J. Ables, Maximum entropy spectral analysis, Astronomy and Astrophysics Supplement Series, vol.15, p.383, 1974.

A. Agarwal, A. Anandkumar, P. Jain, P. Netrapalli, T. et al., Learning sparsely used overcomplete dictionaries, Conference on Learning Theory, pp.123-137, 2014.

H. Akaike, Information theory and an extension of the maximum likelihood principle, Selected Papers of Hirotugu Akaike, pp.199-213, 1998.

M. Amiri, J. Lina, F. Pizzo, G. , and J. , High frequency oscillations and spikes: separating real hfos from false oscillations, Clinical Neurophysiology, vol.127, issue.1, pp.187-196, 2016.

S. Arlot and A. Celisse, A survey of cross-validation procedures for model selection, Statistics surveys, vol.4, pp.40-79, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00407906

J. Aru, J. Aru, V. Priesemann, M. Wibral, L. Lana et al., Untangling cross-frequency coupling in neuroscience, Current opinion in neurobiology, vol.31, pp.51-61, 2015.

N. Axmacher, M. M. Henseler, O. Jensen, I. Weinreich, C. E. Elger et al., Cross-frequency coupling supports multi-item working memory in the human hippocampus, Proceedings of the National Academy of Sciences, vol.107, issue.7, pp.3228-3233, 2010.

N. Axmacher, F. Mormann, G. Fernández, C. E. Elger, and J. Fell, Memory formation by neuronal synchronization, Brain research reviews, vol.52, issue.1, pp.170-182, 2006.

A. L. Baccalá and K. Sameshima, Partial directed coherence: a new concept in neural structure determination, Biological Cybernetics, vol.84, issue.6, pp.463-474, 2001.

O. Bachem, M. Lucic, H. Hassani, and A. Krause, Fast and provably good seedings for k-means, Advances in Neural Information Processing Systems, pp.55-63, 2016.

J. A. Bagnell and D. M. Bradley, Differentiable sparse coding, Advances in neural information processing systems, pp.113-120, 2009.

A. P. Baker, M. J. Brookes, I. A. Rezek, S. M. Smith, T. Behrens et al., Fast transient networks in spontaneous human brain activity, Elife, vol.3, p.1867, 2014.

L. Barnett, A. B. Barrett, S. , and A. K. , Granger causality and transfer entropy are equivalent for gaussian variables, Physical review letters, vol.103, issue.23, p.238701, 2009.

Q. Barthélemy, C. Gouy-pailler, Y. Isaac, A. Souloumiac, A. Larue et al., Multivariate temporal dictionary learning for EEG, J. Neurosci. Methods, vol.215, issue.1, pp.19-28, 2013.

Q. Barthélemy, A. Larue, A. Mayoue, D. Mercier, and J. I. Mars, Shift & 2d rotation invariant sparse coding for multivariate signals, IEEE Transactions on Signal Processing, vol.60, issue.4, pp.1597-1611, 2012.

A. M. Bastos, J. Vezoli, and P. Fries, Communication through coherence with inter-areal delays, Current opinion in neurobiology, vol.31, pp.173-180, 2015.

L. E. Baum and T. Petrie, Statistical inference for probabilistic functions of finite state markov chains. The annals of mathematical statistics, vol.37, pp.1554-1563, 1966.

A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM journal on imaging sciences, vol.2, issue.1, pp.183-202, 2009.

J. Benesty, M. M. Sondhi, and Y. Huang, Springer handbook of speech processing, 2007.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the royal statistical society. Series B (Methodological), pp.289-300, 1995.

J. I. Berman, J. Mcdaniel, S. Liu, L. Cornew, W. Gaetz et al., Variable bandwidth filtering for improved sensitivity of cross-frequency coupling metrics, Brain connectivity, vol.2, issue.3, pp.155-163, 2012.

M. Besserve, B. Schölkopf, N. K. Logothetis, P. , and S. , Causal relationships between frequency bands of extracellular signals in visual cortex revealed by an information theoretic analysis, Journal of computational neuroscience, vol.29, issue.3, pp.547-566, 2010.

N. Bigdely-shamlo, T. Mullen, C. Kothe, K. Su, and K. A. Robbins, The PREP pipeline: standardized preprocessing for large-scale EEG analysis, Frontiers in neuroinformatics, vol.9, p.16, 2015.

C. M. Bishop, Pattern recognition and machine learning, 2006.

T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, Journal of econometrics, vol.31, issue.3, pp.307-327, 1986.

C. Bonferroni, Teoria statistica delle classi e calcolo delle probabilita, vol.8, pp.3-62, 1936.

M. Bonnefond, S. Kastner, J. , and O. , Communication between brain areas based on nested oscillations, vol.4, p.153, 2017.

E. Boto, N. Holmes, J. Leggett, G. Roberts, V. Shah et al., Moving magnetoencephalography towards real-world applications with a wearable system, Nature, vol.555, issue.7698, p.657, 2018.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends R in Machine Learning, vol.3, issue.1, pp.1-122, 2011.

A. Bragin, G. Jandó, Z. Nádasdy, J. Hetke, K. Wise et al., , 1995.

, Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat, The Journal of Neuroscience, vol.15, issue.1, pp.47-60

H. Bristow, A. Eriksson, and S. Lucey, Fast convolutional sparse coding, Computer Vision and Pattern Recognition (CVPR), pp.391-398, 2013.

A. J. Brockmeier and J. C. Príncipe, Learning recurrent waveforms within EEGs, IEEE Transactions on Biomedical Engineering, vol.63, issue.1, pp.43-54, 2016.

J. S. Brumberg, A. Nieto-castanon, P. R. Kennedy, and F. H. Guenther, Braincomputer interfaces for speech communication, Speech communication, vol.52, issue.4, pp.367-379, 2010.

A. Bruns, Fourier-, hilbert-and wavelet-based signal analysis: are they really different approaches, Journal of Neuroscience methods, vol.137, issue.2, pp.321-332, 2004.

A. Bruns and R. Eckhorn, Task-related coupling from high-to low-frequency signals among visual cortical areas in human subdural recordings, International Journal of Psychophysiology, vol.51, issue.2, pp.97-116, 2004.

G. Buzsáki, Rhythms of the Brain, 2006.

G. Buzsáki, Neural syntax: cell assemblies, synapsembles, and readers, Neuron, vol.68, issue.3, pp.362-385, 2010.

R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A limited memory algorithm for bound constrained optimization, SIAM Journal on Scientific Computing, vol.16, issue.5, pp.1190-1208, 1995.

J. Cai, E. J. Candès, and Z. Shen, A singular value thresholding algorithm for matrix completion, SIAM Journal on Optimization, vol.20, issue.4, pp.1956-1982, 2010.

E. J. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on information theory, vol.52, issue.2, pp.489-509, 2006.

R. T. Canolty, E. Edwards, S. S. Dalal, M. Soltani, S. S. Nagarajan et al., High gamma power is phase-locked to theta oscillations in human neocortex, Science, vol.313, issue.5793, pp.1626-1628, 2006.

R. T. Canolty and R. T. Knight, The functional role of cross-frequency coupling, Trends in cognitive sciences, vol.14, issue.11, pp.506-515, 2010.

O. Cappé, E. Moulines, R. , and T. , Inference in hidden Markov models, 2006.

E. Carlstein, The use of subseries values for estimating the variance of a general statistic from a stationary sequence, The Annals of Statistics, pp.1171-1179, 1986.

J. Carp, The secret lives of experiments: methods reporting in the fmri literature, Neuroimage, vol.63, issue.1, pp.289-300, 2012.

R. Chalasani, J. C. Principe, R. , and N. , A fast proximal method for convolutional sparse coding, International Joint Conference on Neural Networks (IJCNN), pp.1-5, 2013.

J. M. Bibliography-chambers, C. L. Mallows, and B. W. Stuck, A method for simulating stable random variables, Journal of the american statistical association, vol.71, issue.354, pp.340-344, 1976.

K. S. Chan and H. Tong, On estimating thresholds in autoregressive models, Journal of Time Series Analysis, vol.7, issue.3, pp.179-190, 1986.

E. F. Chang, J. W. Rieger, K. Johnson, M. S. Berger, N. M. Barbaro et al., Categorical speech representation in human superior temporal gyrus, Nature neuroscience, vol.13, issue.11, p.1428, 2010.

M. Chavez, M. Besserve, C. Adam, M. , and J. , Towards a proper estimation of phase synchronization from time series, Journal of Neuroscience methods, vol.154, issue.1, pp.149-160, 2006.

M. Chehelcheraghi, C. Van-leeuwen, E. Steur, C. , and N. , A neural mass model of cross frequency coupling, PLoS ONE, vol.12, issue.4, p.173776, 2017.

C. W. Chen and M. K. So, On a threshold heteroscedastic model, International Journal of Forecasting, vol.22, issue.1, pp.73-89, 2006.

R. Chen and R. S. Tsay, Functional-coefficient autoregressive models, Journal of the American Statistical Association, vol.88, issue.421, pp.298-308, 1993.

T. Chi, P. Ru, and S. A. Shamma, Multiresolution spectrotemporal analysis of complex sounds, The Journal of the Acoustical Society of America, vol.118, issue.2, pp.887-906, 2005.

S. Chib and E. Greenberg, Understanding the Metropolis-Hastings algorithm, The American Statistician, vol.49, issue.4, pp.327-335, 1995.

D. Cohen, Magnetoencephalography: evidence of magnetic fields produced by alpha-rhythm currents, Science, vol.161, issue.3843, pp.784-786, 1968.

M. X. Cohen, Multivariate cross-frequency coupling via generalized eigendecomposition. eLife, vol.6, p.21792, 2017.

S. R. Cole, E. J. Peterson, R. Van-der-meij, C. De-hemptinne, P. A. Starr et al., Nonsinusoidal oscillations underlie pathological phase-amplitude coupling in the motor cortex in parkinson's disease. bioRxiv, p.49304, 2016.

S. R. Cole and B. Voytek, Brain oscillations and the importance of waveform shape, Trends in Cognitive Sciences, 2017.

L. L. Colgin, T. Denninger, M. Fyhn, T. Hafting, T. Bonnevie et al., Frequency of gamma oscillations routes flow of information in the hippocampus, Nature, vol.462, issue.7271, pp.353-357, 2009.

R. Dahlhaus, On the Kullback-Leibler information divergence of locally stationary processes, Stochastic Processes and their Applications, vol.62, pp.139-168, 1996.

G. Dallérac, M. Graupner, J. Knippenberg, R. C. Martinez, T. F. Tavares et al., Updating temporal expectancy of an aversive event engages striatal plasticity under amygdala control, Nature Communications, vol.8, p.13920, 2017.

I. Daubechies, Orthonormal bases of compactly supported wavelets, Communications on pure and applied mathematics, vol.41, pp.909-996, 1988.

H. Davis, P. A. Davis, A. L. Loomis, E. N. Harvey, H. et al., Electrical reactions of the human brain to auditory stimulation during sleep, Journal of Neurophysiology, vol.2, issue.6, pp.500-514, 1939.

D. A. Depireux, J. Z. Simon, D. J. Klein, and S. A. Shamma, Spectro-temporal response field characterization with dynamic ripples in ferret primary auditory cortex, Journal of neurophysiology, vol.85, issue.3, pp.1220-1234, 2001.

C. A. Desoer, Slowly varying discrete system xi+1=Ai xi, Electronics Letters, vol.6, issue.11, pp.339-340, 1970.

D. V. Dijk, T. Teräsvirta, and P. H. Franses, Smooth transition autoregressive models-a survey of recent developments, Econometric reviews, vol.21, issue.1, pp.1-47, 2002.

S. I. Dimitriadis, Y. Sun, N. Thakor, and A. Bezerianos, Mining cross-frequency coupling microstates (CFCµstates) from EEG recordings during resting state and mental arithmetic tasks, IEEE 38th Annual International Conference of the, pp.5517-5520, 2016.

M. N. Do and M. Vetterli, The contourlet transform: an efficient directional multiresolution image representation, IEEE Transactions on image processing, vol.14, issue.12, pp.2091-2106, 2005.

D. L. Donoho and J. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, biometrika, vol.81, issue.3, pp.425-455, 1994.

T. Dupré-la-tour, Y. Grenier, G. , and A. , Parametric estimation of spectrum driven by an exogenous signal, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.4301-4305, 2017.

T. Dupré-la-tour, Y. Grenier, G. , and A. , Driver estimation in nonlinear autoregressive models, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018.

T. Dupré-la-tour, T. Moreau, M. Jas, G. , and A. , Multivariate convolutional sparse coding for electromagnetic brain signals, Advances in Neural Information Processing Systems (NIPS), 2018.

T. Dupré-la-tour, L. Tallot, L. Grabot, V. Doyère, V. Van-wassenhove et al., Non-linear auto-regressive models for cross-frequency coupling in neural time series, PLOS Computational Biology, issue.12, p.13, 2017.

J. Durbin, The fitting of time-series models, Review of the Int. statistical institute, pp.233-244, 1960.

D. Dvorak and A. A. Fenton, Toward a proper estimation of phase-amplitude coupling in neural oscillations, Journal of Neuroscience methods, vol.225, pp.42-56, 2014.

G. T. Einevoll, H. Lindén, T. Tetzlaff, S. ?eski, and K. H. Pettersen, Local field potentials. Principles of Neural Coding, p.37, 2013.

M. Elad and M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Transactions on Image processing, vol.15, issue.12, pp.3736-3745, 2006.

R. F. Engle, Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation, Econometrica: Journal of the Econometric Society, pp.987-1007, 1982.

H. G. Feichtinger and T. Strohmer, Gabor analysis and algorithms: Theory and applications, 2012.

J. Fell and N. Axmacher, The role of phase synchronization in memory processes, Nature reviews. Neuroscience, vol.12, issue.2, p.105, 2011.

C. Févotte, N. Bertin, and J. Durrieu, Nonnegative matrix factorization with the itakura-saito divergence: With application to music analysis, Neural computation, vol.21, issue.3, pp.793-830, 2009.

E. Florin and S. Baillet, The brain's resting-state activity is shaped by synchronized cross-frequency coupling of neural oscillations, NeuroImage, vol.111, pp.26-35, 2015.

J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, Pathwise coordinate optimization, The Annals of Applied Statistics, vol.1, issue.2, pp.302-332, 2007.

P. Fries, A mechanism for cognitive dynamics: neuronal communication through neuronal coherence, Trends in cognitive sciences, vol.9, issue.10, pp.474-480, 2005.

P. Fries, Rhythms for cognition: communication through coherence, Neuron, vol.88, issue.1, pp.220-235, 2015.

P. Fries, J. H. Reynolds, A. E. Rorie, and R. Desimone, Modulation of oscillatory neuronal synchronization by selective visual attention, Science, vol.291, issue.5508, pp.1560-1563, 2001.

K. Fukunaga, Introduction to statistical pattern recognition, 2013.

C. Garcia-cardona and B. Wohlberg, Convolutional dictionary learning, 2017.

E. M. Gerber, B. Sadeh, A. Ward, R. T. Knight, and L. Y. Deouell, Nonsinusoidal activity can produce cross-frequency coupling in cortical signals in the absence of functional interaction between neural sources, PloS one, vol.11, issue.12, p.167351, 2016.

B. Gips, A. Bahramisharif, E. Lowet, M. Roberts, P. De-weerd et al., Discovering recurring patterns in electrophysiological recordings, J. Neurosci. Methods, vol.275, pp.66-79, 2017.

C. Giraud, F. Roueff, and A. Sanchez-perez, Aggregation of predictors for nonstationary sub-linear processes and online adaptive forecasting of time varying autoregressive processes, The Annals of Statistics, vol.43, issue.6, pp.2412-2450, 2015.

S. Godsill and E. Kuruoglu, Bayesian inference for time series with heavy-tailed symmetric ?-stable noise processes, Proc. Applications of heavy tailed distributions in economics, eng. and stat, 1999.

J. Gorski, F. Pfeuffer, and K. Klamroth, Biconvex sets and optimization with biconvex functions: a survey and extensions, Mathematical Methods of Operations Research, vol.66, issue.3, pp.373-407, 2007.

A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier et al., MEG and EEG data analysis with MNE-python, Frontiers in neuroscience, vol.7, p.267, 2013.

A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier et al., Mne software for processing meg and eeg data, Neuroimage, vol.86, pp.446-460, 2014.

C. W. Granger, Investigating causal relations by econometric models and cross-spectral methods, Econometrica: Journal of the Econometric Society, pp.424-438, 1969.

C. W. Granger, Some recent development in a concept of causality, Journal of econometrics, vol.39, issue.1, pp.199-211, 1988.

Y. Grenier, Time-dependent ARMA modeling of nonstationary signals. Acoustics, Speech and Signal Processing, IEEE Transactions on, vol.31, issue.4, pp.899-911, 1983.

Y. Grenier, Modélisation de signaux non-stationnaires, 1984.

Y. Grenier, Estimating an AR model with exogenous driver, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00875064

Y. Grenier and M. Omnes-chevalier, Autoregressive models with timedependent log area ratios. Acoustics, Speech and Signal Processing, IEEE Transactions on, vol.36, issue.10, pp.1602-1612, 1988.

R. Grosse, R. Raina, H. Kwong, and A. Y. Ng, Shift-invariant sparse coding for audio classification, 23rd Conference on Uncertainty in Artificial Intelligence (UAI), pp.149-158, 2007.

S. Haegens, H. Cousijn, G. Wallis, P. J. Harrison, and A. C. Nobre, Inter-and intra-individual variability in alpha peak frequency, Neuroimage, vol.92, pp.46-55, 2014.

V. Haggan and T. Ozaki, Modelling nonlinear random vibrations using an amplitude-dependent autoregressive time series model, Biometrika, vol.68, issue.1, pp.189-196, 1981.

J. D. Hamilton, A new approach to the economic analysis of nonstationary time series and the business cycle, Econometrica: Journal of the Econometric Society, pp.357-384, 1989.

R. Hari, Action-perception connection and the cortical mu rhythm, Progress in brain research, vol.159, pp.253-260, 2006.

R. Hari and A. Puce, , 2017.

T. Hastie, R. Tibshirani, W. , and M. J. , Statistical Learning with Sparsity, 2015.

S. Haufe, R. Tomioka, G. Nolte, K. Müller, K. et al., Modeling sparse connectivity between underlying brain sources for EEG/MEG, IEEE Trans, vol.57, issue.8, pp.1954-1963, 2010.

F. Heide, W. Heidrich, and G. Wetzstein, Fast and flexible convolutional sparse coding, Computer Vision and Pattern Recognition (CVPR), pp.5135-5143, 2015.

A. C. Heusser, D. Poeppel, Y. Ezzyat, and L. Davachi, Episodic sequence memory is supported by a theta-gamma phase code, Nature neuroscience, 2016.

S. Hitziger, M. Clerc, S. Saillet, C. Benar, P. et al., Adaptive waveform learning: A framework for modeling variability in neurophysiological signals, IEEE Transactions on Signal Processing, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01548428

C. R. Holdgraf, W. De-heer, B. Pasley, J. Rieger, N. Crone et al., Rapid tuning shifts in human auditory cortex enhance speech intelligibility, Nature communications, vol.7, p.13654, 2016.

C. R. Holdgraf, J. W. Rieger, C. Micheli, S. Martin, R. T. Knight et al., Encoding and decoding models in cognitive electrophysiology, Frontiers in Systems Neuroscience, vol.11, p.61, 2017.

D. H. Hubel and T. N. Wiesel, Receptive fields, binocular interaction and functional architecture in the cat's visual cortex, The Journal of physiology, vol.160, issue.1, pp.106-154, 1962.

P. J. Huber, Robust Statistics, 1981.

A. Hyafil, Misidentifications of specific forms of cross-frequency coupling: three warnings, Frontiers in Neuroscience, p.9, 2015.

A. Hyafil, A. Giraud, L. Fontolan, G. , and B. , Neural cross-frequency coupling: Connecting architectures, mechanisms, and functions. Trends in Neurosciences, vol.38, pp.725-740, 2015.

M. Jachan, G. Matz, and F. Hlawatsch, Time-frequency ARMA models and parameter estimators for underspread nonstationary random processes, IEEE Transactions on Signal Processing, vol.55, issue.9, pp.4366-4381, 2007.

M. Jas, T. Dupré-la-tour, U. ?im?ekli, G. , and A. , Learning the morphology of brain signals using alpha-stable convolutional sparse coding, Advances in Neural Information Processing Systems 30 (NIPS), pp.1099-1108, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01590988

H. Jasper and W. Penfield, Electrocorticograms in man: effect of voluntary movement upon the electrical activity of the precentral gyrus, Archiv für Psychiatrie und Nervenkrankheiten, vol.183, issue.1-2, pp.163-174, 1949.

H. H. Jasper, Charting the sea of brain waves, Science, vol.108, pp.343-347, 1948.

O. Jensen and L. L. Colgin, Cross-frequency coupling between neuronal oscillations, Trends in cognitive sciences, vol.11, issue.7, pp.267-269, 2007.

O. Jensen, E. Spaak, P. , and H. , Discriminating valid from spurious indices of phase-amplitude coupling. eneuro, p.334, 2016.

H. Jiang, A. Bahramisharif, M. A. Van-gerven, J. , and O. , Measuring directionality between neuronal oscillations of different frequencies, Neuroimage, vol.118, pp.359-367, 2015.

V. Jirsa and V. Müller, Cross-frequency coupling in real and virtual brain networks, Frontiers in computational neuroscience, vol.7, p.78, 2013.

E. Jones, T. Oliphant, and P. Peterson, SciPy: Open source scientific tools for Python, 2001.

S. R. Jones, When brain rhythms aren't 'rhythmic': implication for their mechanisms and meaning, Curr. Opin. Neurobiol, vol.40, pp.72-80, 2016.

P. Jost, P. Vandergheynst, S. Lesage, G. , and R. , Motif: an efficient algorithm for learning translation invariant dictionaries, Acoustics, Speech and Signal Processing, vol.5, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00544911

R. Kaplan, D. Bush, M. Bonnefond, P. A. Bandettini, G. R. Barnes et al., Medial prefrontal theta phase coupling during spatial memory retrieval, Hippocampus, vol.24, issue.6, pp.656-665, 2014.

K. Kavukcuoglu, P. Sermanet, Y. Boureau, K. Gregor, M. Mathieu et al., Learning convolutional feature hierarchies for visual recognition, Advances in Neural Information Processing Systems (NIPS), pp.1090-1098, 2010.

K. N. Kay, T. Naselaris, R. J. Prenger, and J. L. Gallant, Identifying natural images from human brain activity, Nature, vol.452, issue.7185, pp.352-355, 2008.

S. M. Kay and S. L. Marple, Spectrum analysis-a modern perspective. Proceedings of the IEEE, vol.69, pp.1380-1419, 1981.

S. Kellis, K. Miller, K. Thomson, R. Brown, P. House et al., Decoding spoken words using local field potentials recorded from the cortical surface, Journal of neural engineering, vol.7, issue.5, p.56007, 2010.

S. Khan, A. Gramfort, N. Shetty, K. Ganesan, S. Moran et al., Local and long-range functional connectivity is reduced in concert in autism spectrum disorders, Proc. Natl. Acad. Sci, 2013.

D. Khodagholy, J. N. Gelinas, T. Thesen, W. Doyle, O. Devinsky et al., Neurogrid: recording action potentials from the surface of the brain, Nature neuroscience, vol.18, issue.2, pp.310-315, 2015.

Y. Kikuchi, A. Attaheri, B. Wilson, A. E. Rhone, K. V. Nourski et al., Sequence learning modulates neural responses and oscillatory coupling in human and monkey auditory cortex, PLoS biology, vol.15, issue.4, p.2000219, 2017.

M. A. Kramer, A. B. Tort, and N. J. Kopell, Sharp edge artifacts and spurious coupling in EEG frequency comodulation measures, Journal of Neuroscience methods, vol.170, issue.2, pp.352-357, 2008.

E. E. Kuruoglu, Signal processing in ?-stable noise environments: a least Lp-norm approach, 1999.

J. Lachaux, E. Rodriguez, J. Martinerie, and F. J. Varela, Measuring phase synchrony in brain signals, Human brain mapping, vol.8, issue.4, pp.194-208, 1999.

P. Lakatos, A. S. Shah, K. H. Knuth, I. Ulbert, G. Karmos et al., An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex, Journal of neurophysiology, vol.94, issue.3, pp.1904-1911, 2005.

S. Leglaive, U. ?im?ekli, A. Liutkus, R. Badeau, R. et al., Alpha-stable multichannel audio source separation, ICASSP, pp.576-580, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01416366

N. Leonardi and D. Van-de-ville, On spurious and real fluctuations of dynamic functional connectivity during rest, Neuroimage, vol.104, pp.430-436, 2015.

M. S. Lewicki and T. J. Sejnowski, Coding time-varying signals using sparse, shift-invariant representations, Advances in neural information processing systems, pp.730-736, 1999.

J. E. Lisman and O. Jensen, The theta-gamma neural code, Neuron, vol.77, issue.6, pp.1002-1016, 2013.

J. Liu, , 2008.

, Monte Carlo strategies in scientific computing

D. Lozano-soldevilla, N. Ter-huurne, and R. Oostenveld, Neuronal oscillations with non-sinusoidal morphology produce spurious phase-to-amplitude coupling and directionality, Frontiers in Computational Neuroscience, p.10, 2016.

M. Y. Mahan, C. R. Chorn, G. , and A. P. , White noise test: detecting autocorrelation and nonstationarities in long time series after ARIMA modeling, Proceedings 14th Python in Science Conference, 2015.

B. Mailhé, S. Lesage, R. Gribonval, F. Bimbot, and P. Vandergheynst, Shiftinvariant dictionary learning for sparse representations: extending K-SVD, 16th Eur. Signal Process. Conf, pp.1-5, 2008.

J. Mairal, F. Bach, and J. Ponce, Sparse modeling for image and vision processing, Foundations and Trends R in Computer Graphics and Vision, vol.8, issue.2-3, p.85, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01081139

J. Mairal, F. Bach, J. Ponce, and G. Sapiro, Online learning for matrix factorization and sparse coding, Journal of Machine Learning Research, vol.11, pp.19-60, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00408716

J. Mairal, M. Elad, and G. Sapiro, Sparse representation for color image restoration, IEEE Transactions on image processing, vol.17, issue.1, pp.53-69, 2008.

J. Makhoul, Linear prediction: A tutorial review, Proceedings of the IEEE, vol.63, issue.4, pp.561-580, 1975.

J. Makhoul, Stable and efficient lattice methods for linear prediction. Acoustics, Speech and Signal Processing, IEEE Transactions on, vol.25, issue.5, pp.423-428, 1977.

P. Malerba and N. Kopell, Phase resetting reduces theta-gamma rhythmic interaction to a one-dimensional map, Journal of mathematical biology, pp.1-26, 2013.

S. G. Mallat and Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on signal processing, vol.41, issue.12, pp.3397-3415, 1993.

B. B. Mandelbrot, Fractals and scaling in finance: Discontinuity, concentration, risk. Selecta volume E, 2013.

L. Marple, Resolution of conventional fourier, autoregressive, and special ARMA methods of spectrum analysis, IEEE International Conference on ICASSP'77, vol.2, pp.74-77, 1977.

T. Martinetz and K. Schulten, A" neural-gas" network learns topologies, Artificial Neural Networks, pp.397-402, 1991.

A. Mazaheri and O. Jensen, Asymmetric amplitude modulations of brain oscillations generate slow evoked responses, The Journal of Neuroscience, vol.28, issue.31, pp.7781-7787, 2008.

N. Mesgarani, C. Cheung, K. Johnson, C. , and E. F. , Phonetic feature encoding in human superior temporal gyrus, Science, vol.343, issue.6174, pp.1006-1010, 2014.

T. Moreau, L. Oudre, and N. Vayatis, Dicod: Distributed convolutional sparse coding, International Conference on Machine Learning (ICML), 2018.

M. R. Munafò, B. A. Nosek, D. V. Bishop, K. S. Button, C. D. Chambers et al., A manifesto for reproducible science, Nature Human Behaviour, vol.1, issue.1, p.21, 2017.

T. Naselaris, K. N. Kay, S. Nishimoto, and J. L. Gallant, Encoding and decoding in fmri, Neuroimage, vol.56, issue.2, pp.400-410, 2011.

Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM Journal on Optimization, vol.22, issue.2, pp.341-362, 2010.

G. Nolte, A. Ziehe, N. Krämer, F. Popescu, and K. Müller, Comparison of granger causality and phase slope index, NIPS Causality: Objectives and Assessment, pp.267-276, 2010.

G. Nolte, A. Ziehe, V. Nikulin, A. Schlögl, N. Krämer et al., Robustly estimating the flow direction of information in complex physical systems, Physical Review Letters, vol.100, p.234101, 2008.

J. Nutini, M. Schmidt, I. H. Laradji, M. P. Friedlander, K. et al., Coordinate descent converges faster with the gauss-southwell rule than random selection, International Conference on Machine Learning (ICML), pp.1632-1641, 2015.

S. Ogawa, T. Lee, A. R. Kay, and D. W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation, Proceedings of the National Academy of Sciences, vol.87, issue.24, pp.9868-9872, 1990.

J. O'keefe and J. Dostrovsky, The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat, Brain research, 1971.

B. A. Olshausen and D. J. Field, Emergence of simple-cell receptive field properties by learning a sparse code for natural images, Nature, vol.381, issue.6583, p.607, 1996.

S. Osher and Y. Li, Coordinate descent optimization for 1 minimization with application to compressed sensing; a greedy algorithm, Inverse Problems and Imaging, vol.3, issue.3, pp.487-503, 2009.

D. Osipova, D. Hermes, J. , and O. , Gamma power is phase-locked to posterior alpha activity, PloS one, vol.3, issue.12, p.3990, 2008.

T. E. Özkurt and A. Schnitzler, A critical note on the definition of phaseamplitude cross-frequency coupling, Journal of Neuroscience methods, vol.201, issue.2, pp.438-443, 2011.

M. Pachitariu, A. M. Packer, N. Pettit, H. Dalgleish, M. Hausser et al., Extracting regions of interest from biological images with convolutional sparse block coding, Advances in Neural Information Processing Systems (NIPS), pp.1745-1753, 2013.

H. Park, R. A. Ince, P. G. Schyns, G. Thut, and J. Gross, Frontal top-down signals increase coupling of auditory low-frequency oscillations to continuous speech in human listeners, Current Biology, vol.25, issue.12, pp.1649-1653, 2015.

B. N. Pasley, S. V. David, N. Mesgarani, A. Flinker, S. A. Shamma et al., Reconstructing speech from human auditory cortex, PLoS Biol, vol.10, issue.1, p.1001251, 2012.

W. Penny, E. Duzel, K. Miller, and J. Ojemann, Testing for nested oscillation, Journal of Neuroscience methods, vol.174, issue.1, pp.50-61, 2008.

V. F. Pisarenko, The retrieval of harmonics from a covariance function, Geophysical Journal International, vol.33, issue.3, pp.347-366, 1973.

R. Q. Quiroga, A. Kraskov, T. Kreuz, and P. Grassberger, Performance of different synchronization measures in real data: a case study on eeg signals, Physical Review E, vol.65, issue.4, p.41903, 2002.

L. R. Rabiner, A tutorial on hidden markov models and selected applications in speech recognition, Proceedings of the IEEE, vol.77, issue.2, pp.257-286, 1989.

B. Recht, M. Fazel, and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM review, vol.52, issue.3, pp.471-501, 2010.

P. Richtárik and M. Taká?, Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function, Mathematical Programming, vol.144, issue.1-2, pp.1-38, 2014.

F. Roux, M. Wibral, W. Singer, J. Aru, and P. J. Uhlhaas, The phase of thalamic alpha activity modulates cortical gamma-band activity: evidence from resting-state MEG recordings, Journal of Neuroscience, vol.33, issue.45, pp.17827-17835, 2013.

W. J. Rugh, Linear system theory, vol.2, 1996.

T. Rukat, A. Baker, A. Quinn, and M. Woolrich, Resting state brain networks from EEG: Hidden Markov states vs. classical microstates, 2016.

G. Samorodnitsky and M. S. Taqqu, Stable non-Gaussian random processes: stochastic models with infinite variance, vol.1, 1994.

R. Schmidt, Multiple emitter location and signal parameter estimation, IEEE transactions on antennas and propagation, vol.34, issue.3, pp.276-280, 1986.

T. Schreiber, Measuring information transfer, Physical review letters, vol.85, issue.2, p.461, 2000.

G. Schwarz, Estimating the dimension of a model, Ann. Stat, vol.6, issue.2, pp.461-464, 1978.

C. E. Shannon and W. Weaver, The mathematical theory of communication, 1949.

P. R. Shirvalkar, P. R. Rapp, and M. L. Shapiro, Bidirectional changes to hippocampal theta-gamma comodulation predict memory for recent spatial episodes, Proceedings of the National Academy of Sciences, vol.107, issue.15, pp.7054-7059, 2010.

E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger, Shiftable multiscale transforms. IEEE transactions on Information Theory, vol.38, pp.587-607, 1992.

U. ?im?ekli, A. Liutkus, and A. T. Cemgil, Alpha-stable matrix factorization, IEEE SPL, vol.22, issue.12, pp.2289-2293, 2015.

M. ?orel and F. ?roubek, Fast convolutional sparse coding using matrix inversion lemma, Digital Signal Processing, 2016.

M. Spiridonakos and S. Fassois, Non-stationary random vibration modelling and analysis via functional series time-dependent ARMA (FS-TARMA) models-a critical survey, Mechanical Systems and Signal Processing, vol.47, issue.1, pp.175-224, 2014.

J. Spyers-ashby, P. Bain, and S. Roberts, A comparison of fast fourier transform (FFT) and autoregressive (AR) spectral estimation techniques for the analysis of tremor data, Journal of neuroscience methods, vol.83, issue.1, pp.35-43, 1998.

J. Starck, E. J. Candès, and D. L. Donoho, The curvelet transform for image denoising, IEEE Transactions on image processing, vol.11, issue.6, pp.670-684, 2002.

C. M. Sweeney-reed, T. Zaehle, J. Voges, F. C. Schmitt, L. Buentjen et al., Corticothalamic phase synchrony and cross-frequency coupling predict human memory formation, vol.3, p.5352, 2014.

J. R. Taylor, N. Williams, R. Cusack, T. Auer, M. A. Shafto et al., The cambridge centre for ageing and neuroscience (cam-can) data repository: structural and functional mri, meg, and cognitive data from a cross-sectional adult lifespan sample, Neuroimage, vol.144, pp.262-269, 2017.

F. E. Theunissen, K. Sen, and A. J. Doupe, Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds, Journal of Neuroscience, vol.20, issue.6, pp.2315-2331, 2000.

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society. Series B (Methodological), pp.267-288, 1996.

H. Tong, Threshold models in time series analysis-30 years on, Statistics and its Interface, vol.4, issue.2, pp.107-118, 2011.

H. Tong and K. S. Lim, Threshold autoregression, limit cycles and cyclical data, Journal of the Royal Statistical Society. Series B (Methodological), pp.245-292, 1980.

A. B. Tort, R. Komorowski, H. Eichenbaum, and N. Kopell, Measuring phase-amplitude coupling between neuronal oscillations of different frequencies, J. Neurophysiol, vol.104, issue.2, pp.1195-1210, 2010.

A. B. Tort, M. A. Kramer, C. Thorn, D. J. Gibson, Y. Kubota et al., Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a t-maze task, Proc. Natl. Acad. Sci, vol.105, pp.20517-20522, 2008.

A. B. Tort, H. G. Rotstein, T. Dugladze, T. Gloveli, and N. J. Kopell, On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus, Proceedings of the National Academy of Sciences, vol.104, issue.33, pp.13490-13495, 2007.

L. N. Trefethen, I. Bau, and D. , Numerical linear algebra, vol.50, 1997.

T. Tuomisto, R. Hari, T. Katila, T. Poutanen, and T. Varpula, Studies of auditory evoked magnetic and electric responses: Modality specificity and modelling, Il Nuovo Cimento D, vol.2, issue.2, pp.471-483, 1983.

P. A. Valdés-sosa, J. M. Sánchez-bornot, A. Lage-castellanos, M. Vega-hernández, J. Bosch-bayard et al., Estimating brain functional connectivity with sparse multivariate autoregression, Philosophical Transactions of the Royal Society of London B: Biological Sciences, vol.360, pp.969-981, 1457.

F. Van-ede, A. J. Quinn, M. W. Woolrich, and A. C. Nobre, Neural oscillations: Sustained rhythms or transient burst-events?, Trends in Neurosciences, 2018.

D. C. Van-essen, S. M. Smith, D. M. Barch, T. E. Behrens, E. Yacoub et al., The wu-minn human connectome project: an overview, Neuroimage, vol.80, pp.62-79, 2013.

B. Van-wijk, A. Jha, W. Penny, and V. Litvak, Parametric estimation of cross-frequency coupling, Journal of neuroscience methods, vol.243, pp.94-102, 2015.

A. P. Vaz, R. B. Yaffe, J. H. Wittig, S. K. Inati, and K. A. Zaghloul, Dual origins of measured phase-amplitude coupling reveal distinct neural mechanisms underlying episodic memory in the human cortex, Neuroimage, vol.148, pp.148-159, 2017.

D. Vidaurre, R. Abeysuriya, R. Becker, A. J. Quinn, F. Alfaro-almagro et al., Discovering dynamic brain networks from big data in rest and task, 2017.

D. Vidaurre, A. J. Quinn, A. P. Baker, D. Dupret, A. Tejero-cantero et al., Spectrally resolved fast transient brain states in electrophysiological data, Neuroimage, vol.126, pp.81-95, 2016.

B. Voytek, R. T. Canolty, A. Shestyuk, N. Crone, J. Parvizi et al., Shifts in gamma phase-amplitude coupling frequency from theta to alpha over posterior cortex during visual tasks, Frontiers in human neuroscience, vol.4, p.191, 2010.

H. Wakita, Direct estimation of the vocal tract shape by inverse filtering of acoustic speech waveforms, IEEE Transactions on Audio and Electroacoustics, vol.21, issue.5, pp.417-427, 1973.

W. Wang, A. D. Degenhart, G. P. Sudre, D. A. Pomerleau, and E. C. Tyler-kabara, Decoding semantic information from human electrocorticographic (ecog) signals, Annual International Conference of the IEEE, pp.6294-6298, 2011.

Y. Wang, Y. Qi, Y. Wang, Z. Lei, X. Zheng et al., Delving into ?-stable distribution in noise suppression for seizure detection from scalp EEG, J. Neural. Eng, vol.13, issue.5, p.56009, 2016.

P. Welch, The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms, IEEE Transactions on audio and electroacoustics, vol.15, issue.2, pp.70-73, 1967.

M. Wibral, N. Pampu, V. Priesemann, F. Siebenhühner, H. Seiwert et al., Measuring information-transfer delays, PloS one, vol.8, issue.2, p.55809, 2013.

J. H. Wilkinson, The perfidious polynomial, Studies in numerical analysis, vol.24, pp.1-28, 1984.

S. S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, The Annals of Mathematical Statistics, vol.9, issue.1, pp.60-62, 1938.

B. Wohlberg, Convolutional sparse representation of color images, IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), pp.57-60, 2016.

B. Wohlberg, Efficient algorithms for convolutional sparse representations. Image Processing, IEEE Transactions on, vol.25, issue.1, pp.301-315, 2016.

M. A. Woodbury, Inverting modified matrices, vol.42, p.336, 1950.

M. W. Woolrich, A. Baker, H. Luckhoo, H. Mohseni, G. Barnes et al., Dynamic state allocation for MEG source reconstruction, Neuroimage, vol.77, pp.77-92, 2013.

S. Wright and J. Nocedal, Numerical optimization, vol.35, 1999.

S. Wu and R. Chen, Threshold variable determination and threshold variable driven switching autoregressive models, Statistica Sinica, vol.17, issue.1, p.241, 2007.

M. D. Zeiler, D. Krishnan, G. Taylor, F. , and R. , Deconvolutional networks, Computer Vision and Pattern Recognition (CVPR), pp.2528-2535, 2010.