S. S. Van-berkel, B. G. Bögels, M. A. Wijdeven, B. Westermann, and F. P. Rutjes, Revues récentes : (a)

J. European, . Org, . Chem, Q. Wang, D. Wang et al., Acc. Chem. Res, vol.51, issue.19, pp.1290-1300, 2012.

L. Banfi, A. Basso, L. Moni, and R. Riva, European J. Org. Chem, pp.2005-2015, 2014.

J. Zhang, S. X. Lin, D. J. Cheng, X. Y. Liu, and B. Tan, J. Am. Chem. Soc, vol.137, pp.14039-14042, 2015.

Y. Su, M. J. Bouma, L. Alcaraz, M. Stocks, M. Furber et al., J. Chem. Eur. J, vol.18, pp.12624-12627, 2012.

Y. Zhang, Y. F. Ao, Z. T. Huang, D. X. Wang, M. X. Wang et al., Angew. Chem. Int. Ed, vol.55, pp.5282-5285, 2016.

, qui évoluent ensuite vers des 3-oxoisoindoline-1carboxamides enrichis énantiomériquement. Schéma 46-Réaction de Ugi énantiosélective et mécanisme proposé par le groupe de Zhu Les 3-oxoisoindoline-1-carboxamides obtenus sont connus pour leurs propriétés analgésiques, et se retrouvent dans de nombreux produits naturels bioactifs (par exemple, la (S)-(+)-lennoxamine 91 ) et des molécules thérapeutiques comme la (R)-pazinaclone 92 , un sédatif

E. Valencia, A. J. Freyer, M. Shamma, and V. Fajardo, Tetrahedron Lett, vol.25, pp.599-602, 1984.

J. R. Atack-;-guchhait, S. K. Madaan, C. Jida, M. Soueidan, M. Willand et al., Expert Opin. Invest. Drugs, vol.14, p.3631, 2005.

F. Agbossouniedercorn, L. Pelinski, G. Laconde, R. Deprez-poulain, B. Deprez et al., 52, 1705. (d), vol.6546, pp.1149-1152, 1996.

A. L. Kennedy, A. M. Fryer, J. A. Josey, Q. Lin, and H. E. Blackwell, Chem. Commun, vol.17, p.2884, 1167.

O. Kreye, C. Trefzger, A. Sehlinger, and M. A. Meier, Macromol. Chem. Phys, vol.215, pp.2207-2220, 2014.

I. Akritopoulou-zanze, S. W. Djuric, . Heterocycles, U. K. Sharma, N. Sharma et al., Chem. Soc. Rev, vol.73, pp.1836-1860, 2007.

V. Gracias, J. D. Moore, and S. W. Djuric, Tetrahedron Lett, vol.47, pp.417-420, 2004.

Z. Xiang, T. Luo, K. Lu, J. Cui, X. Shi et al., Z. Org. Lett, vol.6, pp.3155-3158, 2004.

M. Umkehrer, C. Kalinski, J. Kolb, and C. Burdack, Tetrahedron Lett, vol.47, pp.2391-2393, 2006.

K. Karabelas, M. Lepisto, P. Sjo, . Wo9932483-a1, K. E. Miller et al., Br. J. Pharmacol, vol.12, pp.2410-2412, 1995.

M. R. Crampton, Acidity and hydrogen-bonding, Saul Patai. The Chemistry of the Thiol Group, p.402, 1974.
DOI : 10.1002/9780470771310.ch8

L. El-kaïm, L. Grimaud, and J. Oble, Angew. Chem. Int. Ed, vol.44, pp.7961-7964, 2005.

L. El-kaïm, L. Grimaud, L. El-kaïm, and L. Grimaud, Eur. J. Org. Chem, vol.14, pp.7749-7762, 2010.

L. El-kaim, M. Gizolme, L. Grimaud, J. Oble, L. El-kaïm et al., J. Org. Chem, vol.8, pp.4169-4180, 2006.

L. El-kaim, M. Gizolme, L. Grimaud, and . Oble, J. Synlett, issue.3, pp.465-469, 2007.

M. T. Molina, M. Tanez, O. Mo, R. Notario, and J. Abboud, Revues sur les dérivés thiocarbonylés : (a), 2010.

E. Schaumann, . Top, . Curr, . Chem, P. Metzner et al., Comprehensive organic functional group transformations, le cas de thiocétones énolisables, l'isomérisation en thioénol peut précéder la polymérisation, vol.2, pp.2187-2196, 1964.
DOI : 10.1055/s-1997-1491

, Cette stabilité est relative, puisque la thiobenzophénone peut se photoxyder dans l'air pour donner de la benzophénone et du soufre : il convient donc de la conserver dans le CO2

H. Staudinger, H. Freudenberg, . Org, . Synth, R. B. Woodward et al., Schéma 151-Quelques isocoumarines 3,4-disubstituées et leurs activités biologiques Par conséquent, le développement de nouvelles voies de synthèse d'isocoumarines 3,4disubstituées est devenu un domaine de recherche très actif. 230 La plupart des réactions décrites dans la littérature s'appuie sur l'utilisation d'alcynes : via des réactions inter-ou intramoléculaires catalysées par des métaux de, J. Am. Chem. Soc, vol.11, issue.13, pp.401-402, 1931.

T. A. Jagt, R. E. Royer, L. M. Deck, D. L. Vander-jagt, C. I. Hall et al., Bioorg. Med. Chem, vol.16, pp.1018-1029, 2008.

B. Chen, S. Ma, X. G. Li, M. Sun, K. Liu et al., Quelques exemples récents originaux : (a), vol.15, pp.1047-1056, 2013.

R. K. Chinnagolla and M. Jeganmohan, Quelques exemples récents : (a), vol.48, pp.2030-2032, 2012.

H. Liu, Y. Yang, J. Wu, X. N. Wang, J. Chang et al., Angew. Chem. Int. Ed, vol.52, pp.5513-5517, 2015.

. Quelques, Z. Li, J. Hong, L. Weng, X. Zhou et al., J. Am. Chem. Soc, vol.68, pp.4158-4165, 2009.

R. Dua, S. Shrivastava, S. K. Sonwane, S. K. Srivastava, and . Advan, Biol. Res, vol.5, pp.120-144, 2011.

P. A. Wender, S. T. Handy, and D. L. Wright, Chem. Ind, vol.765, pp.767-769, 1997.

I. Chapitre,

J. Zhu and H. Bienaymé, Multicomponent Reactions, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00771689

A. Do?mling, W. Wang, K. Wang, C. Hulme, V. Gore et al., Drug Discov. Today Technol, vol.112, pp.324-331, 2003.

A. Golebiowski, S. R. Klopfenstein, D. E. Portlock, A. Golebiowski, S. R. Klopfenstein et al., Curr. Opin. Chem. Biol, vol.5, pp.263-276, 2001.

A. Strecker, Justus Liebigs Ann. Chem, vol.1850, pp.349-351

H. Bergs, H. T. De-b-;-bucherer, H. J. Barsch, and . Prakt, Chem, vol.566, pp.151-171, 1929.

D. Janz, Nervenarzt, vol.21, pp.113-119, 1950.

A. Hantzsch, Justus Liebigs Ann. Chem, vol.1855, pp.1-82

A. U. Piergiorgio, , vol.4, p.623, 1989.

P. Biginelli and . Ber, P. Ber. Dtsch. Chem. Ges, vol.1891, p.26

C. Mannich and W. Krosche, Arch. Pharm, p.647, 1912.

R. J. Robinson, Chem. Soc, vol.111, pp.762-768, 1917.

W. Lieke, Justus Liebigs Ann. Chem, vol.1859, p.316

A. Gautier, Justus Liebigs Ann. Chem, vol.1869, p.119

A. W. Hofmann, Justus Liebigs Ann. Chem, vol.1867, p.114

I. U. Nef, Justus Liebigs Ann. Chem, vol.1897, p.202

M. Passerini and L. Simone, Gazz. Chim. Ital, vol.51, pp.126-129, 1921.

W. P. Weber, G. W. Gokel, and I. Ugi, Angew. Chem, vol.84, p.172, 1972.

K. Bardsley, M. Hagigeorgiou, I. Lengyel, and V. Cesare, Synth. Commun, vol.43, pp.1727-1733, 2013.

I. Ugi, R. Meyr, . Angew, and . Chem, , vol.70, pp.702-703, 1958.

W. Hertler and E. J. Corey, J. Org. Chem, vol.887, pp.1221-1222, 1958.

I. Ugi and R. Meyr, Chem. Ber, vol.93, p.239, 1960.

R. Obrecht, R. Herrmann, and I. Ugi, Synthesis (Stuttg), pp.400-402, 1985.

S. M. Creedon, H. K. Crowley, and D. G. Mccarthy, J. Chem. Soc. Perkin Trans, vol.16, pp.1015-1018, 1998.

A. Porcheddu, G. Giacomelli, and M. Salaris, J. Org. Chem, vol.70, pp.2361-2363, 2005.

G. Kobayashi, T. Saito, and Y. Kitano, Synthesis, vol.20, pp.3225-3234, 2011.

N. V. Alvarez-rodríguez, A. Santos, L. El-kaïm, and R. Gámez-montaño, Synlett, vol.26, pp.2253-2256, 2015.

A. U. Besonov and . Patent, , 2007.

M. C. Pirrung and S. Ghorai, J. Am. Chem. Soc, vol.128, pp.11772-11773, 2006.

S. V. Pronin, C. A. Reiher, and R. A. Shenvi, Nature, vol.501, pp.195-199, 2013.

V. R. Pinney, S. Patent, vol.6, p.32, 2002.

P. J. Scheuer, Acc. Chem. Res, vol.25, pp.433-439, 1992.

C. W. Chang, A. Patra, D. M. Roll, P. J. Scheuer, G. K. Matsumoto et al., J. Am. Chem. Soc, vol.106, pp.4644-4646, 1984.

S. Carmeli, R. E. Moore, G. M. Patterson, Y. Mori, and M. Suzuki, J. Org. Chem, vol.55, pp.4431-4438, 1990.

W. L. Parker, M. L. Rathnum, J. H. Johnson, J. S. Wells, P. A. Principe et al., Tokyo). 1988, XLI, Patent EP19870301085, 1987. 37. Revues : (a), vol.21, p.14, 2004.

P. J. Scheuer and E. , , vol.167, pp.33-75, 1993.

P. Karuso, P. J. Scheuer, . Org, . J. Chem-;-m, and R. A. Shenvi, Nat. Prod. Rep, vol.54, pp.543-577, 1989.

A. Mariani, D. A. Russell, T. Javelle, and J. D. Sutherland, J. Am. Chem. Soc, 2018.

M. Giustiniano, A. Basso, V. Mercalli, A. Massarotti, E. Novellino et al., b) I. Ugi, Isonitrile Chemistry, Isocyanide Chemistry, vol.46, pp.1295-1357, 1971.

H. M. Walborsky, M. L. Bode, D. Gravestock, and A. L. Rousseau, Org. Prep. Proced. Int, vol.11, pp.89-221, 1979.

M. Giustiniano, A. Basso, V. Mercalli, A. Massarotti, E. Novellino et al., J. Chem. Soc. Rev, vol.46, pp.1295-1357, 2017.

R. Etude-théorique-récente-:-ramozzi, N. Chéron, B. Braïda, P. C. Hiberty, and . Fleurat-lessard, P. New J. Chem, p.1137, 2012.

B. Bak, L. Hansen-nygaard, and . Rastrup-andersen, J. J. Mol. Spectrosc, vol.2, pp.54-57, 1958.

V. V. Tumanov, A. A. Tishkov, and H. Mayr, Angew. Chem. Int. Ed, vol.46, pp.3563-3566, 2007.

A. Llevot, A. C. Boukis, S. Oelmann, K. Wetzel, and M. A. Meier, Top. Curr. Chem, vol.375, pp.1-29, 2017.

V. P. Boyarskiy, N. A. Bokach, K. V. Luzyanin, and V. Y. Kukushkin, Chem. Rev, vol.115, pp.2698-2779, 2015.

D. Hoppe, U. Schöllkopf, . Liebigs-ann, A. M. Chem-;-van-leusen, J. Wieldeman et al., J. Org. Chem, vol.763, pp.417-666, 1972.

R. S. Bon, C. Hong, M. J. Bouma, R. F. Schmitz, F. J. De-kanter et al., Org. Lett, vol.5, pp.3759-3762, 2003.

D. H. Barton and S. Z. Zard, J. Chem. Soc. Chem. Commun, vol.16, pp.1098-1100, 1985.

T. D. Lash, C. Wijesinghe, A. T. Osuma, and J. R. Patel, Tetrahedron Lett, vol.38, pp.2031-2034, 1997.

I. Ryu, N. Sonoda, D. P. Curran, B. Zhang, and A. Studer, Chem. Soc. Rev, vol.96, pp.3505-3521, 1996.

D. P. Curran and H. Liu, J. Am. Chem. Soc, vol.113, pp.2127-2132, 1991.

J. Liu, C. Fan, H. Yin, C. Qin, G. Zhang et al., Chem. Commun, vol.50, pp.2145-2147, 2014.

B. Zhang, C. Mück-lichtenfeld, C. G. Daniliuc, and A. Studer, Angew. Chem. Int. Ed, vol.52, pp.10792-10795, 2013.

J. Rong, L. Deng, P. Tan, C. Ni, Y. Gu et al., Angew. Chem. Int. Ed, vol.55, pp.2743-2747, 2016.

G. Stork, P. M. Sher, and H. Chen, J. Am. Chem. Soc, vol.108, pp.6384-6385, 1986.

G. Stork and P. M. Sher, J. Am. Chem. Soc, vol.105, pp.6765-6766, 1983.

G. Qiu, Q. Ding, and . Wu, J. Chem. Soc. Rev, vol.42, p.5257, 2013.

J. U. Nef, ;. F. Justus-liebig-ann, G. C. Tron, L. El-kaïm, N. Chéron et al., Chem. 1892, 210, 269. (b) Revue récente : La Spisa, J. Phys. Chem. A, vol.46, pp.10106-10112, 2011.

M. P. Periasamy and H. M. Walborsky, J. Org. Chem, vol.39, pp.611-618, 1974.

K. Kobayashi, Y. Okamura, S. Fukamachi, and H. Konishi, Tetrahedron, vol.66, pp.7961-7964, 2010.

A. Kruithof, E. Ruijter, R. V. Orru, T. Chem-;-kaur, P. Wadhwa et al., Chem. Commun, vol.10, pp.6958-6976, 2015.

C. Buron, L. El-kaïm, A. Uslu, ;. Atlan, L. El-kaïm et al., Tetrahedron Lett, vol.38, pp.489-491, 1997.

A. Dömling, I. Ugi, H. Bienaymé, C. Hulme, G. Oddon et al., Curr. Opin. Chem. Biol, vol.39, pp.89-221, 2000.

M. Passerini and L. Simone, M. Gazz. Chim. Ital, vol.51, pp.432-435, 1921.

I. Ugi, R. Meyr, U. Fetzer, C. Steinbrückner, . Angew et al., (b) Ugi, I. ; Steinbrückner, C. Angew. Chem, vol.386, pp.267-268, 1959.

L. Banfi, R. Riva, A. R. Kazemizadeh, and A. Ramazani, Curr. Org. Chem, vol.65, pp.418-450, 2005.

B. Ganem, J. Zhu, Q. Wang, and M. Wang, Handbook of Green Chemistry, vol.42, pp.463-472, 2009.

N. Elders, D. Van-der-born, L. J. Hendrickx, B. J. Timmer, A. Krause et al., Angew. Chem. Int. Ed, vol.48, pp.5856-5859, 2009.

F. Asinger, . Angew, ;. Chemie, H. G. Drauz, and . Koban, Liebigs Ann. Chem, vol.68, pp.448-452, 1956.

A. Dömling and I. Ugi, Angew. Chem. Int. Ed, vol.32, pp.155-122, 1993.

A. A. De-fátima, O. E. Vercillo, and C. K. Andrade, J. Braz. Chem. Soc, vol.22, pp.462-467, 2011.

I. Ugi, R. Meyr, . Chem, S. Ber-;-maeda, S. Komagawa et al., Angew. Chem. Int. Ed, vol.94, pp.5652-5657, 1961.

C. Lamberth, A. Jeanguenat, F. Cederbaum, A. De-mesmaeker, M. Zeller et al., Zeun, R. Bioorganic Med. Chem, vol.16, pp.1531-1545, 2008.

T. Ngouansavanh, J. Zhu, G. Masson, J. ;. Zhu, E. Sheikhi et al., Utilisation de CuCl2, TEMPO et NaNO2 : Brioche, Oxydation de Kornblum d'un dérivé benzylique : Adib, vol.46, pp.1933-1936, 2007.

I. Ugi and R. Meyr, Chem. Ber, vol.94, pp.2229-2233, 1961.

H. Bock, I. J. Ugi, . Prakt, . Chem, L. Banfi et al., , vol.339, pp.385-389, 1997.

J. Zhu, H. Bienaymé, . Eds, -. Wiley, and . Vch, , 2005.

, Ce type d'insertion a déjà été décrite en chimie des isonitriles. Pour des exemples, voir : (a) Nef, J

N. Chéron, L. El-kaïm, L. Grimaud, P. Fleuratlessard, O. Mumm et al., Justus Liebigs Ann. Chem, vol.1892, pp.379-391, 1910.

C. Faggi, M. Garcia-valverde, S. Marcaccini, G. Menchi, A. Barthelon et al., Preuves expérimentales de la formation de l'imidate : (a), vol.12, pp.5974-5987, 2008.

N. Chéron, R. Ramozzi, L. Kaïm, and . El,

L. Grimaud and P. Fleurat-lessard, J. Org. Chem, vol.77, pp.1361-1366, 2012.

N. M. Fédou, P. J. Parsons, E. M. Viseux, A. J. Whittle, C. G. Neochoritis et al., Quelques exemples : (a), vol.7, pp.3179-3182, 2002.

L. E. Kaim, L. Grimaud, and A. Schiltz, Org. Biomol. Chem, vol.7, pp.3024-3026, 2009.

A. L. Brown, Q. I. Churches, and C. A. Hutton, J. Org. Chem, vol.80, pp.9831-9837, 2015.

S. S. Van-berkel, B. G. Bögels, M. A. Wijdeven, B. Westermann, F. P. Rutjes et al., Revues récentes : (a), vol.2012, pp.1290-1300, 2018.

L. Banfi, A. Basso, L. Moni, and R. Riva, European J. Org. Chem, pp.2005-2015, 2014.

J. Zhang, S. X. Lin, D. J. Cheng, X. Y. Liu, and B. Tan, J. Am. Chem. Soc, vol.137, pp.14039-14042, 2015.

Y. Su, M. J. Bouma, L. Alcaraz, M. Stocks, M. Furber et al., J. Chem. Eur. J, vol.18, pp.12624-12627, 2012.

Y. Zhang, Y. F. Ao, Z. T. Huang, D. X. Wang, M. X. Wang et al., Angew. Chem. Int. Ed, vol.55, pp.5282-5285, 2016.

E. Valencia, A. J. Freyer, M. Shamma, and V. Fajardo, Tetrahedron Lett, vol.25, pp.599-602, 1984.

J. R. Atack, Expert Opin. Invest. Drugs, vol.14, pp.601-618, 2005.

J. Zhang, P. Yu, S. Li, H. Sun, S. Xiang et al., Quelques semaines après le premier dépôt de mon manuscrit, la publication suivante est venue relever le défi, Science, p.8707, 2018.

C. D. Floyd, L. Harnett, A. Miller, S. Patel, L. Saroglou et al., , vol.11, p.176, 1998.

C. Synlett, S. Patel, L. Saroglou, C. D. Floyd, A. Miller et al., J. Org. Chem, vol.5, p.7084, 1998.

A. Barthelon, L. El-kaim, M. Gizzi, L. Grimaud, and . Synlett, , pp.2784-2788, 2010.

J. W. Mcfarland, . Org, . Chem, G. Opitz, and . Merz, Revue : Tron, G. C, Justus Liebigs Ann. Chem, vol.652, issue.10, pp.1849-1859, 1962.

I. Ugi, F. Bodesheim, . Liebigs-ann, . Chem, G. Zinner et al., Arch. Pharm, vol.666, p.94, 1963.

M. Krasavin, V. Parchinsky, G. Kantin, O. Manicheva, M. Dogonadze et al., , vol.25, pp.1867-1874, 2017.

I. Ugi, L. Bodesheim, . Ann, . Chem, G. Zinner et al., Revues : (a) Miller, Recept. Signal Transduct, vol.666, pp.10-19, 1963.

V. Mercalli, A. Massarotti, M. Varese, M. Giustiniano, F. Meneghetti et al., J. Org. Chem, vol.80, pp.9652-9661, 2015.

X. Sun, P. Janvier, G. Zhao, H. Bienaymé, J. Zhu et al., J. Am. Chem. Soc, vol.3, pp.3120-3131, 2001.

T. A. Keating, R. W. Armstrong, T. A. Keating, R. W. Armstrong, T. A. Keating et al., J. Am. Chem. Soc, vol.117, pp.2574-2583, 1995.

G. Van-der-heijden, J. A. Jong, E. Ruijter, R. V. Orru, A. L. Chandgude et al., Exemples récents : (a), vol.18, pp.798-801, 2016.

T. Lindhorst, H. Bock, and I. Ugi, Tetrahedron, vol.55, p.7411, 1999.

M. C. Pirrung, S. Ghorai, M. C. Pirrung, S. Ghorai, and T. R. Ibarrarivera, J. Am. Chem. Soc, vol.128, p.4110, 2006.

M. Krasavin, S. Tsirulnikov, M. Nikulnikov, Y. Sandulenko, K. Bukhryakov et al., 52, 1705. (d), vol.49, p.2884, 1167.

O. Kreye, C. Trefzger, A. Sehlinger, M. A. Meier, I. Akritopoulou-zanze et al., Revues : (a), Macromol. Chem. Phys, vol.215, pp.1836-1860, 2007.

V. Gracias, J. D. Moore, and S. W. Djuric, Tetrahedron Lett, vol.47, pp.417-420, 2004.

Z. Xiang, T. Luo, K. Lu, J. Cui, X. Shi et al., Z. Org. Lett, vol.6, pp.3155-3158, 2004.

M. Umkehrer, C. Kalinski, J. Kolb, and C. Burdack, Tetrahedron Lett, vol.47, pp.2391-2393, 2006.

N. Narboni and L. El-kaim, Eur. J. Org. Chem, pp.4242-4246, 2017.

S. S. Gholap, Eur. J. Med. Chem, vol.110, pp.13-31, 2016.

L. Chapitre-ii-117-;-l.;-grimaud, Revue : El Kaim, Tetrahedron, vol.65, pp.2153-2171, 2009.

N. Chéron, R. Ramozzi, L. Kaïm, and . El,

L. Grimaud and P. Fleurat-lessard, J. Org. Chem, vol.77, pp.1361-1366, 2012.

K. Sung and C. C. Chen, 1962, 1, 8-21. (b) Ugi, I, I. Angew. Chem. Int. Ed, vol.42, pp.9-22, 1962.

I. Ugi and C. Steinbrückner, Chem. Ber, vol.94, pp.2802-2814, 1961.

T. A. Keating and R. W. Armstrong, J. Org. Chem, vol.63, pp.867-871, 1998.

C. Hulme, L. Ma, J. J. Romano, G. Morton, S. Y. Tang et al., Tetrahedron Lett, vol.41, pp.1889-1893, 2000.

K. Karabelas, M. Lepisto, P. Sjo, . Wo9932483-a1, K. E. Miller et al., Br. J. Pharmacol, vol.12, pp.3759-3771, 1995.

S. Heck, A. Dömling, and . Synlett, Protocole pour une synthèse en phase solide : Henkel, B.; Westner, B.; Dömling, A. Synlett, vol.3, pp.2410-2412, 2000.

M. R. Crampton, Acidity and hydrogen-bonding, Saul Patai. The Chemistry of the Thiol Group, p.402, 1974.
DOI : 10.1002/9780470771310.ch8

A. V. Gulevich, E. S. Balenkova, V. G. Nenajdenko, U. Kazmaier, S. Ackermann et al., Quelques exemples : (a), vol.72, pp.6897-6901, 2002.

E. Herdtweck, A. Dömling, M. Umkehrer, J. Kolb, C. Burdack et al., Mol. Divers, vol.6, issue.1, pp.79-82, 2003.

Y. Kim, S. H. Kwak, and Y. Gong, ACS Comb. Sci, vol.17, pp.365-373, 2015.

T. Chonan, D. Wakasugi, D. Yamamoto, M. Yashiro, T. Oi et al., Exemples de dérivés similaires à activité biologique : (a), vol.19, pp.702-710, 2011.

A. A. Levy, H. C. Rains, S. Smiles, W. J. Evans, and S. Smiles, Premiers exemples décrits par Smiles : (a), vol.181, pp.1263-1265, 1931.

J. F. Bunnet, R. R. Zahler, W. E. Truce, E. M. Kreider, and W. W. Brand, Org. React, vol.49, pp.99-215, 1951.

L. El-kaïm, L. Grimaud, and J. Oble, Angew. Chem. Int. Ed, vol.44, pp.7961-7964, 2005.

L. El-kaïm, L. Grimaud, L. El-kaïm, and L. Grimaud, Eur. J. Org. Chem, vol.14, pp.7749-7762, 2010.

L. El-kaim, M. Gizolme, L. Grimaud, J. Oble, L. El-kaïm et al., J. Org. Chem, vol.8, pp.4169-4180, 2006.

L. El-kaim, M. Gizolme, L. Grimaud, and . Oble, J. Synlett, issue.3, pp.465-469, 2007.

K. Aknin, M. Gauriot, J. Totobenazara, N. Deguine, R. Deprez-poulain et al., Tetrahedron Lett, vol.53, pp.458-461, 2012.

A. Massoudi, I. Amini, A. Ramazani, F. Z. Nasrabadi, Y. Ahmadi et al., Bull. Korean Chem. Soc, vol.33, pp.2276-2281, 1963.

L. Konnert, F. Lamaty, J. Martinez, and E. Colacino, Chem. Rev, vol.117, pp.13757-13809, 2017.

P. Majumdar, C. Bathula, S. M. Basu, S. K. Das, R. Agarwal et al., Eur. J. Med. Chem, vol.102, pp.540-551, 2015.

I. Ugi, . Angew, I. Chem-;-ugi, and C. Steinbrückner, Chem. Ber, vol.72, pp.734-742, 1960.

S. Achatz, A. Dömling, M. Bioorganic-med-;-tukulula, M. Njoroge, G. C. Mugumbate et al., Quelques exemples d'application choisis : (a), vol.16, pp.160-163, 2006.

J. Zabrocki, G. D. Smith, J. B. Dunbar, H. Iijima, and G. R. Marshall, J. Am. Chem. Soc, vol.110, pp.5875-5880, 1988.

A. Maleki, A. Sarvary, T. Nadu, and T. Nadu, Revues récentes sur les tétrazoles : (a), vol.5, pp.110-114, 2015.

D. P. Zarezin, V. N. Khrustalev, and . Nenajdenko, Version diastéréosélective avec une amine secondaire, J. Org. Chem, vol.82, pp.6100-6107, 2017.

J. Zhang, P. Patil, K. Kurpiewskab, J. Kalinowska-t?u?cikb, and A. Do?mling, Synthesis, vol.48, 2016.

S. Gunawan, J. Petit, and C. Hulme, ACS Comb. Sci, vol.14, pp.160-163, 2012.

R. S. Borisov, A. I. Polyakov, L. A. Medvedeva, V. N. Khrustalev, N. I. Guranova et al., Exemples sélectionnés : (a), vol.12, pp.6421-6424, 2004.

L. El-kaïm, L. Grimaud, and P. Pravin, Eur. J. Org. Chem, issue.22, pp.4752-4755, 2013.

P. Patil, K. Kurpiewska, J. Kalinowska-t?u?cik, and A. Do?mling, ACS Comb. Sci, vol.19, pp.343-350, 2017.

. Revue and A. D. Borthwick, Chem. Rev, vol.112, pp.3641-3716, 2012.

J. W. Mcfarland, J. Org. Chem, vol.28, pp.2179-2181, 1963.

I. Ugi, C. Steinbrückner, . Angew, and . Chem, , vol.72, pp.267-268, 1960.

H. Bienaymé and K. Bouzid, Angew. Chem. Int. Ed, vol.37, pp.2234-2237, 1998.

K. Groebke, L. Weber, and F. Mehlin, Synlett, issue.6, pp.661-663, 1998.

C. Blackburn, Tetrahedron Lett, vol.39, pp.5469-5472, 1998.

C. Hulme and Y. S. Lee, Mol. Divers, vol.12, pp.1-15, 2008.

S. Shaaban and B. F. Abdel-wahab, Mol. Divers, vol.20, pp.233-254, 2016.

C. Blackburn, B. Guan, J. Schwerkoske, T. Masquelin, T. Perun et al., Tetrahedron Lett, vol.41, pp.8355-8357, 2000.

M. A. Lyon and T. S. Kercher, Org. Lett, vol.6, pp.4989-4992, 2004.

V. Z. Parchinsky, V. V. Koleda, O. Shuvalova, D. V. Kravchenko, M. Krasavin et al., Tetrahedron Lett, vol.47, pp.73-80, 2006.

F. Mert-balci, J. Conrad, and U. Beifuss, Arkivoc, pp.243-256, 2012.

R. S. Varma, D. Kumar, S. M. Ireland, H. Tye, M. Whittaker et al., Tetrahedron Lett, vol.40, pp.4079-4082, 1999.

D. Bovet, P. Une-chimie-qui-guérit-;-actor, A. W. Chow, F. J. Dutko, M. A. Mckinlay et al., Ullmann's Encyclopedia of Industrial Chemistry, Histoire de la découverte des sulfamides, vol.13, 1935.

C. Masdeu, J. L. Díaz, M. Miguel, O. Jiménez, and R. Lavilla, Tetrahedron Lett, vol.45, pp.7907-7909, 2004.

T. Soeta, S. Matsuzaki, and Y. Ukaji, J. Org. Chem, vol.80, pp.3688-3694, 2015.

B. Alcaide, P. Almendros, C. Aragoncillo, R. Callejo, M. P. Ruiz et al., Exemples récents : (a), vol.78, pp.70-77, 2008.

T. Soeta, S. Matsuzaki, and Y. Ukaji, Chem. Eur. J, vol.20, pp.5007-5012, 2014.

T. Soeta, S. Takashita, Y. Sakata, and Y. Ukaji, Org. Biomol. Chem, vol.14, pp.694-700, 2016.

J. G. Stites, C. N. Mccarty, and L. L. Quill, J. Am. Chem. Soc, vol.70, pp.3142-3143, 1948.

J. Honzl and P. K?ivinka, Tetrahedron Lett, vol.11, pp.2357-2360, 1970.

G. B. Giovenzana, G. C. Tron, S. Di-paola, I. G. Menegotto, and T. Pirali, Angew. Chem. Int. Ed, vol.45, pp.1099-1102, 2006.

A. L. Chandgude and A. Dömling, Org. Lett, vol.18, pp.6396-6399, 2016.

A. L. Chandgude and A. Dömling, Org. Lett, vol.19, pp.1228-1231, 2017.

D. Mcateer, J. F. Pons, I. I. Wilson, and H. Cavaye, Poster presentation, 19th Seminar on New Trends in Research of Energetic Materials, 2016.

E. F. Wltuckl, E. R. Wilson, J. E. Flanagan, M. Frankel, R. Division et al., J. Mater. Chem, vol.90, pp.8929-8936, 1983.

Y. Wang, Z. Bai, Z. Wei, S. Xu, X. Li et al., Res. Chem. Intermed, vol.37, pp.1029-1039, 1974.

U. Ragnarsson, Chem. Soc. Rev, vol.30, pp.205-213, 2001.

A. Einhorn, E. Bischkopff, B. Szelinski, G. Schupp, E. Spröngerts et al., Réaction d'Einhorn-Brunner avec les imides, vol.343, p.181, 1905.

R. ,

P. E. Hexner, M. ;-f.;-lagrenee, M. Traisnel, B. Mernari, and H. Elattari, Méthode plus récente avec des nitriles : Bentiss, vol.31, pp.149-152, 1951.

K. Protocole-tiré-de-:-yanada, H. Yamaguchi, H. Meguri, and S. J. Uchida, Chem. Soc., Chem. Commun, vol.22, pp.1655-1656, 1986.

I. Chapitre,

J. M. Saya, R. Berabez, P. Broersen, I. Schuringa, A. Kruithof et al., Org. Lett, 2018.

L. El-kaïm, M. Gizolme, L. Grimaud, J. J. Obie, . Org et al., b) Revue récente : El Kaïm, L.; Grimaud, L, Eur. J. Org. Chem, vol.72, pp.7749-7762, 2007.

A. G. Neo and C. F. Marcos, , 2018.

W. Dai and H. Li, Tetrahedron, vol.63, p.12866, 2007.

M. Passerini, . Gazz, . Chim, I. Ital-;-b)-ugi, R. Meyr et al., J. Org. Chem, vol.54, pp.2179-2181, 1924.

E. Chem-;-müller, B. Zeeh, T. Nixey, C. Hulme, T. Yue et al., Justus Liebigs Ann. Chem, vol.696, pp.9454-9457, 1966.

A. L. Chandgude, A. Domling, I. Green-chem-;-hagedorn, U. Eholzer, I. Hagedorn et al., Angew. Chem. Int. Ed. Engl, vol.18, pp.4170-4174, 1964.

W. C. Lumma, J. Org. Chem, vol.46, pp.3668-3671, 1981.

L. Banfi, R. Riva, and . Organic-reactions, J. Org. Chem, vol.70, pp.9667-9676, 2005.

M. Schiess, D. Seebach, D. Seebach, A. K. Beck, M. Schiess et al., Helv. Chim. Acta, vol.66, pp.507-517, 1983.

T. Carofiglio, C. Floriani, A. Chiesi-villa, C. Rizzoli, T. Carofiglio et al., Organometallics, vol.10, pp.2726-2736, 1991.

R. Neidlein and . Naturforsch, , vol.19, p.1159, 1964.

I. Ugi, C. Rosendahl, . Ber, T. El-gomati, I. Ugi et al., Chem. Commun, vol.94, pp.1787-1790, 1961.

D. Marquarding, G. Gokel, and P. Hoffmann, Ugi, I. in Isonitrile Chemistry, p.133, 1971.

M. Passerini and G. Ragni, Gazz. Chim. Ital, vol.61, pp.964-969, 1931.

J. R. Falck and S. Manna, Tetrahedron Lett, vol.22, pp.619-620, 1981.

D. Hoffmann, Medical Herbalism: The Science and Practice of Herbal Medicine, p.672, 2003.

M. Bos and E. Riguet, J. Org. Chem, vol.79, pp.10881-10889, 2014.

R. C. Cioc, V. Estévez, D. J. Van-der-niet, C. M. Vande-velde, N. G. Turrini et al., Eur. J. Org. Chem, pp.1262-1271, 2017.

S. Marcaccini, D. Miguel, T. Torroba, and M. García-valverde, J. Org. Chem, vol.68, pp.3315-3318, 2003.

E. A. Ilardi, E. Vitaku, and J. T. Njardarson, J. Med. Chem, vol.57, pp.2832-2842, 2014.

B. M. Hudson, E. Nguyen, and D. J. Tantillo, Org. Biomol. Chem, vol.14, pp.3975-3980, 2016.

M. T. Molina, M. Tanez, O. Mo, R. Notario, and J. Abboud, Revues sur les dérivés thiocarbonylés : (a), 2010.

E. Schaumann, P. Trends Curr. Chem, vol.2, pp.127-181, 1992.

A. R. Katritzky, O. Meth-cohn, C. W. Rees, C. J. Moody, M. R. Bryce et al., Comprehensive organic functional group transformations, Advances in Heterocyclic Chemistry, vol.55, pp.1-13, 1992.

R. Mayer, J. Morgenstern, J. Fabian, R. D. Lipscomb, and W. H. Sharkey, Dans le cas de thiocétones énolisables, l'isomérisation en thioénol peut précéder la polymérisation, J. Polym. Sci., Part A: Polym. Chem, vol.3, pp.2187-2196, 1964.

, Cette stabilité est relative, puisque la thiobenzophénone peut se photoxyder dans l'air pour donner de la benzophénone et du soufre : il convient donc de la conserver dans le CO2

H. Staudinger, H. Freudenberg, . Org, . Synth, R. B. Woodward et al., b) Série de thioaldéhydes hétérocycliques stables synthétisés selon le même procédé, J. Am. Chem. Soc, vol.11, issue.13, pp.401-402, 1931.

K. J. Falk, R. P. Steer, W. F. Bailey, K. B. Wiberg, and A. L. Bartelson, Tetrahedron Lett, vol.66, issue.34, pp.4807-4809, 1988.

E. Campaigne, W. B. Reid, P. S. Portoghese, A. Garzonaburbeh, H. Nagase et al., J. Am. Chem. Soc, vol.68, pp.1292-1296, 1946.

D. Brillon, J. W. Sulfur-rep-;-scheeren, P. H. Ooms, and R. J. Nivard, Synthesis, vol.12, p.149, 1973.

M. Revue-sur-le-réactif-de-lawesson-:-jesberger, T. P. Davis, and L. Barner, b) Revue sur les méthodes de thionation : Brillon, D. Sulfur Reports, vol.13, pp.297-332, 1992.

W. M. Mcgregor and D. C. Sherrington, Revue sur les méthodes de synthèse de dérivés thiocarbonylés, vol.22, pp.199-204, 1993.

E. Vedejs, T. H. Eberlein, D. J. Mazur, C. K. Mcclure, D. A. Perry et al., J. Org. Chem, vol.51, pp.1556-1562, 1986.

A. Capperucci, A. Innocenti, P. Scafato, P. Spagnolo, A. D. Innocenti et al., Quelques exemples : (a), vol.60, pp.3554-3556, 1995.

K. Okuma, Y. Komiya, and H. Ohta, Chem. Lett, p.1145, 1988.

R. Sato and S. Satoh, Synthesis (Stuttg), pp.785-786, 1991.

M. Tobisu, S. Ito, A. Kitajima, and N. Chatani, b) Revue générale sur les réactions d, J. Chem. Soc. Rev, vol.10, p.5257, 2008.

, Ce type d'activation avait déjà été décrite, pp.357-402, 1977.

D. Mal and S. Ray, Eur. J. Org. Chem, vol.17, pp.3014-3020, 2008.

, Les rendements ont été déterminés par RMN 1 H à partir du brut réactionnel, sauf pour l'entrée 14 où il s'agit du rendement obtenu après purification sur colonne

, La réaction a été réalisée à reflux, avec le CyNC à la place du t BuNC

C. Faggi, M. García-valverde, S. Marcaccini, and G. Menchi, Org. Lett, vol.12, pp.788-791, 2010.

Y. Zhang, Y. F. Ao, Z. T. Huang, D. X. Wang, M. X. Wang et al., Angew. Chem. Int. Ed, vol.55, pp.5282-5285, 2016.

, Rendements obtenus après purification sur colonne

R. D. Barry, L. Pochet, R. Frederick, B. Masereel, and A. Saeed, (b) Hill, R. A. in Progress in the Chemistry of Organic Natural Products, Revues sur les isocoumarines, vol.64, issue.1, pp.290-317, 1964.

Z. Ashraf, H. Hussain, and I. R. Green, Chem. Heterocycl. Compd, vol.52, pp.1267-1275, 2016.

K. Nozawa, M. Yamada, Y. Tsuda, K. Kawai, S. Nakajima et al., EP0481383A1. (b), vol.29, p.184, 1981.

M. A. Hall, C. I. Beck, J. R. Ofori, L. O. Albrow, V. E. Garland et al., Bioorg. Med. Chem, vol.16, pp.1018-1029, 2008.

B. Chen, S. Ma, X. G. Li, M. Sun, K. Liu et al., Quelques exemples récents originaux : (a), vol.15, pp.1047-1056, 2013.

R. K. Chinnagolla, M. Jeganmohan, H. Liu, Y. Yang, J. Wu et al., Quelques exemples récents : (a), vol.48, pp.6801-6804, 2012.

R. Prakash, K. Shekarrao, S. Gogoi, R. C. Boruah, J. Zhang et al., Angew. Chem. Int. Ed, vol.51, pp.5513-5517, 2015.

. Quelques, Z. Li, J. Hong, L. Weng, X. Zhou et al., J. Am. Chem. Soc, vol.68, pp.2126-2129, 2012.

A. K. Verma, V. Rustagi, T. Aggarwal, A. P. Singh, M. Peuchmaur et al., J. Org. Chem, vol.75, pp.4158-4165, 2009.

E. Soleimani and M. Zainali, J. Org. Chem, vol.76, pp.10306-10311, 2011.

C. Ortiz, L. K. Würfel, H. Täuscher, E. Wei, D. Birckner et al., Synthesis, vol.46, pp.126-134, 2014.

B. Dong, M. Wang, C. Xu, Q. Feng, Y. Wang et al., Growth Des, Dyes Pigments, vol.12, pp.258-267, 2009.

M. Matsui, M. Fukushima, Y. Kubota, K. Funabiki, and M. Shiro, Tetrahedron, vol.68, 1931.

R. Gupta, R. Thomas, and G. Kulkarni, J. Mater. Chem, vol.22, pp.19139-19145, 2012.

R. Arnold, H. Hermann, and . Ber, Dtsch. Chem. Ges, vol.44, pp.3027-3240, 1912.

A. Carlsson, K. Fuxe, B. Hamberger, T. Malmfors, . J. Br et al., Eur. J. Pharmacol, vol.36, pp.705-718, 1969.

P. V. Petersen, N. Lassenl, T. Ammitzbelll, I. M. Nielsen, M. Nymarkz et al., US2003181445 (A1), 2003. (d), vol.28, p.6159967, 1970.

J. Wu, J. Ling, X. Wang, T. Li, J. Liu et al., J. Med. Chem, vol.55, p.185, 2012.

Y. Jian, J. Ji, Z. Huang, Y. Gao, X. Sheng et al., , vol.6, pp.36888-36897, 1985.

R. Pal, K. V. Murty, D. Mal, . Synth, K. Commun-;-b)-kobayashi et al., Eur. J. Org. Chem, vol.23, issue.6, pp.1033-1036, 1973.

I. Ryu, T. Okuda, K. Nagahara, N. Kambe, M. Komatsu et al., J. Org. Chem, vol.62, pp.7550-7551, 1997.

H. N. Wong, M. Y. Hon, C. W. Tse, Y. C. Yip, J. Tanko et al., Chapitre IV 243. Revues sur l'utilisation des cyclopropanes en synthèse : (a) Fustner, vol.38, pp.11651-11679, 1989.

M. A. Cavitt, L. H. Phun, S. France, T. F. Schneider, J. Kaschel et al., Revues ciblées sur les cyclopropanes D/A : (a), vol.43, pp.321-347, 2003.

M. Rubin, M. Rubina, V. Gevorgyan, I. Nakamura, Y. Yamamoto et al., Revues sur ces composés : (a), vol.107, pp.2479-2490, 1995.

M. Lautens, P. H. Delanghe, M. Lautens, Y. Ren, M. Lautens et al., J. Am. Chem. Soc, vol.116, pp.10676-10677, 1994.

J. Ling, M. Laugeois, V. Michelet, V. Ratovelomanana-vidal, M. R. Vitale et al., , vol.29, pp.928-932, 2018.

, Revues sur les alcoxycyclopropanes : (a) Kulinkovitch, Chem. Rev, vol.103, 2003.

D. J. Mack, J. T. Njardarson, . Acs-catal, A. Nikolaev, A. Orellana et al., Chem. Rev, vol.3, pp.9404-9432, 2013.

E. Nakamura, I. J. Kuwajima, . Am, E. Nakamura, J. Shimada et al., J. Am. Chem. Soc, vol.99, pp.3296-3298, 1977.

T. Fujimura, S. Aoki, and E. Nakamura, Tetrahedron Lett, vol.30, pp.2809-2821, 1989.

S. B. Park and J. K. Cha, Org. Lett, vol.2, pp.147-149, 2000.

D. Rosa and A. Orellana, Org. Lett, vol.13, pp.110-113, 2011.

N. Nithiy and A. Orellana, b) Réaction intramoléculaire pour former des cycloheptanones : Ydhyam, S.; Cha, Réaction avec des aryles chlorés, vol.16, pp.5820-5823, 2014.

D. Rosa, A. Orellana, K. Cheng, and P. J. Walsh, Chem. Commun, vol.49, pp.2298-2301, 2013.

D. Rosa and A. Orellana, Chem. Commun, vol.48, pp.1922-1924, 2012.

X. Zhou, S. Yu, L. Kong, X. Li, and . Acs-catal, , vol.6, pp.647-651, 2016.

Z. Chen, B. Wang, J. Zhang, W. Yu, Z. Liu et al., Revues sur les groupes directeurs : (a), vol.2, pp.2450-2494, 2011.

I. Novikau and A. Hurski, Tetrahedron, vol.74, pp.1078-1084, 2018.

Z. Ye, X. Cai, J. Li, M. Dai, R. V. Acs-catal-;-b)-murali et al., Exemples récents : (a), vol.17, pp.3945-3950, 2015.

. Exemple, X. Zhou, S. Yu, L. Kong, X. Li et al., , vol.6, pp.647-651, 2016.

. Exemple, E. Gyanchander, S. Ydhyam, N. Tumma, K. Belmore et al., Org. Lett, vol.18, pp.6098-6101, 2016.

D. T. Ziegler, A. M. Steffens, and T. W. Funk, Tetrahedron Lett, vol.51, pp.6726-6729, 2010.

I. Ryu, H. Suzuki, A. Ogawa, N. Kambe, and N. Sonoda, Tetrahedron Lett, vol.29, pp.6137-6140, 1988.

F. A. Khan, R. Czerwonka, and H. Reissig, Eur. J. Org. Chem, pp.3607-3617, 2000.

Y. Ito, S. Fujii, T. J. Saegusa, . Org, H. Tsuchida et al., J. Org. Chem, vol.41, pp.2467-2475, 1976.

H. Rinderhagen, P. A. Waske, and J. Mattay, Tetrahedron, vol.62, pp.6589-6593, 2006.

V. A. Rassadin, Y. Six, F. De-nanteuil, F. De-simone, R. Frei et al., Revues récentes sur les aminocyclopropanes : (a), vol.72, pp.10912-10928, 2014.

L. Larquetoux, J. A. Kowalska, and Y. Six, Eur. J. Org. Chem, vol.6, pp.3517-3525, 2004.

L. Larquetoux, N. Ouhamou, A. Chiaroni, and Y. Six, Eur. J. Org. Chem, issue.21, pp.4654-4662, 2005.

C. Kaiser, A. Burger, L. Zirngibl, C. S. Davis, and C. L. Zirkle, J. Org. Chem, vol.27, pp.768-773, 1962.

S. Rousseaux, B. Liegault, and K. Fagnou, Chemical Science, vol.3, pp.244-248, 2012.

D. Revue-sur-les-c-h-activations-des-cyclopropanes-:-sustac-roman and A. B. Charette, Catalytic C-H Bond Functionalization of Cyclopropane Derivatives, Topics in Organometallic Chemistry, vol.56, pp.91-113, 2015.

C. L. Ladd, D. S. Roman, and A. B. Charette, Tetrahedron, vol.69, pp.4479-4487, 2013.

D. Santos, A. El-kaïm, L. Grimaud, L. Ramozzi, and R. , Synlett, vol.23, pp.438-442, 2012.

R. Ramozzi, Etude expérimentale et théorique des couplages de type Ugi et nouvelles réactions de post condensations, 2013.

C. Amatore, L. El-kaïm, L. Grimaud, A. Jutand, A. Meignié et al., Eur. J. Org. Chem, pp.4709-4713, 2014.

C. D. Schmidt, J. Kaschel, T. F. Schneider, D. Kratzert, D. Stalke et al., Org. Lett, vol.15, pp.6098-6101, 2013.

M. G. Voronkov and N. S. Nikol'skii, Russ. Chem. Bull, vol.32, pp.1513-1515, 1983.

É. Martinand-lurin, Hétérocycles et réactions pallado-catalysées: développements méthodologiques, études mécanistiques et application en synthèse totale, 2015.

A. F. Littke, C. Dai, and G. C. Fu, J. Am. Chem. Soc, vol.122, pp.4020-4028, 2000.

A. Protocole-adapté-de-:-sankaranarayanan and S. B. Chandalia, , vol.10, pp.487-492, 2006.

D. Villemin and B. Labiad, Synth. Commun, vol.22, pp.2043-2052, 1992.

T. Hirao, T. Masunaga, Y. Ohshiro, and T. Agawa, J. Org. Chem, vol.46, pp.3745-3747, 1981.

T. Harada, T. Katsuhira, K. Hattori, and A. Oku, Tetrahedron, vol.50, pp.7987-8002, 1994.

D. H. Buchanan and G. Mccomas, Une telle ouverture a déjà été décrite avec un acétate au lieu du thioéther, vol.21, pp.4317-4320, 1980.

A. S. Castanet, F. Colobert, and P. E. Broutin, Tetrahedron Lett, vol.43, pp.5047-5048, 2002.

W. E. Parham and R. Koncos, J. Am. Chem. Soc, vol.83, pp.4034-4038, 1961.

T. Jolas, L. Lanfumey, C. M. Fattaccini, E. J. Kidd, J. Adrien et al., NaunynSchmiedeberg's Arch. Pharmacol, vol.347, pp.453-463, 1993.

S. Demirayak, L. Yurttas, N. Gundogdu-karaburun, A. C. Karaburun, I. Kayagil et al., , vol.25, pp.1063-1072, 2017.

W. Ho, L. R. Wright, E. D. Turtle, C. Mossman, L. A. Flippin et al., , 2010.

X. Han, Y. Zhong, S. Li, G. Liang, G. Zhou et al., Chem. Pharm. Bull, vol.64, pp.1411-1416, 2016.

N. Gigant, L. Chausset-boissarie, I. Gillaizeau, . Chem, . J. Eur et al., Lavilla, R. QSAR Comb. Sci, vol.20, issue.4-chlorobenzyl, pp.3043-3046, 2006.

, Starting material: ammonium nitrate salt (204 mg, 1.0 mmol, 1.0 equiv), aldehyde (132 µL, 1.0 mmol, 1.0 equiv), and isocyanide (124 µL, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography, vol.9

H. Nmr, 400 MHz, CDCl3) ? (ppm) 7.24-7.20 (m, 4H), 7.20-7.13 (m, 3H)

. Hz,

C. Nmr, MHz, issue.100

, IR, vol.3417, pp.899-900, 1296.

, MP

, HRMS m/z: [M] +? calcd for C23H28ClN3O3: 429.1819; calcd for

, Starting material: ammonium nitrate salt (120 mg, 1.0 mmol, 1.0 equiv), aldehyde (132 µL, 1.0 mmol, 1.0 equiv), and isocyanide (124 µL, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography

, Yield 71%

H. Nmr, 400 MHz, CDCl3) ? (ppm) 7.25-7.20 (m, 2H), 7.18-7.14 (m, 1H), 7.11-7.07 (m, 2H), 5.87-5.76 (m, 2H), vol.5

C. Nmr, MHz, issue.100

, IR, vol.3417, pp.1050-1051, 1236.

, (1H-indol-3-yl)ethyl)(nitro)amino, HRMS m/z: [M] +? calcd for C19H27N3O3: 345.2052; calcd for

, Starting material: ammonium nitrate salt (223 mg, 1.0 mmol, 1.0 equiv), aldehyde (132 µL, 1.0 mmol, 1.0 equiv), and isocyanide (124 µL, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography (eluents: PE/EtOAc 9:1, 8:2) to give the product as yellow oil, p.43

H. Nmr, 400 MHz, CDCl3) ? (ppm) 8.20 (s, 1H), 7.75 (d, J = 7.9 Hz, 1H), 7.43-7.40 (m, 1H), 7.36-7.31 (m, 2H), 7.30-7.25 (m, 2H), 7.22-7.18 (m, 1H), 7.16-7.12 (m, 1H)

C. Nmr, MHz, issue.100

, IR, vol.3469, pp.1031-1032, 1289.

, HRMS m/z: [M] +? calcd for C26H32N4O3: 448.2474 calcd for

, Starting material: ammonium nitrate salt (164 mg, 1.0 mmol, 1.0 equiv), aldehyde (141 mg, 1.0 mmol, 1.0 equiv), and isocyanide (124 µL, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography

H. Nmr, 97 (s, 1H), 5.39 (br d, 400 MHz, CDCl3) ? (ppm) 7.35 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), vol.5

C. Nmr, MHz, CDCl3) ? (ppm) 165.9

, IR, vol.3417, pp.891-892, 1292.

. Hrms-m/z-;-m]-+?-calcd-for-c20h30cln3o3, , p.395, 1976.

, Starting material: ammonium nitrate salt (204 mg, 1.0 mmol, 1.0 equiv), aldehyde (122 µL, 1.0 mmol, 1.0 equiv), and isocyanide (124 µL, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography

H. Nmr, 400 MHz, CDCl3) ? (ppm) 7.25-7.11 (m, 2H), 7.08-7.04 (m, 2H)

C. Nmr, MHz, issue.100

, IR, vol.3416, pp.990-991, 1268.

, MP

, HRMS m/z: [M] +? calcd for C22H26ClN3O4: 431.1612; calcd for

, Starting material: ammonium nitrate salt (204 mg, 1.0 mmol, 1.0 equiv), aldehyde (88 µL, 1.0 mmol, 1.0 equiv), and isocyanide (124 µL, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography

H. Nmr, 400 MHz, CDCl3) ? (ppm) 7.35 (d, J = 3.0 Hz, 1H), vol.7

, Hz, 1H), 5.05 (d, J = 16.1 Hz, 1H), 4.54 (d, J = 16.1 Hz, 1H)

C. Nmr, MHz, issue.100

, IR, vol.3416, pp.845-846, 1289.

, MP

, cyclohexylethyl)(nitro)amino)-N-pentylacetamide, HRMS m/z: [M] +? calcd for C19H22ClN3O3S: 407.1070; calcd for

, Starting material: ammonium nitrate salt (190 mg, 1.0 mmol, 1.0 equiv), aldehyde (140 mg, 1.0 mmol, 1.0 equiv), and isocyanide (126 µL, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography, vol.9

H. Nmr, 99 (s, 1H), 5.76 (s, 1H), 400 MHz, CDCl3) ? (ppm) 7.38-7.33 (m, 2H), 7.30-7.26 (m, 2H), vol.5

C. Nmr, MHz, CDCl3) ? (ppm) 166.8, 135.9

, IR, vol.3430, pp.899-900, 1267.

, HRMS m/z: [M] +? calcd for C21H32ClN3O3: 409.2132; calcd for

, Starting material: ammonium nitrate salt (204 mg, 1.0 mmol, 1.0 equiv), aldehyde (107 µL, 1.0 mmol, 1.0 equiv), and isocyanide (147 mg, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography

H. Nmr, CDCl3) ? (ppm) 7.30 (d, MHz, issue.400

. Hz,

. Hz, 3H), 0.92 (d, J = 6.6 Hz, 3H)

C. Nmr, MHz, CDCl3) ? (ppm) 167.9

, IR, vol.3425, pp.901-902, 1292.

, HRMS m/z: [M] +? calcd for C21H26ClN3O4: 419.1612; calcd for

, Starting material: ammonium nitrate salt (204 mg, 1.0 mmol, 1.0 equiv), aldehyde (107 µL, 1.0 mmol, 1.0 equiv), and isocyanide (191 mg, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography

H. Nmr, 400 MHz, CDCl3) ? (ppm) 7.32 (d, J = 8.4 Hz, 2H), vol.7

, Hz, 1H), 6.71 (d, J = 8.0 Hz, 2H), 6.09 (br s, 1H), 5.13 (t, J = 7.5 Hz, 1H)

C. Nmr, MHz, issue.100

, IR (thin film), vol.3427, pp.844-845, 1271.

, HRMS m/z: [M] +? calcd for C23H30ClN3O5: 463.1874 Found: 463.1858. 2-(allyl(nitro)amino)-N-(3,4-dimethoxyphenethyl)-4-methylpentanamide

, Starting material: ammonium nitrate salt (216 mg, 1.0 mmol, 1.0 equiv), aldehyde (107 µL, 1.0 mmol, 1.0 equiv), and isocyanide (191 mg, 1.0 mmol, 1.0 equiv). The crude material was purified by column chromatography, vol.7, p.3

H. Nmr, 400 MHz, CDCl3) ? (ppm) 6.87-6.84 (m, 1H), 6.76-6.72 (m, 2H), 6.04 (br d, 1H), 5.87-5.83(m, 1H), vol.5

C. Nmr, MHz, issue.100

, IR, vol.3428, pp.898-899, 1292.

, HRMS m/z: [M] +? calcd for C19H29N3O5: 379.2107 Found: 379.2106. 3-(4-tert-Butylphenylthio)isobenzofuran-1(3H)-one

, Starting from phthalaldehydic acid III-4a (165 mg, 1.1 mmol) and 4-tert-butylbenzenethiol III5d (168 µL, 1 mmol) and following the general procedure

H. Nmr, 400 MHz, CDCl3) ? 7.71 (d, J = 7.7 Hz, 1H)

, MP 102-104 o C

, Fluorophenyl)thio)isobenzofuran-1(3H)-one, HRMS (ESI) m/z: [M] +? calcd for C18H18O2S 298.1028

, Starting from phthalaldehydic acid III-4a (500 mg, 3.3 mmol, 1.1 equiv) and 4-fluorothiophenol III-5e (320 µL, 3 mmol, 1 equiv) and following the general procedure

H. Nmr, 300 MHz, CDCl3) ? 7.77 (d, J = 7.6 Hz, 1H), 7.71 (td, J = 7.5, 1.1 Hz, 1H), 7.64 (dd, J = 7.7, 1.0 Hz, 1H), 7.50 (t, J = 7.4 Hz, 1H)

D. and J. , 13 C NMR (75 MHz, CDCl3) ? 169.0, 163.4 (d, JC-F =250.2 Hz), vol.136, pp.86-89

, 19 F NMR (300 MHz, CDCl3) ?-111.2

, MP 112-114 o C

, HRMS (ESI) m/z: [M] +? calcd for

, Starting from phthalaldehydic acid III-4a (165 mg, 1.1 mmol) and 4-bromobenzenethiol III-5f (189 mg, 1 mmol) and following the general procedure

H. Nmr, 300 MHz, CDCl3) ? 7.80 (d, J = 7.6 Hz, 1H)

, Hz, 1H), 7.52 (t, J = 7.4 Hz, 1H)

, 13 C NMR (75 MHz, CDCl3)

, MP 142-144 o C

, HRMS (ESI) m/z: [M] +? calcd for C14H9BrO2S 319, vol.9507

, Starting from phthalaldehydic acid III-4a (165 mg, 1.1 mmol) and 3-bromobenzenethiol III-5g (118 µL, 1 mmol) and following the general procedure

H. Nmr, 400 MHz, CDCl3) ? 7.81 (d, J = 7.7 Hz, 1H), 7.72 (td, J = 7.6, 1.0 Hz, 1H), 7.67-7.60 (m, 2H), 7.53 (t, J = 7.5 Hz, 1H)

, 13 C NMR (101 MHz, CDCl3) ? 168.9

, MP 114-116 o C

, 4-Dimethoxyphenyl)thio)isobenzofuran-1(3H)-one, HRMS (ESI) m/z: [M] +? calcd for C14H9BrO2S 319, vol.9507

, Starting from phthalaldehydic acid III-4a (200 mg, 1.3 mmol) and 3,4-dimethoxythiophenol III-5j (173 µL, 1.2 mmol) and following the general procedure, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (7:3) as eluent to afford III-1j as a white solid

H. Nmr, 300 MHz, CDCl3) ? 7.73 (d, J = 7.7, 1H), 7.72-7.62 (m, 2H), 7.50-7.44 (m, 1H)

, 13 C NMR (75 MHz, CDCl3)

, MP 119-121 o C

, HRMS (ESI) m/z: [M] +? calcd for

, Starting from phthalaldehydic acid III-4a (500 mg, 3.3 mmol) and 1-naphtalenethiol III-5k (420 µL, 3.0 mmol) and following the general procedure, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (9:1) as eluent to afford III-1k as a white solid

H. Nmr, 300 MHz, CDCl3) ? 8.57 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 7.2 Hz, 1H), 7.86-7.77 (m, 3H), 7.74-7.71 (m, 1H), 7.69-7.59 (m, 2H), 7.57-7

, 13 C NMR (75 MHz, CDCl3)

, MP 103-105 o C

, HRMS (ESI) m/z: [M] +? calcd for C18H12O2S

, Starting from phthalaldehydic acid III-4a (165 mg, 1.1 mmol) and 2-naphtholthiol III-5l (160.2 mg, 1.0 mmol) and following the general procedure

H. Nmr, 400 MHz, CDCl3) ? 8.04 (d, J = 1.3 Hz, 1H), 7.80-7.66 (m, 6H)

, MP 120-122 o C

, HRMS (ESI) m/z: [M] +? calcd for

, Starting from phthalaldehydic acid III-4a (165 mg, 1.1 mmol) and hexane-1-thiol III-5n (141 µL, 1.0 mmol) and following the general procedure

H. Nmr, 300 MHz, CDCl3) ? 7.82 (d, J = 7.5 Hz, 1H), 7.65 (dd, J = 10, vol.9

, Methyl 2-(3-oxo-1,3-dihydroisobenzofuran-1-ylthio)acetate

, Starting from phthalaldehydic acid III-4a (165 mg, 1.1 mmol) and methyl 2-mercaptoacetate III-5r (91 µL, 1.0 mmol) and following the general procedure

H. Nmr, 300 MHz, CDCl3) ? 7.85 (d, J = 7.0 Hz, 1H), 7.69 (t, J = 7.5 Hz, 1H), vol.7

, Chlorophenylamino)-4-(phenylthio)-1H-isochromen-1-one

, mmol), 4chlorophenylisocyanide III-4g (68.5 mg, 0.50 mmol), TiCl4 (1M in CH2Cl2, 410 µL, 0.41 mmol) and following the general procedure III-B, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (98:2) as eluent to afford III

H. Nmr, 300 MHz, CDCl3) ? 8.09 (dd, J = 8.0, 0.9 Hz, 1H), 7.62 (d, J = 8.3 Hz, 2H), 7.55-7.40 (m, 1H)

C. Nmr,

, MP 130-132 o C

, HRMS (ESI) m/z: [M] +? calcd for C21H14ClNO2S

, mmol), cyclohexylisocyanide III-4b (58 µL, 0.47 mmol), TiCl4 (1M in CH2Cl2, 390 µL, 0.39 mmol) and following the general procedure III-B, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (9:1) as eluent to afford III-5bb as a yellow solid (98 mg) Starting from 4-methylbenzenethiol III-3b (1.0 mmol) and following general procedure III-C for the one-pot synthesis, p.3

H. Nmr, 300 MHz, CDCl3) ? 8.11 (d, J = 7.9 Hz, 1H), 7.60 (d, J = 8.1 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H), 7.11 (t, J = 7.5 Hz, 1H)

, 13 C NMR (75 MHz, CDCl3)

, MP 142-144 o C

, HRMS (ESI) m/z: [M] +? calcd for

, 4-methylbenzenethiol III-3b (124 mg, 1.0 mmol), 1-pentylisocyanide III-4c (189 mg, 1.5 mmol), TiCl4 (1M in CH2Cl2, 1.2 mL, 1.2 mmol) and following the general procedure for the one-pot synthesis III-C, the crude material was purified by flash column chromatography on silica gel using petroleum ether:ethyl acetate (95:5) as eluent to afford III

, 6-Dimethylphenyl)amino)-4-(p-tolylthio)-1H-isochromen-1-one

, 4-methylbenzenethiol III-3b (124 mg, 1.0 mmol), 2,6-dimethylphenylisocyanide III-4f (197 mg, 1.5 mmol), TiCl4 (1M in CH2Cl2, 1.2 mL, 1.2 mmol) and following the general procedure III-C for the one-pot synthesis, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (8:2) as eluent to afford III

, Yield : 49% (III-C)

H. Nmr, 300 MHz, CDCl3) ? 8.13 (dd, J = 8.0, 1.4 Hz, 1H), 7.78-7.72 (m, 1H), 7.65-7.55 (m, 1H), 7.24-7.15 (m, 2H)

, MP 135-141 o C

, methoxyphenyl)thio)-1H-isochromen-1-one, HRMS (ESI) m/z: [M] +? calcd for C24H21NO2S: 387.1293 found 387.1286. 3-(Cyclohexylamino)-4

, methoxyphenyl)thio)isobenzofuran-1(3H)-one III-1c (100 mg, 0.37 mmol), cyclohexylisocyanide III-4b (55 µL, 0.44 mmol), TiCl4 (1M in CH2Cl2, 370 µL, 0.37 mmol) and following the general procedure III-B, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (95:5) as eluent to afford III

, Yield : 65% (III-B)

H. Nmr, 300 MHz, CDCl3) ? 8.11 (dd, J = 8.0, 1.4 Hz, 1H), 7.70-7.59 (m, 1H), 7.60-7.47 (m, 1H), 7.46-7.33 (m, 1H), 7.16-7.06 (m, 2H)

, 13 C NMR (75 MHz, CDCl3)

, MP 135-137 o C

, HRMS (ESI) m/z: [M] +? calcd for C22H23NO3S

, mmol), cyclohexylisocyanide III-4b (50 µL, 0.40 mmol), TiCl4 (1M in CH2Cl2, 340 µL, 0.34 mmol) and following the general procedure III-B, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethylacetate (95:5) as eluent to afford III

H. Nmr, 300 MHz, CDCl3) ? 8.12 (dd, J = 8.0, 1.0 Hz, 1H), 7.63 (dd, J = 8.2, 0.5 Hz, 1H), 7.557.45 (m, 1H), vol.7

. Hz,

, MP 109-111 o C

, fluorophenyl)thio)-1H-isochromen-1-one, HRMS (ESI) m/z: [M] +? calcd for C25H29NO2S : 407.1919 found 407.1933. 3-(Cyclohexylamino)-4

, 38 mmol), cyclohexylisocyanide III-4b (57 µl, 0.46 mmol), TiCl4 (1M in CH2Cl2, 380 µL, 0.38 mmol) and following the general procedure III-B, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (9:1) as eluent to afford III, fluorophenyl)thio)isobenzofuran-1(3H)-one III-1e (100 mg

, Yield : 68% (III-B)

H. Nmr, 300 MHz, CDCl3) ? (ppm) 8.18-8.04 (m, 1H), 7.61-7.56 (m, 1H), 7.55-7.51 (m, 1H), 7.15-7.12 (m, 1H), 7.11-7.05 (m, 2H), 6.98-6.90 (m, 2H), 5.69 (d, J = 8.4 Hz, 1H)

C. Nmr, CDCl3) ? 161.2 (d, JC-F = 244, MHz, issue.75

J. Hz-;-d, , vol.127

, 19 F NMR (300 MHz, CDCl3) ?-117.1

, MP 140-142 o C

, HRMS (ESI) m/z: [M] +? calcd for

, mmol), cyclohexylisocyanide III-4 (47 µL, 0.37 mmol), TiCl4 (1M in CH2Cl2, 310 µL, 0.31 mmol) and following the general procedure III-B, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (98:2) as eluent to afford III

H. Nmr, 300 MHz, CDCl3) ? 8.16-8.05 (m, 1H), 7.55-7.49 (m, 2H), 7.35-7.28 (m, 2H), 7.167.09 (m, 1H)

, 13 C NMR (75 MHz, CDCl3)

, MP 150-152 o C

, Bromophenyl)thio)-3-(cyclohexylamino)-1H-isochromen-1-one, HRMS (ESI) m/z: [M] +? calcd for C21H20BrNO2S

, bromophenyl)thio)isobenzofuran-1(3H)-one III-1g (100 mg, 0.31 mmol), cyclohexylisocyanide III-4b (46 µL, 0.37 mmol), TiCl4 (1M in CH2Cl2, 310 µL, 0.31 mmol) and following the general procedure III-B, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (98:2) as eluent to afford III

H. Nmr, 300 MHz, CDCl3) ? 8.13 (d, J = 7.9 Hz, 1H), 7.64-7.50 (m, 2H), 7.28-7.21 (m, 2H), 7.20-7.04 (m, 2H)

, 4-dimethylphenyl)thio)-1H-isochromen-1-one, HRMS (ESI) m/z: [M] +? calcd for C21H20BrNO2S

, 4-Dimethylphenylthio)isobenzofuran-1(3H)-one III-1i (100 mg, 0.37 mmol), cyclohexylisocyanide III-4b (55 µL, 0.44 mmol), TiCl4 (1M in CH2Cl2, 370 µL, 0.37 mmol) and following the general procedure III-B, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (95:5) as eluent to afford III

, Starting from 3,4-dimethylbenzenethiol III-3i (1.0 mmol) and following general procedure III-C for the one-pot synthesis

H. Nmr, 300 MHz, CDCl3) ? 8.19-8.06 (m, 1H), 7.63 (d, J = 8.1 Hz, 1H), 7.55-7.46 (m, 1H)

. Hz,

, MP 128-130 o C

, 4-dimethoxyphenyl)thio)-1H-isochromen-1-one, HRMS (ESI) m/z: [M] +? calcd for C23H25NO2S 379.1606

, 4-dimethoxyphenylthio)isobenzofuran-1(3H)-one III-1j (100 mg, 0.33 mmol), cyclohexylisocyanide III-4b (49 µL, 0.40 mmol), TiCl4 (1M in CH2Cl2, 330 µL, 0.33 mmol) and following the general procedure III-B, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (8:2) as eluent to afford III

H. Nmr, 12 (m, 1H), 6.73 (d, J = 8.4 Hz, 1H), 6.72 (d, J = 2.1 Hz, 1H), 6.64 (dd, 300 MHz, CDCl3) ? 8.11 (dd, J = 7.9, 1.0 Hz, 1H), 7.63 (d, J = 7.9 Hz, 1H), 7.53 (m, 1H), vol.7

, HRMS (ESI) m/z: [M] +? calcd for C23H25NO4S : 411.1504

, mmol), cyclohexylisocyanide III-4b (46 µl, 0.37 mmol), TiCl4 (1M in CH2Cl2, 310 µL, 0.31 mmol) and following the general procedure III-B, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (95:5) as eluent to afford III

, Yield : 68% (III-B)

H. Nmr, 300 MHz, CDCl3) ? 8.38 (d, J = 8.4 Hz, 1H), 8.16 (d, J = 8.0 Hz, 1H), 7.89 (d, J = 7.6 Hz, 1H), 7.66-7.60 (m, 2H), 7.59-7.53 (m, 2H), 7.51-7.44 (m, 1H), 7.28-7.24 (m, 1H)

, HRMS (ESI) m/z: [M] +? calcd for C25H23NO2S : 401.1449

, mmol), cyclohexylisocyanide III-4b (51 µL, 0.41 mmol), TiCl4 (1M in CH2Cl2, 340 µL, 0.34 mmol) and following the general procedure III-B, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (98:2) as eluent to afford III

, Starting from 2-naphthylthiol III-3l (1.0 mmol) and following general procedure III-C for the onepot synthesis, III-5lb was obtained as a yellow solid

, 4-(dodecylthio)-1H-isochromen-1-one (III-5ma) and 3-Amino-4-(dodecylthio)-1H-isochromen-1-one

, mmol), tertbutylisocyanide III-4a (41 µL, 0.36 mmol), TiCl4 (1M in CH2Cl2, 300 µL, 0.30 mmol) and following the general procedure III-B, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (98:2 to 80:20) as eluent. The desired 3-(tertbutylamino)-4-(dodecylthio)-1H-isochromen-1-one III-5ma was obtained as yellow sticky solid (62.4 mg) and 3-Amino-4-(dodecylthio)-1H-isochromen-1-one III

, Starting from dodecane-1-thiol III-3m (1.0 mmol) and following general procedure III-C for the one-pot synthesis, III-5ma was obtained as a yellow solid

H. Nmr, 300 MHz, CDCl3) ? 8.09 (ddd, J = 7.9, 1.4, 0.5 Hz, 1H), vol.3

H. Nmr, 300 MHz, CDCl3) ? 8.13 (dd, J = 8.0, 0.9 Hz, 1H), vol.7

, HRMS (ESI) m/z: [M] +? calcd for C21H31NO2S 361.2075

, dodecane-1-thiol III-3m (240 µL, 1.0 mmol), pentylisocyanide III-4c (189 µL, 1.5 mmol), TiCl4 (1M in CH2Cl2, 1.2 mL, 1.2 mmol) and following the general procedure III-C for the one-pot synthesis, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (99:1) as eluent to afford III, Starting from 2-carboxybenzaldehyde III-2a (165 mg, 1.1 mmol)

H. Nmr, 300 MHz, CDCl3) ? 8.11-8.01 (m, 1H), 7.75 (d, J = 7.9 Hz, 1H), 7.60-7.50 (m, 1H)

, Benzylamino)-4-(dodecylthio)-1H-isochromen-1-one

, 1-dodecanethiol III-3m (241 µL, 1.0 mmol), benzylisocyanide III-4d (183 µL, 1.5 mmol), TiCl4 (1M in CH2Cl2, 1.2 mL, 1.2 mmol) and following the general procedure III-C for the one-pot synthesis, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (9:1) as eluent to afford III

, Yield : 61% (III-C)

H. Nmr, 300 MHz, CDCl3) ? 8.11 (dd, J = 8.0, 0.9 Hz, 1H), 7.81-7.76 (m, 1H), 7.65-7.55 (m, 1H), 7.38-7.33 (m, 4H), 7.34-7.28 (m, 1H)

. Hz, , vol.3

, Cyclohexylamino)-4-(hexylthio)-1H-isochromen-1-one

, mmol), cyclohexylisocyanide III-4b (60 µL, 0.48 mmol), TiCl4 (1M in CH2Cl2, 400 µL, 0.4 mmol) and following the general procedure III-B, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (98:2) as eluent to afford III

, Starting from hexane-1-thiol III-3n (1.0 mmol) and following general procedure III-C for the onepot synthesis, III-5nb was obtained as a yellow solid

, N-cyclohexyl-3-oxo-1,3-dihydrobenzo[c]thiophene-1-carboxamide

, mmol), cyclohexylisocyanide III-4b (67 µL, 0.54 mmol), TiCl4 (1M in CH2Cl2, 900 µL, 0.90 mmol) and following the general procedure III-D, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (8:2) as eluent. The desired Ncyclohexyl-3-oxo-1,3-dihydrobenzo

, Starting from 2-methylpropane-2-thiol III-3p (1.0 mmol) and following general procedure III-E for the one-pot synthesis

H. Nmr, 300 MHz, CDCl3) ? 7.89 (dd, J = 7.8, 0.7 Hz, 1H), 7.79 (d, J = 7.7 Hz, 1H), vol.7

, 13 C NMR (75 MHz, CDCl3)

, HRMS (ESI) m/z: [M] +? calcd for

, mmol), benzylisocyanide III-4d (66 µL, 0.54 mmol), TiCl4 (1M in CH2Cl2, 900 µL, 0.90 mmol) and following the general procedure III-D, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (8:2) as eluent. The desired Nbenzyl-3-oxo-1,3-dihydrobenzo

, Starting from 2-methylpropane-2-thiol III-3p (1.0 mmol) and following general procedure III-E for the one-pot synthesis

H. Nmr, 300 MHz, DMSO-D6) ? 9.14 (t, J = 5.6 Hz, 1H), 7.87-7.49 (m, 4H)

, Methyl 2-(3-oxo-1,3-dihydrobenzo[c]thiophene-1-carboxamido)acetate, HRMS (ESI) m/z: [M] +? calcd forC16H13NO2S 283.0667

, mmol), methyl 2isocyanoacetate III-4e (49 µL, 0.54 mmol), TiCl4 (1M in CH2Cl2, 900 µL, 0.90 mmol) and following the general procedure III-D, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (8:2) as eluent. The desired methyl 2-(3-oxo-1,3dihydrobenzo

H. Nmr, 300 MHz, CDCl3) ? 7.91-7.76 (m, 2H), vol.7

, HRMS (ESI) m/z: [M] +? calcd for C12H11NO4S 265.0409

, mg, 0.54 mmol), TiCl4 (1M in CH2Cl2, 900 µL, 0.90 mmol) and following the general procedure III-D, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (8:2) as eluent. The desired N-(4chlorophenyl)-3-oxo-1,3-dihydrobenzo, tert-butylthio)isobenzofuran-1(3H)-one III-1p (100 mg, 0.45 mmol

H. Nmr, DMSO-D6) ? 10.91 (s, 1H), 300 MHz, vol.7

, ,4,4-trimethylpentan-2-yl)-1,3-dihydrobenzo[c]thiophene-1-carboxamide

, 2isocyano-2,4,4-trimethylpentane III-4i (95 µL, 0.54 mmol), TiCl4 (1M in CH2Cl2, 900 µL, 0.90 mmol) and following the general procedure III-D, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (9:1) as eluent. The desired 3-oxo-N-(2,4,4-trimethylpentan-2-yl)-1,3-dihydrobenzo, tert-butylthio)isobenzofuran-1(3H)-one III-1p (100 mg, 0.45 mmol)

, Starting from 2-methylpropane-2-thiol III-3p (1.0 mmol) and following general procedure III-E for the one-pot synthesis

H. Nmr, 300 MHz, CDCl3) ? 7.94-7.88 (m, 1H), 7.80 (d, J = 7.7 Hz, 1H), 7.71-7.63 (m, 1H)

, 13 C NMR (75 MHz, CDCl3)

, HRMS (ESI) m/z: [M] +? calcd for C17H23NO2S 305.1449, found: 150.0184 [M

, N-(naphthalen-2-yl)-3-oxo-1,3-dihydrobenzo[c]thiophene-1-carboxamide

, mg, 0.54 mmol), TiCl4 (1M in CH2Cl2, 900 µL, 0.90 mmol) and following the general procedure III-D, the crude material was purified by flash column chromatography on silica gel using cyclohexane:ethyl acetate (9:1) as eluent. The desired N(naphthalen-2-yl)-3-oxo-1,3-dihydrobenzo, tert-butylthio)isobenzofuran-1(3H)-one III-1p (100 mg, 0.45 mmol)

, Starting from 2-methylpropane-2-thiol III-3p (1 mmol) and following general procedure III-E for the one-pot synthesis

H. Nmr, DMSO-D6) ? 8.28 (s, 1H), 300 MHz

C. Nmr,

, HRMS (ESI) m/z: [M] +? calcd for

, After 20 min, thiol (1.0 equiv, 4.0 mmol) and cyclopropyl bromide (1.3 equiv, 5.2 mmol) were added. The reaction was stirred at 120°C under argon for 3 hours. The reaction mixture was then dissolved in diethyl ether. The crude mixture was diluted with a saturated aqueous solution of potassium carbonate and washed five times with water. The organic layer was then dessicated over magnesium sulfate, filtrated and evaporated under reduced pressure. The crude products were then purified by column chromatography, Chapitre IV Procedure IV-A for thiol alkylation with bromocyclopropane Potassium carbonate (1.5 equiv, 6.0 mmol) was dissolved in DMF (0.5 M) and the solution was stirred at 120°C under argon

, 03 mmol), cyclopropyl bromide (0.419 mL, 5.23 mmol), K2CO3 (835 mg, 6.04 mmol) and following the general procedure IV-A, the desired cyclopropyl(p-tolyl)sulfane IV-3b was obtained as a yellow oil (590 mg) without further purification, p.89

H. Nrm, 400 MHz, CDCl3) : ? (ppm) 7.17 (d, 2H, J = 8.3 Hz)

, C NRM (100.6 MHz, CDCl3) : ? (ppm) 134.8 (Cq), vol.134

, 20 mmol), cyclopropyl bromide (0.750 mL, 9.40 mmol), K2CO3 (1.49 g, 10.80 mmol) and following the general procedure IV-A, the crude material was purified by flash column chromatography on silica gel using pure cyclohexane as eluent to afford the desired cyclopropyl(4-ethylphenyl)sulfane IV-3c as a colourless oil

H. Nrm, 300 MHz, CDCl3) : ? (ppm) 7.33

2. Hz, , vol.2

C. Nrm, MHz, CDCl3) : ? (ppm) 141.3 (Cq), vol.135

, HRMS (APPI) m/z: [M] +? calcd for C11H14S: 178.0816

, 60 mmol), cyclopropyl bromide (1.020 mL, 8.50 mmol), K2CO3 (1.37 g, 9.90 mmol) and following the general procedure IV-A, the crude material was purified by flash column chromatography on silica gel using pure cyclohexane as eluent to afford the desired cyclopropyl(4-isopropylphenyl)sulfane IV

H. Nrm, 300 MHz, CDCl3) : ? (ppm) 7.34 (d, J = 8.3 Hz, 2H), vol.7

, C NRM (100.6 MHz, CDCl3) : ? (ppm), vol.145

, HRMS (APPI) m/z: [M] +? calcd for

, 0 mmol), cyclopropyl bromide (0.83 mL, 10.4 mmol), K2CO3 (1.66 g, 12.0 mmol) and following the general procedure IV-A, the desired (4(tert-butyl)phenyl)(cyclopropyl)sulfane IV-3e was obtained as a yellow oil (1.28 g) without further purification, vol.8, p.78

H. Nrm, 400 MHz, CDCl3) : ? (ppm) 7.23 (m, 4H), 2.08 (m, 1H), vol.1

, C NRM (100.6 MHz, CDCl3) : ? (ppm) 148.0 (Cq), vol.135

, cyclopropyl bromide (0.39 mL, 4.9 mmol), K2CO3 (776 mg, 5.6 mmol) and following the general procedure IV-A, the crude material was purified by flash column chromatography on silica gel using pure petroleum ether as eluent to afford the desired cyclopropyl(naphthalen-2-yl)sulfane IV

H. Nrm, 400 MHz, CDCl3) : ? (ppm) 7.85-7.76 (m, 4H)

, C NRM (100.6 MHz, CDCl3) : ? 136.4 (Cq), 133.8 (Cq), vol.131

, cyclopropyl bromide (0.83 mL, 10.4 mmol), K2CO3 (1.66 g, 12.0 mmol) and following the general procedure IV-A, the crude material was purified by flash column chromatography on silica gel using pure pentane as eluent to afford the desired cyclopropyl(4-fluorophenyl)sulfane IV

H. Nrm, 400 MHz, CDCl3) : ? (ppm) 7.25 (m, 2H), 6.92 (m, 2H), 2.08 (m, 1H), 0.95 (m, 2H), 0.59 (m, 2H)

, C NRM (100.6 MHz, CDCl3) : ? (ppm), vol.159

, Starting from cyclopropyl(p-tolyl)sulfane IV-3b (490 mg, 2.98 mmol) and bromine (0.169 mL, 3.28 mmol) and following the general procedure IV-B, the crude material was purified by flash column chromatography on silica gel using pure petroleum ether as eluent to afford the desired (2-bromo-4-methylphenyl)(cyclopropyl)sulfane IV-1b as a colourless oil

H. Nrm, 400 MHz, CDCl3) : ? (ppm) 7.42 (d, J =7.6 Hz, 1H), vol.7

1. Hz, 31 (s, 3H), 2.17-2.11 (m, 1H), 1.14-1.09 (m, 2H), vol.2

, C NRM (100.6 MHz, CDCl3) : ? (ppm) 136.5, 135.9

, HRMS (APPI) m/z: [M] +? calcd for C10H11BrS: 241,9765, pp.241-9769

, IR, vol.3006, 1054.

, Starting from cyclopropyl(4-ethylphenyl)sulfane IV-3c (763 mg, 4.28 mmol) and bromine (0.242 mL, 4.71 mmol) and following the general procedure IV-B, the crude material was purified by flash column chromatography on silica gel using pure cyclohexane as eluent to afford the desired (2-bromo-4-ethylphenyl)(cyclopropyl)sulfane IV-1c as a colourless oil

H. Nrm, 300 MHz, CDCl3) : ? (ppm) 7.45 (d, J = 8.1 Hz, 1H), vol.7

C. Nrm, MHz, CDCl3) : ? (ppm) 142.3 (Cq), vol.136

, HRMS (APPI) m/z: [M] +? calcd for C11H13BrS : 255.9921

, 53 mmol) and bromine (0.143 mL, 2.79 mmol) and following the general procedure IV-B, the crude material was purified by flash column chromatography on silica gel using pure petroleum ether as eluent to afford the desired (2-bromo-4-isopropylphenyl)(cyclopropyl)sulfane IV, Starting from cyclopropyl(4-isopropylphenyl)sulfane IV-3d (487 mg

H. Nrm, 300 MHz, CDCl3) : ? (ppm) 7.46 (d, J = 8.1 Hz, 1H), 7.37 (d, J = 1.9, 1H), vol.7

, C NRM (100.6 MHz, CDCl3) : ? (ppm) 147.1 (Cq), vol.136

, bromo-4-(tert-butyl)phenyl)(cyclopropyl)sulfane, HRMS (APPI) m/z: [M] +? calcd for

, Starting from cyclopropyl(4-tert-butylphenyl)sulfane IV-3e (400 mg, 1.94 mmol) and bromine (0.110 mL, 2.13 mmol) and following the general procedure IV-B, the crude material was purified by flash column chromatography on silica gel using pure petroleum ether as eluent to afford the desired (2-bromo-4-(tert-buty)lphenyl)(cyclopropyl)sulfane IV-1e as a colourless oil

H. Nrm, 400 MHz, CDCl3) : ? (ppm) 7.56 (d, 1H, J1=2.0 Hz), 7.51 (d, 1H, J2=8.4 Hz)

, C NRM (100.6 MHz, CDCl3) : ? (ppm) 149.4 (Cq), vol.136

, 95 mmol) and bromine (0.054 mL, 1.05 mmol) and following the general procedure IV-B, the crude material was purified by flash column chromatography on silica gel using petroleum ether:diethyl ether 9:1 as eluent to afford the desired (2-bromo-4,5-dimethoxyphenyl)(cyclopropyl)sulfane IV-1f as a colourless oil, Starting from cyclopropyl(3,4-dimethoxyphenyl)sulfane IV-3f

H. Nrm, 400 MHz, CDCl3) : ? (ppm) 6.95 (s, 1H), vol.6

, C NRM (100.6 MHz, CDCl3) : ? (ppm) 148.7 (Cq), vol.147

, HRMS (APPI) m/z: [M] +? calcd for C11H13BrO2S : 287.9820, found: 287.9822. (1-bromonaphthalen-2-yl)(cyclopropyl)sulfane (IV-1g)

, Starting from cyclopropyl(naphthalen-2-yl)sulfane IV-3g (210 mg, 1.05 mmol) and bromine (0.059 mL, 1.15 mmol) and following the general procedure IV-B, the crude material was purified by flash column chromatography on silica gel using petroleum ether:diethyl ether 95:5 as eluent to afford the desired (2-bromo-4,5-dimethoxyphenyl)(cyclopropyl)sulfane IV-1f as a brown oil

H. Nrm, 400 MHz, CDCl3) : ? (ppm) 8,19 (d, J = 9.0 Hz, 1H), 7.76 (m, 3H), 7.55 (m, 1H), 7.45 (m, 1H)

, C NRM (100.6 MHz, CDCl3) : ? (ppm) 138.9 (Cq), vol.132

, 50 mL), bromoform (16.1 mmol, 1.4 mL) and TEBACl (0.095 mmol, 22 mg) and following the general procedure IV-E, the crude material was purified by flash column chromatography on silica gel using petroleum ether:diethyl ether 8:2 as eluent to afford the desired, vol.7

H. Nrm, 400 MHz, CDCl3) : ? (ppm) 2.05-1.95 (m,2H), vol.1

, C NRM (100.6 MHz, CDCl3) : ? (ppm) 40.89 (Cq), vol.9, p.9

, 91 mL), bromoform (21.0 mmol, 1.84 mL) and TEBACl (0.14 mmol, 32 mg) and following the general procedure IV-E, the crude material was purified by distillation in a Krügelrohr to afford the desired, vol.9

H. Nrm, CDCl3) : ? (ppm) 2, MHz, issue.400

, cooled at-90°C in a schlenk, under argon, is added a solution of BuLi (1.25 equiv). The mixture is stirred for 15 minutes at-90°C, then quenched with MeOH. The mixture is then diluted with water and extracted three times with diethyl ether. The combined organic extracts are washed two times with water, then dessicated over magnesium sulfate, filtrated and evaporated under reduced pressure. The crude products were then purified by column chromatography, General procedure IV-E for reduction of dibrominated cyclopropanes To a solution of dibrominated cyclopropane IV-5 (1 equiv) in anhydrous THF (0.2M)

, 54 mmol, 700 mg) and BuLi solution (3.20 mmol, 2.00 mL of a 1.6M solution) and following the general procedure IV-F, the crude material was purified by column chromatography (eluent pure pentane) to afford the desired (2-bromocyclopropyl)benzene IV-5a as a colourless oil, benzene IV-4a

H. Nrm, 400 MHz, CDCl3) : ? (ppm) 7.21-7.18 (m, 2H), 7.14-7.12 (m, 1H), vol.6

C. Nrm, , p.262

, Procedure IV-F for the synthesis of (E)-(2-bromophenyl)(3-phenylprop-1-en-1-yl)sulfane IV-7a

, After 20 min, 2-bromothiophénol IV-3a (1.0 equiv, 1.17 mmol, 0.140 mL) and (2-bromocyclopropyl)benzene IV-5a (1.3 equiv, 1.52 mmol, 300 mg) were added. The reaction was stirred at 120°C under argon for 3 hours. The reaction mixture was then dissolved in diethyl ether. The crude mixture was diluted with a saturated aqueous solution of potassium carbonate and washed five times with water. The organic layer was then dessicated over magnesium sulfate, filtrated and evaporated under reduced pressure. The crude products were then purified by column chromatography, mg) was dissolved in DMF (0.5 M) and the solution was stirred at 120°C under argon, p.243

H. Nrm, 400 MHz, CDCl3) : ? (ppm) 7.48 (dd, J1 = 8.0 Hz, J2 = 1.3 Hz, 1H), 7.27-7.26 (m, 1H), 7.25-7.23 (m, 3H), 7.22 (s, 1H)

C. Nrm, , p.263

, equiv), palladium acetate (5 mol%) and tri-tert-butylphosphonium tetrafluoroborate (10 mol%). The mixture was heated in the microwave and stirred during 20 min at 180°C. The crude was then washed with water and extracted three times with diethyl ether. The organic layer was then dessicated over magnesium sulfate, filtrated and evaporated under reduced pressure. The crude products were then purified by column chromatography, General procedure IV-G for thiocyclopropane ring opening To a 0.35M solution of bromothiocyclopropane IV-1 (1.0 equiv) in DMF were added potassium carbonate

, mmol), palladium acetate (2.3 mg, 0.010 mmol), tri-tert-butylphosphonium tetrafluoroborate (6 mg, 0.021 mmol), potassium carbonate (57 mg, 0.41 mmol) and following the general procedure IV-G, the crude material was purified by preparative chromatography on silica gel using pure pentane as eluent to afford the desired 6-ethyl-4H-thiochromene IV

H. Nrm, 94 (s, 1H), 6.39 (dt, J1 = 9, 400 MHz, CDCl3) : ? (ppm) 7.13 (d, J = 7.8 Hz,1H) 6.97 (d, J = 7.8 Hz, 1H), vol.6

, C NRM (100.6 MHz, CDCl3) : ? (ppm) 196.3 (Cq), vol.132

, HRMS (APPI) m/z: [M] +? calcd for C10H10S : 162,0503

, IR, 1066.

, mmol), palladium acetate (8.8 mg, 0.039 mmol), tri-tert-butylphosphonium tetrafluoroborate (23 mg, 0.079 mmol), potassium carbonate (217 mg, 1.57 mmol) and following the general procedure IV-H, the crude material was purified by flash column chromatography on silica gel using pure pentane as eluent to afford the desired 6-ethyl-4H-thiochromene IV

H. Nrm, 400 MHz, CDCl3) : ? (ppm) 7.19 (d, J = 7.9 Hz, 1H)

C. Nrm,

, HRMS (APPI) m/z: [M] +? calcd for C11H12S : 176.0660, found: 176.0661. (tert-butyl)-4H-thiochromene

, mmol), palladium acetate (7.9 mg, 0.035 mmol), tri-tert-butylphosphonium tetrafluoroborate (20 mg, 0.070 mmol), potassium carbonate (194 mg, 1.40 mmol) and following the general procedure IV-G, the crude material was purified by flash column chromatography on silica gel using pure pentane as eluent to afford the desired 6-(tert-butyl)-4H-thiochromene IV

H. Nrm, 400 MHz, CDCl3) : ? (ppm) 7.39 (s, 1H), vol.7

. Hz,

, C NRM (100.6 MHz, CDCl3) : ? (ppm) 149.9 (Cq), 132.0 (Cq), vol.128

, HRMS (APPI) m/z: [M] +? calcd for C13H16S : 204,0973

, IR, 1025.

, 0 mg, 0.04 mmol), tri-tert-butylphosphonium tetrafluoroborate ( 23 mg, 0.08 mmol), potassium carbonate (220 mg, 1.6 mmol) and following the general procedure IVG, the crude material was purified by flash column chromatography on silica gel using pure pentane as eluent to afford the desired, cyclopropyl)sulfane IV-1f (231 mg, 0.8 mmol), palladium acetate, vol.6

H. Nrm, CDCl3) : ? (ppm) 6.72 (s, 1H), 6.62 (s, 1H), 6.38 (d, J = 9, MHz, issue.400

, C NRM (100.6 MHz, CDCl3) : ? (ppm) 148.0 (Cq), vol.147

, HRMS (APPI) m/z: [M] +? calcd for C11H12O2S : 208,0558

, IR, pp.862-863, 1026.