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Introduction

In 1924, L. de Broglie took the next step of M. Planck’s and A. Einstein’s hypothesis on quanta,
and postulated that every particles of matter, like electrons or atoms, can also behave like waves
[1]. This idea of a wave-particle "duality" was confirmed in 1928, with the first experiment of
electronic diffraction by J. Davisson and L. Germer [2] at Bell Labs. According to de Broglie, a
particle of mass m and velocity v is also described by a wave of wavelength λ. Those quantities
are linked through the Planck constant h with the relation :

λ = h/mv. (1)

For a thermodynamic ensemble of particles at temperature T , we can define the statistical
average of λ, known as the thermal de Broglie wavelength :

λdB =
h√

2πmkBT
, (2)

where kB is the Boltzmann constant. The notion of thermal wavelength connects to the
quantum or classical nature of the system. If the density of the ensemble n is such that λ3

dBn� 1,
then the system behaves classically, because the matter-waves do not overlap, and the particles
see each other as individual objects. On the other hand, when λ3

dBn ' 1, the wave nature of the
particles has to be taken into account, and the ensemble behaves as a quantum system.

Challenges of many-body quantum physics

In a copper wire, the atomic density is ' 1.4×105mol.m−3, and since copper has one free electron
per atom, the electronic density available for conduction is ' 1029m−3. This, combined to the
light mass of the electrons (9 × 10−31 kg), leads to λ3

dBn � 1 at room temperature. So even
something as common as the charges inside a copper wire behaves like a quantum ensemble. In
1929, F. Bloch calculated the wave functions of an electron inside a periodic potential, today
known as the Bloch waves [3], establishing the first quantum theory of solids. Periodic potential
are well adapted to describe the crystal-like structures of the ions inside metals, and for the simple
case of non-interacting electrons in a sinusoidal potential, the Schrödinger equation can be solved
(see section 4.1). Things become much richer and more complicated when electron-electron
interactions, or electron-ion interactions are taken into account : there is no simple solution
anymore, and the existing numerical methods are rapidly overwhelmed by the dimensionality of
the Hilbert space, which grows exponentially with the number of particles in the system.

Solid-state physics gives emblematic examples of many-body quantum states, where the inter-
actions between the particles give birth to fascinating physical phenomena, like superconductivity
or spontaneous magnetization in metals [4], but emerging phenomena such as superfluidity or
pairing mechanism can be found in all sorts of many-body systems : liquid Helium [5], neutron
stars [6], atomic nucleus [7], etc. In all cases, couplings between the particles make those sys-
tems extremely difficult to study, both experimentally and theoretically, even if the microscopic

7



8 Introduction

ingredients describing each quantum object are well understood. On the contrary, some macro-
scopic observations simply lack of microscopic models, like high temperature superconductivity,
considered one of the biggest mystery of solid-state physics.

Cold atoms experiments : a suitable platform to study many-body systems

In this context, cold atoms experiments constitute a very interesting platform to study many-
body systems. Since the end of the 20th century, physicists are able to cool down, manipulate, and
probe atomic ensembles of thousands of individual objects [8]. The development of laser-cooling
and trapping techniques have allowed to reach quantum degeneracy in diluted vapors (λ3

dBn > 1)
[9], and to engineer various geometry of potentials to trap the atoms. Among them, the crystal-
like structure of optical lattices enable the investigation of analogous condensed-matter models
in a controllable way [10].

More recently, the use of Feshbach resonance to tune the interactions between the particles
[11], and the development of new detection schemes able to probe individual atoms [12, 13]
considerably increased the versatility of cold atoms experiments. Controling the interactions
permits to explore a wide range of many-body regimes, from weakly interacting to strongly
correlated systems [14], while single-atom-probing allows to investigate quantum correlations
between the particles [15], giving new insights on the many-body wave function. But most of
this new methods are probing individual positions or spins, while detection techniques sensitive
to individual momenta are rare.

The momentum : a key quantity to explore many-body quantum physics

The particle-wave duality lies in the de Broglie hypothesis, which connects the momentum p =
mv of the particle to its wave vector k = 2π/λ. Indeed, equation (1) can be re-written

~k = mv (3)

Momentum and position are linked by the Heisenberg inequality, making p a complementary
variable to describe many-body systems. In particular, it has been widely used to investigate the
emergence of coherence in atomic vapors, through the estimation of the condensed fraction in
time-of-flight measurements [16, 17]. Inversely, all excitations have a momentum signature given
by the dispersion relation, making momentum space very useful to probe the temperature [18],
the interactions strength [19], or the collective excitations [20] for instance. We can also mention
some pairing mechanisms, like the celebrated BCS pairing [21], or the quantum depletion [22],
only observable in momentum.

In cold atoms experiments, there are mainly two ways to probe the momentum distribution:
Bragg spectroscopy, and Time-of-Flight (ToF) imaging. Bragg spectroscopy is a stimulated
2-photons process giving access the dynamic structure factor of a system, and constitutes an
indirect measurement of the momentum distribution. On the other hand, ToF imaging probes the
atomic density after an expansion time. The spatial distribution of the cloud can be mapped to
the momentum distribution under two conditions : (a) the expansion time has to be long enough
for the cloud to enter the Far-Field Regime (FFR), equivalent to the Fraunhofer diffraction in
optics [23, 22, 24], and (b) the interactions between the particles have to be negligible during
the expansion, to avoid distortions of the distribution.
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Long time of flight and electronic detection, a new approach to investigate
many-body systems

ToF imaging has been widely used with optical probes to measure the momentum distribution
of lattice gases [25, 26, 16, 17, 27], but the short expansion time allowed by standard absorption
imaging were proven insufficient to enter the FFR [23, 22, 24], where the mapping between the
positions and the momenta is accurate. Indeed, with realistic experimental parameters, the FFR
is reached in several hundred of milliseconds, making the cloud too diluted for absorption imaging.
The aim of the Lattice Gases experiment at Institut d’Optique is to circumvent the limitations
of standard imaging, by probing lattice clouds by electronic means. Directed by David Clément
of the Optique Atomique group, this team started its activity in 2011 with the building of a new
Helium machine. At the beginning of 2015, they obtained their first Bose-Einstein condensates
of metastable Helium He*, and I joined the effort shortly after, first as an intern, and later as
a PhD student. My first task was to help installing and developing the Micro Channel Plates
(MCP) detector, that probes the He* cloud after a long ToF of 325ms. He* possesses an internal
energy of 20eV, high enough to extract an electron from a metallic surface. This one-electron
signal is then amplified by the MCP, and turned into a detectable electronic shower. The use of
a delay-line anode at the output of the amplification allows to reconstruct the 3D positions of
millions of individual particles per second.

This detection scheme has two main advantages : its efficiency at very low densities, allowing
measurements in the FFR, and its single-atom sensitivity. Put together, those assets constitute
a way to probe the momentum of individual particles if one manage to suppress the interactions
during the expansion. This is made possible by optical lattices, as we shall discuss in this thesis.
The ToF properties of the 3D lattice are indeed essential to our approach : after turning off
the trap, the initial expansion is driven by the ground state energy of the single-site trapping
potential, much bigger than the interaction energy in general. Hence, under certain conditions
[23, 28], the interactions during the ToF can be neglected, giving access to the in-situ momentum
distribution in the FFR. Demonstrating this last assertion was the main goal of this work.

This manuscript

The manuscript is organized in five chapters. In the first chapter, we describe the experimental
apparatus, its different cooling stages and the detection process, with an emphasis on the MCP
detector operation and performances. The second chapter extends the first one, and describes
the "software" part of the detection process by detailing the methods used to reconstruct the
3D positions of the detected particles. We also present an algorithm computing second order
correlation functions from the 3D distribution, and we test it on different systems (Bose-Einstein
condensate, lattice gas, thermal distribution).

The third chapter deals with the measurement of the asymptotic momentum distribution of
a Bose-Einstein condensate released from an harmonic trap, and the observation of k−4 decaying
structures in the tail of the distribution. This decay is not captured by mean-field theory, and
its interpretation is discussed.

The last two chapters are dedicated to the 3D lattice gas. In chapter four, we demonstrate the
access to the FFR of expansion, and the mapping between the atomic position and momentum
is established by comparison with numerical Quantum Monte-Carlo (QMC) simulations, the
temperature being the sole adjustable parameter. Finally, in chapter five, we exploit our ability
to probe the momentum distribution to build a precise thermometry method, which allows us to
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explore the superfluid to normal-gas transition. We use the single-particle, 3D distribution of the
gas to measure the condensed fraction and the second-order correlations across the transition.



Chapter 1

Description of the experimental
apparatus

In order to obtain a quantum degenerate gas, we need to raise both n and λdB to reach quantum
degeneracy. This is done through a series of cooling (lowering T ) and compression (raising n)
techniques, including but not limited to : cryogeny, laser cooling, evaporative cooling, magnetic
trapping, optical trapping, etc. Those techniques, as well as the equally important detection
techniques, are performed under vacuum, within the experimental apparatus that constitutes a
cold atom experiment.

(1)

(3)

(4)

(2) y

z 

x

Figure 1.1: Sketch of the vacuum system. From right to left : (1) source chamber, (2) Zeeman
slower, (3) science chamber, (4) MCP chamber.

This chapter presents our experiment, working with quantum gases of metastable Helium. In
this peculiar high energetic state, Helium-4 can be detected electronically at the single-atom level,
which constitutes the heart of our approach to perform original measurements on many-body
quantum systems. The chapter is divided in two sections. The first section focuses on the cooling
and trapping steps of the experimental cycle. Most of these steps have already been described in
previous thesis (see [29] for a full description of the source and the Doppler cooling, and [30] to
learn more about the sub-Doppler stage and the hybrid trap). In this manuscript, we briefly recall
the physical principles behind these techniques, and report the current performances obtained in
terms of atom number and temperature. An important part of this thesis has been dedicated to
the installation, the development, and the characterization of the Micro-Channel Plate (MCP)
electronic detector. The second section gives a detailed description of the full detection chain,
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12 Chapter 1: Description of the experimental apparatus

from the MCP itself to the electronics that transform the signal into computable data.

1.1 Cooling, trapping and condensation of metastable Helium 4

Atomic density n (cm   )-3
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Figure 1.2: Phase-space density path along the different cooling and trapping stages.

We start from a pure gas of ground state bosonic Helium-4 (4He) at room temperature. A DC
discharge transfer a fraction of the atoms in the metastable state, and we laser-cool the gas down
to Doppler and sub-Doppler temperatures, leading to an increase of λdB and n. The cloud is then
spin-polarized and loaded inside a magnetic quadrupole trap, that is adiabatically compressed
in order to raise furthermore the density. After a Radio-Frequency (RF) evaporation stage, we
transfer the gas from the magnetic trap into a crossed optical dipole trap, where we obtain a
Bose-Einstein Condensate (BEC) with a second stage of evaporative cooling. This elementary
sample can then be transferred into an optical lattice by adiabatically decreasing the dipole trap
amplitude while ramping the lattice laser power. The overall cooling and trapping sequence takes
less than 10s, ultimately limited by the evaporative cooling stages. In spite of this, the sequence
is rather short compared to similar experiments, which is very important for a setup aiming at
measuring the 3D distribution of very diluted cloud over thousands of experimental runs.

Before going into details, let us define the referential (x, y, z) of the apparatus. The gravity
axis is taken as the z-axis, which points towards the roof of the lab. The Zeeman slower defines
the y-axis, which is directed from the science chamber to the source chamber (opposite to the
atomic jet, see figure 1.1). Finally, the x-axis completes the orthogonal basis.

1.1.1 Production of metastable Helium and laser-cooling stages

Metastable Helium

The first excited state of Helium, 23S, is special for many reasons :

• First of all, it has a long lifetime, which is the reason why it is called "metastable". Usually,
radiative decay limits the lifetime of excited states to the order of the nanosecond, while



1.1 Cooling, trapping and condensation of metastable Helium 4 13

the metastable Helium state, noted He*, has a lifetime of 8000s, exceeding by far the 10s
duration of our experimental cycle. It is actually the atomic state with the longest lifetime
known today [31].

• Helium is a noble gas, meaning that its ground state 11S0 is extremely stable, and one
needs to furnish a lot of energy to excite it. For this reason, the metastable state is 20eV
above the ground state. With this high internal energy, He* can extract an electron from
a metallic surface, which gives the possibility to detect it by electronic means.

• Finally, He* is close to optical transitions, since 23S → 23P can be addressed with a
1083nm laser, yielding the possibility to laser cool He*. The first BEC of bosonic 4He* was
obtained simultaneously at Institut d’Optique and LKB in 2001 [32, 33], while the first
degenerate Fermi gas of 3He* was obtained at the Amsterdam LaserLab in 2006 [34].

The main difficulty with the cooling of He* arises from the Penning losses [35], which is an
inelastic collision process where two metastable atoms are lost by redistributing their internal
energy. The reaction is :

He∗ + He∗ → He + He+ + e−. (1.1)

In particular, Penning collisions strongly limit the atomic density during the molasses phases,
since they are enhanced by the presence of light (light-assisted Penning collisions [36]) and the
presence of spin mixtures [37]. To circumvent those effects, the usual technique is to work with
a spin-polarized gas in a magnetic trap [32, 38, 39, 40] to cross the Bose-Einstein condensation
transition. Our approach is slightly different, as we use a hybrid magnetic/optical trap to enhance
the stability and the rapidity of the cooling cycle [41] (see section 1.1.2).

The source

The first step is to transfer a fraction of the bosonic 4He atoms coming from a pressurized bottle
into the metastable 23S1 state. The 20eV energy difference between the ground state 11S0 and
23S1 prevents us from addressing the transition optically. Instead, we excite the gas through a
plasma discharge [42].

The plasma is generated in a DC discharge between a needle brought to high voltage (typically
−3kV) and a grounded skimmer, which makes the junction between the source chamber and the
molasses chamber, where the atomic beam is optically filtered and collimated. A sketch of the
source is shown in figure 1.3 (a). The needle is inserted in a glass tube, inside which the Helium
flows. The glass tube is glued to a Boron-Nitride (BN) cylinder, pierced with a small hole to
let the plasma jet goes through. The BN is itself inlaid inside a copper piece, which is cooled
down by liquid nitrogen, allowing the plasma to be cold enough, so the metastable atoms can be
efficiently captured by the transverse molasses and the Zeeman’s slower beam. As for the BN, it
is a ceramic with the good thermal and electrical properties to ensure both the cryogeny of the
plasma and the electrical insulation between the needle and the grounded copper.

During this thesis, we have used two materials for the needle : aluminum and tungsten. The
latter gave bad results, since it was ejecting black metallic dust during the discharge, which
were obstructing the BN hole. The aluminum needle, on the other hand, does not seem to eject
matter the same way, but still consume itself over time, probably because of oxidation. When
the plasma operates every day, the needle has a typical lifetime of several months, and has to
be replaced periodically. Figure 1.3 (c) is a picture of a consumed needle, too damaged to allow
the plasma to work, and a brand new needle, ready to replace it.
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(a)

(b) (c)

BN

Cu -3kV
N

N

He4He*4 Needle

Skimmer

Figure 1.3: The source system. (a) From right to left : 4He flows through a plastic pipe before
entering a glass tube, where a DC discharge between a needle at -3kV and a grounded skimmer
produces a Helium plasma containing some metastable atoms 4He*. The plasma is cooled down
to ∼ 200K by liquid nitrogen, circulating inside a copper piece. (b) Photograph of the piece,
ready to be put back under vacuum. (c) New aluminum needle (left), that will replace the
consumed one (right).
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Figure 1.4: Scheme of some beams trajectories around the science chamber, used in the MOT
loading and molasses cooling stages. We have also represented the position of the two cameras
used for the absorption and fluorescence imaging, as well as the direction of the absorption probe
beam. We use the MOT beams on resonance for the fluorescence probe.

The pressure in the source chamber is set by the flux of Helium, controlled with a valve at
the output of the pressurized bottle. We typically work at 10−5mBar. The ratio between this
pressure and the pressure inside the transverse molasses chamber (after the skimmer) can vary
with the different configurations of distances needle/BN, and needle/skimmer since it changes
the shape of the atomic jet. This ratio is usually between 50 and 10, so that the pressure in
the molasses chamber is between 2 × 10−7mBar and 10−6mBar. The current of the plasma is
typically 10mA (with small fluctuations over time) for −3kV applied between the needle and
the skimmer. The rate of production of metastable atoms is very low : one is created every 104

atoms.

Laser cooling and fluorescence imaging

There exists two main classes of laser-cooling mechanisms : Doppler cooling, and sub-Doppler
cooling. The first one is based on momentum exchanges between a two-level atom and a near-
resonant light. The second class actually contains various techniques based on the multi-level
spectra of "real-life" atomic species. It allows to reach much lower temperatures than the Doppler
cooling, but the associated capture velocity being small, it requires the presence of some Doppler
mechanisms as well. Both types of mechanisms are implemented on the experiment, and will be
briefly discussed. A more detailed introduction to the laser cooling theories can be found here
[8].

We use two different lasers to cool down, image, and optically pump the atoms. Both lasers
operate close to 1083nm in order to couple the metastable state 23S1 to one of the 23P states, of
natural line-width Γ = 2π× 1.6MHz. The transverse molasses, Zeeman slower, Doppler-cooling,
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Figure 1.5: 4He atomic levels used for the laser cooling. The MOT and red molasses stage are
realized with the 23S1 → 23P2 transition, and the grey molasses are performed with a blue
detuned light working on the 23S1 → 23P1 transition. The atoms are optically pumped in the
mJ = +1 state for the quadrupole and optical trap phases. To get rid of stray magnetic fields
during the time of flight, and to control the flux of particle reaching the MCP detector, a fraction
of the expanded cloud is transferred into the non-magnetic state, mJ = 0, with a RF pulse at
the beginning of the expansion.
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and imaging light are derived from a mono-mode fibered laser from NKT Photonics and amplified
via an Ytterbium doped fibered amplifier from Keopsys. The output light has a power of 2W,
a bandwidth of 50kHz, addressing the 23S1 → 23P2 transition. The second laser, used both for
sub-Doppler cooling and spin polarization of the gas, is a homemade cavity diode, amplified with
an Ytterbium Manlight amplifier. It delivers a power of 500mW, with a linewidth of ∼ 5MHz,
and it works on the 23S1 → 23P1 transition. Both lasers are locked in frequency to a saturated
absorption spectroscopy signal, obtained through a Helium cell. A fraction of the atoms inside
the cell is transferred to the metastable state thanks a high voltage circuit generating a plasma
[43].

The Zeeman slower After the source, the metastable atoms are separated from the rest of
the gas and collimated by transverse molasses light. The jet then enters a Zeeman slower with
an average velocity of 1.2km.s−1. The Zeeman slower was first demonstrated by W. D. Phillips
in 1982 [44], who used it to slow down an atomic jet of Sodium. Nowadays, it is the first cooling
step of many cold atoms experiments. It is made of a tube, with vacuum in the inner part, where
the atomic vapor propagates, and a coil wrapped around the outer part.

The principle is to shine a resonant beam onto the atomic jet flowing inside the tube, with
a wave vector opposite to the velocity of the cloud, to slow it down by radiative pressure. This
mechanism is based on the absorption by an atom of a photon from the laser mode ~kab, followed
by a spontaneous emission in a random mode ~ksp, so that the momentum exchanged between
the atom and the light is :

∆~p = ~~kab + ~~ksp. (1.2)

By energy conservation, we have ||~kab|| = ||~ksp||, but ~kab is always pointing along the laser,
while ~ksp has a random direction, with an isotropic probability distribution. Hence, 〈~~ksp〉 = ~0,
and the average momentum exchange is :

〈∆~p〉 = 〈~~kab〉+ 〈~~ksp〉 = ~~kab. (1.3)

Since the atom movement is opposed to ~kab, a large number of absorption/spontaneous
emission cycles reduces its velocity. This process is efficient only if the atom remains resonant
with the light while its velocity decays, which is made difficult because of the Doppler shift. The
idea of the Zeeman slower is to compensate the Doppler shift with a Zeeman effect: the coil
around the outer part is wrapped in such a way that the magnetic field applied inside the tube
follows the velocity decay. The light mass of Helium implies the use of a long Zeeman slower
of two meters, at the end of which the velocity of our gas is reduced to 50m.s−1. This is slow
enough to be trapped by the 3D Magneto-Optical Trap (MOT) inside the science chamber.

Magneto-Optical trap In order to reach the quantum degeneracy, cooling the gas is not
enough and confining potentials are also needed to raise the atomic density. The first techniques
demonstrating the possibility to trap neutral atoms emerged in the mid 80s, and were using the
spin [45] or the electric dipole [46] of the atoms to confine them in the local minima of a magnetic
or an optical trap. As we shall see, the MOT, first obtained by S. Chu at Bell’s lab in 1987 [47],
is based on a more subtle effect, allowing the radiative pressure to trap and cool the atoms in
the same time.

A 3D MOT is made of 3 pairs of red-detuned counter-propagating beams, crossing along
the three direction of space, and a magnetic quadruple whose center coincides with the crossing
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Figure 1.6: Scheme of the Magneto Optical Trap principle. (a) Relevant sub-level of the 23S1 →
23P2 transition addressed by counter propagating red-detuned beams with circular polarization.
(b) One dimensional version of the trapping mechanism of the MOT. A magnetic gradient linearly
shifts the hyperfine energy levels, so that an atom moving away from the trap center sees a
resonant light, and is pushed back by radiative pressure. This constitutes a trapping effect, in
addition to the Doppler cooling mechanism.

point of the beams. An atom at the center of the cloud with zero velocity is weakly affected by
the off-resonant light. But if it acquires a velocity and moves away from the center, two things
happen. On the one hand, the Zeeman shift due to the local magnetic gradient brings the atom
on resonance, and the radiative pressure pushes it back, which constitutes a trapping mechanism
(see figure 1.6). On the other hand, the Doppler effect also brings the atom closer to resonance
along the beam whose wave vector is opposed to the velocity, leading to a momentum exchange
with the light, and ultimately, to a decay of the atom velocity along that direction. This is a
rough description of the Doppler cooling mechanism. It is indeed a cooling technique, since the
atoms with a non-zero velocity are more submitted to the radiative force.

In practice, the beams of our MOT are red-detuned by δ = −37 Γ with a total intensity
of 50 Isat, with Isat = 0.16mW.cm−2. The quadrupole is produced by a pair of coils centered
on the x-axis, and working in anti-Helmoltz configuration. The resulting magnetic gradient at
the center of the trap is about 25G.cm−1. A large detuning to load the MOT has two main
advantages : (a) it ensures a large volume of capture, which makes the loading of the trap more
efficient, and (b) it limits the losses due to light-assisted penning collisions, which depend both
on density and detuning [36, 35]. After 1s of loading, the temperature of the cloud is typically
1mK, with 2 × 109 atoms loaded inside. We then compress the cloud to raise the density, by
changing the detuning to −7.5 Γ in 30ms while reducing the power to 0.28 Isat to keep the rate
of light-assisted penning collision low.

Red molasses The magnetic field of the MOT is then switched off, and the detuning is reduced,
so that the Doppler cooling becomes the main mechanism of the light-atom interaction. The
resulting cold vapor is what we call an optical molasses. Red-detuned molasses were historically
obtained before the MOT [48], which can be seen as a trapped molasses. The Doppler theory of
laser cooling predicts a minimum temperature achievable, known as the Doppler limit [8] : for
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Figure 1.7: Scheme of the grey molasses principle. (a) Lambda structure obtained from the
23S1 → 23P1 transition addressed by counter propagating blue-detuned beams with circular
polarization. (b) One dimensional version of the grey molasses cooling mechanism, where a
lattice potential is formed by the contra-propagating beams interference. An atom in the dark
state with a velocity v1 can couple to the bright state, preferentially in the "valley" of the lattice
potential. It then reduces its velocity by "climbing a hill" of potential, before being preferentially
transferred back to the dark state from the "top of the hill". His final velocity v2 is smaller that
v1, so that its coupling to the bright state is reduced.

a small saturation parameter (low laser intensity), and a detuning of δ = Γ/2, one can reach
TD = �Γ/2kB. For 4He*, TD = 38.4μK, a temperature we have experimentally demonstrated
[49]. The downside is that the constraint on the low laser intensity (I � Isat) leads to an
important loss in atom number, which dramatically decreases the density. Hence, we choose
different parameters (0.28 Isat, ramping the detuning from −9 Γ to −1.25 Γ) to obtain a cloud
of 2 × 109 atoms at 80μK in 5ms. The temperature, although not minimal, is low enough to
proceed with sub-Doppler cooling.

Sub-Doppler cooling in grey molasses The first molasses in the 80s were actually much
colder than the temperature expected from the Doppler limit [18, 50]. Those red-detuned mo-
lasses, obtained with alkali-metal atoms, are characterized by a complex multilevel ground state,
giving birth to a new class of mechanism, today known as sub-Doppler cooling [51]. Interestingly,
in red molasses of 4He*, those process are highly inefficient since their capture velocity is below
the recoil velocity [49]. It is however possible to reach sub-Doppler temperatures by working
with the so-called "grey" molasses.

The grey molasses were first investigated in the 90s with Cesium [52, 53, 54], and have recently
came back in fashion, with the good cooling performances obtained with Lithium and Potassium
[55, 56, 57], opening the way to all-optical cooling schemes. It is a sub-Doppler technique based
on a lambda configuration (two ground states |g1〉 and |g2〉, and one excited state |e〉). In such
systems, one can create a quantum superposition of |g1〉 and |g2〉 to obtain a Dark State |DS〉 , i.e.
a state uncoupled to the light, which is loaded inside a blue detuned lattice. The orthogonal state
to |DS〉 is the Bright State |BS〉, which is coupled to the light, so that its energy is modulated
by the lattice intensity because of the dipolar force (see section 1.1.2).
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If the velocity of the atom is zero, then |DS〉 is an Eigen-vector of the Hamiltonian, meaning
that an atom in |DS〉 remains in this state. On the other hand, for an atom with a non-zero
velocity, there is a coupling between |DS〉 and |BS〉, which is maximum in the minima of the
potential, and thus the atom will be more probably transferred to |BS〉 in the "valley" of the
optical lattice. On the opposite, the probability to go back in |DS〉, through a transfer to |e〉,
is higher in the maximum of the potential. The atom then falls back into |DS〉 with a reduced
velocity because it "climbed a hill" of potential (see figure 1.7 (b)). This velocity reduction
makes another coupling to |BS〉 less likely, leading to an accumulation of atoms in |DS〉.

We use circularly polarized beams, together with the 23S1 → 23P1 transition to create the
lambda structure (the 0 → 0 transition being forbidden), like shown in figure 1.7 (a). The
frequency is blue detuned by δ = +10 Γ, and the power is set to 28 Isat. After 5ms, the cloud is
composed of about 1.5 to 2× 109 atoms at ∼ 20µK.

Fluorescence imaging Both the temperature and the atom number are evaluated by analyz-
ing the time of flight profiles of the atomic distribution. Indeed, once released from its trap, the
cloud falls freely and converts its thermal energy into kinetic energy along the direction i via the
relation mv2

i = kBT . To obtain those profiles, we shine a resonant light onto the atoms through
the MOT fibers, and we measure the fluorescence of the sample with an InGaAs camera whose
optical axis is along the z-axis (gravity). The InGaAs is well adapted to detect the 1083nm
infra-red light (80% quantum efficiency), but this technology is limited in terms of pixel matrix
compared to the CCD camera (256×320 pixels of 30µm2 in our case). We estimate the resolution
in the image plane to be 125µm. On figure 1.8 we present a typical set of fluorescence images of
a grey molasses cloud, expanding during the time of flight.

1.1.2 Evaporative cooling and Bose-Einstein condensation

An apparatus aiming at measuring 3D distributions and two-body correlations must have a short
experimental sequence and a good stability over a large number of cycles. Good performances,
both in terms of rapidity and stability, have been demonstrated with 87Rb in a hybrid scheme
combining a magnetic quadrupole trap and a red-detuned optical dipole trap [58]. Magnetic
traps ensure a large capture volume, and they are used in other 4He experiments as the final
trap to reach Bose-Einstein condensation [32, 38, 39, 40]. The lifetime in a quadrupole trap is
severely restricted by Majorana losses occurring at the center, where the magnetic field is zero
[59]. To prevent this effect, one has to use a so called "clover leaf" field, which removes the
local zero of the field, but increases the instability of the trap since this configuration is very
sensitive to small current fluctuations. In that regard, a hybrid approach where Bose-Einstein
condensation is reached in the dipole trap has two main advantages : it does not require a "clover
leaf" structure (better stability) and it benefits from the rapid evaporation offered by optical trap
(shorter cycle).

Magnetic trap

The first step before loading the quadrupole trap is to spin polarize the gas in the mJ = +1 state
with optical pumping. To do so, we generate a magnetic bias along the gravity (z-axis) with
a pair of coils in Helmoltz configuration, in order to define a quantization axis. We then shine
a σ+ beam on the 23S1 → 23P1 transition to pump the atoms in the mJ = +1 state of 23S1.
We apply the magnetic quadrupole, using the same anti-Helmoltz coils than for the MOT stage,
with an initial gradient of ∼ 5 G.cm−1. The energy of the mJ = +1 state follows the magnetic
field variations because of the Zeeman effect, resulting in a trapping potential :
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Figure 1.8: Florescence imaging of expanding grey molasses clouds, at different times of flight.
The atom number can be calculated by measuring the amount of emitted light, and the temper-
ature can be extracted from the evolution of the cloud size during expansion.
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VM (x, y, z) = gµbB

√
x2 +

y2

4
+
z2

4
, (1.4)

with g the Landé factor, µB the Bohr magneton andB the amplitude of the field. The Penning
collision rate in a spin polarized gas is 4 orders of magnitudes lower than for an unpolarized
ensemble [60], so n is not strongly limited by the inelastic collisions anymore. We thus compress
the gas by squeezing the trap, ramping the gradient to 35 G.cm−1, which increases the density
by a factor of 5.

We can further improve the quantity λ3
dBn by performing an evaporative cooling. The idea

is to remove the most energetic atoms from the trap, and let the rest of the cloud thermalize at a
lower temperature. Since the most energetic particles will tend to expand more in trap, they will
experience a higher Zeeman shift between the hyperfine level of the 23S1 state. So, by applying
an RF field, we can couple atoms to the non-trapped sate (mJ = 0) or the anti-trapped state
(mJ = −1) in a way which is selective in energy. The RF signal is generated by the computer,
and amplified through a 70W Prana amplifier before being wired to an antenna that generates
the field. In practice, we ramp the RF frequency between 40MHz and 4MHz in 3s (thermalization
process takes time inside a quadrupole, because the atomic trajectories are very complex). We
typically reach between 50 × 106 and 150 × 106 atoms at ∼ 70µK, depending on the molasses
stage, and the optimization of the RF transfer. 50× 106 is the minimum to obtain a BEC, while
150× 106 is a comfortable number to ensure stability.

Loading of the crossed trap and evaporative cooling

The Optical Dipole Trap (ODT) is composed of 2 far red-detuned beams at 1550nm, generated
by an IPG Photonics fibered laser, and stabilized in intensity through PID circuits. The two
beams are labelled ODT1 and ODT2, the first being recycled after the science chamber to obtain
the second. They are respectively characterized by a waist of 133µm and 63µm, and a maximal
power of 18W for ODT1. They cross in the (x,y) plane, with a 40◦ angle (see figure 1.11), and
their frequencies are shifted by 40MHz in order to avoid light interference effects inside the trap.
The trapping potential effect is created by a coupling between the electric field ~E and the atomic
dipole moment ~D = α~E, where α is the polarizability of the atoms :

VD(x, y, z) = −1

2
〈 ~D ~E 〉 = −1

2
Re(α)I(x, y, z). (1.5)

The potential is therefore proportional to the light intensity, and in the case of a red detuning,
the atoms are attracted by the maxima of I(x, y, z), so they tend to accumulate at the center of
the crossed trap. In this situation, the gaussian shape of the beams generates a potential that
may be approximated by a harmonic trap if the cloud is much smaller than the waist, which is
the case for the BEC.

About 6× 106 atoms are loaded from the quadrupole, by switching on ODT1 and ODT2 at
full power during 500ms, while ramping down the magnetic field. Superimposing the center of
the two traps will not maximize the loading, because of the Majorana losses [59] at the center
of the quadrupole, and slightly offsetting the two centers gives better results [30]. This delicate
setting can hopefully be fine-tuned with magnetic biases along the three directions of space,
able to modify the position of the magnetic zero in a controllable way. The ODT is very narrow
compared to the magnetic trap, and the simple fact of loading it increases the density by 2 orders
of magnitude, while lowering the temperature by a factor of 2.
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Figure 1.9: Example of absorption imaging pictures. Left : thermal cloud trapped in the ODT.
Right : BEC after an expansion of 10ms. The axes are in unit of the camera pixel.

When the ODT is fully loaded, we ramp-down the power of the beams in 400ms to progres-
sively open the trap, allowing the most energetic particles to escape, which constitutes a new
evaporative sequence. We rapidly cross the Bose-Einstein condensation [41], ending up with typi-
cally 5×105 atoms (measured by absorption imaging, see the next paragraph) and a temperature
of the order of the chemical potential (measured by the MCP, see chapter 3). The typical trap-
ping frequencies we obtain at the end of the evaporation are (ωx, ωy, ωz) ∼ 2π × (90, 420, 440)
Hz. A brief theoretical description of the Bose-Einstein condensation phenomenon is done in
chapter 3.

Absorption imaging

The resolution of the fluorescence imaging is too low to properly image the cloud loaded inside
the ODT, or the expanding BEC. Hence, we use a second scheme, based on absorption imaging
[61]. A probe beam with a weak intensity (Isat/5) is partially absorbed by the atoms, and is
imaged onto a second InGaAs camera. The density of the cloud is accessed with the quantity
of absorbed light , while the size and shape of the expanding distribution is obtained with the
cloud’s shadow. Due to geometric constraint, the probe beam is not parallel to any axis on which
we can produce a clean, uniform magnetic field. The polarization of the light (ideally σ+) is thus
not well defined on the atoms, and we reach the optimal imaging condition by switching off all
magnetic bias.

The resolution in the image plane is 12µm, which is not enough to properly resolve the gas in
situ (the Thomas-Fermi radius in the imaging plane is about 15µm) but is sufficient to resolve the
condensate after a short time of flight. The atom number N is calibrated with a measure of the
Thomas-Femi radius after an expansion time t, which in the limits of t� ωodt increases linearly
in time, with a velocity scaling as N1/5 [62]. This calibration is confirmed by a measurement of
the condensation temperature, Tc ∝ N1/3 (see equation 3.5).

Lifetime of the condensate

We monitor the atom number in the condensate as a function of the holding time inside the
crossed trap to measure its lifetime. The pressure in the science chamber being very low (less
than 10−10mBar) and the laser very far-detuned (about 500nm away from the resonance), the
elastic collisions with the background and the photon scattering are not limiting compared to
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Figure 1.10: Atom number in the condensate (measured by absorption imaging) as a function of
the holding time inside the optical dipole trap. The decay is well fitted by a 2-body and 3-body
inelastic collision dynamic. The overall lifetime of the sample inside the trap is of the order of
5s.

2 and 3-body Penning losses. In this case, the time evolution of the atom number inside the
condensate is driven by :

dN

dt
= −k2〈n2〉 − k3〈n3〉 (1.6)

where k2 and k3 are respectively the 2 and 3 body loss rate, and 〈...〉 indicates an average
of the density over the condensate profile, that can be solved analytically for the Thomas-Fermi
regime [63].

Figure 1.10 shows a plot of the atom number in the condensate as a function of the holding
time in the ODT. The curve is well fitted by the numerical solution of equation 1.6. The k2 and
k3 coefficient are free parameters of the fit, and the obtained values k2 = 1.6×10−14 cm3.s−1 and
k3 = 0.7 × 10−27 cm6.s−1 are compatible with those expected for a 1-1 spin polarized mixture,
k2 = 2 × 10−14 cm3.s−1 and k3 � 1 × 10−27cm6.s−1 [37].

1.1.3 The 3D optical lattice

General description

Optical lattices were developed in the early 2000s, and have been intensively used in the cold
atom community since then [10], finding applications in quantum information, or allowing to
investigate condensed-matter problems with a new experimental perspective. An optical lattice
is a periodic dipole trap, created by the interference of counter-propagating beams, which creates
a crystal-like structure for neutral atoms. During the thesis, we have developed and installed a
3D optical lattice in our science chamber, leading to the first lattice gas of metastable Helium
[64]. The potential resulting from the interferences of the three pairs of counter-propagating
beams of wavelength λL can be written :
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Figure 1.11: Scheme of the ODT and 3D lattice beams trajectories around the science chamber.
The ODT is made of two beams, ODT1 and ODT2, which cross with a 40◦angle. The lattice
is made of 3 retro-reflected beams crossing orthogonally along the 3 directions of space. The
interference between one beam and its retro-reflection creates a sinusoidal interference pattern.
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v

))
+ Vext(x, u, v). (1.7)

For technical reasons, the Eigen-axis of the lattice are defined by the basis (x, u, v) which is
obtained by a 45◦ rotation of the (x, y, z) basis around the x-axis (figure 1.11). The quantity
ka = 2π

a is the momentum scale associated to the lattice, and a = λl/2 is the lattice spacing.
Vext(x, u, v) comes from the gaussian profile of the beams, and can be treated as being a 3D
harmonic potential, the atoms being localized at the bottom of the trap. Consequently, the
frequencies of this external potential depend on the beams’ waists and power. Finally, the depth
V0 is proportional to the light intensity. It is a key quantity for the physics we want to investigate,
and has to be calibrated as precisely as possible (see section 4.2.2).

Practical implementation

We use a mono-mode fibered laser from Keopsys operating at λl = 1550nm to generate the lattice
potential. Its maximal output power is supposed to be around 15W (12W in practice, after one
year of use). The main beam is split in 3 sub-beams which are shifted in frequency (70, -80 and
+80MHz) before being brought onto the apparatus through 3 photonic-crystal fibers. The beams
are focused at the center of the science chamber, and they cross orthogonally along the three
directions of space. At the output of the science chamber, each beam is focused on a mirror and
retro-reflected back in such way that the first passage and the reflection are superimposed. The
resulting standing wave creates a sinusoidal intensity pattern with an external confinement, i.e.
an optical lattice. The ultra-narrow linewidth of the laser (around 40kHz) is a crucial asset to
ensure the coherence over the 1m of the full retro-reflexion path. The 3 beams are independently
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stabilized in intensity to ensure a good control on the lattice depth and avoid heating due to
intensity noise.

Two sizes of waist have been used during this thesis : the work described in chapter 4 and
chapter 5 have been conducted with waists of (223, 208, 204)µm (uncertainty 10%). Being limited
in laser power for technical reasons, we later decided to reduce the waists to (141, 151, 155)µm
in order to reach the high lattice depth required to investigate interesting regimes, like Mott
insulators or 1D systems. The loading of the cloud inside the lattice is done with adiabatic
exponential ramps, while the ODT is switched off the same way. An adiabatic transfer will
ensure that the atoms remain in the lowest energy mode of the trap, meaning the fundamental
Bloch band of the lattice.

1.2 The Micro-Channel Plate detector

When transferred in the metastable state, Helium atoms can be detected individually by elec-
tronic methods, which constitute an amazing asset to study particle-particle correlations in a
many-body quantum system. For this reason, the detection chain is one of the most impor-
tant aspect of our experiment. MCP detectors are exotic creatures in a cold atom lab, but are
widely used in many fields of high energy physics (particle accelerator [65], mass spectrometry
[66], atomic physics [67], ...), and military technologies (night vision). When coupled to delay
line anodes, this great tool can reconstruct the 3D distribution of millions of particles per sec-
ond, if the read-out electronics (discriminator and digital convertor) are fast-enough. The main
drawbacks are its low detection efficiency (about 25% for 4He*) and the high resistivity of the
micro-channels preventing a fast reloading of the charges and making the detector very sensitive
to local flux saturation [68, 69, 70].

1.2.1 The plates

General description and characteristics

The plates are metal-coated thin discs, pierced by millions of tubes, generally of 10 to 30 mi-
crometers diameter. When polarized, each of those micro-channels acts as a discharge amplifier,
and when a metastable Helium atom (or a particle with sufficiently high internal energy) falls
into one of them, it can extract a first electron, which in turn can extract secondary electrons
and trigger an electronic cascade. The micro-channels are also tilted of a few degrees, so that it
is impossible for a particle to fall through the plate without touching the wall of one channel.
During this thesis, we have used 3 models of MCP, two from Hamamatsu (that we call MCP
H1 and H2) and one from Burle industries (MCP B), all of them having a diameter of about
8cm. We actually use pairs of MCP, in a z-stack configuration (see figure 1.12) to increase the
gain, which is of the order of 104 per plate. When mounted like this, one has to be very careful
that the orientation of the micro-channels is reversed to ensure the continuity of the electronic
shower.

The characteristics of the different plates we used are summarized in table 2.2. Part of
the observations discussed in chapter 3 have been conducted with MCP H1. The measurement
presented in chapter 4 and 5 were obtained with MCP B. Later, we were interested to test MCP
H2 because of its high open area ratio (ratio between the surface covered by the micro-channels
and the total surface of the plate), which should provide a higher quantum efficiency (see section
1.2.4).
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Figure 1.12: Sketch of the detector. From top to bottom : the pair of MCPs is mounted in Z-stack
configuration, and is held by white ceramic pieces. A metastable atom falling on a micro-channel
will trigger an electronic discharge that excites the 2 orthogonal delay lines braided beneath the
stack. The wires coming from the flange are used both for supplying the different parts of the
detector, and collecting the signal from the lines. We also draw the different connections, as they
appear when looked from beneath the flange.

Table 1.1: MCP comparison

Hamamatsu 1 (H1) Burle (B) Hamamatsu 2 (H2)

micro-channel
diameter (μm) ∼12 ∼25 ∼12

center to center
spacing (μm) < 15 ∼32 < 15

micro-channel
angle (◦) 20 ±1 8 ±1 20 ±1

open area ratio
(%) 70 45 90

gain (@1.2 kV) 8.103 > 104 104

material inconel nichrome inconel
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Polarization

The total stack is typically polarized between -2kV and -2.4kV, with a homemade high voltage
power supply. The difference of potential between the top and the bottom has to be negative, to
accelerate the electrons towards the delay lines. The best option is to ground the top of the stack,
and set the bottom of the stack to a positive voltage. The alternative option, which is to apply a
negative voltage at the top of the stack can damage the MCP. Indeed, the MOT produces a large
quantity of positive ions due to light-assisted Penning collisions, which are strongly attracted by
the -2kV of the top MCP surface, 50cm below, resulting in a high velocity beam of He+ rushing
to the surface of the plate. This effect actually costs us our first pair of MCP (H1) ...

Degassing

Once put under vacuum, the plates tends to degas for a long time, because of particles accu-
mulated inside the micro-channels during the manufacturing process [71]. The standard baking
techniques were not very efficient in our case, since keeping the plates at 100◦C for a few days
was not enough to obtain the extremely low vacuum needed (< 10−10mBar). We found the so
called "burn-in" cleaning to be the most efficient method. It consists in continuously sending a
homogenous flux of particles onto the MCP surface (He∗ or UV photons in our case), while sup-
plying the stack with higher and higher voltages. The repeated discharge of the micro-channel
tends to empty them from their residual impurities.

1.2.2 The delay lines

Beneath the stack, two orthogonal Roentdek delay lines are braided around a holding board (at
potential Vhold), one along the x direction, and the other one along the y direction. Each line is
actually a waveguide, so that an electronic shower coming from the plate hitting the delay lines
generates 4 pulses : 2 counter-propagating pulses along the line x, and 2 counter-propagating
pulses along the line y, like shown in figure 1.13.

The pulses start from the impact point ximp (yimp), then move towards each extremity of the
line, at position −Lx

2 and Lx
2 , (−Ly

2 and Ly
2 ) . If one records the arrival times (tx1 , tx2 , ty1 , ty2)

of the pulses, the position of the impact in the plane is given by :

ximp =
1

2
(tx1 − tx2)vx (1.8)

yimp =
1

2
(ty1 − ty2)vy, (1.9)

where vx/y is the velocity of the pulse along the direction x/y. Note that in order to cover the
full surface, the delay line coding for the x direction is wrapped in loops around the x axis, so
that we have Lx = Ldl/Nloops and vx = vdl/Nloops, where Ldl and vdl respectively stand for the
full length of the line, and the velocity of the pulses inside (the same goes for the y direction).
With the measurement of the arrival times, one can also recover the impact time timp :

timp = tx1 + tx2 −
Lx
vx

= ty1 + ty2 −
Ly
vy
. (1.10)

This last equation, providing that we know the velocity of the atom along gravity vg, gives access
to the vertical dimension z = vg × timp. So by precisely recording the times (tx1 , tx2 , ty1 , ty2), of
the pulses exiting the delay lines, we can reconstruct the 3D distribution of the particles reaching
the plates. We also see the appearance of a new important quantity : Lx

vx
(or Ly

vy
), which is the

time it takes for a pulse to run through the entire delay line x (or y). In the following, we will
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Figure 1.13: The 2 orthogonal delay lines (x and y) are looped around a holding board beneath
the MCP. When the lines are excited by an electronic discharge, 2 pairs of counter propagating
pulses (one for each line) are generated, and run throughout the lines of transverse length Lx

and Ly. Recording the arrival time of the pulses at each extremity of the delay lines gives access
the x and y coordinates of the impact point, as well as the impact time.
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note tdl = Lx
vx

=
Ly
vy
, assuming that the delay lines along x and y are identical. In our case,

tdl ' 100ns.

To be a bit more precise, the waveguide of each line is composed of two wires, separated by
half a millimeter : a reference wire (at potential Vref) and a signal wire (at potential Vsig) The
counter-propagating pulses are defined by a negative difference of potential between ref and sig
(the amplitude strongly depends on the plates’ polarization), and so the way the lines are supplied
does play a role in the efficiency of the detection. We have set the voltages according to Roentdek
recommendations for neutral particles [72] : if we note Vback to potential of the lower face of
second MCP, then Vback ≤ Vhold ≤ Vback + 250V, Vref = Vback + 250V and Vsig = Vback + 300V.
The other characteristics of the lines are also given by Roentdek :

• vx/y = 1× 106m.s−1

• Nloops = 100

• Ldl = 20m

• Lx/y = 10cm

1.2.3 Electronic chain

The electronic chain is made of two parts (plus a pre-amplification stage) : a Constant Fraction
Discriminator (CFD) and a Time to Digital Converter (TDC). The role of the discriminator is
to convert the pulses from the delay line into a NIM signal (logical 0 -1V). The NIM signal has a
sharp raising edge, and is then fed to the Time to Digital Converter in order to be transformed
into an arrival time.

The Constant Fraction Discriminator

The discriminator is the key component of the detection chain, because the amount of precision
at which it pinpoints the arrival time of the pulses will determine the spatial resolution of the
detector. In practice the pulses exiting the lines do not have the same amplitude, because all the
electronic discharges from the MCP do not couple to the line with the same efficiency. The main
difficulty in that case, is to have a discrimination stage which is not sensitive to the amplitude of
the pulses. A simple raising edge discriminator will trigger as soon as the signal cross a certain
threshold, and so the time associated to the pulses will strongly depend on its amplitude : a
high amplitude signal would be detected sooner that a low amplitude signal, even if their arrival
times are identical. A CFD on the other hand, is sensitive to a fixed fraction of the raising pulse,
and therefore corresponds to our needs.

The CFD directly operates at the output of the delay lines. Since there are two lines, each of
them having two extremities, there is a total of 4 outputs to treat (x1, x2, y1, y2), each of them
has its own discriminator than can be set independently. To illustrate the principle, let’s consider
one analog pulse Ain in one of the output. The pulse is pre-amplified with an adjustable gain,
before being fed to the discriminator. It is then split into two identical analog pulses A1 and A2.
A "bimodal pulse" Ab is then generated by the electronic operation

Ab(t) = A1(t)−A2(t− τ)× fc, (1.11)

where fc ∈ [0, 1] is the so-called constant fraction, and τ is a delay. The signal Ab has a
zero-point crossing which is used as a reference time to trigger the NIM signal. Overall, we have
tested two types of CFD, one from Surface-Concept and one from Roentdek. The latter is easier
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Figure 1.14: Sketch of the Time to Digital Converter architecture. The words coming from the
4 channels are stored into "Channel Registers" FIFO buffers, and are loaded into "Acquisition
Registers" by a 16.4MHz multiplexer. The registers are then emptied through the PCI bus.

to program and gives us better results in terms of electronic noise. A detailed description of this
CFD settings can be found in the appendix.

The Time to Digital Converter

We use a FPGA-based TDC developed by R. Sellem and D. Heurteau at the LUMAT (Orsay).
The elementary coding step is t0 = 120ps, and the resolution is measured at 0.52(2)t0 [73]. The
arrival times are encoded into a 32bits word. The 26 first bits are the "small clock", and allow
to continuously code time with step of t0 over a cycle of t0× 226 ' 8ms. The small clock is then
re-set to 0, and the value of the 27th bit is flipped. One has to "keep track" of the value of this
27th bit in order to count the numbers of digit flip Nflip. The total time of the "big clock" is
then :

t = t0 × 226 ×Nflip + small clock. (1.12)

The last 4 bits are used to code the input channel. The TDC can work with up to 16
channels, but we will be using only 4 (x1, x2, y1, y2). After being converted, the words are stored
into FIFO buffers called channel registers before being distributed into two acquisition registers
by a multiplexer working at 16.4MHz, limiting the maximum flux per channel to 16.4 / 4 =
4.1MHz. The acquisition registers are then emptied inside the computer RAM via the PCI bus.
All the registers (channel and acquisition) have a maximum capacity of 509 words. Figure 1.14
is a scheme of the overall architecture.
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1.2.4 Performances of the detector

Quantum efficiency

The quantum efficiency is one of the main draw-back of the MCP when used with He*, especially
when one looks for N-body correlations. It has been measured to be 9% by [74], and 25%± 15%
in [75]. This value is related to the surface coverage of the micro-channels (typically 50%), and
to the probability of exciting an electronic shower.

To evaluate the quantum efficiency of our detector, we compare the atom number of a cloud
detected by absorption, with the atom number of the same cloud detected onto the plate. This
measurement, conceptually rather simple, raises many technical difficulties. First of all, there
are not many suitable clouds on which we can perform the comparison. It has to be cold enough
to fall entirely onto the MCP, characterized by a radius RMCP = 4cm situated 50cm below the
science chamber. For the center of mass of the cloud, this leads to a time of flight of about
ttof = 300ms. So if we note σv the RMS of the cloud’s velocity distribution (assuming spherical
symmetry), we need to have :

σv × ttof < RMCP ⇒ T <
mR2

kBt2tof

. (1.13)

With Helium’s light mass, we obtain T < 8µK. The only clouds cold enough to reach this
condition are the ones we can produce in the ODT during the final evaporation stage. At
this stage, we have only a few million atoms left, so the only way to properly detect them by
absorption imaging is to reach a high optical density, i.e. to Bose-condense the gas. That raises
an other issue : the local saturation of the MCP. Empirically, the condensates are so dense that
they make the plates saturate as soon as there are more than a few hundred atoms inside. On
the other hand, the absorption imaging can not accurately image condensates with less than a
few thousand of atoms. To solve this issue, we use a RF Rabi-oscillation at the beginning of
the expansion to transfer a fraction of the atom from the mJ = +1 state to the non-magnetic
mJ = 0 state, and we remove the remaining mJ = +1 atoms by applying a magnetic gradient.
This procedure allows us to produce a regular BEC of 105 atoms, and send only a controlled
fraction of it onto the MCP. The weakness of this calibration being that it relies on two other
calibrations : the atom number detected by absorption imaging, and the Rabi frequency.

The method to calibrate the absorption imaging was briefly described in section 1.1.2. As
for the Rabi frequency ΩR, we can calibrate it by monitoring the 3-level Rabi oscillation as
a function of the RF duration trf , either with fluorescence imaging or with the MCP. After
separating the populations of the 3 hyperfine states with a magnetic bias, it is possible to
measure those populations by fluorescence, and to monitor their oscillation dynamic. In 1.15,
we see that the oscillations of the mJ = 0 population is not very "clean". This is due to the
high number of Penning collisions inside the cloud [76]. On the other hand, only the evolution
of the mJ = 0 population can be measure with the MCP. To avoid saturation effects, we detune
the RF frequency with respect to the resonance. Figure 1.15 show the calibrations we performed
with those various techniques.

The quantum efficiency we extract for MCP B (which was used for the experiment described
in chapter 4 and 5) is 25(5)%, compatible with the efficiency of [75]. We are also interested
in measuring the efficiency of a new generation of plates from Hamamatsu (MCP H2), whose
micro-channels opening have been engineered in a beveled way, so that the open ratio area is
almost twice bigger than the one of MCP B. We measure a quantum efficiency of ∼ 33%.
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Gain map

The gain is inhomogeneous over the surface of the detector for many reasons : dust on the
plates, local defects, mechanical stress, irregularity in the delay lines, etc. This calls for a
characterization of the gain in the experimental conditions. We produce gain maps by imaging
spatially large cloud distribution to ensure a homogeneous flux onto the plate. We usually image
the atoms out-coupled from the quadrupole trap during the RF stage. Those atoms have a very
large velocity distribution, both because of the high temperature of the cloud and because some
of them aremJ = −1 atoms repelled from the trap in a random direction. The other advantage is
that this distribution produces a rather low count rate onto the plate (< 106 particles.s−1) which
is convenient to avoid local saturation or TDC’s buffer overflow. In figure 1.16, we compare the
gain maps of different MCP pairs. The Hamamatsu H1 gain profile exhibits a hole at the center.
This is the result of our bad initial choice of polarization sign of the plates : -2KV voltage at the
top of the stack. The hundreds of millions of ions generated per second inside the MOT were
therefore accelerated at about 1011m.s−2 toward the MCP, leading to an accelerated aging of
the micro-channels situated right under the MOT. On the other plate, the gain over the surfaces
is rather homogeneous, apart from rapidly varying patterns that we identify as the delay line,
because of its period (0.5mm) and the fact of being identical with all the MCPs we tested. This
structure is smooth enough to be corrected by simply dividing the acquired data by the gain
map, like shown in figure 1.16 (c).

Resolution along the three directions

In-plane resolution As shown in equations 1.8 and 1.9, the in-plane position of the atoms
reaching the detector are calculated with the arrival times of the pulses exciting the delay lines.
Consequently, the elementary coding step t0 of the TDC also defines an in-plane pixel :

x0 =
1

2
t0vx (1.14)

y0 =
1

2
t0vy (1.15)

With the Roentdek values [72], the elementary pixel is x0 = y0 = 60µm, defining a lower
bound for the in-plane resolution σx and σy. Of course, the electronic chain has a certain noise
that will induce dispersion in the measure of the time, and consequently worsen the spatial
resolution. If we assume that all the channels have the same time dispersion σt, and that the
noise is statistically independent between the 4 channels, then following equation 1.8 we have :

σx =
1

2

√
σ2
tx1

+ σ2
tx2
vx =

σt√
2
vx. (1.16)

Hence, within those hypothesis, evaluating σt yields the in-plane resolution. We now define
the quantity D as :

D = tx1 + tx2 − (ty1 + ty2). (1.17)

According to equation 1.10, we should have 〈D〉 = Lx
vx
− Ly

vy
= tdl − tdl = 0 (where 〈.〉 is a

statistical average over many runs). In practice, the length difference between the delay lines and
the dispersion of the pulses during the propagation leads to a non zero value of 〈D〉 everywhere.
However, this value only depends on the delay lines, and can be directly measured since it is
calculated from the arrival times. Similarly to the gain map, we reconstruct the 〈D〉 map, which
has a characteristic hyperboloid distribution (see figure 1.17). The next step is to notice that :
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Figure 1.16: (a) Gain map of the MCP H1. The horizontal and vertical axis are in units of the
coding step x0 and y0 (see text). The damages caused by the ions produced during the MOT
stage is clearly visible at the center (see text). (b) Gain map of MCP B. The gain is rather
homogeneous, with rapidly oscillating structure corresponding to the delay lines. (c) Example
of a cloud detected on the MCP, with and without the correction of the gain map.

Figure 1.17: Maps of the 〈D〉 quantity over the plate. All the axis are in units of the coding step
x0 (horizontal) and y0 (vertical) and t0 (colors). We see the presence of a gradient coming from
a length-difference of between the delay lines.
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3MHz500kHz 3MHz500kHz

Figure 1.18: Map of the local resolution ( σD
2
√

2
) on the MCP B for 2 different flux of particles.

The units are in elementary coding steps : for instance, a value of 1.2 corresponds to a local
resolution of 1.2 pixel x0 (y0). We see that the flux worsen the resolution.

σD =
√
σ2
tx1

+ σ2
tx2

+ σ2
ty1

+ σ2
ty2

= 2σt. (1.18)

Finally, by combining equation 1.16 and 1.18 we obtain :

σx/y =
σD

2
√

2
vx/y (1.19)

So by computing a third kind of map, the σD map, we can evaluate the local in-plane
resolution anywhere in the plate. Figure 1.18 shows the maps of the local in-plane resolution for
the MCP B, obtained with 2 different incoming fluxes of particles. We observe a worsening of
the resolution with the flux.

Finally, we want to validate this method by comparing the resolution extracted with σD to a
direct measurement of the resolution. We have imaged a flux of photons coming from a UV lamp
onto MCP H1. A Cu-Alloy sheet with a honeycomb pattern of about 1mm periodicity has been
mounted just above the plate, in order to evaluate the point spread function of the detector. As
shown in figure 1.19, the extracted value of the resolution is coherent with the variation of σD as
a function of the flux (more details about this experiment can be found in [73]). Note that this
comparison relies on two different definitions of the resolution. The quantity σD is connected to
the precision at which one can reconstruct the in-plane position of a particle, while the resolution
measured with the point spread function is an "optical" resolution, i.e. the ability of the system
to separate two point-like objects. At best, we can say that a measure of σD gives an evaluation
of the in-plane resolution, but does not constitute a direct measurement.

Vertical resolution We can apply the same reasoning and notice that t0 also defines a time
pixel for the vertical axis. To roughly convert it in spatial resolution, we can use the velocity
VCM of the center of mass of the cloud, i.e. the vertical velocity acquired by an atom initially at
rest and falling onto the detector, 50cm below. We have VCM ' 3m.s−1, and so z0 = VCM × t0 is
of the order of half a nanometer. Since the σt width that we evaluate experimentally is a few t0,
the resolution along the vertical axis that we evaluate with this method is orders of magnitude
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Figure 1.19: a) Measurement of the resolution of the detector by imaging UV photons through a
a metallic sheet with a honeycomb pattern. The point-spread function is extracted along the x
axis (b) and an axis at 60◦(c). d) Average value of σD over the plate for the different flux (grey
dots), compared to the resolution obtained with the point-spread function (green diamond).

d

✓A

B

He*

Figure 1.20: The angle of the micro-channel limits the vertical resolution, Atoms A and B are
detected in the same time, even if they are vertically separated by d/tan(θ).
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better than the in-plane resolution. This is of course too good to be true. Figure 1.20 illustrates
how the vertical resolution is limited by a geometrical constraint given by the angle θ of the
micro-channels : the atoms A and B are touching the wall of the micro-channel of diameter d at
the same time, and thus they will be detected simultaneously, even though they are separated
by a distance of :

σz =
d

tan(θ)
. (1.20)

Equation 1.20 sets a limit to the best vertical resolution one can theoretically access. From
the value of table 2.2, we deduce a vertical resolution of 177µm for MCP B, and 32µm for MCP
H1 and H2, equivalent to the in-plane resolution. This being said, to our knowledge there exists
no experimental work which has formally demonstrated this limitation, because of the difficulty
to produce a very narrow temporal signal with a source of massive particles. In our case, the
narrowest structure that we can create (the diffraction peaks described in chapter 4 and 5) are
of the order of the mm scale in the MCP plane, and do not permit to see a clear difference of
resolution between the z axis and the x/y axis. All we can say is that we resolve well those
narrow structures along the 3 directions of space. On the other hand, the measurements of
second-order correlation functions suggest that the vertical resolution is actually better than this
theoretical limit based on the channel angle (see section 2.3.2). Note that there exist a test
of the temporal resolution conducted with a UV mode-locked picosecond laser [77]. However,
the extreme velocity of the photons compared to the atoms does not permit to conclude how
the resolution is impacted by a finite penetration of the particle inside the micro-channels. For
instance, the 177µm penetration depth of MCP B corresponds to a sub-picosecond time for
particles traveling at the speed of light, which is below any TDC resolution.

Different saturation regime

There are 3 main saturation effects that can occur with the detector. A first one is the local
saturation of the MCP, linked to the reloading time of the micro-channels. It is a physical
constraint that can vary from one MCP to the other. The second type of saturation is a global
effect and comes from the electronics. Indeed, the multiplexor of the TDC works at 4.1MHz for
the 4 channels, which defines an upper bound of the total flux of particles that our detection
chain can handle. Finally, there is a "software saturation" of the algorithm that reconstructs the
3D position of the atoms from the list of arrival times. As detailed in section 2.1, the algorithm
has a limited capacity to temporally distinguish the signals coming from different atoms. In this
chapter, we only describe the two types of "hardware saturation".

Local saturation of the plate The local saturation of the MCP is a well-known, yet not
completely understood phenomenon linked to the charge reloading after a detection event [68,
69, 70]. The very narrow pore of the micro-channel leads to a slow reloading time, and saturation
effects can appear at count rates of the order of a few channel−1.s−1 [68]. Furthermore, the
electronic discharge generated by a detection event creates a very localized variation of the
electric field, which tends to affect the reloading of the neighboring sites as well [70]. The overall
impact of the saturation thus strongly depends on the type of MCP, its polarization, or the size of
the area submitted to particle flux, and need to be estimated experimentally. With this in mind,
we have imaged a series of condensates onto the plates, with more and more atoms transferred
in the mJ = 0 state (the only one detected, the atoms in mJ = +/ − 1 being repelled by a
magnetic kick), and we investigate the difference between the measured flux and the expected
one. The results, summed up in figure 1.21, show a deviation from the linear regime around a
flux of 2× 105atoms.cm−2.s−1, and a saturation flux of 4× 105atoms.cm−2.s−1. Those numbers
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Figure 1.21: Study of the MCP saturation. Condensed clouds are sent onto the detector with
different fluxes. The flux is regulated by the duration and the amplitude of the RF pulse (τRF),
which transfers the atoms in the detectable state mJ = 0. (a) 1D density profiles of the BEC
obtained with narrow cut along the z-axis. The profiles are normalized by the total number of
atoms detected onto the plate Ndet. We clearly see that the saturation tends to distort the profiles
which becomes asymmetric at high flux (purple profile). (b) Ratio between the measured flux and
the expected flux on various points of the density profiles.The expected flux is an extrapolation,
based on the RF transfer parameters, of the low flux data. We clearly see a deviation from the
linear response around of flux of ∼ 2× 105atoms.cm−2.s−1.

are of the same order than other measurements previously reported with metastable Helium (see
for instance [78]). We notice that, in addition to a decay of the overall number of detected
atoms, the saturation tends to deform the distribution with a characteristic asymmetry. This
deformation appears for fluxes slightly above the linear response limit, and therefore constitutes
an excellent way to identify the local saturation "by eye".

Global saturation of the TDC To estimate the impact of the TDC’s multiplexer limita-
tion, we have imaged very broad distributions of particles (in this case, UV photons), homo-
geneously distributed onto the plates, in order to get rid of any effect of local saturation. We
then measured the reconstruction efficiency η for different fluxes of photons. η is defined as
the ratio between the number of reconstructed particles, corresponding to the identification of a
quadruplet (tx1 , tx2 , ty1 , ty2), and the average number of electronic pulses detected in the channels
(x1, x2, y1, y2). A reconstruction efficiency close to 1 is both a sign of low noise in the channels
(the electronic pulses detected are coming from real particle event, and not from electronic noise)
and a sign that the electronics are not missing any pulse (if a pulse is missed from one of the
channel (x1, x2, y1, y2), the other 3 pulses will not lead to any reconstruction, and η will de-
crease). A good setting of the CFD thresholds is crucial to avoid missing pulse and to reach
a low level of noise. In figure 1.22, we have plotted η as a function of the incoming particle
flux, characterized by a high number of counts per channel. We observe a clear decay of the
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Figure 1.22: Reconstructed particles as a function of the counts rate. The reconstruction effi-
ciency η decreases when the flux becomes of the order of a few MHz.

reconstruction efficiency as we approach the operation rate of the multiplexer. In this regime,
the TDC misses some channel counts due to the limited size of the channel registers and the
finite speed as which the multiplexer empties them.



Chapter 2

Reconstruction and correlations of
individual particles in three dimensions

Over the past decade, new observation methods have emerged to probe individual degrees of
freedom in quantum systems. The most famous of this new observation techniques is probably
the quantum gas microscope [12], allowing single-site and single-particle optical probing in lattice
systems. Measuring the position [79], the spin [80], or the phase [81] of individual particles leads
to a deeper understanding of the wave function, with the calculation of correlation functions. In
that regard, the second-order correlation function g(2) (2-body or or 2-point intensity correlations)
is a key quantity allowing to probe fundamental properties of the system, like the nature of the
ground state [80, 82], the coherence properties [83, 84], the presence of pairing mechanisms [26],
the hidden periodicity [85] or even the quantum statistics [86]. Our single-atom detection process
enables the possibility to characterize strongly correlated quantum states through its correlation
functions in momentum space.

We have presented the MCP detector and described its performances in terms of resolution
and acquisition rate. The first section of the present chapter focuses on the "software" part
of the detection process, by describing the algorithm used to reconstruct the 3D coordinates
of the detected atoms from the raw data. The second section describes the calculation and
normalization method for the second-order correlation functions. The most basic example of
second-order correlations present in bosonic systems is the local density correlations, the so-
called "bunching". In the third section, we investigate the bosonic bunching of various systems
in order to test the algorithm.

2.1 Reconstruction algorithm

2.1.1 Identification of time quadruplets and calculation of 3D coordinates

As explained in 1.2.1, an atom detected by the MCP produces a quadruplet of pulses, and
the arrival times of those pulses at the extremity of the delay-lines (tx1 , tx2 , ty1 , ty2) contains
all the information about the 2D position (x, y) and impact time t of the particle via equation
1.8, 1.9 and 1.10. So in order to reconstruct the list of all the atom’s position and impact
time L = {xa, ya, ta}a (where a is the index of the atom) one needs to identify first the list of
quadruplets L4 = {tax1 , tax2 , tay1 , tay2}a. The list of 32 bits words that we obtain at the output of
the TDC actually corresponds to 4 lists {tix1}i, {t

j
x2}j , {tky1}k, {tly2}l, and the main goal of the

reconstruction algorithm is to deduce L4 out of those 4 lists. To do so, we are helped by two
properties of the quadruplets :

41
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Property 1 Let Q be a quadruplet of arrival times. If Q ∈ L4, then ∀(t1, t2) ∈ Q we have :

|t1 − t2| ≤ max
(
Lx
vx
,
Ly
vy

)
= tdl, (2.1)

Property 1 expresses the fact that the pulses generated by a same detection event will all
arrive at the end of the delay-line within a certain time window, by definition equal to tdl.

Property 2 Let Q = (tx1 , tx2 , ty1 , ty2) be a quadruplet of arrival times. If Q ∈ L4, then, accord-
ing to equation 1.17 we have :

DQ = tx1 + tx2 − (ty1 + ty2) ' 〈D(x, y)〉, (2.2)

where 〈D(x, y)〉 is the average value of the D quantity at position (x, y) =
(
vx
2 (tx1 − tx2),

vy
2 (ty1 − ty2)

)
We have developed an algorithm based on those 2 properties, illustrated by figure 2.1. It

takes as an input the 4 lists of the TDC {tix1}i, {t
j
x2}j , {tky1}k, {tly2}l and outputs the list L of

impact times and in-plane positions. The algorithm follows a procedure that we can summarize
as follow :

• For each time tix1 , we try to find the corresponding tix2 , t
i
y1 and tiy2 . We start by making a

list LiQ of all the possible quadruplet {tix1 , t
j
x2 , t

k
y1 , t

l
y2}j,k,l which are inside a time window

tdl (property 1).

• If there is more than one quadruplet in the list LiQ, we chose the one whose DQ quantity
minimize |DQ − 〈D(x, y)〉| (property 2).

• We then calculate the quantities xi, yi and ti from the quadruplet using equations 1.8, 1.9
and 1.10, and add (xi, yi, ti) to the list L.

• Finally we remove the quadruplet from the 4 lists of the TDC {tix1}i, {t
j
x2}j , {tky1}k, {tly2}l.

We are interested in the calculation of the distribution of {~k}, where ~~k = m~v, is the
momentum. The 3D coordinates of an atom velocity (vx, vy, vz) can be deduced from the set
(x, y, t), providing that we know the coordinates of the origin, i.e. the in-plane position and
impact time of an atom with ~v = ~0. In our experiment, the symmetries of the different traps are
such that it coincides with the center of mass of the cloud, meaning that ~vcm = ~0. In practice,
it is not always easy to estimate this center of mass from a single experimental cycle, because of
the local saturation of the MCP at high flux, or the small number of atoms at low flux. Once
we have determined (xcm, ycm, tcm), we can retrieve all the 3D velocities with :

vx =
1

t
(x− xcm) (2.3)

vy =
1

t
(y − ycm) (2.4)

vz =
g

2t
(t2 − t2cm) (2.5)
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x1

x2

y1

y2

tdl

Figure 2.1: Sketch of the 4 lists of arrival times given by the TDC. Each color corresponds
to an atom. The goal of the algorithm is precisely to realize this coloring, i.e. to identify the
quadruplets corresponding to an atom. To do so, we start from the first arrival time of the x1 list,
and identify all the possible quadruplets contained within a time window tdl. In this example,
there are 2 possibilities : (blue, blue, blue, blue) and (bleu, blue, green, blue). To identify the
good one, we compare their D quantities (see text).

2.1.2 Performances and storage

Complexity

In terms of computational complexity, the algorithm executes a number of elementary operations
whose upper bound scales as Nx1×nx2×ny1×ny2 , where Nx1 is the number of counts in channel
x1, and n... is the average number of counts per unit of tdl detected on the other channels. For a
fixed acquisition time, if we assume well balanced channels (CFD’s thresholds correctly set) and
high reconstruction efficiency (no saturation of the TDC), the complexity is bounded above by
N4 , where N is the number of detected particles.

The algorithm is coded in C++ with the ROOT framework. ROOT is a computational
environment developed at CERN, and provides a broad set of functionality to handle, display
and store massive dataset. It is well adapted to our experiment, since a typical dataset is
composed of several hundred experimental runs, each one corresponding to the detection of a
cloud with up to several thousands atoms. The machine-oriented, low complexity architecture
of C++, coupled to the good performance of our calculation computer provides an appreciable
rapidity of execution. To give an idea, it takes about 1.2s to reconstruct 250ms of acquisition
with a flux of 3× 105 atoms.s−1.

Software saturation

The 2 properties used to identify the quadruplet are not error-proof. Some wrong quadruplet
identifications can occur when the flux becomes high enough, in particular when too many
quadruplets satisfy the property 1. We thus have a "software saturation", which is easily identi-
fiable because of a characteristic "cross" pattern (see figure 2.2). To understand this distribution,
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Figure 2.2: Time-integrated distribution of a BEC falling onto the MCP, obtained by averaging ∼
500 experimental realizations. A 45◦cross in the low density region corresponding to a "software
saturation" is clearly visible.

we can follow a simple reasoning.

Let’s consider one pixel of the MCP at the position X and Y , and two atoms falling on that
pixel at time tA and tB. In that case, the four channels give us 8 times : tAx1, t

A
x2, t

A
y1, t

A
y2, t

B
x1, t

B
x2, t

B
y1, t

B
y2,

and 6 possibles ways to combine them:

• (tAx1, t
A
x2, t

A
y1, t

A
y2) and (tBx1, t

B
x2, t

B
y1, t

B
y2) the ’good’ combination that reconstruct correctly the

atoms’ position.

• (tAx1, t
A
x2, t

B
y1, t

A
y2) and (tBx1, t

B
x2, t

A
y1, t

B
y2)

• (tAx1, t
A
x2, t

A
y1, t

B
y2) and (tBx1, t

B
x2, t

B
y1, t

A
y2)

• (tBx1, t
A
x2, t

A
y1, t

A
y2) and (tAx1, t

B
x2, t

B
y1, t

B
y2)

• (tAx1, t
B
x2, t

A
y1, t

A
y2) and (tBx1, t

A
x2, t

B
y1, t

B
y2)

• (tAx1, t
B
x2, t

B
y1, t

A
y2) and (tBx1, t

A
x2, t

A
y1, t

B
y2)

• (tAx1, t
B
x2, t

A
y1, t

B
y2) and (tBx1, t

A
x2, t

B
y1, t

A
y2)

Now let’s assume we have a high particle rate, so that tA − tB is so small that all those
combinations verify the first condition of the algorithm : tx1 − tx2 ≤ tdl AND ty1 − ty2 ≤ tdl.
The only thing that can discriminate the good quadruplets from the bad ones is the 2nd condition
of the algorithm : the good quadruplet is the one that minimize the D value (tx1 +tx2−ty1−ty2).
The problem is that if we assume the MCP to be ideal (D = 0 for every "good" quadruplet) we
find that the first combination (the good one) leads to D = 0 as expected, but also the two last
ones. For example the last combination gives :
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D1 = tAx1 +tBx2−tAy1−tBy2 = (tA+ Ldl
vdl

+ X
vx)+(tB+ Ldl

vdl
− X
vx)−(tA+ Ldl

vdl
+ Y
vx)−(tB+ Ldl

vdl
− Y
vx) =

tA + tB − tA − tB = 0

and

D2 = tBx1 + tAx2 − tBy1 −Ay2 = tB + tA − tB − tA = 0

So with an ideal MCP, the reconstruction of the position of those two atoms, falling almost
simultaneously on the same pixel will be given by one of those 3 combinations (the 1st one and
the two last ones) with equiprobability. In other words, the good position has 1/3 chance to be
"chosen". Now if we calculate the positions obtained by those 2 wrong combinations, we find :

• X1 =
tAx1−tBx2

2 = X + tA−tB
2vx

Y 1 =
tBy1−tAy2

2 = Y + tB−tA
2vx

T1 = tA+tB

2

and

X2 =
tBx1−tAx2

2 = X + tB−tA
2vx

Y 2 =
tAy1−tBy2

2 = Y + tA−tB
2vx

T2 = tA+tB

2

• X1 =
tAx1−tBx2

2 = X + tA−tB
2vx

Y 1 =
tAy1−tBy2

2 = Y + tA−tB
2vx

T1 = tA+tB

2

and

X2 =
tBx1−tAx2

2 = X + tB−tA
2vx

Y 2 =
tBy1−tAy2

2 = Y + tB−tA
2vx

T2 = tA+tB

2

So the "wrong" reconstruction will populate a 45 degree cross centered on the (X,Y) pixel,
even with an ideal MCP. This effect starts to be visible when the probability of having more
than two atoms falling nearby within a time window tdl is not negligible, which typically happens
when condensates of a few hundreds atoms hit the plate.

Storage

For each experimental run, the list of velocities can be stored, as well as other details (the lists
L and L4, the distribution of D, ...) in ROOT file format, which is very handy to manipulate
directly with ROOT. To give an idea, a TDC file which contains the list of all the 32 bits words of
an experimental run of 105 atoms is 2 Mb of size. The corresponding ROOT file, storing the full
reconstruction ( L, L4, histograms of the 2D in-plane distribution, of the average D distribution,
... ) is 9Mb of size. As a comparison, exporting the sole list L in standard .txt format generates
a file of 9Mb as well.

2.2 Calculation of two-body correlations

2.2.1 The integrated g(2)

We want to compute the 6D-normalized second order correlation function :

g(2)(~k, ~k′) =
〈n(~k)n(~k′)〉
〈n(~k)〉〈n(~k′)〉

, (2.6)

and more precisely, the diagonal g(2)(~k,~k) (bunching) and anti-diagonal g(2)(~k,−~k) (pairing). In
order to increase the signal-to-noise ratio and to plot this 6D quantity in an intelligible way, we
need to "compact" the informations. A first step is to consider the quantities integrated over all
the ~k :
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g
(2)
± ( ~δk) =

∫
~k
〈n(~k)n(±~k + ~δk)〉d~k∫

~k
〈n(~k)〉〈n(±~k + ~δk)〉d~k

. (2.7)

Where g(2)
+ and g

(2)
− are 3D-functions. Before performing further integration, let’s stress

the fact that the different spatial axis are not equivalent in general. For instance, our ODT
is anisotropic (see 1.1.2), and so the trapped cloud does not have the same size along the 3
directions of space. Consequently, the variations of the k-correlations will not have the same size
along kx, ky and kz. The other system described in this manuscript, the 3D lattice, does not
even have a spherical symmetry. To put it in a nutshell, we need to integrate the g(2) function,
in a way that does not mix the informations between independent spatial axes. We choose to use
a similar method than [83], and calculate a set of 6 1D-functions {g(2)

± (δki)}i=x,y,z, where each
function g(2)

± (δki) is plotted along the i-axis, and is doubly integrated, firstly over the transverse
plane ∆k⊥ (orthogonal to i) and then over all the ~k. So we have :

g
(2)
± (δki) =

∫
~k

∫
∆k⊥
〈n(~k)n(±~k + k⊥ + δki)〉d~k dk⊥∫

~k

∫
∆k⊥
〈n(~k)〉〈n(±~k + k⊥+ δki)〉d~k dk⊥

. (2.8)

2.2.2 Description of the algorithm

The g(2)
± are based on expecting values 〈.〉 of observables, and are thus defined for a sufficiently

high amount of experimental run. One run corresponds to the production of the gas of interest,
and its detection with the MCP. It provides a distribution of 3D k-coordinates that we note Dr

for the rth run. We start by describing how to compute the numerator of the g(2)
± functions, and

discuss the normalization procedure (the denominator) in a second time.

The numerator

Let’s focus on the numerator of g(2)
+ along z (the other functions work the same way). The idea

of the algorithm is to fill a histogram Hr for each distribution Dr. Hr(δkz) is an average of all
the histograms Ha(δkz), where a is the index of the atoms in Dr. Ha(δkz) is the number of
atoms inside a tube of section 2∆k⊥ centered onto a, and whose kz coordinate is separated from
a by δkz (see figure 2.3).

Here is a pseudo-code version of the algorithm running on each distribution Dr :

Begin
for each atom a in Dr :

for each atom b 6= a in Dr :
if |xa − xb| ≤ ∆k⊥ and |ya − yb| ≤ ∆k⊥ :

δkz = |kza − kzb |
Ha(δkz) = Ha(δkz) + 1

Hr =
∑
aHa
Nr

(average over all the atoms, Nr being the number of atoms in Dr)
End

By definition, the average of Hr over all the distributions is equal to the numerator of g(2)
+

along z, since :
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2Δk⊥

N
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k⊥

kz

δkz

δkz1

δkz2

δkz3

Ha(δkz)

a

Figure 2.3: To calculate the g
(2)
+ function along z, we make an average over all the atoms a of

the histogram Ha. Ha(δkz) is the number of atoms inside a tube of section 2Δk⊥ centered onto
a, and whose kz coordinate is separated from a by δkz. In this example, there are 3 atoms that
contribute to the histogram Ha, at positions 1, 2 and 3.

〈Hr(δkz)〉r = 〈
∫
�k

∫
Δk⊥

n(�k)n(�k+k⊥+δkz) d�k dk⊥〉r =

∫
�k

∫
Δk⊥

〈n(�k)n(�k+k⊥+δkz)〉r d�k dk⊥ . (2.9)

Normalization : the sum method

To calculate the denominator, we need to integrate the quantity 〈n(�k)〉〈n(�k + δkz)〉 over all �k.
Since it is very time and memory consuming to store n(�k) for each cloud, we do not compute
the denominator directly, and use a "sum method". It consists in creating a distribution Dav =∑

r∈R Dr/NR = 〈Dr〉r∈R which is an average over a subset R of NR experimental clouds. If R is
a representative sample (meaning if NR is large enough), then the momentum distribution nav(�k)
given by Dav is close to the statistical average 〈n(�k)〉. In particular, all correlations between the
atoms have been washed away. So by applying the algorithm of the previous paragraph to the
distribution Dav, the histogram Hav at the output will be equal to the denominator of g(2)+ , since
:

Hav(δkz) =

∫
�k

∫
Δk⊥

nav(�k)nav(�k + k⊥ + δki) d�k dk⊥ =

∫
�k

∫
Δk⊥

〈n(�k)〉〈n(�k + k⊥ + δki)〉 d�k dk⊥ .

(2.10)
Figure 2.4 shows an example of the normalization procedure applied to a thermal lattice gas.

Results and Performances

The advantage of this method is to perform the statistical average over a quantity which is
already integrated, thus it is very weakly consuming in terms of computer RAM. The algorithm
stores only the Hr quantity, which are 1D histograms. Storing the value of n(�k) for all �k would
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Figure 2.4: Example of a g(2)
+ (δk) calculation obtained with a thermal gas of 40 × 103 atoms

released from the optical lattice. The dataset corresponds to ∼ 3000 experimental realizations,
with ∼ 2500 detected particles per shot (the detection includes : (1) the RF transfer to the
detectable state, (2) the quantum efficiency of the MCP and (3) the reconstruction efficiency
of the algorithm). The numerator (left) is the average over all the detected atoms and over all
the dataset of Hr(δk), calculated along the gravity axis with a transverse integration of ∆k⊥ =
12 × 10−3 ka (in unit of the lattice momentum scale). The denominator (center) corresponds
to an histogram Hr(δk) averaged over all the atoms of a single ensemble, composed of the sum
of ∼ 300 experimental realizations. The result of the division of those two distributions is the
g

(2)
+ (δk) function (right), and show a correlation peak at δk = 0, and δk = ka, coming from the
periodic structure of the lattice (see section 2.3.2).
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raise the need in memory resources to the power of 3 ( for the 3 directions of space). Looping
over all the atoms, rather than over all the ~k-modes is also very time saving because for our
very dilute gas, most of the ~k-modes are empty. If we note N the number of experimental run,
and Nr, the average number of atoms per run, the computational complexity of the numerator
calculation scales as N × N2

r since we perform a double loop over the atoms. For the same
reason, the denominator calculation complexity scales as N2

av = N2
R × N2

r . For the subset R
to be representative, we usually take NR = N/10, so that the total complexity of the g(2)

±
calculations scales as N 2 ×N2

r . The main limitation of this method is its sensitivity to shot to
shot fluctuation of the cloud. Indeed, only a few percent of variation in the size of the cloud (due
to temperature or atom number fluctuations for instance) is enough to distort the normalized
function. To be a bit more quantitative, we have run the algorithm on simulated dataset: an
uncorrelated, random distribution of atomic positions. The g(2)

± functions of such a distribution
should be completely flat and equal to 1 for all δki. The simulation can include controlled shot-
to-shot fluctuation of the cloud size, and the impact of this fluctuation is shown in figure 2.5.
We see that only 10% fluctuation of the cloud’s size is enough to produce a visible quadratic
background.
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Figure 2.5: Calculation of g(2)
+ (δk) on a simulated datasets. The simulation is made of 100

realizations of a gaussian distribution of 500 uncorrelated atoms (flat g(2)) and of width kRMS =
6µm−1. On the left panel, the width of the distribution is fixed, and only the position of the
particles is random. On the right panel, the width of the cloud has a random shot to shot
fluctuation, of 0.6µm−1 on average. We see that this 10% fluctuation is enough to create a
visible curvature on the uncorrelated, supposedly flat g(2) signal.

2.3 Example of a g(2) measurement : the bosonic bunching

Bunching arises in all bosonic systems, as soon as there are fluctuations in the populations of the
modes. It results from multi-particles interferences coupled to the intrinsic bosonic constraint
of symmetrization under particle exchange. It can be described as the tendency of bosons to
occupy the same quantum state, meaning that the joint probability of measuring two bosons in
the same mode is higher than the product of the individual probabilities. Therefore, a bunching
behavior can not be demonstrated by measuring only the average population of a quantum state,
one need also to access its second-order fluctuations.
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Figure 2.6: Illustration of the HBT effect with classical light : a fully incoherent monochromatic
source S of size s produces intensity correlation patterns of size lc ∝ s−1 on an observation plane
P situated at a distant L, far away from S.

The Hanbury-Brown and Twiss (HBT) effect is one of the most famous manifestation of
bosonic bunching. Originally conducted for astronomical purposes in 1956 [87, 88], the HBT
experiment raised the debate about the interpretation of the bunching for photons, and it took
some time to construct a convincing explanation in terms of quantum particle interference [89].
Since then, HBT-like measurements have been performed on a variety of systems, including
atomic ensembles [83, 90, 84]. In this section, we test the algorithm by measuring second-order
functions in momentum space for different configurations of trapped clouds. To fix the idea, let
us start by a brief description of the HBT effect with classical light.

2.3.1 The Hanbury-Brown and Twiss effect

Generalities

The HBT experiment with classical light is based on the Electromagnetism effect described by
the Van Cittert-Zernike theorem [91] : the intensity fluctuations of a radiation emitted by a
spatially incoherent source situated far away from the observation plane, are correlated over a
distance (or a time) inversely proportional to the size of the source. This is, for instance, the
origin of the speckle diffraction pattern, easily observable when a laser is transmitted or reflected
by a granular medium.

Let us consider an observation plane P illuminated by a spatially incoherent source S, at a
distance L from P (figure 2.6). To simplify the discussion, we assume S to be monochromatic,
of wavelength λ. The amplitude A of the field at a point �r of the plane P is a function of the
amplitudes a of all the source points �u, and within the Fraunhofer approximation (L � λ, |�r|, |�u|),
it can be written :

A(�r) ∝
∫
S
a(�u)e

iπ
λL
|�r−�u|2 d�u (2.11)
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We define the second order correlation function in amplitude between A1 and A2 at position
~r1 and ~r2 of P as :

G(2)(~r1, ~r2) = 〈A∗1A1A2A
∗
2〉 (2.12)

S is spatially incoherent, meaning that the amplitude a(~u) has a random initial phase, uni-
formly distributed between 0 and 2π. If the probability distribution of this phase is sufficiently
broad and homogeneous (meaning that many modes of the field are populated, which is the case
for a thermal light) the probability distribution of A(~r) is a gaussian, as a consequence of the
central limit theorem [91]. In this case, equation 2.12 can be re-written :

G(2)(~r1, ~r2) = 〈I1〉 〈I2〉+ 〈A∗1A2〉 〈A∗2A1〉 , (2.13)

where I1 = A∗1A1. The cross terms correspond to G(1)(~r1, ~r2), the first order correlation
function of the spatial amplitude in P . From equation 2.11 we have :

G(1)(~r1, ~r2) = 〈A∗1A2〉 ∝
∫ ∫

S
〈a∗(~u)a(~v)〉 e− iπ

λL
(|~r1−~u|2−|~r2−~v|2) d~u d~v , (2.14)

which involves the first order correlation function of the source’s spatial amplitude 〈a∗(~u)a(~v)〉.
If we suppose that S is perfectly incoherent, we can write 〈a∗(~u)a(~v)〉 = I(~u)δ(~u− ~v), and so :

G(1)(~r1, ~r2) ∝
∫ ∫

S
I(~u)e−

2iπ
λL

(~r1−~r2)~u d~u d~v . (2.15)

Hence, G(1)(~r1, ~r2) is given by the Fourier-transform of the intensity distribution of the source.
Consequently, for a homogeneous intensity distribution, G(1)(~r1, ~r2) decays on a "correlation"
length scale of lc = |~r1 − ~r2| ∼ λL/2πs, where s is the size of S. Finally, we can write the
normalized second order correlation function :

g(2)(~r1, ~r2) =
〈I1I2〉
〈I1〉 〈I2〉

= 1 +
|G(1)(~r1, ~r2)|2
〈I1〉 〈I2〉

= 1 + |g(1)(~r1, ~r2)|2. (2.16)

g(2)(~r1, ~r2) is equal to 2 when ~r1 ' ~r2, and to 1 when |~r1 − ~r2| > λL/s

In their famous experiment [88], Hanbury-Brown and Twiss used two telescopes to measure
the two-point intensity correlation of the light emitted by Sirius, and extracted the apparent
angular size of of the star (6.8ms of arc) with a precision of 10%.

Bunching with cold atoms

Bunching effect is not limited to photons, and can be found in other systems, like a thermal gas
of bosonic atoms. The first experiment demonstrating the presence of bunching with neutral
atoms was conducted by M. Yasuda and F. Shimizu ([92]), using a beam of metastable 20Ne
atoms extracted from a magnetic trap, and detected by a golden mirror.

In 2005, different groups performed HBT-like experiments with various cold atom systems.
Öttl et al. [93] observed a flat g(2) signal with an atom laser, as it is expected for a coherent
source [89, 94]. The atoms were extracted from a BEC contained in a magnetic trap (using an
RF radiation transferring the atoms to an untapped state) and detected through a high-finesse
cavity using light. The authors demonstrated that adding noise to the RF field induces mode-
fluctuations in the atomic beam, "destroying" the coherence and leading to the emergence of
bunching. Schellekens et al. [83] also compared the correlations of a coherent and non-coherent
gas, by measuring the g(2) function of a BEC and a thermal cloud of metastable Helium. It was
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the first experiment to use MCP to measure second order correlations in a cold-atom gas, and
their results are compatible with the ideal (non-interacting) case (see 2.3.2). Finally, Fölling et
al. [85] measured bunching with a third type of system : a Mott insulator, which is an incoherent
lattice gas. Contrary to the two previously cited experiments using atom-counting techniques,
Fölling et al. measured the density correlation of an expanding cloud distribution with absorption
imaging. The limited resolution of this technique usually does not allow to observe bunching,
because the local correlation signal is hidden by the autocorrelation of the cloud when the
resolution is bigger than the correlation length. However, in the lattice, the spatial symmetry
induces a periodicity in the bunching signal, enabling the possibility to observe "higher-order"
bunching peaks outside of the autocorrelation peak.

More recently, Perrin et al. [84] have measured HBT correlations across the Bose-Einstein
transition, using a light-sheet to probe density slices of an the expanding 87Rb cloud at the single-
atom level. They observed a rapid decay of the bosonic bunching below the critical temperature
Tc. A similar study of the g(2) variations across the transition is presented at the end of this
manuscript.

2.3.2 Measurement of bosonic bunching with our setup

The measured quantity

In our setup, the observation plane is the MCP detector, and we use the momentum coordinate
system : ~k = m~v/~, where ~v is the velocity of the atoms obtained from equations 2.3, 2.4 and
2.5. With those notations, the bosonic bunching leads to a peak centered on g(2)(δk = 0). In
first approximation, we can model this peak by a gaussian :

g(2)(δ~k) = 1 +
∏

i=x,y,z

exp

(−δk2
i

l2ci

)
, (2.17)

with lci , the second-order momentum correlation length along direction i. For a non-interacting
thermal gas of temperature T , released from an harmonic trap of frequency ωx,y,z, the value of lci
can be linked to the in-trap coherence length l(t)i (first-order spatial correlation length) through
the relation [94] :

lci =
mωi
~
l
(t)
i . (2.18)

The value of the coherence length can also be calculated : l(t)i = ~/
√
mkBT = λdB/

√
2π, and

since the RMS size of the trapped cloud is si =
√
kB/mω2

i , we have :

lci = 1/si. (2.19)

which is analogous to the "bosonic" HBT effect : the second-order correlation length after
expansion is proportional to the inverse of the source size.

Effect of the finite resolution and integration

If we now take into account the finite resolution of the detector along the 3 axis (σx, σy, σz), the
"effective" correlation width that we measure is :

wi =
√
l2ci + (2σi)2. (2.20)
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The factor of 2 in front of the resolution comes from the fact that : (a) σi is defined as a
RMS, while lci is defined as a 1/e width (factor

√
2) and (b) σi is the 1-particle resolution, while

lci is a distance between 2 particles, so we need to consider the 2-particle resolution (another
factor

√
2).

We can now write the expression of the measured correlation signal, which takes the form
([94], [78]) :

g(2)(δ~k) = 1 + h
∏

i=x,y,z

exp

(−δk2
i

w2
i

)
, (2.21)

where h =
∏
i
lci
wi

is the bunching amplitude. We see that when σi is of the order of lci , the
bunching signal is broadened, and the amplitude is reduced.

We also need to take into account the effect of the transverse integration ∆k⊥ described in
section 2.2.2. In practice, to increase the correlation signal, we often have ∆k⊥ > lci , which
further reduces the bunching amplitude. For the calculation, let assume that we compute the
function g(2)(δkz) along axis z, by integrating the signal over ±∆k⊥ along x and y, we thus have
:

g(2)(δkz) =
1

(2∆k⊥)2

∫∫ ∆k⊥

−∆k⊥

1 + h
∏

i=x,y,z

exp

(−δk2
i

w2
i

)
dxdy

= 1 + h
πwxwy

(2∆k⊥)2
exp

(−δk2
z

w2
z

)
erf

(
∆k⊥
wx

)
erf

(
∆k⊥
wy

)
, (2.22)

with erf(x) = 2√
π

∫ x
0 exp(−y2)dy, the error function.

Results

We have measured second-order correlations in momentum space for the following systems :

• A BEC, which is a spatially coherent source where no bunching is expected.

• A thermal cloud (T > Tc) released from the ODT, which constitute a spatially incoherent,
anisotropic source. As mentioned before, the momentum bunching in such a system is
compatible with the non-interacting case, meaning that the interactions between the He-
lium atoms are weak enough for the cloud to behave like an ideal source of bosons. The
anharmonicity of the trap should lead to an anharmonicity of the bunching peak (equation
2.19).

• A thermal cloud released from the lattice (incoherent isotropic source with periodic bunch-
ing).

All those measurements have been performed with MCP B.

Thermal lattice gas Contrary to the ODT, the external trapping potential of the 3D lattice
constitutes a quasi-isotropic trap (see section 1.1.3). Even if it is unclear how HBT remains valid
for the strongly interacting lattice gas (see chapter 5), it is reasonable to think that this isotropy
of the trap will lead to a rather isotropic shape for the bunching peak in momentum, which
will help us to evaluate the resolution of the detector along the 3 spatial axis. We compute



54 Chapter 2: Reconstruction and correlations of individual particles in 3D

0 0.5-0.5
-0.5

0.5

0

0 0.5-0.5

0.5

0

0 0.5-0.5
-0.5

0.5

0

0 0.5-0.5

0

0 0.5-0.5

0

0.5

BEC Lattice 
thermal gas

Dipole trap 
thermal gas

0 0.5-0.5
-0.5

0.5

0

-0.5

0.5

kx / ka kx / ka kx / ka 

ky / ka ky / ka ky / ka 

ky
 / 

ka
 

ky
 / 

ka
 

ky
 / 

ka
 

ky
 / 

ka
 

ky
 / 

ka
 

ky
 / 

ka
 

0 0.01 0.02 0.03 0.04
/ kx / ka

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

g(2
)

+
 ( 
/
 k

 )

kx

0 0.01 0.02 0.03 0.04
/ ky / ka

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
ky

0 0.01 0.02 0.03 0.04
/ kz / ka

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
kz

0 0.5-0.5
-0.5

0.5

0

ky / ka 
0 0.5-0.5

-0.5

0.5

0

0 0.5-0.5
-0.5

0.5

0

ky
 / 
ka

 

kx / ka kx / ka 

kz
 / 
ka

 

kz
 / 
ka

 

0 0.01 0.02 0.03 0.04
/ kx / ka

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

g(2
)

+
 ( 
/
 k

 )

kx

0 0.01 0.02 0.03 0.04
/ ky / ka

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
ky

0 0.01 0.02 0.03 0.04
/ kz / ka

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
kz

0 0.5-0.5
-0.5

0.5

0

ky / ka 
0 0.5-0.5

-0.5

0.5

0

0 0.5-0.5
-0.5

0.5

0

ky
 / 
ka

 

kx / ka kx / ka 

kz
 / 
ka

 

kz
 / 
ka

 

0 0.01 0.02 0.03 0.04
/ kx / ka

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

g(2
)

+
 ( 
/
 k

 )

kx

0 0.01 0.02 0.03 0.04
/ ky / ka

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
ky

0 0.01 0.02 0.03 0.04
/ kz / ka

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3
kz

0 0.5-0.5
-0.5

0.5

0

ky / ka 
0 0.5-0.5

-0.5

0.5

0

0 0.5-0.5
-0.5

0.5

0

ky
 / 
ka

 

kx / ka kx / ka 

kz
 / 
ka

 

kz
 / 
ka

 

Figure 2.7: Different systems to test the algorithm : a Bose-Einstein condensate, a thermal gas
released from the lattice, and a thermal gas released from the dipole trap. The 2D pictures
are plotted along the science chamber axis, and are obtained by integrating the 3D density
distribution along the transverse direction (the 2D plot (kx, ky) is obtain by integrating the full
distribution along the axis kz etc.
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the g(2) function of a thermal cloud of about 40 × 103 atoms released from the lattice with
V0 ' 9.6Er, corresponding to the following trapping frequencies along the lattice eigen-axes :
(308, 295, 298)Hz, estimated from the oscillations of a BEC inside the trap formed by the first
passage (no retro-reflections) of the 3 lattice beams. Let’s recall that one of the lattice beam
is aligned along the x direction of the science chamber, and the two other beams are crossing
with a 45◦ angle in the transverse plane (y, z), so that the correlations along y and z are not
calculated along the lattice axes (figure 1.11). The temperature of the cloud, evaluated with our
thermometry method (see chapter 5) is about 40% above the critical temperature, ensuring the
absence of condensed fraction. The dataset corresponds to ∼ 3000 experimental realizations,
with ∼ 2500 detected particles per shot.
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Figure 2.8: Local second-order correlation function g(2)
+ (δk) in the thermal lattice gas. The cor-

relations are calculated along the 3 axis (x, y, z), with a transverse integration ∆k⊥ = 0.0072 ka.
The solid line in each panel is a gaussian fit b + a exp(−δk2/w2) used to extract the effective
bunching amplitude a, the effective correlation width w, and the baseline b.

Figure 2.8 shows the result of the algorithm calculation along the 3 axis, for ∆k⊥ = 7.2 ×
10−3ka (in unit of the lattice wave vector, defined in section 1.1.3). We clearly see the presence
of a peak at δk = 0 in all directions, which is the signature of a 3D bunching. With a gaussian
fit, we extract the parameters of this correlation peak along the 3 directions and we find :

Table 2.1: Parameters of the correlation peak in the thermal lattice gas

x y z (gravity)

Bunching
amplitude 0.48± 0.03 0.47± 0.03 0.54± 0.025

Bunching width
(unit of ka)

11.8± 0.8× 10−3 9.8± 0.7× 10−3 9.6± 0.5× 10−3

Baseline 0.98 ±0.05 1 ± 0.05 0.96 ± 0.01

As explained in the previous section, the interesting quantity of the bunching peak lies in its
correlation width lci , which is linked to the measured width wi and the resolution σi through
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equation 2.20. In particular, when lci is of the order of σi, one has to know precisely the resolution
to be quantitative about the correlation width. Unfortunately, this is not an easy task with our
detector : as we saw in section 1.2.4, the in-plane resolution of the MCP depends on the flux
of particle reaching the plates, and it has not been directly measured for all flux regimes. We
can roughly estimate it through the measurement of σD/2

√
2 (equation 1.19), which is close to

the TDC limit for this dataset, i.e. σx ∼ σy ∼ 1.4 × 10−3 ka (60µm in real-space unit). On
the other hand, the vertical resolution has never been estimated experimentally. If we use the
geometrical limitation given by the micro-channels angle (equation 1.20) as a definition of the
vertical resolution, we find σz ∼ 4.2×10−3 ka, which leads to two inconsistencies. Firstly, it would
result in a very anisotropic bunching (lcx , lcy , lcz) = (11.5, 9.4, 5)×10−3 ka difficult to justify; and
secondly, equation 2.22 would give an effective bunching amplitude of 0.4 along the gravity axis,
slightly off compared to the measured 0.54± 0.025. We shall then change our analysis strategy.
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Figure 2.9: Effective bunching amplitude of the thermal lattice gas, as a function of the transverse
integration ∆k⊥. The solid line is a fit based on equation 2.22 to extract the resolution σx '
σy ' σz. To perform the fit, we use the effective correlation width wx,y,z extracted from figure
2.8, and we assume that the real bunching amplitude is 1, so that g(2)(δk = 0) = 2. From the
fit, we obtain σx,y,z = 2.5± 0.1× 10−3 ka.

Considering the symmetry of the lattice trap, it is plausible that the correlation length
is identical along direction y and z (both calculated at 45◦ of the lattice axis), and slightly
different along the direction x (calculated along the lattice axis). It is also reasonable to assume
that the in-plane resolution is identical along x and y, because the signal is treated by the
same electronic chain. In the following, we thus postulate lcy = lcz , and σx = σy, and since
wy ' wz, we also have σy ' σz. So by posing σx,y,z = 2.45 × 10−3 ka, the bunching amplitude
calculated from equation 2.22 becomes compatible with the measured amplitude, and it leads
to (lcx , lcy , lcz) = (10.6, 8.3, 8.1)10−3 ka. To be a bit more precise and to further test equation
2.22, we run the algorithm for several transverse integrations δk⊥, and fit the variation of the
bunching amplitude to extract the resolution. The results are shown in figure 2.9, and confirm
that equation 2.22 describes well the decay of the bunching amplitude with ∆k⊥. The fit gives
σx,y,z = 2.5± 0.1× 10−3 ka.
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Figure 2.10: Function g
(2)
+ (δk) calculated along the lattice axis, with ∆k⊥ = 12 × 10−3 ka. In

addition to the local bunching, a correlation signal is visible at δk = ka, illustrating the periodic
bunching expected from the lattice structure.

Finally, in figure 2.10, we have plotted the function g(2)
+ (δk) along the lattice axis, calculated

with ∆k⊥ = 12 × 10−3 ka over a larger δk domain to investigate the ka periodicity of the
correlation signal, expected for a thermal gas inside a lattice [22]. The signal indeed exhibits two
correlation peaks, at δk = 0 and δk = ka, the latter being about half the height of the first one.
An explanation of this difference can arise from the difficulty to precisely identify the vector ~ka
along which we plot the profile. Empirically, a mistake of a few degrees in the determination of
the lattice axis is enough to make the secondary peak collapses.
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ODT thermal gas We now investigate the bunching in a thermal cloud of about 3×105 atoms
released from the anisotropic ODT. The trapping frequencies along the science chamber axis are
the following, up to a 10% uncertainty, : (118, 361, 418)Hz. The g(2) calculation is computed for
∆k⊥ = 12× 10−3 ka, on a dataset of ∼ 500 realizations with 1500 atoms detected per shot. The
result is shown in figure 2.11.
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Figure 2.11: Local second-order correlation function g
(2)
+ (δk) in the ODT thermal gas. The

correlations are calculated along the 3 axis (x, y, z), with a transverse integration ∆k⊥ = 0.012 ka.
The solid line in each panel is a gaussian fit b + a exp(−δk2/w2) used to extract the effective
bunching amplitude a, the effective correlation width w, and the baseline b.

The temperature T of the gas can be directly extracted with a bose fit from the momentum
profile (see figure 2.12) and we find T = 320±30nK. The RMS size si of the trapped cloud along
direction i can be deduced from an energetic argument :

1

2
mω2

i s
2
i =

1

2
kBT ⇒ si =

√
kBT

mω2
i

, (2.23)

leading to (sx, sy, sz) ' (35, 11.4, 9.8)µm. One can wonder if this system is well described
by an HBT treatment, since at this temperature, we do not have λdB � si, in other words,
the correlation length of the source is not very small compared to the size of the system. For
the thermal cloud inside the ODT, λdB = 1.5µm at T = 320nK, while the size of the system
along the less confining direction (x) is 36µm (factor of 20). It is thus incorrect to treat the
first-order correlation function of the source as a delta function (equation 2.14 to equation 2.15).
Furthermore, the central limit theorem used to justify a gaussian distribution of the atomic
density in the observation plane is not valid close to the transition, where the Bose statistic leads
to an occupation of a finite number of low energy modes. That being said, a full calculation of
the two-body correlations in an expanding, ideal Bose gas taking into account the Bose-Einstein
statistic have been performed in [94]. The authors show that even at the critical temperature,
the g(2) function calculated over the entire cloud corresponds to the "HBT limit", which justifies
the use of s−1

i to evaluate lci .

We thus find : (lcx , lcy , lcz) = (s−1
x , s−1

y , s−1
z ) = (3.5, 11, 12.6)×10−3 ka with a 12% uncertainty.

Using the resolution obtained previously σx,y,z ' 2.5 × 10−3 ka (the flux of detected particles
is similar than the lattice gas one, so the in-plane resolution should be close), we deduce the
expected effective width (wx, wy, wz) ' (6 ± 1, 12 ± 2, 14 ± 3) × 10−3 ka, compatible with the



2.3 Example of a g(2) measurement : the bosonic bunching 59

-0.5 0 0.5
kx/ka

0

0.2

0.4

0.6

0.8

1

n 
[ a

rb
. u

ni
t. 

]

-0.5 0 0.5
ky/ka

0

0.2

0.4

0.6

0.8

1

n 
[ a

rb
. u

ni
t. 

]

-0.5 0 0.5
kz/ka

0

0.2

0.4

0.6

0.8

1

n 
[ a

rb
. u

ni
t. 

]

x y z

Figure 2.12: 1D plot of the thermal cloud released from the ODT obtained by integrating the
distribution along the transverse directions (red dots). Fitting this distribution with a Bose
function (black line) allows us to extract the temperature of the cloud at T = 320nK.

Table 2.2: Parameters of the correlation peak in the ODT thermal gas

x y z (gravity)

Bunching
amplitude 0.27± 0.05 0.12± 0.03 0.127± 0.03

Bunching width
(unit of ka)

4.1± 0.9× 10−3 13.6± 4× 10−3 12.6± 3× 10−3

Baseline 1 ±0.01 1 ± 0.01 0.99 ± 0.005

value extracted from the gaussian fit (see table 2.2). Finally, by taking into account the transverse
integration (∆k⊥ = 12× 10−3 ka), we can calculate the expected width and amplitude of the 3D
bunching from equation 2.22, and we find (0.3± 0.05, 0.17± 0.03, 0.16± 0.03), also compatible
with the measured amplitude within error-bars. It is interesting to notice that, even though the
equipartition of the thermal energy leads to a spherical momentum distribution, the anisotropy
of the trap is still "coded" in the cloud through its two-particles correlation function.
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BEC Finally, we compute the g(2) of a BEC of about 2 × 105 atoms released from the ODT.
As expected, the correlation signal is flat along the 3 axis (figure 3.11), because of the spatial
coherence of the cloud. The high number of atoms, even with a low RF transfer, ensures a good
signal-to-noise ratio.
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Figure 2.13: Local second-order correlation function g(2)
+ (δk) in the BEC. The correlations are

calculated along the 3 axis (x, y, z), with a transverse integration ∆k⊥ = 0.012 ka.



Chapter 3

Investigating the asymptotic
momentum distribution of a
Bose-Einstein condensate

The first system we wish to study is the Bose-Einstein Condensate (BEC) in a harmonic trap.
Predicted by A. Einstein in the mid 1920s, it is defined as a macroscopic occupancy of the lowest
energy level of a thermodynamic ensemble. The BEC was first seen as a theoretical curiosity
emerging form the low temperature behavior of the Bose-Einstein statistics, but in 1937, the
discovery by P. L. Kapitza [95] and J. F. Allen [5] of superfluidity in liquid 4He constituted
the first experimental observation of this phenomenon, as F. London made the link between
the superfluid transition and the Bose-Einstein condensation [96]. In the 1980s, with the rapid
development of laser cooling techniques, the possibility to observe a gaseous BEC became real,
and the first condensates were obtained in 1995 at JILA by E. Cornell and C. Wieman with
87Rb [9] and at MIT by W. Ketterle with 23Na [97]. Those discoveries paved the way for a new
generation of cold atom experiments, where the coherence properties of this new state of matter
are used to study quantum physics in a new way.

A BEC in a harmonic trap is a conceptually very simple object. At T ' 0, it can be described
as a gas where almost all the atoms occupy the 1-particle ground state of the trap. However,
it possesses a richness of many-body phenomenon to explore, from in-trap collective excitations
[98, 99], to contact interactions [100, 101], or expansion dynamic [102, 103]. In our setup, where
the scattering length can not be tuned to zero, the release of the mean-field energy during the
free-fall distorts the cloud [104], preventing us to access the in-trap momentum distribution from
a Time of Flight (ToF) measurement. Yet, we can still hope to observe signatures of many-body
manifestations in the asymptotic momentum distribution.

The first section briefly recalls some generalities about trapped BEC, and defines key quan-
tities that will be used throughout the manuscript (chemical potential, critical temperature,
condensed fraction, ...). The second section describes the experiment we conducted at the begin-
ning of this thesis, and the observation of a power-law k−4 decay in the asymptotic momentum
distribution of the expanding BEC. This first series of measurements led to a publication in 2016
[105], where this power-law tail is interpreted as a signature of the quantum depletion (see also
[30]). This initial interpretation, and its controversies, are discussed. In the last section, we
present a series of recent measurement giving new insights on the origin of this signal.

61
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3.1 The trapped Bose-Einstein condensate

3.1.1 Quantum statistics and condensation of ideal bosons

Einstein and Bose

In one of his famous (or rather legendary) articles of 1905 [106], A. Einstein postulates the
existence of light’s quanta to explain the photoelectric effect. Twenty years later, S. Bose inferred
the mathematic formula governing the statistics of an ensemble of indistinguishable photons,
recovering Planck’s law [107]. Shortly after, Einstein generalized the concept for an ideal gas of
massive particles, providing the first quantum theory of an ideal gas [108]. The Bose-Einstein
distribution thus replaces the Maxwell-Boltzmann distribution at low temperature, by taking into
account the indistinguishability of the microscopic particles. For a gas of Bosons at temperature
T , the average number of particles 〈nk〉 per mode k can be written :

〈nk〉 =
1

e(εk−µ)/kBT − 1
, (3.1)

where εk is the energy of the mode k, kB is the Boltzmann constant, and µ is the chemical
potential, that fixes the number of particles. By studying the behavior of this distribution at
low T , Einstein predicted that below a certain critical temperature Tc, a macroscopic portion of
the atoms will "condensate" in the lowest energy mode available [108].

Condensation in a harmonic trap

Let’s consider an ensemble of N non-interacting particles of mass m confined in a 3D harmonic
potential of frequency (ωx, ωy, ωz). In such a trap, the energy levels are well known [109], and
can be written

εnx,ny ,nz = ~ωxnx + ~ωyny + ~ωznz + ε0, (3.2)

with ε0 = ~
2(ωx +ωy +ωz), the ground state energy of the harmonic trap, sometimes referred

to as the "zero-point" energy. We note N0 the number of atoms in the ground state, and Nexc

the number of atoms in the excited states. From the Bose-Einstein distribution, it can be shown
that Nexc can be written :

Nexc =

(
kBT

~$

)3∑
n>0

Zn

n3
, (3.3)

where we have defined the fugacity Z = e(µ−ε0)/kBT , and $ = (ωxωyωz)
1/3. The sum in

this last expression can be expressed as a polylogarithm function g3(Z), bounded above by ζ(3),
where ζ is the Riemann function. It means that for a given T , the population in the excited
states has an upper bound :

Nexc ≤
(
kBT

~$

)3

ζ(3). (3.4)

Consequently, the population of the excited states can be saturated, and any new particle
added to the system will automatically populate the lowest energy mode. If we now fix the num-

ber of particles, but make the temperature vary, Nexc will saturate as soon as N =
(
kBT
~$

)3
ζ(3),

leading to an expression for the critical temperature :

Tc =
~$
kB

(
N

ζ(3)

)1/3

. (3.5)
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Below Tc, the maximum value of Nexc is smaller than N, and since N0 = N −Nexc, the lower
the temperature, the higher N0. This mechanism can lead to an arbitrary large occupancy of the
ground state, which is precisely the phenomenon known as the Bose-Einstein condensation. This
accumulation of particles in a single microscopic state results in a phase coherence over the entire
system. By analogy with the laser, the BEC can be seen as a coherent source of matter-wave.

Another useful quantity to define is the condensed fraction :

fc =
N0

N
= 1−

(
T

Tc

)1/3

(3.6)

For our experimental parameters, Tc is of the order of 700nK, and the coldest temperatures
we can achieve are of the order of µ/kB = 200nK, leading to fc ' 98%. The thermally excited
fraction is called the "thermal depletion" of the condensate.

3.1.2 The mean-field approximation

Two-body contact interactions

Up to now, we have neglected the interactions between the particles. In the following, we consider
only the 2-body interactions, which can be described by scattering theory [110]. For our very low
temperatures, the only relevant process is the s-wave scattering, characterized by the scattering
length as, that is positive for repulsive interactions. Within this approximation, the potential
for contact interactions can be written :

Vint(~ri − ~rj) =
4π~2as
m

δ(~ri − ~rj) = gδ(~ri − ~rj) (3.7)

For a mJ = +1 spin-polarized gas in the 23S1 state of 4He*, as = 7.5nm ' 142a0, where a0

is he Bohr radius.

The Gross-Pitaevskii equation

We can now write the complete hamiltonian of the system :

H =
∑
i

[
~pi

2

2m
+ Vtrap(~ri)

]
+
∑
i6=j

Vint(~ri − ~rj). (3.8)

To solve this equation analytically, we use the so-called mean-field approximation. The idea
is to get rid of the mathematical difficulties raised by the 2-body interactions, by considering that
all the particles "feel" the same mean-field, given by the average of the interaction potentials with
all the other particles of the gas. Hence, the ground state becomes a product of 1-particle states
|ψ〉 = |φ〉⊗ |φ〉⊗ ...⊗ |φ〉. We then use the variational principle, minimizing 〈ψ|H |ψ〉−µ 〈ψ|ψ〉,
which leads to the Gross-Pitaevskii (GP) equation [111, 112] for the 1-particle state:

µφ(~r) = −(~~∇)2

2m
φ(~r) + Vtrap(~r)φ(~r) +Ng|φ(~r)|2φ(~r), (3.9)

where the non-linear term Ng|φ(~r)|2φ(~r) corresponds to the mean-field potential.

For a non-interacting gas in a harmonic trap, the shape of the ground state’s wave function
is given by the (gaussian) ground state of the harmonic oscillator, but the presence of the mean-
field potential modifies this shape. Like most of the experiments involving trapped BEC, our
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Figure 3.1: Thomas-Fermi prediction for the in-situ density profile of a Bose-Einstein condensate
with our experimental parameters (2× 105 atoms, see section 3.2.1). The distribution is plotted
along two axis : x (89Hz trapping frequency), and y (419Hz trapping frequency).

system is well described by the Thomas-Fermi approximation[110], where the mean-field energy
is large enough so we can neglect the kinetic term. The GP equation thus gives :

φ(~r) =

√
µ− Vtrap(~r)

g
eiθ(~r), (3.10)

where the phase θ(~r) has to be homogeneous to minimize the energy. We finally obtain the
in-trap density profile n(~r) = |φ(~r)|2, known as the Thomas-Fermi profile :

n(~r) =
µ

g

1−
∑

i=x,y,z

(
ri
Ri

)2
 , (3.11)

where Ri =
√

2µ
mω2

i
is the Thomas-Fermi radius. Figure 3.1 shows a plot of n(~r) obtained by

using equation 3.11 with our experimental parameters.

Finally, it is useful to introduce the healing length, which represents a beyond mean-field
correction to the Thomas-Fermi profile [110] :

ξ =
~√

2mµ
. (3.12)

Indeed, ξ is the minimum length-scale over which n(~r) can vary. In other words, if the trap
potential varies on distance shorter than ξ, the density will not be able to follow, and the profile
will be smoothened. In the mean-field work-frame, 2π/ξ also defines the largest momentum
component of the BEC.
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Free-fall expansion

When released from the trap, the mean-field energy converts into kinetic energy, and thus plays
a role in the expansion of the cloud. Using the time-dependant GP equation in the Thomas-
Fermi regime, one can show that the density profile remains parabolic throughout the expansion
[104], but the exact solution has to be calculated numerically. It is however possible to infer the
asymptotic root-mean-square velocity v∞ of the atoms released from an isotropic trap, with an
energy conservation relation [110] :

v2
∞ =

~2

m2R(0)2
+

gN

3
√

2π3mR(0)3
, (3.13)

where R(0) is the Thomas-Fermi radius at the beginning of the expansion. It clearly shows
the effect of the trap on the expansion : the tighter the trap, the smaller R(0), and so the bigger
v∞. Even if equation 3.13 is calculated for an isotropic trap, the physical intuition remains valid
for various geometries : squeezing the atoms along one direction will raise the amount of mean-
field energy released in that direction, changing the aspect-ratio of the cloud. For instance, our
cigar-shaped Optical Dipole Trap (ODT) gives "birth" to a pancake-shaped cloud at large ToF.

3.1.3 Beyond mean-field : the Bogoliubov approach

Introduction

Because of its high condensed fraction, the weakly interacting BEC at finite temperature is well
described by the Bogoliubov approach [113], that takes into account the interactions beyond the
mean-field approximation. To describe this theory, we need to introduce the second-quantization
formalism, that will also be useful in the next chapter. For simplification, we consider a homo-
geneous system of volume V instead of the harmonic trap.

Let ak and a†k be the annihilation and creation operators of momentum ~k. Applying ak
(resp. a†k) to the wave function of the gas destroys (resp. creates) a particle with momentum ~k.
We have the usual commutation relations :

[ai, aj ] = 0, (3.14)

[ai, a
†
j ] = δi,j . (3.15)

With those notations, the Hamiltonian takes the form :

H =
∑
k

~2k2

2m
a†kak +

g

2V

∑
k1,k2,l

a†k1−la
†
k2+lak1ak2 , (3.16)

where l stands for the momentum conservation during the interaction process.

Bogoliubov transformation

If fc ' 1, most of the atoms are in the k = 0 state, and the collisions will mainly occur between
condensed atoms, or between a condensed atom and an atom in a higher k-mode, but rarely
between two k 6= 0 atoms. The Bogoliubov approximation consists in keeping only the second
order terms in k 6= 0 in the expression of H, and replacing a0 and a†0 by

√
N0. The hamiltonian

can then be split in two parts : a part containing only the
√
N0 terms, taking the form of the

mean-field Hamiltonian (GP), and a part beyond the mean-field description containing all the
k 6= 0 operators, that can be written :
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Figure 3.2: (a) Energy spectrum of Bogoliubov excitations, plotted as a function of kξ. The
low-k behavior is linear (phonon-like excitations), while the high-k is quadratic (free-particles
excitations). (b) Square of the Bogoliubov coefficients, u2

k and v2
k. Both coefficients diverge at

k = 0.

HB =
∑
k 6=0

(
~2k2

2m
+ gn

)
a†kak +

gn

2

∑
k 6=0

(a†ka
†
−k + aka−k), (3.17)

where we have made the approximation N0/V = n. By essence, HB contains all the infor-
mations about the collective excitations of the BEC (at least to the second order in ak). We
therefore switch to the basis of the "quasi-particles" elementary excitations (b†k, bk), defined by :

b†k = uka
†
k + vka−k, (3.18)

with uk and vk, the Bogoliubov coefficients. In this basis, HB takes the simple form :

HB =
∑
k 6=0

EB(k)b†kbk, (3.19)

which is the expression of a non-interacting gas of quasi-particles. The energy spectrum of
those quasi-particles is :

EB(k) =

√
~2k2

2m

(
~2k2

2m
+ 2gn

)
. (3.20)

Like shown in figure 3.2 (a), EB(k) possesses a phononic linear part for low excitations
(k � 1

ξ ), and a free particle quadratic part for high excitations (k � 1
ξ ). Figure 3.2 (b) shows

a plot of the square of the Bogoliubov coefficients u2
k and v2

k, that can be easily expressed from
the quasi-particles energy-spectrum :
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u2
k =

~2k2/2m+ gn+ EB(k)

2EB(k)
, (3.21)

v2
k =

~2k2/2m+ gn− EB(k)

2EB(k)
, (3.22)

Quantum depletion

Now let us calculate the number of atoms in the excited states Nexc, also referred as the depleted
atoms. We start from Nexc =

∑
k 〈a

†
kak〉, and we apply the Bogoliubov transformation, leading

to :

Nexc =
∑
k 6=0

(u2
k + v2

k) 〈b†kbk〉+
∑
k 6=0

v2
k. (3.23)

The left term of the sum corresponds to the already mentioned thermal depletion. The
average number of quasi-particles 〈b†kbk〉 is given by the Bose-Einstein distribution, and a gas at
T = 0 (no excitations) corresponds to a vacuum of quasi-particles, i.e. 〈b†kbk〉 = 0. However,
even at T = 0, we have Nexc 6= 0, because the right term of the sum does not vanish. This term
corresponds to the atoms leaving the condensate due to the interactions, as it is energetically
favorable to maintain a small fraction of atoms in the excited state to lower the total energy.
This population is called the quantum depletion.

3.2 Observation of a k−4 decay in the asymptotic momentum dis-
tribution of a BEC

In this section, we present the 2016 results published in Physical Review Letters [105], where
the investigation of the asymptotic momentum distribution of an expanding BEC leads to the
observation of a k−4 decay in the high momentum regions. More details on this study can also
be found here [30].

3.2.1 Experimental sequence and momentum profiles

Preparation and detection of the condensate

We start by loading a spin polarized mJ = +1 BEC of about 2 × 105 atoms in our ODT. The
following trapping frequencies are used for this experiment : (ωx, ωy, ωz) = 2π×(89, 419, 438)Hz.
We can apply or not a controlled heating sequence. In that case, the lattice beams are adiabat-
ically turned ON in 30ms and superimposed to the ODT, we then heat-up the gas by applying
non-adiabatic lattice pulses of 500µs. After that, the cloud is kept 100ms in the lattice for
thermalization, before being adiabatically loaded back inside the ODT.

The gas is finally released by rapidly (∼ 2µs) switching off the trap. To regulate the flux of
atoms reaching the detector, we apply a Radio-Frequency (RF) sweep after 2ms of expansion
in order to transfer a fraction of the atoms to the non-magnetic mJ = 0 state. The detuning
between the magnetic sub-levels is set to 10MHz with a magnetic bias, and we span the RF
frequency by 1MHz around the resonance. The sweep is performed in 1ms, during which the RF
power is kept constant, the value depending on the fraction of atoms we want to transfer. Right
after this RF sequence, we apply a magnetic gradient in order to remove all the atoms that are
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Figure 3.3: (a) The cloud expands from the cigar-shaped trap and inverts its aspect ratio due to
the mean-field potential, while depleted atoms escape the trap with a spherical symmetry. When
the cloud is very diluted, the expansion becomes ballistic and the distribution can be mapped to
the asymptotic momentum distribution n∞(~k) that we detect onto the MCP. (b) Reconstruction
of n∞(~k) obtained by averaging a few hundred of experimental cycles.
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Figure 3.4: Log-log scale plots of the 1D momentum profiles obtained from counting the number
of atoms inside narrow tubes oriented along various directions. The vertical dashed-dotted line
indicates the separation between the central dense distribution (the BEC), and the surrounding
low density distribution (excited particles above the BEC). The blue dotted lines correspond
to the profiles calculated along the radial direction (b), (c) and (d). The green dotted lines
correspond to the profiles calculated along the transverse direction direction (e), (f) and (g).
The solid black line is an average of the three radial profiles, and highlight both the anisotropy
of the BEC distribution and the isotropy of the diluted distribution beyond the BEC.

not in the non-magnetic state before they can reach the detector. Like explained below, this flux
regulation allows us to circumvent the saturation effect, and explore a large range of densities.

The MCPs are located 55cm below the trap, leading to a mean ToF of 325ms. The velocity ~v
of the detected atoms are reconstructed using equations 2.3, 2.4, 2.5. We define the momentum
~k = m~v/~ (expressed in µm−1), and the asymptotic distribution detected onto the MCP is
noted n∞(~k). Figure 3.3 presents an example of such a distribution obtained with the detector.
We observe an anisotropic dense central region corresponding to the condensate, and a diluted,
isotropic distribution around. The "pancake" shape of the condensate is a consequence of the
mean-field potential.

Extraction of the 1D density profiles

We generate 1D density profiles from the 3D distribution by counting the number of particles
inside narrow tubes, centered onto the BEC’s center-of-mass. Those tubes are oriented along
various directions in order to study the isotropy of the distribution. In figure 3.4, we see that the
low density region around the BEC seem to have a spherical symmetry, because the 1D profiles
decay similarly along all the six directions. On the contrary, the condensate’s distribution is
anisotropic because of the release of the mean-field energy.

For all the directions, we have used two different sizes for the tubes. In the high density
regions (between 0 and 2µm−1) the transverse size of the tubes is ±0.1µm−1, while in the low
density regions (beyond 2µm−1), the transverse size is ±0.8µm−1. For those measurements it
was not possible to perform a spherical integration, because the MCP H1 is damaged in the
central region (see figure 1.16).
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To increase the density dynamic of the detected distributions, we merge data with a high-
flux of particles falling onto the detector (typically 45% of the initial distribution transferred
to the detectable state by RF coupling), and data with a low-flux of particles (typically 15%
of RF transfer). Indeed, at high-flux, the denser region of the distribution (the core of the
BEC) saturates the MCP, while at low-flux, the signal in the diluted halo is too low, and it
would require much more experimental runs to extract the average profile. With this merging
technique, we manage to reconstruct a density profile over more than 5 decades (figure 3.5), with
typically half-a day of data-taking.

3.2.2 Observation of a k−4 decay : effect of temperature and density

Asymptotic momentum distribution

First, let’s insist on the fact that the observed distribution n∞(~k) can not be directly associated
to the in-situ momentum distribution n(~k). Indeed, the mean-field energy (∼ µ) released at the
beginning of the ToF dominates the typical kinetic energy given by the momentum distribu-
tion (∼ ~2 ω2

odt/µ). For our system, within the mean-field approximation, µ/h ' 4kHz, while
ωodt/2π = 438Hz for the most confining direction, so that µ � ~ωodt. Our observable is rather
the asymptotic momentum distribution, i.e., the momentum distribution of the expanding cloud
when the density has dropped sufficiently for the expansion to become ballistic.

Longitudinal momentum profile

We focus on the 1D momentum-profile along the radial direction of the condensate, because
the angular symmetry allows to integrate the distribution over a larger volume (i.e. over more
tubes). The radial distribution of n∞(~k) obtained with this integration is plotted on figure 3.5.
We observe 3 momentum-regions. The first region (I) is the one associated to the condensate,
while the two other regions (II and III) are situated outside of the condensate, in the low density
part of the distribution. Figure 3.6 presents the simulations performed by C. Qu of the 3D mean-
field expansion, obtained with the GP equation at T = 0. It shows that region I has the expected
width due to the release of the mean-field energy, and that region II and III are not predicted
by the zero-temperature mean-field theory.

The second region (II) is well adjusted by a polylogarithm g3/2 function (see equation 3.24),
corresponding to the Bose distribution integrated over the harmonic trap [114]. We interpret
it as the signature of the thermal depletion due to a non-zero temperature in the system. It
corresponds to the thermal excitations of the condensate, and thus its population grows with
the temperature. This interpretation is validated by the fact that the population of this region
raises as we increase the temperature of the gas (see below). The last region (III) has a k−4

scaling over one decade. The physical interpretation of this last contribution will be discussed
thoroughly in the following.

Effect of the temperature

To confirm the nature of region (II), we raise the temperature T of the gas with the controlled
heating sequence. Figure 3.7 shows 1D radial profiles obtained for different T . We clearly see
that region II is more and more populated as we increase T , and still compatible with a thermal
distribution. Region III keeps roughly the same amplitude and scaling for all the temperatures,
so it does not seem to be related to the thermal excitations of the gas. The fit function we use
to extract the parameters describing region (II) and (III) is :
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Figure 3.5: (a) Linear plot of the momentum profiles along the radial (blue) and longitudinal
(purple) directions. The solid lines are a smoothed average of the data, while the shaded area
indicates the standard deviation. (b) Log-log scale plot of the radial profile. We distinguish 3
parts. Region I is associated to the condensate, and the solid black line show the mean-field
scaling solution in the Thomas-Fermi approximation. Region II is associated to the thermal
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the gas from this fit, which in this case is T = 0.22Tc . Finally, region III has a polynomial
decay over a decade, compatible with a k−4 power law (dashed-line).
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Figure 3.6: Comparison between the experimental radial profile, and the mean-field simulation
of the expansion dynamics of a BEC at T = 0 with our experimental parameters. The central
density has been normalized to one for both the numerics and the data. The simulation is based
on the GP equation, beyond the Thomas-Fermi approximation, and we see that asymptotic
solution does not reproduce the observed low density tails.
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nfit(k) =
Nthg3/2[exp(−k2λ2

dB/4π)]

1.202(2π/λdB)3
+

A
(2π)3k4

, (3.24)

with Nth the number of thermally depleted atoms, λdB, the thermal de Broglie wavelength,
and A

(2π)3
, the amplitude of the k−4 tail. Note that Nth and λdB are independent parameters

of the fit, but those two physical quantities are connected through equation 3.6. For each
temperatures, we have checked that the extracted values of fth = Nth/N and T were indeed
following the expected behavior (see chapter 4 of [30]).
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Figure 3.8: Amplitude A∞ = lim→∞(2π)3k4n∞(k) plotted as a function of the central density
n0.

We can also vary the density of the cloud by changing the trapping frequencies (ωx, ωy, ωz),
directly linked to the ODT’s laser Intensity. We observe an increase of the tail’s amplitude
in region III as we raise the density (figure 3.9), suggesting that this feature is linked to the
interactions between the particles.

3.2.3 Initial interpretation : the quantum depletion

Quantum depletion and Tan’s contact

The spherical symmetry of regions II and III suggests that those distributions are not affected by
the mean-field energy during the ToF, and we assume they can be related to original momentum
features of the trapped gas. Another way to say this is to notice that those regions extend
beyond k = 2π/ξ, meaning that the initial kinetic energy of those atoms is higher than the
highest kinetic energy provided by the mean-field potential, so their expansion is mainly due to
their initial velocity.

A k−4 decay of the momentum distribution is expected for a gas described by 2-body contact
interactions. This power-law comes from the Fourier transform of the 1-body density matrix
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[115]. It has been directly observed in fermionic systems [116], and probed in bosonic system
with spectroscopy methods [19]. The amplitude of this decay, the so called Tan’s contact, has
the amazing property of being connected to various macroscopic thermodynamic quantities of
the system (free energy F , volume V , pressure P ...) through universal relations [117, 118].
In particular, the contact C is the thermodynamic conjugate of the inverse scattering length
through the equation of state of the gas :

dF = −SdT − PdV + µdN + Cd
1

as
(3.25)

This k−4 decay is also predicted by Bogoliubov, since the v2
k momentum distribution of the

quantum depletion (equation 3.23) scales as k−4 for high k (equation 3.22), and its amplitude
corresponds to Tan’s contact. The total momentum distribution of an interacting BEC at finite
temperature is therefore composed of :

• the condensate itself, whose in-situ momentum distribution is a narrow peak around k = 0,
and whose asymptotic distribution is enlarged by the mean-field potential.

• the thermal depletion, whose distribution is a Bose function (or rather a polylogarithm
function in the case of a trapped system).

• the quantum depletion of the atoms populating higher k-modes because of 2-body interac-
tions. At high k, its momentum distribution decays as k−4.

At this level where both the BEC and the thermal depletion are identified, it is tempting to
relate the observed k−4 tail of n∞(k) to the quantum depletion. Beyond the simple match in
scaling and symmetry, the tail’s amplitude seems rather insensitive to a change of temperature
(figure 3.7), while it increases with the density (figure 3.8). To compare this variations with
the theory, we evaluate the amplitude of the contact C for our trapped system, using the local
density approximation (valid for inhomogeneous system of size s, if k � s−1). We find :

C = (2π)3 lim
k→+∞

k4 × n(k) = (2π)3 lim
k→+∞

k4 × ~3

(2π~)3

∫
|vk(~r)|2d~r '

64π2

7
a2
sn0N0 [105]. (3.26)

Hence C/N0 varies linearly with the central density n0, and we thus re-plot the data of figure
3.9 as a function of A/N0 (figure 3.9). The result is compatible with a linear scaling, but the
slope is higher than the theory by a factor of ∼ 6.4, which challenges our interpretation.
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Figure 3.9: Amplitude A = lim→∞(2π)3k4n∞(k) per condensed particle N0, plotted as a function
of the central density n0. The dashed line is the Bogoliubov prediction in the local density
approximation. The solid line is the Bogoliubov prediction times 6.4.

Time dependence of the contact in an expanding atomic system

Figure 3.10: Log-log scale plot of the momentum distribution of an expanding system of two
interacting particles (scattering length a), released from a harmonic trap (frequency ω and length
aho). The different plots represent different expansion times, in unit of the dimensionless param-
eter τ = ω t. We see a progressive decay of the amplitude of the k−4 tail, that vanishes at large
time.

We have collaborated with C. QU, L. Pitaevskii and A. Stringari to better understand the
dynamic of the momentum distribution during the first instants of the ToF, when the cloud
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density is still high, and the interactions between the atoms still play a role. In [103], they
have investigated the evolution of the momentum distribution of various expanding systems at
T = 0. Analytic results on the trapped unitary Fermi gas suggest that the high k component
associated to the contact interactions should vanish on a timescale of 1/ω, where ω is the trapping
frequency. They also used Monte-Carlo simulations on a simple two-particles model, and show
that the asymptotic momentum distribution do not exhibit k−4 tails either, even though the
in-trap momentum distribution possesses such features (see figure 3.10). Those conclusions have
a rather simple physical interpretation : during the expansion, the high-k components of the gas
(k � µ) follow adiabatically the decay of the condensate density, resulting in an adiabatic decay
of the value of the contact, in a timescale of 1/ω. In other words, in absence of a non-adiabatic
process that would disturb the dynamic of the expansion (quickly turning off the interactions for
instance), one should not expect to see a k−4 decay in the asymptotic momentum distribution.

3.3 New measurements : the role of the mJ = 0 atoms

The results discussed in this section shine some new lights on the 2016 measurements, especially
due to the observation of a non zero in-trap population of atoms in themJ = 0 state (the trapped
BEC being mainly a spin-polarized mJ = +1 gas). Those results are very preliminary, and we
are still investigating those questions in order to produce a more detailed study in the future.

3.3.1 New setup and experimental sequence

We have conducted a series of new measurements with some updates on the apparatus :

• First, the MCP have been lifted up by 10 cm, reducing the ToF by 10%. We observe
similar profiles with this new configuration, supporting the idea that what we measure is
an asymptotic distribution, and not a transient shape.

• We also use a different pair of MCP (MCP B, with no hole in the middle), enabling us to
perform broader integrations, and to confirm the spherical symmetry of the distribution in
the tails.

• The broader integration volume allows to calculate g(2) functions. The results are shown
in figure 3.11. The absence of correlations in region I, and the observation of bunching in
region II and III further confirm that the tails of the distribution do not belong to the
condensate [83]. We stress the fact that this bunching signal is mainly given by region II,
as region III alone is too diluted to provide enough correlation statistics.

• We changed the RF transfer stage, by performing a Rabi oscillation rather than a sweep.
It helps us to better control the amount of atoms transferred in the detectable state. We
also investigate the impact of the instant of the transfer, by shining the RF at different
time after the release of the cloud : at the very begining of the expansion (∼ 2µs after
the opening of the trap), while the cloud is still very dense (in our case, 1/ω ∼ 300µs),
and after 10ms, when the cloud is very diluted, and the expansion is ballistic. We do not
observe any difference on the asymptotic profiles.

3.3.2 Presence of an in-trap spin mixture

We eventually realized that a small fraction (less than 1%) of the atoms present in the ODT were
actually in the mJ = 0 state. To measure this population, we simply let the cloud expand in the
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Figure 3.11: Local second order correlation functions calculated in the different momentum
regions. The atoms in regions II and III exhibit a clear bunching signature, confirming that
they do not belong to the condensate. Note that due to the density difference between region
II and III, the correlation signal is dominated by the atoms of region II. The asymmetry of the
bunching peak and amplitude is due to the asymmetry of the trap (see chapter 2).
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Figure 3.12: 2D projections of n∞(k) obtained by integrating the density along the orthogonal
axis (the (kx, ky) projection is obtained by integrating the density along kz, etc.). The projections
are shown for different RF transfer, corresponding to the amount of mJ = +1 atoms transferred
to the detected state mJ = 0. Even in absence of RF transfer (0%), a diluted cloud of atoms is
detected, indicating that an in-trap population of atoms is in the mJ = 0 state.

presence of a magnetic gradient, without making any RF transfer, so the only atoms reaching
the plate are the one insensitive to magnetic fields. Like we see on figure 3.12, the observed
distribution is rather isotropic and very diluted, with no visible condensed fraction. We did not
notice it with the 2016 setup, because most of the distribution was falling in the "hole" of the
MCP detector (the central defect of MCP H1, see figure 1.16). Furthermore, this distribution is
way too diluted to be observed by absorption imaging.

Origin and lifetime

Having mJ = 0 atoms in the ODT is unexpected, because it is loaded from the quadrupole
trap, that contains only mJ = +1 atoms. However, it is possible that spin-flips occur during
the transfer, since it requires an opening of the quadrupole and a displacement of the cloud.
This can lead to non-trivial, and magnetically "non-adiabatic" trajectories (Majorana spin-flip
effect [59]). There also exists a possible in-trap creation process [37], where two +1 atoms collide
and flip their spin. We have ruled out this last hypothesis by making a similar experimental
cycle, but with a spin polarized mJ = −1 BEC, where such spin-relaxation mechanism are not
energetically favorable, and we observed the same amount of atoms in mJ = 0.

In the absence of an in-trap creation mechanism, the population in mJ = 0 should rapidly
decay due to the penning collisions. The 0-0 penning collision rate is very high (k02 = 7.6 ×
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Figure 3.13: Number of mJ = 0 atoms detected onto the MCP in absence of RF transfer, as a
function of the holding time after evaporation. Assuming that the lifetime is limited by 2-body
0-0 Penning collisions, and that the in situ distribution of the cloud is gaussian, the extracted
central density nm0 is 16± 2× 1015m−3. MCP B were used for those measurements, so that we
have assume ηmcp = 25% (see chapter 1)

10−10 cm3 s−1 [119]), 4-orders of magnitude higher than the 1-1 rate. After the evaporation,
we have measured the decay of the mJ = 0 population to extract the in-trap density (figure
3.13). By assuming a gaussian distribution, the initial central density extracted from the fit is
16× 1015m−3, not far from the expected 8× 1015m−3 for a thermal distribution at equilibrium
with the BEC (measured at ∼ 300nK for those parameters). So the very low density of mJ = 0
atoms allows the coud to survive a few seconds in the ODT.

Asymptotic momentum distribution

The most peculiar aspect of those "parasites" atoms in mJ = 0 is their asymptotic momentum
distribution n∞(k). The cloud has a spherical symmetry, and its radial distribution is not
compatible with a Bose function (see figure 3.14). In particular, at large k, the distribution
scales as k−4, and we thus wonder if this cloud is responsible for the k−4 decay observed in 2016.
In a regular experimental cycle, the atoms reaching the plates are always in mJ = 0, the BEC
distribution observed on the detector being transferred in mJ = 0 from the mJ = +1 state with
a RF pulse. The same pulse also transfers a part of the parasite atoms in mJ = ±1, while the
rest of the cloud remains in mJ = 0, and is thus detected. Hence, the total distribution measured
on the detector is a mixture of the two clouds, and it is not straightforward to know which is
which.

Separation of the spin components One solution is to separate the two distributions in
ToF. It actually raises several technical difficulties with our current setup. Differentiating the
two clouds’ high k components requires to separate them by large distances. Figure 3.15 shows a
measurement in which we have separated the two distributions by the maximum distance allowed
by the MCP detector (∼ 4µm−1). To do so, a magnetic gradient is applied at the beginning
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Figure 3.14: Log-log scale plot of the n∞(k) distribution of the mJ = 0 population present in
the trap. The high-k density decays with a k−4 tail.

of the expansion to push the mJ = +1 BEC away from the mJ = 0 parasite cloud, before
performing the usual RF transfer. We see that this separation is not enough to prevent the high
k components of the "parasite" cloud to mix with the high k component of the BEC. In principle,
we could separate them a lot more along the gravity axis, where we are not limited by the finite
size of the detector. This would require the installation of gradient coils along the z direction of
our science chamber.

Removing the mJ = 0 population We could also think of extinguishing the "parasite"
atoms with a well chosen Rabi pulse, transferring all the atoms initially in mJ = 0 to a non
detected state. This is not straightforward either, because the magnetic bias used to define the
quantization axis has a gradient-like inhomogeneity of 0.2 G.cm−1, that tends to separate the
center of the two in-trap populations, making the RF resonance different for the BEC and the
mJ = 0 cloud. We instead perform an optical pumping stage, similar to the one described in
section 1.1.2, reducing the in-trap population of mJ = 0 atoms by a factor of ∼10. After the
expansion, the amplitude of the k−4 wings on the n∞(k) distribution is strongly reduced as
shown in figure 3.16, and does not follow the linear behavior of figure 3.9 anymore.

Removing the in-trap condensate It is also interesting to observe the n∞(k) popluation
in absence of an in-trap BEC. We completely remove the mJ = +1 BEC from the ODT, by
lowering the trapping frequencies and applying a magnetic gradient. The mJ = 0 atoms are not
effected by the gradient, and therefore remain trapped. In figure 3.17, we compare the n∞(k)
distribution of the "parasite" cloud, with and without the presence of the BEC in the ODT. We
see that the k−4 decay is not present in the second case, suggesting that this polynomial decay
arises from an interplay between the two spin components.
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Figure 3.15: (a) Detection of the BEC (dense, anisotropic cloud in the bottom-left of the detector)
situated at a distance s from the "parasite" cloud (diluted, isotropic distribution centered on the
detector). The two clouds have been separated by a magnetic gradient applied at the beginning
of the expansion. Various density profiles ((c), (d), (e), (f)) are plotted along the gravity axis (z,
orthogonal the detector) with an angular integration of ∼ 10◦. Those density profiles are centered
on : (c) the BEC (d) the "parasite" cloud, (e) and (f) two other regions at a distance s from
the parasite cloud. We see that all the high k components of the different profiles seem rather
identical (b), suggesting that the BEC and the "parasite" cloud are not well enough spatially
separated to distinguish their respective high momentum distributions.
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applying an optical pumping stage on the trapped cloud, reducing the in-trap population in the
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Figure 3.17: Log-log scale plot of the n∞(k) distribution of the mJ = 0 population present in
the trap, (a) in presence, and (b) in absence of the mJ = +1 BEC. The dashed lines are Bose
fits, and the dashed-dotted line is a k−4 decay.
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Conclusion

Although very preliminary, those recent observations strongly suggest that the k−4 decay ob-
served in the asymptotic momentum distribution of the expanding mJ = +1 BEC is due to the
presence of a small in-trap population of mJ = 0 atoms. This raises a list of questions to address
in the future, namely :

• What is the nature of the coupling between the two spin components, and how does it give
birth to such high-amplitude k−4 tails? Is it an in-trap mechanism or an effect due to the
release of the gas?

• Is there a k−4 decay in the asymptotic momentum distribution of the population initially
in mJ = +1, or is the observed tail due to the mJ = 0 atoms only?

• How does this k−4 decay survives the expansion? Is there a non-adiabatic process involved
when the trap is turned off?
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Chapter 4

Measuring the momentum distribution
of a lattice gas at the single-atom level

Quantum gases loaded into optical lattices, or "lattice gases", offer the opportunity to study, in a
controllable way, simple condensed matter models of interacting particles, like the Bose-Hubbard
model or the Ising model [10]. In 2002, the observation by Greiner et al. [25] of the superfluid
to Mott insulator phase transition with ultra-cold Rubidium atoms loaded in an optical lattice
constituted a major breakthrough, and opened the era of the investigation of quantum phase
diagrams with optical lattices.

Many lattice gas experiments rely on Time-of-Flight (ToF) optical imaging to measure the
momentum distribution of the system [25, 26, 16, 17, 27]. The main limitation of optical probe is
their inefficiency at long ToF, due to the rapid decay of the atomic density during the expansion.
For typical experimental parameters, those short ToF are not sufficient to access the Far-Field
Regime (FFR) of expansion, where the spatial distribution of the gas can be mapped to the
momentum distribution [23, 22, 24]. Furthermore, in 3D systems, the finite resolution and the
column integrated density of optical measurements strongly limit the ability to unambiguously
identify the appearance of a coherent fraction [23, 120, 121]. This chapter describes how the
MCP detector circumvent those limitations, by achieving a 3D atom-per-atom detection of a
lattice gas in the FFR.

The first section recalls some generalities of lattice physics, and introduces the Bose-Hubbard
model. The ToF expansion of atoms released from the lattice is also discussed, and the criterion
for entering the FFR is established. In the second section, we describe the experimental sequence
and prove that the FFR is reached, with a measurement of the "sharpness" of the atomic in-
terference pattern. In the last section, we compare the measured distributions with theoretical
in-trap momentum distributions, calculated by ab-initio quantum Monte-Carlo (QMC) methods.

4.1 Quantum gas in optical lattice : equilibrium properties and
expansion

4.1.1 The Bose-Hubbard model

In the following, we present the basic theoretical tools necessary to describe interacting quantum
particles inside a sinusoidal potential. This first part (until the derivation of the Bose-Hubbard
Hamiltonian) is strongly inspired by [122].

85
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Generalities

Like discussed in section 1.1.3, once loaded inside the 3D optical lattice, the potential felt by the
atoms is given by equation 1.7. In this paragraph, we first consider non-interacting particles.
The hamiltonian of the system is thus :

H =
P 2
x

2m
+
P 2
y

2m
+
P 2
z

2m
+ V0

(
sin2

(
ka
2
x

)
+ sin2

(
ka
2
y

)
+ sin2

(
ka
2
z

))
+ Vext(x, y, z). (4.1)

We see that H is completely separable along the 3 directions of space. To simplify the
discussion, let us consider a homogeneous (Vext = 0) system along one direction only :

H1 =
P 2
x

2m
+ V0 sin2

(
ka
2
x

)
. (4.2)

The natural spatial and momentum scale of the problem are a and ka. We also define the
recoil energy of the lattice, that is the energy acquired by an atom absorbing a photon at λl =
1550nm:

Er =
~2

8ma2
(4.3)

Because of the spatial periodicity of the hamiltonian (period a), we can apply the Bloch
theorem [3] to deduce the form of the Eigen functions of H1 :

ψn,q(x) = eiqxun,q(x) n ∈ N, q ∈ R (4.4)

The function ψn,q are called the Bloch waves (see figure 4.2), and ~q is the quasi-impulsion,
with q defined modulo ka. As for the un,q functions, they have a spatial periodicity of a and
verify : [

(Px + ~q)2

2m
+ V0 sin2

(
ka
2
x

)]
un,q(x) = En(q)un,q(x). (4.5)

The Eigen energies En(q) define a band structure, n being the index of the band. They verify
En(q) < En+1(q) ∀(q, n) (no inter-band crossing) and En(q + ka) = En(q) ∀(n, q) (periodicity
of ka) so that we can restrict ourselves to the interval

[
−ka

2 ,
ka
2

]
called the first Brillouin zone.

With the approximations we have done so far (no interactions and homogeneous system), the
energy En(q) and the functions un,q can be easily calculated numerically. In figure 4.1, we plot
the first 4 energy bands for V0 = 0, 5, 10 and 15Er. We can see that raising the lattice depth has
two main effects on the band structure : decreasing the bands’ width, and increasing the energy
gap between the bands.

We can also introduce the Wannier functions [123], defined from the Bloch waves by :

wn,j(x) =

√
a

2π

∫
BZ

ψn,q(x)e−ijqa dq j ∈ N, (4.6)

where BZ designates an integration over the first Brillouin zone. With equation 4.6, we have
built a basis indexed over the lattice sites j instead of the quasi-impulsion q, leading to a simple
physical interpretation for the Wannier basis : wn,j is the wave function of a particle localized
at the j-th site of the lattice. Note that contrary to the Bloch waves, the Wannier functions are
not Eigenstates of the Hamiltonian, so that a particle initially localized inside a lattice site can
"jump" from one site to another over time, by tunneling through the potential barrier.



4.1 Quantum gas in optical lattice : equilibrium properties and expansion 87

-0.5 0 0.5

q/k a

0

5

10

15

20

25

E/
E r

V0 = 0 Er

-0.5 0 0.5

q/k a

0

5

10

15

20

25

30

E/
E r

V0 = 5 Er

-0.5 0 0.5

q/k a

0

5

10

15

20

25

30

35

E/
E r

V0 = 10 Er

-0.5 0 0.5

q/k a

0

5

10

15

20

25

30

35

E/
E r

V0 = 15 Er

Figure 4.1: First five energy bands for various values of the lattice depth V0. Note the opening
of a gap between the first bands as the depth increases.
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Figure 4.2: Top : Real part of the Bloch waves of the fundamental band (n = 0) for different
lattice depths. The blue curve corresponds to the quasi-momentum q = 0, while the red curve
corresponds to q = ka/2. Bottom : Real part of the Wannier function of the fundamental band.

To characterize this important effect, let us introduce the second-quantization notations.
The operator bn,q (resp. b†n,q) annihilates (resp. creates) a particle in the n-th energy band,
with a quasi-momentum ~q. Similarly, the operator an,j (resp. a†n,j) annihilates (resp. creates)
a particle in the n-th energy band, in the lattice site j. In second-quantization, the hamiltonian
can be re-written :

H1 =
∑
n

∫
BZ
En(q)b†n,qbn,q dq. (4.7)

We can also invert relation 4.6 to obtain :

bn,q =

√
a

2π

∑
j

an,je
ijqa (4.8)

which combined to equation 4.7 gives :

H1 =
∑
n

∑
j,j′

Jn(j − j′)a†n,j′an,j , (4.9)

where we have defined the tunnel coupling Jn(j − j′) = a
2π

∫
ei(j−j

′)qaEn(q) dq between the
site j and j′.

Jn(j−j′) decrease with |j − j′| and with V0, so that in the tight-binding approximation (deep
lattice), only the tunneling amplitude between neighboring sites is not negligible.
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Bose-Hubbard Hamiltonian

So far, we have considered non-interacting particles, and we now introduce an interaction term
Hint to our Hamiltonian. Just like in chapter 3, we will see that the interactions play a fun-
damental role in the equilibrium properties of the system. In the lattice, the 2-body contact
interactions take the form :

Hint =
g

2

∫
φ†(x)φ†(x)φ(x)φ(x) dx, (4.10)

where φ(x) (φ†(x)) is the bosonic field operator that annihilates (creates) a particle at position
x. And since we have :

φ(x) =
∑
n

∑
j

wn,j(x)an,j , (4.11)

equation 4.10 becomes :

Hint =
g

2

∑
n1,j1

∑
n2,j2

∑
n3,j3

∑
n4,j4

a†n4,j4
a†n3,j3

an2,j2an1,j1

∫
w∗n4,j4w

∗
n3,j3wn2,j2wn1,j1 dx. (4.12)

Let us introduce further approximations. For a BEC, we can make the reasonable hypothesis
that all the atoms occupy only the lowest energy band, in a narrow region around q = 0.
Furthermore, the interaction energy is too low to induce coupling to higher energy bands, since
µ� V0. In the following, we thus consider only the fundamental band n = 0, dropping the index
n from the notations. We can also notice that the scattering length as is 2 orders of magnitude
lower than the lattice spacing a (7.5nm compared to 775nm) so only the interactions between
the atoms in the same lattice site need to be taken into account. Those two approximations
considerably simplify equation 4.12, since there is no sum over n anymore, and only one sum
over j. By introducing the number of atoms in site j, nj = a†jaj , and the on-site interaction
energy U = g

∫
|w0,0(x)|4 dx, we obtain :

Hint =
U

2

∑
j

nj(nj − 1) (4.13)

With the additional tight-bidding approximation, and the notation J = J0(1), we can now
write the complete hamiltonian in the Bose-Hubbard (BH) form :

HBH = −J
∑
j

(a†jaj+1 + a†j+1aj) +
U

2

∑
j

nj(nj − 1) (4.14)

Within this framework, illustrated by figure 4.3, the nature of the homogeneous ground state
is driven by two quantities : U and J , both of them depending on the lattice amplitude. In
particular, the ratio U/J varies rapidly with V0. If we restrict the discussion to the case of
integer filling (M lattice sites and N ∝ M particles), then the ground state |Ψ0〉 is exactly
known for the 2 extreme cases :

• U/J → 0 |Ψ0〉 = 1√
N !

(b†q=0)N |0〉. The system is Superfluid (SF), with a condensed fraction
of ∼ 1. The atoms are delocalized, leading to a phase coherence over the entire system.

• U/J →∞ |Ψ0〉 = 1√
N !

∏
j a
†
j |0〉. The atoms are localized on the lattice sites, and the high

interaction energy prevents them from tunneling to an already occupied site. The system is
in the so-called Mott Insulator (MI) regime : an insulator phase caused by the interactions.
The coherence is lost and the condensed fraction is 0.
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Figure 4.3: Illustration of the Bose-Hubbard model. The physic of the homogeneous system
depends on two quantities : the tunneling amplitude between neighboring sites J , and the on-
site interaction energy U .

For intermediate values of U/J , finite temperature, and/or inhomogeneous (trapped) system,
there is no analytical solution for the Hamiltonian, but it can still be exactly solved numerically
with QMC calculations. Let us however mention the existence of various approximations giving
good predictions for certain regimes, at T 
 0 :

• For U/J � 1 in a regime of shallow lattice, where most of the atoms are condensed, and
only a small fraction populates the higher q modes, we can apply the Bogoliubov treatment
(see chapter 3), by setting b0 = b†0 =

√
N , and keeping only the terms quadratic in bq and

b†q (q �= 0). We can then deduce the excitation spectrum and the Eigenstates of the system
[124, 125], with the Bogoliubov transformation.

• For U/J > (U/J)C , where most of the atoms are localized in the lattice sites, there subsist
some tunneling that can couple the ground state |Ψ0〉 (perfect MI) to the first excited state
|Ψ1〉 = 1√

N

∑
j(a†jaj+1 + a†j+1aj). The system is still insulating, but the appearance of

delocalized particle-hole excitations establish a short-distance phase coherence.

• Another approach consists in treating each lattice site independently, thus writing the
hamiltonian in the decoupled form : Hdec =

∑
j Hj [126]. The idea is to make the approxi-

mation a†jak 
 a†j〈ak〉+ 〈aj〉∗ak, neglecting all correlations between lattice sites, except for
the coherent coupling α = 〈aj〉 (which is the same for all j). By essence, this approximation
is not adapted to describe spatial correlations in the lattice, but it can handle both Fock
states (localized atoms) and coherent states (delocalized atoms). Therefore, the decoupled
ground state coincides with both SF phase and MI phase for the asymptotic values of U/J ,
and can capture some accurate behaviors in-between. We will use this approach several
times in the following.

The SF to MI transition is a second-order quantum phase transition occurring at T = 0, and
for a critical value (U/J)C depending on the filling factor. At finite T , there is no transition, but
only a crossover. Below (U/J)C , the SF to normal gas (NG) transition at Tc is equivalent to the
Bose-Einstein condensation. The critical temperature Tc decreases with the ratio U/J , and goes
to 0 at (U/J)C . On the other hand, there is no MI to NG transition, just a crossover. Figure
4.4 is a sketch of the BH phase diagram along the axis U/J and T .

For inhomogeneous systems, the spatial variations of the chemical potential modify this
simple picture, since both the filling factor and the density become position-dependent. For the
SF to MI transition, it leads to the famous wedding-cake structure [124], where both SF and MI
phases coexist inside the trap. The case of the SF to NG transition in a inhomogeneous system
is discussed in the next chapter.



4.1 Quantum gas in optical lattice : equilibrium properties and expansion 91

T

Superfluid

Normal Gas

Mott Insulator
U/J

U/Jc

Figure 4.4: Sketch of the phase diagram of the Bose-Hubbard hamiltonian for a homogeneous
system with unity (or commensurate) filling. A system prepared in the superfluid state can
undergoes two phase-transitions : the usual transition to normal gas at T = Tc(U/J), and an
interaction-induced quantum phase transition to the Mott insulator state at (U/J)c and T = 0.
In both cases, the superfluid fraction goes to zero. On the other hand, the Mott insulator to
normal gas transition is a smooth crossover.
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4.1.2 Expansion from the lattice

Non-interacting case

W(t)

Lattice
n(x)

Far-field
n(k)

Tim
e-of-flight

Figure 4.5: After switching off the lattice trap, the cloud expands freely while falling under
the effect of gravity. The width W (t) of the Wannier function shortly enters a regime where
it increases linearly with time. The interference between the overlapping wave packets fully
develop in the far-field regime, and the spatial distribution can be mapped to the momentum
distribution.

In the non-interacting case, after abruptly removing the lattice potential, the cloud expands
freely until a point where it enters the FFR of expansion, where the density distribution gives
access to the in-trap momentum distribution. An analogy can be made with an optical wave
diffracted by a given transmission pattern T (x, y). In the Fraunhofer diffraction regime, far from
the (x, y) plane, the intensity distribution of the field is directly proportional to the Fourrier
transform of T (x, y).

We will now describe this expansion, and derive the conditions to enter the FFR. We do not
make any assumption about the lattice filling, and suppose that our system is homogeneous, well
described by the BH Hamiltonian, and contains N atoms, initially distributed along M lattice
sites. The calculations are still performed along one direction of space for simplification, and
the size of the system along this direction is noted L = Ma. At any moment t of the free-fall,
equation 4.11 can be re-written :

φ(x, t) =
∑
j

wj(x, t)an,j , (4.15)

where we have introduced the expanding version of the Wannier functions wj(x, t) = w0(x−ja, t).
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Like in [22], we can approximate it by the ground state of a harmonic oscillator of length a0 :

w0(x− ja, 0) ' e−(x−ja)2/(2a20)

π1/4√a0
(4.16)

w0(x− ja, t) ' 1

π1/4
√
W (t)

exp

[−(x− ja)2

2W 2(t)

]
exp

[
i
−(x− ja)2

2W 2(t)

~t
ma2

0

]
, (4.17)

where W (t) = a0

√
1 + (~t/ma2

0)2 is the width of the expanding Wannier function, that can
be approximated by W (t) ' ~t/ma0 after a very short time of expansion, even at low lattice
amplitude. In the case of Helium, for V0 = 3Er, the width W (t) is multiplied by 100 after 300µs
of free-fall. In the envelop of w0(x − ja, t), we can thus rapidly neglect the dependency in ja :
ja ≤ L�W (t), so

exp

[−(x− ja)2

2W 2(t)

]
' exp

[ −x2

2W 2(t)

]
exp

[−x× ja
W 2(t)

]
, (4.18)

and x× ja/W 2(t) can also be neglected if we restrict ourselves to a region where x�W (t)2/Ma,
which is always true in practice.

As for the phase term of w0(x − ja, t), we need to wait a much longer time in order to
get rid of the quadratic dependence of ja (equivalent to the fresnel phase in optics). Indeed,
(x−ja)2

2W 2(t)
~t
ma20
' (x−ja)2

2a0W (t) , and so we need (ja)2

2a0W (t) � 1 ∀j, which can be re-written

t > tff = mL2/2~ (4.19)

defining the condition to enter the FFR [23, 22]. When t ' tff , the accuracy of the mapping
between the spatial distribution of the (non interacting) cloud and the momentum distribution
is already at the percent-level. For a gas of rubidium with a phase coherence overM = 50 lattice
sites, tff ' 400ms, very far from the usual optical imaging conditions. For Helium, much lighter
than rubidium, the same conditions give tff ' 60ms. With such a time of flight, the density of
the cloud has dropped by ∼ 12 orders of magnitude, even for low lattice amplitude, making it
very difficult to image optically. The electronic detection offered by the MCP, however, allows to
image very diluted clouds because of its single-particle sensitivity. The detector is located 50cm
below the science-chamber, leading to an average time-of-flight of ∼300ms (ToF of the center of
mass), that satisfies the far-field condition for most of the cases.

In the FFR, the expansion is ballistic, and we can define the momentum ~k from the position
x by :

~k = mx/t (4.20)

the expanding Wannier function can finally be approximated by :

wj(k) ' A(k)e−ikaj (4.21)

A(k) ∝ exp
[
−k2a2

0/2
]
eiωt, (4.22)

where ω = ~k2/2m. We can also use equation 4.6 to retrieve the form of the Bloch waves in the
FFR :
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ψq(k) ' 1√
M
A(k)

sin (Ma(k − q)/2)

sin (a(k − q)/2)
, (4.23)

directly connected to the Fourrier transform of ψq(x) in the trap, so that the quantity n(k) =
〈φ†(k)φ(k)〉 is indeed equal to the initial momentum distribution of the gas. Figure 4.5 shows
the evolution of the cloud’s spatial distribution during the ToF, as it gets closer and closer to
the momentum distribution.
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Figure 4.6: Modulus of the expanding superfluid wave packet (solid line) for various ToF, com-
pared to the in-trap momentum distribution (orange-dotted line). For time longer than tFF (
' 50ms in this example) the spatial distribution of the wave packet matches the initial momen-
tum distribution. Note that the horizontal axis changes for the different ToF, because of the
definition of k 4.20.

The role of the interactions

How does the conclusion of the previous section hold for our interacting, trapped system? De-
scribing the impact of the interactions on the expanding lattice gas is notoriously difficult. Con-
trary to the case of the trapped BEC, the physics of the first instants of the ToF can not be
captured by a mean field calculation, because the lattice structure adds the timescale 1/ωsite of
the single site’s expansion, which dominates all the other energy scales. Indeed, we easily enter a
regime where ~ωsite � µ , meaning that the initial expansion is driven by the zero-point energy
of the lattice sites, rather than the mean field released energy. When the expanding Wannier
functions start to overlap (W (t) ∼ a), the density is divided by a factor of (a/a0)3, very high in
general. Therefore, we do not expect the mean field energy to play a significant role at this level
as well [23].

There exists little theoretical work describing the effect of the interactions beyond the mean
field approximation. In [127], the authors performed a 1D model on a small system (10 atoms
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expanding from 10 lattice sites). The calculations, based on the truncated Wigner function, show
that interactions during the expansion reduce the contrast of the diffraction peaks by almost a
factor of 2. Of course, one expects this effect to be much less dramatic in 3D. In [28] the authors
have used a site-decoupled approach to calculate (for any dimension) the impact of the on-site
interactions just after the lattice potential is switched off. Their conclusion, similar to [23], is
that the on-site interactions tend to enlarge the width of the expanding Wannier function, and
create a dephasing between the center and the edge of the trap, which in both cases reduce the
contrast of the diffraction peaks. However, with our small scattering length (much smaller that
the separation between two lattice sites) having a lattice filling close to unity is enough to make
those effects negligible.

In conclusion, the expansion of a 3D lattice gas with ~ωsite � µ, and with a filling factor
close to 1 at the center of the trap should be ballistic with a very good approximation, and so
the atomic distribution in the FFR is expected to be close to the in-trap momentum distribution
of the gas.

• In this regime, the expansion energy during the ToF is dominated by the zero point energy
of the lattice site, so one expects that the mean field energy does not play a role during
the expansion.

• The unitary filling assures a sufficiently homogeneous distribution of the interaction energy
among the sites, leading to a uniform phase evolution of the wave packets expanding from
each site, and therefore no additional interference effect that would disturb the distribution
during the ToF.

Now, we need to test these physical arguments experimentally, which is the object of the
next sections.

4.2 Entering the far field regime of an expanding lattice gas

4.2.1 Choice of the system and experimental sequence

We choose to take our measurements with U/J = 10, far enough from the MI transition
((U/J)c ∼ 30) for the system to be fully coherent, but also sufficiently high to have a strongly
interacting gas. Indeed, with a site-decoupled approach based on the Gutzwiller ansatz [126], we
can show that those parameters lead to a depleted fraction of 15%, 2 orders of magnitude higher
than for the trapped BEC. It corresponds to a lattice depth V0 ' 9.6Er and a measured external
trapping frequency of ωext = 2π(308, 295, 298)Hz along the science chamber axis. This leads to
M ' 50 lattice sites, that we load with a BEC of about 4× 104 atoms in order to be close to the
unity filling at the trap center. The interest of working with a coherent lattice gas comes from
the presence of the diffraction peaks. They constitute narrow structures in momentum density,
a good way to confirm that the FFR is reached, and that our resolution is good enough to image
k structures of the order of ∼ 1/L.

We perform the adiabatic loading by ramping up the 3 lattice beams with an exponential
ramp of duration 100ms, and characteristic time 20ms. In the meantime, the ODT is ramped
down with a 80ms ramp of characteristic time 20ms. We can check the adiabaticity of the
loading by applying a time-reverted version of the sequence, unloading the atoms back in the
ODT from the lattice, and verifying that we see no loss of atoms nor visible thermal fraction.
We usually hold the gas several dozen of ms, depending on wether or not we chose to apply
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ODT

Figure 4.7: Scheme of the experimental cycle. The atoms are loaded in the lattice (blue) from
the ODT (orange). After a holding time, the lattice is cut and the gas expands freely. During
the time-of-flight, a fraction of the atoms is transferred into the mJ = 0 state with an RF pulse
(red), and the rest is pushed away by a magnetic gradient (violet). A homogeneous magnetic
field (green) ensures a fixed energy difference between the spin levels. Finally, the atoms in
mJ = 0 are detected on the MCP detector (cyan) after a time of flight of 325ms.

a heating sequence to raise the temperature of the sample. The heating sequence is done by
quickly modulating the lattice amplitude of one arm with square pulses of 500μs duration, the
number and the amplitude of those pulses depend on the amount of energy we want to deposit
in the system.

Finally, the lattice is abruptly switched off and the cloud expands freely. We then image the
distribution, either with the absorption probe after a short ToF (0ms to 20ms), or with the MCP
detector after a ToF of 325ms. In that case, a controllable fraction of the atoms is transferred
in the detected mj = 0 with a RF Rabi oscillation just after switching off the trap. We then
remove the other atoms with a magnetic kick. The fraction we chose to transfer depends on the
density of the studied sample (typically between 1% and 50%), the aim being to maximize the
signal while trying to avoid saturation effect of the MCP (like in chapter 3). The entire cycle is
summarized in figure 4.7.

4.2.2 Calibration of the lattice depth

We calibrate the lattice depth V0 with 2 methods : Kapitza Dirac oscillations, and parametric
heating. These techniques are based on different physical phenomena, and possess their pros and
cons.
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Figure 4.8: Parametric heating calibration. Atom number in an expanding lattice cloud measured
by absorption, after a sinusoidal modulation of frequency ν of the lattice amplitude. The lattice
depth is fully characterized by the central frequency of the dip.

Parametric heating

By modulating the lattice amplitude V0 with a frequency ν, we create two sidebands ±hν in the
laser spectrum, that can transfer an energy 2hν to the atoms via a resonant 2-photon process.
This is a way to measure V0 by probing the energy difference between the fundamental band
of the lattice (populated by the atoms) and the second excited band. Indeed, the amplitude
modulation is an even-parity process [128] that can couple only wave function of the same parity,
so there is no transfer between the ground band and the first excited band at quasi-momentum
q = 0.

Figure 4.8 shows the atom number N measured by absorption, plotted as a function of the
modulation frequency of the lattice. A transition to the second excited bands will create a loss
of atoms, so this measurement can directly be seen as a resonance curve, the dip in atom number
indicating an inter-band transition. The advantage of this technique is to directly perform the
calibration inside the lattice, contrary to Kapitza Dirac pulses (see below), applied either in the
ODT or in free space.

Kapitza Dirac

Instead of loading the atoms inside the optical lattice, we apply a short pulse of lattice light to
the BEC for a duration τ (typically a few dozen of μs). The Kapitza Dirac approximation can
be applied if τ � 1

ωsite
where ωsite is the trapping frequency of one lattice site (approximated by

local harmonic potential). In this regime, the population of atoms that acquires a momentum
±�ka oscillates with τ . The amplitude and the frequency of the oscillation of the diffracted
population (that can be directly probed by a time of flight imaging with the absorption scheme)
is fully characterized by the lattice depth. The main advantage of this technique is to give a
unambiguous experimental signal to work on when aligning the lattice (for instance : maximizing
the population in the diffracted peak for a small value of τ).

Figure 4.9 presents an example of such a Kapitza Dirac oscillations, and the corresponding
analysis. There are two major drawbacks with this technique. First : it is difficult to control and
measure the amplitude of a light pulse on the microsecond timescale, making the uncertainty of
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(a)

(b)
Kapitza-Dirac Calibration : V0 = 7.7 Er

Figure 4.9: a) Absorption imaging pictures of an expanding BEC after a lattice pulses of various
time. In the Kapitza-Dirac regime, the population in the diffracted peaks oscillates with the
applied time of the pulse. b) The lattice depth is fully characterized by the amplitude and
period of the oscillations.

the calibration difficult to evaluate. Second : this calibration is not directly performed in the
lattice trap, so it might not reflect fully the experimental conditions.

3D band mapping

Figure 4.10: 3D band mapping. After an heating sequence, the lattice trap is adiabatically
opened by an exponential ramp of 100ms. The cloud expands freely and falls on the MCP
detector. The cube-shape of edge ka of the distribution indicates that the energy distribution
spreads over the entire Brillouin-zone. The very small fraction of atoms outside of the cube
shows that most of the gas populates the first energy band.
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The aim of the heating sequence is to vary T in order to explore the phase diagram of the
BH model. For this model to remain valid, one has to make sure that the heating pulses do
not induce transition to higher energy bands. We use the band mapping technique [129] that
consists in opening slowly the trap to adiabatically map the Bloch waves to the plane waves of
the free particle basis. If we note Ex the energy of the an atom along the x lattice, then the band
mapping will project this atom on the free particle state of momentum �kx =

√
Ex
2m . If the atoms

are inside the fundamental band, their energy along one of the lattice arm is limited to Er, and so
the resulting �k distribution is contained inside a cube centered on �0 and with an edge of ka. On
the other hand, observing atoms outside of this cube means that the population in the excited
band is not zero. Figure 4.10 shows a distribution of atoms detected on the MCP, obtained with
the band mapping technique. The temperature of the gas is high enough to populate entirely
the first Brillouin zone, but the inter-band energy gap (
 6Er for V0 = 10Er) strongly limits the
transitions to higher energy bands. Note that in this case, about 1% of the atoms are outside of
the cube.

4.2.3 Measurement of the "sharpness" of the diffraction pattern

σ d

Figure 4.11: Evolution of the ratio σ/d during the time of flight. The small time (tTOF <
20ms) measurements are performed with absorption imaging, the long time measurement (tTOF 

325ms) is detected on the MCP. The solid curves are plotted to guide the eyes.

As stated before, a Helium gas coherent over 50 lattice sites (L = 50a) will enter the FFR in
about 50ms. Therefore, the average 325ms of ToF necessary to reach the MCP guarantee that
this condition is fulfilled. However, we would like to confirm equation 4.19 experimentally. In
the FFR, the distance d between the diffraction peaks is given by ka, and the width σ of each
peak is Fourrier-limited, meaning that σ 
 2π/L, and so σ/d 
 a/L is constant over time. In the
early stage of the expansion, all the momenta are not "fully developed" yet. The low momenta
develop first, so the effect of the short expansion time is mainly to broaden the peaks (see figure
4.6), and thus σ/d > a/L. As we get closer to the FFR, the peaks get narrower and σ/d tends
to its asymptotic value. In figure 4.11, we have plotted the ratio σ/d measured at small ToF
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(absorption imaging) and long ToF (MCP detection). The evolution of the ratio is compatible
with the expected behavior, saturating at a asymptotic value. We have checked that for bigger
system size (larger N), the initial ToF dynamics is slower (it takes more time to enter the FFR),
and the final value of the ratio, inversely proportional to L, is lower.

4.3 Experimental results and comparison with the Bose-Hubbard
model

Figure 4.12: Example of a dataset obtained by reconstructing the 3D distribution of hundreds
of clouds falling onto the MCP. Each dot corresponds to a single detected atom.

We will now focus on the asymptotic momentum distribution n∞(~k) of the lattice gas detected on
the MCP. Like in chapter 3, we define ~k = m~v/~, with ~v calculated form the detector signals using
equations 2.3, 2.4, 2.5. Contrary to the case of the trapped BEC, there is no angular symmetry in
the lattice ToF distribution, so we need to accumulate much more data to look for low densities.
In this section, we present the comparison between n∞(~k) and ab initio QMC calculation of the
in-trap momentum distribution, obtained with the BH model for the parameters measured in
the experiment.

4.3.1 Extraction of 1D profiles and comparison with Quantum Monte Carlo

1D cut in the 3D distribution

A typical dataset, like the one shown in figure 4.12, is composed of 500 to 1000 experimental
runs. Each run corresponds to the detection by the MCP of 100 to 3000 particles, depending
on the RF transfer we choose to apply. As mentioned before, the amount of atoms we transfer
in the detectable state depends on the density of the sample. For a temperature higher than
Tc, the condensed fraction is zero, and the average density in momentum space is low, because
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Figure 4.13: Semi-logarithmic plot of a 1D profile n∞(k, 0, 0), obtained by combining high-flux
and low-flux profiles extracted from the 3D measurement. We see that the low-flux data do not
allow to image the low-density region of the distribution, while the high-density data exhibit
visible saturation effect on the diffraction peaks (asymmetry). Combining the two allows us to
reach a high-dynamic range in density (∼ 4 decades).

the distribution is spread over all the first Brillouin zone (width ∝ 1/a). We therefore need to
transfer a high fraction of the cloud in mJ = 0 (up to 50%) to raise the signal-to-noise ratio.

For a temperature below Tc, the momentum distribution of the cloud is composed of two
regions, corresponding to the condensed fraction (width ∝ 1/L) and the depleted fraction (width
∝ 1/a). Since (L/a)3 � 1, the density ratio between the 2 regions is high : up to 4 orders of
magnitude. To image the full density range, we use the same technique than for the BEC (see
chapter 3) and take 2 datasets, with low and high RF transfer. We then combine the two to
obtain the full distribution.

We extract 1D density profiles from the 3D distribution by calculating the histogram n∞(k, 0, 0)
of the number of atoms inside boxes centered on ~k = (k, 0, 0), and of size (∆k, 3∆k, 3∆k), where
∆k = ka/160. We recall that the resolution of the detector is of the order of 2 × 10−3 ka, i.e.
ka/500. Figure 4.13 presents a typical 1D profile extracted from our 3D distribution, obtained
by merging high-flux and low-flux data.

Comparison with quantum Monte-Carlo calculation

As mentioned before, the equilibrium properties of the BH hamiltonian for trapped system at
finite temperature can be exactly calculated with the QMC "worm algorithm". Such simulations
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Figure 4.14: Comparison between the complete 1D profile n∞(k, 0, 0), and n(k, 0, 0) extracted
from the QMC simulation, calculated for our experimental parameters (U/J = 10, ...) and
T = 3.9J .

have been performed by G. Carleo on the ETH Zurich cluster with our experimental parameters,
that are :

• N , measured with absorption imaging (about 15% fluctuations).

• a, given by the laser wavelength.

• V0, calibrated by Kapitza-Dirac oscillations and parametric heating (about 10% uncer-
tainty).

• Vext, obtained by measuring the oscillations of the center of mass of the cloud in the trapped
formed by the first passage of the lattice beams (about 10% uncertainty).

• m, the mass of 4He.

The only quantity we do not measure independently is the temperature, and it is left as a
"free" parameter. The QMC calculations, that have been performed for various T , gives us a
theoretical momentum distribution n(�k) that we can compare to n∞(�k). To take into account
the efficiency of the detection process, we rescale the experimental data by matching the height
of the diffraction peaks to the one of the QMC calculation. Figure 4.14 shows the comparison
between one of our experimental datasets, and a QMC profile at T = 3.9J . We see a good
agreement over more than 3 orders of magnitude in density, except for the central region. As
explained in the next section, we attribute this mismatch to the local saturation of the detector.

Apart from this, the excellent match found in the width of the side peaks further confirm that
we have reached the FFR, because the high momenta corresponding to the narrowest features of



4.3 Experimental results and comparison with the Bose-Hubbard model 103

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0
6050403020100

0.001

0.01

0.1

1

10

100

7
0.01

2 3 4 5 6 7
0.1

2 3 4 5 6 7
1

2

1.0

0.8

0.6

0.4

0.2

0.0
6050403020100

Position (lattice site)

Position (lattice site)

A
to

m
 n

um
be

r 
/ s

ite
A

to
m

 n
um

be
r 

/ s
ite

Momentum

Momentum

A
to

m
 n

um
be

r 
/ b

ox
A

to
m

 n
um

be
r 

/ b
ox

5

6
7
8
9

0.01

2

3

4

5

6
7
8
9

0.1

7
0.01

2 3 4 5 6 7
0.1

2 3 4 5 6 7
1

2

T=3J

T=7J T=7J

T=3J

N=35e3

N=40e3

N=45e3

N=35e3

N=40e3

N=45e3

N=35e3

N=40e3

N=45e3

N=35e3

N=40e3

N=45e3

Figure 4.15: QMC calculations with our experimental parameters, for T = 3J , and T = 7J . Left
: in-trap density profiles in linear scale. Right : momentum density profiles in log-log scale. The
different curves in each panel correspond to different N , to take into account the 15% variations
of atom number on our experiment.

the diffraction pattern are fully developed. It also confirms that the resolution of the detector
is good enough to image structures smaller than ka/10, which is coherent with the resolutions
established in chapters 1 and 2. Finally, even though our main source of uncertainty is the atom
number N (∼ 15% fluctuations), figure 4.15 shows that this fluctuation actually has a very small
impact on the QMC profiles n(~k) at this temperature.

4.3.2 Investigating the saturation of the central peak

Evidence of saturation

Due to the narrow width of the diffraction peaks, we reach the regime of local saturation of the
MCP as soon as there are a few dozen atoms populating the peaks. To be a bit more quantitative,
we can use the reference value measured in section 1.2.4. The peak can be approximated by a
sphere of radius ka/12, corresponding to the excitation of an area of 10mm2 of the MCP, during
1ms. The non-linear regime of 2 × 105atoms.cm−2.s−1 is then reached for 20 atoms only. This
is the case for the central peak, even for our "low-flux" dataset (see figure 4.16), but not for the
first-order diffraction peaks, lower in density by a factor of 5 due to the Wannier envelop.

To confirm the presence of saturation, we investigate the evolution of the 1D profiles distri-
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Figure 4.16: Statistic of the number of atoms detected in the different peaks for the low-flux data
(less than 1% of the atoms transferred in the detectable state). The distribution is compatible
with a Poissonian law.

bution, as we change the transverse integration I of the boxes. To do so, we generate a series
of histograms n∞(k, 0, 0)I of the number of atoms inside boxes centered on ~k = (k, 0, 0), and of
size (∆k, I, I). Since the saturation increases with the density, we expect the small transverse
integration profiles to be more sensitive to this effect, because they probe the high-density core of
the peaks. In figure 4.17, we plot the evolution of different peak amplitudes Ap as a function of I
(from 3∆k to 90∆k). To compare this evolution with a non-saturated case, we have divided the
Ap(I) curves by Ap2(I), where p2 is the second-order diffraction peak of the high-flux dataset,
that we assume not saturated. Each curve is then normalized to its asymptotic value, in order
to compare the variations only. The plot reveals that all the peaks above a certain threshold (20
atoms detected per shot) exhibit a density depression at the peak’s core. This translates in a
fast decay of Ap(I)/Ap2(I) at low I, and constitutes a signature of the MCP saturation.

Circumventing the saturation effect

One way to get rid of the saturation effect would be to lower even more the flux, by reducing
the amount of transferred atoms to values lower than 1%. This is very time-consuming since it
implies to accumulate much more data to reconstruct a complete profile. Another way is to take
advantage of the symmetry of the momentum distribution. In figure 4.18, we show a plot of the
density n∞(k, 0,±ka) along the first and second order diffraction peaks, all below the saturation
thresholds. We compare this profile to the QMC calculation n(k, 0, 0), the height of the central
peak of those two distributions being normalized to 1 to get rid of the multiplying factor coming
from the decay of the Wannier envelope. The very good agreement we obtain further confirm
that, apart from the central peak, the diffraction pattern matches well the one expected from
the BH Hamiltonian.



4.3 Experimental results and comparison with the Bose-Hubbard model 105

2 4 6 8 10

0.7

0.8

0.9

1

1.1

k / ka

n(
k,

0,
0)

(unit of 3   k)Δ

Np 20
Np 20<

I

Ap(I)

Increasing I

A
p
/A

p
2

≥

Figure 4.17: Left : n(k,0,0) 1D profile as we increase the transverse integration I. We are
interested in the evolution of the peak’s amplitude Ap(I). Right : normalized plots Ap(I)/Ap2(I)
for various peaks (0-order, 1st-order and 2nd-order diffraction peaks). The plots in shades of
red correspond to peaks whose densities are close or above the saturation threshold (20 atoms /
shot). On the other hand, the plots in shades of blue are below this threshold.

Figure 4.18: Comparison between the 1D profile n∞(k, 0,±ka), and n(k, 0, 0) extracted from the
QMC simulation. We are interested in the ratio between the main peak and the side peaks, that
are all below the saturation regime of the detector. The comparison is done by normalizing the
height of the first-order peak (central peak of this distribution) to 1.
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4.3.3 Conclusions

The comparison with the QMC calculations confirms that the ballistic approximation for a lattice
SF close to unity filling is good over several orders of magnitude. It allows us to benchmark our
technique by measuring the momentum distribution of a 3D lattice gas of 4×105 bosons, loaded
inside 503 lattice sites. The fact that this measurement is performed in the FFR with single-
particle sensitivity gives us access to the microscopic population of the modes, an asset we will
exploit in the next chapter.



Chapter 5

Momentum distribution across the
superfluid to normal gas transition

In the previous chapter, we have compared the 3D distribution n∞(~k) of an expanding lattice
gas in the Far-Field Regime (FFR), with the in-trap momentum distribution n(~k) predicted by
the Bose-Hubbard (BH) Hamiltonian. The latter has been calculated using a QMC approach
with our experimental parameters, except for the temperature, which is not measured in the
experiment. Having the temperature as an adjustable parameter of the simulation can be seen
as an asset, since it allows to perform a precise thermometry of the system, and therefore to
explore the BH phase diagram at finite temperature. This is the object of the present chapter.

The first section describes how we construct a "thermometer curve" from the QMC simu-
lations, through a simple density ratio in momentum space. In the second section, we present
a direct measurement of the condensed fraction fc, using the 3D distribution to separate the
condensate’s peak from the excited modes. By combining this measurement to the thermometry
method, we can plot fc as a function of the temperature T across the Superfluid (SF) to Normal
Gas (NG) transition, and extract the critical temperature. The last section is dedicated to the
measurement of the second order correlations across the transition. We again exploit the three
dimensional aspect of the data to investigate the evolution of the correlations in the excited
modes only, preventing the signal to be flattened by the emergence of the condensate.

5.1 Thermometry in the 3D lattice

5.1.1 Temperature in optical lattices : state of the art

A quantity difficult to access

Cold atoms experiments generally offer a better control over the microscopic quantities than over
the macroscopic ones, like the temperature. Indeed, by construction, ultra-cold gases are isolated
from the rest of the world, and in absence of coupling to any kind of reservoir, there exists no
button to set the temperature of the system. In the case of lattice gases, it can also be very hard
to evaluate the temperature experimentally. For inhomogeneous (trapped) system, a couple of
methods based on the local density approximation use the in-situ density fluctuations to extract
the temperature of a lattice gas [130, 131]. Alternatively, the RMS width of the trapped system
can be used [132]. Those techniques require an high resolution imaging of the in-trap density,
which can be provided by quantum gas microscopes [12], but are not adapted for 3D and/or
homogeneous systems. On the other hand, extracting the temperature of a lattice gas from

107
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n(~k) is uneasy, since there exists no analytical formula for the momentum distribution of the
thermally depleted atoms. Furthermore, the lattice sinusoidal dispersion relation (Ek ∝ sin(ka))
tends to flatten the distribution with respect to the free particle case. This, in addition to the
periodicity of n(~k), makes the thermal depletion very difficult to separate from the quantum
depletion, which has a non-negligible fraction for strongly interacting systems.

Hence, in lattice experiments, the temperature is usually measured on the weakly interacting
trapped BEC [133] before loading it in the optical lattice. Indeed, like we saw in chapter 3, the
BEC is well described by the Bogoliubov approach, and the thermal depletion is well separated
from the (very diluted) quantum depletion. If the temperature is not too low, the thermal
distribution can be detected with optical probe, and fitted with a Bose function. The temperature
inside the lattice is then deduced by assuming entropy conservation during the adiabatic transfer,
which does not constitute a direct measurement.

New approaches

Figure 5.1: Extracted from [17]. Comparison between the distribution of an expanding lattice
gas of 87Rb, and QMC simulations based on the BH Hamiltonian. The distributions are probed
by absorption imaging after a 15.5ms of ToF, and the simulations take into account both the
finite expansion time, and the column integrated density.

Despite of those difficulties, various works have investigated alternative ways to provide precise
thermometry methods for lattice systems in ToF experiments. An interesting idea is to use
the band-mapping technique (see section 4.2.2), to probe the temperature through the quasi-
momentum distribution [132]. However, this technique tends to fail as soon as kBT > J , which
is too restrictive to be used practically. In [134], the author has built a theoretical proposal
based on the fluctuation-dissipation theorem. The idea is to extract T using the shot to shot
momentum density fluctuations. The temperature is therefore not calculated from the average
quantity n(~k), but from its fluctuations. This approach requires very stable working conditions,
and a good Signal-to-Noise Ratio (SNR), and to our knowledge, it has not been experimentally
demonstrated yet.
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The authors of [17] developed a thermometry method, based on the comparison with ab-
initio QMC calculations. Contrary to our approach (cf the results presented in the previous
chapter), they do not calculate the momentum distribution of the gas, but rather the column
integrated atomic distribution after a short expansion time, to simulate their ToF images taken
by absorption. This work constituted the first direct comparison between the measurement of
a lattice gas distribution, and a QMC simulation of the BH Hamiltonian (see figure 5.1). The
calculations were conducted for various initial temperatures, allowing to perform a thermometry
of the system by comparison with the experimental data. In particular, they demonstrated that
the adiabatic loading approach works reasonably well to evaluate the temperature, and they were
able to observe the decay of the critical temperature Tc when approaching the Mott transition.

We would like to implement a similar technique for our data, and extract the temperature of
our system using the QMC calculations. In our case, the comparison is directly performed in the
momentum space, without any spatial integration, so we expect the effects of the temperature
to be much more stringent, and the thermometry very precise.

5.1.2 A density-ratio based thermometer

Principle

First of all, we want to define a simple quantity to perform the comparisons between the theory
and the data. The QMC calculations were conducted for temperatures ranging from (kB)T = 1J
to 10J by step of 0.5J , and it would be laborious to compare those distributions over the full
range of momenta to extract the temperature.
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Figure 5.2: Theoretical momentum distribution of our lattice system, obtained by QMC calcu-
lation. The temperature is the only free parameter, and we have plotted the distribution for
different T . The momentum regions the most affected by the temperature variations are the
diffraction peaks (k/ka = −1, 0,+1), and the edge of the Brillouin zone (k/ka = ±0.5)

Below Tc, raising the temperature of the gas has two symmetrical consequences : decreasing
the population of the lowest energy mode, and populating excited states. In terms of momentum
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distribution, it implies a decay of the diffraction peaks’ density, and a growth of the density
outside the peaks [121]. In figure 5.2, we see that the edge of the Brillouin zone (momentum
ka/2) is the "low density" region which is the most affected by temperature variations. Thus,
by defining the "thermometer" ratio between the density of the first-order diffraction peak and
the density of the edge of the Brillouin zone :

rT = n(ka, 0, 0)/n(ka/2, 0, 0), (5.1)

we build a quantity which is very sensitive to temperature variations. Note that we use
n(ka, 0, 0) rather than n(0, 0, 0) to avoid saturation effects.

The thermometer curve
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Figure 5.3: Thermometer curve (blue) obtained by interpolating the ratio rT calculated from the
different QMC distributions. The width of the curve (shaded blue area) stands for the atom-
number uncertainty on the experiment. The red dots on the Y-axis are rT ratios calculated
from experimental data, and the red rectangles on the X-axis corresponds to the temperature
extracted from the thermometer curve.

Figure 5.3 shows a "thermometer" curve obtained by interpolating the rT values calculated for all
the QMC distributions. As expected, this quantity decreases rapidly with temperature, decaying
by 4 orders of magnitudes when the temperature varies from 2 J to 9 J . In the experiment, our
main source of instability is the atom number, with a typical dispersion of 15% over the several
hundreds of shots used to build a dataset. To take this fluctuations into account, we have also
conducted QMC calculations for N = 3.5 × 105atoms and N = 4.5 × 105atoms, and calculated
the corresponding rT , resulting in a broadening of the thermometer curve (blue shaded area in
figure 5.3). We have measured n∞(~k) with different heating sequences to vary the temperature
(see section 4.2.1). The different rT calculated for those heated clouds are indicated by red dots
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Figure 5.4: Comparison between QMC profiles and experimental 1D cut along n(k, 0, 0). The
different plots correspond to different T , which have been extracted from rT .

along the y-axis of figure 5.3, and we project them on the thermometer curve to extract the
temperature. In figure 5.4 we compare the 1D profiles extracted from the 3D distribution with
the QMC profiles of the corresponding temperature, and find a very good agreement over the
full range of momenta in all cases.

In conclusion, measuring the density at two different momenta n(ka, 0, 0) and n(ka/2, 0, 0) is
sufficient to extract the temperature inside the lattice with a precision of 10% or better.

5.2 Measurement of the condensed fraction across the transition

Strictly speaking, a study of the BH phase-diagram should rely on the measurement of the
superfluid fraction fs, which is difficult to probe in a lattice gas [135]. On the other hand, the
condensed fraction fc possesses a clear signature in momentum space, and can be accessed with
our setup. In the famous case of liquid helium, fc is very low (of the order of the percent), even at
zero temperature when fs = 1, because the very strong interactions between the atoms keep the
level of quantum depletion high. In the case of a lattice bosonic gas, fc and fs are almost equal
for typical experimental parameters (see [121]). In particular, they both vanish similarly at Tc,
making the condensed fraction a key quantity to investigate finite temperature phase diagrams.
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5.2.1 Probing the condensed fraction in an expanding lattice cloud
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Figure 5.5: QMC calculations of n(~k), around the central peak region. The different plots
represent different temperatures. For an equivalent homogeneous system, the critical temperature
Tc is ' 6.3J (see below). For T < Tc, we clearly see a change of slope around k ' 0.1ka,
indicating the frontier between the condensate and the rest of the distribution. The change of
slope disappears at T ≥ Tc, when the condensed fraction is zero.

Since the first realizations of Bose-Einstein condensates in atomic vapors, the condensed fraction
of the gas is probed through ToF measurements [136, 9]. Indeed, the appearance of a narrow,
dense structure on top of a broad, diluted distribution has always been considered as a proof
of quantum degeneracy in diluted bosonic systems. Although this might be true for the Bose-
Einstein condensation in an harmonic (or homogeneous) trap, it is more complicated in the
lattice, where sharp structures in the momentum distribution can be observed, even above the
critical temperature [121, 120]. Indeed, "sharp" is not very well defined, and it usually means
"much narrower" than the distance d between the peaks. Hence, a thermal gas with a quasi-
momentum distribution "much narrower" than the Brillouin zone will exhibit peaks in the FFR.
Those peaks are not linked to the quantum degeneracy, and their width diminish when the
temperature decreases. On the other hand, a clear and unambiguous signature of condensation
is the appearance of ultra-narrow peaks of width ' 2π/L on top of this already bimodal structure,
indicating that the coherence have spread over the entire system. The emergence of those narrow
peaks is characterized by a neat change of slope, close to k ' 2π/L, as shown in figure 5.5.

In previous experiments, the limitations due to finite resolution and finite expansion time were
important obstacles to properly identify and measure the condensed fraction [23, 17]. Hence,
other quantities were defined to try to pinpoint the emergence of coherence in the system. For
instance, the authors of [17] use the variations of width and amplitude of the central peak to eval-
uate fc across the SF-NG transition. Another example is the visibility, from which our thermome-
ter curve is inspired. It is a measure of the contrast between ntof(ka, 0, 0) and ntof

(
ka√

2
, ka√

2
, 0
)
,

and gives a relatively good estimation of Tc [120, 121, 137]. In [16], a fit of the central peak of
an expanding 2D gas leads to a measure of fc across the SF-MI transition compatible with QMC



5.2 Measurement of the condensed fraction across the transition 113

calculations. However, a direct measurement of the condensed fraction in a 3D lattice gas was
still lacking.

5.2.2 Measuring the condensed fraction from the 3D distribution

Identification of the lowest energy mode

The high-resolved 3D distributions offered by the MCP detector allows to observe the change of
slope between the lowest energy mode and the rest of the distribution. In other words, we can
identify the border k0 of the diffraction peak corresponding to the condensate. We fit the central
peak of the 1D profiles with a gaussian, and the depletion with a power law, and define k0 as
the intersection of the two curves (figure 5.6). Then, measuring fc "simply" consists in counting
the number of condensed atoms N0 inside the central peak, and the number of non-condensed
atoms NNC in the rest of the first Brillouin zone. When no clear change of slope is visible, we
consider that fc = 0.
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0.06Figure 5.6: Extraction of the value k0, which is the frontier between the momentum domains of
the condensate and the depletion. k0 is taken at the intersection between the gaussian fit of the
condensate peak, and the power-law fit of the background depletion.

The effect of the central peak saturation

Counting N0 and NNC is not straightforward because of some technical limitations of the detector
: on the one hand, the central peak is saturated, which makes it uneasy to evaluate N0 from the
first Brillouin zone, but on the other hand, the second Brillouin zones are not entirely covered
by the 4cm radius of the MCP detector, so we can only evaluate NNC from the first Brillouin
zone. We therefore "correct" the saturation by multiplying the number of atoms inside the first
peak by α = n(ka, 0, 0)/[w(ka) ∗ n(0, 0, 0)]. We then have :

fc = αN0/(NNC + αN0). (5.2)

The uncertainty in the estimation of fc is typically around 20%, based on its standard devi-
ation over ∼ 1000 cycles. Such fluctuations in the shot-to-shot condensed fraction is not really
surprising, because of the very low SNR outside of the peaks, and the fact that the saturation
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effect in the central region is highly non-linear. Indeed, the typical 15% fluctuations in the total
atom number can very well lead to higher fluctuations of the number of particles detected in the
central peak, in a way which is difficult to evaluate.

5.2.3 Extracting the critical temperature

Condensation in a trapped system

One of the characteristics of most optical lattice experiments is the presence of an external
confinement, which complicates a lot the comparison with theory, usually established for homo-
geneous system. The gaussian profile of the beams creates a spatial variation of the effective
chemical potential, and leads to the coexistence of difference phases inside the trap [124]. One
of the most striking example being the "wedding cake" structure at the Mott transition, ex-
perimentally observed in 2006 [138, 139]. In the SF to NG transition, for a unitary filling, the
condensate is expected to appear first in the highest density regions, that is the center of the
trap [17, 140]. The critical temperature for our trapped gas should thus be close to the one of
an homogeneous system, whose density matches the density at the center of the trap.

Results

Figure 5.7 shows a plot of the measured fc as a function of T . The characteristic decay of fc
indicates the vanishing of the condensed fraction at T = Tc. On the other hand, at T = 0, the
condensed fraction is not expected to reach 1 because of the high quantum depletion induced
by the lattice. We have used a site-decoupled approach based on the Gutzwiller ansatz [126] to
estimate fc at T = 0 and U/J = 10, and we find fc ' 85%. For lack of an analytical model,
we use an empirical function [24] to fit the data, and obtain Tc = 5.9(2)J . As discussed above,
it is tempting to compare this value to the critical temperature Tc 0 of an homogeneous system
sharing the same microscopic properties, and whose chemical potential matches the one at the
center of the trap. With a QMC approach based on the winding number estimator, we find
Tc 0 = 6.3(3)J , indeed compatible with Tc.

In the future, it would be interesting to further address the question of the criticality in
trapped system, and investigate the link with the homogeneous case. Within the framework of
trap-size scaling theory, recent studies [141, 142, 143] have described the effect of the trap on
critical parameters, leading to new theoretical proposals. For instance, the authors of [140] show
that a precise measurement of n(~k) for a trapped system allows to identify the critical temperature
of the homogeneous case, by monitoring the violation of the local density approximation at the
phase transition.

5.3 Second-order correlations across the transition

5.3.1 The g(2) function in the lattice

By increasing the interactions between the atoms, the presence of the lattice increases the cor-
relations of the system. In particular, it raises the quantum depletion by 2 orders of magnitude
with respect to the weakly interacting BEC in an harmonic trap, and we can thus hope to observe
some interaction-induced correlations between the depleted atoms.
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Figure 5.7: Condensed fraction plotted as a function of the temperature T . The green dots
correspond to the experimental measurements, and the error bars are the standard deviation
over ∼ 1000 experimental cycles. The grey square correspond to the T = 0 prediction given by
a mean-field, site-decoupled approach, and the violet diamond indicates the critical temperature
for an homogeneous system with a chemical potential matching that at the trap center.
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Correlations in the superfluid

As mentioned in chapters 2 and 3, in a BEC, where all the particles occupy the same q = 0
(quasi-)momentum state, the absence of interference between different bosonic modes lead to
an absence second-order correlations, both in real and momentum space. With the second-
quantization formalism presented in section 4.1, it is easy to write an analytical expression for
the g(2) function of an homogeneous, ideal lattice BEC. Indeed, according to equation 4.23, the
expression of the field operator in momentum space can be written :

φ(k) = A(k)
∑
q

bq
sin (Ma(k − q)/2)

sin (a(k − q)/2)
. (5.3)

The non-interacting, zero-temperature BEC quantum state is |Ψ0〉 = 1√
N !

(b†0)N |0〉, so only the

terms 〈b†0b0〉 = N and 〈b†0b†0b0b0〉 are non zero. We then have :

n(k) = 〈φ(k)†φ(k)〉 = N |A(k)|2
(

sin (Mak/2)

sin (ak/2)

)2

, (5.4)

G(2)(k, k′) = 〈φ(k′)†φ(k)†φ(k)φ(k′)〉 = n(k)n(k′)

(
1− 1

N

)
, (5.5)

so that g(2)(k, k′) = G(2)(k, k′)/n(k)n(k′) ' 1 when N is large, meaning that there is no
correlation in the system. Note that this result is independent of the lattice depth V0.

Like discussed in chapter 3, for a real system, interactions and temperature allow higher mo-
mentum modes to be populated, which carry richer correlation signals, like the bosonic bunching.
However, it does not change the absence of correlation between the condensed atoms, and for
large fc, calculating the g(2) function over the entire cloud would wash out the correlations be-
tween depleted atoms, since the signal is dominated by the uncorrelated BEC. In our case, the
ability to probe the 3D distribution with an atom-counting technique allows us to separate the
condensate from the rest of the distribution, and to calculate the correlations between specific
modes, without requiring an autocorrelation of the entire density profile [85, 84]. We thus have
access to the g(2) function between the depleted atoms only, a technique we already used with
the harmonically trapped BEC (see section 3.3.1).

At low temperature, when the quantum depletion dominates the excited population, both
site-decoupled approximation and Bogoliubov approach (the latter is only valid for low lattice
depth) predict bosonic bunching (diagonal (k, k) correlations) and pairing (anti-diagonal (k,−k)
correlations) [22]. This pairing has a simple physical interpretation in terms of momentum
conservation : if an atom leaves the condensate and populates momentum k because of a two-
body interaction, then the other atom of the pair have to populate momentum −k to conserve
the total momentum of the BEC. Let us add that both diagonal and anti-diagonal correlations
have a ka periodicity due to the lattice structure, so that detecting an atom at momentum k
enhances the probability to detect another atom at momentum k + nka and −k + nka, where
n ∈ N. Figure 5.8 shows a theoretical g(2)(k1, k2) of an homogeneous lattice gas, calculated with
the Bogoliubov approach (see [22] for a detailed analytical expression). The aim of this plot
is simply to illustrate the pairing and bunching correlations of the quantum depletion, not to
provide a quantitative analysis, since the Bogoliubov approach is not expected to be valid at our
lattice depth.
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Figure 5.8: g(2)(k1, k2) of an homogeneous lattice gas at unity filling calculated with the Bogoli-
ubov approach. The parameters of the calculation are : U/J = 10, T = 0, L = 50a.

Correlations above Tc

Above Tc, both the condensed fraction and the quantum depletion vanish, and the correlations
become those of a thermal gas. We can calculate a theoretical g(2), by using the Bose statistics
for the population of the modes (see again [22] for a detailed expression). Figure 5.9 shows a
plot of g(2)(k1, k2) at U/J = 10 and T = 8J for an homogeneous gas. It shows that the only
remaining correlations in the system is the periodic bunching, that is the Hanburry-Brown and
Twiss effect applied to a lattice. We can conclude that the sole qualitative difference in the g(2)

signal between SF and NG is the presence of an anti-diagonal (k,−k) pairing correlations.
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Figure 5.9: g(2)(k, k′) of an homogeneous lattice gas at unity filling for an ideal thermal gas. The
parameters of the calculation are : U/J = 10, T = 8J , L = 50a.
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5.3.2 Measurement of second-order correlations

Correlations in the different momentum domains

With the algorithm presented in chapter 2, we calculate the functions g
(2)
± (δkz) for the lattice

data. We chose to study the correlations along the z-axis (gravity) because, as we saw in chapter
1, the resolution σz is much less sensitive to variations of the detected particle’s flux than σx,y.
In figure 5.10, we have plotted the correlations obtained at T = 2.88J (the coldest dataset), for
two different momentum domains : inside and outside the diffraction peaks. In the first case, as
expected, the signal is flat since there are no correlations between the condensed atoms. Outside
the peaks, we recover the bunching, but we do not observe (�k,−�k) pairing signals, a result which
is confirmed for all the temperatures.
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Figure 5.10: Correlation functions g
(2)
+ and g

(2)
− for T=2.88J. The functions are calculated along

the z-axis, inside and outside the condensate peak. We used Δk⊥ = 0.012ka for the transverse
integration.

The absence of pairing correlations might be related to the statistics : at low T , the very low
density of the distribution between the peaks may not give a sufficiently high SNR to distinguish
a clear correlation peak. At higher T the SNR is better, but only because more thermally ex-
cited atoms are added to the depletion, without "producing" any pairing correlations. An other
explanation could come from the shot-to-shot fluctuation of the center of the cloud. Indeed, the
ability to probe a (�k,−�k) signal strongly depends on the precision at which we can identify the
Center-of-Mass (CoM) of the distribution. The very low SNR on the single-shot 3D distribution,
and the saturation of the central peak makes it very difficult to precisely evaluate the shot-to-
shot variations of the CoM. On the other hand, the good agreement between the measured width
of the peaks and the QMC predictions suggests that the CoM does not fluctuate by more than
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a fraction of the peak’s width, which is of the same order than the expected correlation width
(∼ 1/L). Finally, we can imagine that the (~k,−~k) pairs are destroyed by the interactions during
the ToF dynamic, but since the average n∞(~k) distribution matches the expected n(~k) calcu-
lated by QMC, it requires a mechanism that preserves the expectation value of the momentum
distribution, but disturb its fluctuations. To our knowledge, there exists no theoretical work
investigating those questions.

Bosonic bunching across the transition

The ability to measure correlations outside of the condensate enables the possibility to investigate
the bosonic bunching (see chapter 2) in a novel way. Up to now, experiments were restricted
to a calculation of g(2) over the entire cloud [144, 83, 84, 93]. Averaging the correlation signal
between the depletion and the condensate leads to a rapid flattening of g(2)(δk) below Tc, and
hide the informations contained in the width of the bunching peak.
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Figure 5.11: g
(2)
+ (δkz) calculated over the first Brillouin zone for various temperatures. The

calculation has been performed with ∆k⊥ = 0.012ka, and only takes into account the atoms
in the momentum region ~k > k0 to exclude the condensate. The solid line in each panel is a
gaussian fit b + a exp(−δk2/w2) used to extract the effective correlation width wz. The SNR
increases with T, since more thermally depleted atoms contribute to the signal

Figure 5.11 presents a plot of the local correlation g
(2)
+ (δkz) calculated outside of the con-

densate for various temperatures. The width wz of the correlation peak can be extracted with a
gaussian fit. To raise the SNR, we have computed the two-body correlations with a transverse
integration ∆k⊥ = 12 × 10−3 ka (see section 2.2.2). As T raises, the correlation width dimin-
ishes, because of the evolution of the coherence properties of the thermal depletion (see below).
On the other hand, the diminution of the bunching amplitude with T is not physical, and is a
consequence of the reduction of the width, coupled to the finite resolution of the detector and
the transverse integration ∆k⊥ (equation 2.22).



120 Chapter 5: Momentum distribution across the superfluid to normal gas transition

To extract the effective correlation width wz(T ) in a more precise way, we repeat the proce-
dure and calculate g

(2)
+ (δkz) for various transverse integrations Δk⊥. The value of wz(T ) should

not depend on Δk⊥, but with this procedure, we multiply the number of fitted data, and therefore
increases the precision on the measurement. We deduce the actual correlation length lcz(T ) from
equation 2.20 : lcz =

√
w2
z − 4σ2

z where σz = 2.5×10−3 ka is the resolution we have estimated in
section 2.3.2. The results are presented in figure 5.12, and clearly show a diminution of lcz whith
T , which is coherent with a diminution of the in-trap correlation length of the thermal fraction.
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Figure 5.12: Variation of the correlation width across the transition. (a) Fitted effective width
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√
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z as a function of the transverse integration Δk⊥, for different temperatures. (b)
lcz(T ) across the transition, the vertical grey line indicates Tc. We have used σz = 0.0025 ka to
calculate lcz .

Finally, it is interesting to compare lcz(T ) at high T with the Hanbury-Brown and Twiss
(HBT) limit of a spatially incoherent gas of non-interacting particles in an harmonic trap, where
the correlation width is equal to the inverse of the RMS size s of the trapped cloud (see chapter
2). We use the QMC curves n(�r) to extract the in-situ size s, and the comparison with 1/s is
shown in figure 5.13. Surprisingly, the correlation width at T > Tc does not match the HBT
expectation. Note that all the temperatures involved here verify T < U , so the interactions
might play a significant role in the size of lcz(T ). It would be interesting to perform similar
measurements for different values of U/J .
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Conclusion

Results

The main result of this work is the demonstration of a detection method capable of probing
the momentum distribution of a 3D lattice gas at the single atom level [64]. This technique
is based on the electronic detection of ultra-cold clouds of metastable Helium-4 (4He*) by a
Micro-Channel Plate (MCP) detector. The gas is detected after a time-of-flight of 325ms, long
enough to enter the far-field regime of expansion, where the spatial distribution can be mapped
to the asymptotic momentum distribution n∞(~k), through the ballistic relation ~~k = m~r/t

tof
.

If interactions do not play a significant role during the expansion, n∞(~k) coincides with the
in-trap momentum distribution n(~k). For a sufficiently deep 3D lattice close to unity filling,
it was suggested by previous works [23, 28] that the interactions between the particles can be
neglected during the first instants of the ToF. Our comparison between n∞(~k) and the theoretical
n(~k) calculated from the Bose-Hubbard (BH) hamiltonian with Quantum Monte Carlo (QMC)
simulations validates this hypothesis, as we observe a match in density over more than 3 orders
of magnitude, only limited by the saturation of the MCP detector in the high density regions.

Those results are the starting point of an exploration of the superfluid to normal gas tran-
sition, as the comparison with QMC allows us to perform a precise thermometry of our lattice
gases. In particular, we perform the first 3D measurement of the condensed fraction across the
transition, extracting a critical temperature compatible with the one of an homogeneous system,
whose density matches the density at the center of our trap. We also investigate the momentum
bunching of the thermal depletion across the transition, by calculating the g(2) function inside the
excited modes only. We observe a decay of the momentum correlation width as the temperature
is raised, coherent with a decay of the in-situ correlation length.

Another important part of this thesis is the study of the distribution n∞(~k) of a Bose-Einstein
condensate (BEC) released from an harmonic trap [105]. Contrary to the lattice case, the initial
expansion of the BEC is driven by the release of the mean-field energy, so that n∞(~k) 6= n(~k).
The interesting aspect of this work is that the asymptotic momentum distribution itself becomes
an object of study : what many-body dynamics govern the expansion? How is it linked to the in-
trap momentum distribution? In this context, the observation of a k−4 tail in the distribution is a
puzzling feature. Weakly interacting systems are well described by two-body contact interactions,
which produce a polynomial k−4 decay in momentum. The amplitude of this decay, the celebrated
Tan’s contact C, is an intensive object of study in many-body systems. However, in the case
of the interacting BEC in expansion, C is expected to decay in the timescale of the inverse
trapping frequency (∼ 300µs), so observing such features in n∞(~k) is surprising. We recently
discovered that our spin-polarized mJ = +1 BEC was "polluted" by an uncondensed mJ = 0
cloud, representing less than 1% of the trapped population. The distribution n∞(~k) of this cloud
exhibits a k−4 decay, and might very well be the origin of the previous observations. We are
currently investigating the interplay between this parasite cloud and the BEC, in the trap or
during the expansion, in order to solve this mystery.
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Outlook

Now it seems natural to pursue the exploration of the BH phase diagram, and study the Mott
insulator phase. Very different from the normal gas transition presented in this work, the Mott
transition occurs at zero-temperature, and is purely driven by the interactions. The correlations
between the particles thus play a crucial role around the critical point, and it would be interesting
to measure g(2) functions in this regime. We obtained the first 4He* Mott insulator in April 2018,
and we are currently investigating this new quantum state (see figure 5.14).

We are not done with the superfluid either, as we want to better understand the role of
the interactions during the expansion of the lattice gas. In the work presented in chapters 4
and 5, no scattering halos were detectable between the diffraction peaks, while such features
are commonly observed with lattice superfluids. We are currently monitoring the appearance of
spherical scattering halos as we raise the atom number (filling factor > 1) and change the lattice
depth.

In the meantime, we are interested in studying C in 1D systems, where it can be used to
probe the fermionization transition [145]. C should be measurable with our setup, using an 1D
gas engineered from the optical lattice : the strong interactions present in 1D systems increase
C by orders of magnitude with respect to the 3D case, and the expansion dynamics, driven by
the ground state energy of the transverse confinement (~ω⊥ � µ) should preserve the in-situ
velocity distribution along the longitudinal direction. Our first 1D gases were obtained during
the redaction of this manuscript, and the analysis of its asymptotic momentum distributions is
an ongoing work.

About the detector

The MCP detector has proven to be a very precise tool for the study of many-body physics,
allowing to observe features in the momentum distribution with a level of detail and a density
range never reached before. The ability to detect individual atoms is also very interesting to
compute higher-order correlations in momentum space, as shown in this manuscript. Its satu-
ration regime, however, is a real experimental limitation, making uneasy the detection of dense,
narrow structures, like the diffraction peaks of the lattice superfluid. Hopefully strongly inter-
acting systems, like 1D gases or Mott insulators, usually have a large momentum distribution
because the interactions tend to populate many k-modes. Working with diluted distributions
would further ease the data taking and analyzis, as no dense structure will disturb the detection
process. This is also true for the upcoming system of study : fermionic lattice gases, as Helium-3
will be added to the experiment in a (hopefully) near future.
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V0 = 8Er V0 = 8Er

V0 = 14Er

Figure 5.14: 3D asymptotic distribution n∞(~k) of the lattice gas as we raise the lattice depth.
At V0 = 14Er, the coherence is lost, as no diffraction peak is visible in the expanding cloud.
This loss of coherence comes from the interactions, that tend to localize the atoms on the lattice
sites (Mott insulator phase). If we now hold the gas and ramp down the lattice, the interactions
become weaker, and we recover the coherence.
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Appendix A

Constant fraction discriminator settings

AND
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Figure A.1: Sketch of the Constant Fraction Discriminator functioning. The pulses coming from
the delay lines are amplified (Ain), and turned into a bipolar signal (Ab). The output NIM
signal (CFDout) is triggered by the logical product of two square pulses, L1 and L2, which are
generated by a leading-edge process working respectively on Ain and Ab.

This section gives a brief summary of how to properly set the Roentdek discriminator (the user
guide manual is not always very clear). There are 6 parameters that the user can adjust for
each CFD, they are indicated in bold throughout the paragraph. First, one can set the gain of
the pre-amplification stage. The average pulse height at the output of the delay-lines strongly
depends on the MCP polarization, and the gains have to be set in order to keep the signal
amplitude in the operating range of the CFD (grossly between 30mV and 2V). One can also set
the fraction and the delay, noted fc and τ in equation 1.11. fc is directly set manually by a
potentiometer present in the front panel, while τ is set by the length of a LEMO cable that we
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Figure A.2: Histograms of the Ain amplitude for channels x1 and x2. We see a typical double-
structure : the signal (higher voltage values) is well separated from the noise (lower voltage
values). The thresholds have to be set in between those 2 distributions (between 50mV and
100mV in this case).

plug in dedicated sockets. The three last parameters are directly related to the generation of
the NIM signals. To understand them, we need to detail a bit more how the detection of the
zero-point crossing is done.

The NIM signal at the output of the CFD is actually a product (logical AND) of two other
logic signals, that we will call L1 and L2. L1’s value is 1 if the input signal Ain is above a certain
threshold, and 0 otherwise. This threshold value can be set via a potentiometer (labelled Th
in the front panel), and has to be slightly higher than the noise. To properly choose the value,
one can plot the histogram of the input signal amplitude (after amplification) to observe the
characteristic double structure of figure A.2, and set the threshold at the position where the
noise and the signal separates.

The second logical pulse L2 works on the bipolar pulse Ab. It takes the value of 1 when
the value of Ab is above a certain walk level, and 0 otherwise. This walk level (noted Z in the
front panel) has to be adjusted to the baseline (the noise level) so it mainly takes the value of
1, except when the signal becomes lower than zero, which happens only when a bipolar pulse
is generated. In that case, L2 will take a 0 value during the first half of the bipolar pulse (the
negative part), and will go back to 1 as soon as the pulse become positive again. Figure A.3 shows
how to properly adjust the walk level by looking at the trace of the oscilloscope. A poor choice
of the walk level would lead to a timing offset in the output NIM pulse, and thus to an in-plane
translation of the reconstruction map. At the end, the product of L1 and L2 will always take the
value of 0, except at the zero-point crossing of a bipolar pulse Ab, and only if its corresponding
analog input Ain is higher than the threshold. So it accomplishes the desired operation, because
the resulting NIM signal has its rising edge centered on the zero of the bipolar signal, which does
not depend on the amplitude of the input pulse. Finally, one can set the width of this output
NIM signal, in order to match the working condition of the CFD : a signal too short might be
missed by the TDC, while a signal too long will diminish the maximum rate of detection.
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Figure A.3: Oscilloscope traces of Ain, Ab, L2 and CFDout. We show 3 different settings of the
walk-level (the Z), which trigger the L2 signal. When the level is well set, L2 is "high" almost
all the time, goes to zero when Ab becomes negative, and raises up again as soon as Ab crosses
the zero-level. If the level is set too high, L2 is "down" all the time, and raise up only when Ab
is high enough, so that the raising edge of L2 is slightly above the zero-level. On the opposite,
when the walk level is set too low, the raising edge of L2 is slightly below the zero-level.



130 Constant fraction discriminator settings



Appendix B

The MCP Graphical User Interface

This section is a small user guide for the Graphical User Interface (GUI) developed during
this thesis, and installed on the Pasquano computer. The interface can be used to reconstruct,
organize and analyze the 3D distribution obtained with the MCP detector.

B.1 General architecture

B.1.1 The code

All the code used to compile the GUI is located in the folder : /home/david/MCP_data/Code.
The code can be compiled through the Linux terminal : after opening a ROOT session (command
: root), just enter the command .x Gui_MCP.C. The file Gui_MCP.C creates an instance
of the class MyMainFrame which handles all the graphical display of the GUI’s main window.
The definition of the class MyMainFrame can be found in the header file MainFrame_class.h.
The member functions of MyMainFrame use five other classes to operate, which are defined in
the corresponding header files.

• ReconstFolder_class and Reconstr_class handles all the reconstruction process, using the
algorithm described in 2.1, which turns a .TDC file into a list of (x, y, t) coordinates. The
distribution can then be saved in a .txt format, and/or in a .root format to be imported
and analyzed with the GUI.

• DisplayAtoms_class displays the reconstructed distributions inside 1D, 2D or 3D his-
tograms. This class also contains member functions to export the histograms in .txt format,
and to fit 1D plots.

• Correlation_class calculates second order correlations inside the reconstructed distribution,
using the algorithm described in 2.2.2.

• Map_class reconstructs and records the Gain map and the D map of the MCP detector
(see section 1.2.4).

Finally, the code includes a last header file called Constants.h, which defines the funda-
mental constant of the GUI, like the pixel size of the detector, the time of flight of the atomic
distribution, the coding step of the TDC, and the different path used by the program.

If the GUI happens to crash, whatever the reason, you will not be able to re-compile it in
the same ROOT session, where the header files have already been loaded. To avoid multiple
definitions issues, you have to quit the current ROOT session (command : .q), and re-open a
new one (command : root) before compiling the code again.
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B.1.2 Main window

Figure B.1: Main frame of the GUI. The different blocs are highlighted with colored frame. From
left to right, from top to bottom. Red : reconstruction bloc. Blue : file list bloc. Yellow :
analysis bloc. Cyan : info window & progress bar. Magenta : geometry bloc (cloud center,
rotation, conical and ellipsoidal cut). Violet : coordinate system bloc. Green : gain map bloc.
Orange : canvases.
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B.2 Reconstructing and displaying the 3D distribution

B.2.1 Reconstruction

Figure B.2: Reconstruction bloc.

The reconstruction bloc allows to retrieve the (x, y, t) coordinates of a detected particle from
its quadruplet of arrival times Q stored in a TDC file (see section 2.1). Start by pressing the
Browse button and select a TDC file to reconstruct. To select the whole folder, select one file
from this folder and tick the whole folder box. Press the Reconstruct button to launch the
reconstruction. The resulting distribution can be stored in .txt files (tick the save txt box)
and/or .root files (tick the save tree box). Those .root files can then be loaded and analyzed in
the GUI (see below). In both cases (.txt and .root) the program creates a folder corresponding to
the dataset’s date, located in /home/david/MCP_data/reconstructed_data_tree (resp.
reconstructed_data_txt). Once the reconstruction is over, if the save tree option was
selected, press the arrow button (bottom right) to load directly the reconstructed dataset in the
list of reconstructed files.

The D map used during the reconstruction can be chosen with the Change Dmap button
(by default, the program loads the map indicated in the header file Constants.h). The entry
sigD sets a maximum for the difference between the value DQ of the quadruplets and the value
〈D(x, y)〉 of the Dmap at position (x, y). In other word, a quadruplet Q, corresponding to the
coordinates (x, y, t), and such that |DQ − 〈D(x, y)〉| > sigD will be excluded from the recon-
struction. In the .txt files, the informations are written in the following way : each reconstructed
particles correspond to a line, which display the coordinates in this order : x (in TDC step)→ y
(in TDC step) → t (in ms) → DQ (in TDC step) → 〈D(x, y)〉 (in TDC step).

When very diluted clouds are detected on the MCP (detection rate around 100s−1), it is
frequent that a bad counting of the 27th bit’s flips (see section 1.2.3) leads to a shift between the
distributions of arrival times in the 4 channels. To avoid this issue, one can enter the expected
arrival time of the cloud’s center of mass in Tc, and tick the sync. chan box.
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B.2.2 Display

The file list

Figure B.3: The file list bloc, with many rec-files loaded in the list.

The rec-files, i.e the reconstructed files saved in .root format, contain two trees, titled "Atom"
and "MCP". A tree is an instance of a ROOT class called TTree, which can store lists of data
with different c++ types. The "Atom" tree stores, for each reconstructed particles, the x, y, t
coordinates and the value D = DQ − 〈D(x, y)〉, where Q is the quadruplet of arrival times
corresponding to the reconstructed particle. The "MCP" tree stores the distribution of arrival
times on the 4 channels of the TDC.

The rec-files can be imported in the file list to be displayed and analyzed. Press the Load
button and select the recfile you wish to import. In order to import the whole folder, tick the
whole folder box. Once the rec-files have been loaded into the file list, you can select them to
display the atomic distributions inside the 3 canvases (see below). Tick the MultiSelect box to
allow multiple selections. You can also press the Next button to select the first n rec-files, with
n = 1, 10, 100, 500 or 1000 (chosen from the combo-box, on the left). Pressing the Next button
one more time will unselect the first n rec-files, and select the next n rec-files, etc.

You can also remove the selected rec-files from the list, by pressing the Remove button (this
action will not delete the corresponding .root files from the computer). To remove all the rec-files
in the list, just press the Clear button.
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Canvases and histograms

Figure B.4: A canvas displaying a Nxz (2D) histogram.

The atomic distribution of the selected rec-files are displayed in the 3 canvases. If the Mean
radio-button (in the file list bloc) is selected, the canvas display an average of the selected rec-files.
On the other hand, if the Stack radio-button is selected, the canvas display a sum of the rec-files.
Each canvas can display a different histogram, which is chosen from the histogram combo-box, in
the top left of the canvas. The histogram parameters ( xmin, xmax, ymin, ymax, zmin, zmax, Dmin, Dmax

and nBin) can be adjusted for each canvas with the entries located below, and a specific set of
parameter can be applied to all canvases by pressing the button Apply to all. The different
histograms available are the following :

• Nx : a 1D plot of the atomic distribution along the x-axis. The histogram is composed of
nBin bins between xmin and xmax. The bin corresponding to the coordinate xb is filled by
counting the number of atoms inside the box centered on (xb, 0, 0), and of size (xs, ymax−
ymin, zmax − zmin), where xs = (xmax − xmin)/nBin is the size of the bins.

• Ny : a 1D plot of the atomic distribution along the y-axis. The histogram is composed of
nBin bins between ymin and ymax. etc.

• Nz : a 1D plot of the atomic distribution along the z-axis. The histogram is composed of
nBin bins between zmin and zmax. etc.

• Nxy : a 2D plot of the atomic distribution along the x-axis and the y-axis. The histogram is
composed of nBin×nBin bins between xmin and xmax;, and between ymin and ymax. The bin
corresponding to the coordinate (xb, yb) is filled by counting the number of atoms inside the
box centered on (xb, yb, 0), and of size (xs, ys, zmax− zmin), where xs = (xmax−xmin)/nBin

and ys = (ymax − ymin)/nBin.

• Nxz : a 2D plot of the atomic distribution along the x-axis and the z-axis. The histogram
is composed of nBin × nBin bins between xmin and xmax and between zmin and zmax. etc.
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• Nyz : a 2D plot of the atomic distribution along the y-axis and z-axis. The histogram is
composed of nBin×nBin bins between ymin and ymax, and between zmin and zmax along the
z-axis. etc.

• Nr (only for mm and µm−1 units, see next section) : a 1D plot of the radial atomic
distribution r =

√
x2 + y2 + z2. The histogram is composed of nBin bins between 0 and

Max(xmax, ymax, zmax). The bin corresponding to the radius rb is filled with the value Nb
4πr2b

,

or Nb
2πr2b (1−cos(θcone ))

if the cone option is selected (see the geometry bloc), where Nb is the
number of atoms of radius r = rb.

• HistoD : A 1D plot of the distribution of D = DQ − 〈D(x, y)〉 of all the quadruplets Q
associated to a reconstructed particle. The histogram is composed of nBin bins between
Dmin and Dmax.

• Nxyz : a 3D plot of the atomic distribution. The histogram is composed of nBin×nBin×nBin

bins between xmin and xmax, ymin and ymax and between zmin and zmax.

• chX1 (chX2, chY1, chY2) : A 1D plot of the distribution of arrival times in channel X1
(X2, Y1, Y2). The histogram is composed of nBin bins between zmin and zmax.

At any moment, the displayed histogram can be exported in .txt format, by pressing the
Export Histo button. The file can then be found in the folder Export of the current dataset
(in the reconstructed_data_tree directory).

Coordinate system and gain map

Figure B.5: The coordinate system bloc (top), and the gain map bloc (bottom).

The atomic distribution can be displayed using 3 coordinate systems. The "MCP" coordinate
system is based on the raw reconstructed coordinates (x, y, t) given by the coding step of the
TDC. Their units are in MCP pixel (for the in plane coordinate x and y) and ms (for t). Due
to the difference of unit between the 3 axis, many analysis and display options are not available
with the "MCP" units. It is for instance not possible to perform rotations, or conical cuts. The
"mm" coordinate system express the three directions (x, y, z) in mm unit. To convert the t
coordinate into the z coordinate, we make the approximation that all the atoms hit the MCP
surface with the vertical velocity of the center of mass. Finally, the "um-1" option correspond to
the momentum coordinate system (kx, ky, kz), expressed in µm−1. Note that for this coordinate
system to be well defined, one need to identify precisely the (x, y, t) coordinates of the center of
mass (see geometry bloc). Every-time the coordinate system is changed, the canvases parameters
xmin, xmax, ymin, ymax, zmin, and zmax automatically adjust to keep the same dimensions for the
displayed histograms.
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Figure B.6: The Cloud center bloc and the Cloud rotation bloc.

Figure B.7: The Cone bloc and the Ellipse bloc.

The distributions can be corrected by a gain map, if the Correct gain box is ticked. By
default, the program loads the map indicated in the header file Constants.h, but it can be
changed with the Change Gmap button. At any moment, you can display the current gain
map and D map in canvases 1 and 2, by pressing the Display maps button.

The geometry bloc

The geometry bloc itself is composed of 4 blocs (Cloud center, Cloud rotation, Cone and Ellipse)
that can be used to manipulate the geometry of the atomic distribution.

• The Cloud center bloc is used to define a new center of the (x, y, t) coordinate system.
When the "um-1" unit is selected (Coordinate system bloc), the momentum distribution
is calculated with this new center.

• The Cloud rotation bloc allows to perform 3D rotations of the distribution around the
center defined by the Cloud center bloc. The rotations are executed in the following order :
rotation around z → rotation around y → rotation around x. This option is not available
for the "MCP" units.

• The Cone bloc contains the parameters radius and height defining a conical cut inside
the 3D distribution (mm and µm−1 only). More precisely, the cut is a double spherical
sector, defined by the cone of radius radius, bounding the sphere of radius height, with
the two apexes touching at the center of the coordinate system. The direction of the
revolution axis can be x, y or z (chosen from the combo-box located at the bottom of the
bloc). If the cone option is enabled (top left box ticked), all the particles outside of the
double spherical sector will be excluded from the distribution. Also, as long as the cone
option is enabled, the normalization of the histogram Nr becomes 1

2πr2b (1−cos(θcone ))
, with

θcone = Asin(radius/height) (see the Canvases and histograms section).
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• Finally, the Ellipse bloc works similarly, by removing all the particles which are inside
an ellipsoid "min" (parameters Rx min, Ry min, Rz min) and/or outside an ellipsoid
"max" (parameters Rx max, Ry max, Rz max).

Some useful built-in ROOT methods

It is helpful to know some of ROOT’s graphical classes to handle the histograms in canvases.
A right click on any canvas will open a context menue, with several options. Among them,
Drawclass is very convenient, since it gives access to a menu-bar, where most of the plot options
can be set in Edit→ Style (for instance, changing any axis from lin to log). If the histogram
is 3D, go in View→ View with → X3D to open a new window handling the 3D distribution
very smoothly. A right click on a 2D histogram will enable the options SetShowProjectionX
and SetShowProjectionY, which creates 1D plot from integrating the distribution over a slice
of variable size. Finally the FitPanel option (right quick on a 1D or 2D histogram) provide an
efficient built-in fit program.

B.3 Analysis

B.3.1 The analysis list

Figure B.8: The analysis bloc. The double gaussian fit (Fit 2 gauss) is currently selected in the
combo-box. Two analysis files are in the list.

Several analysis can be conducted on the rec-files. Start by selecting the rec-files you want to
analyse, then choose the type of analysis to perform with the combo-box (top left of the analysis
bloc). For most of them, parameters can be set by pressing the Parameters button. Then
launch the analysis with Run analysis .... The results are displayed using histograms, stored
inside .root files called the a-files. Those a-files can be found in the folder Analysis of the
corresponding dataset (in the reconstructed_data_tree directory). They are automatically
loaded in the file list of the analysis bloc, and the histograms they contain can be displayed
inside a pop-up canvas (the number of columns of this pop-up window can be set using the small
combo-box in the bottom right), or exported in .txt format (in the Export folder) by pressing
the corresponding buttons.
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B.3.2 Count and remove

Among the analysis options, two of them can be used to count the number of entries of the
histograms displayed in each canvas. Running the View analysis on a set of rec-files calculates
the distribution of entries over all the files, and for each canvas. The Remove analysis does
the same, but also removes the rec-files for which one of the displayed histogram has a number
of entries such that : Nmin > Nentries or Nmax < Nentries, where Nmin and Nmax can be set in
Parameters. It can for instance be used to remove all the empty rec-files from the list.

B.3.3 Fit

Three 1D fit options are available : a gaussian fit, a parabolic fit (Thomas-Fermi profile), and two
bi-modal fits (gauss + gauss and TF + gauss). In all cases, the initial guesses can be tuned in
Parameters, or can be set to auto-guess. If one a the fit option is selected, even without clicking
on the Run analysis ... button, the program will fit the 1D histograms currently displayed in
the canvases. This way, you can fit the distribution obtained from a multiple rec-files selection.
On the other hand, if you press the Run analysis ... button, all the rec-files of the selection
will be treated one by one, and the fit will be performed on each single file. At the output, the
program generate the distribution of the fit results over all the files and for each canvas.

B.3.4 Correlations

The analysis g2 allows to calculate the second-order correlation functions g(2)
+ and g

(2)
− (see

chapter 2) over the selected rec-files, applying the algorithm described in 2.2.2. Note that
this option is not supported for the "MCP" unit. In Parameters, one can set the transverse
integration ∆k⊥, and the direction(s) along which the correlations are calculated (x, y and/or
z).

B.3.5 Maps

With Maps, you can generate a D map and a gain map from the selected rec-files. The maps
will be saved in the folder /home/david/MCP_data/code, and can be used in the GUI. In
Parameters, you can select the binning of both maps, as well as the time window of the MCP
acquisition used to calculate the maps. Indeed, if the number of particles detected per unit of
time changes, the flux on the plate is not constant, and one might want to use a uniform flux to
calculate the maps. Hence, you just need to select a time window over which the flux is more or
less constant. This can be used to investigate the evolution of the gain map as a function fo the
flux of particles.
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Titre : Mesure sensible à l’atome unique de la distribution d’impulsion d’un gaz sur réseau

Mots clés : Gaz sur réseau, Espace des impulsions, Atome unique, Helium métastable, Corrélations

Résumé : Ce travail de thèse démontre une tech-
nique de détection capable de mesurer, avec une
sensibilité à l’atome unique, l’espace des impulsions
d’un gaz ultrafroid chargé dans un réseau optique
3D. Nous avons développé un détecteur basé sur
des galettes de micro-canaux, capable de sonder
électroniquement des nuages d’Hélium-4 métastable.
Le gaz est détecté après un temps de vol de
325ms, suffisamment long pour atteindre l’expansion
de champ lointain, où la distribution spatiale du gaz
coı̈ncide avec la distribution d’impulsion asympto-
tique. En se plaçant dans un régime proche du rem-
plissage unitaire du réseau, les effets de collisions
entre atomes aux premiers instants de l’expansion
deviennent négligeables, et donc la distribution d’im-
pulsion asymptotique est égale à la distribution d’im-

pulsion in situ. Nous démontrons expérimentalement
cette égalité en comparant nos mesures en champ
lointain avec la distribution d’impulsion calculée à par-
tir de l’Hamiltonien de Bose-Hubbard, grâce à des si-
mulations Monte Carlo Quantique. Nous observons
un bon accord avec la théorie sur plus de 3 ordres
de grandeur en densité. Ces simulations sont cal-
culées à partir de nos paramètres expérimentaux, la
température étant la seule variable ajustable. Nous
utilisons ensuite cette comparaison pour réaliser une
thermométrie précise du gaz sur réseau, permettant
une exploration de la transition superfluide-gaz nor-
mal à travers la mesure directe de différentes quan-
tités, comme la fraction condensée ou la fonction de
corrélation à deux particules.
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Abstract : In this thesis, we report the demonstra-
tion of a detection technique able to probe, with a
single-atom sensitivity, the momentum distribution of
an ultracold gas loaded inside a 3D optical lattice. We
have developed a micro-channel plate detector, able
to electronically probe clouds of metastable Helium-
4. The gas is detected after a time-of-flight of 325ms,
long enough to reach the far-field expansion, where
the spatial distribution of the cloud can be mapped
to the asymptotic momentum distribution. By putting
ourselves in a regime where the lattice filling is close
to unity, the atomic collisions in the first instants of
the expansion become negligible, so the asympto-
tic momentum distribution is equal to the in situ mo-

mentum distribution. We experimentally demonstrate
this equality, by comparing our far-field measurements
with the momentum distribution calculated from the
Bose-Hubbard Hamiltonian, thanks to ab initio quan-
tum Monte Carlo simulations. We show a good agree-
ment with the theory over more than 3 orders of
magnitude in density. Those simulations are calcula-
ted with our experimental parameters, the tempera-
ture being the only adjustable variable. We then use
this comparison to perform a precise thermometry of
the lattice gas, allowing us to explore the superfluid-
normal gas transition through a direct measurement
of different quantities, like the condensed fraction or
the two-particles correlation function.
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