, Nous notons cependant que ces dernières sont antérieures aux premières expériences de paires de photons [30, 29] et n'ont, jusqu'à récemment, pas été ré-utilisées pour décrire la génération de paires. 1. À nos échelles de temps, On peut noter que les développements portés par ces références reposent sur des bases plus anciennes, vol.112

, Dans le CS2 et les cristaux liquides par exemple, ces effets ne sont pas négligeables. La lenteur de ces non-linéarités amène une dépendance relative en fréquence : plutôt que de dépendre de la fréquence absolue, elles dépendent de l

, Nous rappelons que notre fibre est prise comme un milieu amagnétique, sans charges ni courants libres, sans pertes, à réponse locale et homogène (donc les composantes des tenseurs électro-optique sont indépendantes de la position

, En négligeant les pertes linéiques et en absence d'autre champ injecté dans la fibre que celui de pompe, nous n'aurons donc en première approximation ni perte ni gain. Seul l'effet d'élargissement par automodulation de phase, présenté dans l'annexe C.2, peut impacter l'impulsion de pompe, La génération de paires que nous étudions ici est un effet trop faible pour dépléter notablement l'impulsion de pompe

, Convention usuelle des physiciens, les mathématiciens parlent de sesquilinéarité à droite pour la même définition

, Dans lequel toute suite de Cauchy converge. L'espace n'a pas de "trous

, Qui admet une base orthonormée constituée d'une famille dénombrable de vecteurs

G. , Nonlinear Fiber Optics, 2012.

P. S. Russell, Photonic-crystal fibers, J. Lightwave Technol, vol.24, pp.4729-4749, 2006.

F. Benabid and P. Roberts, Linear and nonlinear optical properties of hollow core photonic crystal fiber, Journal of Modern Optics, vol.58, issue.2, pp.87-124, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01307368

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel et al., Ultralow transmission loss in inhibited-coupling guiding hollow fibers, Optica, vol.4, pp.209-217, 2017.

T. Grujic, B. T. Kuhlmey, A. Argyros, S. Coen, and C. M. De-sterke, Solid-core fiber with ultra-wide bandwidth transmission window due to inhibited coupling, Opt. Express, vol.18, pp.25556-25566, 2010.

A. Argyros, S. G. Leon-saval, J. Pla, and A. Docherty, Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres, Opt. Express, vol.16, pp.5642-5648, 2008.

A. R. Bhagwat and A. L. Gaeta, Nonlinear optics in hollow-core photonic bandgap fibers, Opt. Express, vol.16, pp.5035-5047, 2008.

F. Benabid, Hollow-core photonic bandgap fibre : new light guidance for new science and technology, Philosophical Transactions of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, vol.364, issue.1849, pp.3439-3462, 2006.

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. S. Russell, Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers, J. Opt. Soc. Am. B, vol.28, pp.11-26, 2011.

J. M. Dudley and J. R. Taylor, Ten years of nonlinear optics in photonic crystal fibre, Nature Photonics, vol.3, p.85, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00362106

J. M. Dudley, G. Genty, and S. Coen, Supercontinuum generation in photonic crystal fiber, Rev. Mod. Phys, vol.78, pp.1135-1184, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00268071

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, Generation and photonic guidance of multi-octave optical-frequency combs, Science, vol.318, issue.5853, pp.1118-1121, 2007.

C. Conti, M. A. Schmidt, P. S. Russell, and F. Biancalana, Highly noninstantaneous solitons in liquid-core photonic crystal fibers, Phys. Rev. Lett, vol.105, p.263902, 2010.

A. Orieux and E. Diamanti, Recent advances on integrated quantum communications, Journal of Optics, vol.18, issue.8, p.83002, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01671951

L. Caspani, C. Xiong, B. J. Eggleton, D. Bajoni, M. Liscidini et al., Integrated sources of photon quantum states based on nonlinear optics, Light : Science & Applications, vol.6, p.17100, 2017.

S. Scheel, Single-photon sources-an introduction, Journal of Modern Optics, vol.56, issue.2-3, pp.141-160, 2009.
DOI : 10.1080/09500340802331849

J. G. Koefoed, S. M. Friis, J. B. Christensen, and K. Rottwitt, Spectrally pure heralded single photons by spontaneous four-wave mixing in a fiber : reducing impact of dispersion fluctuations, Opt. Express, vol.25, pp.20835-20849, 2017.

R. Rangarajan, L. E. Vicent, A. B. U'ren, and P. G. Kwiat, Engineering an ideal indistinguishable photon-pair source for optical quantum information processing, Journal of Modern Optics, vol.58, issue.3-4, pp.318-327, 2011.

K. Garay-palmett, H. J. Mcguinness, O. Cohen, J. S. Lundeen, R. Rangel-rojo et al., Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber, Opt. Express, vol.15, pp.14870-14886, 2007.

T. S. Humble and W. P. Grice, Spectral effects in quantum teleportation, Phys. Rev. A, vol.75, p.22307, 2007.
DOI : 10.1103/physreva.75.022307

URL : http://web.ornl.gov/~hqt/publications/CLEOQELS_2006_TSHumble.pdf

K. Edamatsu, Entangled photons : Generation, observation, and characterization, Japanese Journal of Applied Physics, vol.46, issue.11R, p.7175, 2007.
DOI : 10.1143/jjap.46.7175

URL : http://iopscience.iop.org/article/10.1143/JJAP.46.7175/pdf

R. Ursin, F. Tiefenbacher, T. Schmitt-manderbach, H. Weier, T. Scheidl et al., Entanglement-based quantum communication over 144 km, Nature Physics, vol.3, p.481, 2007.
DOI : 10.1038/nphys629

URL : http://arxiv.org/pdf/quant-ph/0607182

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter et al., Experimental one-way quantum computing, Nature, vol.434, p.169, 2005.
DOI : 10.1038/nature03347

URL : http://arxiv.org/pdf/quant-ph/0503126

D. Bouwmeester, J. Pan, K. Mattle, M. Eibl, H. Weinfurter et al., Experimental quantum teleportation, Nature, vol.390, p.575, 1997.
DOI : 10.1098/rsta.1998.0245

URL : http://arxiv.org/pdf/1901.11004

P. Senellart, G. Solomon, and A. White, High-performance semiconductor quantum-dot singlephoton sources, Nature Nanotechnology, vol.12, p.1026, 2017.

D. Huber, M. Reindl, Y. Huo, H. Huang, J. S. Wildmann et al., Highly indistinguishable and strongly entangled photons from symmetric gaas quantum dots, Nature Communications, vol.8, p.15506, 2017.
DOI : 10.1038/ncomms15506

URL : https://www.nature.com/articles/ncomms15506.pdf

I. Suemune, H. Sasakura, Y. Asano, H. Kumano, R. Inoue et al., Photon-pair generation based on superconductivity, IEICE Electronics Express, vol.9, issue.14, pp.1184-1200, 2012.
DOI : 10.1587/elex.9.1184

URL : https://www.jstage.jst.go.jp/article/elex/9/14/9_1184/_pdf

L. G. Helt, M. Liscidini, and J. E. Sipe, How does it scale ? comparing quantum and classical nonlinear optical processes in integrated devices, J. Opt. Soc. Am. B, vol.29, pp.2199-2212, 2012.

Y. H. Shih, A. V. Sergienko, M. H. Rubin, T. E. Kiess, and C. O. Alley, Two-photon entanglement in type-ii parametric down-conversion, Phys. Rev. A, vol.50, pp.23-28, 1994.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko et al., New highintensity source of polarization-entangled photon pairs, Phys. Rev. Lett, vol.75, pp.4337-4341, 1995.

J. Belhassen, F. Baboux, Q. Yao, M. Amanti, I. Favero et al., On-chip iii-v monolithic integration of heralded single photon sources and beamsplitters, Applied Physics Letters, vol.112, issue.7, p.71105, 2018.

C. Autebert, N. Bruno, A. Martin, A. Lemaitre, C. G. Carbonell et al., Integrated algaas source of highly indistinguishable and energy-time entangled photons, Optica, vol.3, pp.143-146, 2016.

S. Tanzilli, H. D. Riedmatten, W. Tittel, H. Zbinden, P. Baldi et al., Highly efficient photon-pair source using periodically poled lithium niobate waveguide, Electronics Letters, vol.37, issue.2, pp.26-28, 2001.
DOI : 10.1049/el:20010009

URL : https://hal.archives-ouvertes.fr/hal-00432358

O. Alibart, V. D'auria, M. D. Micheli, F. Doutre, F. Kaiser et al., Quantum photonics at telecom wavelengths based on lithium niobate waveguides, Journal of Optics, vol.18, issue.10, p.104001, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01315505

F. Kaneda, K. Garay-palmett, A. B. U'ren, and P. G. Kwiat, Heralded single-photon source utilizing highly nondegenerate, spectrally factorable spontaneous parametric downconversion, Opt. Express, vol.24, pp.10733-10747, 2016.
DOI : 10.1364/oe.24.010733

URL : http://arxiv.org/pdf/1603.08451

H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada et al., Generation of polarization entangled photon pairs using silicon wire waveguide, Opt. Express, vol.16, pp.5721-5727, 2008.

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt et al., Generation of correlated photons in nanoscale silicon waveguides, Opt. Express, vol.14, pp.12388-12393, 2006.

C. Ma, X. Wang, V. Anant, A. D. Beyer, M. D. Shaw et al., Silicon photonic entangled photon-pair and heralded single photon generation with CAR > 12, Opt. Express, vol.25, issue.2, pp.32995-33006, 2017.

E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner et al., Photon pair generation in a silicon micro-ring resonator with reverse bias enhancement, Opt. Express, vol.21, pp.27826-27834, 2013.

R. Kumar, J. R. Ong, J. Recchio, K. Srinivasan, and S. Mookherjea, Spectrally multiplexed and tunable-wavelength photon pairs at 1.55 µm from a silicon coupled-resonator optical waveguide, Opt. Lett, vol.38, pp.2969-2971, 2013.

K. Harada, H. Takesue, H. Fukuda, T. Tsuchizawa, T. Watanabe et al., Generation of high-purity entangled photon pairs using silicon wire waveguide, Opt. Express, vol.16, pp.20368-20373, 2008.

K. F. Lee, Y. Tian, H. Yang, K. Mustonen, A. Martinez et al., Photon-pair generation with a 100 nm thick carbon nanotube film, Advanced Materials, vol.29, issue.24, p.1605978, 2017.

S. Shi, P. Kumar, and K. F. Lee, Generation of photonic entanglement in green fluorescent proteins, Nature Communications, vol.8, p.1934, 2017.

J. Trapateau, J. Ghalbouni, A. Orieux, E. Diamanti, and I. Zaquine, Multi-user distribution of polarization entangled photon pairs, Journal of Applied Physics, vol.118, issue.14, p.143106, 2015.

M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda et al., The SECOQC quantum key distribution network in vienna, New Journal of Physics, vol.11, issue.7, p.75001, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00559693

H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser et al., High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber, Opt. Express, vol.15, pp.7853-7862, 2007.

L. G. Helt, E. Y. Zhu, M. Liscidini, L. Qian, and J. E. Sipe, Proposal for in-fiber generation of telecom-band polarization-entangled photon pairs using a periodically poled fiber, Opt. Lett, vol.34, pp.2138-2140, 2009.

G. Bonfrate, V. Pruneri, P. G. Kazansky, P. Tapster, and J. G. Rarity, Parametric fluorescence in periodically poled silica fibers, Applied Physics Letters, vol.75, issue.16, pp.2356-2358, 1999.

K. Phan-huy, A. T. Nguyen, E. Brainis, M. Haelterman, P. Emplit et al., Photon pair source based on parametric fluorescence in periodically poled twin-hole silica fiber, Opt. Express, vol.15, pp.4419-4426, 2007.

J. Li and M. K. Olsen, Quantum correlations across two octaves from combined up-and down-conversion, Phys. Rev. A, vol.97, p.43856, 2018.

J. Chen, X. Li, and P. Kumar, Two-photon-state generation via four-wave mixing in optical fibers, Phys. Rev. A, vol.72, p.33801, 2005.

M. Barbier, Generation of correlated photon pairs by spontaneous four-wave mixing in liquidfilled hollow-core photonic crystal fibres. Theses, Institut d'Optique Graduate School, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01690675

S. D. Dyer, B. Baek, and S. W. Nam, High-brightness, low-noise, all-fiber photon pair source, Opt. Express, vol.17, pp.10290-10297, 2009.

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss et al., Generation of high-purity telecomband entangled photon pairs in dispersion-shifted fiber, Opt. Lett, vol.31, pp.1905-1907, 2006.

O. Alibart, J. Fulconis, G. K. Wong, S. G. Murdoch, W. J. Wadsworth et al., Photon pair generation using four-wave mixing in a microstructured fibre : theory versus experiment, New Journal of Physics, vol.8, issue.5, p.67, 2006.

C. J. Mckinstrie, L. Mejling, M. G. Raymer, and K. Rottwitt, Quantum-state-preserving optical frequency conversion and pulse reshaping by four-wave mixing, Phys. Rev. A, vol.85, p.53829, 2012.

C. Joshi, A. Farsi, S. Clemmen, S. Ramelow, and A. L. Gaeta, Frequency multiplexing for quasi-deterministic heralded single-photon sources, Nature Communications, vol.9, p.847, 2018.

Q. Li, M. Davanço, and K. Srinivasan, Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics, Nature Photonics, vol.10, p.406, 2016.
DOI : 10.1038/nphoton.2016.64

URL : http://arxiv.org/pdf/1510.02527

K. Krupa, A. Tonello, V. V. Kozlov, V. Couderc, P. D. Bin et al., Bragg-scattering conversion at telecom wavelengths towards the photon counting regime, Opt. Express, vol.20, pp.27220-27225, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00755294

K. Li, H. Sun, and A. C. Foster, Four-wave mixing bragg scattering in hydrogenated amorphous silicon waveguides, Opt. Lett, vol.42, pp.1488-1491, 2017.

B. A. Bell, J. He, C. Xiong, and B. J. Eggleton, Frequency conversion in silicon in the single photon regime, Opt. Express, vol.24, pp.5235-5242, 2016.

I. Agha, S. Ates, M. Davanço, and K. Srinivasan, A chip-scale, telecommunications-band frequency conversion interface for quantum emitters, Opt. Express, vol.21, pp.21628-21638, 2013.
DOI : 10.1364/oe.21.021628

URL : https://authors.library.caltech.edu/42043/7/1304.5754v2.pdf

Q. Lin, F. Yaman, and G. P. , Photon-pair generation in optical fibers through fourwave mixing : Role of raman scattering and pump polarization, Phys. Rev. A, vol.75, p.23803, 2007.

J. Fan, A. Migdall, J. Chen, and E. A. Goldschmidt, Microstructure-fiber-based source of photonic entanglement, IEEE Journal of Selected Topics in Quantum Electronics, vol.15, pp.1724-1732, 2009.

L. J. Wang, C. K. Hong, and S. R. Friberg, Generation of correlated photons via four-wave mixing in optical fibres, Journal of Optics B : Quantum and Semiclassical Optics, vol.3, issue.5, p.346, 2001.

J. Beugnot, Stimulated Brillouin Scattering in Photonic Crystal Fibre. Theses, 2007.
URL : https://hal.archives-ouvertes.fr/tel-00296632

X. Li, J. Chen, P. Voss, J. Sharping, and P. Kumar, All-fiber photon-pair source for quantum communications : Improved generation of correlated photons, Opt. Express, vol.12, pp.3737-3744, 2004.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell et al., Single-mode photonic band gap guidance of light in air, Science, vol.285, issue.5433, pp.1537-1539, 1999.

F. Benabid, P. Roberts, F. Couny, and P. Light, Light and gas confinement in hollow-core photonic crystal fibre based photonic microcells, Journal of the European Optical SocietyRapid publications, vol.4, issue.0, 2009.

S. Lebrun, P. Delaye, R. Frey, and G. Roosen, High-efficiency single-mode raman generation in a liquid-filled photonic bandgap fiber, Opt. Lett, vol.32, pp.337-339, 2007.
DOI : 10.1364/ol.32.000337

URL : https://hal.archives-ouvertes.fr/hal-00671088

S. Lebrun, M. Phan-huy, P. Delaye, and G. Pauliat, Efficient stimulated raman scattering in hybrid liquid-silica fibers for wavelength conversion, Proceeding SPIE, vol.10021, pp.10021-10021, 2016.
DOI : 10.1117/12.2245431

URL : https://hal.archives-ouvertes.fr/hal-01429818

J. Rheims, J. Köser, and T. Wriedt, Refractive-index measurements in the near-ir using an abbe refractometer, Measurement Science and Technology, vol.8, issue.6, p.601, 1997.

S. A. Wieczorek, A. Urbanczyk, and W. V. Hook, Application of interferometric continuousdilution differential refractometry to some solutions, including isotopomer solutions : isotope effects on polarizability in liquids, The Journal of Chemical Thermodynamics, vol.28, issue.9, pp.1009-1018, 1996.

M. C. Phan-huy, A. Baron, S. Lebrun, R. Frey, and P. Delaye, Characterization of self-phase modulation in liquid filled hollow core photonic bandgap fibers, J. Opt. Soc. Am. B, vol.27, pp.1886-1893, 2010.

M. C. Phan-huy, A. Baron, S. Lebrun, R. Frey, and P. Delaye, Characterization of self-phase modulation in liquid filled hollow core photonic band gap fibers : erratum, J. Opt. Soc. Am. B, vol.30, pp.1651-1651, 2013.

J. Smirr, M. Deconinck, R. Frey, I. Agha, E. Diamanti et al., Optimal photon-pair single-mode coupling in narrow-band spontaneous parametric downconversion with arbitrary pump profile, J. Opt. Soc. Am. B, vol.30, pp.288-301, 2013.
DOI : 10.1364/josab.30.000288

W. P. Grice, A. B. U'ren, and I. A. Walmsley, Eliminating frequency and space-time correlations in multiphoton states, Phys. Rev. A, vol.64, p.63815, 2001.
DOI : 10.1103/physreva.64.063815

B. Fang, O. Cohen, J. B. Moreno, and V. O. Lorenz, State engineering of photon pairs produced through dual-pump spontaneous four-wave mixing, Opt. Express, vol.21, pp.2707-2717, 2013.
DOI : 10.1364/oe.21.002707

J. Bures and O. Guidée, Presse Internationale Polytechnique, 2009.

T. A. Birks, D. M. Bird, T. D. Hedley, J. M. Pottage, and P. S. Russell, Scaling laws and vector effects in bandgap-guiding fibres, Opt. Express, vol.12, pp.69-74, 2004.
DOI : 10.1364/opex.12.000069

G. Antonopoulos, F. Benabid, T. A. Birks, D. M. Bird, J. C. Knight et al., Experimental demonstration of the frequency shift of bandgaps in photonic crystal fibers due to refractive index scaling, Opt. Express, vol.14, pp.3000-3006, 2006.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, Selective filling of photonic crystal fibres, Journal of Optics A : Pure and Applied Optics, vol.7, issue.8, p.13, 2005.
DOI : 10.1088/1464-4258/7/8/l02

G. Dellepiane and J. Overend, Vibrational spectra and assignment of acetone, ??? acetone-d3 and acetone-d6, Spectrochimica Acta, vol.22, issue.4, pp.593-614, 1966.
DOI : 10.1016/0371-1951(66)80091-7

M. Liscidini and J. E. Sipe, Stimulated emission tomography, Phys. Rev. Lett, vol.111, p.193602, 2013.

W. P. Grice and I. A. Walmsley, Spectral information and distinguishability in type-ii downconversion with a broadband pump, Phys. Rev. A, vol.56, pp.1627-1634, 1997.
DOI : 10.1103/physreva.56.1627

P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics, 1991.
DOI : 10.1017/cbo9781139167994

J. Smirr, Towards a narrow-band source of polarisation entangled entangled photon at 1550 nm. Theses, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00745192

R. Ghosh, C. K. Hong, Z. Y. Ou, and L. Mandel, Interference of two photons in parametric down conversion, Phys. Rev. A, vol.34, pp.3962-3968, 1986.

J. Chen, X. Li, and P. Kumar, Quantum theory for two-photon-state generation by means of four-wave mixing in optical fiber, Proceeding SPIE, vol.5551, pp.5551-5551, 2004.

T. E. Keller and M. H. Rubin, Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse, Phys. Rev. A, vol.56, pp.1534-1541, 1997.
DOI : 10.1103/physreva.56.1534

K. Garay-palmett, A. B. U'ren, and R. Rangel-rojo, Conversion efficiency in the process of copolarized spontaneous four-wave mixing, Phys. Rev. A, vol.82, p.43809, 2010.

M. Hillery and L. D. Mlodinow, Quantization of electrodynamics in nonlinear dielectric media, Phys. Rev. A, vol.30, pp.1860-1865, 1984.
DOI : 10.1103/physreva.30.1860

M. Hillery and L. D. Mlodinow, Semiclassical expansion for nonlinear dielectric media, Phys. Rev. A, vol.31, pp.797-806, 1985.
DOI : 10.1103/physreva.31.797

P. D. Drummond and M. Hillery, The Quantum Theory of Nonlinear Optics, 2014.

T. G. Mackay and A. Lakhtakia, Electromagnetic Anisotropy and Bianisotropy. Wolrd Scientific, 2009.

J. D. Jackson and C. Electrodynamics, , 1998.

M. A. Parker, Physics of Optoelectronics, 2005.

R. Loudon, The Quantum Theory of Light, 2000.

C. Cohen-tannoudji, B. Diu, F. Laloë, and M. Quantique, Enseignement des sciences, 1973.

D. Klyshko, Photons and nonlinear optics, 1988.

A. Bezgabadi and M. A. Bolorizadeh, Quantization of Electromagnetic Radiation in Dielectrics with Presence of Third Order Dispersion Term, 2018.

A. Safaei, A. Bassi, and M. A. Bolorizadeh, Quantum treatment of field propagation in a fiber near the zero dispersion wavelength, Journal of Optics, vol.20, issue.5, p.55402, 2018.

J. E. Sipe, N. A. Bhat, P. Chak, and S. Pereira, Effective field theory for the nonlinear optical properties of photonic crystals, Phys. Rev. E, vol.69, p.16604, 2004.

K. J. Blow, R. Loudon, S. J. Phoenix, and T. J. Shepherd, Continuum fields in quantum optics, Phys. Rev. A, vol.42, pp.4102-4114, 1990.

J. G. Koefoed, J. B. Christensen, and K. Rottwitt, Effects of noninstantaneous nonlinear processes on photon-pair generation by spontaneous four-wave mixing, Phys. Rev. A, vol.95, p.43842, 2017.

N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, Security of quantum key distribution using d-level systems, Phys. Rev. Lett, vol.88, p.127902, 2002.

J. B. Christensen, C. J. Mckinstrie, and K. Rottwitt, Temporally uncorrelated photon-pair generation by dual-pump four-wave mixing, Phys. Rev. A, vol.94, p.13819, 2016.

E. Ortiz-ricardo, C. Bertoni-ocampo, Z. Ibarra-borja, R. Ramirez-alarcon, D. Cruz-delgado et al., Spectral tunability of two-photon states generated by spontaneous four-wave mixing : fibre tapering, temperature variation and longitudinal stress, Quantum Science and Technology, vol.2, issue.3, p.34015, 2017.

R. Renner, N. Gisin, and B. Kraus, Information-theoretic security proof for quantum-keydistribution protocols, Phys. Rev. A, vol.72, p.12332, 2005.

B. Kraus, N. Gisin, and R. Renner, Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication, Phys. Rev. Lett, vol.95, p.80501, 2005.

N. A. Silva and A. N. Pinto, Effects of losses and nonlinearities on the generation of polarization entangled photons, J. Lightwave Technol, vol.31, pp.1309-1317, 2013.

S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, High-efficiency, ultra low-noise all-fiber photon-pair source, Opt. Express, vol.16, pp.9966-9977, 2008.

E. Y. Zhu, Z. Tang, L. Qian, L. G. Helt, M. Liscidini et al., Poled-fiber source of broadband polarization-entangled photon pairs, Opt. Lett, vol.38, pp.4397-4400, 2013.

E. Y. Zhu, Z. Tang, L. Qian, L. G. Helt, M. Liscidini et al., Direct generation of polarization-entangled photon pairs in a poled fiber, Phys. Rev. Lett, vol.108, p.213902, 2012.

C. Liang, K. F. Lee, M. Medic, P. Kumar, R. H. Hadfield et al., Characterization of fiber-generated entangled photon pairs with superconducting single-photon detectors, Opt. Express, vol.15, pp.1322-1327, 2007.

H. Takesue and K. Inoue, Generation of 1.5?µm band time-bin entanglement using spontaneous fiber four-wave mixing and planar light-wave circuit interferometers, Phys. Rev. A, vol.72, p.41804, 2005.

F. Poletti, M. N. Petrovich, and D. J. Richardson, Hollow-core photonic bandgap fibers : technology and applications, Nanophotonics, vol.2, p.315, 2013.
DOI : 10.1515/nanoph-2013-0042

URL : http://www.degruyter.com/downloadpdf/j/nanoph.2013.2.issue-5-6/nanoph-2013-0042/nanoph-2013-0042.xml

M. Santandrea, M. Stefszky, V. Ansari, and C. Silberhorn, Fabrication limits of waveguides in nonlinear crystals and their impact on quantum optics applications, 2018.

A. Kudlinski, M. Lelek, B. Barviau, L. Audry, and A. Mussot, Efficient blue conversion from a 1064 nm microchip laser in long photonic crystal fiber tapers for fluorescence microscopy, Opt. Express, vol.18, pp.16640-16645, 2010.

G. Brambilla, F. Xu, P. Horak, Y. Jung, F. Koizumi et al., Optical fiber nanowires and microwires : fabrication and applications, Adv. Opt. Photon, vol.1, pp.107-161, 2009.
DOI : 10.1364/aop.1.000107

M. V. Chekhova, S. Germanskiy, D. B. Horoshko, G. K. Kitaeva, M. I. Kolobov et al., Broadband bright twin beams and their upconversion, Opt. Lett, vol.43, pp.375-378, 2018.
DOI : 10.1364/ol.43.000375

URL : http://arxiv.org/pdf/1710.08330

S. Sensarn, G. Y. Yin, and S. E. Harris, Generation and compression of chirped biphotons, Phys. Rev. Lett, vol.104, p.253602, 2010.

M. B. Nasr, S. Carrasco, B. E. Saleh, A. V. Sergienko, M. C. Teich et al., Ultrabroadband biphotons generated via chirped quasi-phase-matched optical parametric down-conversion, Phys. Rev. Lett, vol.100, p.183601, 2008.
DOI : 10.1103/physrevlett.100.183601

, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 1970.

J. Fan, M. D. Eisaman, and A. Migdall, Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs, Phys. Rev. A, vol.76, p.43836, 2007.

M. Hentschel, H. Hübel, A. Poppe, and A. Zeilinger, Three-color sagnac source of polarizationentangled photon pairs, Opt. Express, vol.17, pp.23153-23159, 2009.

B. Fang, O. Cohen, and V. O. Lorenz, Polarization-entangled photon-pair generation in commercial-grade polarization-maintaining fiber, J. Opt. Soc. Am. B, vol.31, pp.277-281, 2014.

D. Dehlinger and M. W. Mitchell, Entangled photons, nonlocality, and bell inequalities in the undergraduate laboratory, American Journal of Physics, vol.70, issue.9, pp.903-910, 2002.

L. Cui, X. Li, and N. Zhao, Spectral properties of photon pairs generated by spontaneous four-wave mixing in inhomogeneous photonic crystal fibers, Phys. Rev. A, vol.85, p.23825, 2012.

R. J. Francis-jones and P. J. Mosley, Characterisation of longitudinal variation in photonic crystal fibre, Opt. Express, vol.24, pp.24836-24845, 2016.

E. Meyer-scott, V. Roy, J. Bourgoin, B. L. Higgins, L. K. Shalm et al., Generating polarization-entangled photon pairs using cross-spliced birefringent fibers, Opt. Express, vol.21, pp.6205-6212, 2013.
DOI : 10.1364/oe.21.006205

URL : http://arxiv.org/pdf/1212.4780

D. Descloux, C. Laporte, J. Dherbecourt, J. Melkonian, M. Raybaut et al., Spectrotemporal dynamics of a picosecond opo based on chirped quasi-phasematching, Opt. Lett, vol.40, pp.280-283, 2015.

S. T. Sørensen, A. Judge, C. L. Thomsen, and O. Bang, Optimum fiber tapers for increasing the power in the blue edge of a supercontinuum-group-acceleration matching, Opt. Lett, vol.36, pp.816-818, 2011.

A. Mussot, M. Conforti, S. Trillo, F. Copie, and A. Kudlinski, Modulation instability in dispersion oscillating fibers, Adv. Opt. Photon, vol.10, pp.1-42, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01470823

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. D. Bradley et al., Multi-kilometer long, longitudinally uniform hollow core photonic bandgap fibers for broadband low latency data transmission, J. Lightwave Technol, vol.34, pp.104-113, 2016.

E. N. Fokoua, F. Poletti, and D. J. Richardson, Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers, Opt. Express, vol.20, pp.20980-20991, 2012.

M. Phan-huy, J. Moison, J. A. Levenson, S. Richard, G. Mélin et al., Surface roughness and light scattering in a small effective area microstructured fiber, J. Lightwave Technol, vol.27, pp.1597-1604, 2009.

M. Farahmand and M. De-sterke, Parametric amplification in presence of dispersion fluctuations, Opt. Express, vol.12, pp.136-142, 2004.

M. Karlsson, Four-wave mixing in fibers with randomly varying zero-dispersion wavelength, J. Opt. Soc. Am. B, vol.15, pp.2269-2275, 1998.

J. F. Nye, Propriétés physiques des cristaux. Dunod, 1961.

S. J. Orfanidis, Electromagnetic Waves and Antennas

L. Landau and E. Lifchitz, Physique théorique : Mécanique. Éditions MIR, 1969.

G. Brida, M. V. Chekhova, I. P. Degiovanni, M. Genovese, G. K. Kitaeva et al., Chirped biphotons and their compression in optical fibers, Phys. Rev. Lett, vol.103, p.193602, 2009.

M. Charbonneau-lefort, M. M. Fejer, and B. Afeyan, Tandem chirped quasi-phase-matching grating optical parametric amplifier design for simultaneous group delay and gain control, Opt. Lett, vol.30, pp.634-636, 2005.

C. R. Phillips, C. Langrock, D. Chang, Y. W. Lin, L. Gallmann et al., Apodization of chirped quasi-phasematching devices, J. Opt. Soc. Am. B, vol.30, pp.1551-1568, 2013.

O. Yaakobi and L. Friedland, Autoresonant four-wave mixing in optical fibers, Phys. Rev. A, vol.82, p.23820, 2010.

E. Myslivets and S. Radic, Spatially resolved measurements of the chromatic dispersion in fibers, J. Lightwave Technol, vol.33, pp.597-608, 2015.