M. L. Brogdon, A. H. Rosenberger, A. Force, and M. Directorate, Evaluation of the Influence of Grain Structure on the Fatigue Variability of Waspaloy, pp.583-588, 2008.

B. Flageolet, O. Yousfi, Y. Dahan, P. Villechaise, and J. Cormier, Characterization of microstructures containing abnormal grain growth zones in Alloy 718, 7th International Symposium on superalloy 718 and derivatives, pp.595-606, 2010.

J. Uginet and B. Pieraggi, Study of Secondary Grain Growth on 718 Alloy, pp.343-352, 1997.

G. D. Smith and H. L. Flower, Super plastic forming of Inconel alloy 718SPF, pp.355-364, 1994.

P. A. Manohar, M. Ferry, and T. Chandra, Five Decades of the Zener Equation, ISIJ International, vol.38, pp.913-924, 1998.

T. Nishizawa, I. Ohnuma, and K. Ishida, Examination of the zener relationship between grain size and particle dispersion, Materials transaction, vol.38, pp.950-956, 1997.

C. S. Smith, Introduction to Grains, Phases, and Interfaces-an Interpretation of Microstructure, Trans Metall Soc AIME, vol.175, pp.15-51, 1948.

N. Moelans, B. Blanpain, and P. Wollants, A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent secondphase particles, Acta Materialia, vol.53, pp.1771-1781, 2005.

F. Humphreys and M. Hatherly, Recrystallization and related annealing phenomena, 2004.

M. Miodownik, Modeling and Simulation : Processing of Metallic Materials Monte Carlo Models for Grain Growth and Recrystallization, ASM Handbook, vol.22, p.3, 2008.

G. Jinhua, G. Raymond, and G. Thompson, Computer simulation of grain growth with second phase particle pinning, Acta Materialia, vol.45, pp.3653-3658, 1997.

D. Srolovitz, M. Anderson, G. Grest, and P. Sahni, Computer simulation of grain growth-iii. influence of a particle dispersion, Acta Metallurgica, vol.32, pp.1429-1438, 1984.

M. Miodownik, J. W. Martin, and . Cerezo, Mesoscale simulations of particle pinning, Philosophical Magazine A, vol.79, pp.203-222, 1999.

M. Miodownik, Highly parallel computer simulations of particle pinning: zener vindicated, Scripta Materialia, vol.42, pp.1173-1177, 2000.

D. Fan, Computer simulation of grain growth using a continuum field model, Acta Materialia, vol.45, pp.611-622, 1997.

Y. Suwa, Y. Saito, and H. Onodera, Phase field simulation of grain growth in three dimensional system containing finely dispersed second-phase particles, Scripta Materialia, vol.55, pp.407-410, 2006.

L. Vanherpe, N. Moelans, B. Blanpain, and S. Vandewalle, Pinning effect of spheroid second-phase particles on grain growth studied by three-dimensional phase-field simulations, Computational Materials Science, vol.49, pp.340-350, 2010.

K. Chang, W. Feng, and L. Chen, Effect of second-phase particle morphology on grain growth kinetics, Acta Materialia, vol.57, pp.5229-5236, 2009.

J. Lépinoux, D. Weygand, and M. Verdier, Modeling grain growth and related phenomena with vertex dynamics, Comptes Rendus Physique, vol.11, pp.265-273, 2010.

D. Weygand, Zener pinning and grain growth: a two-dimensional vertex computer simulation, Acta Materialia, vol.47, pp.961-970, 1999.

G. Couturier, C. Maurice, and R. Fortunier, Three-dimensional finite-element simulation of Zener pinning dynamics, Philosophical Magazine, vol.83, pp.3387-3405, 2003.

G. Couturier, R. Doherty, C. Maurice, and R. Fortunier, 3D finite element simulation of the inhibition of normal grain growth by particles, Acta Materialia, vol.53, pp.977-989, 2005.
URL : https://hal.archives-ouvertes.fr/emse-00506051

M. Hillert, On the theory of normal and abnormal grain growth, Acta Metallurgica, vol.13, pp.227-238, 1965.

M. Mujahid, C. A. Gater, and J. W. Martin, Microstructural Study of a Mechanically Alloyed ODS Superalloy, Journal of Materials Engineering and Performance, vol.7, pp.524-532, 1998.

M. Mujahid and M. Martin, The effect of oxide particle coherency on Zener pinning in ODS superalloys, Journal of Materials Science letters, vol.13, pp.153-155, 1994.

S. J. Dillon, M. Tang, W. C. Carter, and M. P. Harmer, Complexion: A new concept for kinetic engineering in materials science, Acta Materialia, vol.55, pp.6208-6218, 2007.

D. Lee, B. Lee, K. Ko, and N. Hwang, Comparison of the Advantages Conferred by Mobility and Energy of the Grain Boundary in Inducing Abnormal Grain Growth Using Monte Carlo Simulations, Materials Transactions, vol.50, pp.2521-2525, 2009.

J. B. Koo, D. Y. Yoon, and M. F. Henry, The effect of small deformation on abnormal grain growth in bulk Cu, Metallurgical and Materials Transactions A, vol.33, pp.3803-3815, 2002.

V. Randle, Strain-Induced Secondary Recrystallization, Materials Science Forum, pp.189-194, 1993.

G. Riontino, C. Antonione, L. Battezzati, F. Marino, and M. C. Tabasso, Kinetics of abnormal grain growth in pure iron, Journal of Materials Science, vol.14, pp.86-90, 1979.

T. A. Bennett, P. N. Kalu, and A. D. Rollett, Strain-Induced Selective Growth in 1. 5 % temper-rolled Fe1%Si, Microsc.Microanal, vol.17, pp.1-6, 2011.

Q. Li, B. Guyot, and N. Richards, Effect of processing parameters on grain boundary modifications to alloy Inconel 718, Materials Science and Engineering: A, vol.458, pp.58-66, 2007.

Q. Li, J. Cahoon, and N. Richards, Effects of thermo-mechanical processing parameters on the special boundary configurations of commercially pure nickel, Materials Science and Engineering: A, vol.527, pp.263-271, 2009.

V. Randle, Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials, Acta Materialia, vol.47, pp.4187-4196, 1999.

M. Kumar, A. J. Schwartz, and W. E. King, Microstructural evolution during grain boundary engineering of low to medium stacking fault energy fcc materials, Acta Materialia, vol.50, pp.2599-2612, 2002.

C. P. Blankenship, M. F. Henry, E. S. Huron, and J. M. Hyzac, Method for controlling grain size in Ni-base Superalloys, p.1997

D. D. Krueger, R. Kissinger, R. Menzies, and C. Wukusick, Fatigue crack growth resistant nickel-base article and alloy and method for making, p.1990

M. Soucail, M. Marty, and H. Octor, The Effect of High Temperature Deformation on Grain Growth in a PM Nickel Base Superalloy, pp.663-666, 1996.

E. Huron, S. Srivatsa, and E. Raymond, Control of Grain Size Via Forging Strain Rate Limits for R'88DT, pp.49-58, 2000.

E. Raymond, R. Kissinger, A. Paxson, and E. S. Huron, Nickel-base superalloy having improved resistance to abnormal grain growth, p.1999

R. F. Decker, A. I. Rush, A. G. Dano, and J. W. Freeman, Abnormal Grain Growth in Nickel-base Heat-resistant alloys, tech. rep, 1956.

Y. K. Cho, D. K. Yoon, and M. F. Henry, The Effects of Deformation and Pre Heat Treatment on Abnormal Grain Growth in RENE 88 Superalloy, Metallurgical and Materials Transactions A, vol.32, pp.3077-3090, 2001.

D. A. Demania, Recovery and Recrystallization in Nickel-based Superalloy René 88 DT, 2002.

N. Bozzolo, N. Souaï, and R. Logé, Evolution of microstructure and twin density during thermomechanical processing in a ?-?' nickel-based superalloy, Acta Materialia, vol.60, pp.5056-5066, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00722027

M. A. Miodownik, A. J. Wilkinson, and J. W. Martin, On the secondary recrystallization of MA754, Acta Materialia, vol.46, pp.2809-2821, 1998.

K. Kusunoki, K. Sumino, Y. Kawasaki, and M. Yamazaki, Effects of the Amount of y ' and Oxide Content on the Secondary Recrystallization Temperature of Nickel-Base Superalloys, Metallurgical Transactions A, vol.21, pp.547-555, 1990.

, Iconel alloy 718, tech. rep., Special Metals, 2007.

X. Xie, C. Xu, G. Wang, J. Dong, W. Cao et al., TTT diagram of a newly developed nickel-base superalloy-Allvac 718Plus, pp.193-202, 2005.

A. Strondl, R. Fischer, G. Frommeyer, and A. Schneider, Investigations of MX and ?'/? " precipitates in the nickel-based superalloy 718 produced by electron beam melting, Materials Science and Engineering: A, vol.480, pp.138-147, 2008.

S. Azadian, L. Wei, and R. Warren, Delta phase precipitation in Inconel 718, Materials Characterization, vol.53, pp.7-16, 2004.

A. Niang, B. Viguier, and J. Lacaze, Some features of anisothermal solid-state transformations in alloy 718, Materials Characterization, vol.61, pp.525-534, 2010.

D. Y. Cai, W. H. Zhang, and P. L. Nie, Dissolution kinetics and behaviour of ? phase in Inconel 718, Trans. Nonferrous Met. Soc. China, vol.13, pp.1338-1341, 2003.

H. Zhang, S. Zhang, M. Cheng, and Z. Li, Deformation characteristics of ? phase in the delta-processed Inconel 718 alloy, Materials Characterization, vol.61, pp.49-53, 2010.

Y. Wang, W. Z. Shao, L. Zhen, L. Lin, and Y. X. Cui, Investigation on Dynamic Recrystallization Behavior in Hot Deformed Superalloy Inconel 718, Materials Science Forum, vol.549, pp.1297-1300, 2007.

Y. Wang, W. Shao, L. Zhen, and X. Zhang, Microstructure evolution during dynamic recrystallization of hot deformed superalloy 718, Materials Science and Engineering: A, vol.486, pp.321-332, 2008.

J. Thomas, E. Bauchet, C. Dumont, and F. Montheillet, EBSD investigation and modeling of the microstructural evolutions of superalloy 718 during hot deformation, pp.959-968, 2004.

H. Yuan and W. Liu, Effect of the ? phase on the hot deformation behavior of Inconel 718, Materials Science and Engineering: A, vol.408, pp.281-289, 2005.

L. Zhou and T. Baker, Effects on dynamic and metadynamic recrystallization on microstructures of wrought IN-718 due to hot deformation, Materials Science and Engineering: A, vol.196, pp.89-95, 1995.

K. Huang, Towards the modeling of recrystallization phenomena in multi-pass conditions-Application to 304L steel, 2011.

G. E. Dieter, H. A. Kuhn, and S. L. Semiatin, Handbook of Workability and Process Design, 2003.

N. Souai, Contrôle du maclage thermique et de la taille de grains par traitements thermomécaniques dans un superalliage base Ni, 2011.

, TSL OIM analysis 5.3 guide," tech. rep., TSL, 2007.

S. M. Foiles, Temperature dependence of grain boundary free energy and elastic constants, Scripta Materialia, vol.62, pp.231-234, 2010.

M. Hillert, Influence of solute segregation on grain-boundary energy and selfdiffusion, Metallurgical Transactions A, vol.8, pp.1431-1438, 1977.

B. R. Patterson and Y. Liu, Relationship between Grain Boundary Curvature and Grain Size, Metallurgical and Materials Transactions A, vol.23, pp.2481-2482, 1992.

M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Materials Science and Engineering: A, vol.527, pp.2738-2746, 2010.

H. Gao, Geometrically necessary dislocation and size-dependent plasticity, Scripta Materialia, vol.48, pp.113-118, 2003.

L. Kubin, Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues, Scripta Materialia, vol.48, pp.119-125, 2003.

U. Kocks and H. Mecking, Physics and phenomenology of strain hardening: the {FCC} case, Progress in Materials Science, vol.48, pp.171-273, 2003.

M. Kassner, Taylor hardening in five-power-law creep of metals and Class M alloys, Acta Materialia, vol.52, pp.1-9, 2004.

B. Viguier, Dislocation densities and strain hardening rate in some intermetallic compounds, Materials Science and Engineering: A, vol.349, pp.132-135, 2003.

T. Mongis, Ingénierie des joints de grains dans l'Inconel 718, 2012.

N. Bozzolo, S. Jacomet, and R. Logé, Fast in-situ annealing stage coupled with EBSD: A suitable tool to observe quick recrystallization mechanisms, Materials Characterization, vol.70, pp.28-32, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00709665

A. A. Guimaraes and J. J. Jonas, Recrystallization and Aging Effects Associated with the High Temperature Deformation of Waspaloy and Inconel 718, vol.12, pp.1655-1666, 1981.

M. Bernacki, H. Resk, T. Coupez, and R. E. Logé, Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework, Modelling and Simulation in Materials Science and Engineering, vol.17, p.64006, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00508362

M. Bernacki, R. Logé, and T. Coupez, Level set framework for the finiteelement modelling of recrystallization and grain growth in polycrystalline materials, Scripta Materialia, vol.64, pp.525-528, 2011.

M. Bernacki, Y. Chastel, T. Coupez, and R. Logé, Level set framework for the numerical modelling of primary recrystallization in polycrystalline materials, Scripta Materialia, vol.58, pp.1129-1132, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00509731

K. Hitti, P. Laure, T. Coupez, L. Silva, and M. Bernacki, Precise generation of complex statistical Representative Volume Elements (RVEs) in a finite element context, Computational Materials Science, vol.61, pp.224-238, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00699554

M. Elsey, S. Esedoglu, and P. Smereka, Diffusion generated motion for grain growth in two and three dimensions, Journal of Computational Physics, vol.228, pp.8015-8033, 2009.

J. F. Zaragoci, Simulation numérique directe multiphasique de la déformation d'un alliage Al-Cu à l'état pâteux-Comparaison avec des observations par tomographie aux rayons X in situ en temps réel, 2012.

A. Gamiette, Adapting Inconel Metallurgical Post-Processor, tech. rep, 2009.

N. Moelans, B. Blanpain, and P. Wollants, Phase field simulations of grain growth in two-dimensional systems containing finely dispersed second-phase particles, Acta Materialia, vol.54, pp.1175-1184, 2006.

R. Loge, M. Bernacki, H. Resk, L. Delannay, H. Digonnet et al., Linking plastic deformation to recrystallization in metals using digital microstructures, Philosophical Magazine, vol.88, pp.3691-3712, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01871010

H. Resk, L. Delannay, M. Bernacki, T. Coupez, and R. Logé, Adaptive mesh refinement and automatic remeshing in crystal plasticity finite element simulations, Modelling and Simulation in Materials Science and Engineering, vol.17, p.75012, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00509476

A. L. Fabiano, Modelling of crystal plasticity and grain boundary motion of 304L steel at the mesoscopic scale, 2013.