.. .. Setting-of-the-problem, 3 Preprocessing : homogenized Hooke's laws of the microstructures, vol.225

. , Set of admissible microstructures

. , 4 Processing: optimization among the set of periodic composite materials

. , Settings of the homogenized problem

. Post-processing, 239 7.5.1 Sequences of shapes

, topology optimization of modulated and oriented periodic microstructures by the homogenization method, by P. Geoffroy-Donders, G. Allaire and O. Pantz. etry files is already implemented. Hence we could confirm that they are manufacturable, but also perform experimental tests to check their physical behaviour, International Journal of Fatigue, vol.47, pp.126-136, 2013.

G. Allaire and G. A. Francfort, A numerical algorithm for topology and shape optimization, chapitre Topology Design of Structures, pp.239-248, 1993.

G. Allaire, E. Bonnetier, G. Francfort, and F. Jouve, Shape optimization by the homogenization method, Numer. Math, vol.76, issue.1, pp.27-68, 1997.

G. Allaire, Shape optimization by the homogenization method, vol.146, 2002.

G. Allaire, F. Jouve, and A. Toader, A level-set method for shape optimization, Comptes Rendus Mathematique, vol.334, issue.12, pp.1125-1130, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01336301

G. Allaire, F. Jouve, and H. Maillot, Topology optimization for minimum stress design with the homogenization method. Structural and Multidisciplinary Optimization, vol.28, pp.87-98, 2004.

G. Allaire, F. Jouve, and A. Toader, Structural optimization using sensitivity analysis and a level-set method, Journal of computational physics, vol.194, issue.1, pp.363-393, 2004.

G. Allaire and O. Pantz, Structural optimization with FreeFem++. Structural and Multidisciplinary Optimization, vol.32, pp.173-181, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01089081

G. Allaire, Conception optimale de structures, vol.58, 2007.

G. Allaire, C. Dapogny, G. Delgado, and G. Michailidis, Multi-phase structural optimization via a level set method. ESAIM: control, optimisation and calculus of variations, vol.20, pp.576-611, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00839464

G. Allaire, P. Geoffroy-donders, and O. Pantz, Topology optimization of modulated and oriented periodic microstructures by the homogenization method, Computers and Mathematics with Applications, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01734709

L. Ambrosio and G. Buttazzo, An optimal design problem with perimeter penalization, Calculus of Variations and Partial Differential Equations, vol.1, issue.1, pp.55-69, 1993.

S. Amstutz and H. Andrä, A new algorithm for topology optimization using a level-set method, Journal of Computational Physics, vol.216, issue.2, pp.573-588, 2006.

E. Andreassen, S. Boyan, O. Lazarov, and . Sigmund, Design of manufacturable 3D extremal elastic microstructure, Mechanics of Materials, vol.69, issue.1, pp.1-10, 2014.

S. Aubry, Etude théorique et numérique de quelquesprobì emes d'optimisation de formè a l'aide de méthodes d'homogénéisation, 1999.

C. Barbarosie, Optimization of perforated domains through homogenization, Structural optimization, vol.14, pp.225-231, 1997.

C. Barbarosie and A. Toader, Shape and topology optimization for periodic problems. Structural and Multidisciplinary Optimization, vol.40, pp.393-408, 2010.

C. Barbarosie and A. Toader, Shape and topology optimization for periodic problems. II. Optimization algorithm and numerical examples, Struct. Multidiscip. Optim, vol.40, issue.1-6, pp.393-408, 2010.

M. Philip-bendsøe and N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Computer methods in applied mechanics and engineering, vol.71, issue.2, pp.197-224, 1988.

. Martin-p-bendsøe, Optimal shape design as a material distribution problem. Structural and multidisciplinary optimization, vol.1, pp.193-202, 1989.

M. P. Bendsøe, . Guedes, B. Robert, P. Haber, J. E. Pedersen et al., An Analytical Model to Predict Optimal Material Properties in the Context of Optimal Structural Design, J. Appl. Mech, vol.61, issue.4, pp.930-937, 1994.

P. Martin, O. Bendsøe, and . Sigmund, Material interpolation schemes in topology optimization, Archive of applied mechanics, vol.69, issue.9, pp.635-654, 1999.

M. Philip-bendsoe and O. Sigmund, Topology optimization: theory, methods, and applications, 2003.

U. Boscain, L. Sacchelli, and M. Sigalotti, Generic singularities of line fields on 2D manifolds. Differential Geometry and its Applications, vol.49, pp.326-350, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01318515

B. Bourdin, Filters in topology optimization, International journal for numerical methods in engineering, vol.50, issue.9, pp.2143-2158, 2001.

B. Bourdin and A. Chambolle, Design-dependent loads in topology optimization. ESAIM: Control, Optimisation and Calculus of Variations, vol.9, pp.19-48, 2003.

. Brennan-craddock-;-james-brennan-craddock, The Investigation of a Method to Generate Conformal Lattice Structures for Additive Manufacturing, 2011.

M. Briane, Correctors for the homogenization of a laminate, Adv. Math. Sci. Appl, vol.4, issue.2, pp.357-379, 1994.

T. E. Bruns, A reevaluation of the SIMP method with filtering and an alternative formulation for solid-void topology optimization. Structural and Multidisciplinary Optimization, vol.30, pp.428-436, 2005.

C. Bui, C. Dapogny, and P. Frey, An accurate anisotropic adaptation method for solving the level set advection equation, International Journal for Numerical Methods in Fluids, vol.70, issue.7, pp.899-922, 2012.

J. Céa, Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coût, ESAIM: Mathematical Modelling and Numerical Analysis, vol.20, pp.371-402, 1986.

J. Céa, S. Garreau, P. Guillaume, and M. Masmoudi, The shape and topological optimizations connection, Computer methods in applied mechanics and engineering, vol.188, issue.4, pp.713-726, 2000.

A. Chambolle, A density result in two-dimensional linearized elasticity, and applications. Archive for rational mechanics and analysis, vol.167, pp.211-233, 2003.

B. Chen and N. Kikuchi, Topology optimization with designdependent loads, Finite Elements in Analysis and Design, vol.37, issue.1, pp.57-70, 2001.

Y. Chen, 3D Texture Mapping for Rapid Manufacturing, Comput. Aided Des. Appl, vol.4, issue.6, pp.761-771, 2007.

. Andrew-d-cramer, J. Vivien, A. Challis, and . Roberts, Microstructure interpolation for macroscopic design. Structural and Multidisciplinary Optimization, vol.53, pp.489-500, 2016.

. Andrew-d-cramer, J. Vivien, A. Challis, and . Roberts, Physically Realisable 3D Bone Prosthesis Design with Interpolated Microstructures, Journal of Biomechanical Engineering, 2016.

C. Dapogny and P. Frey, Computation of the signed distance function to a discrete contour on adapted triangulation. Calcolo, vol.49, pp.193-219, 2012.

C. Dapogny and R. Estevez, Alexis Faure and Georgios Michailidis. Shape and topology optimization considering anisotropic features induced by additive manufacturing processes, 2017.

J. Moller, Lectures on random voronoi tessellations, vol.87, 2012.

F. Murat and L. Tartar, Calcul des variations et homogénéisation, Homogenization methods: theory and applications in physics (Bréau-sans-Nappe, vol.57, pp.319-369, 1983.

F. Murat and L. Tartar, H-convergence, Topics in the mathematical modelling of composite materials, pp.21-43, 1997.
DOI : 10.1007/978-1-4612-2032-9_3

H. Neuber, Theory of notch stresses: principles for exact calculation of strength with reference to structural form and material, USAEC Office of Technical Information, vol.4547, 1961.

N. Andrew and . Norris, Optimal orientation of anisotropic solids, The Quarterly Journal of Mechanics and Applied Mathematics, vol.59, issue.1, pp.29-53, 2005.

A. Antonio, J. Novotny, and . Sokolowski, Topological derivatives in shape optimization, 2012.

S. Osher and J. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, Journal of computational physics, vol.79, issue.1, pp.12-49, 1988.
DOI : 10.1016/0021-9991(88)90002-2

URL : http://dml.cz/bitstream/handle/10338.dmlcz/144762/ActaOlom_54-2015-2_3.pdf

J. Stanley, F. Osher, and . Santosa, Level set methods for optimization problems involving geometry and constraints, Journal of Computational Physics, vol.171, issue.1, pp.272-288, 2001.

S. Osher and R. Fedkiw, Level set methods and dynamic implicit surfaces, vol.153, 2006.
DOI : 10.1115/1.1760520

J. Panetta, Q. Zhou, L. Malomo, N. Pietroni, P. Cignoni et al., Elastic Textures for Additive Fabrication, ACM Trans. Graph, vol.34, issue.4, p.12, 2015.
DOI : 10.1145/2766937

URL : http://vcg.isti.cnr.it/Publications/2015/PZMPCZ15/microstructures-final.pdf

O. Pantz and K. Trabelsi, A post-treatment of the homogenization method for shape optimization, SIAM Journal on Control and Optimization, vol.47, issue.3, pp.1380-1398, 2008.

O. Pantz and K. Trabelsi, Construction of minimization sequences for shape optimization, Methods and Models in Automation and Robotics (MMAR), 2010 15th International Conference on, pp.278-283, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00784174

P. Pedersen, On optimal orientation of orthotropic materials, Structural Optimization, vol.1, issue.2, pp.101-106, 1989.
DOI : 10.1007/bf01637666

A. Radman, X. Huang, and Y. M. Xie, Topology Optimization of Functionally Graded Cellular Materials, Journal of Materials Science, vol.48, issue.4, pp.1503-1510, 2013.
DOI : 10.1007/s10853-012-6905-1

. G. Ju and . Re?etnjak, Liouville's conformal mapping theorem under minimal regularity hypotheses, Sibirsk. Mat. ? Z, vol.8, pp.835-840, 1967.

J. Robbins, S. J. Owen, B. W. Clark, and T. E. Voth, An Efficient and Scalable Approach for Generating Topologically Optimized Cellular Structures for Additive Manufacturing, 2016.
DOI : 10.1016/j.addma.2016.06.013

A. P. Roberts, . Edward, and . Garboczi, Elastic properties of model random threedimensional open-cell solids, Journal of the Mechanics and Physics of Solids, vol.50, issue.1, pp.33-55, 2002.
DOI : 10.1016/s0022-5096(01)00056-4

H. Rodrigues, M. Jose, M. P. Guedes, and . Bendsoe, Hierarchical optimization of material and structure, Structural and Multidisciplinary Optimization, vol.24, pp.1-10, 2002.

D. W. Rosen, Computer-Aided Design for Additive Manufacturing of Cellular Structures, Computer-Aided Design and Applications, vol.4, issue.5, pp.585-594, 2007.

G. I. Rozvany, Aims, Scope, Methods, History and Unified Terminology of Computer-Aided Topology Optimization in Structural Mechanics, Struct. Multidiscip. Opt, vol.21, issue.2, pp.90-108, 2001.

I. N. George and . Rozvany, A critical review of established methods of structural topology optimization. Structural and multidisciplinary optimization, vol.37, pp.217-237, 2009.

E. Sandier and S. Serfaty, Vortices in the magnetic ginzburg-landau model, vol.70, 2008.

D. Savvas, G. Stefanou, and M. Papadrakakis, Determination of RVE size for random composites with local volume fraction variation, Computer Methods in Applied Mechanics and Engineering, vol.305, pp.340-358, 2016.

U. Schramm and . Walter-d-pilkey, The coupling of geometric descriptions and finite elements using NURBs-A study in shape optimization. Finite elements in analysis and design, vol.15, pp.11-34, 1993.

. Schumacher-;-christian, B. Schumacher, J. Bickel, S. Rys, C. Marschner et al., Microstructures to control elasticity in 3D printing, ACM Transactions on Graphics (TOG), vol.34, issue.4, p.136, 2015.

J. Sethian, Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol.3, 1999.

A. James, A. Sethian, and . Wiegmann, Structural boundary design via level set and immersed interface methods, Journal of computational physics, vol.163, issue.2, pp.489-528, 2000.

O. Sigmund, Design of material structures using topology optimization, 1994.

O. Sigmund, Materials with prescribed constitutive parameters: an inverse homogenization problem, International Journal of Solids and Structures, vol.31, issue.17, pp.2313-2329, 1994.

O. Sigmund, Tailoring materials with prescribed elastic properties, Mech. Mater, vol.20, issue.4, pp.351-368, 1995.

O. Sigmund and J. Petersson, Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima, Structural optimization, vol.16, issue.1, pp.68-75, 1998.

O. Sigmund and . Torquato, Design of Smart Composite Materials Using Topology Optimization, Smart Materials and Structures, vol.8, issue.3, p.365, 1999.

O. Sigmund, Morphology-based black and white filters for topology optimization. Structural and Multidisciplinary Optimization, vol.33, pp.401-424, 2007.

D. Sokolov, N. Ray, L. Untereiner, and B. Lévy, HexahedralDominant Meshing, ACM Transactions on Graphics, vol.35, issue.5, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01203544

J. Sokolowski and A. ?. Zochowski, Topological derivative in shape optimization, Encyclopedia of Optimization, pp.2625-2626, 2001.
URL : https://hal.archives-ouvertes.fr/inria-00073518

M. L. Staten, Why is hex meshing so hard? Presentation at Sandia National Laboratories (URL), 2007.

K. Suzuki and N. Kikuchi, A homogenization method for shape and topology optimization, Computer methods in applied mechanics and engineering, vol.93, issue.3, pp.291-318, 1991.

V. Sverák, On optimal shape design, Journal de mathématiques pures et appliquées, vol.72, issue.6, pp.537-551, 1993.

L. Tartar, Cours Peccot au College de France, mar (1977), partially written in: F. Murat, H-Convergence, Séminaire d'Analyse Fonctionelle et Numérique de l'Université d'Alger, duplicated, p.34, 1978.

, Bibliography [Tartar 1985] L Tartar. Estimations fines de coefficients homogeneises, Nonlinear analysis and mechanics: Heriot-Watt symposium, vol.4, pp.136-212, 1979.