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General Introduction

Cross Laminated Timber (CLT) is a wooden product which derives frontipd
in France which consists of three wooden layers where the internal layer is oriented
in the cross direction. In the early 1990s, the Tripli becomes popular again in Austria
and Germany and was extended to various con guration and was called (Stlrzenbecher
et al., 2012). It consists in several lumber layers stacked crosswise and glued on their
wide faces (Figure 1). There are several con gurations of CLT from 3 to 11 layers gen-
erally symmetrical according to thickness. The thickness of lumber layers is between
10 to 50 mm for a total thickness of the CLT panel up to 400 mm (Karacabeyli and
Douglas, 2013). The dimensions of panels depend on the manufacturer for a total width
up to 4 to5 m and a length up to 18 m.

Longitudinal
boards

Transversal
boards

Figure 1 — CLT panel

During the last twenty years, CLT structures have gained in popularity for several
reasons. First CLT panels have a low environmental impact which is an advantage
compared to other construction materials such as steel and concrete. Indeed, it is made
of wood which is the result of carbon storage during the photosynthesis in leaves. The
manufacturing process is low carbon compared to the manufacturing process of steel and
concrete. A great part of carbon emission comes from transport and from petrochemical
process. Second, the prefabrication process allows a quick and easy assembling on
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General Introduction

site. Third, the crossing layers lead to a high dimensional stability under variation of
moisture content compared to other timber products.

Consequently, numerous high-rise timber buildings projects were designed and
built during the last few years such as the Ho-Ho building project at Vienna in Austria
which will be 84-meters high (French, 2015). Hence, the question of the buckling of
CLT walls under compressive stress becomes more important with the increasing size of
timber buildings since compressive load in CLT walls become larger and larger. More-
over, because of the crossing layers, the radial-tangential shear stiffness, also called
rolling shear stiffness, is involved in the global shear stiffness of the CLT panel. The
rolling-shear stiffness is approximately 200 times lower than the longitudinal stiffness.
Because of this large stiffness contrast, shear effects are signi cant compared to other
timber products such as glued-laminated-timber (GLT) and contributes a lower critical
buckling load. Hence, it is important to study the stability of CLT walls which is the
purpose of this PhD thesis. This dissertation is divided in two parts. First in Part I,
the equivalent layer stiffness of CLT is investigated with a particular attention paid to
the rolling shear behavior. Second, in Part I, the stability of CLT walls is investigated
by considering imperfections and also the viscoelastic behavior of timber. Each chapter
can be read independently from the others and are formatted to be published in scienti ¢
journals. In the following, the articulation between the different chapter is explained.

Figure 2 — Hoho building project

Before the study of the buckling of CLT walls, it is important to de ne its bending
and shear behavior which depends on the con gurations of layers: it depends on the
number and on the thickness of layers. Hence, a reasonably fair accurate mechanical
behavior of a single layer is necessary to model the global behavior of the CLT panel. In
most models for the design of CLT panels, each layer is assumed to be homogeneous.
Nonetheless, there are several heterogeneities in layers. First, the local behavior of
timber is orthotropic: there is a high stiffness contrast between longitudinal direction
and radial and tangential directions. Second, at board scale, there is a variation of
the local ring orientation: there is a rotation of radial and tangential directions across
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General Introduction

the section of the board. The distribution of the local ring orientation is called the
sawing pattern depending on the board aspect ratio and on the distance to the pith.
Consequently, the global homogeneous equivalent behavior of the board depends on
this sawing pattern. Second, at the layer scale, there are other heterogeneities. A layer
is composed of several boards with different sawing patterns and then on different global
behaviors. Moreover, depending on the manufacturer, a board can be glued or not to its
adjacent boards. The global behavior, particularly the in-plane behavior can be very
sensitive to this edge gluing. Indeed, stress cannot be transmitted from one board to
another if there is no edge gluing. Thus all these heterogeneities need to be taken into
account to model an equivalent homogeneous layer behavior. In Chapter 1, closed-
form bounds of the equivalent-layer stiffness are suggested to take into account the
variations of local ring orientation. Moreover, the impact of glued narrow edges on the
equivalent-layer stiffness is discussed. Particularly, a numerical study is performed to
study compare the cross-layer shear stiffness of boards with and without glued narrow
edges since only few studies have been presented on the cross-layer shear stiffness. It is
observed that the cross-layer shear stiffness is strongly dependent on the sawing pattern,
de ned as the distribution of the local ring orientation over the board section, and on the
narrow edges gluing.

Consequently, in Chapter 2, we suggest a new experimental protocol to measure
the cross-layer shear stiffness of timber in order to compare numerical and experimental
results. We suggest to use sandwich beams with a wooden core oriented in the tangen-
tial direction and with Composite Fiber Reinforced Polymers (CFRP) skins. Because,
of the high stiffness and thickness contrast between CFRP skins and the wooden core,
the global shear stiffness of the sandwich beam cis mostly driven by the cross-layer
shear stiffness. Then, from four-point bending test on this sandwich beam, it is possible
to measure the shear stiffness from the difference between the total de ection and the
bending de ection. A new measurement method is also suggested by using the rotation
at beam ends: it was observed that such measure is more accurate than the classical mea-
sure from the relative de ection in the area between loads since it averages mechanical
properties on the whole span of the beam.

Once the equivalent-layer behavior of CLT has been de ned, it is possible to in-
vestigate the buckling behavior. First in Chapter 3, a perfect CLT wall is considered
without imperfections. Since the thickness of CLT is relatively small compared to the
width and the length, CLT panels can be modeled as plates. Several plate models are
used: the Kirchhoff-Love plate model where shear effects are neglected, the Reissner-
Mindlin plate model where a linear shear strain distribution over thickness is assumed
and the Bending-Gradient model which is a higher order plate model considering the
gradient of the bending moment. In this last model, six variables are used to describe
the shear behavior instead of two in the Reissner-Mindlin. First it is observed that the
critical buckling load of a simply-supported CLT wall is of the same order of magnitude
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General Introduction

as the compressive strength for actual CLT con gurations which shows that the buckling
is not negligible. Moreover, it is observed that the shear effects are important and the use
of the Kirchhoff-Love model is not recommended for CLT. From the comparison with

a 3D numerical model, it is observed that the Bending-Gradient model is very reliable.
Besides, two projections of the Bending-Gradient model on Reissner models have been
suggested and one of the projection is as reliable as the Bending-Gradient model even
if only two shear variables are used. Finally, the use of this shear compliance projection
seems adapted for the design of CLT walls. Additionally, two kinds of simple support,
called hard and soft simple support have been considered and it was observed that they
can have a signi cant effect on the buckling of CLT walls.

In Chapter 4, initial imperfections are considered. Indeed, an actual CLT walls
have some imperfections such as straightness defect, an eccentricity of the load due to
the connection system, residual stress due to the manufacturing process. Note that for
sake of simplicity, a Timoshenko beam model is used here. By considering these imper-
fections in the equilibrium of CLT walls on the deformed con guration, the de ection
of the wall is de ned as non-linear function of the compressive load. These de ections
lead to additional bending moment and then to additional compressive stress in the lon-
gitudinal layers. As a consequence, a compressive strength criterion can be established
considering these initial imperfections: this strength criterion was rst suggested by
Ayrton and Perry (1886) and is also called the Ayrton-Perry formula. This criterion
was adapted in the Eurocode 5 (European Committee for Standardisation, 1993) for the
design of timber columns and has also been recently adapted by Thiel (2013) for the
design of CLT walls. Additionally to this criterion, we suggest a new shear criterion
since the rolling shear strength is very low compared to the longitudinal compressive
strength. It is observed that this shear criterion may be relevant when the design rolling
shear strength is low and when the slenderness is low.

Finally, wood is a viscoelastic material. Its stiffness and strength vary in time. The
viscoelastic behavior of wood also depends on the direction of the loading. Particularly,
the rolling shear long term behavior has not been well studied until now. Whereas in
current recommendations, only one parameter for the variations of the wood stiffness
and one parameter for the wood strength are suggested corresponding to the longitudi-
nal behavior, it appears that both bending and shear long term behaviors of CLT needs
to be considered separately. In Chapter 5, these viscoelastic effects are considered in-
dependently for the long-term buckling of CLT walls. It is demonstrated that long-term
stability criteria correspond to short term criteria using long term stiffnesses. The long
term Ayrton-Perry criterion is well known and recalled from (Ba ant and Cedolin, 1991)
for the Euler beam model. In this chapter, we extend the problem to Timoshenko beam
model by considering separately the bending and the shear creep. It is shown that the
long-term Ayrton-Perry criterion can be extended to the Timoshenko beam model by
considering the long-term Timoshenko critical buckling load instead of the long-term
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Euler critical buckling load. Moreover, it is shown, because of the orthotropic vis-
coelastic behavior of wood that the long term shear criterion can be relevant in a larger

range of CLT con gurations than at short term showing the necessity to study the long
term rolling shear behavior.
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CHAPTER

1

Equivalent layer stiffness of CLT:
Closed-form bounds and numer-
iIcal validation

In order to study the buckling of CLT wall, it is rst necessary to de ne the thick
plate bending and shear stiffness of CLT which can be derived from the equivalent-layer
stiffness. Since the wood is an heterogeneous material, an homogenization method
IS necessary to suggest an equivalent-layer stiffness from local properties. First, we
suggest to integrate local mechanical properties of the wood, de ned in the local or-
thotropic coordinate system, over the board cross section. Second, the impact of the
narrow-glued edges is discussed with a focus on the cross-layer shear stiffness by means
of a numerical study. This work was recently submitted (Perret et al., 2017a).

1.1 Introduction

Cross-Laminated-Timber (CLT) consists in lumber layers stacked crosswise and
glued on their lower and upper faces. Its quick and easy assembling, its low self-weigh
and its low environmental impact make this product competitive. In the last few years,
several timber buildings made of CLT were built mainly in Northern America and in
Western Europe such as Murray Grove in London (Lomhlt, 2015) and the Treet in cen-
tral Bergen (Mairs, 2016).

Nevertheless, the behavior of CLT panels is complex because of several hetero-
geneities at different scales. Here we discuss only heterogeneities larger than the annual
ring. Moreover, wood has a strong variability compared to materials such as steel and
concrete. This variability is also not discussed in the following.

Atring scale, wood elastic behavior is generally modeled as an orthotropic material
with three main directions: the longitudinal directibncorresponding to wood ber
orientation, the radial and tangential directidgh&ndT. The bers orientation leads to
a strong stiffness and strength contrast between the stiff longitudinal direction and the
exible radial and tangential directions. At board scale, another heterogeneity is due to
the rotation of the material orthotropic coordinate sys(@mlL; R; T) (Figure 1.1). The
global orthotropic system of the board is de ned(&s L; C; Z) whereC andZ stand
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for cross and normal directions (Figure 1.1). The behavior of the board depends on the
distribution of ring orientation through the board section, called the sawing pattern. At
layer scale, individual boards can be glued or not on their narrow edges depending on
the manufacturing process. Free narrow edges lead to stress concentrations lowering
the stiffness and strength of CLT panels under particular loads. Note that, for free
narrow edges, self-contact may be ignored since there is a small gap between boards in
practice. Finally, CLT are multi-layer panels strongly heterogeneous because of cross-
wise orientations of layers.

From these observations, the mechanical behavior of CLT panels is dif cult to
model properly. Scale of heterogeneities cited above are note clearly distinct: the cur-
vature radius and the thickness of annual rings are comparable with the thickness of
boards, the board width is larger than the layer thickness, the number of layers in CLT
is small (from three to eleven). Thus, these heterogeneities require a careful attention
when using homogenization techniques.

Nevertheless, in current recommendations for the design of CLT, panels are often
modeled as multilayer plates or beams. This is the case of-thethod recalled in Eu-
rocode 5 (European Committee for Standardisation, 1993, 24-02-2016) and adapted to
CLT (Stora Enso, 2014) where cross-layers are modeled as mechanical joints between
longitudinal layers with a stiffness related to the equivalent cross-layer shear stiffness.
In the CLT-designer software, Thiel and Schickhofer (2010) suggest to use Timoshenko
beam theory and derived the shear stiffness of CLT beams from the Jourawski method.
Advanced models have also been suggested by Franzoni et al. (2016b) for the bending
of CLT panels with regular gaps and is suggested in Chapter 3 for the buckling of CLT
panels. In these methods, it is assumed that the mechanical behavior of each layer, com-
posed of several boards, can be modeled as homogeneous. It is thus assumed that there
exists an equivalent layer mechanical behavior which adequately takes into account the
effect of lower scale heterogeneities such as ring distribution and narrow edges gaps.

This equivalent behavior is often based on a educated guess for a small collection
of plate solicitations which emerge from practical applications. First, the longitudinal
and cross Young modult, andE¢ are involved in the bending stiffness for CLT oors
(Kreuzinger, 1999; Karacabeyli and Douglas, 2013; Stora Enso, 2014; Thiel and Schick-
hofer, 2010) and in the in-plane stiffness for CLT walls (Thiel, 2013; Thiel and Krenn,
2016) (Chapter 3). Because of the high stiffness contrast betie@mdEc, the cross
stiffnessE¢ is often neglected (Stora Enso, 2014; Thiel and Schickhofer, 2010). More-
over, because of the thickness of CLT and of the cross layers, the out-of-plane shear
stiffness of CLT, composed of the longitudinal shear stiffn@ss and of the cross-
layer shear stiffnes&cz, is also involved in the bending (Franzoni et al., 2016b) and
the buckling behavior of CLT (Chapter 3). In the shear analogy method (Kreuzinger,
1999; Karacabeyli and Douglas, 2018),; is neglected because of the stiffness con-
trast compared t@&cz. On the contrary, botlts,; andG¢z are involved in the -
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method (Stora Enso, 2014) and the Timoshenko beam theory (Thiel and Schickhofer,
2010) since the in uence o6z is generally not admissible in CLT beams. Finally,

the in-plane shear stiffne€s ¢ is involved in shear walls. Particularly, it has been ob-
served a strong in uence of the narrow edge gluing and of the board aspect r&jg on
(Moosbrugger et al., 2006; Bogensperger et al., 2010; Franzoni et al., 2017a). All these
parameters necessitate recommendations depending on the timber strength class, on the
board aspect ratio and on the narrow edge gluing as suggested in the draft for a revised
version of the Eurocode 5.1.1 (European Committee for Standardisation, 24-02-2016)
but the sawing pattern can also be taken into account.

L

Figure 1.1 — Local and global orientations in a board

In order to give a fast and reasonable estimate of the elastic behavior of CLT, we
suggest in this chapter closed-form expressions of the equivalent layer stiffness depend-
ing on the sawing pattern of the board and the local mechanical characteristics. Firstin
Section 1.2.1 equivalent layer stiffness is calculated from the average of the local stiff-
ness and compliance matrix in all directions of the radial-tangential plane. Then in Sec-
tion 1.2.2, a ner estimation of the equivalent layer stiffness is established using Reuss
lower bound and Voigt upper bound for varying sawing pattern. An application to Nor-
way Spruce boards with varying sawing pattern is presented in Section 1.3 for boards
with glued edges. In order to extrapolate these results to boards with free edges, the
impact of edge gluing on the equivalent layer stiffness is rst discussed in Section 1.4.
Then, using nite element method, we calculate upper bounds for the cross-layer shear
stiffnessG¢z of boards with and without glued edges.

1.2 Closed-form expressions for the equivalent layer stiff-
ness

In this section, the equivalent layer stiffness is estimated from local behavior of
wood using averaging techniques. The equivalent behavior of the board is expressed in
the global orthotropic systef®; L; C; Z) of the board (Figure 1.1).
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1.2.1 Stiffness and compliance averages

For a given board, the sawing pattern is not known a priori. A rst approximation
of the global behavior can be obtained by averaging the local behavior in all directions
of the radial-tangential plan@; R; T). For this purpose, the constitutive relationship
between the local stralhand the local stress is written using Kelvin's notation in the
(O; L;R; T) frame:

o . 1 0 10 1
L 811 812 Slg 0 O O L
"R Si2 S»» S;3 0 0 O R
:T _ 813 823 833 0 0 0 T .
S 2R & 0O 0O 0 Sy 0 O S 2rr ¢’ (1.1)
2" T O O O O S O D 2 7

whereS is the three-dimensional compliance matrix of the local orthotropic material.
Considering local Young modult, shear modulG and Poisson's ratio, components
of the three-dimensional compliance matfxare expressed as:

= 1 = _R = T
Sll - E’ SlZ EL’ Sl3 E.’
= 1. — R - = 1.
Sy, = B Sos En Ss3 o 1.2

With Kelvin's notation, the rotation matriR around longitudinal axit by an angle
(Figure 1.1) is de ned as:

1
0 1 0 0 p0 0O O
0 s? 2cs 0 O
2 2 Paxso o
R()= 0 - C’ cs
0 2cs 2cs & s2 0 0 ¢’
0 0 0 0 c S
0 0 0 0 S C

wherec = cos( ) ands = sin( ). The compliance tens@( ) after rotation by an
angle is given by:
S()=R() S R(): (1.3)
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The average of the compliance mat8x ) in the domain 2 [0;2 ]gives a compliance
matrix S corresponding to a transversely isotropic material:

0 1
Su1 Si2 Si2 0O 0 O
S Sz S Saa 0O O O
Si2 S Sua Sz 0 0 0 (.
S = 0 0 0 S O 0 ’ (1.4)
0 0 0 0 Sg O
0 0 0 0 0 Se6
where 8
Siu = Su
% Si2 = 3(Si2+ Sia);
Spy = 1[3(Sae+ Ssa) +2(Sps+ Sus)l; (1.5)

E Sus = 3(Sc2+ Ses+2(Si S);
" Ses = 5(Sss+ See):

This average complian&de nes hence apparent moduli of a transversely isotropic
elastic behavior. LeES, GS and ° denote the Young moudli, shear moduli and Pois-
sons ratios from the averaged compliance. They are de ned by the following expres-
sions: 8

s - 1 = :
EC = & E.; .
— — 3 3 1 .
ES = L =38 RT 4 TR +
N S22 Er Er GRrt !
S = R R— Tt IR -
LN Sit PR (1.6)
S 1 1 1 ! .
Civ = = T matms
1
- S = 1 = 1 1+ gt 1+ 1R
GRn 2Sa 2 Gt Tt T

Since there is no distinction here between cross and normal dire@i@amlZ of the
board, the notatioN is used for the normal directions of the board.

In the following, the three-dimensional stiffness mat@x ) = S () is aver-
aged in all directions of the radial tangential plane. Since Kelvin's notations are used
here, the same rotation matifik ( ) is used to calculate the stiffness mat@xleading
to similar results. The averaged stiffness matixalso correspond to a transversely
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isotropic material:

0 1
Cll C12 C12 0 0 0
Cop Cx Cnr Ciu 0 O O
C12 Cx C44 Co 0O 0 0 .
0 Cu O 0 ’ (1.7)
0 0 Ce O
0 0 0 Cse

where

Ciz = 3(Cio+ Cua);

Cp = £[3(Co+ Ca3) +2(Cps+ Cas)l; (1.8)
Cas = 3(Cp+ C33+2(Cas Cia));

Ces = 3(Css+ Cep):

The transversely isotropic elastic behavior calculated from the stiffness average is not
the same as the transversely isotropic elastic behavior calculated from the compliance
average:C 6 S . Another equivalent transversely isotropic elastic behavior can
thus be de ned from the average stiffneSs To obtain engineering characteristics
such as Young moduli and Poisson's ratios, one need rst to calc@ateand then
identify engineering moduli as previously (1.6). Note here that only the longitudinal
shear stiffness has a simple expression:

8
% Cu = Cu
3

1
Gy = E(GLR + Gir):

1.2.2 Reuss lower bound and Voigt upper bound for varying sawing
pattern

One can then go further in the estimation of average properties, based on the geom-
etry of boards. Indeed, assuming an equivalent layer with glued narrow edges, it is pos-
sible to derive bounds taking explicitly the board aspect ratio and the relative distance to
the pith into account. The Reuss lower bound compliance m&ffixs the average of
the local compliance matri$( ), where is the ring orientation (Figure 1.2), over the
full board section. Averaging the compliance matrix is equivalent to assume a uniform
stress state over the whole section. Taking into account boards dimens®Rs;an
be expressed as: z.7,

1 S ( )dcdz: (1.9)

4ot
First, bounds are calculated for a centered sawing pattern with a null distance to

SR
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A

AL

Figure 1.2 — Scheme of the board section

the pith as the rectangular red section in Figure 1.2, close to the actual sawing pattern of
boards (Figure 1.1). Note that for symmetry reas@{s) = S( + ). Hence, Reuss
and Voigt bounds of the centered sawing pattern can be simpli ed to:

Z Z

1
S()dA+ S()dA ; 1.10
s a, , SOWE SO (1.10)

sk =

whereA; andA, are blue and green triangular domains in Figure 1.2. Furthermore,
the board having always an axis of symmetry ensures that the effective behavior is or-
thotropic.

Figure 1.3 — Integration of mechanical propertiesfgn
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In Figure 1.3, geometrical parameters used for the integration of mechanical prop-
erties on the sectioA; are presented. For an anglethe area is = % tan and the

elementary area is thets = %codsz . In (1.3),S( ) is expressed as a sum of power

function of sinus and cosinus functions weighted by local mechanical prop&yties

These functions have to be integrated on the se&ipfor 2 [ ; ]. For example:
Z Z
cod( )ds= % cog()d = g(cos sin + ):

The integration oM, is similar to the integration o®\; considering the change of
variable °= 5 varying between %and °= ; . The elementary area is then

2
2 0
ds®= & _9—. For example:
Z

— 2 1 1 :
cost( )V = PP tan ——+ 3C0s sin

NI
INJI

hi is de ned as the average ofover the whole section of the board. From previous
results, it is possible to determine the averbges( )i on the entire section:

cod() =418 F()+2h()];

where:

f():m+ > tan and h():m > tan :

Proceeding the same way for all functicsfs c?s?, ¢ ands? and including them in the
expression o5( ) (1.3), it is possible to express the Reuss lower boBAq ) as an
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orthotropic material function of and local mechanical properties:

: S{( )= Su; (1.11a)
SH( )= %[Slz"' Sis+(S12 Sw)h()]; (1.11b)
SE()= SIS+ St (S Sh( )3 (1.11¢)
L IBRE SN e S M h
BO7 5 105ss. Se sty 2N e
SH( )= % fs(zézﬁsé‘; 822;3 535844” () (1.11)
Sia( )= % Es(zézz?rsél; Szzézg S3§s44)f () (1.11g)
SK( )= %[355"‘ Ses +(Sss  See) N ( )] (1.11h)

® SE()= SIS+ Seot (Soe Sslh( )] (1.11)

This approach may easily be extended taking into account the distarioghe pith
(Figure 1.4). The Reuss lower bound of the equivalent layer stiffness of the board de-
limited by the red rectangle in Figure 1.4 can then be calculated as following thanks to
the additivity of the integral:

SR ( 2) zSR( 1),

SR(;z4)= : (1.12)

wheret = z; 2, is the thickness of the board. Note ti&ift (; 0) = SR ().

Z

b C
Figure 1.4 — Scheme of the board section with a distante the pith
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Moreover, this approach may also be extended taking into account an asymmetric
sawing pattern with a lateral distangeto the symmetry axis (Figure 1.5). Nevertheless,
the equivalent stiffness of this board is not orthotropic since there is no symmetry axis
in the radial-tangential plane. In order to compensate this effect, it is possible to use the
board symmetric to the rst one (dotted in Figure 1.5) in the arrangement of the layer.
Then, the Reuss lower bouﬁ;m and the Voigt upper bounﬁg’ym of the arrangement
of the two boards symmetric with respect to each other can be calculated by:

€222SR( 2) ©z1SR( 1) c1zaSR( 3)+ czaSR( 4)

2bt

Sam(:Z 1;€1) = (1.13)

C2

C1 2b

22
Al

Figure 1.5 — Scheme of the board section with a distand¢e the pith

From the expression of the Reuss lower bound of the compliance stifffetke
engineering constants of the associated orthotropic material can be calculated with the
following expressions:

8
ER = 1 : E R = 1 : ER = L :
3 L S c % z %
R - SB . R - S%. R - S .
lc = s Lz T s ¢z T sk (1.14)
GR = L; GR = L; GR = _1.
LC 2Sk, Lz 2sk Cz 2sk,

Since Kelvin's notation are used, similar expression are found for the stiffness ma-
trix CV of the Voigt upper bound, corresponding to the average of the stiffness matrix
C () over the board section, replacitgby C in (1.9,1.10,1.11,1.12,1.13). Averaging
the stiffness matrix is equivalent to assume a uniform strain Stawer the whole sec-
tion. Similarly to what has been done for the average in all directions (1.6), the stiffness
matrixSY = CV is introduced. Then, the engineering constants associated with
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the Voigt upper bound are calculated from (1.14) by replacing the superBchptV .
AgainSY 6 SR,

Let us recall that;™ CV " is an upper bound of the equivalent strain energy of
the board for any uniform straithand SR is an upper bound of the equivalent
stress energy for any uniform stresswhere%“' and™ stand for transpose vectors of
"and . Nevertheless, some individual engineering constants calculated from these
bounds are not always bounds of the corresponding homogenized engineering constants
of the board since they are sometimes coupled with other compone6t$ ahd SR.
Particularly, Young modulEV of the Voigt upper bounds are no upper bounds of the
actual Young moduli of the board. On the contrary, Young moédliare lower bounds
of the actual Young moduli since they are isolated in diagonal components of the matrix
SR (1.2). Similarly,GR andGV are lower and upper bounds of the actual shear stiffness
of the board.

1.3 Equivalent-layer stiffness of Norway-Spruce

An application of preceding formulas is made to estimate the equivalent layer stiff-
ness of boards with glued edges from the local behavior at ring scale measured by (Keu-
necke et al., 2007, 2008) on Norway Spruce (Table 1.1). Only sawing pattern of boards
including an axis of symmetry are studied (1.12).

EL ER ET GLR C;LT C':‘RT LR LT RT

Value (MPa) 12,800 625 397 617 587 53 B 045 048
CoV (%) 9.2 204 103 121 102 109 132 82 192
Num. of specimen 10 13 11 120 120 120 10 10 13

Table 1.1 — Elastic Properties of Norway Spruce (Keunecke et al., 2007, 2008)

1.3.1 Equivalent Young moduli
1.3.1.1 Equivalent longitudinal Young modulusE

The equivalent longitudinal Young modul&s is a important characteristics of
the CLT behavior particularly under bending and under in-plane load. The Reuss bound
ER of the equivalent longitudinal modulus is equal to the local longitudinal modtilus
for any sawing pattern (see 1.14). The equivalent longitudinal modgjfusstimated
numerically from the Voigt upper bound is almost equal to the Reuss bound for varying
sawing patterns: the relative difference is lower tB%o for ? < 10and% < 3. This
is a consequence of the high stiffness contrast betkgeandEr andEt. Thus the
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sawing pattern of boards is indifferent in practice regarding the equivalent longitudinal
Young modulud€e, of CLT with glued edges .

1.3.1.2 Equivalent normal ans cross Young modukE; and Ec

The equivalent normal Young modul&s has only a limited role in the behavior
of CLT panels: it plays a role mostly when the CLT panel is placed between two verti-
cal elements and is locally punched. In Figure E§,calculated from Reuss and Voigt
bounds for varying board aspect ra%and for varying relative distance to the p#&h
It is observed thaE; vary strongly between 620 MPa and 230 MPa which is approxi-
mately one third of the local radial modul&s,. It is minimum for a relative distance
to the piths. between 0.2 and 0.4 and a board aspect %t'ra 4 which corresponds to
common sawing patterns used for cross-layer. Using directly local mBguindE ¢
in applications may overestimate the equivalent moduli of 200% to 274%.

487 487
14 14
— ~
SN © 562
12 @ 12 562
128 428
1 1§
388 388
08 08 499
2 & 349 349 499 -
Z1 467
2b 06 & 309 309 06 435
z 8 270 z2 8 ot 404
o 0 ©
04% 2 04 @ 372 872
RS 0 340
® 234 R 340
N 234 ~ S 31320
02 & 028 “u 312 9
234 234 w e 312
340
270 a9 20 340 372
2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
2b 2b
t

Figure 1.6 — Reuss lower bound (left) and Voigt upper bound (right) for the estimation
of E; (MPa)

The equivalent cross Young modulls is involved in the calculation of the bend-
ing and membrane stiffness. In Figure 1.7, the equivalent cross Young mdelglus
calculated from Reuss and Voigt bounds is plotted for varying board aspecﬁ—*i'amm
for varying relative distance to the piéf. Itis observed that the equivalent cross Young
modulusE¢ varies strongly with the sawing pattern. It can be equal to 220 MPa which
is almost three times lower than the local Young modigs This value is in contra-
diction with what is suggested in current recommendations for a revised version of the
Eurocode 5.1.1 (European Committee for Standardisation, 24-02-2016) where a value
of 450 MPa is suggested which could underestimate deformations due to cross layers.
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Note, however, thdE¢ is generally negligible compared Ky in the calculation of the
bending and membrane stiffness of CLT.
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Figure 1.7 — Reuss lower bound (left) and Voigt upper bound (right) for the estimation
of Ec (MPa)

In Figure 1.8, the equivalent cross and normal Young mdgBliE Y, EX andEY
are compared to the compliance aver&geand the stiffness averags . As expected,
for = arctan { close to0° and9(°, the bounds tend to the local behavior since the
ring orientation is almost uniform in the section: local orientations coincide with the
global orientations. It is further observed that fobetween30° and 60°, equivalent
Young moduli of Voigt and Reuss bounds can be approximated directly by moduli from
averages in stiffneds$ and in complianc&g .

1.3.1.3 Poisson'sratio ¢ and ¢.

In current recommendations (Thiel, 2013; Stora Enso, 2014), the bending stiffness
D of longitudinal layers in CLT is considered proportionalip and not to;
as should be done in Classical Lamination Theory. From Reuss and V0|gt bounds the
Poisson's ratios productc ¢ varies between 0.003 to 0.007. Then the assumption of

E, % is valid for CLT panels.

1.3.2 Equivalent shear moduli

Because of the orthotropy of the equivalent layer stiffness, each shear modulus can
be studied separately and shear stiffness calculated from Reuss and Voigt bounds are
true bounds of the actual equivalent layer shear stiffness.
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Figure 1.8 — Young moduli of Voigt and Reuss boundszor 0

1.3.2.1 Equivalent longitudinal-layer and in-plane shear moduliG, ; and G ¢

From calculations, it is checked that for varying board aspect %u’md relative
distance to the pit, the gap between bounds of the longitudinal-layer shear modulus
G,z and the in-plane shear modul@G¢ is less than 0.1%. Furthermore tHat;
and G ¢ vary slightly between values of local shear mod8lir = 617 MPa and
Gt =587 MPa sinceG g  G_r. Finally, for glued narrow edges, we checked that
stiffness and compliance averagéfl, GY, = 602 MPa are good approximations
of G.g andG,t for CLT with glued narrow edges.

1.3.3 Equivalent cross-layer shear stiffnes&c;

In Figure 1.9, Reuss and Voigt bounds of equivalent layer shear stiffagss
are plotted for varying board aspect raﬁ% and for relative distance to the pit.

It is observed that if the board aspect ratio is large enough, there is a sawing pattern,
corresponding to a relative distance to the @ith< 2L < 0:3, which maximizeG¢z .

For these boards, the equivalent cross layer shear stiffness lies between 100 and 150
MPa approximately which is twice to three times higher than the local rolling shear
stiffnessGgrr. These values were assessed by experiments for CLT with glued narrow
edges in Chapter 2 at board scale.

In this section, upper and lower bounds have been calculated for boards with glued
edges. These bounds are also valid for any assembly of identical boards such as GLT.
Nevertheless, most of CLT manufacturers do not glue narrow edges. Hence, free narrow
edges effects, which are speci c to CLT, are discussed in the following section.
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Figure 1.9 — Reuss lower bound (left) and Voigt upper bound (right) for the estimation
of Gez (MPa)

1.4 Inuence of the free narrow edges on cross-layer
shear stiffnessG¢

In this section, we discuss the impact of free narrow edges on the global behavior
of CLT compared to results of Section 1.3. The free narrow edges boundary condition
imposes cc = c = ¢z =0 onnarrow edges. Since a uniform strain is assumed for
the Voigt upper bound calculatio@," is also an upper bound of CLT with free edges. In
contrast, these conditions are not always compatible with the uniform stress assumption
in the Reuss lower bound calculation. Longitudinal Young modElfisnormal Young
modulusE® and the longitudinal shear modulGs, are calculated assuming uniform
stress ., zz and [z which are compatible with the free narrow edges boundary
condition.ER, EX andG,; are also lower bounds of the corresponding homogenized
engineering constants for CLT with free narrow edges and the results obtained in the
previous section still hold for these moduli. Nonetheless, the equivalent cross Young
modulusEg, the equivalent in-plane shear modus. and the equivalent cross-layer
shear modulu§R, are calculated from an assumption of uniform stress, ¢ and

cz over the whole section. Hencgg, GR. andGR, are no lower bounds of the
corresponding homogenized engineering constants for CLT with free narrow edges.

Even ifG,» G.c for glued narrow edges, they are involved in different mech-
anisms:G_z contributes to the global transverse shear behavior wh&gaglays a
central role for the in-plane shear behavior of CLT panels. For CLT with free narrow
edges, the in-plane shear and torsion behavior, dependi@goris more complex than
for glued edges. Indeed, in-plane shear stress cannot be transfered directly to the neigh-
bouring board because of free edges (Silly, 2010). The behaviour is thus intrinsically

39



1.4.
Gez

INFLUENCE OF THE FREE NARROW EDGES ON CROSS-LAYER SHEAR STIFFNESS

3D and stiffness can only be estimated considering a superposition of layers (which is
beyond the scope of this chapter). In particular, Moosbrugger et al. (2006) studied the
in-plane shear behavior of an in nitely thick CLT with regular gaps between neighbour-
ing boards. They observed a signi cant decrease of the apparent in-plane shear modulus
G_c up to half that estimated for boards with glued edges. These results were compared
later to 3-ply and 5-ply CLT by Bogensperger et al. (2010). Sebera et al. (2015) tested
full scale CLT panels subjected to torsion and compared it with nite elements results.
Strong discontinuities are observed for CLT with free narrow edges. Franzoni et al.
(2017a,b) also studied the behavior of CLT with regular large gaps.

Similarly to the in-plane shear behavior, a 3D study is necessary for the equivalent
cross Young moduluE¢ since stress cannot be transmitted directly from one board to
the other.

In the following, we focus on the impact of free narrow edges on the cross-layer
shear stiffnes§&cz since it is an important parameter in the design of CLT.

1.4.1 Presentation of the numerical model

Here, we present a numerical nite elements study to compute an upper bound of
the equivalent cross-layer shear stiffn€ss; of wooden boards with glued and free
edges. In literature, several similar studies have already been performed (Aicher and
Dill-Langer, 2000; Jakobs et al., 2005) but only for free narrow edges.

This is achieved assuming that the cross-layer is sheared by the relative displace-
ment of the adjacent longitudinal layer. Since strain is imposed, the cross-layer shear
stiffnessGgJ" calculated numerically is an upper bound@g; . This upper bound is
more precise than Voigt upper bound since displacement conditions are imposed only
on the boundary whereas a uniform strain condition is imposed in the whole board for
the Voigt upper bound.

In (Aicher and Dill-Langer, 2000; Jakobs et al., 2005), the cross-layer is mod-
eled as well as the longitudinal adjacent layer (Figure 1.10). Because of the stiffness
contrast between layers, this model is almost equivalent to impose directly displace-
ment conditions on upper and lower faces of the cross-layer. Moreover, Lebée and Sab
(2012) demonstrated that it is possible to isolate the core of a sandwich, here the cross-
layer, from the skins, here the longitudinal layers and to obtain an upper bound of the
cross-layer shear stiffness by imposing a relative displacement between upper and lower
faces. Then, in the following, we extend the study to boards with glued narrow edges
and compare these results to boards with free narrow edges.

The cross-layer is assumed to be in nite with an alternative orientation of the saw-
ing patterns (Figure 1.11). Then, for glued narrow edges, a representative volume el-
ement (RVE) can be modeled as two adjacent boards. It is then possible to consider
symmetry effects to reduce the problem to only two half board sections (Figure 1.11)
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a & & & & & & 4

Figure 1.10 — 2D numerical simulation for calculation of the equivalent cross-layer shear
stiffness (Aicher and Dill-Langer, 2000)

In nite cross-layer of CLT

Periodicity
REV uper uPer
Symmetry

SREV

Figure 1.11 — Simpli cation of the model because of periodicity and symmetries
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called Sub-Representative Volume Element (SREV). Consequently, symmetry condi-
tions are imposed on lateral sections for board with glued edges (Figure 1.12). For free
edges, only one half boards is represented with one free boundary condition and one
symmetry condition as shown in Figure 1.13. Finally, for each board, the local orienta-
tions of timber is varying according to the given sawing pattern.

Here, in-plane deformations are assumed in the board, a 2D numerical simulation
is then performed.

O
< Uc = t
9 ;
ury =0 = t uz =0
cc=0" C cc =0
Uc—Uz—O
b b

Figure 1.12 — 2D numerical simulation for calculation of the equivalent cross-layer shear
stiffness of CLT with glued edges

The equivalent cross-layer shear stiffnéxs; can be estimated from the strain
energy in the boartVe,:

1
Wela = EGCZ th;

where =2" ¢ = =¢ is the averaged shear strain in the specimen.

1.4.2 Discussion

Voigt upper bound and Reuss lower bound can be compared to values measured in
literature and to numerical upper bounds.

Ehrhart et al. (2015) studied variations of equivalent cross-layer shear stiffness
Gcz of boards with three different aspect ratios and three relative distances to the pith.
In this study, boards were tested individually and narrow edges are free. Then, closed-
form bounds and numerical bounds are calculated for sawing patterns corresponding
to this study. In Figure 1.14GR, andG{, are plotted according to the angleand
with a relative distance to the pi# = 1:5. In Figure 1.15Gg, andG{, are plotted
according to the relative distance to the pjthand with an angle = 26:6°.
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Figure 1.13 — 2D numerical simulation for calculation of the equivalent cross-layer shear
stiffness of CLT and with free edges

First, it is observed that numerical upper bound for glued narrow edges is slightly
lower than the Voigt upper bound for a large range of sawing patterns. This difference
is greater for board close to the pith (Figure 1.15). As expected, the numerical upper
bound for free narrow edges is lower than the numerical upper bound for glued narrow
edges. For small angle, numerical upper bounds for glued and unglued narrow edges
are similar since free edges effect are negligible and Saint-Venant principle is valid
here. Nevertheless, when increasing.e. when decreasing the board aspect ratio, free
edges effects become signi cant. Indeed, for 20° (Figure 1.14) and fof! > 0:5
(Figure 1.15), the numerical upper bound with free narrow edges is more than 10%
lower than numerical upper bound with glued narrow edges. For45°, which is not
usual, this relative difference is higher than 21% and the upper bound for free narrow
edges is lower than the lower bound of board with glued edges. Thus, the lower bound
for glued narrow edgeScz must be used with caution for application to CLT with free
narrow edges particularly for largesince free edges effects are signi cant.

Second, except for large distance to the pith, measurements from Ehrhart et al.
(2015) lie between Reuss and Voigt bounds. From their results, Ehrhart et al. (2015) then
Schickhofer et al. (2016) suggested recommendations for the design v&yde afhich
are also plotted in Figures 1.14 and 1.15. Their recommendations are in agreement with
the numerical upper bound for free narrow edges for usual aspect ratios whett°.
Nevertheless, it is observed th@t; can be overestimated by considering only the
board aspect ratio without considering the relative distance to the pith. Particularly, for
2 > 2, the numerical upper bound is lower than 100 MPa recommended in (Ehrhart
et al., 2015; Schickhofer et al., 2016).

Finally in Figure 1.16, the equivalent cross-layer shear stiffii&ss is calcu-
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Figure 1.14 — Equivalent cross-layer shear moduli of Voigt and Reuss bounzs=or
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Figure 1.15 — Equivalent cross-layer shear moduli of Voigt and Reuss bounds=for
26.6°
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lated from the Reuss lower bour@R(; 0) and the Voigt upper boun@V (; 0) for

2 [0°,90°] andz; = 0:1t which corresponds to samples used in (Franzoni et al.,
2016a) and in Chapter %7 increases up to 2.5 times the local rolling shear modulus
Ggrr. Particularly, for30° > > 60, the G}, andGY., can be well approximated
by G5\ andG§, . Second, it is observed that the experimental results from Franzoni
et al. (2016a) and in Chapter 2 lie between Reuss and Voigt bound. Nevertheless, nu-
merical upper bounds are violated in both cases which could be due to a difference of
the batch of wood between (Kreuzinger, 1999) used to calculate bounds and (Franzoni
et al., 2016a). It is also observed tla¢; measured on cross-layer with glued edges
(Chapter 2) is larger than measured on boards with free edges (Franzoni et al., 2016a) on
the same batch of wood as predicted numerically. Third, it is observed that the relative
difference between upper bounds of boards with glued and free edges is slightly lower
for boards close to the pith (Figure 1.16) than for boards more distant to the pith 1.14).

124 — GV
g .
s T GCZ
9 82.3 x 3D (free edges)
% + 3D (glued edges)
o 53
i Quarter-sawn Signi cant free edge e ects>(0r>< ¢ Perret e't al (2017)
(c% CLT without glued narrow edges><><>< e Franzoni et al (2016Db)
X
0 30 60 90
Angle |

Figure 1.16 — Equivalent cross-layer shear moduli of Voigt and Reuss bounzs=or
O:1t

To conclude on this study, the equivalent cross layer shear stiffagsscan be
well estimated with Reuss and Voigt bounds (except for boards with free narrow edges
and with small board aspect ratio which are seldom used in practigg) can be twice
to three times the value of the local rolling shear stiffness with a careful selection of
boards sawing pattern.

1.5 Conclusion

As a conclusion, closed-form upper and lower bounds have been suggested to esti-
mate the equivalent layer stiffness of CLT with glued narrow edges from averages over
the board section for varying sawing pattern. From these results, it was observed that
the Young longitudinal modulul, is almost constant for varying sawing patterns and
can be estimated from usual local tests. Furthermore, it was observed that cross and
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normal Young modulEc andE; could decrease strongly compared to local charac-
teristics and could take a lower value than what suggested in the revised version of the
Eurocode 5.1.1 (European Committee for Standardisation, 24-02-2016).

It is also observed that for varying sawing patterns, in-plane shear moGugus
and longitudinal-layer shear modulGs; are equivalent for glued narrow edges. Nev-
ertheless, they are involved in very different mechanism regarding CLT. Particularly,
G,z is a priori not in uenced by free narrow edges conditions whereas a signi cant
reduction ofG ¢ is observed between boards with glued and free narrow edges. This
observation is in contradiction with what recommended in the revised version of the
Eurocode 5.1.1 (European Committee for Standardisation, 24-02-2016) where no dis-
tinction is made between these two parameters.

Finally, it is observed that the equivalent cross-layer shear stiffGessvaries
strongly with the sawing pattern and that, with a careful selection of the sawing pattern
of boards, it can be equal to 100 to 150 MPa. Then, a signi cant impact of free narrow
edges was observed from numerical simulati@g; is reduced compared to layers with
glued narrow edges which is in agreement with experimental results from literature.
Moreover, it was observed that free edges effects are more signi cant for increasing
relative distance to the pith and decreasing the board aspect ratio.
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CHAPTER

2

Experimental determination of
the equivalent-layer shear stiffness
of CLT through four point bend-
Ing of sandwich beams

The equivalent-layer stiffness can be derived from local properties of wood. Most
of experimental studies on the behavior of wood have been made on the longitudinal
properties. Because of the crossing layers, few studies have been performed on the
local rolling shear stiffness. Here we suggest a new experimental protocol to measure
directly the equivalent cross-layer shear stiffness for boards with glued narrow edges.
This work was recently submitted (Perret et al., 2017b).

2.1 Introduction

Cross-Laminated-Timber (CLT) is a wooden product made of several lumber lay-
ers stacked crosswise and glued on their wide faces. CLT panels are classically used
in walls, oors and roofs as load carrying plate elements. Because of their low self-
weight, their quick and easy assembly, and their low environmental impact, CLT panels
have gained in popularity during the last few years in Northern America and in West-
ern Europe. Several timber buildings made partly or entirely of CLT were built such as
the Stadthaus building at Murray Grove in London (Lomhlt, 2015), the Treet in central
Bergen (Mairs, 2016) and many other projects are in progress such as the Ho-Ho build-
ing in Vienna (French, 2015) and the student residence Brock Commons in Vancouver
at the University of British Columbia (Medlock, 2016).

Nevertheless, timber is a highly anisotropic material. The shear stiffness between
radial and tangential directions of softwood species, also called rolling shear, is two
hundred times smaller than the stiffness in the bers? direction. Because of the crossing
layers in CLT, the rolling shear signi cantly contributes to the global behavior of the
CLT panel. Several recommendations are currently being developed to include these ef-
fects. The -method recalled in Eurocode 5 (European Committee for Standardisation,
1993) was adapted to CLT (Stora Enso, 2014) considering cross layers as mechanical
joints between longitudinal layers having a stiffness related to the rolling shear stiff-
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ness. The shear analogy method (Kreuzinger, 1999) models the CLT as two virtual
beams: an Euler beam without shear deformations, and a Timoshenko beam including
shear stiffness of each layer. These simpli ed approaches may not always be suf cient
for predicting the mechanical behavior of CLT and some advanced modelling are often
required (Sab and Lebée, 2015; Franzoni et al., 2016b, 2017a) as noted in Chapter 3.
Finally, in the CLT-designer softwafe Thiel and Schickhofer (2010) suggest to use
Timoshenko beam theory and derived the shear stiffness of the CLT beam from the
Jourawski method. In all these approaches a reasonable estimate of the equivalent layer
shear stiffnes$cz is of importance. Numerous approaches have been suggested to
measure this stiffness but they are not always reliable because of stress concentrations
or because of indirect measurement of the shear stiffness. Moreover, a difference was
observed in Chapter 1 between the local rolling shear modulus at ring scale, measured at
50 MPa approximately for softwood species, and the equivalent shear stiffness at board
scale which is signi cantly larger (Aicher and Dill-Langer, 2000). In this chapter, we
suggest a new experimental approach using the four point bending test on sandwich
beam made of a wooden core between two Carbon Fiber Reinforced Polymers (CFRP)
skins. In this setup, the cross-layer of a CLT is isolated from other layers and mostly
contributes to the global shear behavior of the beam. It ensures a stress state close to the
actual one in CLT and a proper and relevant measurement of the equivalent layer shear
stiffness.

In Sections 2.1.1 to 2.1.3 several experimental studies on the shear behavior of
timber are reported and classi ed according to the specimen scale: from the ring scale
to the beam scale. After that in Section 2.1.4, the suggested methodology is briey
introduced. In Section 2.2, the validity of the sandwich beam model under four point
bending is veri ed for specimen with a wooden core and CFRP skins. A measurement
of the apparent bending stiffness by the rotation at beam ends is suggested and compared
to already existing methods. Then, the feasibility and the relevance of the methodology
is validated experimentally: the protocol is shown in Section 2.3 and main results on
Norway Spruce specimen are presented in Section 2.4.

2.1.1 Tests at the ring scale

Numerous studies have been published on the rolling shear modulus and strength of
timber using many different tests which are extensively reviewed and analysed by Dahl
and Malo (2009a). Most of shear tests listed in (Dahl and Malo, 2009a) are adapted
to measure the local shear properties of timber. In these tests, a particular attention is
always paid to the relative size of specimens compared to the radius of curvature of
annual rings in order to preserve a uniform orientation.

The rst methodology consists on compression tests on small timber blocks with
geometries and loading con gurations leading to a local shear state in timber. Several
of them are listed by Kollman and Coté (1968). The notched shear block test sug-
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gested by the American Society for Testing and Materials (ASTM, 1981) consists in the
compression of a small cubic block with notches (Figure 2.1). This test has been exten-
sively used to measure shear strength of timber, some of which are reported by Kollman
and Co6té (1968). Nevertheless it has been critized by many authors (Dahl and Malo,
2009a; Youngs, 1957; Liu et al., 1998) because of three main drawbacks: it introduces
high stress concentration caused by the notch, an additional bending moment is caused
by the load eccentricity and the non-uniform stress distribution over the failure plane
yields inaccurate strength results. Moses and Prion (2002) captured these effects by a
nite elements model and observed that they lead to an underestimation of the shear
strength by a ratio of 1.7 approximately. A comparable test method called short beam
tests consists in a beam with a very small span to depth ratio uniformly loaded. Dahl
and Malo (2009a) observed improper failure due to additional bending moment and to
impure stress state.

Figure 2.1 — Notched shear block test (Dahl and Malo, 2009a) (left), Arcan shear test
(Dahl and Malo, 2009a) (center) and Single-lap shear test (right) (Ehrhart et al., 2015)

Another con guration is called the losipescu shear test (losipescu, 1967). A beam
with 90° notches at top and bottom of the central section is loaded such that the central
section is under pure shear stress. Using this method, Dumail et al. (2000) measured an
average rolling shear stiffness of 57.7 MPa on specimen maNemfay Sprucevhere
the variations of ring orientation were negligible. Nevertheless, because of the bending
moment close to the central section, the shear failure can be affected by improper failure
particularly in the radial-tangential plane. Using a comparable mechanical principle,
the Arcan shear test (Arcan et al., 1978) consists of specimens with a butter y shape,
which leads to pure shear failure at the center section (Figure 2.1). Dahl and Malo
(2009a) used this test in six different con gurations to measure the shear modulus in the
three orthotropic directions and evaluated an averaged rolling shear stiffidesndy
Spruceequal to 30 MPa approximately using video extensometry. In a following study,
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Dahl and Malo (2009b) measured an average rolling shear strength of 1.6 MPa. From
these results, Dahl and Malo (2009a) observed that the Arcan shear test seems one of
the most reliable test to estimate local shear strength and stiffness of wood.

Lastly, an alternative test to measure the local shear stiffness of Norway Spruce has
been used by Keunecke et al. (2007). The Young and shear moduli are derived from the
measure of sound velocity of longitudinal waves and transverse waves respectively in a
small cubic specimen (10 mm in each material direction). In particular, they measured
a local rolling shear stiffness of 53 MPa.

Several studies have been conducted with scattered results from which it is dif cult
to conclude on the rolling shear behavior of timber.

2.1.2 Tests at the individual board scale

All previously mentioned studies were about local properties of timber: particular
attention was paid to rings orientation to the specimen in order to neglect their varia-
tions. Aicher and Dill-Langer (2000) then Jakobs et al. (2005) studied numerically the
effect of the sawing pattern, de ned as the distribution of ring orientation in the section,
on the equivalent layer shear stiffness in the radial-tangential plane. They simulated
numerically the single lap shear test of softwood specimen: the board size specimen is
glued between two plates moving laterally respectively to each other in order to shear the
specimen (Figure 2.1) (D2718, 2003). The shear modulus is estimated from the relative
displacement between the two plates. They estimated an equivalent cross-layer shear
stiffness between 45 MPa and 350 MPa whereas the input local rolling shear modulus
was set at 50 MPa. They observed maximum values for sawing patterns with annual
ring orientations at 45°. These observations were con rmed by the experimental work
of Ehrhart et al. (2015) on single lap shear tests and of Franzoni et al. (2017b) on double
lap shear test and the experimental and numerical work of Gérlacher (2002) by means
of eigenfrequency. Jakobs et al. (2005) then Ehrhart et al. (2015) observed that the in-
crease of the board aspect ratio, de ned as the ratio between width and thickness, as
well as the decrease of the radial distance to the pith lead to an increase of the effective
shear stiffness. Moreover, an increase of the shear strength is also observed when in-
creasing board aspect ratio. From these observations, Ebtl@recommend to set the
effective shear stiffness and strength according to linear functions of the board aspect
ratio revised later by Schickhofer et al. (2016). In Chapter 1, we suggested closed-form
bounds of the equivalent cross-layer shear stiffness of timber depending on the sawing
pattern and on local mechanical characteristics at ring scale. It was observed particu-
larly that, if the board is cut relatively close to the pith, the equivalent cross-layer shear
stiffness lies between 100 and 150 MPa. Therefore, single or double lap shear tests
are reliable to measure the effective transverse shear stiffness and strength of boards
which depend on the width to depth ratio and on the radial distance to the pith. In these
studies, properties of boards are measured individually leading to a high coef cient of
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variation (between 20 and 30% (Ehrhart et al., 2015; Franzoni et al., 2017b)) whereas
they are numerous in CLT layers which should have an averaging effect. Zhou et al.
(2014) observed a smaller coef cient of variation of 16.5% from single-lap shear test
on wooden cross layer made of several boards with glued narrow edges. Nevertheless,
these approaches are very sensitive to geometric imperfections and wood variability. In-
deed, parasitic bending moments may occur and introduce non-linear response. Mestek
(2011) suggested modi cations, followed by Ehrhart et al. (2015), such as the angle be-
tween the applied force and the plate orientation and also the plate's geometry to reduce
these effects.

2.1.3 Tests at the beam scale

Thus, tests on full-size specimen seem more relevant to measure the actual shear
behavior of CLT panel. According to (408, 2012), the longitudinal shear moduli of a
solid wood or glue-laminated timber beam can be calculated from two bending tests: a
four point bending test with a slenderness, de ned as the ratio between the span and the
thickness, larger than 18 where the pure bending modulus is calculated from relative
de ection in the pure bending area between loads and a three-point bending test with a
slenderness of 5 where the apparent bending modulus, including the pure bending mod-
ulus and the longitudinal shear modulus, is calculated from the mid-span de ection.
Another methodology is suggested by Yoshihara et al. (1998); Yoshihara and Kubo-
jima (2002) where beams are tested under three-point bending, asymmetric four point
bending or ve-point bending tests (Yoshihara and Furushima, 2003) with varying span
to depth ratio. These tests provide higher ratio of shear stress to bending stress and
then a higher relative shear de ection. Nevertheless, the Saint Venant's principle can be
violated during these tests because of small slenderness leading to a non reliable shear
correction factor in the Timoshenko beam theory as observed by Yoshihara et al. (1998).

Zhou et al. (2014) studied the shear behavior of 3-ply CLT beams under three-
point bending with varying span to depth ratio. They compared the measured de ection
to the theoretical de ection from shear analogy method. They used equivalent cross-
layer shear stiffness measured previously from single-lap shear test and longitudinal
layer stiffness measured by means of vibration test. Nevertheless, they observed that
the de ection is overestimated by the shear analogy method: the estimated de ection is
64% to 11% higher than the measured de ection for span to depth ratio from 6 to 14.

As a conclusion, tests on CLT beams can be used to verify assumptions on the
global shear behavior of the CLT but it is not relevant to measure individually the shear
behavior of each layer.
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2.1.4 Tests at a single layer scale

Considering the advantages and inconvenient of each identi cation methods re-
called in the preceding section, we present here a new methodology to estimate the
equivalent cross-layer shear stiffness of timber: a bending test on a sandwich beam
composed of a thick wooden cross-layer core glued between two thin CFRP skins (Fig-
ure 2.2). The aim of this methodology is to isolate the cross-layer in order to characterize
exclusively its shear behavior. Indeed, it is commonly accepted that, when the contrast
is suf cient, the skins contribute mainly to the bending stiffness and that the core mostly
affects the transverse shear stiffness of the sandwich beam. Thus the shear de ection
is only due to the inner cross-layer, contrary to CLT beams where it is mixed between
shear effects in longitudinal layers and in cross layers. As a consequence, the equivalent
cross-layer shear stiffness of the wooden core as well as the composite skins stiffness
can be directly estimated from a four point bending test of the sandwich beam. More-
over, the bending stiffness is well controlled by the CFRP skins. Indeed CFRP present
low material variability and creep is mitigated in the longitudinal direction in contrast to
longitudinal layers in CLT beams. Besides, the variability of the wooden core is closest
to the actual behavior of cross-layers of CLT than that of single lap shear tests because
it is made of numerous boards. We will see that this also reduce the standard deviation
of results. Finally, we investigate a new measurement of the bending stiffness from the
rotation at beam ends which will prove more reliable than the measurement from the
relative de ection between loads since it averages the bending behavior on the whole
span of the beam. In this chapter, only the short term elastic behavior is presented but
the methodology is already under application for creep tests.

| 6 | gm, | é |

Norway Spruce

Figure 2.2 — Four point bending of a CFRP sandwich beam with wooden core

2.2 ldenti cation by four point bending of homogeneous
sandwich beam

Here, we consider that characteristics at board scale are homogeneous to analyze
the behavior of a sandwich beam under four point bending. Therefore we use the no-
tation G¢z instead ofGgr andEc instead ofEtr. Gcz andEc are a mean of local
propertieGgr , Egr andE+ averaged at board scale (Chapter 1). Basic features of sand-
wich theory are rst recalled and their hypothesis are validated by a reference 3D nite
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element model. The numerical model is also used to investigate the sensitivity of the
identi cation procedure to input characteristics and local effects.

2.2.1 The sandwich beam model

Main features of the sandwich beam model are recalled here, more details can
be found in (Lebée and Sab, 2012). The studied sandwich beam is composed of a thick
homogeneous wooden core of thickngdsetween two thin CFRP skins of thickndss
The total thickness is notdd= t; + 2t and the width is notell. Cartesian coordinates
X;y;z are used in the reference fraife; e ; e,) (Figure 2.4) where is the abscissa in
the longitudinal direction of the beam agdindz are the coordinates in the section of
the beam. Among the nine mechanical characteristics of the wooden core and the ve
mechanical characteristics of CFRP, which is modeled as transversely isotropic, only
the Young moduli in the beam longitudinal direction and the transverse shear moduli
are necessary in the beam model. They are ndgpG;) for the skins andEc; Gcz)
for the core. In the sandwich beam model (Allen, 2013), a stiffness and a thickness
contrasts are assumed between the core and the skins such that:

Es EC; Ests ECtC; tc ts: (2.1)

Considering her&s = 110 GPa,E¢c = 0:43GPa,t. = 30 mm andts = 1:2 mm, we

easily check that these conditions are satis ed. Hence, because of these contrasts, the
skins contribute mainly to the bending stiffnd3swhereas the core mostly affects the
shear force stiffness as recalled from Allen (2013):

8
b(h® t3)_ .
3D TES’ (2.2a)
2
2p bt t)o . (2.2b)
tc
The bending momeril and the shear fora® are classically de ned by:
8 7 y
% M (x) = bz «(x;z)dz; (2.3a)
h
Zy
E Q(x) = b «.(X;z)dz: (2.3b)

N|T
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Approximations of the bending stresg, and the shear stresg, are derived according
to Jourawski (1856):

8

S XX(Z): ME(Z)

2

zZ, (2.4a)
zh E()d: (2.4b)

2

wile)

xz(2) =

Furthermore, considering the stiffness contrast (2.1), the shear sggg&s4b) can
be approximated as uniform in the wooden core by:

¢ Q

v bt (2.5)

In Figure 2.3, this approximated shear stre$sis compared to the shear stress dis-
tribution calculated from Jourawski method (2.4b). For the studied specimen (Section
2.3), the difference is lower than 1% in the core.

tS:: ’’’’ Z

— Jourawski

te

13(2)
is ... Approximation

| P

Figure 2.3 — Distribution of shear stresg in the wooden core relatively to the estima-
tion of the stressy, in the core

2.2.2 The four point bending test

Different measures allowing the identi cation of the bending and shear force stiff-
nesses from the four point bending are now presented. The beams ofllesgtisimply
supported on a spdr< L and submitted to two Ioac% placed symmetrically at a dis-
tance'g from the mid-span (Figure 2.4). The beam is under pure bending state between
the two loads leading to a constant curvature. The bending stifid@sghen directly

related to the relative de ectionf = fo  '23=° between the mid-span (point A in
Figure 2.4) and a point distant to the mid-span of a leragth '70 (pointsB andBYin
Figure 2.4):
P( o) _,
D= ———"=a% 2.
g & (2.6)
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wherefa, fg andféJ are absolute de ections at points, B, andB° In the pure
bending area, the bending stiffneBsis also directly related to the relative bending
strain " = "4 g "X % between lower face in tension and the upper face in

compression of CFRP skins:

P( loh
Moreover, at beam end€ (andCPin Figure 2.4), the bending momeit and the shear
force Q vanish and effective rotatiorisc and' co at endsC and C° may be directly
identi ed to the beam inclination. The relative rotation of the section at beam ends
"o="c ' coisrelated to the bending stiffneBsby:

D= 2.7)

P(? I3
p="0 1), (2.8)
8 o
The relative accuracy of these different measurements will be discussed in Sections

2.2.3.3and 2.4.
Since the global de ection includes bending and shear de ections, the shear stiff-

ness~ of the beam can be expressed as a function of the mid-span de dgtiand the
bending stiffnes®:

4f A 1

P01y 8 12 %(' l)? (2.9)

1_
=

whereD is derived either from f, " or' ¢ according to (2.6,2.7,2.8).

P P
2 2
Z tS
[ N l&&l =
> - te h

lo ts

' b
M Q P(l o) %
‘X :
P
2
Figure 2.4 — Four point Bending test
The bending stiffnesB is inversely proportional to f, " and' o according to
(2.6, 2.7,2.8). Thus small relative variations of, " or' o will lead to relative varia-
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tions of the estimated bending stiffnd3sof the same order of magnitude. In contrast,
according to (2.9), the shear stiffnessis calculated from the difference between the
de ection f , and the estimated bending de ection at mid-span. For the studied spec-
imen, the shear de ection is approximately one third of the total de ection Thus,
considering that the total de ectidin do not vary, small relative variations off ,

or' o will lead to relative variations of the estimated shear stifffeswice larger. Con-
versely, considering thatf, " or' o do not vary, small relative variations 6f will

lead to relative variations of the estimated shear stifffiesisree times larger. Thus it

is observed that the predicted shear stiffrfeds very sensitive, much more thén, to

variations of f, ",' gandf,. Thisis why a ne estimation of the bending stiffness
D and of the mid-span de ectioh, is necessary to predict properly the shear stiffness
F.

2.2.3 Validation of the sandwich beam model with a 3D nite ele-
ment model

In this section, the validity of the sandwich beam model is investigated by means
of a 3D model complying with the geometry of samples used in the experimental study
(Section 2.3.1).

2.2.3.1 The 3D model

The beam is modeled by a core perfectly bounded with two skins with the nite
elements software ABAQUS. Cylinders corresponding to supports and loads are mod-
eled as rigid cylindrical shells. Supports are xed while intermediate cylinders moving
vertically are loaded withP=2. A frictionless tangent contact is set between the beam
and the cylinders.

An incremental static analysis is performed with a starting increment of 1% of
the total loadP = 1kN. Non-linear geometric effects are taken into account in the
calculation of the deformed state in order to handle contact interactions.

The beam is meshed with 3D cubic elements C3D20R (Hibbett et al., 1998) with
twenty nodes and reduced integration on 8 points. Figure 2.5 shows that the size of the
mesh decreases close to contact areas to better capture local stresses and strains in these
boundary layers.

Both materials are modeled as transversely isotropic (Table 2.1): the skins are
isotropic in the plan€O; g,; ,) and the core is isotropic in the plag®; e ;e,). The
mechanical characteristics of the wooden core are in agreement with the experimental
study of Franzoni et al. (2017b) and with Reuss and Voigt bounds calculated in Chap-
ter 1.

Only one fourth of the beam is tested because of planes of symmetry norgal to
and toe, .
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Elastic Moduli (MPa) E_ Ec G Gcz LN

CFRP 115,000 7,000 4,000 2,7000:3
Wood 12,700 430 600 110 @3

Table 2.1 — Mechanical characteristics of wood and carbon ber reinforced polymer

2.2.3.2 Accuracy of the stress estimation in the core

In this paragraph, the stress distribution in the wooden core of the beam is studied
in order to check if the shear stress is almost uniform in the core between supports
and loads and if the bending stress in the core is negligible in agreement with the main
hypotheses of the sandwich beam theory.

In Figure 2.5, the relative error of the transverse shear stggsa one half of the
beam is plotted with respect to the sandwich beam estimatien ﬁ (2.5). Itis
observed that, in approximately 90% of the area between support and load, the relative
difference between the predicted shear strgsand the 3D reference shear stress is
within 10% As expected, fast variations are observed close to contacts with cylinders.

In Figure 2.6, distributions of the transverse shear stress are plotted alorg the
axis at three locations: at neutral bre level in the wooden core and at bers close to the
interface between wood and compositeg at 71‘—g (yellow lines in Figure 2.5). The
origin of the abscissa is located at the support, the load is applied at 200 mm from the
support, -100 mm is the free end of the beam. Boundary layers are observed close to
supports and loads, they are getting smaller close to the neutral axis. From these gures,
the sandwich beam hypothesis of a constant shear stress distribution in the wooden core
is globally satis ed.

_,‘
o
L

7t
16

7t
16

xz (X;0,2) 1 " xx 2
10% fo fa
5%
0%
+5%
+10%
Figure 2.5 — 3D shear stress distribution (x; 0; z) compared to sandwich beam esti-

mation

In Figures 2.7 and 2.8, the bending stregg, the transverse stress, and the
shear stress,, are plotted in the wooden core at neutral axis and on bers close to the
interface between wood and compositeg at % and in the CFRP skins on top and
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2 (MPa)

Tte

* Z= Tg

05 — Sandwich
100 0 100 200 300

x coordinate (mm)

Figure 2.6 — Shear stress, along the beam for upper, lower and neutral ber in the
core from 3D and sandwich beam models

bottom bersz = g Stresses are normalized with the corresponding strength: the
transverse tensile, compressive and rolling shear strength of wood are ggioto=

1:8 MPa, t0 .90 = 3:0 MPa and to .rr = 1:7 MPa respectively according to
Franzoni et al. (2017b); the transverse compressive and tensile strength of CFRP skins
are set to 50 MPa.

0.4
0.3
2 0.2

0.1

&00 et L
x coordinate (mm)

Figure 2.7 — Distribution of stressesx, ,; and , in timber normalized with the
corresponding strength

High stress concentrations are observed at contact areas on top ber under the
load and on bottom ber on support. Particularly, a maximum compressive transverse
stress ,, of 60% of the compressive strength is observed in CFRP skins due to the small
contact area with cylinders. This high stress could lead to local punching of CFRP skins.
In the experimental setup (Section 2.3.3) metal plates are therefore set between cylinders
and specimen during tests reducing up to six times this local transverse stress in skins
and to twice the local stress in the wooden core according to a complementary 3D nite
element study (not shown here for consiseness). The global de ection measured with
this metal plates differs less than 2% from the de ection without metal plates.

Nevertheless, in the area between supports and loads, the wooden core is mostly
sheared. Neglecting local stress concentration close to contact areas and considering
its linear distribution through thickness, the average bending stigss the wooden
core is approximatel{:7% of the compressive strength aB®% of the tensile strength
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0.6

0.4 — g, z=1l
0.2 — 5, z= B
%00 0 100 200 300

x coordinate (mm)

Figure 2.8 — Distribution of stresseg, in CFRP normalized with the tensile and com-
pressive strength

between support and load. The transverse strgsss very low, lower than 1% of

the strength, in the major part of the section between load and supports. In contrast,
the average shear stress is approxima2dl§o of the rolling shear strength. Thus, the
assumption of a pure shear state in the core between load and support is admissible as
rst approximation compared to averaged bending and transverse stress.

2.2.3.3 Accuracy of the global de ection estimation

The de ection of the sandwich beam is observed for a total appliedfoatil kN
corresponding to 24% of the rolling shear failure measured in (Franzoni et al., 2017b)
and to a maximum de ection of 2mm approximately. Kinematic variablgs f, fa
and " are evaluated by the three-dimensional result on locations pointed in Figure 2.5
and corresponding to the sensors locations during experiment (Section 2.3).

— f,f are given by de ections of the lower ber at = '5 a(fg) andx = '5
(fa);

— " is extracted from the longitudinal strains on top and bottom bers at mid-
span section;

— The rotation ¢ is calculated from a linear regression of the de ection at neutral
axis on the domain plotted in blue (Figure 2x62 'TL; '1—0L in order to avoid
boundary layers close to supports.

In Figure 2.9, the difference between the reference three-dimensional de ection
U (X; 0;z) on neutralz = 0), upper g = 7) and lower g = %) axis and the de ection
f (x) calculated from the sandwich beam model are plotted along the beam normalized
with the three-dimensional mid-span de ection IE; 0;0 atneutral axis. Itis observed
that the de ection approximated by the sandwich beam theory is very close to the 3D
results.

Moreover, in Figure 2.9, a local de ection at supports is observed. On the upper

ber, this de ection is equal to 1.4% of the total mid-span de ection. This is due to a
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Figure 2.9 — Relative de ection between sandwich and 3D models normalized with the
mid-span de ection

local punching. Compared to the variability of wood mechanical characteristics, the ef-
fect of this punching on the measured de ections is negligible. Indeed, the 3 de ections
are very close at the mid-span (the relative difference is about 0.2%). Thus the impact
of the local punching on the measurement of de ection is negligible.

2.2.3.4 Stiffness identi cation

A linear regression between the loRdand the kinematic variables is calculated
from results at each increment of the numerical calculations to the tangent stiffness
at each step. The bending stiffné38% is estimated from the relative de ectionf ,
the relative bending strain " at mid-span and the relative rotation at beam engls
according to the sandwich beam model (Equations 2.6,2.7 and 2.8).

In Table 2.2, skins Young modull&ftr-and apparent core shear stiffn&;
estimated from the de ection measureméint; f;' o; ") are compared with the ac-
tual elastic parameteE . crrr Gez) in the 3D nite-element model. It is rst ob-
served that the skins Young modulbs. crrp is always overpredicted which is mostly
due to the sandwich beam assumptions: contribution of the wooden core in the bending
stiffness is neglected. On the contrary, the core shear stiftBgsss always underesti-
mated which is partly due to the assumption of negligible contribution of skins to shear
compliance (Allen, 2013).

Moreover, it is observed that predictions with rotatiop or strains " have an
accuracy of2% whereas predictions with relative de ectionf have an accuracy of
3:5%. From a parametric study in Table 2.2, the relative errors of predicted stiffnesses
vary slightly according to input parametdis, . crrp Gz ). Particularly, it is observed
that the prediction error d £ rpis subjected to larger variations when estimated from

f thanfrom " or' .

From these comparisons and analyses, we conclude that the sandwich beam model
is accurate for the estimation of the composite modlugFrp and the equivalent
rolling shear modulu&cz with an error lower tha2:0%accordingtd o or ", which
con rms the relevance of the estimation based gn
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EL;CFRP (GPa) 110 115 120
Gez (MPa) | 105 110 115| 105 110 115 105 110 115
EL%CERLPCFRP f | 326 293 266/ 3.24 290 263 322 288 258
'o | 202 201 1.99 1.94 193 191 187 186 1.84
(%) " | 191 201 1.89 1.83 1.82 181 1.76 175 174
Giiz_Gez. fifa|-353 -3.35 -3.19 -355 -3.36 -3.21 -3.54 -3.36 -3.20
‘o;fa | -1.27 -156 -1.84 -1.26 -1.56 -1.83 -1.26 -1.56 -1.83
(%) "fa|-1.05 -156 -1.63-1.05 -1.35 -1.63 -1.06 -1.36 -1.63

Table 2.2 — Relative error of the estimation of stiffnedsg$.;,andGy% by the sand-
wich beam model compared to input variablgscrrp andGez

2.3 Experimental campaign

2.3.1 Specimen fabrication

The specimen are made of a wooden core between two CFRP layers. The wood
comes from samples taken from Franzoni et al. (2017b). It considi®ntay Spruce
boards with a thickness of 30 mm and a width of 100 mm. They have been previously
conditioned aR0°C and 65% relative humidity (RH) during at least one week, so that
the moisture content in boards is between 10 and 13% before gluing. Ten boards are
glued on their narrow faces with a two components glue including a thixotropic epoxy
based impregnating resin and an adhesive (Sikadur 330). Then, 800 mm long specimens
with a widthb= 40 mm and a thickness = 30 mm are cut, so that the wood bers are
oriented in the transverse direction. These specimen are conditioned ag&ig and
65% relative humidity (RH) before gluing with CFRP skins. A total of 12 specimens
are fabricated.

The CFRP skins are made of six carbon ber epoxy prepreg sheets stacked and
cured at120°C during 90 minutes. The nal skins consist thus in CFRP with a length
L = 800mm, a widthb = 40mm and a thicknesg = 1:2mm 0:2mm. Two sets
of CFRP skins with different mechanical properties are used in this study (One for
specimens RS1-1 to RS1-3, the others for specimens RS2-1 to RS2-9).

Finally, for each wooden specimen, the CFRP skins are glued on the top and bot-
tom faces of timber with the same glue as for timber's narrow edges during 24 hours.
The thickness of the glue is measured between smaller than 0.2 mm. As observed in
Figures 2.2 and 2.11, boards are carefully oriented, so that the pith is alternatively at
the bottom and top faces of the specimen in order to mitigate their effect on the global
behavior.
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2.3.2 ldenti cation of bending and shear stiffness with the four point
bending test

Each specimen is made of several boards with different mechanical properties be-
cause of annual rings as well as natural variations of wood which for the moment were
not taken into account in the model. To consider these variations, it is possible to go
further than in Section 2.2 and to assume that the bending stifinegsand the shear
stiffnessF (x) vary slowly along the beam. Thub, andF measured from relative de-
ection f, rotation on beam endsy, bending strains,, and mid-span de ectiofi
(Section 2.2.2) are averaged properties of the beam. By means of Castigliano theorem,
it can be shown that the measured bending stiffiiess (2.6),D- (2.7),D: (2.8) and
D¢ (2.9) and the measured shear stiffn€gs(2.9) are averages of the local bending
stiffnessD (x) and shear stiffneds(x):

ZIWf(X) 1 2 ZIW-(x) 1
dx ; — = dx ; —
"D 0+l , DO T DD

Z
1 ! Wi (X)

I 1o o F(X)

where,w ;(x) , w (X) , wrp andwqr can be considered as weight functions plotted
in Figure 2.10.
From these distributions, the equivalent compliagi;eis a weighted average of

ﬁ on the whole spahof the beam Wherea§1—f is a weighted average on a len@n
only. Thus, the measurement of the bending compliance with the relative de ection

is more sensitive to variations of the wood mechanical characteristics than the measure-
ment with the average of support rotatiop. Moreover it is observed thaéi- is a local
measurement of the bending stiffness and is therefore sensitive to local variations. It is

also observed that the measured complia&eds also an average on the whole span of
the beam and is closer {g- than tog*— (Figure 2.10). Finallyz- is an average of the
shear complianc% on the span between supports and loads.

Z
1 2l "'Wep (X) 1
= ’ ax : _ =
F+

dx;
Di |2 ( éo)z o D(X) X

lo - - - W
<+
1 N T W
// 7 \ \\ 7Wf,D
- N ~
. WrF
>
2a

Figure 2.10 — Weight functions for the integration of the bending compliance and the
shear compliance over the beam
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It can thus be concluded that, since there is a variability of wood characteristics in
CLT cross-layer, the estimation Bf based on  will be more reliable and wil& priori
present a reduced standard deviation compared to estimations Wwitmd ". This
will be con rmed in Section 2.4.

2.3.3 Experimental setup

The experimental setup is presented in Figure 2.11. Specimen are supported on
two cylinders of radiu® = 20mm on a spart = 600mm. They are loaded vertically
and symmetrically by two cylinders of radiuss 4 mm spaced of a lengtly = 200mm.
Steel plates are setup between specimen and cylinders to mitigate local punching. Sev-
eral sensors are set up to measure variables introduced in Section 2.3.2:

— Five linear variable differential transformers (LVDTS) are placed on the frame.
Three of them measure the vertical de ection on the lower axis of the beam: one
at mid-spanf(n), the two others on both sides at a distaaac# 80mm from the
mid-span {g andfgo). The two remaining LVDTSs are located on the upper axis
to measure the vertical settlement on supports.

— Two inclinometers are screwed into the wooden core on cantilevers on both sides
of the specimen to measure the end rotatlog &nd' co);

— Two strain gauges are glued on the uppér)(and the lower skins () close to
the mid-span.

N| o
N

LVDTs

Inclinometers

Figure 2.11 — Experimental setup

The specimen is loaded with a monitored vertical displacement up to 2.5mm, then
unloaded to 1.0mm, next reloaded to 2.5mm and nally totally unloaded (Figure 2.12).
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Thus, the specimen is never loaded more than 30% of the failure load measured by Fran-
zoni et al. (2017b) at 1.7 MPa in order to remain within the elastic range. The testing
speed is set to 3mm/min so that the measurement time is approximately one minute to
mitigate viscoelastic effects. Moduli measurements are derived from the reloading steps
to avoid rigid body motions and tolerance recovering by linear regression between the
loadP and f,' o, "andfa.

3
é y ’\\ VRN
™
E < 2 - \\\ /// .
g 2 y .
5 g 1 P N e
=g i Measurement .
%) - . .
S g of elasticity Y
0 40 80 120 160
Time t (s)

Figure 2.12 — Experimental loading sequence

2.4 ldenti cation of the equivalent cross-layer shear stiff-
ness

2.4.1 De ections and rotations during loading and unloading

In this section, results are plotted during the whole experiment in order to deter-
mine the best data to t linear regressions in order to measure the elastic linear behavior
of the sandwich beam. Here, results are plotted for the experiment RS1-3.

In Figure 2.13 the force-de ection diagram between the applied fer@nd the
mid-span de ection is plotted for the four steps of the experiment. A difference of slope
IS observed between the rst loading phase and the following phases. The rst loading
is usually overlooked because of several deformations:

— plastic deformations at supports and under loads due to stress concentration

— non-linear geometrical deformations due to Herzian contact between a rigid
cylinder and the beam which affects only the early stage of the loading

— settlement effects during the rst loading due to contact imperfections at the
beginning of the experiment

In Figure 2.13 the force-rotation diagram between the applied raad the rel-
ative rotation at supportsg is plotted. In Figure 2.14, the force de ection diagram
between the applied force and the relative de ection f is also plotted. In Fig-
ure 2.14, the force deformation diagram between the applied féraad the relative
deformation " is also plotted. Similarly, a difference of slope is observed between the
rst phase and the following phases. This difference is more visible in Figure 2.14(left)
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1

— Load 1 - g — Load 1

— Unload 1 — Unload 1

Force P (kN)
Force P (kN)

Load 2 Load 2

— Unload 2 — Unload 2

0~ 0.5 1 15 2
fa (Mm) o0

0.75

Figure 2.13 — Force-De ection diagram for the mid-span de ecfign(left) and force-
rotation diagram for the relative rotation at suppgogt(right)

compared to the others. Moreover, the slope is not constant during the three last phases
for the diagram with f (Figure 2.14). A linear regression seems more relevant for

P > 0:5kN than on the whole reloading phase. Finally, the noise is more visible in Fig-
ure 2.14(left) than in Figure 2.13. This difference can be partly explained by the relative
importance of the measured variable compared to the global deformations. Indeed, the
relative de ection f measured here are only 7% of the total de ectfon which is
approximately 10% of the total bending de ection and not representative of the global
bending of the beam. On the contrary, the rotatiogsand’ co are of the same order

of magnitude of the ratio between mid-span de ectignand mid-span Iengtlg. fis

then more sensitive to second order effects and to local defects ghép and "

1

0.75 — Load 1

—Load 1

— Unload 1
— Unload 1

0.5

Force P (kN)
Force P (kN)

Load 2 Load 2

—— Unload 2 0.25 — Unload 2

. 0.15
f (mm) 0g

0.5 1 1.5
" (mm/m)

Figure 2.14 — Force-De ection diagram for the relative de ectioh (left) and Force-
Deformation diagram for the relative deformatiori (right)

In Figure 2.15, the forc® is plotted as a function of the skew-symmetric part of
the de ectionw. The skew-symmetric de ections are not negligible compared to
the relative de ection f which show the necessity of two LVDTs on both sides of
the specimen. Indeed, since oy the symmetrical part of the load, is known here,
it must be plotted as a function of the symmetrical part of de ections which is not
measurable without LVDTs on both sides of the experiment. Moreover, a great part of
these de ections are due to inelastic deformations during the rst loading. After this
loading, the skew-symmetric de ection remains relatively constant vihen0:5 kN.
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Figure 2.15 — Force-De ection diagram for anti-symmetrical de ectiorBaand B°
(left) and force-rotation diagram for anti-symmetrical rotation at support (right)

In Figure 2.15, the forc® is plotted as a function of the skew-symmetric part
of end rotations ¢ + ' co. As observed previously, most of skew-symmetric rotations
are due to the inelastic deformations during the rst loading phase. Nevertheless, these
rotations are small compared to the relative rotatign

From these observations, we conclude that the linear regression must be done dur-
ing the second loading phase and a careful attention has to be paid to the uniformity
of the slope particularly for a low forcE and for the diagram o as a function of

f . Moreover, a higher sensitivity to second-order effects was observed for the mea-

surement of f compared to measurements'qf, " andf . Finally, non negligible
skew-symmetric de ections are observed showing the importance of two sensors on
both sides of the experiment for each measurement.

2.4.2 Stiffness measurements

In Table 2.3 the CFRP skins apparent Young modiliusrrp iS given for each
specimen.E . crrp Stands for the two sets of CFRP used in this study. Four specimen
have been tested using the three methods of measurement (RS1-1, RS1-2, RS1-3,RS2-
1). Stronger variations and lower values are observed for measurement obtained from

f than measurement froinp and ". This low measured bending stiffness lead to
high measured equivalent cross-layer shear mod@ls (Table 2.4) particularly for
RS1-1 wheresc; = 412 MPa according to f measurement which is is inconsistent
with other methods and which show the poor reliability of this measurement. Results
with the two other methods ¢ and ") seems more reliable since they are close to each
other. The relative difference betweEn. c,rp measured from " and from' 4 is less
than6%. The skins moduluk, . cerp (resp. wooden core shear stiffn€as; ) measured
with rotation at ends g is always larger (resp. smaller) than the modulus measured with
relative strain ". This relative difference is much higher than the one observed from
3D results (Table 2.2). Considering these results, only the measuremeénts&f-and
Gcz from' g is performed in the rest of the tests (RS2-2 to RS2-9).

The average of the equivalent cross-layer shear stiff@gssis nally 124 MPa.
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Specimen CFRP
f "o "
RS1-1 Setl 99.7 132 130
RS1-2 Setl 115 131 123
RS1-3 Setl 115 127 122
RS2-1 Set 2 97.2 110 104
RS2-2 Set 2 - 111 -
RS2-3 Set 2 - 117 -
RS2-4 Set 2 - 112 -
RS2-5 Set 2 - 112 -
RS2-6 Set 2 - 104 -
RS2-7 Set 2 - 96.8 -
RS2-8 Set 2 - 103 -
RS2-9 Set 2 - 101 -
Average Setl (Set2)110(97.2) 130(106) 125 (104)
COV (%) Setl(Set2) 8.15() 2.01(6.31) 3.28¢(-)
Number Setl (Set2) 3(1) 3(9) 3(1)

Table 2.3 E, .crrp (GPa) measures fromf ,"gand "

This value is in agreement with Voigt and Reuss bounds calculated in Chapter 1. More-
over, this value is higher than the equivalent rolling shear modulus measured by Fran-
zoni et al. (2017b) on the same batch of wood. This difference is mainly due to the
edge gluing in the present test whereas narrow edge are free in (Franzoni et al., 2017b)
as observed numerically in Chapter 1. Finally, the relevance of the proposed method-
ology is then illustrated through the low coef cient of variation (6.71%) compared to
single-lap shear test from Franzoni et al. (2017b) (27%) due to averaging effects which

a consequence of the numerous boards in a single specimen. The use of measurements
based on the rotation and long size specimen also reduces drastically the variability.

2.5 Conclusion

In this chapter, we proposed a new methodology to identify experimentally the
equivalent shear stiffness at the layer scale by using exural test on sandwich structures.
In this four point bending, we advocate for a measure using inclinometers to identify the
bending stiffness from the ends rotation, the estimation is more reliable than with the
classical estimation based on relative displacement at mid-span. This better accuracy
is partly due to the averaging effects of rotation compared to the relative de ection
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Specimen| f '

RS1-1 | 412 131 137

RS1-2 | 185 131 152

RS1-3 | 171 131 145

RS2-1 | 154 110 128

RS2-2 - 129 -

RS2-3 - 118 -

RS2-4 - 120 -

RS2-5 - 110 -

RS2-6 - 135 -

RS2-7 - 124 -

RS2-8 - 126 -

RS2-9 - 122 - | (Franzonietal., 2017b) Upper bound Lower bound
Average | 231 124 140 110 125 83.2
COV (%) | 52.9 6.71 7.41 27

Number | 4 12 4 10

Table 2.4 -Gcz (MPa) measures fromf , ", and

between loading points. The measurement of rotation is also signi cantly less sensitive
to the quality and the precision of sensors setup compared to the measurement of the
variations of de ection.

Then, we conducted a rst experimental campaign on these sandwich structure
and con rmed the reliability of the method. Indeed, the equivalent cross-layer shear
modulus of the sample was estimated at 124 MPa with a coef cient of variation of
6.71% which is remarkably low for wood characteristics. The simultaneous testing of
several boards in a single sandwich is very bene cial.

To go further, we look forward to use this methodology to study the viscoelas-
tic behavior of the equivalent cross-layer shear stiffness of timber which is needed to
design Cross-Laminated-Timber in the long term. Currently, only few studies on the
viscoelastic behavior of Cross-Laminated-Timber panels have been published to the au-
thors knowledge (J6bstl and Schickhofer, 2007; Pirvu and Karacabeyli, 2014; Colling,
2014; Li, 2015). In all these studies, the whole CLT panels are tested and the viscoelas-
tic behavior of the cross-layer is not directly identi ed. Recently, specimen used in
this study have been put into four point bending test during several months to identify
directly the creep due to the cross-layer shear of timber at constant climate.
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CHAPTER

3

The Bending-Gradient theory for
the linear buckling of thick plates:
Application to Cross-Laminated-
Timber panels

In the rst part of this PhD thesis, the equivalent-layer stiffness of CLT has been
de ned and an experimental protocol has been de ned to measure the equivalent cross-
layer shear stiffness. Then, from these equivalent homogeneous behavior, it is possible
to derive the linear elastic behavior of CLT. We rst introduce the buckling problem of a
CLT panel without initial imperfections using the Bending-Gradient theory. This chap-
ter was published in the International Journal of Solids and Structures (Perret et al.,
2016)

3.1 Introduction

Cross Laminated Timber (CLT) is an innovative wooden structural product which
consists in several lumber layers stacked crosswise and glued on their wide faces. CLT
constructions are assembled relatively quickly compared to buildings in steel or concrete
and combine a low self-weight and high membrane and bending stiffnesses. These at-
tributes make it competitive prefabricated structures with a low environmental impact.
CLT panels are classically used in walls, oors and roofs as load carrying plate el-
ements. Thus, several studies were performed to model the bending of CLT plates
(Stirzenbecher et al., 2010; Guggenberger and Moosbrugger, 2006; Franzoni et al.,
2016b, 2017a,b).

CLT was introduced in Austria and Germany in the early 1990s (Stirzenbecher
et al., 2012). During the last twenty years, CLT structures have gained in popularity
and taller and taller buildings are designed every year. As an example, the building
Stadthaus, at Murray Grove in London (Lomhlt, 2015), is the tallest modern timber
building in the world. This nine-storey building is entirely designed in CLT except for
the rst oor. Until now, loads involved in timber buildings were relatively far from
design limits. Nevertheless, with the increasing size of timber buildings such as the
Ho-Ho building project at Vienna in Austria which will be 84-meters high (French,
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2015), higher compressive stresses will be involved in bearing walls and could lead to
buckling. Although CLT walls are thick, they are made of a highly anisotropic material
and this anisotropy could lead to a lower buckling load than predicted with the classical
lamination theory. Indeed, the shear stiffness between radial and tangential directions in
timber, called also rolling-shear, is two hundred times lower than the stiffness in bers'
direction. As rolling shear is involved in cross layers during buckling, taking it into
account seems important with such a contrast.

Yet, the combination of such an anisotropy with thick sections is relatively new in
the domain of composite materials. In the Eurocode 5 (European Committee for Stan-
dardisation, 1993) for the design of timber constructions, the buckling load is derived
from the Euler-buckling of slender beams where the transverse shear strain is neglected.
In order to take into account long term loading, imperfections and possible transverse
shear effects, several safety coef cients are introduced. Nevertheless, these coef cients
often lead to oversized timber structures which are then less competitive than struc-
tures made of steel or concrete. Thus, using a more appropriate theory to design timber
structures could lead to more competitive CLT buildings.

Since one of the dimensions of CLT panels, the thickness, is signi cantly lower
than the others, plate theories are appropriate to model CLT panels. Thus, the 3D prob-
lem can be reduced to a 2D one associated with a chosen reference surface and a lower
number of variables than the full problem. In these theories, called Equivalent Single
Layer (ESL) theories, properties of interest are integrated through the thickness of the
plate and transposed to the single layer model. These theories often follow an axiomatic
approach since they are derived from displacement and/or stress eld distribution as-
sumptions. The simplest example is the classical lamination theory for thin plates, or
Classical Plate Theory (CPT), derived from the Kirchhoff-Love plate theory (Kirchhoff,
1850; Love, 1888). In this theory, the main assumptions are: cross-sections remain
plane and normal to the mid-plane section (no transverse shear); the transverse normal
stress is negligible compared to in-plane stress. To comply with these assumptions, the
in-plane displacement is assumed to vary linearly through the thickaess: x3Us.
and the out-of plane displacement= U; is assumed to be constant through the thick-
ness and equal to mid-plane de ection. The CPT converges to the exact 3D solution
when increasing the slenderness of the plate (Ciarlet and Destuynder, 1979; Ciarlet,
1997). In his technical report, Leissa (1985) provided a large overview of the buck-
ling of rectangular laminated composites by considering several loading con gurations,
boundary conditions and geometries of orthotropic and anisotropic laminates mainly
based on the classical lamination theory. He also pointed the necessity to consider shear
effects, which are neglected in the CPT, when the thickness of the plate increases.

In order to capture shear effects in the plate, Hencky (1947) suggested another in-
plane displacement eld distribution by introducing the rotation eld adding then
two new variables. The in-plane displacement is there de ned as x3' and the
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transverse shear strainas= Us. +' . Thus, the so-called rst-order shear deforma-

tion theory (FOSDT) leads to a uniform transverse shear strain distribution through the
thickness. Since the actual distribution of the transverse shear stress is at least quadratic
through the thickness, the transverse shear stiffness is often adjusted with a shear cor-
rection factor . For homogeneous plates, valueéco)‘r 1—2 are used by Reissner (1945)

and Mindlin (1951) respectively. Even if this theory is also called the Reissner-Mindlin
theory, Reissner's model is based on static assumptions: indeed he assumes a parabolic
distribution of the transverse shear stress which does not exactly correspond to Hencky's
kinematic. The FOSDT was extended to heterogeneous plate by Yang et al. (1966) to
study the propagation of harmonic waves in laminated plates. Whitney and Pagano
(1970) applied the same procedure as Yang et al. (1966) to the problems of cylindrical
bending, bending of rectangular plates and natural frequencies. Results presented by
the FOSDT are more accurate than the CPT, in particular for thick and highly anisop-
tropic plates. Nevertheless, applying directly the FOSDT to laminated plates leads to an
inaccurate description of the local stress eld since it does not ensure transverse shear
stress continuity at layers interfaces. Chow (1971) then Whitney (1972) suggested to
include shear correction factors adapted to laminated composites by considering the
cylindrical bending of a laminate. The lamination scheme and the shear stress conti-
nuity across thickness are considered to estimate these correction factors. Concerning
buckling, Noor (1975) studied the symmetrical and unsymmetrical laminated composite
and showed that the Reissner-Mindlin's theory gives good results for the critical load of
such laminates compared to a mixed nite-difference scheme suggested by Noor (1973)
provided that shear correction factors are well determined.

As animprovement of the FOSDT, higher-order shear deformation theories (HOSDT)
were introduced to provide a better shear strain distribution through the thickness and
to guaranty shear stress boundary conditions at the top and bottom surfaces without
the use of correction factors. One of the rst HOSDT was suggested by Kaczkowski
(1980) who assumed a cubic distribution of the in-plane displacement while the out-
of-plane displacement remains constant through the thickness. Alternative cubic forms
were suggested by Ambartsumian (1970) and Levinson (1980). By considering zero
shear stress at outer surfaces, the problem is rewritten by keeping only FOSDT's kine-
matic unknowns. Despite this simpli cation in the number of variables, two addi-
tional boundary conditions on the gradient of the de ection are introduced. Levinson
(1980) showed that his theory gives exactly the same wave equation for the de ection
as FOSDT with the shear correction factor 2, when studying natural frequencies.
Moreover, this HOSDT presents more accurate results than FOSDT for static prob-
lems such as plate torsion (Levinson, 1980), or bending (Reddy, 1984), in particular for
stress distribution. Following Kaczkowski's example, several others HOSDT were sug-
gested by considering various in-plane displacement distributions with the global form:

u (xs) = x3' +f(x3) . isan additional variable representing plate warping and
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f a suitable function which approximates the actual distribution of the transverse shear
strain through the thickness and which allows the shear stress to vanish at top and bottom
surfaces. For examplé,was considered polynomial (Kaczkowski, 1980; Ambartsum-
ian, 1970; Reissner, 1975; Levinson, 1980; Reddy, 1984) and trigonometric (Touratier,
1991). Concerning buckling, Phan and Reddy (1985) used the cubic form suggested by
Reddy (1984) to study laminated composites. The buckling load given by the HOSDT
is in good agreement with the three-dimensional solution of Noor (1973) and with the
rst order shear deformation theory with appropriate correction factors (Noor, 1975). It

is pointed in this study that this HOSDT is an improvement of the FOSDT since it does
not require shear correction factors.

Zig-zag theories (ZZT) are the most re ned HOSDT and have been developed to
model the actual piece-wise continuous displacement and transverse shear stress distri-
butions through the thickness. These theories comply with the inter-laminar continuity
of displacements and of transverse shear stress elds in multi-layered plates. In his re-
view, Carrera (2003) distinguishes three kinds of ZZT based on works of Lekhnitskii
(1935), Ambartsumian (1957a,b) and Reissner (1984). Lekhnitskii's work has been ex-
tended to orthotropic and anisotropic plates by Ren (1986b,a) and applied to buckling
and free vibrations of laminated plates by Ren and Owen (1989) with accurate results.
As pointed by Carrera (2003), most of other improvements or extensions of these theo-
ries are based on Ambartsumian model such as Whitney (1969). ZZT are well adapted
but limited to composites with classical lamination scheme. Moreover they involved
higher-order partial derivative equations than the Reissner-Mindlin model.

Lebée and Sab (2011a) suggested an improvement of the Reissner-Mindlin theory
by considering every components of the gradient of the bending moment to describe the
shear behavior of the plate. The Bending-Gradient theory is found to an exact extension
of the Reissner-Mindlin model to mirror symmetric plates (Lebée and Sab, 2013). Four
additional unknowns are used to take into account the cylindrical bending part and the
torsional part of the shear force and to include warping effects. The Bending-Gradient
(BG) theory is found to turn exactly into the Reissner-Mindlin model in the case of an
homogeneous plate. Lebée and Sab (2011b) studied the case of the cylindrical bending
of laminated plates and compared their results to the exact solution of Pagano (1969),
to the solution provided by Whitney (1969) using a Reissner-Mindlin model and to a
nite-element solution. The Bending-Gradient captures more ef ciently displacement
and stress elds for symmetrical laminates with non-orthotropic ply than the Reissner-
Mindlin model. Indeed, in such laminates, the effect of warping is neglected in the
model provided by Whitney (1972).

The aim of this chapter is to extend the Bending-Gradient theory to plate buckling
and to apply it to CLT panels. We restrict our study to the case of rectangular plates
uniformly loaded with the membrane streNg, in x;-direction. In section 3.2, the
Bending-Gradient theory is brie y recalled and extended to linear buckling. The intro-
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duction of two projections on a simpli ed Reissner-Mindlin model is also discussed.
Then, in section 3.3, a 3D numerical study is conducted and provides reference results.
Finally, analytic results from the Bending-Gradient theory, the CPT and the FOSDT are
compared with reference results in section 3.4.

3.2 Linear buckling of plates with the Bending-Gradient
theory

3.2.1 Notations

Vectors and higher-order tensors, up to sixth order, are used in the following. When
using short notations, several underlining styles are used: vectors are straight under-
lined, u. Second order tensors are underlined with a tiltle: and . Third order
tensors are underlined with a parenthestsand . Fourth order tensors are doubly
underlined with a tilde:D andC . Sixth order tensors are doubly underlined with a
parenthesish. The full notation with indices is also used. Einstein's notation is fol-
lowed on repeated indices. Furthermore, Greek indices = 1;2denote in-plane
dimensions and Latin indiceg; k;| =1;2;3, all three dimensions.

The transpose operatidnis applied to any order tensors as follo%) .., =
a .. . Three contraction products are de ned, the usual dot producb(= ah),
the double contraction produc ( b = a; Iy ) and a triple contraction produc ¢ b =
a b ). It should be noticed that closest indices are summed together in contraction
products. The derivation operator is also formally represented as a vector so that
a r_=a;r;=a isthedivergenceara r_ = a;r y = aj isthe gradient. Here

is the dyadic producte °r_ = ar j = 3 (a; + &) is the symmetric gradient af.

3.2.2 The Bending-Gradient theory

Full details about the Bending-Gradient theory are provided in Lebée and Sab
(2011a,b); Sab and Lebée (2015); Lebée and Sab (2015b,a).

3.2.2.1 Generalized stress and strain elds

We consider a linear elastic plate of constant thickreaad characteristic length
L which mid-plane is the 2D domain (Figure 3.1). The 3D domain is then de ned
as = ! [ h=2;h=2]. Cartesian coordinates;; x,; X3 are used in the reference
frame (e;;e,;e,). The plate is loaded with the distributed lopd = ps(X1;x2)e,
in the transverse direction. The 3D constitutive tenSoirs monoclinic with respect
to (el;gz)-plane:C 3 = Cs33 = 0. Moreover the plate follows mirror symmetry
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Figure 3.1 — 2D plate under out-of-plane loading

according td , in other word<C is an even function of3. The conventional generalized
stresses for plates in bending are de ned from the 3D stress glds follows:

£
X3 dxz on! (3.1a)

h

2

8

v =
o

.E Q = 30X3 on! (3.1b)

h

2

whereM is the bending moment ar@ the shear force. Integrating the 3D equilib-

rium equation leads to the following Reissner-Mindlin plate equilibrium equation:

M. = (Mr—:Q

Q. +p=0 ! Q r+p=0 52

In the Reissner-Mindlin modeM andQ are in duality with the curvature =
" °r_ and the transverse shear strair '+ r_ Uz whereUs is the de ection and
the rotation.M follows the classical symmetry of stress tensds: = M . In the
Bending-Gradient theory, an additional static unknown is introduced: the generalized
shear forceR = M . . The 2D third-order tensdR complies with the following
symmetry:R = R . Itis possible to derive the shear forQefrom R with: Q =
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R orQ = iR. i isthe identity for in-plane tensor: = %( + )
where s the Kronecker symbol =1if = andOif 6

The main difference between Reissner-Mindlin and Bending-Gradient plate theo-
ries is that the latter enables the distinction between each components of the gradient
of the bending moment whereas they are mixed into the shear force with the Reissner-
Mindlin theory. The full bending gradie®® has six components where@shas two
components. Thus, using the full bendin_g gradient as a static unknown introduces four
additional static variables. More preciseRi11 andR,»;, are the cylindrical bending
parts of shear force®; and Q, respectively,R;,; andR;,, are the torsion parts of
these shear forces respectively &d, andR,;; are linked to strictly self-equilibrated
stresses.

By generalizing the Reissner-Mindlin equilibrium (3.2), the Bending-Gradient equi-
librium equations are:

R =M, R=M r
o 0

R. + p3'= on! (3.3)

iiR r_+p=0

Generalized stress@$ andR work with the associated strain variables: the cur-
vature and the generalized shear strainespectively. These strain elds must comply

with the compatibility equations:

0 - (3.4)
— Y3

where s the third-order tensor related to generallzed rotatlonand are 2D-third-
order tensors following the symmetry = : =

3.2.2.2 Bending-Gradient constitutive equations

The Bending-Gradient plate constitutive equations are:
(
M =D M = D :
h

R 0 iR on! (3.5)

[y

whereD = d !is the conventional Kirchhoff-Love fourth-order bending tensor classi-
cally de ned as follows:
£y
D = X3C  (X3) dxs (3.6)

Nz
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C 33C 33
Caas3
Here,C is the plane stress elasticity tensor @ds the fourth-order 3D elasticity
stiffness tensor.
The sixth-order generalized shear compliance tehserthen de ned as follows:

with C =C

! 7 !

X3 X3

zd:C dz g zC :ddz dxs (3.7)

_h
2

Zn Z
2

=
I

_h
2

N|T

whereg (x3) = (C 3 3) 'is the out-of-plane transverse shear compliance tensor. The
fourth-order tensod and the sixth order tensbrfollow the major symmetryD =
D ,h = h and the minorsymmetn® =D ,h = h .

The tensoth is not always positive de nite. For this reason, the Moore-Penrose
pseudo-inverseis introduced:

1,

'ﬂ:”f"o[‘é[‘* I ih (3.8)
where |l qpha = lalpha is the sixth-order identity tensor. For example the
Moore-Penrose pseudo-inverse ofO g is 13 8 . Thus, the reciprocal rela-
tionship of Equation (3.5) may be introduced:

R =H 0 R=H: on! for 21Im h

where Im h (RZ)3 is the image of the sixth-order tendor

3.2.2.3 Projections of the Bending-Gradient model on Reissner-Mindlin models

In the case of a homogeneous plate, it was demonstrated that the Bending-Gradient
model is strictly reduced to a Reissner-Mindlin model (Lebée and Sab, 2011a). Indeed,
it can be shown that in this case:

h =i fRi 0 h=i fR | (3.9
wheref R = %g is the shear force compliance tensor classically used in the Reissner-
Mindlin model. For this reason, the Bending-Gradient theory can be seen as an exten-
sion to heterogeneous plates of the Reissner-Mindlin theory. It is thus suggested here

to investigate projections of the Bending-Gradient on a Reissner-Mindlin model. Even
if these projections are less accurate than the Bending-Gradient model, some of them
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may be applicable to a given problem with a good accuracy. In the present work, two
relevant projections are tested to provide a Reissner-Mindlin shear constitutife law

(or F) from the generalized shear constitutive law

3.2.2.3.1 Shear Compliance Projection (SCP) The components of the generalized
shear tensoR may be rewritten as :

Q =R ; Rz Ru

Q1= Rin 2Rz Q2= R 2R

where Q;, Q», Ry andRy;, are four self-equilibrated static unknowns. They are
clearly set apart from shear forc€s . Thus, we assume that these unknowns do not
contribute to the transverse shear energy and keep only the contribution of Reissner-
Mindlin shear force®; andQ,. This is equivalent to s®® = %i Q inthe shear stress

energy and leads to:

T

W BG;R (R)

N[

wWIN
>

wIN

Pl

i thi % Q

|
NIFR NI
=
KO ' 0
wIN

Consequently, the Reissner-Mindlin shear stress energy is obtained with the following
projection ofh:

2. .. . 2
f= Zi ihi Zj
3 = 3
8 4
213 = 5 (huanaa+ hazozor + 2ha11201)
> ffg = 51? = g (h111121+ h111?9? + h1717?1 + h222221) (310)
i = g (h222222 + N121121 + 2N121220)

This projection is used by Lebée and Sab (2011a,b) to evaluate the distance between
Bending-Gradient and Reissner-Mindlin models.

3.2.2.3.2 Shear Stiffness Projection (SSP)Another possible projection is obtained
assuming, for the generalized rotation eld, the particular forns i " 2Im h .

From2i {i = itisdeducedthat = 2i | .Reissner-Mindlin rotations have thus the
following form:

—g +1' ! —g +:_L
1- 3 111 3 122 2~ 3 222 3 121

Considering the generalized shear strain energy in the Bending-Gradient model
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(Lebée and Sab, 2015b):

.

WBG’() = % ~ _ h:
T .

3 U+ Up i

I

'_ +r U3

the Reissner-Mindlin shear strain energy is obtained with the following projection of
the sixth-order generalized shear stress teHsor

FsS=iiH ii

8

2 FY = Hun+ Hizooor + 2H111001

> Flszs = Fzsls: H111171 + H111???+ H121221+ H222221 (311)
" F35 = Hoooooo+ Hipr1o1+ 2H 12100

The relevance of these two projections will be tested in section 3.4.

3.2.2.4 Simple support boundary conditions

On the plate boundarie®!, the normal and the tangent vectors are notezhdt
respectively. In the Reissner-Mindlin plate model, there are two kinds of simple support
conditions: soft or hard simple support (SSS and HSS respectively). The soft-simple-
support condition is modelled by restraining only the out-of-plane displacelheand
letting the tangent rotation, free. The latter is restrained on a hard simply supported

edge@': 3
U =0 < U3 =0
SSS |v|3 _ HSS n M n=0 (3.12)
n=20 D
=0
In the Bending-Gradient model, general boundary conditions consist in setting:
8
<M =M1 oo n=H%n@! (3.13a)
iiR n=V, orU=U$ on@! (3.13b)
SinceQ = | iR, the out-of-plane boundary condition (3.13b) is the same as in the

Reissner-Mindlin model. However, the boundary condition (3.13a) differs since the
bending momen¥ly may be imposed in the Bending-Gradient theory adding one bound-
ary condition compared to the Reissner-Mindlin model.

As in the Reissner-Mindlin model, the soft simple support boundary condition is
modeled by restraining the out-of-plane displaceni&rdnd letting the other kinematic
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elds free:

U;=0andMy, = My = My =0 (3.14)
Contrareé to the Reissner-Mindlin model, the bending monhptis set to zero. Since
h
My = % X3 wdXz (See Equation 3.1a), it seems to involve a 3D stress component

to which no 3D boundary condition should be applied. Actually it does since for an
heterogeneous plate is a linear combination of all bending moment components
M (Lebée and Sab, 2011a). The conditdg = O is thus related to the boundary
layer ensuring n = 0. Itis here remarked that in the case of a homogeneous plate

= %M imposes on soft simple supported edges &y, = M,y = 0 asin the
Reissner-Mindlin model.

The hard simple support boundary condition (3.12) cannot be directly transposed
from the Reissner-Mindlin model to the Bending-Gradient model since generalized rota-
tions are a combination of both rotatiohs. Nevertheless, it can be demonstrated
that if the constitutive material is orthotropic with respect to;t , . IS working
with M, and is then the only component of directly related to the tangent displace-
mentu, and then to the tangent rotatibp. Since rectangular CLT panels comply with
this assumption (boards are orientedinor x,-direction depending on the layer), the
hard simple support boundary is de ned by:

U3 = O; ntn = 0 andMnn = Mtt = 0 (3.15)

Similarly to the Reissner-Mindlin model, in the present extension of the Bending-
Gradient theory to plate buckling, closed-form solutions focould only be derived in
the case of hard simple support. From a practical point of view, it is dif cult to know
whether hard or soft simple support are applied. For this reason, both hypothesis will
be investigated numerically in section 3.3.2.1.

3.2.3 Linear buckling analysis with the Bending-Gradient theory

We consider now a linear elastic rectangular plate of leagiidth band thickness
h, which mid-plane is the 2D domain = ([0; a]; [0; b]). We assume that the plate is

uniformly pre-loaded with the membrane strés$( ) = e e (see Figure 3.2).
Rn
The membrane stress is de nedMs = 2, dxs.

2

3.2.3.1 The linearized 3D stress state under in-plane compression

The initial stress corresponding to the pre-ldéd( ) is noted ° and complies

Rn
with the equality: ?, © dxz = N° . We consider now the perturbed state u + _
2
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Figure 3.2 — Settings of the buckling problem of a simply supported plate under unilat-
eral load

Whereu0 is the initial displacement eld and a small perturbation which comply with

kinematic boundary conditions. The Piola-Lagrange stress tensaso called the rst
Piola-Kirchhoff stress tensor, is expressed at rst order as:

1
i = 5+ ik g+ Ciu 5 (k) (3.16)

In the following, we assume that the third term in Equation (3.16) takes the same form
as the Bending-Gradient stress tensof® = C :  Sr_  and depends then dvi
andR (Lebée and Sab, 2011a).
Since %is already in equilibrium (%, =0), the 3D equilibrium j; =0 is given
only by the divergence of the second and the third term in equation (3.16):

0 BG _— 0 BG —
kgt o = kg T oG =0 (3.17)

It can be demonstrated through asymptotic expansions (Ciarlet and Destuynder,
1979; Lebée and Sab, 2013) that the 3D displacement eld of a plate has only an out-of-
plate component depending on in-plane directions at the leading orgetJ;(X1; X2)

e,. The Equation (3.17) may then be rewritten by separating in-plane and out-of-plane
parts of the equilibrium:

(
B;G + 833 = (3.18a)
Uy + 35+ 25,20 (3.18b)
The integration oz (3.18a) through the thickness, after integration by part, is

found to be equivalent to the plate equilibriivh. [ R =M. R =0.
In absence of out-of-plang, the integration through the thickness of Equation (3.18b)
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leads to the following equality:

r iiR +U; N° =0 (3.19)

It may be noted here that the second term of the equilibrium (3.19) due to second-
order effects of in-plane loa ° and to out-of-plane de ectiotl; takes the same form
in the Bending-Gradient theory as in Kirchhoff-Love (Timoshenko and Gere, 1961) and
Reissner-Mindlin models.

3.2.3.2 Buckling load calculation

The substitution of the set of equilibrium (Eq. 3.3, 3.19), compatibility (Eq. 3.4)
and constitutive equations (Eq. 3.5) results in an eigenvalue problem which solutions are
the critical buckling modes associated with the corresponding eigenquies_ ):

8h h i
< ii D: r I r Usz11=0 (3.20a)
- h [
+i rrUs=hi{ D: r_ r_ (3.20b)

Closed form solution of this problem are derived looking for expressiorid;of
and in the form of double-Fourier series. Considering kinematic compatibility (EqQ.
3.4), hard simple support boundary conditions (Eq. 3.15) and the geometry of the plate
(which is rectangular with each layer's principal axes coinciding with the rectangular
reference framée ;e ; e,)), expressions dfl; and  are looked in the following form:

P, P
Us = m=1

L UM sin(K ;1) sin(K nx2)
P, fOl’p %11; 221and 125
= 21 on=r M ocosKmxy)sin(KyXy) (3.21)

P, forp %21; zand o
= 21 o= M osin(KpXp) cosKnX2)

whereK ,, = m? andK,, = nFfor fm;ng 2 N 2

U™ and ™ are the amplitudes of each term of the out-of-plane displacement and the
generalized rotations associated with time; ng mode respectively. With such a form,
solutions of the problem (3.20) may be found using Voigt notations (see A.2). For a
given mode, the critical buckling load,, is derived from the Equation (A.16).

It is noticed here that the eigenvalue solution for a Reissner-Mindlin model may
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1 T LI

be obtained by replacing_w by i f i (Eq. 3.9) wherd is the second-order
shear compliance tensor of a Reissner-Mindlin model. In this study and in the following

1
comparisond, takes successively the forh§,f scandf = F*  to comply with

the FOSDT corrected by, the shear compliance and the shear stiffness projections
respectively.

It is noted here that the critical load calculated with the Kirchhoff-Love model by
Timoshenko and Gere (1961) may be deduced from the Equation (A.16) by neglecting
shear effecth = O:

2 m2 n
mn = 7 — D+ ] ?D g2z + 2N (D1122 + 2D 1212) (3.22)

where = ? is the plate aspect ratio. From this expression, the minimal buckling load
for avarying may be deduced as:

mn = g D1111D 2222+ D1122+2D 1212 (3.23)
r
for = m, Dun
N Do

3.3 3D reference model for the linear buckling of CLT
panels

A 3D numerical study is performed using the nite element software ABAQUS.
These numerical results will be considered as the reference results for the comparison
with analytical models in section 3.4.

3.3.1 The 3D linear buckling problem

The linear buckling analysis is performed in two steps: the plate is initially pre-
stressed with the uniform membrane strés$( ) = e, e, and then buckling

modes satisfying boundary conditions are calculated as linear perturbations of the ref-
erence state.

3.3.1.1 The pre-stressed state

For the design of walls, it is conventionally assumed that the 3D pre-stress eld
is equivalent to a uniform membrane strés¢g,. For homogeneous plates such as
steel plates, the 3D pre-stress is uniform in the whole plate and is then Ni;=h.
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Nonetheless, for a laminated plate, the pre-stress equivalent to a uniform membrane
stress is not uniform but depends on the out-of-plane coordinaies 11 (X3). Thus,
boundary conditions of the actual 3D problem (see Figure 3.3) are given by the follow-
ing equality up to a rigid motion:

8
3 n=g 1 forx;=f0;bg
11 (X3)
2 n=@ o A for x; = f0; ag (3.24)
' 0
where 7.

11 (X3) dX3 = N3

NES

11 (X3)

Figure 3.3 — 3D Boundary conditions of the buckling mode calculation step

Nonetheless, applying directly this stress distribution is not convenient in Abaqus.
An alternative approach consists thus in imposing the corresponding strain eld. Indeed,
from the classical lamination theory, the 3D in-plane strain ‘tlchay be expressed as
a function of the membrane stress:

" =E =a N°, "=E=a:N° (3.25)

Z
witha 1= A = iC dxs
2

whereE is the membrane strain tensor alhdhe fourth-order membrane stiffness ten-
sor. From the orthotropy of CLT plates, it is possible to derive the strain distribEtion
andE,, corresponding to the pre-stressed state. Thus, kinematic boundary conditions
are applied on the CLT plate to model a uniform membrane stress as shown in Figure
3.4. The pre-strain eld is then uniformly distributed in the whole plate with a compres-
sion inx;-direction and a dilatation iR,-direction modeling in-plane Poisson’'s effect
and vanishindN %, andNJ2,.

|=
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Figure 3.4 — Model of the uniform membrane pre-stress during the stress perturbation
step in Abaqus calculation

3.3.1.2 Buckling modes calculation

During the second step, the buckling modes are calculated as additional perturbed
states which comply with boundary conditions. Thus, 3D simple support boundary
conditions must be modeled in this step.

Hard and soft simple support boundary conditions (see section 3.2.2.4) are applied
only on the 2D plate models. In the 3D problem, there is no rotation ' elut only

three translational degrees of freedom and thus HSS and SSS conditions cannot be di-
rectly applied to the 3D model. Nevertheless we may assume that restraining the tangent
displacement; is a good 3D model to set tangent rotationto zero. These equiva-

lent 3D hard and soft simple support boundary conditions are shown in Figure 3.5 for a
rectangular plate.

uz =0
u; =0 (HSS only)

us =0 ] Ih
u, =0 (HSS only) ~ .-~ -

A - -

-3 - e
- -

us =0
b u;=0 (HSS only)

u; =0 (HSS only)
Figure 3.5 — 3D Boundary conditions of the buckling mode calculation step

The C3D20R element, a quadratic 3D brick-element with 20 nodes is used to mesh
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the plate. There are three degrees of freedom at each node, one for each translation.
A reduced integration with only 8 integration points is chosen to evaluate the material
response in each element (ABAQUS, 2004). A convergence study was performed to nd
the most suitable mesh with an accuracy of 0.1% in terms of buckling load. In order to
reduce the time of calculation, elements are stretched in in-plane directions (see Figure
3.8).

3.3.1.3 Timber elastic characteristics and CLT con gurations

Timber is a material with a high anisotropy and is often modeled as a linear or-
thotropic material. Norway Spruce mechanical characteristics are used in this chapter
because it is one of the most used species in timber construction. References values are
taken from Keunecke et al. (2008) (see Table 3.1). For an orthotropic makgti&d;
and j stand for Young and shear modulii and Poisson's ratios respectlvey.andT
stand for longitudinal, radial and tangential directions respectively.

EL ErR Er Gr Gur Grr R LT RT

12800 625 397 617 587 53 036 @45 041

Table 3.1 —Elastic Properties of Norway Spruce, E and G in MPa (Keunecke et al.,
2008)

There is a high contrast between the longitudinal stiffigssnd the rolling shear
stiffnessGgt . These two characteristics will thus drive the buckling load of CLT panels
and are of main importance. In the present mo&els oriented in the out-of-plane
directiong3 and L (T respectively) is alternatively orienteden (e, respectively) and
in e, (gl respectively) directions depending on layerén the upper and lower layers,
bers (L) are always oriented ix;-direction.

Standard CLT panels are generally made of 3,5 or 7 plies which have the same
thickness in the present study, and comply with the mirror symmetry. In the following,
the slendernesﬁ, varies between 10 and 35 and the plate aspeciries between 0.5
and 4 to include geometries of actual structures.

1. Since, this chapter was chronologically the rst chapter studied during this thesis, there is here
no distinction between the global equivalent layer stiffness in the coordinate sy&tdmMC;Z) and
the local stiffness in the coordinate syst€¢@;L;R;T). Nonetheless, conclusions of the numerical
application in this chapter would be similar using the equivalent-layer stiffness derived in Part I.
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3.3.2 Application of the 3D linear buckling to CLT panels

3.3.2.1 Global behavior of the plate

3.3.2.1.1 The boundary layer OnFig. 3.6 the distribution of in-plane stress, of

the rstbuckling mode is drawn for an out-of-plane displacement magnitude normalized
to 1. It is noted here that the global shape of the buckling mode is similar for hard
and soft simple support boundary conditions and comply with the double-sinus form
suggested in section 3.2.3.

12
39:3
26:2
13:1
0:00

13:1
26:2
39:3

path C

ID

|D
D
i\

SSS HSS

Figure 3.6 — 3D distribution of , for a 5-ply CLT square panels witilﬁ = 15 on SSS
or HSS edges

The main difference between SSS and HSS is thais zero at boundaries only
in the rst case. Itis the direct consequence of the free tangent displacegfentSSS
plates and it is equivalent to impobg;, = 0 at boundaries on a plate model.

On Figure 3.7, the ratio between the in-plane shear strgsfor SSS and HSS
plates is plotted along the pa@ which curvi-linear abscissa is. and total length is
L. Thus, far enough from boundaries, the distribution gfis similar for hard and soft
simple support boundary conditions: it is a consequence of the Saint-Venant principle.
Thus, there is a boundary layer next to soft simply supported edges. The length of this
boundary layer in the studied case is equal to more than twice the thickness of the CLT
panel. Contrary to the case of thin plates, this transition area is not negligible in the
case of CLT panels which are relatively thick and anisotropic. Thus, the question of the
distinction between soft and hard simple supported plates is meaningful and needs to be
developed.

On Figure 3.8, the displacemeunt is plotted on the loaded edge for a 5-ply CLT
panel with HSS boundary conditions. The displacemanis not linear through the
thickness, and thus the shear strajg is not uniform alongxs because of the high
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1

0 0.25 0.5 0.75 1
Xc
T

Figure 3.7 — Ratio between the in-plane shear stregs®f SSS and HSS 5-ply CLT
square panels Witﬁ = 15 along the pattC (Figure 3.6)

stiffness contrast between longitudinal and tangential layers. The assumption of lin-
ear in-plane displacements in Hencky's kinematic removes warping effects observed in
laminated plates. On the contrary, in the Bending-Gradient theory, the four additional
variables in capture these effects. The Bending-Gradient may thus describe qualita-
tively better the behavior of CLT panels by introducing four additional unknowns.

The buckling load relative difference between 3D HSS and SSS with respect to
HSS plates is plotted on Figure 3.9 for a 5-ply Cross-Laminated-Plate. As expected, the
buckling load of SSS panels is lower than in HSS panels since restraining the tangent
displacement at boundaries stiffens the plate. This stiffening effect is more important
when decreasing the slendernﬁsﬁor all aspect ratiog,. This result comes directly
from the fact that hard and soft simple support conditions become closer when increas-
ing the slenderness and converges to HSS which is the only simple support boundary
condition in classical plate theory.

Thus, as it was expected, the relative difference between hard and soft simple sup-
port boundary, which is around 3% with a maximum of 5% in the studied domain, can
be meaningful depending on the required precision.

3.3.2.2 Buckling load and compressive strength of HSS CLT panels

In this section, the 3D critical buckling stresg is compared to the compressive
strength , of CLT panels. From the paper of Cabrero et al. (2012), the average strength
of timber in compression in L-direction is 41.7MPa. For a 5-ply CLT, we may assume

89



3.3. 3D REFERENCE MODEL FOR THE LINEAR BUCKLING OF CLT PANELS
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Figure 3.8 — Displacement, according to thickness for an HSS 5-ply CLT square panel

with 2 = 15
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Figure 3.9 — Relative difference between HSS and SSS with varying slendﬁraasls
plate aspect rati@
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that the in-plane compression stress is only distributed in the three longitudinal plies.
Thus the compressive strength of a 5-ply CLT panel may be s&t:@s g 25MPa
and does not vary witlﬁ and{ contrary to the buckling load. The same procedure can

be applied to 3-ply and 7-ply CLT panels (see Table 3.2).

| 3-ply | 5-ply | 7-ply
. (MPa)| 27.8| 25 | 23.8

Table 3.2 — Compressive strength of CLT with several con gurations

On Figure 3.10, the ratio between the 3D reference buckling load and the compres-
sive strength is plotted according to the slenderrﬁdm square hard-simply-supported
3, 5, and 7-ply CLT square panels. For each con guration, the slenderness domain is
chosen considering practical design limits. Indeed, since plies are limited to 51 mil-
limeters (Stlrzenbecher et al., 2012), thick walls are designed using more layers than
thin walls. On this gure, two domains may be identi ed: the domain above 1 where
material failure occurs before buckling; the domain below 1 where instabilities occur
before failure.

3
2.5
2 —%— 7-p|y

Sl >15 —+ 5-ply
1 Failure |
Buckling %\%
0.5

OO 5 10 15 20 25 30

Plate slendernes$

Figure 3.10 — Ratio between reference 3D buckling load and compressive strength for a
HSS square CLT panel

One can remark that the buckling load and the compressive strength of CLT panels
are of the same order of magnitude. For a slenderneﬁs of21, the buckling load
is lower than the compressive strength for 3- and 5-ply CLT panels. On the contrary,
in the studied domain, the buckling load of 7-ply CLT panels is never lower than the
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compressive strength. This results show nonetheless the necessity to take into account
instabilities issues for the design of all CLT structures because of geometric imperfec-
tions which may affect more buckling phenomenons than material strength.

Moreover, for a given slenderness, the ratio between the buckling load and the
compressive strength is increasing with the number of plies. Indeed, the more plies
there are in the CLT panel, the lower is its compressive strength since there is a lower
proportion of stiff layers in the cross section. However, buckling loads depend also on
the location of plies because of shear effects (see 3.4.1). It is hence observed from the
Figure 3.10 that the buckling load varies less than the material failure between different
con gurations, therefore the ratio between buckling load and compressive strength of
7-ply panel is higher than 3-ply and 5-ply.

3.4 Comparison between numerical results and plate mod-
els

In the following, the application of the Bending-Gradient (BG) to linear plate
buckling is compared to the classical lamination theory(CPT) and to several Reissner-
Mindlin models. For the latter, the well-known rst-order shear deformation theory
(FOSDT) with the shear correction factor= % is considered as well as the two pro-
jections on Reissner-Mindlin models suggested in Section 3.2.2.3: the shear stiffness
projection (SSP) and the shear compliance projection (SCP). The previous 3D numeri-
cal calculations by nite element are used as references to compare the accuracy of each
theory.

3.4.1 CLT panel stiffness for practical con gurations

Various CLT con gurations can be found on the market. The main con gurations
are 3,5,7-ply. To investigate a realistic range of panels, the three kinds of con gurations
are studied. The bending stiffneBs as well as the shear stiffness of the FOSPT

with the correction factor = g the shear compliance projectié®® and the shear
stiffness projectiorF *° are calculated for 3-, 5-, and 7-ply CLT square panels with a
thicknessh = 0:15m. All values are gathered in Table 3.3.

First, it is observed that the more layers there are in the CLT panels, the lower
is D111; and the higher i$,,,,. The main reason is that the proportion between stiff
layers and exible layers balances when increasing the number of layers which explains
also the high contrast betwedy;; and Doy, particularly in 3-ply. Nevertheless,
these variations have little in uence on the buckling load. Indeed, the bending stiffness
is mostly driven by an average stiffness which can be evaluated in rst approximation
by the buckling load from the classical lamination theory (see Equation 3.22). This
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‘ D11 ‘ D 2222 ‘ D112 ‘ D212 ‘ Fii ‘ F25 ‘ Fi ‘ F3 ‘ Fi ‘ F>
3-ply | 3493 | 242 51 115 | 53.6|30.1| 11.3| 241 | 21.8 | 31.2
5-ply | 2893 | 843 51 115 | 48.9| 34.8| 12.3| 9.3 | 13.0| 13.6
7-ply | 2610 | 1126 | 51 115 | 46.9| 36.8| 12.5| 10.3 | 13.2 | 13.7

* From Equation (3.6)
** From Equations (3.7), (3.10) and (3.11)

Table 3.3 — Bending stiffnes&l:m) and shear compliancé(N:m *) for a square
CLT plate with a thicknesh = 0:15m

value will be the same for the three con gurations presented here: the main difference
between the buckling load of these con gurations will thus be mostly due to the shear
compliance.

Furthermore, three models of shear behavior are presented Eérés the av-

erage shear stiffness tend0r; 3 through the thickness corrected by= g which
explains its variations in the studied con gurations since it is driven by the proportion

of stiff layers in the appropriate directioff. * andF °° are given by the simpli cation

of the generalized shear compliance terts@nd the generalized shear stiffness tensor

H respectively. In the Bending-Gradient theory, the relative position of layers in the
cross section are considered (see Equations 3.7) which explains why the shear stiffness
F from the Bending-Gradient projections are generally lower than the ones from the
FOSDT. Indeed, shear effects are more important in the central layers which explains
also the variations df *° andF ®*for the studied ply con gurations.

3.4.2 Inuence of slenderness’

Figure 3.11 shows the ratio between the rst buckling load and the compressive
strength of a HSS 5-ply square CLT panel plotted as function of the slendﬁméss
Figure 3.12, the relative error of closed-form results normalized with respect to the 3D
reference results for the same con gurations as in Figure 3.11. On Figure 3.13 and
Figure 3.14, the same results as Figure 3.11 and Figure 3.12 are plotted for HSS 3-ply
square CLT panel for the corresponding slenderness range.

As expected, from Figures 3.12 and 3.14, the classical lamination theory (CPT)
gives results far from the actual ones. Indeed, the error is always largef®§am
the studied domain and is even higher ti3@36for thick con gurations. The FOSDT,
by considering shear effects, is closer than the classical lamination model although the
error is still large. In the studied domain, the Bending-Gradient theory (BG) is clearly
the model which best ts the buckling load of plates. For slenderﬁ%slo, the error
is lower than3:5%, and forh9 > 16the order of magnitude of the error is less tHzbf%.

It is here noticed that the shear stiffness projection (SSP) of the Bending-Gradient
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Figure 3.11 — Ratio between buckling load and compressive strength according to slen-

dernes?ﬁ for a HSS 5ply-CLT square panel
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Figure 3.12 — Relative error of plate models compared to 3D results for a HSS 5-ply-

CLT square panel

94



CHAPTER 3. THE BENDING-GRADIENT THEORY FOR THE LINEAR BUCKLING OF
THICK PLATES: APPLICATION TO CROSS-LAMINATED-TIMBER PANELS

15
—— CPT
L BN Compressive strength  ~ ~ ~ g FOSDT
------ SSP
o
................ SCP
-- - BG
X 3D HSS
0
20 25 30 35

Plate slenderness?

Figure 3.13 — Ratio between the buckling load and the compressive strength according
to slendernesﬁ for a HSS 3-ply-CLT square panel
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Figure 3.14 — Relative error of plate models compared to 3D results for a HSS 3-ply-
CLT square panel
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theory on a Reissner-Mindlin model gives also good results for 5-ply CLT models but
not for the 3-ply con guration contrary to the shear compliance projection (SCP). It
is observed in Table 3.3 that the two projections are getting closer with an increasing
number of plies.

Remarkably, the shear compliance projection gives results very close from the full
Bending-Gradient: the difference between these two models is around 0.1% in the stud-
ied domain. Using the full Bending-Gradient seems thus not necessary in this case
since the gain of accuracy of the buckling load determination compared to the shear
compliance projection is negligible considering the dif culty introduced by keeping all
Bending-Gradient unknowns. The shear compliance projection is thus very accurate to
model global problem such as buckling. Nevertheless, it is not possible to describe the
shear stress distribution through the thickness with this model, but it would be possi-
ble with the full Bending-Gradient theory which captures warping effects observed on
Figure 3.8 by deriving the in-plane displacement eld distribution through the thickness
from the full Bending-Gradient model (Lebée and Sab, 2011a,b).

3.4.3 Inuence of the plate aspect ratio$

Figure 3.15 presents the ratio between the buckling load and the compressive
strength of a HSS 5-ply CLT with a xed slenderne%s 20 for varying plate aspect
ratios. Here, there are successively three moffess 1;n=1),(m=2;n=1) and
(m = 3;n =1). For a better readability, the FOSDT and the shear stiffness projection
are not plotted.

As previously observed the classical lamination model is not accurate for the three
modes. Its error is larger for modés = 2;n = 1) and(m = 3;n = 1) than for the
mode(m = 1;n = 1) and the transition ratios, where buckling loads of two different
modes are equal, are higher than in the reference cases vxﬂuterre 1:8then3:1. On
the contrary, the full Bending-Gradient theory and the shear compliance projection are
very accurate.

The minimum buckling load for all aspect ratfois conventionally used for the
design of walls against buckling. In the Kirchhoff model, the critical aspect ratios of
the mode(m = 1;n = 1) are 1.95, 1.36 and 1.23 for a 3-, 5- and 7-ply CLT panels
respectively (see Table 3.3 and Equation 3.23). From the development of the expres-
sion (A.16), this critical ratio has been estimated to be equal to 1.22 for a 5-ply CLT
with a slendernesﬁ = 20 in the Bending-Gradient theory. This estimation is in good
agreement with what is observed on Figure 3.15.

On Figure 3.16, the relative error between plate models and 3D numerical results
are plotted for a 5-ply CLT panel with a slendernﬁss 20 with a varying aspect ratio
. Only the modgm = 1;n = 1) is plotted. As in previous sections, the full Bending-
Gradient and its projections show the best results compared to other theories. The shear
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Figure 3.15 — Ratio between the buckling load and the compressive strength according
to plate ratio? for a HSS 5ply-CLT with a slenderne§s= 20

compliance projection is here a little less accurate than previously but it is still better
than the shear stiffness projection.

In the following, only the shear compliance projection and the Kirchhoff-Love
models are compared to reference results. Indeed, the rst one is the most accurate
studied Reissner-Mindlin model and does not require the full Bending-Gradient model
and the second one does not take into account shear effects as in the Eurocode 5 (Euro-
pean Committee for Standardisation, 1993).

3.4.4 Accuracy of the shear compliance stiffness projection for SSS
plates

The aim of this section is to study the accuracy of the shear compliance stiffness
for the case of soft simply supported CLT panels. Indeed, this boundary condition is
closer to the actual case and is thus more appropriate to develop recommendations for
the design of CLT. It is shown in the following that the shear compliance projection is
still accurate for the buckling of SSS plates.

As it was mentioned in section 3.2.3, there is no closed-form solutions for such
boundary conditions. Indeed, the boundary layer observed on Figure 3.7 involves a
non-trivial stress distribution next to boundaries. For that reason, a 2D numerical study
is performed using the nite element software Abaqus. Square quadratic elements S8R
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Figure 3.16 — Relative error compared to numerical results for a HSS 5ply-CLT panel
with a slendernesi=20

with 8 nodes are used. There are 5 degrees of freedom at each node corresponding
to the kinematic unknowns in the Reissner-Mindlin model. A reduced integration is
done to evaluate the material response in each element as recommended in the Abaqus
documentation when using a regular mesh (ABAQUS, 2004). A convergence study was
performed to ful Il the same accuracy as the 3D numerical study. The general shell
section stiffness is given using the bending and the shear stiffness calculated using the
shear compliance projection and computed in Table 3.3.

On Figure 3.17, the relative error of 2D numerical results is plotted when compared
to 3D reference results for SSS 5-ply CLT plates with a xed critical aspect fato
1:22estimated in the previous section and for a varying slendeﬁdsmust be noticed
that the Kirchhoff-Love model results are plotted here for HSS plates. Indeed, since
shear effects are not considered in this model (the transverse rotatisnequal to

Ust), ' ¢ IS then always zero on a simple suppayt= 0. Only the condition HSS may
be modeled in the CPT.

A very good accuracy 1:5%is found for the shear compliance projection in the
studied domain. As previously observed, the accuracy increases with the plate slender-
ness’.

Finally, it may be concluded that the shear compliance projection is applicable
to soft simply supported plates with a good accuracy by using Reissner-Mindlin nite
elements. Recommendations for the design of CLT buckling may then be developed
considering soft simple support boundary condition although there is no closed-form
solution.
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Figure 3.17 — Relative error of the critical buckling load of SSS plates 2D results com-
pared to 3D SSS results for 5-ply CLT plates with an aspect fatidl :22

3.5 Conclusions

In this chapter, the Bending-Gradient theory was extended to linear buckling anal-
ysis and was applied to the case of rectangular CLT panels. Two projections of this
theory on a Reissner-Mindlin model were presented: the shear compliance projection
and the shear stiffness projection based on assumptions on the Bending-Gradient's kine-
matic or static degrees of freedom. A 3D numerical study was conducted in order to
get reference results for the buckling of CLT panels. Results show that, qualitatively
and quantitatively, the Bending-Gradient is well adapted for the study of the buckling
of thick and highly anisotropic laminated plates such as CLT contrary to the FOSDT
and the classical lamination theory. Moreover, the shear compliance projection of the
Bending-Gradient is also very accurate for varying geometries contrary to the shear
stiffness projection. The shear compliance projection seems thus more adapted than the
full Bending-Gradient theory to engineering issues (such as recommendations) since it
uses a simpler model, the Reissner-Mindlin model, without loosing accuracy. More-
over, this model can also be used numerically to study soft simply supported plates by
using Reissner-Mindlin nite element although there is no closed form solution. It was
also noticed that the difference of buckling load between of the two boundary condi-
tions (HSS and SSS) remain limited to 5%. To go further, the non-linear buckling will
have to be considered in order to evaluate the post-buckling behavior of CLT plates.
Perspectives of this study thus include the effect of plate imperfections such as initial
plate shape, loading eccentricity or residual stress and the in uence of the variations
of mechanical characteristics in particular for the longitudinal Young modulus and the
rolling shear stiffness which are of main importance.
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CHAPTER

4

Buckling of CLT columns with
Initial imperfections

In order to extend the problem to more realistic CLT panels, we study in this chap-
ter the buckling of CLT walls with initial imperfections. In order to simplify the problem,
we use the Timoshenko beam theory. We recall the classical Ayrton-Perry formula and,
because of the low rolling shear strength in cross-layers, we also introduce a new shear
criterion for CLT walls under compressive load.

4.1 Introduction

In Chapter 3, the linear buckling analysis of CLT walls was investigated using
several plate models. CLT walls were assumed perfectly straight and under a perfectly
centered compressive load. Nonetheless, in actual structures, these assumptions may
not always hold up. First, because of the manufacturing process, CLT panels are not
perfectly straight. In the Eurocode 5 (European Committee for Standardisation, 1993),
a maximum initial straightness imperfection of 1/500 of the span is recommended for
Laminated Veneer Lumber (LVL) and Glued Laminated Timber and of 1/300 of the
span for solid timber. The CLT Handbook (Karacabeyli and Douglas, 2013) suggests
that the deviation of edges from the straight line between two corners must not exceed
1.6 mm for CLT which corresponds to 1/2000 of the length for a 3-meter high wall.
Second, because of the connecting system, the load is not perfectly centered. In its
guide for application, the company Stora Enso (2014) assumed that, because of the
non-symmetrical load on vertical elements, an eccentricity of the load is considered
equal to one sixth of the thickness of the CLT which corresponds to 1/180 of the length
for a slenderness of 30. We note that eccentricity imperfections are much larger than
straightness imperfections. Third, during the manufacturing process, residual stresses
have been generated particularly during the gluing and pressing process.

To the author's knowledge, the buckling of a column with initial imperfections
was rst studied by Ayrton and Perry (1886). All initial imperfections lead to additional
bending moments, so that the equilibrium is changed. From this equilibrium, it is possi-
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ble to express de ections of the wall as a function of the compressive load contrary to the
linear buckling analysis where de ections occur only at bifurcation. These de ections
are not a linear function of the compressive load. Particularly, when the compressive
load is equal to the critical buckling load, the column is unstable: the column is then
stable only if the compressive load is lower than the buckling load.

Then, a compressive strength criterion is also introduced. The maximum compres-
sive stress in the column is due to direct compressive load and to additional bending
stress which is proportional to the de ections of the column. By comparing this maxi-
mum stress expression to the compressive strength, Ayrton and Perry (1886) suggested
a strength criterion also called the Ayrton-Perry formula. This criterion is more con-
servative than both stability criterion and pure compressive strength criterion without
considering initial imperfections. The design criterion of timber columns in the Eu-
rocode 5 (European Committee for Standardisation, 1993) is based on this formula us-
ing the Euler beam model. In order to extend this model to CLT walls, Thiel (2013)
suggested to include shear effects by using the Timoshenko beam model. Particularly,
the Timoshenko critical buckling load is used instead of the Euler buckling load.

From the equilibrium of the column, additionally to bending moments, the de ec-
tion leads to additional shear forces in the column. Nonetheless, contrary to other timber
products such as Glued Laminated Timber (GLT) or Laminated Veneer Lumber (LVL)
and because of the con guration of CLT and the low rolling shear strength in cross-
layers, a rolling shear failure could occur in cross-layers due to an excessive shear. No
such veri cation are suggested for timber columns (European Committee for Standardi-
sation, 1993) and for CLT columns Thiel (2013) to the author's knowledge. We propose
then in this chapter a shear criterion and compare it to the Ayrton-Perry formula in order
to check if it is relevant or not.

Finally, contrary to other timber elements, CLT walls can be connected to other ver-
tical timber elements, called wall-to-wall connection (Karacabeyli and Douglas, 2013),
at their lateral faces. These connections lead to additional boundary conditions on lat-
eral edges which can not be taken into account by beam models (Thiel and Krenn, 2016)
(Chapter 3). Itis then necessary to check if the Ayrton-Perry formula and the shear cri-
terion can be extended to plate models in order to take into account these additional
boundary conditions.

In Section 4.2, the work of Ayrton and Perry (1886) is recalled using the Timo-
shenko beam model on a CLT column. Then, in Section 4.3, a shear force criterion is
introduced and compared to the Ayrton-Perry formula for two strength class of CLT and
for varying initial imperfections.
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4.2 Buckling of a columns with imperfections

4.2.1 Linear buckling of a column without imperfections

We consider a simply supported rectangular column with a lehgthvidthb and
a thicknessh corresponding tx, y andz directions respectively (Figure 4.1). The
geometrical slenderness aroundndz axis are de ned as:

y = qlT—y and z = qIT—Z

S S

wheresS is the effective section of the beam ahdand|, are the effective quadratic
moments aroung and z axis respectively of an heterogeneous section. Because of
the geometry of CLT panels, is assumed small compared tp that is why only the
buckling inz direction is studied. The elastic Young modulusxidirection is noted
Eo(z) and the shear modulus betweeandz is notedGy(z).

P

Figure 4.1 — Beam under in-plane compression

In the Timoshenko beam model, the 3D displacement &(d;y; z) is assumed
as follows:

E ui(x;y;z) ="' (X)z (4.1a)
. Ux(Xy;2)=0 (4.1b)
Cus(xy;z) = f(X) (4.1c)

wheref (x) is the de ection of the beam at the neutral axis arfg) is the rotation of the
section (Figure 4.2). The generalized shear stréx) complies with the compatibility
103



4.2. BUCKLING OF A COLUMNS WITH IMPERFECTIONS
€ f (x)

x &

h &,

Figure 4.2 — De nition of the de ectiorf (x), of the rotation of the section(x) and of
the global shear strain(x)

equation:
x)="()+f) (4.2)

where 2= g—x stands for the rst derivative of the variable

The bending momeri#l (x) and the shear forc®(x) are de ned as global stress
elds as follows:

8 y4

% M (x) = bz x(x;2)dz; (4.3a)
Zy

.E QX)= b w(x2z)dz: (4.3b)

NS

2

2

where ,, and , are section stress elds. The constitutive relationships between the
bending momen# and the shear ford® and global kinematic elds are:

M (x) = D¢ {x) (4.4a)
Q(x) = Fo (x) (4.4b)

From the work of Jourawski (1856), the bending stiffnBgsand the shear stiffne$s
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of the beam may be derived as:

io,

e

bzon(z)dz; (4.5a)

znz s
2

z

Eo(t)tdt

om| =

1 .
Go(?) dz: (4.5b)

In order to study rst the linear buckling of the column, we assume that the column
is perfectly straight. A centered lo&is applied at each end of the beam (Figure 4.1).
The static equilibrium on the deformed con guration for small perturbations writes as:

2

Q=M?° (4.6a)
M Pf=0 (4.6b)

From the constitutive relationship (4.4), the problem can be cast as the following differ-
ential equation:

f% K2f =0 (4.7

where:
1

1 B

Fo

KZ=K? and K?2=

D_O.
K is directly related to the Euler critical buckling lo&d., andK , includes a correction

related to the shear complian€g. Considering the boundary conditioh@) = f (1) =
0, non-trivial solutions of this eigenvalue problem write as:

f(x) = AsinKXx

whereK, = ny,n 2 N andA a constant. These are associated to eigenvalygs
also called critical buckling load:

1 1 1 2
= —+ — where  Pg.o= Dgn’—
I:>(:r;0 I:)E;O I:0 £:0 0 |2

(4.8)

Pe.o is the buckling load associated to the Euler beam theory where a zero shear com-
pIianceF—l0 is assumed. It is observed here that the contribution of the shear stifpess
does not depend on the mode In the following, we only consider the rst buckling
moden = 1 since it corresponds to the lowest critical buckling Id&agd,. Finally it is
possible to express the expression ¢%) and (x) at bifurcation:

I:)crO I:)cr'O X
"(X) = —A cos— and X) = — A cos—
(x) Pe.o | | (x) Fo | [
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For a xed amplitudeA, when the slenderness is low, the shear force may require rolling
shear strength veri cation.

In order to quantify the shear stress at bifurcation, it is of interest to consider the
results from the 3D numerical study on the buckling of CLT walls in Section 3.3. Note
that the critical buckling load for beam (4.8) is similar to the one derived numerically
assuming that there are free lateral edges. The stress state calculated numerically at
bifurcation is proportional to the amplitude of the mode but does not correspond to an
actual state of the CLT wall since it is located at a bifurcation point. Nonetheless, it is
possible to calculate the ratio between the maximum bending stress in the longitudinal
layers and the maximum shear stress in the cross layers. By comparing this ratio to
the ratio between the longitudinal bending strength and the rolling shear strength, it is
possible to estimate the failure mode of the CLT wall under this state. According to
Schickhofer et al. (2016), the ratio between bending strength and rolling shear strength
varies from 17 for the strength class CL24h with a board aspect?ﬁhtio 4to 35forthe

strength class CL28h with a board aspect réﬁim 4. The ratio between the maximum
bending stress and the maximum shear stress estimated numerically at bifurcation in
Chapter 3 for a 3-ply CLT varies strongly with the slendernﬁssf the beam: for

ﬁb = 40, it is equal to approximately 49, fq? = 20, it is equal to approximately

28. It appears, that the ratio between stress levels and the ratio between strengths are
comparable for low slenderness with board aspect ratios lower than 4. This means that
failure may also occur because of excessive shear force in addition to the usual Ayrton-
Perry criterion based on combined longitudinal compression and bending. Then in the
following, we will introduce a shear criterion for CLT walls under compressive load
additionally to the conventional Ayrton Perry formula.

4.2.2 Buckling of a column with initial imperfections

This section is based on the works of Ayrton and Perry (1886) for the buckling of
columns with initial imperfections. We consider that the beam initial and free of stress
geometry is

fo(X) = e+ Wpsin xl—

This imperfection corresponds to a load eccentrieitand a straightness defegg re-
lated to the rst buckling mode (Figure 4.3). The initial imperfectibg{x) is small
compared to the length Note here that there may be also an initial rotation imperfec-
tion' o(x). Nonetheless, o(x) has no impact on the column equilibrium. Then we note

" (x) and (x) the additional rotation and shear strain which are directly related to the
bending momeni (x) and the shear foro®(x):

M (x) = D¢ {x) (4.9a)

Q(x) = Fo (X) (4.9b)
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P

Figure 4.3 — Beam with initial imperfection under in-plane compression

By notingf (x) as the sum of initial imperfections and elastic de ection, the compati-
bility equation becomes (4.2):

) =" )+ F9x)  folx) (4.10)

By injecting these expression in the equilibrium (4.6), a new differential equation
IS obtained:

0 2 > Wo X _

fOx) + K2f (x) + T ESnT =0 (4.11)
Fo

Contrary to the differential equation (4.7) for a column without imperfections, there is

an additional term, the third one, which dependxoithen, a solution of this problem

takes the form

, . X
f(x) = AsinK,x + B cosKx + Csml—

whereA, B, C, are constants. By injecting this solution in the differential equation
(4.11), the constar@® of the particular solution can be estimated as:

_ Wo _ Wo
C= = 5

1 B o1 k2E 1 o5

Cis niteonlyif P < P.o: the column is stable only if the compressive |¢ads lower
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than the critical buckling loa®..,. Granted thaP < P ., the solution is obtained by
considering boundary conditiofg0) = f (1) = ey:

) Kyl .
Fe0= 7 WOP sm)l(—+eo cosK ,x + tan 2VSInKVX (4.12)

Pcr; 0

The maximum de ection is at the mid-span (Ayrton and Perry, 1886) and is noted
f L . ltisthen found that:

W,
. I (4.13)
1 5 COS5; o——t
cr; 0 2 Peo1 B

Fo
The mid-span de ectiow is then a linear combination of two functiongP) and (P):

1 1
5 and (P)= g
1 5 COS5; H—
cr; 0 2 Pgo1 FPT)

(P)=

It is noted that (0) = (0) = 1 and that (P) and (P) are innite for P = Pg.o.
Ayrton and Perry (1886) observed that for Euler beaé;n £ 0), (P) g (P) ,
particularly for0:2 < % < 0:9. Then, since (P) has a simpler form, Ayrton and
Perry (1886) suggested to combine both straightness imperfeetipaisd eccentricity
load ey in an equivalent straightness defawlf.e:

6
Wo.eq = Wo + geo

We note here that this assumption is not true for Timoshenko beam theory. In the
Figure 4.4, the ratio between function@) and (P) is plotted for varying ratioF,z—.0

and for varying ratio between the Euler and the Timoshenko critical buckling I@C??fgis
which is a measure of shear effects on the critical buckling load. The Figure 4.4 includes
most of CLT con guration. It is observed that the assumption of Ayrton and Perry
(1886) (P)=1:2 (P) is generally an overestimation of the load eccentricity which is
conservative. Given that the lo&lis lower than one half of the critical buckling load
Pcr0, Which is a reasonable assumption in actual structur@®) and (P) are close

and the following equivalent straightness defau/t, seems more relevant:

Wo.eq = Wo + € (4.14)
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Figure 4.4 — Ratio-5 for varying ratioss>— and ;&2

In the following, the initial imperfectioy(x) is assumed as:
¢
fo(X) = WoeqSin T
Then, the maximum de ectiow is expressed as:

Wo-
W= G %ed (4.15)

Pcr; 0

The mid-span elastic de ectiow, associated to the compression of a column is then
expressed as:

_ _ Woeq _ Woeq
Pcr, 0 P

From the constitutive equation (4.9b) and the equilibrium (4.6a,4.6b), the shear strain
in the column is expressed as:

! (X)= —— 2 (4.17)
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4.2.3 Ayrton and Perry criterion

The longitudinal stress,y in the section is the combination of stress due to the
bending momen# and to the normal effoll = P as follows:

W)= Eg)+ o

Eo(2)z
0

R

h
2

whereEA = 2, bEy(z)dz is the normal stiffness of the beam. We notg. the

maximum compressive stress in absolute termgay is obtained at mid-span, where
the bending momen¥ is maximum. For most columns, including CLT columns, the
h

maximum compressive stress is at the lower facefer 3:

We note , the ultimate compressive load corresponding generally to the elastic
limit in compression in wood engineering. The ratio between the maximum stygss
in the column and the ultimate compressive logdas then the following expression:
!
P 1
max
= — 1+ —F 4.18
u I:)u 1 P ( )

Pcr; 0

whereP, = ug Is the ultimate compressive lodd, is the longitudinal Young mod-

ulus and! = % Is @ measure of initial imperfections. In Equation (4.18), the
strength criterion= < 1is expressed as a criterion on a polynomial equatidp:in

The discriminant of this polynomial equation can be expressed as a sum of positive
terms: ,
= [(1 + ! ) I:)cr;O + Pu] 4'F)u I:)cr;o
= (Pero Pu)2 + Pero! [2(Pero+ Pu) + Pero! ]

Then roots inP of this polynomial equation are real. SinegP..o > 0, both roots of
this polynomial equation are positive. Then, to satisfy the strength criterion (4£18),
must be lower than the smallest root which can be written as:

P 2
T < g = Npp (4.19)

P
N S N R ¢ o B G
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where ¢ is the relative slenderness de ned as:
S

Py

= 4.20
rel Pcr;O ( )

Nap is the normalized compressive limit according to the Ayrton-Perry criterion. It is
observed that fot = 0, corresponding to a perfectly straight column, the criterion
becomeN sp = inf ( P¢; Pcro) Which is in agreement with a perfect column.

In the Eurocode 5 standards (European Committee for Standardisation, 1993) and
then in (Thiel, 2013) this criterion has been adapted:

— First, it is used only when the critical buckling load is low enoughg >
0:3. Otherwise, the criterion is based on the compressive strength Bnky;
%% wheref ¢.o IS the characteristic compressive stren@thyg is a mod-

i cation factor depending on the service class and on the duration of loading and
v IS a coef cient taking into account the natural variability of the material;

— Second, the design compressive strerfgthx = W is used in the ex-
pression ofP; in the left side of the criterion (4.19) whereas the characteristic
compressive strength.o is used to de ne the relative slenderness;

— Third, characteristic modulus of elasticiB.os, corresponding to the fth per-
centile, is used to calculate the critical buckling Idado;

— Finally, the measure of initial imperfection is de ned as a function of the
relative slenderness: = . ( ¢ 0:3) where . is a factor taking into account
imperfections.

Hence the Ayrton-Perry criterion has been adapted to timber columns in the Eurocode 5
using several corrections mainly due to variations of the mechanical properties of wood.
We note here that the de nition of initial imperfections is not linked directly with the
length of the column but with the relative slenderness and no details are provided on the
origin of the value of ..

4.3 Proposed shear force criterion

In the previous chapter, we recalled the Ayrton-Perry criterion which is currently
adopted in the Eurocode 5. In this section, we propose a new criterion for the design of
CLT walls based on the rolling shear failure.

4.3.1 De nition of the shear criterion

We assume here that the shear force failure and the compression failure are not
interacting since bending and shear effects are elastically uncoupled in the Timoshenko
beam model and since the compression failure and the shear failure occurs at different
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locations. Indeed, the compression failure occurs at mid-span whereas the shear failure
occurs at support ends. Moreover, compression failure occurs in external longitudinal
layers whereas shear failure occurs in internal cross-layers.

P

Figure 4.5 — De ection of the beam at the equilibrium

From the equilibrium (4.6) and the expression of the de ection (4.15), the maxi-
mum shear forc€nmax iS at support ends and is given by:

max — P
l 1 Pcr; 0

This expression can be found geometrically from the decomposition of the external
forceP in a normal forceN and a transverse forcg = Pf 40) (Figure 4.5). Following
the approach of Jourawski (1856) (Equation A.10), the expression of the shear stress
«z(Zo) IS given by:
Zn
xz (X; Zo) = QW) Eo(z)zdz
Do
In CLT, the maximum shear stress must be compared to the ultimate rolling shear
strength in cross-layers., and to the ultimate longitudinal shear strength in longi-
tudinal layers |, . We noteQ, the ultimate shear force de ned as:

Do

Qu= Ry —
2 Eo(2)zdz

(4.21)
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where  is the ultimate shear strengthzt Then, the shear criterion of CLT wall can
be given by:

P 1
— < =N 4.22
Py . Ioeq gt T rer ( )

whereN is the relative compressive limit according to the shear criterion. It is noted
here that if-== g« 2 . this criterion is equivalent to the stability criteriéh <
Pero- Nonetheless because of the high strength contrast between bending stgength
and rolling shear strength; and because of high eccentricity of the load suggested by
Stora Enso (2014)‘,”'&5—“u is not always negligible for CLT walls compared t@,.

Then, in the following, we compare the Ayrton-Perry criterion and the proposed
shear criterion to observe if the new one is relevant.

4.3.2 Comparison between Ayrton-Perry formula and shear crite-
rion

In this section, we compare the Ayrton-Perry formula and the shear criterion de-
ned in Sections 4.2.3 and 4.3.1. Two CLT con gurations called CLT1 and CLT2 are
considered in this section following Schickhofer et al. (2016) corresponding to strength
class CLT24h with a board aspect ra% 4 and to an hypothetical strength class

CLT32h with a board aspect rat?@u < 4. Even if the strength class CLT32h has not
been suggested, such strength class could be used in the future for very tall timber build-
ings. As suggested in the Eurocode 5, 5th percentile is used in calculation corresponding
to 5/6 of the mean value as plotted in Table 4.1. We set the creep faeter 1:0 and

the factork,,oq = 1:1 since we consider here instantaneous load with no distinction on
the direction (European Committee for Standardisation, 1993). 3-ply con guration is
used where each ply has the same thickn&g(4.5a),Fq (4.5b) andQ, (4.21) are
calculated assuming that the cross-layer Young modajus O.

Characteristic (MPa) u | u | EvLoos | Giz;005 | Gezio0s | Kmod | Kaer

CLT1 24| 1.4 §11600 §650 2100 | 1.1 ]1.0
CLT2 211600/ 2650 | 265 | 1.1| 1.0

Table 4.1 — Elastic and strength properties of Norway Spruce CLT1 and CLT2 (Schick-
hofer et al., 2016)

In the Ayrton-Perry formula, it is assumed that initial imperfections are small com-
pared to the length of the column. By taking directly the eccentricity of the load as
& as suggested in (Thiel and Schickhofer, 2010), the assumption of small initial im-
perfectlons is not valid for small slenderness Hence, we choose to express initial
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imperfections as a function of the length only. Three cases are then studied:
— Wo,eq = O for the case of a perfect column;
— Woeq = 5' as recommended in the Eurocode 5;
— Woeq = 1' corresponding, for a slenderne#s 21, to an initial straightness
defect of— added to a load eccentricity @faccordlng to (4.14).

In Figures 4 6 and 4.7, Ayrton-Perry criterion is plotted using both Euler (black
curves) and Timoshenko (blue curves) beam theories and is compared to the shear cri-
terion (red curves). Moreover, a distinction is made between no initial imperfection, an
initial imperfection of respectivelwg,eq = 500 and ofwg,eq = 1(')0 plotted with continous
line, densely and loosely dashed lines respectively. Note that Ayrton-Perry criterion cal-
culated here is not exactly the same as calculated in the Eurocode 5 since imperfections
are assumed directly from the span and not from the relative slenderness. Furthermore,
the design compressive strength, including the corredtigris used in the calculation
of the relative slendernesg, (4.20). Figure 4.6 stands for CLT1 con guration and Fig-
ure 4.7 stands for CLT2 con guration. Here, results are directly plotted as function of
the slendernes§ since 2, is not proportional to the slenderness of the column when
using Timoshenko critical buckling load in (4.20).

First it is noted, by comparing Euler and Timoshenko beam models, that shear
elastic effects can be relatively signi cant on the Ayrton-Perry criterion up to 9% for
Woeq = ﬁ) Nonetheless, these effects are lower than what observed for linearized
critical buckling loads in Chapter 3. Indeed, at low slenderness, shear effects have
a strong impact on the critical buckling load but the relative slenderngss low.

As a consequence, the initial imperfectiorhas a stronger impact on the Ayrton-Perry
criterion (4.19) than the critical buckling lo&4;.o. On the opposite, at high slenderness,
the critical buckling load has a strong impact on the Ayrton-Perry criterion (4.19) but
shear effects have a lower impact on the critical buckling load.

Second, the amplitude of initial imperfection has a strong in uence on the Ayrton-
Perry critical load particularly when the critical buckling lo@g , and the characteristic
compressive loaB, are comparable. The Ayrton-Perry critical Iddgp is then reduced
up to 33% forwy = 5 and to 58% fomg = 1.

Third it is observed in Figure 4.7 that for CLT2, the shear criterion may be rel-
evant for large initial imperfectiomwg.eq = 100 where the shear criterion is lower than
the Ayrton-Perry criterion for slenderness lower than 15. We note here that CLT2 is
an extreme case since there is a very strong stiffness and strength contrast between
longitudinal-layer and cross-layer stiffness. Then the shear criterion may be relevant
but only when rolling shear properties, particularly the rolling shear strength, are low.

It was observed by Ehrhart et al. (2015) that rolling shear properties of CLT are very

sensitive to the board aspect rafﬁo Hence further studies on the rolling shear strength

of CLT walls and its impact on the shear criterion seems necessary. This shear criterion
could be particularly relevant when using lower strength class in cross-layers which is
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CHAPTER 4. BUCKLING OF CLT COLUMNS WITH INITIAL IMPERFECTIONS

a common practise. Moreover, it could also be relevant for the design of new wooden
products such as CLT panels with regular gaps in internal layers (Franzoni et al., 2016a,
2017a).

1.6 o
Criterion
15 — Nap (E.uler)
10 — Nap (Timoshenko)
S — N (Timoshenko)
=z 0.8 RS —_—
Yol 3 Imperfection
— Wo =0
0.4 "
TEws " Woeq = 500
0 - Woeq= 1|oo
0 10 20 30 40

Slenderness

Figure 4.6 — Ayrton-Perry formula (A-P) and shear criterion for CLT1 con guration
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z 1 _—
Imperfection
0.5 — Woea™ 0|
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~ Woeq = 100
% 10 20 30 40

Slenderness

Figure 4.7 — Ayrton-Perry (A-P) criterion and shear criterion for CLT2 con guration

4.4 Conclusion

In this chapter, we recalled the Ayrton-Perry criterion of a CLT column under com-
pression and we introduced a shear criterion for CLT walls. It was observed that the
shear criterion can be relevant for thick walls and for CLT with a low cross-layer shear
strength and in a less critical way, a low cross-layer shear stiffness. Hence further re-
search on the impact of the shear strength on the relevance of this shear criterion seems
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necessary. Moreover, the Ayrton-Perry criterion has been extended to Reissner-Mindlin
plate models in Appendix A.3. Thus, the design of CLT walls suggested by Thiel (2013)
can be extended to con gurations with simply supported lateral edges. Finally it is ob-
served that shear effects are still relatively signi cant on the Ayrton-Perry criterion even
if they are smaller than on the linearized critical buckling load derived in Chapter 3. We
recall here that we ignore in this chapter imperfections due to residual stress in the CLT
after manufacturing process. These imperfections could be included in the equivalent
initial straightness imperfection.

Besides initial imperfections of timber elements, viscoelastic effects must be con-
sidered. These effects are recalled by Ba ant and Cedolin (1991): additional creep
deformations are observed. Since the relationship between de ection and compressive
load is not linear, the problem is different from a beam under bending: creep de ections
are not proportional to the creep factor. Then, in the following chapter, viscoelastic
effects of wood are introduced to study the behavior of a timber column under compres-
sion at long term.
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CHAPTER

5

Long-term buckling of CLT columns

In the previous chapter, the elastic behavior of a column with initial imperfections
under compression was investigated. Nevertheless, timber is a viscoelastic material
and additional creep deformations must be added to these initial imperfections. First,
in Section 5.1, areview is presented on the viscoelastic behavior of wood under constant
or varying climate and in different loading directions. Then, in Section 5.3, a brief recall
on the viscoelastic behavior of a timber column already studied by Ba ant and Cedolin
(1991) among others is done using the Euler beam model. This study is extended to
the viscoelastic behavior of a Timoshenko column with both bending and shear creep
in Section 5.4. Finally, in Section 5.5, the in uence of the creep, particularly the shear
creep, on the long term Ayrton-Perry criterion is studied.

5.1 Wood: a viscoelastic material

Wood is a time-dependent material. This phenomenon was rst characterized dur-
ing the 18th century by Buffon (1741) from three-point bending tests. Particularly, he
observed that time to failurege. the time until failure under a constant loading, depends
on the imposed load. From his observations, he recommended not to load permanent
wooden structure above half of the initial strength and not to load short-lived struc-
ture above two third of the strength. As detailed in the following, the time-dependent
behavior of wood is complex.

5.1.1 Viscoelastic behavior of wood in longitudinal direction

Viscoelasticity is a mechanical characteristic of materials combining elasticity and
viscosity resulting in an evolution of the relationship between strains and stress during
time. Two types of tests are used to measure this property: creep tests and relaxation
tests.
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5.1. WOOD: A VISCOELASTIC MATERIAL

A creep test consists in an increase of deformation under constant stress (Fig-
ure 5.1). At timeto, the stress is set toy and is then kept constant until tinte.
At to, instantaneous linear deformatichsare due to the load,. Then, between time
to and timet,, deformations increase because of the viscoelastic behavior. Additional
deformations'(t) are called creep deformations and depend on the intensity and the
duration of the load. Then, after unloadingtatan instantaneous elastic recovégy
is observed. It was observed by Nakai and Grossman (1983)that', for wood for
weak loads. Then after tintg, there is a recovery of deformatiohs due to the vis-
coelastic behavior which is not always total: residual plastic deformatjpcen remain
even at long term.

g

e e .
t

Figure 5.1 — Creep-recovery test principle

The relaxation test is the dual of the creep test: it consists in a decrease of stress
under constant strain. Although an equivalence between creep and relaxation have been
demonstrated by Grossman and Kingston (1954) for wood, only few studies have been
led using relaxation tests since they are generally more complex to set up and since
creep tests are more representative of the actual stress state in timber structures.

Numerous studies on the creep behavior of wood have been conducted and have
been well reviewed by Schniewind and Barrett (1972) then Holzer et al. (2007) and
Montero (2010) and main observations are brie y recalled here. The viscoelastic be-
havior of wood is often represented by the creep funclighto; o) = LO)

In a creep test, three different phases are generally observed (Figure 5.2). The
primary creep is a short phase at the beginning of the experiment. During this step,
the creep rate is high and decreases progressively. During secondary creep, the creep
rate is almost constant. This stage is generally very long and is the most studied phase.
The tertiary creep is the nal phase consisting in an acceleration of creep until failure.
The time of each phases depends strongly on the stress level; particularly the secondary
creep. That is why relatively low stress are imposed during creep tests in order to avoid

118



CHAPTER 5. LONG-TERM BUCKLING OF CLT COLUMNS

failure.

y Failure

Secondary creep

Primary
Tertiary
creep

(unstable)

Figure 5.2 — Experimental setup

For a linear viscoelastic material, considerihgt) and",(t) as total deforma-
tions due to constant stresg and », viscoelastic deformations due to the linear com-
bination of stress; ; + , , are assumed equal to the linear combination of cor-
responding deformations;";(t) + ,",(t). Thus for a linear viscoelastic material,
J(t;to; o) = J (t;tp). Schniewind and Barrett (1972) reviewed several studies where
a linear viscoelastic behavior were observed for wood at moderate load lower than 40%
or 50% of the initial strength.

Boltzmann superposition principle stipulate that, for linear viscoelastic behavior,
the superposition of loads during times implies the superposition of the correspond-
ing response. This principle is particularly usefull for intermittent loading. Nakai and
Grossman (1983) validate experimentally this principle for wood at moderate load.

An aging material is a material whose behavior depends on thetgiraewhich
it is loaded. For example, concrete is an aging material since its properties change
during curing. Generally, in creep studies, wood is assumed to be a non-aging material:
J (t;to) =J (t to).

Gressel (1984) studied creep behavior of wood from 10-years bending tests on
three different species at 20° C and 65% of the relative humidity. After 10 years, he
observed additional creep deformations between 0.3 and 0.7 of the initial de ection.
Then, using a power creep law, he estimated additional creep deformations between
0.4 and 1.0 of the initial de ection after 100 years. Navi and Heger (2005) compared
several creep studies on wood (Cariou, 1987; Hayashi et al., 1993; Le Govic et al., 1988;
Nielsen, 1984) from bending or tensile tests, several stress levels, and different climate.
More detailed reviews can be found in (Schniewind and Barrett, 1972; Holzer et al.,
2007; Navi and Heger, 2005). Results are highly dependant on species and climate
conditions.
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5.1.2 In uence of climate conditions

Gerhards (2007) presented a detailed review on the temperature and moisture ef-
fects on linear elastic wood behavior. Particularly, the modulus of elasticity decreases
with an increase of moisture content below ber saturation and with an increase of tem-
perature. Besides, the creep behavior of wood is also strongly in uenced by climate
conditions.

First, at constant moisture content, creep is faster for test at high temperature than
for test at low temperature. The Time-Temperature Superposition Principle (TTSP)
states that a function links two creep curves at different room temperature. In a diagram
with a logarithmic scale for timg, this function correspond to a shift of the creep curve
along log-time axis which is linked to the difference of temperature between the two
tests. As noted by Holzer et al. (2007), the TTSP is very usefull to obtain long-time
creep curve at normal temperature from short-time creep tests at high temperature which
is also called accelerated creep. This principle has been widely used to determine the
viscoelastic behavior of polymers. Nevertheless, the application of the TTSP for wood
has not been fully established. Goldsmith and Grossman (1967) stated that: "Short term
tests at higher temperatures cannot replace long-term tests at normal temperatures”.
Thus, as suggested by Davidson (1962), the TTSP "must be used with caution” for
wood. Indeed, wood is a complex material made of several different polymers such
as cellulose bers, hemicellulose and lignin. Thus, even if multiparabolic models have
been also suggested and used for the viscoelastic behavior of green wood (Bardet and
Gril, 2002), it is preferable to make longer tests at constant climate corresponding to
the service class de ned in the Eurocode 5 (European Committee for Standardisation,
1993).

Wood viscoelastic behavior is also strongly in uenced by relative humidity. First,
as observed by Matar (2003), the creep behavior depends on the moisture content in the
specimen. Similarly to temperature, this effect is very complex and dif cult to model.
Second, cyclic variations of relative humidity lead to additional deformations due to
mechanosorptive effects during sorption and dessorption. Several studies have been
performed on this effect reviewed by Martensson (1994). Nevertheless, the impact of
relative humidity is limited on CLT since they are very thick and only a small part of
CLT is subjected to variation of moisture content. Moreover, CLT are slightly subjected
to moisture variations in structures because of insulation and the rather large thickness
of the panels.

From these studies, creep deformations are taken into account in the Eurocode 5
(European Committee for Standardisation, 1993) with the creep flagkdoy consider-
ing creep deformations after 50 years. This creep factor depends on the service class:
Kqef iS equal to 0.6 in service class 1 for moisture content lower than 13%, and to 0.8 for
moisture content between 13% and 20% for solid timber. Nonetheless, this creep factor
is higher for plywood since the creep behavior of wood is not identical in all directions.
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5.1.3 Orthotropic creep

The studies on the viscoelastic behavior of wood reviewed previously were focused
on the longitudinal stiffnesk, . Nonetheless, wood presents an orthotropic behavior
with a strong stiffness contrast between longitudinal direction and radial and tangential
directions. From tensile and shear creep tests on Douglas- r, Schniewind and Barrett
(1972) studied the orthotropic viscoelastic behavior of wood. First, they observed that
creep inradiaR and tangential’ directions is almost eight times larger than the creep in
longitudinal direction afted 000minutes corresponding to the primary creep. Second,
they observed that the shear creep in longitudinal-tangential plane is between 4 and 5
times larger than the longitudinal tensile creep. From these observations, each parameter
should be considered individually.

Currently, in the Eurocode 5 (European Committee for Standardisation, 1993),
only one creep parametkyes is de ned for wood based material. The orthotropic vis-
coelastic behavior is considered for the design of plywood with a higher creep factor
kqer: 0.8 in service class 1, and 1.0 in service class 2. Using only one creep parameter
for plywood is admissible since an homogeneous equivalent behavior can be assumed
because of the layers are thin compared to the thickness of the panel. Nonetheless, this
is not admissible for CLT panels. Moreover, the effects of orthotropic viscoelastic be-
havior depends on the con gurations of CLT, i.e. on the number and on the relative
thickness of layers.

In order to estimate the creep behavior of CLT in bending, two additional param-
eters must be included in calculations: the longitudinal-radial shear stiftBgssand
the cross-layer shear stiffneSg; . Thus, the creep behavior of CLT in bending is more
complex than the one of solid timber. Only few studies on the creep behavior of CLT
have been conducted (Jobstl and Schickhofer, 2007; Colling, 2014; Pirvu and Kara-
cabeyli, 2014). Jobstl and Schickhofer (2007) compared the creep behavior of glue-
laminated timber (GLT) and of CLT from four-point bending tests during during one
year. They observed that the relative creep of 5-ply CLT is 39% to 47% higher than GLT
after one year. To go further, they calculate the shear creep of the cross-layer speci cally
in order to extend their results to all CLT con gurations. Thus, they separated in their
calculation the bending de ection and the shear de ection. They also separate the shear
effects of longitudinal layers and of cross layers. Nevertheless, since they only measured
the mid-span de ection, they were not able to measure directly the bending de ection
and the shear de ection as well as the delayed shear stiffness of each layer. To complete
the required data, they used recommendations. First they assumed that the contribution
of cross-layers to bending stiffness is negligible which is a common assumption in CLT.
Then, they assumed that the longitudinal bending creep factor and the shear creep factor
of longitudinal layers are similar according to standards. Nevertheless, Schniewind and
Barrett (1972) observed that this assumption seems not true. Finally, they assumed an
elastic cross-layer shear stiffneSgz; of 50 and 60 MPa. These assumptions are very
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conservative compared to what is observed in literature from numerical study (Aicher
and Dill-Langer, 2000; Jakobs et al., 2005), from analytical models and from experi-
mental studies (Ehrhart et al., 2015; Franzoni et al., 2016a) where values up to 200 MPa
were found depending on the sawing pattern of boards and on the narrow-edge gluing as
observed in Chapters 1 and 2. As a consequence, very different cross-layer shear creep
factorskgetgogo Were obtained depending on the inita¢; assumption. Moreover the
global creep factokgercr Calculated depend on the slenderness if the bending creep
factor kgere is different from the shear creep factqyts. Thus, their conclusions are
true only for the studied slenderness. Consequently, it seems important to characterize
directly the longitudinal-layer shear creep fadtasioso and the cross-layer shear creep
factor kdet9090-

In the following, the effects of the orthotropic creep of wood on the behavior of
a viscoelastic column are studied. First, in Section 5.3, the viscoelastic behavior of
a column with the Euler beam model under constant loading is recalled and the long
term critical buckling load is derived. Moreover, equivalent long term imperfections are
derived as the sum of initial imperfection and creep de ection. These long term imper-
fections are then injected in the Ayrton-Perry criterion instead of initial imperfections in
order to derive a long term Ayrton-Perry formula. Then in Section 5.4, the problem is
extended to the Timoshenko beam model by considering both bending and shear creep
of the column but there is no distinction between the longitudinal-layer and the cross-
layer shear creep since their difference has not been clearly established in literature.
Finally, in Section 5.5, effects of the viscoelasticity of the column, particularly the shear
creep and the long term strength, on the Ayrton-Perry formula and on the shear criterion
are studied.

5.2 De nition of the problem

E1

Figure 5.3 — Poynting-Thomson

Several models have been suggested to model the creep behavior of wood. Gen-
erally, in these models, it is assumed in nite de ections at long-term (Gressel, 1984).
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Nonetheless, for the design, no long term criterion can be established using these models
since the system is always unstable at long term. According to the Eurocode 5, struc-
tures are designed for a lifetime of at least 50 years. Hence, the long-term stability may
be seen as equivalent to assume the stability after fty years and an assumption of nite
de ections at long term is made. Thus, only the nal de ection is important to conclude
on the long-term stability of the column. The simplest creep model which assumes
long term nite deformations is the Poynting-Thomson model (Figure 5.3) composed
of linear elastic spring corresponding to elastic deformation and a Kelvin-Voigt model
corresponding to creep deformations. Two elementary models are used here:

— the linear spring which models the elastiddyof the material: = E"

— the linear dash-pot which models the viscosityf the material: = ((ji_t where

t stands for time.

The differential equation corresponding to the Poynting-Thomson model (Figure 5.3) in
a a given direction writes as:

1 d _ EoEs "y Eo 1 d"

+ - = — 5.1
Eo+ E;dt  Eo+ E; Eo+ E; dt 6.1)
where and" are stress and strain. By notikgy = EEO°+EE11 as the long term stiffness
andtg = E: the characteristic time of the model, the differential equation (5.1) can be
rewritten as: E d d&
1
ttge——=E; "+ tgE; —
"Eodt ' " FTdt

For wood, the viscoelastic behavior of the nine components of the orthotropic law
should be considered. Nonetheless, their impact is complex on the CLT viscoelastic
behavior because of its heterogeneities. Indeed, the viscoelastic behaviors of each com-
ponent are mixed in the global bending and shear behavior of the CLT. Hence, in order
simplify the problem, we assume here that the global bending and shear viscoelastic
behaviors of the CLT are homogeneous and are modeled by two Poynting-Thomson
models replacing the constitutive equations (4.6):

8 D, dM d

S M + tDD_];)E =D; +tpD; a (528.)
3 Fi dQ _ d

Qe =P R g (5.2b)
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whereM (x;t) andQ(x;t) are the bending moment and the shear force de ned as:

8 Z

E M (x;t) = Zh bz «(X; z;t)dz; (5.3a)
Z h z

.E Q)= bx(xz;t)dz: (5.3b)

2

« and , are the longitudinal and the shear streBs. (4.5a) and~, (4.5b) are the
initial bending and shear stiffnes®,; andF; are the long term bending and shear
stiffness andp andtg are the characteristic time of the bending and shear creep models
respectively. and are the curvature and the global shear strain of the beam which
comply with compatibility equations:

(x;t)="9x1); (5.4a)
Gty =" et +(FAxt)  f5(x): (5.4b)

where' andf are the rotation and the total de ection of the beanmi.= g—x is the

derivative of the parameteraccording tax direction.fo(x) is the initial imperfection
(Figure 5.4) de ned as:

X

T
Finally, the equilibrium at timé of the column under the constant compressive Bad
writes as:

fo(X) = Wo,eqSin (5.5)

Q(x;t) = MYx;t) (5.6a)
M (x;t) = Pf(x;t) (5.6b)

5.3 Long term buckling of an imperfect Euler column

First, the resolution of problem of a viscoelastic column under compression is
recalled using the Euler beam model (Ba ant and Cedolin (1991)). Accordingly we
assume here that the initial and the long term shear compliances arg—izero% =0.

From the viscoelastic constitutive equation (5.2b), the global shear straumegligible
compared td °and to' in (5.4b):

fAxt) fdx)= ' (xt) (5.7)

Then by replacing the curvature= f ° f 995.4a,5.7) and considering the equilibrium
(5.6b) and the initial de ectior (5.5) in the bending viscoelastic constitutive equation
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P

Figure 5.4 — Viscoelastic column with initial imperfection under compression

(5.2a) leads to a differential equationfifix; t):

Peq o of © X
Pf + 1tp Eil P—+ D1f00+ tpD; — = leéJO: PE;l Wo,eqSIN — (58)
Peo  dt at |

The solutionf of this problem is of the form:

f(x;t) = w(t)sin ’l(—
wherew(t) is the total mid-span de ection at tinte The differential equation (5.8) can
then be rewritten as differential equationveft) only:
P dw P
+

tp 1 — —/— 1

= Woeq (5.9)

wherePg.q = D0|—22 andPg.; = D; |_22 are the short term and long term Eulerian
critical buckling load. At = 0, the total de ection is equal to instantaneous de ection
(4.15):

1

1 P

PE; 0

w(0) =
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The solution of this problem is:

w(t) = 1W°—eg 1+ 1 expt (5.10)

Pe:1

where is the characteristic time of the creep de ections:

[=]
— t 1 PE; 0
=le—5—

Pe:1

We note here that, contrary to creep de ections of a beam under bendig,te
because of the non-linearity of the problem.

The mid-span delfectiow(t) is nite at long term only if > 0. Granted that the
stability criterion at short terr® < Pg. is satis ed,w(t) is nite at long term only if
P < Pg.1 which corresponds to a long term stability criterion. Tlus< Pg.; , the

long term de ectionw; is:
Wo-
Wy = —1 O,eg (511)

Pe; 1
This long term de ectiorw; is a combination of initial imperfectiowg,eq of elas-
tic de ection wg and of creep de ectionv :

Wi = Woeqt Werp + W (5.12)

By de ning the long term imperfections a/s%;eq = Wgeq + W, the expression of the
maximum shear stressax.1 at long term is expressed similarly t@ax (4.18) by re-
placingwo.eq by wg;eq. In order to derive the expressionw&eq, we recall the expression
of the of the long term elastic de ectiong.; (4.16) by replacing initial imperfections
by long term imperfections:

Wo;eq + w

PE;O
=L |

Then, from this expression and expressions of the long term de ection (5.11,5.12), the
equivalent long term imperfection,, is derived as:

Wel1 =

1
1 _ Peo _
WO;eq - WO;eql P~ WO;qu

Pe; 1

Then, it is observed that replacing.q by Wcl);eq in the expression of the bending
stress (4.18) is equivalent to replace the critical buckling IBa@d, which is equiva-
lent to Pg.o in the Euler beam model, by the long term critical buckling Ié&d; .
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Then a long term strength criterion can be suggested for a permaneiit load
P 1

< 9
cSefl 05 141 + 2, + 0251+ +

= Nap1 = Nap1

2 2 2
rel;1 rel;1

(5.13)

where (1 is the long term relative slenderness de ned as:
S

_ I:)u;l
rel;l1 —
F)E;l

wherePy.; is the long term ultimate compressive load associated to the long term ulti-
mate compressive strength; .

5.4 Viscoelastic behavior of a column with the Timo-
shenko beam model under constant loading

In this section, we extend the viscoelastic analysis to Timoshenko beam consider-
ing shear effects on the behavior. The viscoelastic behavior of both bending and shear
are considered (5.2). Then, by considering both equilibrium (5.6) and the compatibility
equations (5.4) a system with two differential equations is obtained as a function of the
de ectionf (x;t) and the shear strainx;t):

8
D, _d do cf 00
3 Pf + tDD_lopa D, °+D,;f% ty,D, EWL toDy ot = Pe;1 Uae4a)
d Fi _d°
S +teFy G PP tFF_lc,PE =0 (5.14b)

Solutions of this problem have the form:

f(xt) = w(t)sin ’I‘—

(x;t) = ( t)cos )I(_

wherew(t) and ( t) are the mid-span de ection and the shear strain at supperD
at timet. By injecting these solutions in the differential equations 5.14, a system of two
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MODEL UNDER CONSTANT LOADING

det A

differential equations ofv(t) and ( t) only is obtained:

8
P dw P | d
tp 1 — —+ 1 - tb— = Wp 5.15
5 D Peo dt Pe w D Gt Woeq ( a)
2 Pdw P I d
- 22y _ - = A

We de ne the vectoX (t) as:

w(t)
()

The problem (5.15) can then be written as a differential equation ¢ only:

X (1) =

1 — M+ A X(t)= =B 5.16
I:>cr;o dt ( ) ( ) 15 F% ( )
where
0 1
119 _P 1P 11
A = @ tp Pe;1 tp F1 te tp A
1P P 1 P p p 1 p
wF L Per R L Bo % L1 P B R

The characteristic polynomial of the matéxis given by:

1 P 1 P 1 P P
| = 2 - 1 + = 1 + 1 1
tp Pere: 1 tr Perc:1 tpte Pero Per1

= 2 b +c

where bandc are coef cients of the polynomialP.e.1 andP.c.1 are long term
critical buckling when considering only the bending creep or the shear creep respec-
tively:

1 1 N 1 1 1 1

= — and = + —
I:)cr;E; 1 I:)E;l FO I:)cr;G; 1 I:)E;O Fl

Pcr.1 is the long term critical buckling load de ned as:

1. 1,1
I:>(:r;1 I:)E;l I:1

It is observed that the discriminant ©? 4cis always positive since it can be
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written as a sum of positive terms:

1 P ? 1 P 2 P2 1 1 1 1
=2 1 50— *5 1 + = B
tD I:>cr;E;1 t[: Pcr;G;l tDtF l:1 I:O I:)E;l I:)E;O

Then the two roots are real numbers. Solutions of the equation (5.16) are then given by:
X ()= X, exp *+X exp X,

where X 1 and X , are eigenvectors oA associated to roots; and , andX 3 is a
constant vectorX (t) is nite at long term only if both roots ; and , are positive.
Then, the column is stable at long term onlypik 0 andc > 0 which is equivalent to
the following criteria:

1 1 te [§5)
— > + 5.17a
P tD + tF IDcr;E;l Pcr;G;l ( )

We note that, SincB¢.1 < P¢re.1 andPe.1 < P11, the criterion (5.17a) is always
true given that the criterion (5.17b) is ful lled.

Here we are only interested on the long term deformalioSn Provided that the
stability criterion (5.17b) is ful lled, long term deformatioX , are derived from the
equilibrium equation (5.16):

- Wi _ 1
X 3" 1 . = Woseq P

Pcr; 1

:'|'U =

We demonstrated here that the expression of the long term de astiols similar
to what is observed with the Euler beam model while changing the critical buckling load.
As a consequence, the long term strength criterion (5.13) can be adapted to Timoshenko
beam by replacing the long term buckling lo@dgl, by P..1 . Moreover, it is observed
that long term shear strain, is also similar to the expression of the short term shear
strain (4.17) while changing the critical buckling load and the shear stiffness. Then
the proposed shear criterion can also be adapted at long term by replacing the critical
buckling load:

P 1
Pu:1 ~Loee |0'eq _gzll r2el;1
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5.5. INFLUENCE OF THE ORTHOTROPIC VISCOELASTIC BEHAVIOR ON THE
AYRTON-PERRY CRITERION

5.5 In uence of the orthotropic viscoelastic behavior on
the Ayrton-Perry criterion

In this section, the long term Ayrton-Perry criterion and the proposed shear crite-
rion are plotted for different orthotropic viscoelastic behavior of CLT1 and CLT2 (Ta-
ble 4.1). Particularly, the in uence of the creep fackqg. Morover, the duration of
load effect on the residual strength of CLT has been studied by Shiro et al. (2014) and
Pirvu and Karacabeyli (2014) which observed than the variation of the bending strength
of CLT is almost similar to what is observed for solid timber. Nonetheless, the varia-
tion of the rolling-shear strength has not been studied to the other knowledge and could
be different to what is observed for bending. That is why we suggest to observe the
in uence of the modi cation factorkog. In the Eurocode 5 European Committee for
Standardisation (1993), only otkges and oneky,oq are suggested corresponding to the
long term behavior of the timber in the longitudinal direction. The use of only one creep
factor and one modi cation factor for both bending and shear viscoelastic behavior in
expression of the long term Ayrton Perry criterion 5.13 and of the long term shear cri-
terion 5.18 will result in approximately the same results as observed at short term since
relative shear effects are approximately identical. Nonetheless, because of its con g-
uration and of the orthotropic behavior of wood, a distinction between the long term
bending and the long term shear behaviors seems necessary for CLT.

5.5.1 Viscoelastic behavior with two creep factor&gerp and Kyetr

First, we assume that the bending creep behavior and the shear creep behavior are
different and we introduce the bending creep fa&i@ép and the shear creep factor
Kgete . The critical buckling load at long teri.; is then:

1 — 1+ kdef,D + 1+ kdef,F
I:)cr;l IDE;O I:O

Only one modi cation factork,.g = 0:6 corresponding to the service class 1 for a
permanent loading. is used in the following to observe only the impakgef. In
Figures 5.5 and 5.6, long term Ayrton-Perry formula and shear criterion are plotted as a
function of the slenderne%sfor Kgetp = 0:6 (Service class 1) and fdtgerr = 2Kgetp -
Considering the lack of knowledge regarding the rolling shear creep and the various
values in the literature mentioned in Section 5.1, this choice may be optimistic.

As expected, shear effects are ampli ed compared to a model with only one creep
factorkger. Particularly, for a small initial imperfectiow, = 5'% the relative difference
between the Ayrton-Perry criterion with the Euler and the Timoshenko beam models is
large up to 14.5%. Moreover it is noted that, fog = 1'@ the shear criterion is lower
than the Ayrton-Perry criterion for a slendernéh-ss 15and for a low cross-layer shear
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CHAPTER 5. LONG-TERM BUCKLING OF CLT COLUMNS

stiffness similarly to what was observed at short term.

Figure 5.5 — Ayrton-Perry formula and shear criterion at long-term with two creep fac-
torskgetp andKgesr for con guration CLT1

Figure 5.6 — Ayrton-Perry formula and shear criterion at long-term with two creep fac-
torskgetp andkgese for con guration CLT2

From these results it is observed that the shear creep flagier has mainly an
impact on the Ayrton-Perry criterion since it decreases the long term buckling load.
Nonetheless, it has only a limited impact on the relevance of shear criterion compared
to the Ayrton-Perry criterion. Additionally, the in uence &fe:r may be stronger as
observed in (J6bstl and Schickhofer, 2007).
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5.6. CONCLUSION
5.5.2 Viscoelastic behavior with two modi cation factorsk¢p and

kmod;F

Second, in order to study the in uence of a difference between variations of the
bending and the shear strength of CLT, we introduce two modi cation factors: the bend-
ing modi cation factork,,¢e and the shear modi cation factéf,,qc. In order to study
separately the effects &f,oq andkger, we assume here thBfere = Kgetc = 0:6. In
Figures 5.7 and 5.8, long term Ayrton-Perry formula and shear criterion are plotted as
a function of the slenderne%sfor Kmoge = 0:6 (Service class 1) and fitmegc = 0:4.
Similarly to what was observed fdtesc, there is not enough studies on the rolling
shear strength to give a representaliygsc and only its impact on the shear criterion
is studied here.

In both Figures 5.7 and 5.8, a signi cant drop Nf.; is observed. Particularly,
for slenderness up tﬁ) =34,N ., islower thanNap.; which show the strong impact
of Kmogc ON the long term shear criterion.

Figure 5.7 — Ayrton-Perry formula and shear criterion at long-term with two modi ca-
tion factorskmoap andkmegr for con guration CLT1

5.6 Conclusion

In this chapter, we extended the viscoelastic behavior of a column under compres-
sion to the Timoshenko beam model and we considered both bending and shear creep
behaviors. We observed that shear effects are ampli ed at long term and con rmed that
a new shear force criterion should be taken into account particularly for small cross-
layer shear strength and when initial imperfections are large. The relevance of this
shear criterion is due to the high contrast between the longitudinal compressive strength
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Figure 5.8 — Ayrton-Perry formula and shear criterion at long-term with two modi ca-
tion factorskmegp andkmyeqre for con guration CLT2

» and the rolling shear strength. Further studies are then necessary on the rolling
shear strength. For instance, the shear criterion may be particularly relevant for regu-
larly spaced CLT walls (Franzoni et al., 2016a, 2017a) as well as heterogeneous CLT
lay-ups with lower strength classes in cross-layers. Finally, the viscoelastic effects on
the rolling shear strength and stiffness should be investigated. Such experimental cam-
paign are currently in progress using the four-point bending bending test on sandwich
beam introduced in Chapter 2.
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General Conclusion

The aim of this thesis was to investigate the stability and the strength of CLT walls
at short and long term. In this purpose, we rst suggest closed-form bounds of the
equivalent-layer stiffness from the local behavior of wood and the sawing pattern of the
boards. Particularly it was observed that the equivalent cross-layer shear stiffness can
be two to three times larger than the local rolling shear stiffness. It was also observed
that, for most boards, these bounds are valid for both boards with and without narrow
glued edges. In order to con rm these theoretical observations, an experimental study
on the equivalent cross-layer shear stiffness is necessary . To this purpose, a new ex-
perimental protocol has been suggested: a four-point bending test on a sandwich beam
with wooden core oriented in the tangential direction. The new method of measurement
of the bending stiffness by the rotation at support seems more reliable than the classical
measurement by the relative displacement in the area between loads since it averages
mechanical properties over the whole span. Moreover, it was observed a reduced coef-
cient of variations of the equivalent cross-layer shear stiffness compared to the local
rolling shear stiffness. Nonetheless, the experimental campaign done during this PhD
thesis is not suf cient to conclude on the equivalent cross-layer shear stiffness. A much
larger experimental campaign is then necessary where several parameters such as span,
sawing pattern and dimensions of boards, wood species and narrow edge gluing.

In the second part of this dissertation, the buckling of CLT walls was investigated.
First, it was observed that the critical buckling load is of the same order as the compres-
sive strength of CLT walls particularly because of cross-layer shear effects. A suggested
projection of the Bending-Gradient model provided accurate results compared to the 3D
numerical study. Moreover, it was observed that the distinction between soft and hard
simple support could be relevant. Since, the buckling of CLT walls was found relevant,
initial imperfections was further considered to model a more realistic CLT wall. Clas-
sically, the Ayrton-Perry criterion is used to design columns and walls. It was shown
that this criterion can be extended to plate models when considering simply supported
lateral edges. Additionally, because of the low rolling shear strength, a new shear cri-
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terion for CLT walls was suggested additionally to the Ayrton-Perry formula. It was
shown that this criterion can be relevant particularly for small slenderness and when the
design rolling shear strength is low. Finally, viscoelastic effects have been also consid-
ered. Especially, the bending and the shear creep have been considered separately. It
was shown that the Ayrton-Perry criterion and the proposed shear criterion can be ex-
tended to constant loading at long term by replacing the initial critical buckling load by
the long-term critical buckling load. It was shown that, because of the orthotropic vis-
coelastic behavior of wood, the shear criterion can be more relevant at long term than at
short term. From this observation the study of the long-term cross-layer shear behavior
is very important. Such experiment are currently in progress using the suggested four-
point bending test on sandwich beam with a wooden core. Nonetheless, because of the
lack of results and the duration of creep experiment, results of this experimental cam-
paign have not been presented in this dissertation. However, this experimental protocol
seems adapted to such study.
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APPENDIX

A

Annexes

A.1 The Timoshenko beam model

In this appendix, the Timoshenko beam model is recalled. We consider a simply
supported rectangular beam with a length widthb and a thicknesh corresponding
to x, y andz directions respectively (Figure 4.1). We assume that local mechanical
properties are invariant accordingx@andy axis. The 3D displacement eld(x;y; z)
is then assumed invariant accordingytaxis as following:

2 Uy(X;y;z) =" (X)z (A.1a)
. Uy(xy;2)=0 (A.1b)
LU (xy;2) = f(X) (A.1c)

wheref (x) is the de ection of the beam at the neutral axis ar(a) is the rotation of
the section (Figure A.2). The 3D strain elg = 1 dui M can then be expressed

2 dx; dx;
as a function of global kinematic elds(x) and" (x):
8 n 1
< " (XY;2) =" x)z (A.2a)
L 2% (Y2 = e (yizZ) = () + FUX) (A.2b)
"= "=y =y = 0 (A.2¢)

A constant local shear strain, is assumed over the section of the beam. Then, the
global shear strain of the beam is identical to the local shear strain: ;.

We noteE(z) the elastic Young modulus kdirection andG(z) the shear mod-
ulus between andz. Assuming that the local 3D stress elds, and , are negligible
compared to yx, x and 4, are expressed as:

XX (X; Z) = EO(Z)"xx (X; Z) (A-‘?’a)
Xz (X; Z) = GO(Z) Xz (X; Z) (A3b)
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A.l. THE TIMOSHENKO BEAM MODEL

Figure A.1 — Scheme of a beam

Figure A.2 — De nition of the de ectiorf (x), of the rotation of the section(x) and of
the global shear strain(x)
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The bending momeri¥l (x) and the shear forc®(x) are de ned as global stress
elds as following:

8 7.

2 M(x) = Zh bz (X, 2)dz; (A.4a)
Z, :

.E Q(x) = b« (x;z)dz: (A.4b)

=3

[NTp=3

Then, by integrating the local 3D stress elds (A.3) over the section and considering the

kinematic assumption (A.2), the bending mombh{x) and the shear forc®(x) are
related to the rotatioh (x) and to the global shear straiifx) =

xy (X;Y;2)
8 Zn
2 M) = (W) h bZE(2)dz (A.5a)
A
20w= 0 bG@)dz (A.5b)

The bending stiffnesB y and the shear stiffne$s can then de ned according to (A.5a)
and (A.5a):

h
2

h bZEq(z)dz; (A.6a)

2

Z
Z n

i bGy(2)dz: (A.6b)

8
3D, =
2 r,
From the expression of the local stresg (A.3a), of the local strain (A.2a) and from

the constitutive equation (A.5a), the stregg under bending can be derived:

Eo(2)z
S M (x) (A7)

xx (X; 2)) =

Finally, we introduce the the local stress equilibrium:

8
dex+dxy+dxz_
d

> dy iz =0; (A.8a)
B d Xz d yz d 22 _ A.
T i + dy + iz =0: (A.8b)

We assumed that the problem is invariant according, then the second term of each
equation (A.8a,A.8b) vanishes. By integrating each equilibrium over the section, the
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global equilibrium of the beam is classically found:

M%) = Q(x); (A.92)
QYx) + p.(x) =0: (A.9b)

wherep,(X) is the external load ia direction (Figure A.1).

Nonetheless, it is observed that the expressionof{A.3b) is not statically com-
patible. First, at the upper and lower faces of the beanz, for g «z does not comply
with zero shear stress boundary conditions. Second, for multi-layer composite, there are
discontinuities of the shear stress between two layers with different shear sti@pess
and the shear stress (A.3b). Another expression for the shear stifinessy be derived

following the works of Jourawski (1856) particularly suitable for heterogeneous beam.

Figure A.3 — Scheme of an elementary part of the beam of lesgth

First, from the integration of the equilibrium (A.8a) betweerr z, andz =
(Figure A.3), and considering the boundary conditiQa(x; g) =0 itis obtained th

N[

t:

o]

z zd (x;2)
5  OX

dz= ;(X;20)

Then, from the expression of the stresg as a function oM (x) (A.7) and recall-
ing the equilibrium (A.9a), the shear stress(X; zo) can be expressed as:

xz (X; Zg) = %Z gE(z)zdz (A.10)
Do
The internal shear stress enelyy :
251 2(x2 1020 %% 4% 2
W,, = 2 "é(()(;))bdz: EQD—(S) . E(2)zdz szo)olz0 (A.11)
Since we have: 10%()
W = 578,
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the shear stiffness, can be identi ed as:

D2
Re 0 - (A.12)
E(Z)Zdz de@

F():

R

N|T

h 2
7z X

For a homogeneous section, the shear stiffiigss gGobh is obtained with the classi-
cal shear coef cient = 2.
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A.2. RESOLUTION OF THE LINEAR BUCKLING WITH THE BENDING-GRADIENT
THEORY USING VOIGT'S NOTATIONS

A.2 Resolution of the linear buckling with the Bending-
Gradient theory using Voigt's notations

In the following, the Voigt notations are used to turn contraction products into
conventional matrix products and to ease comprehension, brgckate used to denote
that a tensor is considered in a matrix form. Tlusis a linear operator, reallocating
tensor components. The third-order tensdbecomes the vector:

0 mn L
111
2m2n1
h i P o
— 121
- mn
- 112
mn
222
p2 mn
122

Forth-order and sixth-order tensors take a matrix form:
0 1
h i Di111 D112 0
D = @ Di122 Daoa 0 A
O 0 z:)1212

0 p_
h111111 hinz 0 0 0 2111221
h221111 h221122 0 p_ O p_ 0 2h321221
h % 2h121121 2h121211  2h121022 0 §
- 2h112121  hi1zon h112222 0
0 2h222121  h22oo11 h222222 0
2h122111 2h122122 0 . 0 . 0 2N122001
h i h i

It is noticed here that zeros in matritdd and h are due to the material or-

thotropy in each layer (Lebée and Sab, 2011b) and lead to an uncoupling between shear
effects inx,; andx,-directions as in the Reissner-Mindlin model.
With Voigt notation, we assume that the identity tenstakes the following form:
p_
10 8 00 ¥ 2
00 =201

J = 0
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in order to comply with the following relationship:

0 1
Ri1

R221
O
2R121
Ri12
R222
O
2R12

QO
I
(&
V)
I
(&

Since modes shapes have a double-sinus formulation (see Equation 3.21) differential
operators_ may be derived in matrix forms as functions of wavelengthsandK ,,:

0 1
0 Kn O
_ Kn _ 0 O Km
K= K, L= Ky O 0
0 K 0
0O O Kn
With such a form the equilibrium equation (3.3) is then rewritten as follows:
h i
KJI R + mn(Kp)?Uf" =00 r iiR +Us N° =0
_ _ 0 1
h i h i M1
R:LM:L@pI\_/I22A0 R=M r
A Mo, A

Then, considering modes shape (Equation 3.21), the eigenvalue problem (Equation
3.20) may be rewritjgn;as a matrix product betwe&h a7 matrix divided in 4 blocks

and the vecto(Uz™; ) which length is 7.
0 h i 1o 1

mn (Km)? 'KJIL D L
A §%}h | K =0 (A13)

h i
wherel is the6 6 identity matrix. From this equation, may be expressed as a

function of U™ :

JK I+hLDT

1
= |+ hLD “TJKUM (A.14)
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and the eigenvalue problem is then expressed only according to the eigebfibde
h i hi h i 1
'KIJL DL I+ hLDTL JK

(A.15)
(Km)® mn UM =0
The non-trivial solutionsy3™ 6 0) are thus given by:
h i hi h i 1
'KIJL DL I+ hLD'TL JK
= = A.16
mn (Ko)? (A.16)

corresponding to the modd; = Uf™ sin(K xy) sin(K,x2). We may note that the
equilibrium is checked for any amplitudgf™ in the linear buckling analysis of a ini-
tially perfectly straight plate.
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A.3 De ection of CLT wall with initial imperfections

The problem studied in Appendix A.2 is completed to the case of a plate with an
initial imperfectionUs.o(X1; X2) corresponding to the buckling mode; n):

Us.o(X1; X2) = Ugg Sin(KmX1) Sin(K,X2)

The equilibrium (A.13) of the plate under the compressive Badan then be rewritten:

0 h i 1
P(Kn)? KJLD T _OJum?t O 2 ymn T
1(Km < 3el P1(Km)~ Uy

% hi h i §Z'%phi£=@ 0 A (A17)
K l+ hL DL 0

whereUze (X1;X2) = Uz sin(KmX1) sin(KyXx2) is the elastic de ection, i.e. the de-
ection added to imperfections under the loRg. A solution of this equation is found
for :

Uslo

mn
P1 1

mn —
3el

Itis noted here that the elastic de ections have a similar expression as in the Timoshenko
beam theory (4.16). Then, we suggest to adapt the Ayrton-Perry criterion recalled in
Section 4.2.3 to the Bending-Gradient theory.

From the Bending-Gradient theory Lebée and Sab (2011a) the maximum bending
stress max can be expressed relatively to the ultimate compressive strepgimilarly
to (4.18): I

max _ Pl 1
) = o 1+ . I (A.18)
where hi h i L
euID I+ hL DL TJKT.
! 1= : =
h mn

andPy., is the ultimate compressive load de ned as:

;0
— Cllll

- u
Allll

I:)l;u
The vector_ is given by:

_h? Ciny K Cl.;l(()il (D111101111 + D11220h120) + Cﬁ;z (D11110h122 + D112202225)
~ 12Ann Kn Cippi(Daazedingg + D2azothizg) + Ciypp (Daizaiize + D222oa222)
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whered = D 1!is the bending compliance ar@’ ° is the plane stress tensor of the
layers oriented in the longitudinal directiof,114 is the in plane stiffness de ned as:

£y
Aun= Ci111(X3)dx3

2

Then, the Ayrton-Perry criterion (4.19) can be adapted to the Bending-Gradient
model. This can be usefull particularly when lateral edges are not free since beam
models are not suf cient in such cases.
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Strength and Stability of Cross Laminated Timber walls at short and long term

This PhD thesis addresses the issue of CLT wall buckling. These wooden panels, made
of boards which are glued cross-wise, are more and more used in construction. The
current trend of the market is to design high-rise buildings which raises the issue of
the compressive strength of such walls. It turns out that wood is a highly anisotropic
material. Especially, the shear stiffness and strength perpendicular to the grain (rolling
shear) are much weaker than in the direction parallel to the grain. This high contrast
requires more elaborate design criteria than classical tools used in timber engineering.
This work is organized in two main parts. First, the equivalent rolling-shear behavior
of a CLT layer is investigated. Bounds are established for the stiffness of an equivalent
layer using a theoretical approach. These bounds are validated by means of a new
experimental set-up which allows the measurement of the rolling shear stiffness with
less variability than the classical single lap shear test. In the second part, this data is
used in the buckling analysis of CLT walls with increasing re nements. First, the linear
buckling load of a thick plate without imperfection is established. This load is based on
a new higher-order plate theory and reveals that the critical load based on a thin plate
theory (Kirchhoff-Love) cannot predict correctly the strength of CLT walls. Then, the

in uence of imperfections is introduced adapting the classical approach from Ayrton
and Perry to the case of a Timoshenko beam. This extension reveals that a new design
criterion has to be satis ed under buckling which is speci c to CLT. Finally, this analysis

is extended to long term loads assuming a simple creep law and leading to a new simple
design criterion which may be easily introduced in current design codes.

Keywords Cross Laminated Timber, Equivalent-layer stiffness, Rolling shear, short
and long term buckling, Imperfections



Résistance et Stabilité de murs en bois lamellé-croisé a court et a long terme

Ce mémoire de these aborde le probleme du ambement de murs en bois lamellé-croisé.
Ces panneaux de bois, constitués de planches collées perpendiculairement, sont de plus
en plus utilisés dans la construction. La tendance actuelle du marché est de concevoir
des immeubles de grande hauteur, ce qui souléve la question de la résistance en com-
pression de ces murs. |l s'avére que le bois est fortement anisotrope. En particulier,
la raideur et la résistance en cisaillement perpendiculaire aux bres, également appelé
cisaillement roulant, sont beaucoup plus faibles que dans la direction paralléle aux -
bres. Ce fort contraste nécessite un critere de conception plus élaboré que les outils
classiques utilisés dans l'ingéniérie du bois. Ce travail est organisé en deux parties.
Dans la premiére partie, la raideur équivalente de cisaillement transverse d'un panneau
de bois lamellé-croisé est étudiée. Des bornes sont établies par une approche théorique.
Ces bornes sont validées par un nouveau dispositif expérimental qui permet la mesure
de la raideur en cisaillement roulant avec une variabilité plus faible que Enegit-lap
classiguement utilisé. Dans la deuxieme partie, ces données sont utilisées dans I'analyse
du ambement de panneaux en bois lamellé-croisé en raf nant progressivement le prob-
léeme. Dans un premier temps, la charge critique de ambement linéaire d'une plaque
épaisse sans imperfections est établie. Cette charge critique est basée sur une nouvelle
théorie de plaque d'ordre supérieur et montre que la charge critique de ambement basée
sur une théorie de plague mince (Kirchhoff-Love) ne peut pas estimer correctement la
résistance de murs en bois lamellé-croisé. Dans un second temps, I'in uence des im-
perfections est étudiée en adaptant I'approche classique de Ayrton et Perry a une poutre
de Timoshenko. Cette extension a révélé qu'un nouveau critere de résistance doit étre
satisfait lors du ambement qui est spéci que aux murs en bois lamellé-croisé. Dans
un dernier temps, cette analyse est étendue aux charges permanentes en supposant une
loi de uage simple qui conduit & un nouveau critere de conception simple qui pourrait
facilement étre adopté dans les codes de conception actuels.

Mots-clés Bois Lamellé-Croisé, Raideur de couche équivalente, Cisaillement-roulant,
Flambement a court et long terme, Imperfections
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