic expansion aspect. In view of expanding the conditional risk R,

E[& (™ (1, Xy ) = 0 (b, X,

- ufcn-%—l (tn? th) (th+1 - th) - C<th)At)

ftn:| )
forany n € {0,..., N — 1}, we consider the stochastic process £ defined by

geAt — utn+1 (tn + eAt’ X@At) — utn+1 (tn, fE)

(2.16)
—uln 1 (t,, 2) (X5 — 2) — c(z)0AL,

where X2 is the solution to the SDE (2.15) starting from x € R. Using the fact that the processes

{Xf:fe At OO, 1]} and {X2* : 0 € [0,1]} have the same distribution, we rewrite R,, , as a

continuous function in terms of X** and X at # = 0, respectively. Indeed, by setting

1
POt 7) = £ B[ (€]

1
AtQ]E[g’y (utn+1 (tn-‘rlaXlAt) - utn+1 (tn,l') (217)

)00 )~ 1)
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we obtain

R, = AP (1, Xy,) = E[6, (1] (2.18)

(E:th :
In the following, we consider several constants K, y(x) depending polynomially on z, uniformly
in the interval [t,,t,1] and in the number N of time steps. Whenever we note K,, y(z) € Kpql,
we mean that, for some real « > 0, it holds

| K, N ()]
sup sup Ssup ———

o < +o00.
N=10<n<N-1zeR 1+ |z

In the following proposition, we state the stochastic expansion of P~ at point (,, z) in terms of
the time step At in the presence of a cost function ¢(x) proportional to At.

Proposition 2.10. Consider the setting of Problem 2.2 and suppose that assumptions of Theorem 2.9
hold. Let t, = nAt, x € R, X5 given in (2.15), £, given in (2.16) and PA!(t,,x) be defined
in (2.17). Then, it holds

PAt(tn, x) =
1

EP [ J‘Ei; (J1 (ut"“, (tn,x))

0

BZ -0

— Jo(u'm+t (ty, )0 + R(,At(tn, 3:))

_82
< (1 s )P+ o (1, 2)) 26

¢ ¢ Bj -4 1/2
— T (b, @) Ja (1 () ) 0| + K (z) ALV,
where
gAt 2 _
R (tn, @) = < = I (ta, ) 4 Io(utn (b, 7)),

for some constant K,, n(x) € Kpq.

Proof. Following the same argument as in Proposition 1.9, we use Ito’s lemma in u!»+! and
its gradient u2"*' to obtain the dynamics of ERL. Then, we apply to the Ito-Tanaka formula to
¢, (€5*") in order to obtain the announced result.

Indeed, replacing X in (2.15) into £, in (2.16) leads to

geAt — yintt (tn + 9At,X9At) — ylntt (tn,l') — C(-T)eAt
0
—Atl/QJU;”+1(tn,$)5(tn +9/At,T)X9A,t dBy.
0

75



CHAPTER 2. ASYMPTOTIC ASYMMETRIC RISK MEASURE: APPLICATION TO PHYSICAL ASSET VALUATION

Applying Ito’s formula to u'»+1(t, + 0At, X2*), we obtain

0

ERt = —At f c(x)do’
0
0

1
+ Atf (u§"+1 +5la.1) - |2u§;g1) (tn + O/ AL, X21) d¢/
0

(2.19)

6

+ A2 J (u;n+1(tn + 0 AL Xp') — ui”“(tn,:v))
0

X G(tn + 0'At, T) X" dByr.

Now we replace the PDE (2.5) satisfied by the function u»+! in (2.19). Again applying Ito’s
formula to the gradient u, Int1 (tn + OAL, XgAt) in (2.19), we get

2

B —
ERY = AL|G (ty, T)x|? ubnr (t,, 2)—2 H—i—AthAt(tn,x)

(2.20)
— At (f(tn, x,ut”“(tn,x),utx”“(tn, x) ut"“(t ,x)) + c(x))@,

) xx

where the remainder process R(,At is given by

6
)= | (4003068l )
0

0
f (150 + 088 D)X s (1, + /AL X3
0

+

N |

- |a(tn,T)xy2u§;;+1(tn,x)) a¢’

o (tn, T) X"

0
tn+1 t + G/At,XHA,t) _ tn+1(tn,$)
T At1/2
0

"*1 (tn, .SU) |U(tn7 T) ’2 BQI> ng/.

Due to the result in Lemma 1.13 (see Chapter 1), R4 is supposed to be small in the following
sense:
sup EB|RPM (t,, 2)* < K, n(2)At,
0el0,1]
for some constant K, x(7) € Kpgl

Thanks to the relation ¢7(y)y = ¢, (y) for all y € R, we get by applying the Ito-Tanaka formula
p 1
0, (€8 = Jfg(géf) (8 agp + S ae™tyy ).
0

After replacing the expression of £2* in (2.20), we take the expectation to obtain

EP[e,(ERY)] = At? PAY(t,, x) (see relation in (2.18))
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1
B} -6
= At2]EBUf’ u' (b, 7)) =5 — At
0

— Ja(utn (b, )AL + RAY (¢, x)At)

B2
X (|Jl(utn+la (tn,{l,‘))F?e + |J2(utn+1> (tn,l‘))|20

t t Bg —0
— Ji(u't (ty, ) Jo(u't (tn, x)) 5 dé
+ K v (x) A2,

where Jy(uln+1, ) and J; (uln+1,.) are given in (2.9).

We omit the study of the terms in the remainder, because they were already treated in the proof

of Proposition 1.9 in Chapter 1. Using the relation ¢7(c y) = (7 (y) for any ¢ > 0, we obtain the
announced result. O

Aggregating aspect. From the relation between P(t,, X;,) and R,, , in (2.18), we write
Ry - [v, f] using the expansion of P2¢(t, z) obtained in Proposition 2.10:

N—
RN’V K;

-1

=z

E[Pm(tn, th)]At (see relation in (2.18))

[l
1%

[y

BZ -0
2

Dllﬂz

E[JW ‘]1 L (tn, Xt,))

0

n

(2.21)
— To(uln 1, (t, X, )0 + RO (L, th))

BQ
(A (s X P Tl b, 5, )P0

t BZ — 0
= T (t, X)) Ja(ul (b, X)) =5 )de At
N—
2 K n (X, ) A2

In the previous expression, we substitute the solution u‘+!(t,,-) by its terminal condition
v(tn+t1,-). This is equivalent to replace Jo(u'n+1, (t,,-)) and Jy(u!"+1, (t,,-)) by Jo(v, (tns1,))
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and Jy (v, (tn41,-)). Then, we rewrite Ry ,[v, f] in (2.21) as follows

RN’Y[vvf]

N-1 [ f B2 -0
= Z E[ffz(ah(”’(tnﬂ,th)) 92
n=0 0
= (v, (b1, X2,))0 + R (b, X))
B2 (2.22)
x (|J (U’(tn+1,th))|276 + | Ja(v, (tny1, X1,)) |0
—J

1
BZ -0
(0, (tas1, X2,)) Jo (0, (tns1, X)) =05 )de At

N—-1
+ Y E[(CH¥(tn, X1,) + Ko N (Xy, ) A)],

n=0
where
R (tn, x) == R} (t,, x)
' Bj -0
+ (Jl(u n+17(tn?m)) - Jl('l),(tTH_l,fL’))) 2
— (So(u'"*, (tn, 2)) = J2(v, (tny1,2)))0
and
C’At(tn,x) =
0 B2 -0
EB [ fﬂz (Jl (u'n+1, (t,, x))gT
0

= B (W (b, )0+ RE (b))
2
o (R ) = 0, (e, 0) ) 22

(1t (b @) 2 = (v, (b, ) )0

(B (b)) e, ()

- Jl (U’ (thrl? l’)) JQ(Ua (thrl) l’))) BgQ_ f } d@] .

Noticed that the terms R (t,, X3, ) and C2!(t,, X}, ) need to be estimated in order to pass to
limit N — oo in the expression (2.22). From the result in Proposition 1.11 (in Chapter 1), we
have the previous terms converge to zero in the following sense:

* Supp<p<ny_1 E|CA(tn, X1,)| < KAtY/2, for some constant K > 0.

* SUDg<p<N—1SUDge(0,1] |R3M (t, X1,)| frnd 0, dP" ® dPEZ-almost surely.

Now we write the integrated conditional risk Ry, in (2.22) as the expectation of a double
integrable. By setting

on(t) =sup{t, : t > t,} and on(t) = inf{t, : t <t,},
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we obtain from equation (2.21)

B2 (2.23)
x {IJl(v, (@ (), X )P SF + 1T2(0, (@ (1), X ()20

Ay

2 _
(0. BN (1), X)) o0 (B (0) Xy ) 2 } a0 dt]

—1
+ E[CA(tn, Xy,) + Knn (X, ) AtY2].
0

=z

3
Il

When the number of trading dates N — +00, the last term of Ry - [v, f] in (2.23) goes to zero,
due to the estimates in Lemma 1.11 and Proposition 1.9. On the other hand, the limit of the first
term in (1.37) is achieved by applying the dominated convergence theorem.

Step 1. Because of the continuity of the volatility 5(¢, 7" in time ¢, the reference price v and its
derivatives v,, v, in time ¢ and in space x, the PDE non-linearity f, the cost function ¢, and the
path-continuity of X, we get

Jl(va (@N(t)’XgoN(t))) — Jl(vv(tht))

N—o0

JQ(U’ (@N(t)ngoN(t))) T J2(U7(tht))a

N—oo

PY -almost surely, for all t € [0,T"]. Moreover, the result of item (c) of Lemma 1.11 states

sup  sup |R9At(tn,th)| — 0,
0<n<N—10¢e[0,1] N—aw

PV ® PE-almost surely. Then, we get

. B2_0
J1(v, (PN (1), Xoy (1)) 92

+ RPN e (), Xy ) —

N—o0
B0

— JQ(U, (@N(t), X@N(t)))e

J1 (v, (t, Xy))

— Ja(v, (¢, X3))6,

and

_ _ B?
’JQ('U, (@N(t)ﬂ XgoN(t)>)|26 + ‘Jl(vv (SON(wv XgaN(t)))‘Z?e
B2—¢

2 N—o

— J2(v, (PN (1), Xpp () J1(0, (DN (), Xy (1))

BZ
"]2(”7 (t7Xt))|26 + |J1(U7 (t, Xt))‘Q?e

B2 ¢
2 )

- J2(Ua (t’ Xt))‘]l (U, (t’ Xt))

PY ® PB-almost surely, for all (4,t) € [0,1] x [0, T].
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Step 2. Because of the second derivative /] is discontinuous at 0 but the set

A= {(w,t,@)eQ x [0,T] x [0,1] :

By(w)? — 6

Ji(v, (t, Xt ) 5

— Ja(v, (t, Xtw))0 = O}

has measure zero (due to Proposition 1.19), it holds

~ B2-0
ﬂ;(:fl(vv(@l\/(t)?XwN(t))) 02

+ ReAt(s??N(t)anN(t))) —

N—o
B0

— JQ(U, (@N(t), X@N(t)))e

O (v, (X)) = B, (1, X0)0),

dPV @ dPP ® dt ® df-almost surely.

Step 3. Because of the boundedness of Ez, the polynomial growth of v, v,, v,,, and ¢ in space x,
we have that the integrand in (2.23) is bounded by

(e}
C’<1+ sup | X + |Be\) ;
te[0,T7]

for some positive constants C' and «. Finally, we take the limit of the first term of Ry ,[v, f]
in (2.23) to get

RW[”JC
T 1
2 -0
E[ €/< t Xt - JQ(’Uv (t,Xt))9>
Il :
2
< t Xt BQH + JQ(Ua (taXt))|29

(o, (X)) (v, (£ X)) 332_ 9) a0 dt],

by dominated convergence theorem, which concludes the proof of Theorem 2.9.

2.4 Convex-concave staggered cost models

In this section, we consider convex-concave staggered cost models. First, we introduce the case
of increasing costs with continuous differentiable dependence on the spot price. This corresponds
to the economic point of view where the costs are split according to the power plant usability.
Then, we examine decreasing costs being a piecewise convex function of the spot price. In this
case, we consider the seasonality of the refueling and maintenance stops, which occur usually
when the demand is in the lowest level, then when the spot price is also low.
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2.4.1 Increasing costs

First, we take a convex-concave staggered cost function ¢ depending on the spot price level
co(xz) =co+ 1 (z/cz)a, (2.24)

for z € R, where the constants ¢ > 0, ¢; > 0 and ¢ > 0. The parameter « controls the convexity
(o > 1) or concavity (0 < a < 1) of the function ¢,. Notice that ¢y represents the minimal
maintenance cost and ¢, the cost increment from 0 up to level price ¢, (see Figure 2.3).

2.4.2 Decreasing costs

Now, we consider staggered costs decreasing with the spot price level. Thus, we take a staggered
cost function ¢ as follows

cp.0(x) = bo + bre= @),
cg1(x) =bo +b1(1 — ($/52)6)+,

for z € R, where the constants by > 0, b; > 0 and b, > 0. Here, the parameter /3 characterizes the
convexity (0 < 8 < 1) of the costs. Analogously to the previous model, notice that b, represents
the minimal staggered costs (related to the investment), and b, the staggered cost increment
(related to the maintenance) (see Figure 2.4).

This part of the fixed costs are influenced mostly by the maintenance costs, which are greater
during the refueling stops. From an economic point of view, power producers prefer to schedule
the maintenance of their power plant when the electricity demand is low, increasing the stability
grid in the periods of high need of power. Thus, by avoiding to stop when the electricity is also
high, they seek for higher profits.

2.5 Numerical experiments

In this section, we present the producer valuation/hedging policies in the presence of fixed
costs. Those costs are spread over the hedging period and are dependent on electricity spot price
according to the models proposed in Section 2.4.

30;
[ (1/:2.5

25F a=1/25

20[

\:é 15 /

10f

05f

0.0:\ L L L L I L L L L I L L L L I L L L L I
00 0.5 1.0 1.5 2.0

X

Figure 2.3 — Cost ¢, depending on the price level x with ¢y = 1, ¢; = 0.5, and ¢y = 1. Around
the price level ¢y, the convex function ¢, presents a steep slope while the concave function ¢y,
is flatter.
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Figure 2.4 — Cost cgy and cg; depending on the price level z with by = 1, by = 2 and by = 1.

Now we describe how those valuation/hedging policies are computed. Denote by g the future in-
come payoff due the power plant production. With the optimal PDE non-linearity f* (see (2.13))
in hands, the power producer selects the following rule

W = ’U*(tn,th>, ﬂtn = ’U;(tn7th>7

n

where v* is the solution to the f*-PDE

1
—vf — [ty z,0" 0k 0k = §|5(t,T)x|2v* (2.25)

y Yxy Yxx T

for all (¢t,z) € [0,tn+1] x R, with the terminal condition v*(7,-) = g(-) at the time 7. Notice
that v* depend on the parameter « and on the staggered cost function ¢(z), through the PDE
non-linearity f*.

To solve PDE (2.25), we use standard finite difference methods as described in Subsection 1.5.1
(Chapter 1). Also, we consider the following volatility function

a(t,T) = o T 0<t<T,

for some constants g, > 0 and ag > 0 (see Figure 2.5).

volatility (%)

07 L L
00 0.2 04 0.6 0.8 1.0

expiration time (year)

Figure 2.5 — Volatility (7 — 7,T) decreasing in expiration time 7 with 59 = 30%. The parameter
ap represents the decay rate. In this case, the one-year-to-expiration volatility is 60.65% of the
initial volatility ¢ for ag = 0.5.
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2.5.1 Optimal valuation/hedging rule for increasing costs

Here, we study the impact of an increasing cost function ¢(x) on the producer valuation/hedging
rule. At the horizon time 7', power producers choose to turn their power plants on if the
electricity spot price St is greater than K|, representing the starting costs. Here, we assume
those costs are due to the fuel consumed to produce electricity. So, the future income function
describing this option is a call payoff with strike price K, given by ¢(S7) = (S; — Ky)™" at
horizon time T = 1. Also, we consider the following set of parameters:

y o Co c1 Co o) aop

-0.3 25 02 05 10 30% 0.5

Discussion about convex staggered costs. First, we consider the convex cost function ¢,
defined in (2.24) for @ > 1. Economically, those increasing fixed costs model a positive
correlation between maintenance costs and the electricity spot price. This is a result from the
assumption that maintenance costs increase with a longer and an intense use of the power plant.

In Figure 2.6, we show the valuation/hedging rule at the time ¢ = 0 for future income function
(described as call option) with starting costs Ky = 10. In the plot, we observe three different
rules:

* the red (full) line represents the Black-Scholes valuation corresponding to v = 0 and
c(x) = 0;

* the green (dashed) one represents the Black-Scholes valuation with staggered costs corre-
sponding to v = 0 and ¢(z) = co(x);

* the blue (dotted) one represents the asymmetric risk valuation with staggered costs corre-
sponding to v = —0.3 and ¢(z) = ¢4 ().

Considering the value function, we remark that both asymmetric risk prices are inferior to the
Black-Scholes one when the parameter v € (—1,0). By increasing the risk aversion parameter
~, we obtain an asymmetric risk price with a greater convexity with respect to the hedging
instrument X (a forward contract with delivery time 7T'), corresponding to a smaller volatility
coefficient in a Black-Scholes model. When the constant ¢y get larger, we have the price reduced
due to costs incurred along the hedging.

Vv*(0, xp) (€/MWh)

0.6 08 10 12 14

Xo/Ko xo/Ko
(a) Value function v*(0, zq) (b) Hedge function v} (0, xo)

Figure 2.6 — Optimal valuation/hedging rule for a call payoff with Ky = 10 using a convex
staggered cost function ¢, (x) with a > 1.
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Also, we notice that, when the staggered fixed costs depend on the electricity spot price level
through a convex function, we obtain a hedging function inferior to hedge one in the case of
zero cost. The first reason for that is the initial cost ¢y incurred independently of the price level.
Secondly, due to the convexity of ¢(x), the hedging function is reduced further for a large price
level, then the parameter « controls the increment of the gap in the right-hand side of the graph
in Figure 2.6 (b).

Discussion about concave staggered costs. Now, we consider the concave cost function
defined in (2.24) by 0 < « < 1. In Figure 2.7, we show the valuation/hedging rule at the time
t = 0 for call payoff with starting costs Ky = 10. Similarly to the convex case, the hedging
function is now reduced further for a small price level because it is the region where the costs
are more important.

When power producers penalize further the negative local balance (&,, < 0), as described in the
introduction, through a more negative parameter ~, their optimal hedging for forward prices X
much larger than the strike price K is to take a greater long position for call payoffs compared
to Black-Scholes.

2.5.2 Optimal valuation/hedging rule for decreasing costs

Now, we examine the influence of staggered costs decreasing with the electricity spot price on the
the producer valuation/hedging rule. Here, power producers will receive a future income g(Sr)
at time 7" due to the trading of electricity on the market. If the starting costs K are covered by
the sale of power, they will turn their plants on, obtaining a gain of ¢(St) = (St — Ko)™.

Fixed cost accounting. However, their power plants generate fixed costs (for example, due to
maintenance stops) despite of their future decision. Therefore, those fixed costs K7 should be
subtracted from the previous gain generating then the following balance: (Sr — K)* — K. In
view of reduce the randomness of this future income, we trade on the forward contract F'(¢,7T)
with delivery time 7" at equidistant dates. Then, the amount K is spread over the time interval
[0,T].

In order to use realistic values for those costs K and K71, it is interesting to rewrite the payoff
in terms of the initial forward price. With this formulation, we could compare the results for
different values of initial forward price F(0,7) by changing the strike price in the rewritten
payoff.

Rewriting in terms of the initial forward price We write the forward price F'(¢,T) solution
to the SDE (2.14) as follows
F(th) = F(()?T)Y(t’T),

where F(0,T) is the initial forward price and Y (¢,T") is the stochastic deformation. Now, we
consider the following transformation given by

v*(t,y) = v*(t, F(0,T)y)/F(0,T)
g(y) = g(F(0,T)y)/F(0,T),
é(y) = c(F(0,T)y)/F(0,T),
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(a) Value function v*(0, x) (b) Hedge function v} (0, z)

Figure 2.7 — Optimal valuation/hedging rule for a call payoff with K, = 10 using a concave
staggered cost function c; /. (7) with 0 < 1/a < 1

for an initial forward price F'(0,7") # 0. Then, we get the following derivatives of * in terms of
the derivatives of the value function v*

oy (t,y) = vy (t, F(0,T)y),

6;y(tv y) = U;z (tv F(O’ T)y)F<O7 T)‘

With this transformations in hands, we write the PDE (2.25) in v* with terminal condition
v*(T,z) = g(z) in terms of v*

o + [ty 0%, 05, 0,) = <16t Tyl 0

vy’

N

with terminal condition o*(7',y) = g(y) at time 7', where

Pt 0,55, 55,) = X" (F(0.T) o (. T)yl* 5,)/F (0, T) — &(y)

= x*(la(t, T)y* o5,) — éy),

because y* is homogenous of degree 1 (see (2.11)).

Discussion about decreasing staggered costs Now, we consider a transformed payoff §(y) =
(y— Ko)* and transformed costs é30(y) = by + b1 exp(—(y/b2)?), é5.1(y) = bo + b1 (1 — (y/b2)")*,
where Ky = Ko/F(0,T), b; = b;/F(0,T), for every i € {0,1,2}. Also, we take the following
sets of parameters corresponding to a growth of the initial forward price from F(0,7") = 40 to
F(0,T) = 60:

v Ko bo by b 00 agp
A -0.1 10/40 35/40 15/40 40/40 30% 0.5
B -0.3 10/60 35/60 15/60 40/60 30% 0.5

In Figures 2.8 and 2.9, we show the valuation/hedging rule at the time ¢ = 0 for the transformed
call option with starting costs Ky = 1/4 and K = 1/6, respectively. In the plot, we observe three
different rules:

* the red (full) line represents the asymmetric risk with staggered costs corresponding to
v € {-0.1,-0.3} and c(z) = cg,0(x);
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* the green (dotted) one represents the asymmetric risk valuation with staggered costs corre-
sponding to vy € {—0.1,—0.3} and c¢(x) = cg,1(2);

* the gray (dotted) one represents the Black-Scholes valuation corresponding to v = 0 and
c(x) = 0;

Regarding the value function, we notice a difference due to the transformed staggered costs by
and b; from the set A are lesser than the set B. At time ¢, the power producer observes the forward
price F'(t,T) at level z and computes the ratio /K. Following the relation /K, = y/Kj, the
producer expects a positive option value at time ¢, if the value of o*(t, y) at point 37/ K is positive
(analogous to the function v*(0, yo) in Figure 2.9). Considering the hedging function, we observe
that the asymmetric risk hedging rule is greater than the Black-Scholes one, because of the
decreasing property of staggered cost functions cg ;. Observing a forward price x at time ¢, the
power producer can compare the different hedging rules by looking the hedging function oy (¢,y)
at point z/K. Finally, we notice that the parameter v < 0 reduces the diffusion term in the
PDE (2.25) on convex regions, and increases it on concave parts, influencing directly the value
function.

2.6 Conclusions and extensions

Here, we described a valuation and hedging strategies for future production of power plants with
fixed costs. Using an asymmetric risk valuation, we proved the existence of the asymptotic risk
in the case of staggered fixed costs depending on the electricity spot price. Then, we provided
methods to solve the associated PDE and to find the so-called optimal policies. Our model
considered time-independent deterministic staggered costs which could be either a convex or
concave function of the spot price level.

Several extensions are of interest. First, we can consider the case where the staggered costs ¢
also depends on time. Since the maintenance costs increase in certain periods of the year (due
to the scheduled maintenance stops), the problem is solved in a similar way. In addition, the
optimal PDE in (2.25) becomes

6 (t, T)x|* v},

N =

—vf = x*(lo(t, T)x|* v,) + c(t,z) =

Finally, a natural extension is the case where ¢ is a random function. This is important if the
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wop e
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1oL y=-0.1,¢5,,B=1 I i y==0.1,¢5,,8=1
--------------- =0, c=0 ] cevreenees y=0. c=0
_1 5 I L L L L 7 ¢ L L 0~0’F """" L L L L 7 ¢ L L
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(a) Value function o*(0, yo) (b) Hedge function 17;‘ (0,y0)

Figure 2.8 — Optimal valuation/hedging rule for a call payoff using a decreasing staggered cost
function cg ;(x) with parameter set A.
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Figure 2.9 — Optimal valuation/hedging rule for a call payoff using a decreasing staggered cost
function cg ;(x) with parameter set B.

maintenance costs are subject to unpredictable factors like when a nuclear plant has a breakdown
or when the maintenance periods has to be prolonged.
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Chapter

Polynomial conditional McKean-Vlasov control problems: Some
probabilistic numerical methods

This chapter is based on the paper [BHL"18].

Abstract

We address a class of McKean-Vlasov (MKV) control problems with common
noise, called polynomial conditional MKV, and extending the known class of
linear quadratic stochastic MKV control problems. We show how this polyno-
mial class can be reduced by suitable Markov embedding to finite-dimensional
stochastic control problems. We provide a discussion and comparison of three
probabilistic numerical methods for solving the reduced control problem: quan-
tization, regression by control randomization, and regress later methods. Our
numerical results are illustrated on various examples: portfolio selection and
liquidation under drift uncertainty, and a interbank systemic risk model with
partial observation.

3.1 Introduction

The optimal control of McKean-Vlasov (also called mean-field) dynamics is a rather new topic in
the area of stochastic control and applied probability, which has been knowing a surge of interest
with the emergence of the mean-field game theory. It is motivated on the one hand by the
asymptotic formulation of cooperative equilibrium for a large population of particles (players)
in mean-field interaction, and on the other hand from control problems with cost functional
involving nonlinear functional of the law of the state process (e.g., the mean-variance portfolio
selection problem or risk measure in finance).

In this chapter, we are interested in McKean-Vlasov (MKV) control problems under partial
observation and common noise, whose formulation is described as follows. On a probability
space (12, F,P) equipped with two independent Brownian motions B and W7, let us consider
the controlled stochastic MKV dynamics in R":

dX, = b(X,, PV’ an)ds + o(X, PV, a,)dBs + 00(Xe PV a)dW?,  Xo =z e R", (3.1)

where IP’Z(VO denotes the conditional distribution of X given W' (or equivalently given F? where

FO = (F?); is the natural filtration generated by W), and the control « is FO-progressive valued
in some Polish space A. This measurability condition on the control means that the controller has
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a partial observation of the state, in the sense that she can only observe the common noise. We
make the standard Lipschitz condition on the coefficients b(x, i, a), o(z, u,a), oo(x, u, a) with
respect to (z, 1) in R™ x P,(R™), uniformly in a € A, where P, (R") is the set of all probability
measures on (R, B(R")) with a finite second-order moment, endowed with the 2-Wasserstein
metric W,. This ensures the well-posedness of the controlled MKV stochastic differential equation
(SDE) (3.1). The cost functional over a finite horizon T associated to the stochastic MKV equation
(3.1) (sometimes called conditional MKV equation) for a control process «, is

T
WO WO
J(a) = IE:”O F(Xe, P an)dt + g(Xr, Py )],
and the objective is to maximize over an admissible set .A of control processes the cost functional:

Vo = supJ(a).
acA
The set A of admissible controls usually requires some integrability conditions depending on the
growth conditions on f, g, in order to ensure that .J(«) is well-defined for o € A (more details
will be given in the examples, see Section 3.5). Notice that classical partial observation control
problem (without MKV dependence on the coefficients) arises as a particular case of (3.1)-(3.2).
We refer to the introduction in [PW17] for the details.

Let us recall from [PW17] the dynamic programming equation associated to the conditional
MKV control problem (3.2). We start by defining a suitable dynamic version of this problem.
Let us consider Fy a sub ¢-algebra of F independent of B, WP, It is assumed w.l.0.g. that F; is
rich enough in the sense that P,(R") = {£(£) : £ € L?(Fp; R™)}, where £(£) denotes the law of
¢. Given a control a € A, we consider the dynamic version of (3.1) starting from ¢ € L?(Fyp; R?)
at time ¢ € [0, 7], and written as:

s S
Xt — ¢y L b(XZ’f’a,IPf(th,a,au)du+L (XG5 PV )dB,

xhea’

S
0
+ f UO(Xi,s,a,[PWtw,au)dWS ,t<s<T.
t Xy
Let us then define the dynamic cost functional:

T
o) = B [ OKE R s g€ B ]
t s

t,&,«
x5

for (t,£) € [0,T] x L?(Fo;R™), a € A, and notice by the law of conditional expectations, and as
« is FO-progressive that

xbEo

T
Hega) = B[ FE, agds+ 5@, )],
¢ xg®
where f: P,(R") x A —> R, § : P,(R") — R are defined by

f(:ua a) = :u(f('hu’v a)) = f(l‘,/,l,, a),u(dx),

N
i) = wloC) = | gl unldo)

Moreover, notice that the conditional law of X7 given W° depends on ¢ only through its law
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L(¢), and we can then define for a € A:

pite = PV for t <s, p=L(E) € P,(R").

X%
Therefore, the dynamic cost functional J(t, ¢, o) depends on ¢ € L?(Fo; R™) only through its
law £(¢), and by an abuse of notation, we write J(¢, u, ) = J(¢,&, ) when p = L£(&). We
then consider the value function for the conditional MKV control problem (3.2), defined on

[0,T] x P,(R™) by

T
v(t,p) = supJ(t,p,a) = supE[f f(p’;’“’a,as)ds+§(p§2”’0‘)],
acA acA t

and notice that at time ¢ = 0, when £ = ¢ is a constant, then Vp = v(0, 5, ).

It is shown in [PW17] that dynamic programming principle (DPP) for the conditional MKV
control problem (3.5) holds: for (¢, ) € [0,T] x P,(R™),

0
ot = supB[ [ Fpl ads + o(6.0) |
acA t

for any F-stopping time 6 valued in [t, T]. Next, by relying on the notion of differentiability
with respect to probability measures introduced by P. L. Lions [Lio12] (see also the lecture notes
[Car10]) and the chain rule (It6’s formula) along flow of probability measures (see [BLPR17],
[CCD14]), we derive the HJB equation for v:

O + sup [f(u, a) + p(L(t, 1)) + p® p(Mo(t, u))] 0, (t,u)€[0,T) x P,(R"),

acA
o(Tp) = 9(u), pePy(RY),
(3.6)
where for ¢ € CZ(P,(R")), a € A, and p € P,(R™), L®(u) is the function R” — R defined by

LG(0)(r) = ud(n)(w)b(r, 1) + 5tx(20u0(n) (2) (00" + 000) (1, 0)),

and M“¢(u) is the function R™ x R™ — R defined by
, 1
M), a') = Str(EEo(u) (e, 2" oo (@, 1, )y (', . ).

The HJB equation (3.6) is a fully nonlinear partial differential equation (PDE) in the infinite-
dimensional Wasserstein space. In general, this PDE does not have an explicit solution except in
the notable important class of linear-quadratic MKV control problem. Numerical resolution for
MKYV control problem or equivalently for the associated HJB equation is a challenging problem
due to the nonlinearity of the optimization problem and the infinite-dimensional feature of the
Wasserstein space. In this work, our purpose is to investigate a class of MKV control problems
which can be reduced to finite-dimensional problems in view of numerical resolution.

3.2 Notations and Assumptions

3.2.1 Main assumptions

We make two kinds of assumptions on the coefficients of the model: one on the dependence on
x and the other on the dependence on .
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Assumptions: dependence on z: we consider a class of models where the coefficients of the
MKV equation are linear w.r.t. the state variable X, i.e., they are in the form

b(m,,u,a) = bo(#,d) + b1 (/.L, (Z)l‘,
U(mvu7a) = 790(/'6760 + 191(#,@).%', (39)
O-O(xaM7 CL) = 70(//% CL) + ’Yl(,u, CL).CE,

while the running and terminal cost functions are polynomial in the state variable in the sense
that they are in the form (for simplicity we present here the one-dimensional case n = 1)

f(x,,u, CL) =

g(xhu) =

)3
k=1
+ > gr(p)at

for some integer p > 1.

Assumptions: dependence on y: we assume that all the coefficients depend on x through its
first p moments, i.e., they are in the form

bO(:U'aa) = 570(_17/127-'-7/1177@)’ (Maa = B}(ﬂ‘hﬂ?a"'aﬂlha)
790(,“:@) = 190(1117/12) "/j’pva)7 (:u’ ) = ﬁl(ﬂl)ﬂ?v""ﬂpva)
_ _ _ T a (3.10)
’70(/-1'70‘) = 10(”17/‘27"'7“177@)1 ’71(,“7 ) = 71(M17M27"'7Mp7a)
fk(,ulaa) = fk(ﬂlaﬂ?)"'aﬂpaa)7 g( ) = gk(/j’ M?v"’?ﬂp)v k:Ow")p)

where, given p € P,(R), we denote by
ik = fm’wda:), k=1,....p.

We assume that the coefficients by, b1, ¥, 91, 70,71 are Lipschitz w.r.t. the p first arguments
uniformly w.r.t. the control argument a € A. This condition will ensure existence and uniqueness
of a solution to the finite-dimensional MKV SDE defined later in (3.11).

Notice that in this case, the functions f and § defined in (3.3)-(3.4) are given by

p
f(Mva) = fo(ﬂhp’?v""ﬂpa Z Mh”%"'vﬂpaa)ﬂk
= f(ﬂbﬂ%"'aﬂ?? )7
p
g(u) = gO(ﬂ17ﬁ2a'°'a Z Mla/‘l’Qv"wp’p)ﬂk‘

=: g(ﬂlaﬂ?a"'vﬂl?)'

Remark 3.1. In the multidimensional case, we should consider a class of multi-polynomial
functions f and g of degree p in the form

P
$ y s @ Z fk ( 2 |k/|<p7 >$k7 g(xvl-L) = Z 9k ((Hk )\k’\ép) xka
k|=0 k|=0
where we use multi-index notations k = (ki,...,k,) € N, k| = ky + ... + ky, 2% = 2 .. 2b»
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forz = (z1,...,2z,) € R" and

N 0!

3.2.2 Markovian embedding

Given the controlled process X = X solution to the stochastic MKV dynamics (3.1), denote by
(k) _ k17170 —
v® = EXFWO), k=1...p.

To alleviate the notations, we assume that n = 1 (otherwise multi-indices should be used).
From the linear/polynomial assumptions (3.9)-(3.10), by It0’s formula and taking conditional
expectations, we can derive the dynamics of (YD), Y (2 Y () as

av" = B,V v,y adt + (Y v P, v ag)awy,

(3.11)
v — a2k k=1,...p,

where, by convention yg = 1, y_1 = 0,

Be(y1, 92, ypsa) = kbo(y1,- - Yp, @)yk—1 + kb1(y1, ..., Yp, @)Yk
+k(21)(190(y1, s Ypr @) o k(zl)(ﬂl(yl, s Yy @)Yk
+k(k — D)o(y1, .- -, Yp, a)d1(y1, ... 2 Upy @) Yk—1
D o)z + D 5P
+k(k =D Y OT (W1, - Yps )Yr—1, k=1,...,p,
Te(yty2, - ypea) = kGo(yr, - Yp @Y1 + (W15 Yp@)yk), k=1,....p,

while the cost functional is written as

T
J(a) = E[L FO O,y et + g v, v

The MKV control problem is then reduced in this polynomial framework into a finite-dimensional
control problem with F0-adapted controlled variables (Y1), Y2, ... Y(®)), In the next section,
we describe three probabilistic numerical methods for solving finite-dimensional stochastic
control problems and will apply in section 3.5 each of these methods to three examples arising
from polynomial MKV control problems under partial observation and common noise.

3.3 Probabilistic numerical methods

In this section, we introduce our numerical methods for the resolution of the reduced problem
(3.11)-(3.12).

Let us introduce the process Z?, valued in R, controlled by an adapted process « taking values
in A, solution to
dZy = b(Z{, ap)dt + o0(Z, ap)dWy,  Z§ = 2 € RY,
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and the performance measure

T
J(t,z,a) =E U; f(Z7, ap)dt + g(Z7)

Zta:z],

which assesses the average performance of the control.

Introduce now a time discretization ¢,, = nAt,n =0,..., N, At = T'/N, and denote by .Ax, the

space of discrete processes (v, )— such that for alln,n = 0,..., N — 1, ay, is F -measurable.

We can write the Euler approximation of the SDE governing the process Z = Z¢, with o € Ax;
(to alleviate notations, we sometimes omit the dependence on « when there is no ambiguity, and
keep the same notation Z for the discrete and continuous process)

Ztnir = Zty + b(Zy,, 00, ) At + 00( 2y, 0, ) AW (3.13)

where AW} ~ N(0, At) is an increment of W°.

The discrete time approximation of J(¢,, z, «) is defined as:

N-1
Iat(tn, z,a) = E Z f(Zy,, )AL + g(ZtN)’Ztn = Z] ;

k=n

where o € Ay .

3.3.1 Value and Performance iteration

Forn = 0,..., N, consider Va¢(tn,2) = sup Jai(tn, 2, @), the discrete time approximation of
OéE.AAt

the value function at time ¢,: V(tn, z) = sup J(tn, z,«). The dynamic programming principle
acA

states that (Vas(tn, -)) is solution to the Bellman equation:

o<n<N

Vailtn, 2) = g(2)

VAt(tn>Z) = SUE {f(Z,(I)At + E%,Z[VAt(thrla Ztn+1):|}7 n=N-— 1a s 707
ae

(3.14)

where E?, _[-] denotes the expectation conditioned on the event {Z;, = 2} and when using the
control oy, = a at time ¢,,. Observe that for n = 0,..., N — 1, the equation (3.14) provides
a backward procedure to recursively compute the V,,(¢,,-) if we know how to analytically
compute the conditional expectations Ef, . [V, (tn+1, Zt,,,)] forall z € R and all control a € A.
We refer to the procedure in (3.14) as value iteration.

An alternative approach to compute Va¢(ty, ), forn = 0,..., N —1, is to notice that once again by
the dynamic programming principle, it holds that (Va¢(tn,-)),-, < is solution to the backward
equation

Valtn, 2) = g(2)

N-1
Vay(tn, 2) = sup {f(z,a)At +E;, [ Z F(Zy, 0f (Zy,,)) At + g(ZtN)] } , n=N-—1,...,0,

acA k=n-+1
(3.15)
where for k = n + 1,..., N — 1, the control o}, is the optimal control at time ¢, defined as
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follows:

N-1
ozz‘k(z) = argmax,c 4 {f(z, a)At + E%z [ Z f(Z;;, afe(Z;’;))At + g(Z;‘N)] } ,

l=k+1

and where (Z;kk) is the process Z controlled by the following control « from time ¢,, to ty:

n<k<N

g, = Q,
ay, =ap forn+1<k<N-1

Forn =0,..., N — 1, the scheme (3.15) provides once again a backward procedure to compute
Vay(tn, ), assuming that we know how to analytically compute the conditional expectations

EZ . [Z,ivz_nlﬂ [ (Zy,, o (Zy,)) At + g(ZtN)] for all z € R? and all control a € A. We refer to the
procedure in (3.15) as performance iteration.

Except for trivial cases, closed-form formulas for the conditional expectations appearing in the
value and performance iteration procedures are not available, and they have to be approximated,
which is the main difficulty when implementing both approaches to compute the value functions.
In the next section, we discuss different ways to approximate conditional expectations and derive
the corresponding estimations of the value functions V,,(t,,-) forn =0,...,N — 1.

3.3.2 Approximation of conditional expectations

In this subsection, we present three numerical methods that we apply later to conditional MKV
problems. Two of these methods belong to the class of Regression Monte Carlo techniques, a
family of algorithms whose effectiveness highly relies on the choice of the basis functions used
to approximate conditional expectations; the third algorithm, Quantization, approximate the
controlled process Z;* with a particular finite state Markov chain for which expectations can be
approximated quickly.

Regression Monte Carlo

In the simpler uncontrolled case, the family of Regression Monte Carlo algorithms is based on the
idea of approximating the conditional expectation IE[VAt (tnt1s Zty i) |Ztn], forn=0,...,N—1,
by the orthogonal projection of Vas(t,+1,Zt, ., ) onto the space generated by a finite family of
{¢k(Z1,)} >, Where (¢r)x>1 is a family of basis functions, i.e., a family of measurable real-valued

functions defined on R? such that (¢x(Zy,)),, is total in L?(0(Z;,))! and such that for all
scalars 3 and all K > 1, if Zszl Bror(Zy,) =0a.s. then B, =0, fork=1,..., K.

The expectation E[Va¢(tn+1, Zt,,,)|Zt, | should then be approximated as follows:

K
E[VAt(tn+17Ztn+1)|Ztn] ~ Z Brdr(Zi,,)
k=1

'L%(0(Z:,)) is the space of the square-integrable o (Z;,, )-measurable r.v.
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2
]} (3.16)

Notice that 8" is defined in (3.16) as the minimizer of a quadratic function, and can then be
rewritten by straightforward calculations as:

where K > 1is fixed and 8" = (87, ..., 8%)T is defined as:

K
Bn = argminBeRK {E [’VAt(tn—i-la Ztn+1) - Z 5k¢k(Ztn)
k=1

B" = E[¢(Z,)6(Z)" | B [Varltus1, Zi 1) (Z0)] (3.17)

where we use the notation ¢ = (¢1, ..., ¢x)’, and where we assumed that E [¢(Z;, )¢ (Zy, )" ]
is invertible.

In order to estimate a solution to (3.17) we rely on Monte Carlo simulations to approximate
expectations with finite sums. Consider the training set {(Z/", Ztn+ )M, at time ¢, obtained by
running M > 1 forward simulations of the process Z from time ¢y = 0 to ¢,,+1. §" defined in
(8.17) can then be estimated by

an AM_11 < m m
B%&)MQMMMMWM

where we denote by A the estimator = 2%21 o(Z™)p(Z™)" of the covariance matrix A, =
E[6(Zt,)0(Ze,)" ]

The procedure presented above offers a convenient mean to approximate conditional expectations
when the dynamics of the process Z are uncontrolled. When controlled, however, one has to
account for the effect of the control on the conditional expectations either explicitly, via Control
Randomization, or implicitly, via Regress-Later.

Control Randomization

In order to explicitly account for the effect of the control, one could directly introduce dependence
on the control in the basis function. This basic idea of Control Randomization consists in replacing
in the dynamics of Z the endogenous control by an exogenous control (I, )o<n<n, as introduced
in [KLP14]. Its trajectories can then be simulated from time ¢ to time ¢,. Consider the training
set {Z{", 1 m}n 0.m=1, With M > 1, where I} are i.i.d. samples from a “training distribution”
i, With support in A. The training set will be used to estimate the optimal 3" coefficients for
n =0,...,N — 1. In the case of value iteration, {Vx,(tn+1, 2", ,)}m M_ is regressed against basis
functions (which are, in this context, functions of the state and the control) evaluated at the

points {Z™, I7"}M_ |, as follows:

K
E%Z [VAt(tn+17 Ztn+1 Z Bl?

with

B" = argmingegx

e

[VAt(tn+1a HN Z Brdw (2, IZZ)] }

1 k=1
1 m m m
Vat (tn+17 Ztn+1)¢(Ztn ) Itn):|a

~ (AMYT L

1
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and where ¢ = (¢1,...,¢x)" and

A 1
AV = — N gz o2, )T (3.18)

1

NG

is an estimator of the covariance matrix A,, = E[¢(Zy, , L1, )6(Zs,,, It,)T ]

Notice that the basis functions take state and action variables as input in the case of Control
Randomization-based method, i.e., their domain is R? x A. Also, observe that the estimated
conditional expectation highly depends on the choice of the randomization for the control?.

An optimal feedback control at time ¢,, given Z;, = z is approximated by the expression (see
Subsection 3.3.4 for more practical details on the computation of the argmax):

K
Gy, (z) = argmax ¢ 4 {f(z7 a)At + Z Blon(z, a)} . (3.19)
k=1

The value function at time ¢, is then estimated using Control Randomization method and value
iteration procedure as

K
VER(tn, 2) = (2,60, (2)) At + Y Bron(z,6u,(2)), zeR™
k=1

Notice that Control Randomization can be easily employed in a performance iteration procedure
by computing controls (3.19), keeping in mind that at each time ¢, we need to re-simulate
new trajectories {Z; }fcvj‘fm , iteratively from the initial condition Zm = z, using the esti-

O(tk(Z

mated optimal strategies (dy, )Y ! ) +

! N-L | to compute the quantities 30" f(ty, Zi"
g(Z{%), for1 <m < M.

tr

Regress-Later

We present now a regress-later idea in which conditional expectation with respect to Z;, is
computed in two stages. First, a conditional expectation with respect to Z;,,, is approximated in
a regression step by a linear combination of basis functions of Z; . . Then, analytical formulas
are applied to condition this linear combination of functions of future values on the present
value Z;, . For further details see [GY04], [NMS17] or [BP17]. With this approach, the effect of
the control is factored in implicitly, through its effect on the (conditional) distribution of Z;
conditioned on Z;, .

Unlike the traditional Regress-Now method for approximating conditional expectations (which
we discussed so far in the uncontrolled case and in Control Randomization), the Regress-Later
approach, as studied in [BP17], imposes conditions on basis functions:

Assumption 3.2. For each basis function ¢, k = 1,..., K, the conditional expectation

Ok (2, a) = E;, L[k(Z,.0)]

can be computed analytically.

Using the Regress-Later approximation of the conditional expectation and recalling Assumption
3.2 we obtain the optimal control ;" corresponding to the point Z;", sampled independently

2Basically, different randomized controls may drive the process Z to very different locations, and the estimations
will suffer from inaccuracy on the states that have been rarely visited.
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from a “training distribution” p,, (see Subsection 3.3.3 for further details):

K
ot = z;urgmaxaeA{f(ZZZ7 a)At + Z BZJH&Z (2, a) }
k=1

Notice that we are able to exploit the linearity of conditional expectations because

R M K 9
B+ = argmin g { 3 [Vm(th, zr -] qubk(ngH)] } (3.20)
m=1 k=1
is a constant once the training sets at times ¢, k = n + 1,..., N, are fixed.

The value function at time ¢,,, is then estimated using Regress-Later method and value iteration
procedure as

K
VA (tn, Z7) = F(Z7, o)A+ D" Bt o (21, af).
k=1

Notice that contrary to Control Randomization, Regress-Later does not require the training points
to be distributed as Z;,,, , conditioned on Z;, because the projection (3.20) is an approximation
to an expectation conditional to the measure p, which can be chosen freely to optimize the
precision of the sample estimation. On the other hand Regress-Later, similarly to Control
Randomization, can be easily employed in a performance iteration procedure by generating
forward trajectories at each time step.

Remark 3.3. Recall that the Regress-Later method uses training points that are i.i.d at each time
step and independent across time steps. Contrary to other Regression Monte Carlo approaches,
Regress-Later does not require to use the information about the conditional distribution during
the regression step as that is accounted for in the second step of the method, when conditional
expectations are computed analytically.

Quantization

We propose in this section a quantization-based algorithm to numerically solve control problems.
We may also refer to the latter as the Q-algorithm or Q in all the numerical examples considered
in Section 3.5, where () stands for Quantization. Let us first introduce some ingredients
of Quantization, and then propose different ways of using them to approximate conditional
expectations.

Let (E,|.]) be a Euclidean space. We denote by ¢ a L-quantizer of an E-valued random variable
¢, that is a discrete random variable on a grid I = {ey,...,e;} = E* defined by

L
¢ = Projr(e) = Y. erleccym),
21

where C1(T'), ..., C(I") are the Voronoi cells corresponding to I', i.e., they form a Borel partition
of E satisfying

Cy(I) < {e eE:le—¢| = min |e— ej|},
j=1,..,L

and where Proj stands for the Euclidian projection on I'.

100



3.3. PROBABILISTIC NUMERICAL METHODS

The discrete law of ¢ is then characterized by
pe = Plé=¢e)] = PleeCyI)], ¢=1,...,L.

The grid of points (e;)%_, which minimizes the L?-quantization error |¢ — |, leads to the so-
called optimal L-quantizer, and can be obtained by a stochastic gradient descent method, known
as Kohonen algorithm or competitive learning vector quantization (CIVQ) algorithm, which also
provides as a byproduct an estimation of the discrete law (p,)}_,. We refer to [PPP04] for a
description of the algorithm, and mention that for the normal distribution, the optimal grids
and the weights of the Voronoi tesselations are precomputed for dimension up to 10 and are
available on the website http://www.quantize.maths-fi.com.

In practice, optimal grids of the Gaussian random variable A7 (0, 1) of dimension 1 with 25 to 50
points, have been used to solve the control problems considered in Section 3.5.

We now propose two ways to approximate conditional expectations. The first approximation
belongs to the family of the constant piecewise approximation, and the other one is an improve-
ment on the first one, where the continuity of the approximation w.r.t. the control variable is
preserved.

In the sequel, assume that for n = 0,..., N — 1 we have a set T,, of points in R? that should be
thought of as a training set used for estimating V'(¢,, ). See Subsection 3.3.3 for more details on
how to build T,,.

Piecewise constant interpolation

We assume here that we already have an estimate of Va¢(¢,,+1,-), the value function at time ¢, 1,
forn € {0,..., N — 1}, and we denote by VAQt(th, -) the estimate.
The conditional expectation is then approximated as

L
]E;ll,z [VAQt (tn+17 Ztn+1)] ~ Z pfvgt (tn+17 Projl"nJrl (GAt(Z7 a, 6())) 3 for S an
/=1

where:

* (G is defined, using the notations introduced in (3.13), as

Gai(z,a,e) = 2+ b(z,a) At + op(z,a) VAt €. (3.21)

* Projr (.) stands for the Euclidean projection on I';,.

* I'={ey,...,er} and {p;},_,_, are respectively the optimal L-quantizer and its associated
sequence of weights of the exogenous noise €. See above for more details.

An optimal feedback control at time ¢,, and point z € I';, is approximated by the expression (see
Subsection 3.3.4 for more practical details on the computation of the argmax):

L
Gy (z) = argmax,e 5 {f(za a)At + Z Ve (tn+17PrOan+1 (Gailz, a, ee))) } :
-1

The value function at time ¢, is then estimated using the piecewise constant approximation and
value iteration procedure as

L
VR (tny2) = F(Z1, 62 () At + Y pVS <tn+1, Projr, ., (Gau (2,42 (2), eg))>.
(=1
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Remark 3.4. Clearly, the constant piecewise approximation can be easily extended to control
problems of all dimensions d > 1. However the latter is, in most cases, not continuous w.r.t. the
control variable since it remains constant on each Voronoi cells (see, e.g., Figure 3.1 p.114).
As a result, the optimization process over the control space suffers from high instability and
inaccuracy, which implies a poor estimation of the value function V' (¢, -).

Semi-linear interpolation Once again, we assume here that we already have XA/gt(th, 1), an
estimate of the value function at time ¢,,1, with n € {0,..., N — 1}, and wish to provide an
estimation of the conditional expectation in the particular case where the controlled process lies
in dimension d=1. Consider the following piecewise linear approximation of the conditional
expectation, which is continuous w.r.t. the control variable a:

]E,rahz [ﬁgt (tn+1a Ztn+1)] ~ Z De [)\ZZ’Z‘?gt (tn+1a ZJr) + (1 - Agzjz)ﬁgt (tn+1a Z*)], (322)
/=1

for zeT'y,, where forall / = 1,..., L, _ and z, are defined as follows:

* 2z_ and z, are the two closest states in I',,+; from Ga(z, a, e¢), such that z_ < Gau(z, a, ep)
< z,, if such states exist; and, in this case, we define \;** = %

* Otherwise, z_ and z, are equal and defined as the closest state in I'Z 41 from Gay(z,a,ep)
and we define M\ = 1.

Remark 3.5. This second approximation is continuous w.r.t. the control variable, which brings
stability and accuracy to the optimal control task (see Subsection 3.3.4), and also ensures an
accurate estimate of the value function at time ¢,,. We will mainly use this approximation in the
numerical tests (see Section 3.5).

Remark 3.6. Although the dimension d = 1 plays a central role to define clearly the states z_
and z, in (3.22), the semi-linear approximation can actually be generalized to a certain class
of control problems of dimension greater than 1, using multi-dimensional Quantization (see,
e.g., the comments on the Q-algorithm designed to solve the Portfolio Optimization example, in
Subsection 3.5.1). However, it is not well-suited to solve numerically general control problems
in dimension greater than 1. For these cases, other interpolating methods such as the use of
Gaussian processes are more appropriated (see, e.g., [LM18] for an introduction on the use of
Gaussian processes in Regression Monte Carlo).

The optimal feedback control at time ¢,, and point z € T',, is approximated as (see Subsection
3.3.4 for more practical details on the computation of the argmax):

L
G (2) = argmax,e.s {f(z, QAL+ Y pe| ATV (b, 24) + (1= XV (e, z)]} :
l=1

The value function at time ¢,, is then estimated using the semi-linear approximation and value
iteration procedure as

YA/gt(tn,z) f(z ozt At + Zp [ \60 VAt (tn+1,z+) NI

Qg ()

o |

where 2z, and z_ are defined using the control &81 (z). See (3.22) for their definitions.
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3.3.3 Training points design

We discuss here the choice of the training measure p and the sets (I';,),,—0,... v—1 used to compute
the numerical approximations in Regression Monte Carlo and Quantization. Two cases are
considered in this section. The first one is a knowledge-based selection, relevant when the
controller knows with a certain degree of confidence where the process has to be driven in order
to optimize her reward functional. The second case, on the other hand, is when the controller
has no idea where or how to drive the process to optimize the reward functional.

Exploitation only strategy

In the knowledge-based setting there is no need for exhaustive and expensive (in time mainly)
exploration of the state space, and the controller can directly choose training sets I' constructed
from distributions y that assign more points to the parts of the state space where the optimal
process is likely to be driven.

In practice, at time ¢,,, assuming we know that the optimal process is likely to stay in the ball
centered around the point m,, and with radius r,, we chose a training measure u, centered
around m,, as, for example N (m,,,r2), and build the training set as sample of the latter. In the
Regress-Later setting this can be done straightforwardly, while Control Randomization requires
one to select a measure for the random control such that the controlled process Z is driven in
such area of the state space.

Taking samples according to x to build grids makes them random. Another choice, which we used
in the Quantization-based algorithm, is to use the (deterministic) optimal grid of N (m,,, o2) with
reduced size (typically take 50 points for a problem in dimension 1, 250 for one of dimension
2 when 02 = 1,...), which can be found at www.quantize.maths-£i.com, to reduce the size of
the training set and alleviate the complexity of the algorithms.

Remark 3.7. As the reader will see, we chose the training sets based on the “exploitation only
strategy” procedure, i.e. by guessing where to drive optimally the process, when solving the
Liquidation Problem introduced in Subsection 3.4.1.

Explore first, exploit later

Explore first: If the agent has no idea of where to drive the process to receive large rewards,
she can always proceed to an exploration step to discover favorable subsets of the state space.
To do so, the I, forn = 0,..., N — 1, can be built as uniform grids that cover a large part of the
state space, or i can be chosen uniform on such domain. It is essential to explore far enough to
have a well understanding of where to drive and where not to drive the process.

Exploit later: The estimates for the optimal controls at time ¢,,, n = 0,..., N — 1, that come up
from the Explore first step, are relatively good in the way that they manage to avoid the wrong
areas of state space when driving the process. However, the training sets that have been used to
compute the estimated optimal control are too sparse to ensure accuracy on the estimation. In
order to improve the accuracy, the natural idea is to build new training sets by simulating M
times the process using the estimates on the optimal strategy computed from the Explore first
step, and then proceed to another estimation of the optimal strategies using the new training
sets. This trick can be seen as a two steps algorithm that improves the estimate of the optimal
control.

Remark 3.8. In Control Randomization, multiple runs of the method are often needed to obtain
precise estimates, because the initial choice of the dummy control could drive the training
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points far from where the optimal control would have driven them. In practice, after having
computed an approximate policy backward in time, such policy is used to drive M simulations of
the process forward in time, which in turn produce control paths that can be fed as a random
controls in a new backward procedure, leading to more accurate results.

Remark 3.9. We applied the “explore first, exploit later” idea to solve the Portfolio Optimization
problem introduced in Subsection 3.4.1.

3.3.4 Optimal control searching

Assume in this section that we already have the estimates Va(ty, -) for the value function at time
ty, for k =n +1,..., N, and want to estimate V' (¢,, -) the value function at time ¢,,.

The optimal control searching task consists in optimizing the function®
Q’Vl : <Z7 ) = f(za G)At + Ez,z [VAt(tn+17 Ztn+1)]

over the control space A, for each 2z € I',, and where we denote by EZ,Z [XA/At(th, Zy,, +1)]

an approximation of E7 . [XA/N (tn+1, Zt,,,)] using Regress-Later, or Control Randomization or
Quantization-based methods (see Subsection 3.3.2). Once again, we remind that importance of
this task is motivated by the dynamic programming principle stating that foralln =0,..., N —1,
we can approximate the value function at time n as follows

VAt(tnvZ) = sup Qn(27a)a
acA

where Va(t,, -) is our desired estimate of the value function at time n.

Low cardinality control set

In the case where the control space A is discrete (with a relatively small cardinality), one can
solve the optimization problem by an exhaustive search over all the available controls without
compromising the computational speed.

Remark 3.10. Note that in the case where the control space is continuous, one can always
discretize the latter in order to rely on the effectiveness of extensive search to solve the optimal
control problem. However, the control space discretization brings an error. So the control might
have to include a high number of points in the discretization in order to reduce the error thereby
causing a considerable slow down of the computations.

High cardinality/continuous control space

If we assume differentiability almost everywhere, as follows from the semi-linear approximation
in Quantization, and most choices of basis functions in Regression Monte Carlo, we can carry on
the optimization step by using some gradient-based algorithm for optimization of differentiable
functions. Actually, many optimizing algorithms (Brent, Golden-section Search, Newton gradient-
descent,...) are already implemented in standard libraries of most programming languages like
Python (see, e.g., package scipy.optimize), Julia (see, e.g., package Optim.j1), C and C++
(see, e.g., package NLopt).

Soften referred to as the Q-function, or action-value function, in the reinforcement learning literature. Be aware
that @ stands here for the "Quality" of an action taken in a given state, and in particular does not refer to Quantization.
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Remark 3.11. When the control is of dimension 1, polynomials of order smaller than 5 are
employed as basis functions in Regression Monte Carlo as well as for the running reward f. The
optimal control can then be computed analytically as a function of the regression coefficients,
since every polynomial equation of order smaller than 4 can be solved by radicals.

Concretely, in all the examples considered in Section 3.5, we used the Golden-section Search or
the Brent methods when testing Quantization-based algorithm to find the optimal controls at
each point of the grids. These algorithms were very accurate to find the optimal controls, and we
made use of Remark 3.11 to find the optimal controls using the Regress-Later-based algorithm.

3.3.5 Upper and lower bounds

After completing the backward procedure, we can compute an unbiased estimation of the value
of the control policy by using Monte Carlo simulations and sample average. Assume already
computed (or simply available) the matrix of regression coefficients, in the case of Regression
Monte Carlo, and discrete probability law p for Quantization, we can use this information to
implicitly compute the control and simulate forward many trajectories of the controlled process
starting from a common initial condition. We can then evaluate the average performance measure
by computing the sample average of the rewards collected on each trajectory. Denoting such
approximation by XA/At(O, z), and recalling that by definition Ja¢(0, z, @) < Jat(0, 2, ™), for all
a € Aa; and where o represents the optimal control process; it holds Va.(0, z) < Va¢(0, z), for
z e R,

The argument above implies that, neglecting the time-discretization error, we obtain a lower
bound for Va;(0, -) by evaluating the estimated policy. On the other hand, see [Lab17], based on
[Rog02], to get an upper bound of the value function via duality.

3.3.6 Pseudo-codes

In this section, we present the pseudo-code for the three approaches presented in the previous
sections. For simplicity, we will only show the algorithms designed using value iteration proce-
dure. However, the performance iteration update rule can be substituted in the codes below
provided that forward simulations are run to obtain a pathwise realization of the controlled
process and associated rewards.

Pseudo-code for a Regress-Later-based algorithm

We present in Algorithm 1 a pseudo-code to estimate Va;(t,, ), forn =0,..., N — 1, using Value
Iteration and based on Regress-Later method. For n = 0,..., N — 1, we denote by V&L(tn, -) the
derived estimation of Vay(ty,-), and will refer to it as the RLMC algorithm in the numerical tests
presented in Section 3.5.

Note that we use the same training measure p at each time step so that there is only one
covariance matrix to estimate (since A;, is the same for alln = 0,..., N — 1). Denote by AY
the estimator, as defined in (3.18).

Pseudo-code for a Control Randomization-based algorithm

We present in Algorithm 2 a pseudo-code to estimate Va(ty,,-), forn = 0,..., N — 1, using
Value Iteration and based on Control Randomization method. For n = 0,..., N — 1, we denote
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Algorithm 1 Regress-Later Monte Carlo algorithm (RLMC) - Value iteration
Inputs:

* M: number of training points,
* u: distribution of training points,
e K: number of basis functions,

* {¢x}E |: family of basis functions,

. Estimate the covariance matrix AM
: Generate i.i.d. training points {Z}", M_accordingly to the distribution .

1

2

3: Initialize the value function VR (tn, Z[2) = g(Z%), V¥m=1,...,M

4: forn=N—-1to0do

5 B0 = Aty S [V s, 20 (2]

6 Generate a new layer of i.i.d. training points {Z;"}}_, accordingly to the distribution .
7 Forallm=1,..., M do

K
VEH(tn, 2) = sup { /(257 @)t + ) B2, 0)}
ac k=1

8: Evaluate the policy to obtain VRl
Outputs: {B/:;L}nN,}fip VR0, 2) for z € R

by VACf(tn, -) the derived estimation of Vay(ty,-), and will refer to it as the CR algorithm in the
numerical tests presented in Section 3.5.

Pseudo-code for a Quantization-based algorithm

We present in Algorithm 3 a pseudo-code to estimate Va(t,,-,-), forn =0,..., N — 1, using
value iteration procedure and based on Quantization method. For n = 0,..., N — 1, we denote
by Vgt(tn, -) the derived estimation of Va¢(t,, ), and will refer to it as the Q-algorithm in the
numerical tests presented in Section 3.5.

Note that we made use of a piecewise constant approximation of conditional expectations to
approximate Vgt(tn, -) in order to keep the algorithm simple. Also, note that, as said previously,
in most of the numerical tests run in Section 3.5, we will use optimal grids available at www.
quantize.maths-fi.com and will take L = 25 to 50 points for the size of the optimal grid of the
Gaussian noise «.

3.4 Applications

3.4.1 Portfolio Optimization under drift uncertainty

We consider a financial market model with one risk-free asset, assumed to be equal to one, and d
risky assets of price process S = (S, ..., S?%) governed

dS; = diag(Sy)(Bydt + 0dBY), Sy = so € RY,
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Algorithm 2 Control Randomization algorithm (CR) - Value iteration

Inputs:
e M: number of training points,
* u: initial distribution of dummy control,
e K: number of basis functions,

* {¢}5 |: family of basis functions,

Estimate the covariance matrix AM

1:
2: Generate m trajectories, {Z;", Igj}n 0.m=1, Where Z"" is driven by I}"’, and the I are i.i.d
with distribution .
3: Initialize the value function V{R (¢, Zp) =g(Z%), m=1,....M
4: forn=N —-1to0do
5. B = (M) S [VER (b, 20, )02 1) |
6: Forallm=1,...,M do
K
VSR (b, Zi7) = sup { F(Z72,a) Z Bron(Z,a)}

agA _

7: Evaluate the policy to obtain VR
Outputs: {37}5 0.h=1> VER(0, 2) for z € R4

Algorithm 3 Quantization algorithm (Q) - Value iteration

Inputs:

e I'y, k=0,...,N: grids of training points in R?,

e I'={e1,...,er}, (pe)1<e<r : the L-optimal grid of the exogenous noise ¢, and its associated

weights.

1: Initialize the estimated value function at time N: Vgt (tn,2) =g(2), Vzeln.
2: forn=N—-1to0do
3: Estimate the value function at time ¢,, as follows:

L
VAQt(tVM Z) = Iglgi{ [f(zv a) At + 2 pfvgt (thrla PI'Oan_H (GAt(Z> a, 65)))] ’ Vz € Fn
l=1

(3.23)

4: Compute the optimal strategies &(t,, z), z € I',,, as maximizer of (3.23):

L
G(tn, 2) € argmax,e 4 [f(z, a) At+ ) piVy, (tn+1, Projr,,, (Ga(2, a, e@))}, Vz el
/=1

5: Evaluate the policy to obtain 17§t
e (A 7Q
Outputs: (G(tn, Z))zefn,ognstl , (Vi (0, Z))zero'
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where BY is a d-dimensional Brownian motion on a filtered probability space (Q2, F,F,PY), o is
the d x d invertible matrix volatility coefficient, assumed to be known and constant. However,
the drift (5;) of the asset (which is typically a diffusion process governed by another independent
Brownian motion B) is unknown and unobservable like the Brownian motion B°. The agent can
actually only observe the stock prices S, and we denote by F* the filtration generated by the
price process S, which should be view as the available information.

In this context, we shall consider two important classes of optimization problems in finance:

1. Portfolio Liquidation. We consider the problem of an agent (trader) who has to liquidate a
large number y, of shares in some asset (we consider one stock, d = 1) within a finite time 7',
and faces execution costs and market price impact. In contrast with frictionless Merton problem,
we do not consider mark-to-market value of the portfolio and instead consider separately the
amount on the cash account and the inventory Y, i.e., the position or number of shares held at
any time. The strategy of the agent is then described by a real-valued F°-adapted process a,
representing the velocity at which she buys (a; > 0) or sells (a; < 0) the asset, and the inventory
is thus given by

¢
Y, = y0+fozudu, 0<t<T.
0

The objective of the trader is to minimize over « the total liquidation cost

T
J(a) = E[ f ar(Se + far))dt + £(Ye)]
0
where f(.) is an increasing function with f(0) = 0, representing a temporary price impact, and
¢(.) is a loss function, i.e., a convex function with ¢(0) = 0, penalizing the trader when she does
not succeed to liquidate all her shares.

2. Portfolio Selection. The set A of portfolio strategies, representing the amount invested
in the assets, consists in all F*-adapted processes « valued in some set A of R?, and satisfying
Sg |oi|?dt < co. The dynamics of wealth process X = X associated to a portfolio strategy « is
then governed by

dXy

oSy tdS,
oy Pedt + ozgadB?, Xy = xp€R,

and as in Merton Portfolio Selection problem, the objective of the agent is to maximize over
portfolio strategies the utility of terminal wealth

Jola) = E[U(X7)],

where U is a utility function on R, e.g., CARA function U(x) = — exp(—pzx), p > 0.

Let us show how one can reformulate the above problems into a McKean-Vlasov type problem
under partial observation and common noise as described in Section 3.1. We first introduce the
so-called probability reference P, which makes the observation price process a martingale. Let us
then define the process

t 1 t
Zy = exp ( —J o 18,dBY — 2f ]a_lﬁu|2du), 0<t<T,
0 0

which is a (P°,F)-martingale (under suitable integrability conditions on 3), and defines a
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probability measure P ~ PO through its density: 45| = Z;, and under which the process
P | 1,

t
wP = B +J o' Budu, 0<t<T,
0

is a (P, [F)-Brownian motion by Girsanov’s theorem, and the dynamics of S is
dS; = diag(S;)odWy.

Notice that ¥ = F the filtration generated by W°. We also denote by L; = 1/Z; the (P, F)-
martingale governed by

st = LtO'_lﬁt.thO.

Next, we use Bayes formula and rewrite the gain (resp. cost) functionals of our two portfolio
optimization problems as

T
Ji(a) = E[Jo Lyay(Sy + f(aw))dt + Lrl(Yr)]
T
g L L0ay(S; + flon))dt + LSL(Yr)]
= 8[| Hals + flapa + 97D
0
J(a) = E[LyU(X7)] = E[L}U(X7)] = E[L}U(XD)]

where LY = E[L,|W°] = {(P}°(d0), XP = E[X,[W°] = 2P’ (dz) = X,, Y = E[V;|W°]
= {yPY “(dy) = V; 89 = E[S,|W°] = SSIP)ZZO (ds) = S;, and we used the law of conditional
expectations and the fact that S, X and Y are F’-adapted. This formulation of the functional

Jp (resp. Jo) fits into the MKV framework of Section 3.1 with state variables (X, L, 3) (resp.
(Y7 S? L7 /3))

We now consider the particular case when /5 is an Fj-measurable random variable distributed
according to some probability distribution v(db): this corresponds to a Bayesian point of view
when the agent’s belief about the drift is modeled by a prior distribution. In this case, let us show
how our partial observation problem can be embedded into a finite-dimensional full observation

Markov control problem. Indeed, by noting that /3 is independent of the Brownian motion W
under P, we have

_ 1
L} = E[exp (o '8.W - §\o’lﬁ|2t)|W0] = F(t,W)),
where
Fltw) — fexp (o~ "bow — %|a’1b|2t)y(db).
Hence, the functionals .J; and J, can be written as
T
Jila) = IE[J F(t, W) (S + f(aw))dt + F(T, W)e(Yr)]
0
Jo(a) = E[F(T, W)U (X7)].

We are then reduced to a (P, FY)-control problem with state variables (W, X) for problem (1)
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and (W, S,Y) for problem (2) with dynamics under P:

dS; = diag(Sy)ocdW?, Sp=s0€ (Ry)?
dX;, = ajodWy, Xo=0
d}/t = Oétdt, Y() = 1Yo € R+.

Remark 3.12. Another example of partial observation for the drift 5 is the case when it is
modeled by a linear Gaussian process. This would lead to the well-known Kalman-Bucy filter,
hence to a finite-dimensional control problem. However, for general unobserved drift process £,
we fall into an infinite dimensional control problem involving the filter process.

3.4.2 Interbank systemic risk with partial observation

We consider the following model of systemic risk inspired by the model in [CFS15]. The log-
monetary reserves of N banks lending to and borrowing from each other are governed by the
system

N
dXi = % N (X7 — X}t + o X{ (V1= p2dW] + pdW), i=1,...,N
j=1
where W', i =1,..., N, are independent Brownian motions, representing the idiosyncratic risk

of each bank, W° is a common noise independent of W*, o > 0 is given real parameter, p €
[—1,1], and where X}, i = 1,..., N are i.i.d.. The mean-reversion coefficient x > 0 models the
strength of interaction between the banks where bank ¢ can lend to and borrow from bank j
with an amount proportional to the difference between their reserves. In the asymptotic regime
when N — oo, the theory of propagation of chaos implies that the reserve state X' of individual
banks become independent and identically distributed conditionally on the common noise W,
with a state governed by

dX; = K(E[X|W ] - X))dt + o X;(\/1 — p2dB; + pdW})

for some Brownian motion B independent of W©.

Let us now consider a central bank, viewed as a social planner, who only observes the common
noise and not the reserves of each bank, and can influence the strength of the interaction between
the individual banks, through an F°-adapted control process o;. The reserve of the representative
bank in the asymptotic regime is then driven by

dX: = (k+ o)(E[Xe W] = Xy)dt + 0 X (\/1 — p2d By + pdW?), Xo ~ Xg,

and we consider that the objective of the central bank is to minimize

T

1

J(@) = 1[«:” <2a§ + g(Xt - E[Xt\WO]Y) dt + %(XT - E[XT]WO])Q],
0

where 7 > 0 and ¢ > 0 penalize the departure of the reserve from the average. This is a MKV

control problem under partial observation, but notice that it does not belong to the class of linear

quadratic (LQ) MKV problems due to the control @ which appears in a multiplicative form with

the state. However, it fits into our class of polynomial MKV problem, and can be embedded into
standard control problem as follows: We set X; = E[X;|W°] and Y; = E[(X; — X;)?|W"]. The
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cost functional is then written as

Tr1
J(a) = E”O <2af+;}Yt> dt+gYT]

where the dynamics of X and Y are governed by

dX; = opX dW?, Xo =z =E[X0]
ay; = [(02 —2(k+ )Y + (1 — pQ)Xf]dt + 2paY,dWP, Yy = Var(Xo).

We have then reduced the problem to a (P, F°)-control problem in dimension two with state
variables (X,Y’), which is neither LQ, but can be solved numerically.

3.5 Numerical results

3.5.1 Portfolio Optimization

Let us now illustrate numerically the impact of uncertain Bayesian drift on the Portfolio Liquida-
tion problem and the Portfolio Selection problem in dimension d = 1, by considering a Gaussian
prior distribution 8 ~ v = N (by,v3), with by € R and o > 0. In this case, F is explicitly given
by:

g

1
exp (
/o2 + ’Ygt 2((72 + 7(2)15)

F(t,w) =

(=3t + 2bpow + ’ygw2)>.

1. Portfolio Liquidation Let us first consider the Portfolio Liquidation problem (1) with a
linear price impact function f(a) = va, v > 0, and a quadratic loss function £(y) = ny?, n > 0.
The optimal trading rate is given by (see [Phal6])

Y 1 1 T
® o __ -t o - (- 0 S -
Q= T—t+~v/n + 2y <T —t +’y/nJ; E [Su‘}—t ]du St)

where Y* is the associated inventory with feedback control a*: dY;* = o dt, Y = yo. Since we
consider a Gaussian prior N (by,y3) for 3, the optimal trading rate is explicitly given by

N 1 . 1 [ 1\/? _ 08 ( ,(bo +7§(T—t)> ( bo )) v ]
=YV | ——4[ze 20 (effi| ——F——) —erfi| — | | +(T—t+-)|S: ¢,
“ 1 _t+’7/77 k 27 Y0 26 \/5’}/0 \/5’)’0 ( 77) t

where erfi is the imaginary error function, defined as:

erfi(z) — \;L et

Remark 3.13. In the particular case where the price process is a martingale, i.e., by = 0, and
in the limiting case when the penalty parameter 7 goes to infinity, corresponding to the final
constraint Y7 = 0, we see that o} converges to —Y;*/(T" — t), hence it becomes independent of
the price process, and this leads to an explicit optimal inventory: Y;* = yo% with constant
trading rate af = —yo/T. We retrieve the well-known VWAP strategy obtained in [ACO1].

We solve the problem numerically, taking N = 100 for the time discretization, and fixing the
other parameters as follows: v=5, Sy=6, Yy=1, n=100 and 0=0.4. We run two sets of forward
Monte Carlo simulations for by = 0.1, T = 1 and by = —0.1, T' = 0.5 changing the value of ~.
We tested the Regress-Later Monte Carlo (RLMC), the Control Randomization (CR) and the
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Quantization (Q) algorithms. In particular, we wanted to compare the performance of these
algorithms with (a;‘fn)gz_ol, where o*, defined above, is the optimal strategy associated to the
continuous-time Portfolio Liquidation problem. We refer to this discrete-time strategy as a*
(i.e., re-using the same notation), and we use Opt, or continuous-time optimal strategy when we
want to stress the fact that this strategy is optimal for the continuous-time control problem, and
not for the discrete time one. We also tested a benchmark strategy (Bench) which consists in
liquidating the inventory at a constant rate —yo/7". The test consisted in computing the estimates

Vai(to = 0,80 = 6,Yy = 1) associated to the different algorithms.

We display the results obtained by the different algorithms in Table 3.1 and plot them in Figure
3.2. One can observe in Figure 3.2 that for At = ﬁ the estimations ‘A/At(to =0,5=6,Yy=1)
of the value function Va.(tp = 0, Sy = 6, Yy = 1), provided by RLMC, CR or Q-based methods,
are sometimes such that

VAt(tO = OaSO = 65Y0 = 1) < jAt(tO = 07 SO = 67% = 1,04*)7

where Ja(-, -, -, a*) is a Monte Carlo estimate of Ja,(-, -, -, a*) applying strategy (a;"")ﬁf:_ol (see
in Figure 3.2 the curve Opt). It means that RLMC, CR, or Q-based methods sometimes provide
better estimations of the optimal strategy than o™ for the discrete time control problem. However,
since under suitable conditions (see, e.g., [KLP15]), the optimal strategy for the discrete time
control problem o}, converges toward a*, i.e. we have o}, o a*, then it holds:

Jai(to = 0,50 = 6,Yy = 1,0%) — V(tg=0,8 =6,Yy =1).

Figure 3.3 shows a sample of the inventory (Y;)[o,r] When the agent follows a* and the
Quantization algorithm. One can notice that given the chosen penalization parameters, it is
optimal to short some stocks at terminal time. Finally, notice that the concavity of the curves
comes from the fact that the running cost does not penalize the inventory. If so, we expect the
curves of the inventory w.r.t. time to be convex, see, e.g., [GS13].

Discussion on the Regress Later and Control Randomization algorithms. The implemen-
tation of Regression Monte Carlo algorithms has required intense tuning and the use of the
performance iteration technique introduced in Subsection 3.3.3 in order to obtain satisfactory
results. Paramount is, in addition, the distribution chosen for the training points in Regress-
Later and for the initial control in Control Randomization. The problem of finding the best
set of data to provide to the backward procedure is similar in the two Regression Monte Carlo
algorithms. However little study is available in the literature; for more details on this problem
in the Regress-Later setting see [NMS17] and [BP17]. In the case of RL algorithm a training
measure u,, has been chosen in order to sufficiently explore the state space in the Y dimension,
in particular we considered p,, = U[—0.5,0.5 + %]. Similarly for CR we seek a distribution of
the random control such that the controlled procegs Y results in having a distribution similar to
1. In order to achieve such goal we follow the “explore first, exploit later” approach presented
in Subsection 3.3.3 and use a perturbed version of the empirical distribution of the control
(to avoid concentration of the training points) obtained at previous iteration of the method to
determine the random control at next iteration of the method.

In order to choose the basis functions, we used the fact that we expect the value function to be
convex in the Y dimension with minimum around the optimal inventory level and monotone
in the S dimension. For RL algorithm we choose therefore the following set of basis functions:
{s,y,%, sy, sy’}, where we take the square function y? as a general approximator for convex
functions around their minima (where we expect the measure p,, to be concentrated). On the
other hand, CR requires that we guess what the functional form of the conditional expectation of
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the value function is with respect to the control process. Considering our argument on square
function approximating general convex functions we choose to add the set {a, a2, ay, as} to the
set of basis functions used by RL.

Note that there is no need for time-consuming optimal control searching with such a choice of
basis functions, as explained in Remark 3.11.

Finally note that we observed very high volatility in the quality of the policy estimated by control
randomization. For this reason we estimated the policy 50 times, and report in Table 3.1 the
results provided by the best performing one; increasing the number of training points further
affects the variability only marginally.

Discussion on the Quantization algorithm implementation To numerically solve this exam-
ple, we used the optimal grid of the Gaussian random variable with L. = 50 points, denoted by
I'7 , to define the grid* F};V = t,I'7 that discretizes W}, the Brownian motion at time ¢,,, and
the grid 'Y =Y — tT" + t,I'} that discretizes Y;,, the inventory at time ¢,, forn = 0,...,N.
Note that 'Y, for n = 0, ..., N, is centered at point Yy — %’1 because we guessed that the optimal
liquidation rate was close to % (see Figure 3.3 to check that our guess is correct).

We then considered the grid I',, = TV x I'Y to discretize Z;, = (W;,,Y;,), n =0,..., N.

We first tried to design a quantization algorithm using the following expression for the conditional
expectation approximations:

?L,(w,y) [‘/}gt (thrl? Projrml (th+1) ’ PrOjFZ+1 (iftn+l ) >]

L
~ 2oV, (b1, Projpw (Gal(w,y), a,e0), Projpy  (Garl(w,y),a,e0))), 329
/=1

for (w,y,a) e TV x TY x A,

where the first and second components of the process Z = (W, Y') are projected respectively on
the grids I'}Y and I'’'; and Projrw (resp. Projpy) stands for the Euclidean projection of the first
(resp. second) component of Z = (W,Y) on I'}V (resp. I')).

This approximation belongs to the family of constant piecewise approximations, and is in the
spirit of multidimensional component-wise-quantization methods already studied in the litera-
ture (see, e.g., [PS15]).

Unfortunately, as it can be seen in Figure 3.1, approximation (3.29) is discontinuous w.r.t. the
control variable a in such a way that the optimal control searching task suffered from instability
and inaccuracy, which implied bad value function estimations at time n = 0, ..., N — 1. We thus
had to use a better conditional expectation approximation.

We then decided to smooth the previous approximation of the conditional expectations w.r.t. the
control variable by considering the following

ES (wy) [YA/& (tn+1, Projrw (Weir)s Projpy | (Ytn+1)>]

L
~ Y [Azﬂw’y)v&(tm,Projrml (%, ((w,9), a,e0)],v)
=1

+ (1 - )\Zz,(w,y))"/\'gt (thrla P]:.().].I‘TVL‘:_1 [GIAUt((U)? y)a a, 6@)] ) y*) :| ’

“We use the notation tB = {tb,b € B}, where t € R and B is a set.
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Figure 3.1 — Plot of the quantized-based piecewise-constant approximation of the conditional
expectation CondExp:

@ Yoepe PE = VS, (tns1, Projpu (Gar((w,y),a,0)), Projpy (Garl(w,y),a,¢))).

We tookn = N — 1, w = 0, and y = —0.18 to plot the curve. Observe that the approximation is
discontinuous w.r.t. the control variable a in such a way that it makes the search of the minimizer
of this function very difficult by usual (gradient descent-based) algorithms. Also, observe that
the minimum of the function, which is actually equal to the estimation of the value function at
time NV — 1 at point (w = 0,y = —0.18), suffers from inaccuracy.

where, in the spirit of the semi-linear approximation presented in Subsection 3.3.2, we have for
all¢=1,.., L:

* GX,((w,y),a,er) and G%,((w, y), a, e;) respectively stand for the first and the second compo-

nent of Ga¢((w,y), a,er), i.e., Gar((w,y),a,ep) = (Gxt((w, y),a,e0), G4, ((w,y), a, eg)). See
(3.21) for the definition of G a;.

« y_ and y; are the two closest states in I'Y,; from G%,((w,y),a,e), such that y_ <
G ((w,y),a,e) < y, if such point exists; y_ and y, are equal to the closest state in
Iy, | from G4, ((w,y), a, e;) otherwise.

° AZ£7(w7y) — G?At((uhy):avel)*y—

6@7(w7y) — 1
Y+—Y— a

in the first case of the definition of 4y and y, above; A
otherwise.

This approximation is a slight generalization (to dimension d=2) of the semi-linear approximation
developed in (3.22). Its main interest lies in the continuity of the approximation w.r.t. the control
variable a, which provides stability and accuracy to the usual (gradient descent-based) algorithms
for the optimal controls searching, as can be seen on the numerical results (see, e.g., Table 3.1).

2. Portfolio Selection. Consider the Portfolio Selection problem with one risky asset. We
choose a CARA utility function U(z) = — exp(—pz), with p > 0. It has been shown in [GP16,
Corollary 1] that the optimal portfolio strategy is explicitly given by

* 02 + ’Ygt Bt
& = o2 + ~2T po?
Yol PO
where
2 2
= REO[8|F°1 = by + (111—4-70 t),
& 5177] o2 + 132t 0T 2y V3t So 2
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Table 3.1 - Portfolio Liquidation results. Estimations of the value functions at point (sg = 6,y =
1) and time O provided by different algorithms.

bp=01,T=1 bp=-0.1,T=1/2

Y | Opt RLMC CR Q Bench | Opt RLMC CR Q Bench
0.1 |-1.347 -1.356 -1.278 -1.368 -1.318 | 3.689 3.687 3.995 3.686 4.144
0.2 | -1.385 -1.390 -1.283 -1.401 -1.348 | 3.682 3.682 3.847 3.679 4.138
0.3 | -1.445 -1.446 -1.314 -1.460 -1.402 | 3.670 3.674 4.034 3.667 4.126
0.4 | -1.523 -1.524 -1.323 -1.556 -1.485 | 3.655 3.674 4.128 3.650 4.108
0.5 | -1.642 -1.637 -1.348 -1.673 -1.585 | 3.636 3.664 4.243 3.630 4.088
0.6 | -1.783 -1.777 -1.425 -1.826 -1.711 | 3.611 3.640 4.386 3.607 4.064
0.7 | -1.973 -1.927 -1.513 -2.018 -1.870 | 3.581 3.613 4.783 3.572 4.029
0.8 | -2.213 -2.003 -1.637 -2.243 -2.057 | 3.545 3.575 5.142 3.537 3.992
0.9 | -2.526 -2.457 -1.819 -2.516 -2.288 | 3.500 3.530 5.345 3.498 3.952
1 -2.918 -2.801 -1.806 -2.829 -2.560 | 3.453 3.513 6.765 3.452 3.903

V(t=0,Y,=1)

bp=—0.1and T = 0.5.

b() =0.1land T = 1.

Figure 3.2 — Results for the Portfolio Liquidation problem. Estimation of the value function at
point (so = 6,yo = 1) at time 0 provided by different strategies w.r.t. 7. We took yv=5, Sy=6,
Yo=1, =100 and c=0.4.

Figure 3.3 — Simulation of (Yt)te[()’T] using the (continuous-time) optimal strategy (Opt), the (Q)
estimated one, and the Benchmark strategy (Bench) to solve the Portfolio Liquidation problem.
We took T =1, 0 = 0.4, 79 = 1, bp = 0.1, Sy = 6, Yy = 1, N = 100, v = 5, p = 100.
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is the posterior mean of the drift (Bayesian learning on the drift), and the optimal performance
by

1 o? + 3T 5T v, o

Jo(a®) = —eXp[_p(xo-l-%(ln( 02% ) — 02T78T) 2p22 02+73T)]'

The Portfolio Selection problem, even though in many aspects similar to the Portfolio Liquidation
problem, is interesting in its own right because the control acts only on the variance of the
controlled wealth process. We tested the Regress-Later Monte Carlo (RLMC), the Control
Randomization (CR) and the Quantization (Q) algorithm on the Portfolio Selection problem.
Similarly to what has been done for Portfolio Liquidation problem, we discretized time choosing
N = 100 and solved the discrete time problem associated. We considered two set of experiments,
bp =0.1, T =1and by = —0.1, T = 0.5, for different values of 7, € [0,1], p = 1, o = 0.4. Given
all these different parameters, we compared the performance of these algorithms with the one
of the optimal strategy for the continuous-time problem «* (Opt). The general test consists in
computing a forward Monte Carlo with 500000 samples, following optimal strategy estimated
using different strategies, to provide estimates of V' (ty = 0, Xy = 0, W = 0) the value function
at time O.

We present the results of our numerical experiments in Table 3.2. One can see that the Quantiza-
tion algorithm performs similarly to the theoretical optimal strategy (Opt) for the continuous
time problem, which can be interpreted as stability and accuracy of the Q algorithm, and also
shows that the time discretization error is almost zero here.

We also present in Figure 3.4 a sample of the wealth of the agent following the optimal strategy
and the (Q) estimated one. One can see that the strategies slightly differ when the drift is high,
and remain the same when the drift is low. The small difference can be explained by the fact
that the optimal strategy (Opt) is not optimal for the discrete time version of the problem.

Remarks on the Quantization algorithm. We designed the same Quantization algorithm as
the one built to solve the Portfolio Liquidation problem. We nevertheless had to take a larger
number of points in the grids to minimize the back-propagation of errors from the borders of the
girds; and had to use the “explore first, exploit later” idea (see Subsection 3.3.3) to improve the
results.

Remarks on the RL and CR algorithms implementation. When implementing Regression
Monte Carlo algorithms, and choosing basis functions, the control on variance implies that low
order polynomial can not be used alone, as they can easily cause the control to be bang-bang
between the boundaries of its domain. Similarly, piecewise approximations are not very effective,
as the dependence on the control is very weak, requiring a high number of local supports and
making the computational complexity overwhelming. We tested both value and performance
iteration and tried to employ different kinds of basis functions and training points. Unfortunately,
both Regress-Later and Control Randomization do not cope well with controlling the dynamics
of a process through the variance only. A tailor-made implementation of Regression Monte Carlo
to deal with this kind of problems is outside the scope of this paper and further investigation will
follow in future work. For now, we chose not to provide results based on RL and CR methods.

3.5.2 Interbank systemic risk

For this problem, in the absence of analytical solution, we decided to compare the estimations of
the value function at time 0 provided by our algorithms with a numerical approximation based

116



3.5. NUMERICAL RESULTS

Table 3.2 — Portfolio Selection results. Estimations of the value function at point (zp = 0,5y = 6)
time O using the continuous-time optimal strategy (Opt) and (Q) estimated optimal strategy.

bo=01,T=1]|by=-01,T=05
7 | Opt Q Opt Q
0.1 | -0.985 -0.985 | -0.992 -0.992
0.2 | -0.982 -0.982 | -0.991 -0.991
0.3 | -0.973 -0.973 | -0.988 -0.988
0.4 | -0.954 -0.953 | -0.981 -0.981
0.5 | -0.927 -0.927 | -0.969 -0.969
0.6 | -0.896 -0.896 | -0.952 -0.952
0.7 | -0.863 -0.863 | -0.932 -0.932
0.8 | -0.830 -0.830 | -0.910 -0.910
0.9 | -0.797 -0.797 | -0.886 -0.886
1 |-0.767 -0.766 | -0.863 -0.863

70
I

Opt
——a

Figure 3.4 - 3 simulations of the agent’s wealth (X;)c[o,7) When the latter follows the continuous-
time optimal strategy (Opt) and the (Q) estimated optimal strategy to solve the Portfolio Selection
problem. We took 0=0.4, T=1, P=0.1, v,=5, by=0,1. One can see that the two strategies are
the same when the drift is low; but Q performs slightly better than Opt when the drift is high,
which is a time-discretization effect.
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on finite difference scheme provided by Mathematica, of the solution to the 2-dimensional HJB
equation associated to the systemic risk problem:

WV + dy + <(02 —2K)y +o?(1 - p2)x2>6yV + sug [;aQ — 2ay6yV]
ae
+@a§xv + 202p2a:y5$yV + 202p2y26§yv =0, for(t,x,y)e[0,T) xR xR,
V(T,z,y) =5y, V(z,y) e RxR,.
(3.30)
We refer to the solution of this partial differential equation (obtained using Mathematica using
finite differences as explained below) as the Benchmark (or simply Bench) in the sequel.

We computed YA/At(to =0,z = 10, yo = 0) using RL, CR and Q methods by considering a sample
of size 500 000, and using the following parameters 7' = 1, 0 = 0.1, k = 0.5 and Xy = 10. We
recall that XA/At(tO = 0,x0,y0) is an estimation of V(0,29 = 10,y = 0), the value function at
(x0,yo) and time 0 (see its definition on the last step of each pseudo-code presented in Subsection
3.3.6).

In Table 3.3 we display the numerical results of experiments run for two situations: we took
n = 10, ¢ = 100 and n = 100, p = 0.5 and vary the value of p in the first case, and vary the value
of ¢ in the second one. Plots of the two tables are also available in Figure 3.5. One can observe
that the algorithms performs well. Mainly, Bench and Q provide slightly better results than the
Regression Monte Carlo-based algorithms (the curves of Bench and Q are below those of the
other two).

Figure 3.6 shows two examples of paths (X)o7 controlled by RLMC (curve “RLMC”),
(Xt)te[o,r) naively controlled by ov = 0 (curve “uncontrolled”), and the conditional expecta-
tion of X (X¢)sepo,1) (curve “E(X[W)”). One can see in these two examples that the (RLMC
estimated) optimal control is as follows:

* do nothing when the terminal time is far, i.e., take @ = 0, not to pay any running cost.

e catch X when the terminal time is getting close, to minimize the terminal cost.

We finally present a sample of paths (Y;),c[o,7) controlled by the decisions given by Q in Figure
3.7. One can see that the (Q estimated) optimal strategy minimizes the running cost first by
letting Y grow; and deals with the terminal cost later by making Y small when the terminal time
is approaching.

Remarks on the Regress Later and Control Randomization algorithms. For the implemen-
tation of the RL algorithm we decided to use polynomial basis functions up to degree 2. This
choice allows us to compute the optimal control analytically as a function of the regression
coefficients (see Remark 3.11). Compared to other optimization techniques, explicit expression
allows for much faster and error-free computations (see Remark 3.11). For CR, we used basis
functions up to degree 3 in all dimensions to obtain more stable results.

Regarding the choice of the training measure in RL, we employed marginal normal distributions
on each dimension. As we know that the inventory dimension Y represents the conditional
variance of the original process X, we centered the training distribution u,, at zero but considered
only training points Y;* > 0. In CR, on the other hand, we need to carefully choose the
distribution of the random control so that the process Y does not become negative. Notice in
fact that the Euler approximation, contrary to the original SDE describing Y, does not remain
positive and we would therefore need to carefully choose a control to avoid driving Y negative.
In order to achieve such goal, without having to worry too much about the control, we modified
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the Euler approximation of (3.29) to feature a reflexive boundary at zero. Such features allow to
train the estimated control policy to not overshoot when trying to drive the process Y to zero,
without having Y to become negative.

Remarks on the Quantization algorithm. As stated above, it is straightforward that Y > 0
on (0,7]. However, the Euler scheme used to approximate the dynamics of Y does not prevent
the associated process (Y3, )o<i<n to be non-positive. When implementing the Q algorithm for
the systemic risk problem, we forced (ProjF;/ (Y2)) < to remain positive by simply choosing
positive points for the grids I'} that quantize the states of Y;,, at time ¢; fori = 0, ..., N.

Also, given the expression of the instantaneous and terminal reward, one can expect Y to stay
close to 0, but we do not have any idea of how small Y should stay for the strategy to be optimal
(cf. Figure 3.7 to see a posteriori where Y lies). To deal with this situation, we decided to adopt
the “explore first, exploit later” procedure. First, we chose some random grids with a lot of points
near 0 and computed the optimal strategy on these grids. Then, we ran forward Monte Carlo
simulations and generated an empirical distribution of the quantized Y. Second, we build new
grids of Quantization for Y by generating new points according to the empirical distribution that
we got from in the previous step. Finally, we computed new (hopefully better) estimations of
the optimal strategy by running the Q algorithm using the new grids. The Q strategy performed
better after applying this step, but not significantly since our first naive guess for the grids (i.e.,
before bootstrapping) was already good enough.

Details on the deterministic algorithm for the resolution of the HJB. We use the NDSolve
function in Mathematica based on finite difference method to solve (3.30). Note that usually
terminal and boundary conditions are required to get numerical results. The final condition:
V(T,z,y) = 5y is already given by (3.30). However, the boundary conditions on V'(¢,0,y) and
V (t,z,0) are missing, except the trivial condition consisting of V' (¢,0,0) = 0. We then provided
the HJB without boundary conditions to the Mathematica function NDSolve, and let the latter
add artificial boundary conditions by itself to output results.

p | RLMC CR Q Bench
0.1 | 8.88 9.12 8.76 8.94
0.2 | 873 898 8.69 8.77
0.3 | 8.42 8.69 8.32 8.48
0.4 |8.02 825 791 8.06
0.5 7.61 7.73 7.37 7.51
0.6 | 6.93 6.97 6.68 6.79

¢ | RLMC CR Q Bench
0 |7.79 7.78 7.77 7.79

1 |7.88 7.87 786 7.88
5

1

8.22 8.23 821 8.23
0| 8.63 8.64 8.61 8.62

0.7 594 607 578 587 ig ?'1638 (’1)'1727 26634 ?'0637
0.8 | 486 4.82 4.62 4.67 : : : :

0.9 | 3.32 3.10 3.02 297 p = 0.5 and n = 100.
¢ =100 and n = 10.

Table 3.3 — Results for the systemic risk problem. Estimations of the value function at point
(xo = 10) at time O provided by different strategies. We took 7' = 1, N = 100, o = 0.1, K = 0.5,
Xp = 10.

119



CHAPTER 3. POLYNOMIAL CONDITIONAL MCKEAN-VLASOV CONTROL PROBLEMS: SOME PROBABILISTIC
NUMERICAL METHODS

T
—p— RMC
——aQ

Bench

sE=——o — —CR_ |

V(t=0,X,=10)
V(t=0X,=10)

¢ =100 and n = 10. p = 0.5 and n = 100.

Figure 3.5 — Results for the systemic risk problem. Estimations of the value function at time 0
using different algorithms w.r.t. p and ¢. We took 7'=1, N=100, 0=0.1, k=0.5, 2¢p=10.
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Figure 3.6 — Two realizations of (X)o7 controlled by RLMC (curve “RLMC”), (X¢)e[o,1]
naively controlled taken o = 0 (curve “uncontrolled”), and X (curve “E(X|W)”). The optimal
control for the systemic risk problem (computed by RLMC) is to do nothing at first, and catch X
when the terminal time is getting close.

03

02—

> 0.15 f—

0.1 =

Figure 3.7 — Sample of (Y})[o,r] controlled by Q. The (Q) estimated optimal control for the
systemic risk problem is to initially let Y become large, and then reduce its value when the
approaching the terminal time.
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3.6 Discussion

In this work, we have investigated how to use probabilistic numerical methods for some classes
of mean field control problem via Markovian embedding. We focused on two types of Regression
Monte Carlo methods (namely, Regress-Later and Control Randomization) and Quantization. We
have then presented three different examples of applications.

Regression Monte Carlo techniques. We found that the Regression Monte Carlo algorithms
perform well in problems of control of the drift. In such problems, they are much faster than
Quantization for similar precision. In particular, we noticed that Regress-Later is usually more
reliable than Control Randomization; often the choice of a uniform distribution of the training
points on an appropriate interval is sufficient to obtain high-quality estimations.

On the other hand Control Randomization is very sensitive to the choice of the distribution of
the randomized control, and often a few iterations are necessary before finding a good control
distribution. We have also tried to use the performance iteration or path recomputation method,
but on the examples we considered, it was very time consuming and did not help much in terms
of accuracy.

Despite the success of Regression Monte Carlo methods in problems with control on the drift,
the example of Portfolio Selection highlighted a possible weakness of these algorithms. When
the control acts on the variance only, we found difficult to make the numerical scheme converge
to sensible results within the computational resources available. We realized that the study of
these problems and the solution via Regression Monte Carlo methods is outside the scope of this
paper. This is probably related to another limitation of this family of methods: the choice of the
basis functions for the regression. Indeed, for some problems, a good basis might be very large
or might require several steps of trials and errors.

Quantization techniques. Quantization-based method, on the other hand, provided very
stable and accurate results. A first interesting and practical feature of the Q-algorithm is that
regressing the value function using quantization-based methods is local. So, first, it can be easily
parallelized to provide fast results, and, second, it is easy to check at which points of the grids
the estimations suffer from instability and how to change the grid to fix the problem (basically;,
by adding more points where the estimations need to be improved).

Another interesting feature of the quantization methods is that, one can choose the grids on
which to learn the value function. It is possible to exploit this feature in the case where one has,
a priori, a rough idea of where the controlled process should be driven by the optimal strategy
(see, e.g., the liquidation problem). In this case, one should build grids with many points located
where the process is supposed to go.

When one has no guess of where the optimal process goes, it is always possible to use bootstrap-
ping methods to build better grids iteratively, starting from a random guess for the grid (see, e.g.,
the systemic risk problem). In both cases, one has to be particularly careful with the borders of
the grids that have been built. Indeed, the decisions computed by quantization-based methods
at the borders might easily be wrong if the grids do not have a “good shape” at the borders.
Unfortunately, the shape of the grid that should be used depends heavily on the problem under
consideration.

Except in special cases, it is not possible to avoid deterministic algorithms (such as gradient
descent methods or extensive search) to find the optimal action at each point of the grid. A
smooth expression of the conditional expectations of the quantized processes is necessary for
the deterministic algorithms find optimal strategy efficiently. Once again, the use of parallel
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computing can alleviate the time-consuming task of searching for the optimal control at each
point of the grids.
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Chapter

A non-intrusive stratified resampler for multi-factor models:
Application in energy market

This chapter is based on the paper [GPZ18].

Abstract

We aim to solve dynamic programming equations (DPE) related to financial
valuations in energy market. On the underlying asset, we consider that a
calibrated model is not available and a limited sample from its historical
data is accessible. We look for a non-intrusive method solving the DPE with
empirical regression techniques, by suitable resampling of the historical data
(and thus without calibration of the model). In power market, the forward
contracts are driven by hidden factors modeled by Markov processes. Even
though the DPE solution depends on these hidden factors, we come up with a
resampling scheme using only the historical data of the observable log forward
prices.

4.1 Introduction

Stochastic dynamic programming equations are related to the resolution of non-linear problems,
e.g., the stochastic control (see [TVO1, Pha05, BKS10]) or non-linear partial differential equations
(see [BT04, Phal5, GT16]). These equations were studied in [MB46, Bel57, Put14] motivated
by problem arising in almost all areas of science, from water reservoir management to finance.

We aim to solve dynamic programming equations (DPE) related to a financial application in
energy market. For illustration, we can be concerned in the pricing of Bermudan or Swing
options, where the underlying assets are power spot prices or forward contracts. We plan to
build a non-intrusive method to solve those DPE using the observable data in the underlying
market, without a full model calibration. We deal with a discrete-time framework, the DPE takes
the following form:

Vi =E[¢:(Yit1, .., YN, Xiy ..., XN) | X4], i=N-—-1,...,0,

for some real functions gy and §; depending on the problem under consideration. Here, X is a
Markov chain in R", determined by the problem.
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In the usual methodology, we observe a historical data O of size M, from which we extract
the values of parameters of some model describing the stochastic evolution of X, and then we
perform regression Monte Carlo (MC) algorithms (with many sampled points X, say Ny) to
obtain the regression functions ¢; such that Y; = 3;(X;) (see [LSO1, Egl05]). In the current
situation we are interested in, M is usually small compared to Nyc and thus, the statistical step
gives a larger error than the empirical regression one. This is an incentive to perform a direct
approach consisting in resampling (or bootstrapping) the observed data and obtain directly the
regression functions, see Figure 4.1, this is inspired from [PBS01, GLZ18].

In energy market, the price at time ¢ of a T-forward contract, denoted by F'(¢,T), is usually
modeled as driven in terms of hidden factors X, modeled by a Markov process (see [CMR09]).
We suppose a dynamic for the hidden Markov processes X representing different characteristics
of the forward price, for example, the short-term and equilibrium components (see [SS00]). We
get from the market some observable data at different times ¢, which we denote by O; typically
Oy is the set of forward prices F'(¢,T') or a transformation of them. Practical examples correspond
to solving pricing problems when the time horizon 7" is one year. Regarding dates, we have daily
historical data over last 20 years. However, energy data have a high seasonality component:
for instance, the volatility in winter is quite different from volatility in summer (for instance as
reference to seasonality effects in forward contracts, see [BG06]). Therefore, it is questionable
to estimate winter volatilities using summer data. It is more reasonable to consider that we have
M = 20 independent realizations of a one-year path.

When we rewrite the DPE in terms of the underlying F'(-,T'), which is also function of X, we get
control or value functions depending on the hidden factors. Because these Markov process X
are not observable, meaning we have no direct access to them, we can not apply a resampling
method (as in [GLZ18]) that regenerates each one of those factor individually. To deal with this
problem, we suggest a resampling method on the observable data O, by modifying the scheme
of the aforementioned reference.

In view of applying a resampling method on observable data, the discrete dynamic programming
equation (DDPE) will take another form:

Yy = gn(On),
Yvi :E[gi(Yi+17---aYN70i7--'aON> ‘ OZ], i=N—1,...,0.

The aim is to compute the value function y; such that ¥; = y;(O;) (not as a function of X;) using
regression Monte Carlo methods. Here, X is a hidden process valued in R™ and say that the

—

[ Model parameters

statistical estimations empirical regression

MC simulation
with Ny samples

Data O (M Regression
samples) functions

resampling data

Stratified MC

simulations
with M samples

Figure 4.1 — Regression function reconstruction: Two different approaches
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process O takes values in R?. For instance, O and X could represent the market log-prices and the
factors on a multi-factor model. Usual modeling works give that, in the market, we take d = 36
different transformed prices (O™, ..., 0®9) driven by n = 3 hidden factors (X1, X(2) x(3))
(see [KSB09], for a two factor model in electricity forward market).

Let us briefly recall the Regression Monte Carlo (RMC) methodology. Owing to the L?-projection
property of the conditional expectation, we have that y; solves the minimization problem

Gi(Yiz1,..., YN, Oi,...,On) — $(O;)

min ]E[

2
], i=N-1,...,0,
HRISR

where ¢ is a real measurable function on R?%. The Regression Monte Carlo approach comprises

simulating Nyc paths of observable variable O, say O™ = Ol ... O™c (input of the

algorithm), and finding approximations g)ZN we:£ in a vector space of functions £. The real function

A~

yzNMC’E (output of the algorithm) solves

Nmc 2
. Ny, L - Ny, L
HIEILI:I gz(yHNiC ( ﬁl)v"wyNMC (O%),OT,,O%)—QS(O;TL) )
¢ m=1
foreveryi = N —1,...,0. But, to ensure accurate scheme, the RMC methods usually need that

the number of simulations Ny has to be much larger than the dimension of the vector space £
(number of coefficients). Note that the inputs are sampled from a model which is estimated from
M data only: in our setting where M is small, model error may be a significant concern and we
wish to better account for this.

In [GLZ18], the authors design a scheme where the Ny simulations are replaced by the M
observed data (and thus M = Nyc). To overcome the problem of numerous coefficients to
compute (despite the small number of data), they combine this with a stratification strategy and
local approximations.

This approach is called the Non-Intrusive Stratified Resampler (NISR) scheme. More precisely, this
resampling method consists of subdividing R? in strata (), and figuring out the approximations
on each stratum 7, using the root sample O™ . Due to the stratification part of the NISR scheme,
we choose small stratum allowing to use a small dimensional approximation space Ly, thus
alleviating the large M constraint. The key point in the non-intrusive part of the scheme
is to assume that only the structure of the model for O is known, but not the values of its
parameters/coefficients.

In our setting, had we observed the factors X, we would have resampled it and used directly the
NISR scheme. Unfortunately, we have only access to O which is a affine and partially unknown
transformation of X: this is why we have to propose an extension of the native NISR scheme in
a version which takes as inputs O. To make it possible, we consider that the factors model is
described as multidimensional Ornstein-Uhlenbeck (OU) which we know the mean-reverting
parameters, but not the volatilities/correlation.

We end this introduction with an outline of this chapter. The dynamics programming setting
is discussed in Section 4.2 that leads to the NISR for regression Monte Carlo. Main notations,
technical assumptions and model structures are also introduced. In Section 4.3, the algorithm
to solve dynamic programming equation under standard conditions of accessibility to historical
data is presented (see Algorithm 4). Section 4.4 is devoted to financial applications in energy
market: the pricing of Bermudan and Swing options. Numerical results are in prospection.
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4.2 Setting

4.2.1 Dynamic programming equation

In the following, we consider N fixed times ¢; and denote by O; the observable process O at
time ¢;. Our aim is to compute the following discrete dynamic programming equations (DPE) in
general form:

Yy = gn(On),

. 4.1)
YZZE[QZ(}/@JrleOzN) |Ol]7 O<Z<N—1,

for some functions gy and g;. Here, (O;)o<i<n and (Y;)o<i<ny are random processes taking
values in R? and R, respectively, and we use the short notation O;.x = (O;,...,O).

We take a hidden Markov process X in R” such that the observable variable O in R? is described
in terms of X as O; = ¢(X;), thanks to some measurable function ¢ : R* — R?. The modeling
interpretation of X and O is that X drives the evolution of O; only O can be observed in practice,
see the subsequent Example 4.3. We assume that there are more observable variables than
hidden variables, i.e. , d > n. We also assume that O is a Markov chain.

Consider X; denoting the process X at time ¢;. Due the Markovian property of the data D, we
write the previous system as follows

YN = gn(XnN),

~ (4.2)
Vi = E[§(Yie1.n, Xon) | Xi]

for some functions gy and g; depending on gy, ¢; and ¢. Assuming that measurable function ¢
is not completely explicit, the composed functions gy and §; are neither.

Discussion. Up to this point, we have presented two different approaches depending on the
underlying Markov process we choose O or X. If we apply the NISR scheme to

* Equation (4.1), the Markovian variable O is in dimension d, much larger than the effective
Markovian dimension (i.e. , n). We pay the price of a higher dimension. On the other hand,
we may observe the data O solving a OU dynamics so that we can resample them easily (like
in [GLZ18]).

* Equation (4.2), the Markovian variable X is in low dimension n (good) but the payoff depends
on ¢ (that we do not know). Also we do not observe X directly, we need ¢ to get X from O.
The problem is that ¢ depends on others unknown parameters such as correlation, volatilities
(many parameters we do not know). This is why we follow the approach in (4.1).

From (4.1), we can deduce the existence of a measurable function y; such that Y; = y;(0O;).
Therefore, our aim is to computation an approximation to the value functions y; for all ¢ using
the NISR scheme. Hence, for technical reasons we prefer to assume bounded value functions as
in [GLZ18, Assumption 2.1].

4.2.2 Modeling of the observable and hidden processes

We need to compute the coefficients of an approximation of y; on a vector space using the
samples of O (regression Monte Carlo). To invoke the NISR algorithm, we need to resample O
and for this we specify the dynamics of O, X and the relation between O and X. First, essentially

we will require ¢ : R — R? to be a linear transformation.
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Assumption 4.1 (Model structure). The observable data O; is related to the hidden Markov state
X; as follows
0O; =AX; + b, (4.3)

where A is a real matrix in R*™ and b is a vector in R?, with d > n. The matrix A is deterministic
and known, while b is deterministic and unknown. The (column) rank of A is n.

Hidden model. We present the underlying structure of the hidden Markov chain X as discrete
version of a Markov process with time independent parameters. Let W = (W', ... W") be
a n-dimensional Brownian motion on a probability space ({2, F,P) endowed with the natural
(complete and right-continuous) filtration F = (F;);<r generated by W up to some fixed time
horizon T' > 0.

Assumption 4.2 (Hidden model). We suppose that X is a n-dimensional OU process in R"™ given

by
dX; = (p — aXy)dt + o dW, (4.4)

where y is a drift vector in R", « is a mean-reverting matrix in R™*", and o is a diffusion matrix in
R™*™. We assume that « is known.

The value of n will depend on the model used to describe the commodity prices. Notice that X;
(random variable indexed by 7) denotes the process X at time ¢;, i.e., X; := X;,. Below we show
an example of a hidden multi-factor X in dimension n = 2.

Example 4.3 (Schwartz-Smith model, n = 2). Let (W, , W¢) be a couple of correlated Brownian

motions given by
(W We) = (W oW 4 /1= 22,

with correlation p. Let X = (x, £) be the process satisfying (4.4) whose parameters u, «, o are

given by
< 0 > o <Ii ()) o < Oy 0 >
a pe)’ 0 0/’ poe /1 —p2o¢)”

Those parameters are independent of time. Then the spot price S; is modeled in terms of two
correlated factors x and ¢ as follows

log Sy = x¢ + &

Here, the processes x and ¢ represent short-term deviations and equilibrium levels respectively.
After the change of probability to bring the process X = (x, &) to a risk neutral measure, we
express the T-forward price F'(¢,T) as expectation of the future spot price Sy and obtain

log F(t,T) = e”“(T*t)Xt + & +a(T —1t),

where a(AT) is a function of the time to maturity A7 = T — ¢ given by

—RAT A
a(AT) = (g — Ae)AT — (1 —e A )?X
1 —2kAT ol 2 —kAT\PIXxT¢
+2<(1—e )%+U£AT+2(1—6 )T .

Here, \¢ and ), are the risk premiums for the short-term deviations and equilibrium level,
respectively. For more details, we leave the reader to see the so-called Schwartz-Smith model in
[SS00].
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Linear model structure. Regarding the Schwartz-Smith model in Example 4.3, we write model
structure (see (4.3)) in continuous time

Oy = AX; + b, (4.5)
for a set of forward prices

F(t,t + AT) = {F(t,t + A1) : AT e AT}

with time to maturities AT = {A7,..., A6} as follows
log F(t,t + A1) e RATL ] a(ATy)
L log F(t,:ﬁ + A1) | A e"iAT? 1 | - a(A:Tg) 4.6)
log F'(t, t + ATsg) e*“.AT36 1 G(A'T?,G)

and X; = (&, x¢) for some time ¢. In the previous example, we have assumed the existence of 36
forward contracts (with a sufficient liquidity).

According to Assumptions 4.1 and 4.2, we suppose the knowledge of matrix A and « (i.e. ,
of the parameter x), but not of vector b (i.e. , of the parameters ¢, A¢, Ay, 0¢, 0y and p).
Otherwise, it would mean we estimate all parameters of the OU model. Because we are looking
for a non-intrusive algorithm, the knowledge of all model parameters is not reasonable. Say
differently, to solve the DPE (4.1) we will assume to know « only, and we will use observations
of O.

Observable model. From the relation between the observable data O and the hidden Markov
state X, we now deduce the dynamics of O.

Proposition 4.4. Under Assumption 4.1-4.2, we have
t
Oy = e =4O, 4 f e =) (hds + 6 dWs), 4.7)

t;

with
a=AcAT e R = Ap+abeRY, &= Ao e R¥>",

and A" € R"*4 is the Moore-Penrose inverse of A (see the definition in [Pen55]).

Proof. From the assumption that the (column) rank of A is n, ATA € R™ ™" is invertible.
Therefore, we have the n x d matrix AT is the left inverse of A

Al = (ATA)71AT, ATA =1, (4.8)

where I is the n x n identity matrix.

From the relation in (4.5) and the left-inverse identity in (4.8), we obtain

X, = AT(O; — ). 4.9)

By differentiating O in (4.5), by multiplying the SDE on X in (4.4) by A on the left-hand side
and using the left-inverse identity in (4.8), we obtain that O solves also another OU process with
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time independent parameters, after replacing the remaining X by the expression in (4.9)

dO; = (A — AaAT(Oy — b)) dt + Ao dW;

4.10
= (i — GOy) dt + & dW. @10

From the SDE in (4.10), we conclude the announced result. O

The equation (4.7) shows how the dependence between O; and O; is parameterized by &, and
the random part independent of O;. Notice that, in the case d = n and rank(A) = n, we have
the existence of A~! and we simply obtain & = AaA~!. In the Schwartz-Smith model, the
knowledge of & is implied by the knowledge of the mean-reverting speed « and the time to
maturity A7 of forward contracts F'(¢,t + AT).

4.2.3 Non-Intrusive resampling

For the regression Monte Carlo algorithm in the NISR framework, we use samples of O under
the following assumption.

Assumption 4.5 (Observable data). We have access to the observation of M paths of O, denoted
by O¥M = {O™ : 0 <i < N, 1< m < M}. They are independent and called root sample.

From the representation of the flow of the Markov chain O, we write
O}’Z = @M(z, U)
for different times i € {1,..., N} and points z € R?, where U is a random vector and 6, ; is a
deterministic function for pair (7, j), called flow functions here.
We exhibit the flow function in the case of the Schwartz-Smith model.
Example 4.6 (Flow function in Schwartz-Smith model). Following the Assumptions 4.1-4.2 and

the Example 4.3 (Schwartz-Smith model), we have obtained a model structured presented in
(4.6). After computing the pseudo-inverse Af, we deduce that @ is

366" — 25/621 e ATy

36 — . 36 — :
36 Zj’:] e 26AT; 22]'/:1 e RAT

7KZAT¢

Q; 5 = K€ 5

for all 1 < i,j < 36. Therefore, knowing & is equivalent to known the mean-reverting speed
and all time to maturities (A7y, ..., A7sg).

Given N + 1 times {¢; : 0 <4 < N}, we observe a path {O; : 0 <i < N}. Following the explicit
solution of O in (4.7), we define the flow functions as

0;i(2,U) = e Oti—ti) 4 Uij,
and we extract a random source U
U j=0; —e i,
forall0 <i<j<N.

Note that from Assumption 4.5, observing M independent (O!,...,O™) implies we can get M
independent realizations (U!,..., U™) of U. In addition, owing to Assumptions 4.1 and 4.2, the
flow function ©; ; is known.
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Instead of identifying the distribution of observable data O, we simply assume to be able to
retrieve the random sources that generated the historical data. In order words, we suppose the
existence of a general structure of the Markov chain model, but not a complete knowledge of the
model parameters. This is the non-intrusive characteristic of the NISR scheme.

4.3 The NISR scheme

In this section, we present the NISR-regression Monte Carlo algorithm assuming the complete
access to the observable data. From the historical data, we construct on a root sample O™ of
size M (possibly small). Here we show how to recover the random sources generating the root
sample, then be able to resampling M paths from any initial point z in R?. Assuming to know &,
we apply the Example 4.6 in general case.

4.3.1 Extraction

Pick one path {O" : 0 < i < N} of root sample O along N +1 discrete times {t; : 0 <4 < N}.
The explicit solution of O in (4.7) helps us to extract the random source U as follows

U =0 — e 8t=om - forall0<i<j<N. (4.11)
Notice that for each path O, we obtain a triangular matrix U™. So the flow functions are
O;j(z,U) =e it 1 ;5 forall0<i<j<N. (4.12)

Here, with a random source U, we obtain a another sample starting from a initial point z € R¢.

o N4l s W)V +2)
We call the mapping in (4.11) from the path space R into random source space R 2

the extractor function ¢

U = &(to.n, Op.n) = (()j - e—&“-f—ti)oi) (4.13)

ij:0<i<j<N
In the following, ©; ; in (4.12) and ¢ in (4.13) will be inputs of the NISR algorithm as well as
the root sample O™,

4.3.2 Stratification

Because the size M of the root sample is possibly small, we are not able to perform an accurate
regression Monte Carlo method. Since the number of samples required for the empirical
regression is much larger than sample extractable from the historical data, we will use the
extracted random sources and resample them from different initial conditions (¢;, z) thanks to
flow function in (4.12).

In fact, we need that M be greater the dimension of approximation spaces £. For that, we
resample the paths from distinct initial points in different regions of the space R¢, then we
perform a regression Monte Carlo on a low-dimensional approximation space. More precisely,
we consider K strata {H},,1 < k < K} is a partition of the space R? , i.e.,

K
Hy " Hy = & fork # k', Uﬂszd.
k=1
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and a probability measure v such that its restriction v on H;, is denoted by

v(dz) = %{(:;y(dz). (4.14)

Here, we construct a resampling method using the probability measure v and the random source
U. To obtain a stability in the propagation of errors, we need a condition on the probability
measure v and the Markov chain O.

According to Proposition 3.2 in [GLZ18], we provide the probability measure v that satisfying a
stability condition for the OU processes, that we are resampling.

Proposmon 4.7. Let p > 0. Assume that Oz +1 = Dz + U; for a diagonal invertible matrix

= diag(D',..., D% with E[(1 + |U;|)¥P*D] < +o0. Then the tensor-product Pareto-type
distribution

d
—p—1
Hg(u ) e (4.15)
satisfies a norm-stability condition: there exists a constant K > 1 such that, for any ¢ : R —

R € L2(v), we have
f E|¢(077))[*r(dz) KJ dz),

foranyie{0,...,N —1}.

The proof of Proposition 4.7 is given [GLZ18].

Now we present the stratified resampler using the distribution v.

Definition 4.8 (Resampler). We define the M sample at time ¢; until time ¢, in the stratum H
as follows

* Let V%™ be a sample independent in 4, k, m according to the distribution v; we set
Ofkm = Vikm foralll < m < M.
e Foreveryje{i+1,...,N}, weset
O™ = @, ;07 U™), forall 1 <m < M,

where U™ is given by (4.11).

From Assumption 4.1, we have that random source UM = (U!,... UM) are independent. We
observe that {Ol kmo 1 <m< M } are independent and identically distributed copies of O;.x
starting at O; ~ vy, because

(0;,i <j<N|0;=2) L (01(2U),i <j<N).

4.3.3 NISR-regression Monte Carlo algorithm

By using M -sample given in Definition 4.8, we compute the approximation of the value function
y; according to Algorithm 4. Here, we consider a piecewise linear basis functions

/-:k = span{lHk, lech’ e ,Zdlq.[k}.
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In addition, we suppose the dimension of the space £, are independent from £, for the sake of
simplicity. Indeed, we have dim (L) = d + 1.

In view of the following algorithm, we need to introduce the Ordinary Least Square (OLS)
operator that approximates the function C' : R¥*(N=i*+1) _, R on the approximation space £,
using the sample Ofﬁ, M The operator OLS is defined as

M A ‘ )
OLS(C, £y, Of™) = arg min )} |C(ON") —0(0" ™)
m=1

The NISR-regression Monte Carlo algorithm is given in Algorithm 4. In the Algorithm 4, the root
sample O'*M is an input to the Non-Intrusive Stratified Resampler given in Definition 4.8 through
the random source UM, Then, the existence of algorithm’s approximation is conditioned to the
fact that for any i € {0, ..., N} the observable data O; is indeed observed.

Algorithm 4 General NISR-regression Monte Carlo algorithm
Inputs:

e Extractor function &, Flow functions ©; ;, resampling distribution v;

* Truncation operator 77, (z) = —L v = A L and regression function bound |y;|o.

1: Set U1:N[ = é(tO:Na Oé%)
2: Set gM (-) = gn ().

3: fori=N—-1to0do

4 for k =1to K do

5: Set (Vi’k’m)lsmgM according to vy (given in (4.14)).

6: Set OVF™ = vikm and O7F™ = ©, ;(0VF™,U™) for j e {i +1,..., N}.
7. Set C]V[(ZZ':N) = gi(g%l(zi+1), ey Z)%I(ZN), Zi:N)-

8: Compute pM* = OLS(CM, Ly, OL%1M,

9: Set " =T, (#MF).
100 SetgM(-) =K gMF1y,.

Outputs: Approximation j of regression function y;.

Here, we state the convergence result for the Algorithm 4 (in the case of the one-step ahead
DPE). It is expressed in term of the quadratic error of the best approximation of y; on each
stratum Hy:
Eip = inf |¢ — y|?
Z,k} ¢€Lk ’¢ yl vy ?

where |¢]2 = {pa [¢(2)[*v(dz). In fact, the Theorem 4.9 gives us an upper bound for

where |¢|2 := (3. |¢(2)|?v(dz). The previous expectation is also taken over the random sources
UM making the quadratic error averaged on the root sample.

Theorem 4.9 (Converge result in the one-step ahead DPE case, see Corollary 3.1 in [GLZ18]).
Assume 4.1-4.2-4.5 and define 4 as in Algorithm 4. Suppose each function g; is Lipschitz w.r.t y; ;1
(with Lipschitz constant Lg,) and bounded at y; 1 = O w.r.t. z;.n by Cy,. Let v be the distribution
given in Proposition 4.7. Then there are two constants C(N) and Cy(M) (with polynomial growth
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in N and log growth M, resp.) such that, for any i € {0,..., N — 1},
N-1p K

B[l ~ 5] < ) 3 | D viHie

j=i Lk=1

1
+ 37 (CoON (il + L lyial2) + (@ + 1)(C + Lgirymrooﬂ)].

The proof is given in [GLZ18, Section 3.3]. Usually, in Regression Monte Carlo methods, there
is a competition between the approximation error and the statistical error. Indeed, while the
dimension of the approximation space K dim(Lj) goes to infinity, the statistical error (propor-
tional to K dim(Ly)/M) explodes. In Theorem 4.9, the bias term (approximation error) is well
controlled in K since the terms v(#j) sum up to 1: we just obtain the average of the local
quadratic errors &; ;. More striking is related to the variance term: it does not explode with
the number K of strata. Therefore, taking a smaller stratum H; (which is interesting when we
have a small root sample) does not make the statistical error increase. Briefly, the stratification
improves the method by including several decoupled regression problems on a low-dimensional
space.

4.4 Applications to Energy Market

In this section, we search for other applications to energy market. First, we look the valuation
problem of Bermudan option whose the underlying processes are forward contracts in Subsec-
tion 4.4.1. Then, we explore the Gas storage valuation such as Swing option (multiple exercises
rights) in Subsection 4.4.2. This study can be helpful for power producer willing to valuate its
Swing contracts with its supplier.

4.4.1 Bermudan options

In this subsection, we consider the case where the observable data O; throughout the dates ¢g.y
is the log of forward prices F'(¢;,t; + A7) with time to maturity Ar.

Forward contracts. We suppose to have d different forward contracts, then O; is given by

log F(ti,ti + ATl)
log F(t;, t; + A1)

log F(ti, t; + ATd)

for some collection of time to maturity A7 = {A7; : 1 < j <d}.

In the actual market, the forward prices are characterized by their maturity dates 7'. By definition,
whenever the current time ¢ reaches the maturity 7', the forward contract is equal to the spot St
and after that it disappears. Notice then the actual forward data is defined for fixed maturity not
for fixed time to maturity. We tackle this problem by performing a linear interpolation between
the log forward prices log F'(t;, T4(i, 7)) and log F(t;, Tu(i,j)), where T4(i, j) (resp. Tu(,7)) is
the largest (resp. the smallest) expiry date lesser (resp. greater) than the unobservable maturity
ti + Atj for every i € {0,..., N} (see Definition 4.11).
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Following the Assumption 4.1, we take the matrix A in (4.3) to be known and given by

e—nlAn e—ﬁnAn

6—/11A7'2 e—HnA’TQ
A=

e—HlATd e—mnATd

For more details in energy market derivatives, see [GemO05] and [CSO0] among others.

Option description. Let us describe the optimal stopping problem related the valuation of
Bermudan options in Markovian framework. We take a set 7y of N + 1 deterministic exercise
times t; and consider the optimal stopping rule associated: at final time 7, the holder of the
option exercises the option if it is in the money; at time ¢;, the holder of the option compares the
cash flow from immediate exercise with the expected cash flow from continuation. The value
Vi = V(t;,O) of the Bermudan option at time ¢; is given by the supremum over (integer-valued)

stopping times 7 in {,..., N} of the immediate reward g:
Te{i,...,N} )

Following the dynamic programming principle (see [Kar88], for American options in continuous
time and [LamO09] in discrete time), we have the existence of the optimal stopping time to
(4.16):

7; = inf {j =i : V(t;,05) = g(Oj)},
corresponding to the optimal stopping strategy given the option have not been exercised until

time ¢;. Then, we rewrite the Bermudan option value V; = V (¢;, O) in terms of the continuation
value Y; = Y (¢;, O) given by

V(thO) = max {g(OZ))Y(tuO)}u 0<i<N-— 17
where
Y(t,0) = E[V(ti1,0i41) | O; =0], 0<i<N-1
and Yy = 0.

Regarding the discrete dynamic programming equation (4.1), the Bermudan option valuation
corresponds to

gN(On) =0,  gi(Yit1,0i41) = max(9(Oit1), Y (tiv1, Oiv1)), 4.17)
similar to [TVO1]. Here we set the continuation value as the expectation of the optimal value
function at the next time, differently from the Longstaff-Schwartz approach proposed in [LS01].
Below we give some examples of reward (or payoff) functions g.

Example 4.10 (Options payoffs). Consider an option over N = 12 months such that exercise
date ¢; is the first day of the i-th month of the year.

1. The payoff function of a Bermudan Put on a 1 Month-Ahead (MAH) forward contract with
strike price ) is given by
9(0:i) = (A = 9(0i))+
with ¢(z) = e* and O; = log F(t;,t; + 1M).
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2. The payoff of a Bermudan Exchange option on a 1 MAH forward contract against to 2 MAH
one with strike price A is

9(0i) = (¢1(0i) = Ap2(0i)) +
with ¢(z1,22) = (e®,e?2) and O; = (log F(t;,t; + 1M),log F(t;,t; + 2M))T.

3. The payoff of Bermudan Exchange Asian option on 1-6 MAH forward contracts versus 7-12
MAH ones with strike price \ is

9(0i) = (¢1(0i) — Ap2(0;)) +

with ¢(z1,...,212) = (% Z?‘=1 e, & Zjli7 e’) and O; = (log F(t;,t; + IM), ... ,log F'(t;, t; +
12M))".

For the previous payoff, we need to know at most 12 monthly forward contracts.

Complete and incomplete historical data. Regarding the Example 4.10, we require (F'(¢;,
ti + ATj))1<j<n to be observable in the market for every i € {0, ..., N}, which is summarized in
the following case.

Case 1 (Complete data). Forany i€ {0,..., N} and j € {1,...,n}, t; + A7; is the maturity time
of a observable forward contract.

Therefore, the component Of = log F(t;,t; + Ar;) is directly extracted from the historical data
without any interpolation. However, whenever the log forward price log F'(¢;,t; + A7;) is not
available in the historical data, we perform an interpolation of log prices. This approach is
summarized in the Case 2. In Figure 4.2, we see the French Power Base Futures Prices at July
2nd 2018 for different delivery periods. Those future contracts have fixed maturities. Moreover,
we observe at this date

* The August 2018 futures is the most traded month contract;

* The Calendar 2022 and 1-Quarter 2020 futures are not traded yet;

implying that not every expiry dates are listed.
For that, we define the closest expiry times available in the market.

Definition 4.11. Let T = {73,75, ...} be the collection of expiry time available in the market at
every time t¢;. For any time ¢, we consider

Te(t) =sup{T eT : T <t}and Ty(t) =inf{T e T : T > t}

as the greatest available expiry time less than time ¢ and the least available expiry greater than
time ¢, respectively.

Here, we interpolate those time to maturities which are not accessible by those which are.

Case 2 (Incomplete data). For any i € {0,..., N}, the log forward price log F(¢;,t; + A1) is
given by
Tu(t; + AT) — (t; + AT)
Tu(ti + AT) — Td(ti + AT)
(ti + A1) —Ty(t; + A7)
Tu(ti + AT) — Td(tz' + AT)

for every time to maturity A7 in AT = {Ary,..., A7y},

log F(t;, t; + AT) =

log F(ti, Td(ti + AT))
(4.18)

log F(t;, Tu(t; + AT))
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Best Best No. of Last Abs. Last Last Settl. Vol. Vol. Trade Open Interest
Name Bid Ask Contracts Price  Change Time Vol. Price  Exchange Registration Prev. Day
Jul/18 - - - - -0.57 - - 46.98 - - 25,098
Aug/18 - - 116  45.20 0.73 16:01 744 45.40 15,624 70,680 23,619
Sep/18 - - 8 - 0.98 - - 52.79 - 5,760 22,188
Oct/18 - - - - -0.10 - - 58.80 - - 5
Nov/18 - - - - 1.03 - - 64.44
Dec/18 - - - - -0.25 - - 62.51
(a) Month futures with delivery period from July 2018 to December 2018.

Best Best No. of Last Abs. Last Last Settl. Vol. Vol. Trade Open Interest
Name Bid Ask Contracts Price Change Time Vol Price  Exchange Registration Prev. Day
4/18 - - 52 61.95 0.28 15:52 4,418 61.89 26,508 88,360 19,950
1/19 . - 20 61.05 0.45 16:45 10,795 61.14 43,180 - 814
2/19 - - 10 39.00 0.50 10:55 10,920 39.16 10,920 10,920 1,260
3/19 - - - - 0.41 - - 40.10 - - 1,240
4119 . - 8 54.75 0.37 15:40 11,045 54.69 17,672 - 221
1/20

(b) Quarter futures with delivery period from Quarter-4 2018 to Quarter-4 2019.

Best Best No. of Last Abs. Last Last Settl. Vol. Vol. Trade Open Interest
Name Bid Ask Contracts Price Change Time Vol. Price  Exchange Registration Prev. Day
:;l' 23 48.70 0.45 15:10 43,800 48.73 131,400 70,080 6,592
g;l' 5 45.50 087 1551 43,920 4550 43,920 - 1,726
Cal-
2 0.71 - - 42.69 - - 288
Cal-
22
Cal-
23

(c) Calendar futures with delivery period from 2019 to 2021.

Figure 4.2 — French Power Base Futures Contracts at July 2nd 2018 for different delivery periods
(Month, Quarter, Year) and different expiry dates. Screen captured at July 10th 2018 (Source:
https://www.eex.com/en/market-data/power/futures/french-futures#!/2018/07/02).
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4.4. APPLICATIONS TO ENERGY MARKET

The forward prices F'(t;, Ty(t; + A7)) and F(t;, Tu(t; + At)) are those available in the market
whose expiry times are the closest to F'(¢;,t; + A7). We illustrate below some examples of payoffs
with incomplete data.

Example 4.12 (Incomplete data). Consider an option over N = 24 exercise dates t9; 1 with t;
and is the 1st and the 15th day of the i-th month of the year, respectively. The payoff function of
a Bermudan Exchange option on a 1 MAH forward contract with strike price \ is given by

9(0:) = (A = 9(0:))+

with ¢(z) = e* and O; = log F'(t;,t; + 1M).

Notice the 1MAH forward contract is the contract with delivery date starting in the first next
month. Therefore, this is a contract with fixed maturity and not fixed time to maturity.

NISR-regression Monte Carlo algorithm: Incomplete data In the case of incomplete data,
we use the interpolation of log forward prices between different time to maturities given in
(4.18).

Therefore, we modified the Algorithm 4 to solve the problem corresponding to the Bermudan op-
tion valuation in (4.17). The modified NISR-regression Monte Carlo algorithm uses the Ordinary
Least Square operator that approximates the function C : R>* — R on the approximation space
Ly, using the sample szﬂ/[ .

Up to now, we deal with Bermudan options which are in between American and European
options in the sense of exercises dates. However, in this example, the contract buyer has only
one exercise right. Now we are going extend to multiple exercise rights.

4.4.2 Swing options

In this subsection, we again consider that the observable data O is the log of forward prices
F(t;,t; + At). Then to recover the forward prices from the data O, we use the function
(21,05 24) = Zf;l exp(z;)/d (i.e., a basket of future contracts).

Option description. Now we describe the stochastic optimal control problem related to the
valuation of Swing options. We consider a set T = {to,...,t;,...,tx} of N + 1 deterministic
exercises dates. We give by ¢; the local consumption at time ¢; under (local) loading constraint:

q; € [Qmim Qmax]-

The cumulative volume purchased up time ¢; is then denoted by Q; = Z;}) q;, which satisfies
the (total) volume constraint:

QN € [Qmina Qmax]-

At each time ¢;, the buyer of the contract gains ¢;(¢(O;) — ) by purchasing forward contracts at
price A (we swing forward contracts against fixed prices). Moreover, whenever the total volume
constraint is violated, the buyer must pay some penalties at maturity 7. For example, these
penalties can be linear in term of the forward contracts Oy at time ¢, and in term of the under
or over-consumption:

Py(On,QN) = —a19(ON)(QN — Qmin) - — 2290(ON)(QN — Qmax)+,

for some positives constants «; and «s.
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Then, we consider V; the market value of a variable volume Swing option at time ¢; defined at
the supremum over the control variable (consumption strategy) ¢ = (¢;)1<i<n

Vi= sup E[CF(Oin,QinN,q:N) | Os, Qil,

(@)i<i<N

where C'F; is the future cash flow starting from date ¢; are given by
N-1
CFy(Oin, Qins 4i:n) = Y, 45(#(0) = A) + Pn(On, Q).
j=i

Above, C'F; is the future returns starting from date ¢; for a given consumption (g;);<j<ny and
underlying values (O;);<j<n-

In the following, we present a version of the Swing option example given in [BBD*06, Case 1]
with weekly exercise.

Example 4.13 (Weekly Swing options). Consider an option where the buyer has the right to
purchase each first day of N = 52 weeks a gas quantity ¢ € [¢min, ¢max] at a fixed strike price
A. But he must purchase globally over the year a volume Q € [Qmin, @max]- Here, we take the
following parameters: ¢min = 0, ¢max = 6, Qmin = 1300, Qmax = 1900, A = 20, T' = 1 year with
weekly exercise N = 52.

Writing the associated DDPE. The dynamic programming equation related to the Swing
option valuation is described in terms of a Markov chain (O, Q;), which is controlled by the
local consumption ¢ = (¢;)o<i<n- Then the price V; = V (¢;, O, Q) is defined as the supremum of
the expectation of C'F; over all admissible consumption gq.

Following the dynamic programing principle (see [BS96], for more details in discrete-time
stochastic control problem), we obtain the related DPE

V(tn,0,Q) = Pn(0,Q),

V(t,0,Q) = max {q«o(O) ) B[V (tis1, Os11, @+ 4) | O — OJ}.

qe [Qmin 7‘1max]

Here, we allow the local consumption to break the total volume constraint. Otherwise, we can
simply take an infinity penalty (i.e., a3 = as = +o0) which leads to the following constraint

Gmin < ¢ < Gmax

Qmin — (N - i)Qmax <Q+ g < Qmax — (N - i)Qmino

This is a classical approach to solve swing option valuation problem (see [WWO08], for finite
element method).

Numerical results related to those applications are in prospection. Please see the later version of
[GPZ18] for further details.
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