C. and .. Lation, pour des régimes inférieursinférieursà 2000 tr/min, permet d'´ eviter le phénomène de saturation. Cela peutêtrepeutêtre réalisé en enrichissant l'expression x(s) de la trajectoiré epicyclo¨?daleepicyclo¨?dale (cf. ´ equation, vol.12

, Il a ´ eté montré qu'au voisinage de l'antirésonance, la réponse de l'APC translaté faiblement amorti peut devenir instable [105], justement en perturbant l'´ epicyclo¨?deepicyclo¨?de comme cela a ´ eté fait. En pratique, les développements réalisés pendant la thèse, par exemple celui présenté en section précédente, font systématiquement l'objet d'une validationàvalidationà l'aide d'une simulation temporelle. Enfin, les corrélations des mesures effectuées sur le véhicule avec une modélisation linéaire de la cha??necha??ne cinématique, tendentàtendentà montrer que les non linéarités de la structure réelle ne sont peut? etre pas si importantes

, Ce chapitre visè a proposer une approche numérique pour palier la faible robustesse de la phase de conception. Dans un premier temps, les lacunes identifiées sont exposées. Dans un deuxì eme temps, uné etude cinématique est menée et permet la mise enéquationenéquation duprobì eme

. .. Résultats,

. .. Bilan,

, Le moupoint V , appartenantàappartenantà la trajectoire, tel que R(S = 0) = OV. En pratique, la trajectoire C est symétrique par rapportàrapportà y c , cela pour des raisons d'industrialisation etégalementetégalement de conception, comme on le verra dans la suite. Cependant, une trajectoire non symétrique pourrait très bienêtrebienêtre envisagée, Expression du besoin L'absorbeur pendulaire est composé d'un voile support et de plusieurs pendules

B. Gunston, World encyclopedia of aero engines. Sutton publishing, 2006.

B. C. Carter, Improvement in or relating to damping or oscillation checking devices

, K. Patent, vol.337, p.466, 1929.

R. R. Sarazin, Means adapted to reduce the torsional oscillations of crankshafts, U. S. Patent, vol.2, pp.79-226, 1930.

R. Chilton, Pendulum counterweight. U. S. Patent, vol.2, pp.112-884, 1935.

M. A. Wachs, The main rotor bifilar absorber and its effect on helicopter reliability/maintainability, SAE Technical Paper, 1973.
DOI : 10.4271/730894

M. H. Hamouda and G. A. Pierce, Helicopter vibration suppression using simple pendulum absorbers on the rotor blade, Journal of the American helicopter society, vol.29, issue.3, pp.19-29, 1984.

H. H. Denman, Tautochronic bifilar pendulum torsion absorbers for reciprocating engines, Journal of Sound and Vibration, vol.159, pp.251-277, 1992.
DOI : 10.1016/0022-460x(92)90035-v

L. J. Stone, Improvements in or relating to vibration-damping devices, U. K. Patent, vol.598, p.811, 1945.

H. Suiza, Revue technique numéro 3, 1939.

D. E. Newland, Nonlinear aspects of the performance of centrifugal pendulum vibration absorbers, Journal of Engineering for Industry, vol.86, issue.3, pp.257-263, 1964.

, ARS Bromwell. Helicopter dynamics. Edward Arnold, 1976.

T. Krysinski and F. Malburet, Mechanical vibrations : Active and passive control, vol.103, 2010.

M. Albright, T. Crawford, and F. Speckhart, Dynamic testing and evaluation of the torsional vibration absorber, SAE Technical Paper, 1994.

J. F. Madden, Constant frequency bifilar absorber, U. S. Patent, vol.4, pp.218-187, 1980.
DOI : 10.1121/1.385746

C. Huygens, Horologuium oscilatorium sive de motu pendularium, p.1673

A. S. Alsuwaiyan and . Shaw, Localization of free vibration modes in systems of nearly identical vibration absorbers, 1999.

V. Ganine, M. Legrand, C. Pierre, and H. Michalska, A reduction technique for mistuned bladed disks with superposition of large geometric mistuning and small model uncertainties, 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01393687

C. Chao, C. Shaw, and . Lee, Stability of the unison response for a rotating system with multiple tautochronic pendulum vibration absorbers, Journal of Applied Mechanics, vol.64, issue.1, pp.149-156, 1997.

A. Grolet, A. Renault, and O. Thomas, Energy localisation in periodic structures : Application to centrifugal pendulum vibration absorber, Proceedings of the 17th IMAC, International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, 2017.

J. S. Issa and S. W. Shaw, Synchronous and non-synchronous responses of systems with multiple identical nonlinear vibration absorbers, Journal of Sound and Vibration, vol.348, pp.105-125, 2015.

A. S. Alsuwaiyan and S. W. Shaw, Steady-state responses in systems of nearly-identical torsional vibration absorbers, Journal of Vibration and Acoustics, vol.125, issue.1, pp.80-87, 2003.

C. Chao, C. Lee, and S. W. Shaw, Non-unison dynamics of multiple centrifugal pendulum vibration absorbers, Journal of Sound and Vibration, vol.204, issue.5, pp.769-794, 1997.

A. S. Alsuwaiyan and S. W. Shaw, Performance and dynamic stability of general-path centrifugal pendulum vibration absorbers, Journal of Sound and Vibration, vol.252, issue.5, pp.791-815, 2002.

H. Ali, . Nayfeh, . Dean, and . Mook, Nonlinear oscillations, 1979.

B. Cochelin, N. Damil, and M. Potier-ferry, Méthode asymptotique numérique. Collection Méthodes numériques. Hermès Science publications, 2007.

A. Mustafa, . Acar, . Steven, and . Shaw, Application of the harmonic balance method to centrifugal pendulum vibration absorbers, In Special Topics in Structural Dynamics, vol.6, pp.243-252, 2016.

C. Lee, . Steven, and . Shaw, Torsional vibration reduction in internal combustion engines using centrifugal pendulums, Proceedings of the Design Engineering Technical Conference, 1995.

A. G. Haddow and S. W. Shaw, Centrifugal pendulum vibration absorbers : an experimental and theoretical investigation, Nonlinear Dynamics, vol.34, issue.3-4, pp.293-307, 2003.
DOI : 10.1023/b:nody.0000013509.51299.c0

M. Tyler, A. G. Nester, S. Haddow, and . Shaw, Experimental investigation of a system with multiple nearly identical centrifugal pendulum vibration absorbers, ASME 2003 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp.913-921, 2003.

J. Mayet, H. Rixen, and . Ulbrich, Experimental investigation of centrifugal pendulum vibration absorbers, 11th International Conference on Vibration Problems, 2013.

R. J. Monroe and S. W. Shaw, Nonlinear transient dynamics of pendulum torsional vibration absorbers-part i : theory, Journal of Vibration and Acoustics, vol.135, issue.1, p.11017, 2013.

R. J. Monroe and S. W. Shaw, Nonlinear transient dynamics of pendulum torsional vibration absorbers-part ii : Experimental results, Journal of Vibration and Acoustics, vol.135, issue.1, p.11018, 2013.

H. Mahé, A. Renault, and O. Thomas, Dispositif d'amortissement pendulaire, vol.3, pp.55-92, 2016.

H. Mahé, A. Renault, and O. Thomas, Dispositif d'amortissement pendulaire, vol.3, pp.55-93, 2016.

A. Renault, O. Thomas, and H. Mahé, Continuation d'antirésonance dábsorbeurs dynamiques non linéaires. CSMA, 2017.

A. Renault, O. Thomas, H. Mahé, and Y. Lefebvre, Hardening softening behavior of antiresonance for non linear torsional vibration absorbers, 2016.

O. Thomas, A. Renault, and H. Mahé, Direct antiresonance continuation for non linear dynamic absorbers, 2017.

V. Denis, M. Jossic, C. Giraud-audine, B. Chomette, A. Renault et al., Identification of nonlinear modes using phase-locked-loop experimental continuation and normal form, Mechanical Systems and Signal Processing, vol.106, pp.430-452, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01688189

W. H. Crouse and D. L. Anglin, Automotive transmissions and power trains : construction, operation, and maintenance. McGraw-Hill automotive technology series, 1976.

J. Fenton, Handbook of automotive powertrains and chassis design. Professional Engineering, 1998.

W. W. Pulkrabek, Engineering Fundamentals of the Internal Combustion Engine : Pearson New International Edition. Pearson Education Limited, 2013.

D. Centea, H. Rahnejat, and M. T. Menday, Non-linear multi-body dynamic analysis for the study of clutch torsional vibrations (judder), Applied Mathematical Modelling, vol.25, issue.3, pp.177-192, 2001.

M. Menday and H. Rahnejat, Friction lining characteristics and the clutch take-up judder phenomenon with manual transmission, Tribology and Dynamics of Engine and Powertrain, pp.680-702, 2010.

A. Tikhomolov and A. Fidlin, Nonlinear dynamic effects in automotive clutches, PAMM, vol.11, issue.1, pp.339-340, 2011.
DOI : 10.1002/pamm.201110161

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/pamm.201110161

M. Kushwaha, . Gupta, H. Kelly, and . Rahnejat, Elasto-multi-body dynamics of a multicylinder internal combustion engine, Proceedings of the Institution of Mechanical Engineers, vol.216, pp.281-293, 2002.
DOI : 10.1243/146441902320992374

URL : https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/4790/1/Elasto-multi-bodby%20dynamics%20of%20a%20multicylinder.pdf

B. Hervé, Modélisation des vibrations axiales d'embrayage automobile et validation expérimentale, 2015.

S. N. Do?-gan, Rattle and clatter noise in powertrains-automotive transmissions, Tribology and Dynamics of Engine and Powertrain, pp.793-838, 2010.

M. Menday, An introduction to noise and vibration issues in the automotive drivetrain and the role of tribology, Tribology and Dynamics of Engine and Powertrain, pp.663-679, 2010.

H. Frahm, Device for damping vibrations of bodies, U.S. Patent, vol.989, 1911.

J. Ormondroyd, The theory of the dynamic vibration absorber, trans. asme, Journal of Applied Mechanics, vol.50, issue.7, 1928.

J. P. , Den Hartog. Mechanical Vibrations, 1985.

E. John and . Brock, A note on the damped vibration absorber, Trans. ASME, J. Appl. Mech, vol.13, issue.4, p.284, 1946.

O. Nishihara and H. Matsuhisa, Design and tuning of vibration control devices via stability criterion, Japanese Society of Mechanical Engineering, vol.10, issue.1, pp.165-168, 1997.

R. Viguié, Tuning methodology of nonlinear vibration absorbers coupled to nonlinear mechanical systems, p.214, 2010.

B. Vaurigaud, L. I. Manevitch, and C. Lamarque, Passive control of aeroelastic instability in a long span bridge model prone to coupled flutter using targeted energy transfer, Journal of Sound and Vibration, vol.330, issue.11, pp.2580-2595, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00815198

E. Gourc, G. Michon, S. Seguy, and A. Berlioz, Targeted energy transfer under harmonic forcing with a vibro-impact nonlinear energy sink : Analytical and experimental developments, Journal of Vibration and Acoustics, vol.137, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01820057

O. V. Gendelman, Targeted energy transfer in systems with non-polynomial nonlinearity, Journal of Sound and Vibration, vol.315, issue.3, pp.732-745, 2008.

E. Gourdon, N. A. Alexander, C. A. Taylor, C. H. Lamarque, and S. Pernot, Nonlinear energy pumping under transient forcing with strongly nonlinear coupling : Theoretical and experimental results, Journal of Sound and Vibration, vol.300, issue.3, pp.522-551, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00815136

A. F. Vakakis, O. V. Gendelman, L. A. Bergman, D. M. Mcfarland, G. Kerschen et al., Nonlinear targeted energy transfer in mechanical and structural systems, vol.156, 2008.

R. Viguié and G. Kerschen, Nonlinear vibration absorber coupled to a nonlinear primary system : A tuning methodology, Journal of Sound and Vibration, vol.326, issue.3, pp.780-793, 2009.

G. Habib, T. Detroux, R. Viguié, and G. Kerschen, Nonlinear generalization of den hartog's equal-peak method. Mechanical Systems and Signal Processing, pp.17-28, 2015.

G. Habib and G. Kerschen, A principle of similarity for nonlinear vibration absorbers, Physica D : Nonlinear Phenomena, vol.332, pp.1-8, 2016.

T. Detroux, G. Habib, L. Masset, and G. Kerschen, Performance, robustness and sensitivity analysis of the nonlinear tuned vibration absorber, Mechanical Systems and Signal Processing, vol.60, pp.799-809, 2015.

F. Calogero, Isochronous Systems, 2008.

B. Charlet, J. Lévine, and R. Marino, On dynamic feedback linearization, Systems & Control Letters, vol.13, issue.2, pp.143-151, 1989.

G. Habib, C. Grappasonni, and G. Kerschen, Enforcing linear dynamics through the addition of nonlinearity, Proceedings of the 34th IMAC, A Conference and Exposition on Structural Dynamics, 2016.

G. Habib, C. Grappasonni, and G. Kerschen, Passive linearization of nonlinear resonances, Journal of Applied Physics, vol.120, issue.4, 2016.

M. P. Carmo, Differential Geometry of Curves and Surfaces, 1976.

G. Duffing, Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung. Number 41-42. R, Vieweg & Sohn, 1918.

I. Kovacic and M. J. Brennan, The Duffing Equation : Nonlinear Oscillators and their Behaviour, 2011.

A. H. Nayfeh, Perturbation methods, 2000.

R. Seydel, Practical Bifurcation and Stability Analysis, Interdiciplinary Applied Mathematics, vol.5, 2010.

H. M. Paynter, Analysis and Design of Engineering Systems : Class Notes for M.I.T. Course 2,751, 1961.

R. Arquier, S. Karkar, A. Lazarus, O. Thomas, C. Vergez et al., Manlab 2.0 : an interactive path-following and bifurcation analysis software, 2005.

S. Braun, D. Ewins, and S. S. Rao, Encyclopedia of vibration : R-Z. Number, vol.3, 2002.

E. Kremer and P. Movlazada, Centrifugal force pendulum device, Patent, vol.13, pp.722-256, 2013.

C. Chao, C. Lee, and S. W. Shaw, Non-unison dynamics of multiple centrifugal pendulum vibration absorbers, Journal of Sound and Vibration, vol.204, issue.5, pp.769-794, 1997.

H. William and . Press, Numerical recipes 3rd edition : The art of scientific computing, 2007.

E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede et al., Continuation and bifurcation software for ordinary differential equations (with homcont), vol.97, 1997.

B. Cochelin, A path-following technique via an asymptotic-numerical method, Computers & Structures, vol.53, issue.5, pp.1181-1192, 1994.

B. Cochelin and C. Vergez, A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions, Journal of Sound and Vibration, vol.324, issue.12, pp.243-262, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00315288

S. Karkar, B. Cochelin, and C. Vergez, A high-order, purely frequency based harmonic balance formulation for continuation of periodic solutions : The case of non-polynomial nonlinearities, Journal of Sound and Vibration, vol.332, issue.4, pp.968-977, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00758184

I. Charpentier, B. Cochelin, and K. Lampoh, Diamanlab-an interactive taylor-based continuation tool in matlab, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00853599

R. Arquier, Une méthode de calcul des modes de vibrations non linéaires des structures, 2007.

S. Baguet, Stabilité des structures minces et sensibilité aux imperfections par la méthode asymptotique numérique, 2001.

R. A. Ibrahim, Recent advances in nonlinear passive vibration isolators, Journal of Sound and Vibration, vol.314, issue.3, pp.371-452, 2008.

J. P. , Den Hartog. Stephen Timoshenko 60th Anniversary, 1938.

M. Sharif-bakhtiar and S. W. Shaw, Effects of nonlinearities and damping on the dynamic response of a centrifugal pendulum absorber. ASME, Journal of Vibration and Acoustics, vol.114, pp.305-311, 1992.

E. Rodgers, Brachistochrone and tautochrone curves for rolling bodies, American Journal of Physics, vol.14, pp.249-252, 1946.
DOI : 10.1119/1.1990827

G. Kerschen, Computation of Nonlinear Normal Modes through Shooting and PseudoArclength Computation, pp.215-250, 2014.

S. Karkar, B. Cochelin, and C. Vergez, A comparative study of the harmonic balance method and the orthogonal collocation method on stiff nonlinear systems, Journal of Sound and Vibration, vol.333, issue.12, pp.2554-2567, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01065672

A. Dhooge, W. Govaerts, and Y. A. Kuznetsov, Matcont : A matlab package for numerical bifurcation analysis of odes, ACM Trans. Math. Softw, vol.29, issue.2, pp.141-164, 2003.

T. Detroux, L. Renson, L. Masset, and G. Kerschen, The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems, Computer Methods in Applied Mechanics and Engineering, vol.296, p.216, 2015.

L. Xie, S. Baguet, B. Prabel, and R. Dufour, Bifurcation tracking by harmonic balance method for performance tuning of nonlinear dynamical systems, Mechanical Systems and Signal Processing, vol.88, pp.445-461, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01402109

M. Géradin and D. Rixen, Mechanical Vibrations : Theory and Applications to Structural Dynamics, 1997.

W. Feng-quan, H. Xiao-ling, and G. Ying-zheng, Analysis of the characteristics of pseudoresonance and anti-resonance, Journal of Vibration and Acoustics, vol.118, issue.4, pp.663-667, 1996.

F. Wahl, G. Schmidt, and L. Forrai, On the significance of antiresonance frequencies in experimental structural analysis, Journal of Sound and Vibration, vol.219, issue.3, pp.379-394, 1999.

A. Lazarus and O. Thomas, A harmonic-based method for computing the stability of periodic solutions of dynamical systems, Comptes Rendus Mécanique, vol.338, issue.9, pp.510-517, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01452004

J. F. Willy and . Govaerts, Numerical Methods for Bifurcations of Dynamical Equilibria. Society for Industrial and Applied Mathematics, 2000.

S. Baguet and B. Cochelin, Determination of branches of limit points by an asymptotic numerical method, European Congress on Computational Methods in Applied Sciences and Engineering, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00623437

G. L. Baker and J. A. Blackburn, The Pendulum : A Case Study in Physics, 2009.

S. W. Shaw, M. A. Acar, B. F. Feeny, and B. K. Geist, Modal properties of rotating shafts with order-tuned absorbers, Topics in Modal Analysis I, vol.7, pp.181-189

. Springer, , 2014.

C. Pierre, Mode localization and eigenvalue loci veering phenomena in disordered structures, Journal of Sound and Vibration, vol.126, issue.3, pp.485-502, 1988.

S. Gozen, B. Olson, S. W. Shaw, and C. Pierre, Resonance suppression in multi-degreeof-freedom rotating flexible structures using order-tuned absorbers, Journal of Vibration and Acoustics, vol.134, issue.6, p.61016, 2012.

. Mustafa-a-acar, W. Steven, B. F. Shaw, and . Feeny, Nonlinear dynamics of flexible rotating shafts with centrifugal pendulum vibration absorbers, ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2015.

S. W. Shaw and . Coppola, A subharmonic vibration absorber for rotating machinery, Ann Arbor, vol.1050, p.48109, 1997.

J. Brendan, . Vidmar, W. Steven, B. F. Shaw, B. Feeny et al., Analysis and design of multiple order centrifugal pendulum vibration absorbers, ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp.165-173, 2012.

E. H. Moussi, S. Bellizzi, B. Cochelin, and I. Nistor, Nonlinear normal modes of a two degrees-of-freedom piecewise linear system, Mechanical Systems and Signal Processing, pp.64-65, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00783088