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Abstract

In the eld of the security of the embedded systems, it is necessary to know and understand
the possible physical attacks that could break the security of cryptographic components. Since
the current algorithms such as Advanced Encryption Standard (AES) are very resilient against
di erential and linear cryptanalysis, other methods are used to recover the secrets of these
components. Indeed, the secret key used to encrypt data leaks during the computation of the
algorithm, and it is possible to measure this leakage and exploit it. This technique to recover
the secret key is called side-channel analysis.

The main target of this Ph. D. manuscript is to increase and consolidate the knowledge on
the side-channel threat. To do so, we apply some information theoretic results to side-channel
analysis. The main objective is show how a side-channel leaking model can be seen as a
communication channel.

We rst show that the security of a chip is dependant to the signal-to-noise ratio (SNR) of
the leakage. This result is very useful since it is a generic result independent from the attack.
When a designer builds a chip, he might not be able to know in advance how his embedded
system will be attacked, maybe several years later. The tools that we provide in this manuscript

will help designers to estimated the level of liability of their chips.



Resune

Dans le cadre de la ®curie des sysemes embarqLes, il est recessaire de connatre les attaques
logicielles et physiques pouvant briser la ®curie de composants cryptographiques garantissant
l'inegrie, la abilie et la con dentialie des donrees. Etant donre que les algorithmes utilies
aujourd'hui comme Advanced Encryption Standard (AES) sont consicees comme esistants
contre la cryptanalyse lireaire et dierentielle, d'autres methodes plus insidieuses sont utiliees
pour ecuerer les secrets de ces composants. En e et, la ck secete utilie pour le chi rement
de donrees peut fuiter pendant 'algorithme. |l est ainsi possible de mesurer cette fuite et de
I'exploiter. Cette technique est appeke attaque par canal auxiliaire

Le principal objectif de ce manuscrit de these est de consolider les connaissances treoriques
sur ce type de menace. Pour cela, nous appliquons des esultats de treorie de l'information
a letude par canal auxiliaire. Nous montrons ainsi comment il est possible de comparer un
mockle de fuitea un mockle de transmission de l'information.

Dans un premier temps, nous montrons que la scurie d'un composant est fortement
ependante du rapport signala bruit de la fuite. Ce esultat a un impact fort car il ne cepend
pas de l'attaque choisie. Lorsqu'un designerequipe son produit, il ne connat pas encore la
manere dont son syseme embarqle pourra étre attaqle plusieurs anrees plus tard. Les outils
mattematiques proposs dans ce manuscrit pourront aider les concepteursa estimer le niveau

de abilie de leurs puceselectroniques.
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1.1 On the Importance of Cyber Security

In electronic devices such as embedded systems, personal computers, GPUs, etc, the need of
security has grown wildly over the last 20 years. Indeed, millions of threats may compromise the
security and therefore the private life of users, companies or state agencies, and one breach of
security may alter the privacy of millions of users. For example, when ransomwar&VannaCry
appeared in May 2017, about 200,000 computers were infected over 150 countries. The nancial
impact of this worldwide attack has been evaluated by cyber-risks modeling rm at $4 billion
USD. However, experts of this domain noticed that such an attack could possibly go even worse
since more sensible systems could have been a ected, such as nuclear plants. This is why state
agencies and big companies invest a lot of money to secure such sensible sites.

However, it is di cult to predict how a target will be attacked as the security breaches are
very various and are often discovered by attackers. The attackers can have di erent goals such

as:
take the control of the target device;
make the target device inoperant;

catch the private data of the target.
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Figure 1.1: Screenshot of an infected system by WannaCry

In order to protect the systems, the designer should protect their software as well as their

hardware systems. The protection of the data can be made thanks t@ncryption algorithms..

1.2 The Rise of Cryptography

As mentioned earlier, the protection of sensitive data is therefore crucial. This is why the notion

of cryptography appeared.

1.2.1 A Bit of History

The notion of cryptography has appeared more than two thousands years ago. The oldest known
ciphered document dates from the 16th century B.C. in Iraq. This is a clay tablet, in which a
potter wrote his secret recipe. To make it secret, he removed the consonants, modifying the
spelling of the words [41].

The Greeks where also using their own methods of encoding. One of them is tiseytale
The scytale is a stick with a strip of parchment wound around it (cf Figure 1.2). The encoder

and the decoder must own a stick having the same geometric characteristics to encrypt and
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Figure 1.2: A scytale ¢ CC BY-SA 3.0

decrypt the message. Overall, the encryption that is performed is a transpositions of letters.
Today, it would be considered as a very weak code, but we must not forget that in these times,
a lot of people where not even able to read and write.

During the rst century B.C., Caesar ciphers appeared. They were the rst letter substitution
codes that appeared. In a message, every letter was changed into the n-th letter after. This
method was used by the Roman army. Once again, this code is weak as one only has to check
26 possibilities to recover the message.

In 1586, French diplomat Blaise de Vigerere, published a book in which he exposed his own
method of ciphering. This was called the Vigerere cipher. The method is still simple to encode
and decode a message but the strength of the code is much higher than a Caesar cipher. Indeed,
the code is based on a password and every letter of the message can be changed into di erent
letter, depending on its place. The Vigerere cipher was broken in 1863 by Friedrich Kasiki.

During the Second World War, cryptography and cryptanalysis played a crucial role as Alan
Turing managed to break the German encoding algorithm Enigma, supposed to be fully secured
by the Wehrmacht. The impact of this was so important that today's historians agree that the

war would have been at least two years longer if Enigma had not been broken [47].

1.2.2 Cryptography Today

Nowadays, codes are more sophisticated, but the idea is still the same: protect secrets from

malicious threats.



1.2 The Rise of Cryptography

For a greater security, Auguste Kerckho s showed that the security and the secret of a
crypto-system should only be based on the secret of the encoding keyd. This means that
anyone can know the process leading to encoded data, but in this process, the encoder uses a
secret key (therefore only known by him).

Eventually, a \good" coding algorithm is supposed to ensure that the best possible way to
recover the secret message is to try every possibility of the key (exhaustive search). For 256 bits
long keys, this would take more than 10 billions years with the best current computing power.

We can divide the codes into two big families:

The symmetric codes where the secret key is the same for both encoding and decoding.
This means that the sender and the receiver of the message must know the secret key

before.

The asymmetric codes where there is a key to encode the message (often callegublic

key) and a secret key to decode the message (often called tipeivate key).

The advantage of symmetric codes is that they are often very easy to compute and to design on
hardware. The speed of coding is very high (more than 10 Mb/s). The main drawback is the
key exchange. How to share a secret key in a safe manner with someone?

On the contrary, asymmetric codes are much slower, but the sharing of the key is absolutely
not a problem because the public key is used to encode the message and only the owner of the
secret key will be able to decode the message. The only di culty is to certify the owners of the
public keys.

On the adversary's side, the goal is to recover the secret key. Obviously, the longer the key
is, the more di cult it will be for the attacker to get it. The most naive way to recover a key is
the brute force, i.e. to check every possible key. This process is very fast when the size of the key
is low (today's machines can treat more than a billion operations per second). However, when
keys are longer (for example 128 or 256 bhits), it would take years to examine all the possibilities,
even with the best processing units of the world. Other possibilities may exist to decrease to

number of possibilities. They are calleddi erential and linear cryptanalysis.

In the di erential cryptanalysis, the attacker is able to choose the input text. He exploits
the di erences at the input and sees how these di erences behave at the output. A \good"

algorithm transforms small di erences into big ones.
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Code Year and Size of Broken?
type the key
DES 1977 - symmetric 56 bits Yes
RSA 1983 - asymmetric 2048 bits No!
RC4 1987 - symmetric 40 to 256 bits Yes
AES (see 1.2.3)| 1999 - symmetric | 128, 192 or 256 bits| No?

Table 1.1: List of the main encryption standards

In linear cryptanalysis, the attacker approximates the algorithm as a linear function,
and by carefully choosing the plaintext, the secret key can be recovered if the algorithm

presents some linearities.

A small list of the existing encryption methods is given Table 1.1. This list is not exhaustive
since there are many ways to encrypt data but is shows the main standards that are used or

have been used.

1.2.3 AES

Currently, the most used algorithm is called AES [26] (for Advanced Encryption Standardg.
AES was invented by Joan Daemen and Vincent Rijmen in 1997. In 2001, the National Institute
of Standards and Technologies (NIST) chooses AES as the main encoding standard. Since then,
AES has acquired a very good reputation of being a very secure algorithm. It has been built so
that di erential and linear cryptanalysis have no e ect on its security. The only known attack on
a full AES algorithm has been published in 2011 by a team working for Microsoft 10]. However,
this attack recovers the key in 226 operations, while exhaustive search takes2® operations.
This attack is therefore four times faster than the exhaustive search, but it is still a very long.
This is why AES is still considered as safe.

AES is a block encoding algorithm. This means that it cuts the message to be encoded into
blocks of 16 bytes. Then each block is encoded separately with the same secret key. The length
of the secret key is either 16, 24 or 32 bytes. From the secret key, the algorithm rst generates

subkeys, as many as the number of rounds of the algorithm. For the rst round, the secret key

1The security of RSA is based on the di culty to reduce very big numbers into a product of prime numbers.
The algorithm is simple and can be used for any key size. Nowadays, it is considered as safe to choose keys
that are at least 2048 bits long. However, it has been proved that RSA will be very vulnerable to quantum
cryptanalysis [80].

2According to the NSA, AES can be considered as secure. It is however advised to encrypt very sensitive
data with keys that are at least 192 bits long.
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meets the plaintext block through an exclusive or function. Then, for each round, the block

passes through linear and non-linear functions such as:
1. SubBytes a non-linear one-to-one function;
2. ShifRows a cyclical shift of the rows of the block;
3. MixColumns an invertible linear transformation.

Then the subkey corresponding to the number of the rounds is added.

1.3 Side-Channel Analysis

As we mentioned earlier, without more information than the message to be encoded and its
encoded version, there is no better way to recover the key than the exhaustive search. To break
the security of a device without performing an exhaustive search, one has therefore to use other
type of information than only the plaintext and the ciphertext. These are the side information.

They can be of any type:
the computation time of the algorithm;
the electro-magnetic radiations of the device during the algorithm;
the power consumption of the device;
the insertion of faults during the computation of the algorithm.

These methods can be classi ed into two types of attacks: the invasive and non-invasive attacks.

Invasive attacks may alterate the targeted device while non-invasive attacks are more passive.

They only listen the behaviour of the system and try to establish a model of the leakage.
According to Frarcois-Xavier Standaert [82], we can model a side-channel attack by the

framework designed Figure 3.1.

Noise

!

it c
Secret key— LeakageseL>Ellve Channel-rra—ma? pistnguisher  —— Estimation
variaple
Plaintext Plaintext

Figure 1.3: Representation of a side-channel attack
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During the encryption algorithm, the plaintext that is to be encrypted meets the secret key
via an exclusive or function (or xor). As the secret key is used in the algorithm, a possible
leakage may happen since it is possible to measure an image of the secret key.

For example, in AES, the secret key is used during the rst round of the algorithm, and in
some devices, it is possible to recover the secret key when the substitution box of the secret key

xor the plaintext is stored in the register of the target device [51].

1.3.1 \Wulnerabilities

The main advantage of side-channel analysis compared to classical cryptanalysis, is that it is
possible to recover each of the byte of the secret key separately. For attacker, this is a great
improvement because, they no more supposed to consider at least?® possibilities but 16 times
28 = 256 possibilities to recover the secret key. Therefore, in side-channel, the vulnerabilities
come no-more from the algorithm itself, but from the way that this algorithm is implemented in

a hardware chip. This means that, form the designer point of view, it is crucial to perfectly
know the hardware architecture of the chip and to be very aware of any possible power leakage
that may occur.

Nowadays, systems are build with sensors that are able to detect intrusive attacks and

algorithms are developed to bring counter-measures to the leakages.

1.3.2 Attack

In practice, an attack happens in the following way as described by Frarcois-Xavier Standaert

in [82]. In this framework, we notice that most of the attack follow the same pattern.

As mentioned in Section 1.2, the encryption algorithm is known by the attacker. In most

of the cases it will be AES (sometimes RSA or DES).

The rst phase of an attack is called the pro ling phase. The attacker builds a modelization
of the leakage using a copy of the target device. This modelization can be under a leakage
model function or via histograms calledtemplate. Of course, as this pro ling phase is
made on a copy of the target device, the secret key of this copy is known. A drawback of
this technique is that there may exist a bias between the model obtained with the copy

device and the target device.

Then, the exploitation phase is based on applying the model obtained during the pro ling

phase to the target device.

10
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Figure 1.4: One power consumption trace of DES algorithm

Example: the DPA Contest In 2008, the DPA contest [84] was launched by Teecom
Paristech. The challenge was to recover a secret key used in an encrypting algorithm DES with

a very little number of traces. The participants were provided very big sets of data such as:
For each query, the 64 bits plaintext to be encrypted;
The corresponding 64 bits ciphertext;
The power consumption of the whole encryption process.

A trace has the shape given in Figure 1.4. With one gure like this, it is not possible to recover
the secret key. However, if we average them according to existing leakage models such as the
hamming weight leakage $1], we can notice some points of interest. For example, th&NR of
the leakage of one DES substitution box is given in Figure 4.8. In this gure, we notice that
given a leakage model, theSNRis relevant in three points. We call these samplegoints of
interest. By selecting only theses points of interest and computing mathematical functions called

distinguishers it is possible to recover the secret key. For the rst edition of the DPA contest,

11
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Figure 1.5: The SNR of this leakage according to the Hamming weight model.

12
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the best attacking method was provided by Christophe Clavier R1]. In his method, the full key

recovery takes only 43 traces in average.

1.4 A Look on Information Theory

1.4.1 Background

The communication of information has bene ted from many improvements at the physical level.
However, it is also pro table to optimize the data rate by studying how information shall be
preprocessed before being sent. This need has given rise lttformation Theory : the science

of data transmission. It was created in 1948 by Claude E. Shannon from the Bell labs in his
famous article A Mathematical Theory of Communication [78]. In this article, for the rst time,

the basis of digital communication were drawn. The idea was: how to send some information
from a sender to a receiver through a noisy channel? To do so, Shannon proposed a framework
for a communication channel, from the message to be sent, to the received message. Figure 1.6

shows this communication system designed in 1948.

Source  Transmitter Receiver Estimation

| Received
Signal signal

Noisy source

Figure 1.6: A communication system by Shannon

For the rst time, a precise model was proposed to describe distant communications. But
Shannon did not only describe the model. With probabilistic considerations, he proved that it
is possible to send messages with an arbitrary small error at the decoding phase, as long as the
coding rate (i.e. the amount of data per sample) is lower than a given limit. Moreover, this
limit has an analytic expression and is called theMutual Information between the signal and
the received signal. As the transmitter has access to the way that the data is sent, it is possible
to modify the Mutual Information, and therefore reach the highest possible limit, called the
Channel Capacity When the noisy source is additive and the noise is Gaussian, the capacity of

the channel takes the well-known expressiorC = %Iog(l + SNR), where SNRis the signal to

13
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noise ratio, i.e. the power or the input signal divided by the power power of the noise. This
formula is known as the Shannon capacity.

However, Shannon did only predict that there exists ways to transmit data that reach this
bound. He did not tell how to nd one. For mobile communications, the rst time that a team
managed to implement a transmission scheme reaching the Shannon capacity, was in 1996 when

Berrou and Glavieux invented the Turbo-codes [7].

1.4.2 Link With Side-Channel Analysis

The attractive point of information theory is that its elds of applications are wide. Indeed, in
the case of side-channel analysis, we can consider that the secret key is an information, and that
the leakage is a transmission.

In 2014, Annelie Heuser proposed a diagram where both notions of side-channel analysis and
information theory are represented 9. We have copied this gure in Figure 1.8. The notations

are the following:
K is the random variable standing for the leaking secret key.
T is the random vector standing for the plaintext vector.
Y is the random vector standing for the sensitive variable vector.
N is the random vector standing for the additive noise (most often supposed as Gaussian).
X is the random vector standing for the measured traces.

i is the random variable standing for the estimated key. If the attack is e cient, the

estimated key is equal to the secret key.

The functions f and' are respectively the algorithmic function (for example aSubBytes
function and the leakage model function. The leakage model function can be supposed
to be known or estimated. The best case for the attacker is of course when the leakage

function is known.

D is the distinguishing rule. It is a mathematical function taking as inputs the traces and

the plaintext, and returning an estimation of the secret key.

14
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Figure 1.7: Claude Shannon ¢ MFO
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Figure 1.8: Framework linking communication channels with leakage model.

1.5 Organization of the Manuscript

The manuscript is organized as follows. In Chapter 2, | describe the main contributions of my
thesis. Part Il deals with a generic upper bound to any type of attack thanks to information
theoretic results. In Part I11, | consolidate the knowledge of some distinguishers. More speci cally,
Chapter 5 deals with monobit leakages while Chapter 6 shows that Mutual Information Analysis
can be optimal in some scenarios. In Part IV, we discuss about practical issues that may happen

in real world devices, in particular for timing attacks.

1.6 Notations

All over this manuscript, we will use the following notations for the mathematical derivations.
The sets will be written with calligraphic letters, and elements of such sets in small caps. If
possible we will use the same letter. for example 2 X. Random variables will be written in
capital letter. For example, X is a random variable taking values inX. Probabilities are written
with the symbol P. Therefore, the probability that X is x is noted P(X = x). If it is clear that
the random variable is X, we will only write P(x). We use bold letters to write vectors. For
examplex is a vector whose all the element are inX. And X is a random vector taking values

in X. If the set X is continuous, the probability distribution function is written as p(x).

We also recall some information theoretic de nitions that are used in this manuscript. The

16
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entropy of a random variable X is de ned as:
X
H(X)= P(x) log P(x):
x2 X

The conditional entropy of X knowing Y is de ned as:

X
HXjY)=  PWH(X Y =Yy)

%Y x
= Ply) P(xjy)logP(x]y):
y2yYy x2X

The mutual information between two random variables X and Y is de ned as:

1(X;Y)= H(X) H(X|Y)
= H(Y) H(Y|jX)
. iog PEY)
= o YP(x,y)log PX)P(y)

For these de nitions, we have not precised the base of the logarithm since it is mathematically
possible to choose any base. However, in communication theory, base 2 is very often used and
information is consequently expressed in bits. This is why we will use this base for all the

logarithms.
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2.1 Formal Security Proofs and Studies

During my thesis, my main concern has been: how to unify and understand the link between
the di erent metrics used to evaluate the sensitive information leakage of cryptographic chips?
Indeed, various di erent metrics have been proposed by various authors in respond to specic

issues. For example, we can cite:
The Mutual Information (MI) between measurements and the sensitive variables;

The Perceived Information computed with the estimated distribution of the leakage, based

on template attacks;

The Success Rate or the Guessing Entropy of an attack exploiting a leakage.

2.1.1 A Generic Bound for Any Leakage With Only SNR

For example, the notion of Ml is a widely spread concept in Side-Channel Analysis30], and
everyone agrees that the larger the MI, the better the attack, or from the defender's side, the
weaker the chip. However, the link between MI and the success rate of an attack, has never been
established formally yet for generic attacks. Some links have already been madad 53] but
they have been made for particular types of attacks, especially to show how the masking order
impacts the MI [67] and are therefore true in a speci ¢ context. Moreover, | have noticed that
no paper really deals with a tight prediction of the security of a chip. My question was: how can

a designer predict the success rate of an attack with a very restricted number of assumptions.

Indeed, a designer does not know how a device will be attacked. New methods may appear

20
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several years after the conception of the chip. This is why | have started looking for a framework
that can unify any type of attack under simple concepts and notations.

This is the beginning of my re ection: if we use some information theoretic metrics, then
the answer must be in this eld.

In order to better formalize a side-channel attack, | based myself on the framework given by
Frarcois-Xavier Standaert in [82]. This framework presents a simple albeit comprehensive look
on what a side-channel attack is.

In 2014, Annelie Heuser has published an article3d9] where she demonstrates that the
optimal distinguisher for an attack is the Maximum Likelihood decoder. To obtain this result,
she establishes a rst formal link between side-channel analysis and information theory. The
leakage model is there seen as a communication channel with a message to recover (i.e. the
secret key). The method to derive the optimal distinguisher has been to express the expression
for the key decoding rule which maximizes the success rate.

As Ml is an information theoretic metric, it becomes here natural to study its impact with
information theoretic models and theorems. | have therefore worked on this aspect. The main
di culty for me has been to deal with the philosophical di erences between information theory

and side-channel. Indeed, the purpose of each is clearly di erent:

The goal of an information theorist is to send a message with the highest possible rate
and with an arbitrary small error rate. To do so, the communication engineer can use

correcting codes and choose how the message is encoded.

In side-channel analysis, the message is the secret key. But the attacker do not have access
to it (which is obvious). This means that the input distributions are imposed by the model

and that there is not coding possibility to improve the success rate.

However, Shannon's coding theorem and converse coding theorem are still useful to determine
bounds. Indeed, the Shannon's converse coding theorem shows that the probability of success of
a transmission is upper-bounded by the mutual information of the channel T9]. | have used this
major theorem (proved 60 years ago!) and applied it to my side-channel model.

I have therefore applied the theorem to side-channel. The main problem that | have
encountered is a formal calculation of the Mutual Information. Indeed, the leakagesare not
independent and identically distributed (i.i.d.). This means that the Mutual Information

between the traces and the sensitive variables cannot be easily estimated via Shannon's formula
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C= %Iogz(l + SNR). This one remains only a loose upper-bound of the real MI. Therefore, |
had to resort to other methods to estimated the MI as tight as possible.

| therefore proposed two new methods to estimate the Ml of large vectors:

1. A mathematical upper-bound that converges to the right value when the number of traces

g tends to in nity;
2. A parametric estimation based on empirical results.

The mathematical approach is true for any leakage model and any type of noise. However,
the bound is not tight for small values of g. In this case, a good tradeo is to merge our
approach with Shannon's bound. Our parametric estimation is due to empirical observations
with Additional White Gaussian Noise (AWGN). Indeed, | have noticed that the MI between
two vectors behaves like an error function. With such estimation, the only knowledge of the
Signal-to-Noise Ratio (SNR) is enough to approximate the MI. This leads to a computation of
the Success Rate $R) of an attack that can be computed only with the calculation of the SNR
and with the assumption of an additive white Gaussian noise. We do not suppose anything on
the leakage model.

| have then compared the bound obtained by these estimations of the MI, with the best
possible distinguisher i.e. the Maximum Likelihood distinguisher (as demonstrated by Heuser et

al. in [39]). The results show that the tighter the estimation of the MI, the tighter the bound is.

2.1.2 Extension to Template Attacks

My work on the best possible success rate for a given number of traces relies on the calculation
of the Mutual Information between the sensitive variable and the measured traces. In many
cases, the leakage model is not perfectly known and it has to be estimated. This is the case for
example, when the attacker has a copy of the targeted device and learns the leakage model from
this copy. These are calledemplate attacks Here the goal is di erent because we want to know
how fast an attacker can break a secret key after a learning phase.

This means that the attacker does not know the real leakage model, but an estimation that
may even be biased. Frarcois-Xavier Standaert proposed the notion oPerceived Information
(PI) [30] to replace a MI that cannot be computed because of the lack of knowledge.

A rst formal study about this Pl shows that it is obviously lower than the Ml and can even
be smaller than zero. But we wish a link between Pl andSR | have shown that, when Pl is

strictly positive, the attack will succeed with a su cient enough number of traces. This result
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is based on the demonstration of the Shannon theorem and a proof based on the mismatched

decoders by Merhav [57].

2.1.3 MIA is Universal ML

On the distinguishing point of view, | have noticed that when the attacker has to pro le with
on-the-y data, the Maximum Likelihood distinguisher is perfectly equivalent to a Mutual
Information Analysis (MIA).

We have shown with theoretical case-study that MIA is very relevant when the leakage model
is not perfectly known. Indeed, we have built an experiment where Correlation Power Analysis

(CPA) crashes while MIA works well to recover a secret key.

2.1.4 A Unied Vision of Monobit Leakages

Several papers noticed that some distinguishers related to monobit leakages can be linked with
Fei et al.'s confusion coe cient [32]. For example, Heuser et al. derived the Kolmogorov-Smirnov
Analysis (KSA) as a function of the confusion coe cient and the SNR[38]. Moreover, in [51],
Mangard et al. made the link between Correlation Power Analysis (CPA) and the confusion
coe cient.

After reading these articles, we had the feeling that the link between any distinguisher of a
monobit leakage, was deeper. Therefore, we rst made the link between Mutual Information
Analysis (MIA) and the confusion coe cient. We noticed that it also depends on the standard
deviation of the noise. We extracted an analytic function linking MIA the confusion coe cient,
and the standard deviation of the noise.

Eventually, we have noticed that for monobit leakages, the confusion coe cient can also be
seen as the transition probability of a Binary Symmetric Channel (BSC). This has allowed us to
prove that any sound distinguisher in monobit leakages is a function of two parameters: the

confusion coe cient and the standard deviation of the noise.

2.2 Adapting Theoretical Tools for Practical Issues

Another task of my thesis was to adapt some of the theoretical tools for practical issues. |
based my studies on an ARM processor edited by ST Microelectronics: the STM32 Discovery

Board [59].
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On this architecture, we compute timing attacks on the AES algorithm. Here, in this
practical example, the leakage model is not easy to nd and to deal with. A template attack is
therefore needed to learn the model. However a learning phase may encounter some problems

such as:
A bias between the learned model and the real leakage;

A poor learning phase.

2.2.1 Avoid the Empty Bin Issue

One of the issues that we have met is thempty bin issues The empty bin issue appears when
there is a di erence between the distribution of the learning phase and the distribution of the
attack. We may face a strange case: when we compute the maximum likelihood distinguisher
based on the distribution of the templates, we can meet some data such that the probability is
null. This appears even for the correct key guess and therefore, the ML distinguisher crashes.

We have therefore imagined several solutions to avoid this empty bin issue but still keeping
the notion of maximum likelihood that is supposed to be the best distinguishing rule according
to Annelie Heuser's paper [39].

The solutions that we have imagined are easy to compute and are sound. When the pro ling
is correct, the best distinguisher is a ML with a small penalty if an empty bin occurs. On the
contrary, when the pro ling is poor, the best possible distinguisher is to compute an MIA based
on the learned model. Indeed, MIA is known to be more robust when the leakage model is not

well characterized.

2.2.2 Extract a Model for a Timing Attack

In addition to the empty bin issue, | have worked on the STM32 Discovery board in order to
extract a leakage model. In a black box view, we have as inputs the plaintext that is to be
encoded and the number of clock cycles to compute AES as the output of this black box.
With this architecture, it is possible to enable or not the data cache (DC) or the instruction
cache (IC). We have noticed that, when the DC is enabled, the computation of AES is not time
constant, meaning that there is a leakage. A part of this leakage is still di cult to understand
but we have managed to nd out that the number of cache hits during the computation of the

algorithm has a great impact.
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Introduction

As a general rule, the most successful man in life
is a man who has the best information.

| Benjamin Disraeli.

Side-channel analysis is renown as an e ective \eavesdropping" attack technique to extract
sensitive secrets from cryptographic chips. In recent literature, many exploits have been put
forward. Starting from the seminal timing attack of Kocher [44], various biases of di erent
kinds have been exhibited. Vertical attacks such as power analysistp] have been shown to be
highly e cient. However, from a designer's viewpoint, the exact details of the various attacks
are irrelevant. Instead, defenders aim at estimating a security risk in general, e.g., the chance
that a major security breach occurs. It is thus highly desired to protect designs against all
kinds of SCA attacks in a provable way. When implementing a secure design, the natural
question which arises is the quanti cation of its security, with respect to its architecture and its
operational environment. In [30], the authors present several metrics that can help the designers
to secure cryptographic chips. Shannon's mutual information (MI) between measured traces
and guessed models has been considered, but is often thought of as theoretical (too far from
practical evaluations) and impracticable (too computationally ine cient). In [ 83], the authors
explain the relative importance of Ml and probability of success, but in a separate way. Our
aim is to join the two concepts and to show how the knowledge of Ml allows to derive an upper
bound on the success rate.

We wish to estimate the success rate with very few assumptions, based on simple and
easy-to-compute tools, such as the signal to noise raticSNR). The calculation of the SNR can
be made without the knowledge of the leakage model as thENR s the ratio between the power
of the useful signal and the power of the noise. The power of the noise is easily measured as is
is the measurement noise, and as the power of the useful signal is the di erence between the

power of the measured signal and the power of the noise, thENRis obtained.
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Related Work As our main goal is to nd an estimation of the success rate of an attack that
can be as accurate as possible. Using Information theoretic tools3§] extracted the best possible
distinguishing rule. However, this does not give any clue to estimate the success rate of an
attack. In practice, the success rate is estimated by repeating a su cient number of simulations.
Moreover, this is dependent of the knowledge of the leakage model. In practice, it is di cult
to know exactly this model. Indeed, the estimation may be biased, the learning phase of the
model, may be too short, the model, may be too complicated, etc. This is why, we wish to use
general information theoretic tools in order to be as generic as possible, and to give bounds that
are true whatever the attacker may do or may know.

In [50], a link between the success rate and the number of traces to succeed in a correlation
power analysis [L1] has been studied, and an analytical formula has been derived. However, this
results is untrustworthy in practice because of the assumption that incorrect key guesses lead to
independent distinguishers, which is not true. Subsequent work on this topic therefore consider
the joint distribution of all values of the distinguisher (correct key and all remaining incorrect
key guesses).

In [36, 48, 74], the authors propose an estimation of the success rate of speci ¢ distinguishers.
Namely, Rivain [74] studies the distribution of two examples of distinguishers (correlation and
template) in the presence of normal noise. Lomre et al. 48] extend this work for masked
implementations, while however still focusing on correlation and template attacks. Guilley et
al. [36] extend the approach from additive to some non-additive distinguishers (such as the
mutual information analysis), but through the approximation that the number of traces tends
to the in nity. To summarize, all three papers [ 36, 48, 74] have in common that the knowledge
of the leakage model, or at least an estimation via a learning phase with templates, is needed to
predict the success rate. In addition, this estimation, in the three cases, is based on the central
limit theorem, meaning that it is relevant for a large number of traces and only for additive
distinguishers. We wish a bound valid for any distinguisher, for any number of traces (even
small).

A bound on the Mutual Information is proposed in [67]. The MI involved is based on one
trace, supposing that every leakage is independent from each other. We show in this part
that this is not the case in practice. In this paper, the bound is valid for Ml with only one
measurement We will see in this part of the manuscript that calculating MI with the probability

functions of all the traces is crucial.
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In [29, Theorem 2], the authors proposed a link between success rate and the number of
measurements. This bound is based on the the link between MI and random probing. Therefore,
it is valid only for leakages with very low SNR and the bound is very loose For instance (see
Figure 4.6), with SNR> 10 #, the bound of Duc et al. [29] is trivial (the success rate is smaller
than one), and for SNR=10 °, it predicts a number of traces 4, which is much smaller than
our result of 1:3 10 (where the best attack using ML predicts 15 10°, which is in the order
of magnitude of our prediction). In fact, the main contribution of the bound of Duc et al. [29] is
to show that the masking order of an attack has an exponential impact on the success rate, but
not to yield an accurate link between number of traces and success rate.

In the eld of information theory, Arimoto [ 2] proved a lower bound of the error rate (hence
an upper-bound of the success rate) in terms of a so-called Gallager coe cient. However, not only
requires intensive computations, but also the model assumes a freely chosen input distribution.
In our case, that input distribution is set by the leakage model and therefore, cannot be freely
chosen. Arimoto's main result (Equation 24 of [2]) remains true because it represents the best
possible case for an attacker for all possible input distributions; but the resulting bound is very
loose in our side-channel context. Equation 9 of7] could be used instead but depends on a
parameter . With our notations (presented in section 3.1), Arimoto's Equation 9 becomes:

"25( ) 4

X X
8 > 0 Pe 1 20C D P(t) P(K)P(x j k; t)**
t2T4a x2X4 k=0

The minimization of the r.h.s is practical untraceable for q > 1. Indeed, it consists in sums over
jXj9 elements; the complexity is even worse when the output is continuous.

Overall, we can sum up the related work with the following table 2.1. The table classi es the
state-of-the-art according various criteria, such as the way the results are derived and whether
or not the mutual information is involved in the estimation of the success rate. The last two
columns show whether a closed form bound exists and whether it is generic in the attack method.
Our method provided an analytic expression for the lower bound (Theorem 3.1) and is agnostic

in the attack method.

Contributions In this chapter, we derive bounds on the success rate of any attack, irrespective
to the exact attack. Thus we can consider our bounds asiniversal. To do so, we address this
problem using rigorous information theoretic tools. This is why we revisit the use of Ml as a
conservative security metric. Our main contribution is to give a clear relationship between Ml

and probability of success. More precisely, we seek a lower bound on the number of available
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Link with Usage | Closed form .
Related work . ) Generic
information theory of Ml bound on SR
[39] Yes No No No
[74] [48] [36] No No Yes No
(but asymptotic)
[67] No Yes No Yes
[29] No Yes Yes Yes
(but very loose)
[2] Yes No Computationally Yes
too di cult
This part Yes Yes Yes (Theo- Yes
rem 3.1)

Table 2.1: Summary of the related work

traces where a given success level can be reached, based only on theoretical assumptions on the
channel. The actual value of Ml is important to estimate and such an estimation is not immediate
because random vectors of very high dimensions are involved in its expression. Therefore, we
propose several ways to simply estimate the Ml by mathematically proved upper bounds and by
numerical estimations. Our results are applied to the most common type of noise, namely the
additive white Gaussian noise. We show that, in the case of additive Gaussian noise, the only
calculation of the SNRis su cient enough predict accurately the security of a device. Last,

the main result on success rate is translated in terms of guessing entropy, another informative

criterion in side-channel analysis.

Organization  This part is organized as follows. In Chapter 3, we provide the mathematical
computaions to prove this bound and we apply them in the case of additive white Gaussian
noise. Section 3.1 describes the side-channel and shows how a leakage can be modeled with a
Markov chain. Section 3.2 provides our main result and three di erent ways to exploit it. An
application to leakages with additive Gaussian noise is carried out in Section 3.3, where we
show at the end that the SNRis enough to predict the security of a device. The link to the
guessing entropy is done in Section 3.4. In Chapter 4, we show how we can tighten the bound
with numerical estimations of the mutual information. We give a general conclusion of both

chapters in Section 4.4. Technical computations involved in proofs are in Appendix.
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Notations ~ Throughout this paper we use the following notations. Calligraphic letters (e.g.
X) denote sets. Uppercase letters (e.gX ) denote random variables taking their values in the
corresponding set (e.g.X). Lowercase letters (e.g.x) denote realizations of this random variable.

Vectors are written in bold characters. By default, the length of a vector isq2 N. Thus, a

Given the random variable X taking its values in X and x 2 X, the probability that X equalsx
is noted P(X = x) or simply P(x).

We also de ne some information theoretic tools. The entropy of a random vectorX of length
g is de ned by:

X
H(X) = P(x)log, P(x):
x2Xda

The conditional entropy of a random vector X knowing vector Y is de ned by:

X
HXjY)= PY)H(XJY =)
33 Y

X
= P(y) P(x jy)log, P(x jy):

y2Yd x2X4a
The Mutual Information between two random vectors X and Y is dened as | (X;Y) =
H(X) H(X jY). The conditional Mutual Information 1(X;Y jT)whereX,Y andT are
random vectorsisdened asl (X;Y jT)= H(X jT) H(X jY;T). Last, the Kullback-Leibler
divergence between two distributionsP and Q over the same setX is de ned as:

P(x) .

X
D(PkQ) = P(x) log, ox)

x2X
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Chapter 3

A Mathematical Bound of the
Success Rate with Mutual
Information
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3. A MATHEMATICAL BOUND OF THE SUCCESS RATE WITH MUTUAL
INFORMATION

This chapter presents a mathematical theory of leakage models. Some open issues are
discussed in Appendix A.

Contents
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3.1 Side-Channel Seen as a Communication Channel

The link between side-channel analysis and information theory has been proposed bgq] to
derive the optimal distinguisher. In this section, we review how the side-channel can be seen as
a communication channel. The secret key byte that the attacker wants to recover is denoted

ask and is n bits long (typically n = 8). We assume that the attacker inputs g text bytes

following leakage model

xi=f({t; k)+ n; (i=1;2:::;0 3.1)

We assume thatf is deterministic but not necessary known to the attacker. This assumption
will make our calculations generic and therefore true for any type of attack. This is the worst

possible case for the security designers. De ne theensitive variabley (k) = y; (k) as
yi(K)=f(t K)y=(f(ts k);::f(tg k) (3.2)
so that the leakage can be written in compact form as
X =vyi(k )+ n:

Such vectorst;y and x are realizations of random vectors notedT ;Y and X. In the case of one

particular sample, t;y and x are realizations of random variablesT;Y and X. We assume that
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3.1 Side-Channel Seen as a Communication Channel

the channel ismemoryless which means that each tracex; depends on the inputy only from vy;.
In particular x; andy; are independent for all ifi 6 j. We also make the natural assumption
that the secret key is independent from all text bytes: the secret key random variableK is
independent from T. In other words, the text bytes do not give any information about the
secret key (at least in a design which adheres to Kerckho s's principle).

Following [39] we make the following hypotheses:

T is uniformly distributed over T = f0;:::;2" 1g. Moreover, we suppose that vectorT
is balanced meaning that the number of occurrences of each symbol in the vector is the

same.

As seen above, the random variableY is such that Y = f(T K), with f a known

deterministic function.

As g textbytes are sent and thereforeq traces are received, we consider the random vectors

T:;Y and X.

Thus from (3.1), we can write

X
1

f(T K)+N

Y + N:
Considering only scalars, this writes for random variables

X

f(T K)+N

Y + N:

After acquiring q traces, the attacker applies a function calleddistinguisher D to obtain
an estimate 0 = D(X;T) of the secret key from X and T. This allows us to de ne the

communication channel as depicted in Figure 3.1:

the \encoder" models the leakage from the device: not only the composition of the
algorithm which mixes the unknown key K with the known text T into a sensitive variable,

but also the way the device leaks the sensitive variable (functiorf );
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3. A MATHEMATICAL BOUND OF THE SUCCESS RATE WITH MUTUAL
INFORMATION

Y X
K — Encoder——— Channel —— Decoder— |

| |

T T

Figure 3.1: Representation of Side-Channel

the (side) channel consists in noise addition, arising from the untargeted parts of the

design and from the measurement setup; and

the \decoder" implements the distinguishing rule with allows the attacker to get a key
guessi from the measured leakageX and the knowledge of public text bytesT. The

realizations t of the random vector T are known by the attacker.

From the model we can deduce Lemma 3.1 dealing with Markov chains.We recall that
a Markov chain is a stochastic model describing a sequence of possible events in which the

probability of each event depends only on the state attained in the previous event.
Lemma 3.1. The communication channel just described admits the following Markov chains:

(K;T)! (Y;T)! (X;T)! (3.3)
K! vyl X1
(K;T)! Y! X:

Proof. The rst case is easily seen by re-drawing Figure 3.1 into the di erent constitutive blocks
as shown in Figure 3.2, where all the variables pass through di erent blocks corresponding to

the Markov Chain. The two other cases are proved similarly. O
Block 2
N
Block 1 l Block 3

Y X

K —— Encoder Channel Decoder—— 10
T T

rl | |

Figure 3.2: The Markov chain (K; T) ! (Y;T)yt (X;T)! 1o
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3.2 Theoretical Bounds on Mutual Information

3.2 Theoretical Bounds on Mutual Information

One of the important properties of a Markov chain is the data processing inequality23], which

is used to prove the following theorem in this section, which is our main result.

3.2.1 Main Result

LetPs = P(Ib = K) be the probability of success of an attack andH »(Ps) its binary entropy * [23]:

The following theorem is fundamental because it provides a trade-o for any possible type of

attack.
Theorem 3.1. The following inequality is always true for any distinguishing rule:

H(K) (1 Ps)log,(2" 1) Hz(Ps) q I(X;Y]T): (3.4)
The probability of success of an attack also follows the following inequality:

H(K) (1 Ps)log,(2" 1) H,(Ps)
Et Ek, log, Ex, exp  D(Pxjk 1.1 KPxjk,:T) (3.5)
where D(PkPY) is the Kullback-Leibler divergence 23] and K 1; K, are identically distributed as

K.
Merging these two equations we can write:

H(K)+(Ps 1log,(2" 1) Hz(Ps)
min(Er Ex, 109, Ex, exp  D(Px jk 1;1 KPx jk,;7) ;adl(X;Y jT)): (3.6)

This theorem shows that the success rate of an attack is directly linked to the Mutual
Information between the leakage and the model. Furthermore, as we consider generic attacks,
this inequality remains true whatever the attacker does with the traces. In the next subsections
we prove both inequalities and we show that(3.4) is more interesting for low values ofg while (3.5)
is a better approximation for high values of q.

To do so, we rst demonstrate a preliminary lemma in Section 3.2.2 that will be useful for

both Equation (3.4) and (3.5).

1The binary entropy is the entropy of a binary random variable with probabilities pandl p.

37



3. A MATHEMATICAL BOUND OF THE SUCCESS RATE WITH MUTUAL
INFORMATION

3.2.2 A Fundamental Lower Bound on Mutual Information [(X;Y jT)

The rst step of the demonstration of Theorem 3.1 is the following lemma that links the Mutual

Information between the random vectorsX and Y with the probability of success.
Lemma 3.2. W.ith the notations of Theorem 3.1, we have:
H(K) (1 Ps)logp(2" 1) Ho(Ps) 1(X;Y jT): (3.7)

Proof. Using the Markov Chain (3.3) we compare two MI values thanks to thedata processing
inequality[4]. Indeed, this is a direct consequence of Lemma 3.1. This inequality states that the
further two random variables are in a Markov Chain, the less Ml between these variables. Here
we have

K T) S (X5T)) (Y T) (X T)): (3.8)

Let us expand both sides of this inequality. In the L.h.s., since the channel is memoryless anid
and T are independent, we have:

K T)(T)=HK T) HEK T)j(X;T))
= H(K)+ H(T) H(K jT;X):

As R is a deterministic function of T and X, adding the knowledge oft does not change the
entropy:

(K THOGT) = HK)+ H(T)  H(K TiXR);
H(K)+ H(T) H(K jR):

The latter inequality holds since conditioning reduces entropy P3]. Now by Fano's inequality*[23,
Page 43],

H(K jR) Hay(Pe)+Pelogy(jKj 1)

where P; is the probability of error P, = P(K 6 Ib). Since Ps =1 PgandHy(Pe) = Ho(Ps) =
Pelog,(Pe) Pslog,(Ps), this is rewritten as

H(K jR) Ha(Ps)+(1 Ps)log,(2" 1)
Plugging this inequality into the previous one gives
LK T (R T) H(K)+ gH(T)  Ha(Ps) (L Ps)logy(2"  1): (3.9)
On the other hand, the r.h.s. of the data processing inequality (3.8) is:

O TROGTY = HOGT) HOGT YT,
H(X;T) HX|jY;T)
I(X;Y jT)+ H(T): (3.10)

1Fano's inequality is an important information-theoretic result about the uncertainty of the transmission of a
message, which is due to the error probability and the number of possible errors.
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3.2 Theoretical Bounds on Mutual Information

Combining Equations (3.9) and (3.10), we obtain the following fundamental inequality:
H(K) Ha(Ps) (1 Ps)log,(2" 1) 1(X;Y jT); (3.11)

And proving Lemma 3.2. O

The same Lh.s. of(3.11) will be used to prove for both inequalities (3.4) and (3.5), the
di erence being the way that | (X;Y j T) is evaluated. Indeed, the next part of the proofs for
Equations (3.4) and (3.5) is about nding an upper-bound for 1 (X;Y j T). We have to do so
because there is no analytic expression for this conditional Mutual Information computed with

vectors of q dimensions.

Remark 3.1 A quick analysis of the valuen+ (P s 1)log,(2" 1) Hy(Ps) reveals that it is
always non-negative for any R in the range (0; 1) and vanishes if and only if P, =1=2".

Therefore, when there are no traces| (X;Y j T) =0, the only probability that can respect
inequality (3.11) is Ps = 1=2", meaning that without information, that attacker can not have a
better success rate than £2" obtained with an equiprobable random guess, as expected. Every
trace will bring additional information and therefore increase the probability of success.

3.2.3 First Upper Bound on | (X;Y jT): Proof of Inequality (3.4)

Thanks to Lemma 3.2, the l.h.s. of Theorem 3.1 is given. Inequality(3.4) is a straightforward

consequence of the following lemma.

Lemma 3.3. Let X and Y be two random vectors with joint distribution Px .y, Px be the
marginal distributi%1 of X, and Px be the marginal of one elemenX of vector X. De ne the
distribution Px = ~1, Px,. We have

[(X;Y)=ql(X;Y) D PxkPx ;

ql(X;Y):

This Lemma means that the Mutual Information of two random vectors made of identically
distributed random variables is lower than q times the Mutual Information of the marginal

distribution of these random vectors.
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Proof. From the memoryless assumption of the channel, one haBy;y = Qﬂzl Px.jv,- Thus

Pxiv(XjY
I(X;Y)= Ex.v |092XJ';(((XJ))
n x # n #
Pxjy (X ]Y) Px (X)
= Ex.y log, =22~ E lo
XY ) 9, By (X) 92 Px (X)
i Pxjv (Xi ] Yi)
= Ex;y |Og TS D Py kﬁx
"2 \{i p>< (Xi)
X Px iy (Xi ] Yi)
= Ex Y |Og MECAR A e D Py kpx
i ? pX (xi)
=ql(X;Y) D Py kpx
The inequality follows since the divergence is always non-negative. O

This upper bound on Ml is easily derived but is linear in g, and, therefore, will not converge
to a nite value as the number of measurements increasesy(! 1 ). This will be in contradiction
with Lemma 3.4. Therefore, it is interesting to propose another bound that converges to a nite

value. This will be made in the next section.

3.2.4 Second Upper Bound on [ (X;Y jT) - Proof of Inequality (3.5)

Before proving (3.5) we rst notice that in our side-channel model, as there is a nite number of

keys, the Ml is always bounded byH (K).

Lemma 3.4.
XY JT)=1(K; X [T) H(K)

Proof. We use the Markov chain de ned in Equation (3.3). Notice that, adding the knowledge
of T;K whenT;Y are already known does not change the entropy oK. Therefore,

HXJT;Y)= HXJT;Y; K T);
=HX|jT;Y;K):

As Y is a deterministic function of K and T, it can be removed, so we get:
HXjT;Y)=HX|T;K):

Therefore, we obtainl (X;Y jT)= I(X;K jT). Sincel (X;K jT)=H(K) H(K jT;X)in
follows that I (X;K jT) H(K). O

Here H (K) is a constant that depends only on the distribution of K ; it reaches its maximum

value for a uniform distribution: H(K) = n bit. As a consequence, sincé(X;Y j T) increases
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3.2 Theoretical Bounds on Mutual Information

with g, it must converge to a nite value when q! 1 . This explains why the upper-bound

given by (3.4) is poor whenqg! 1
Therefore, we provide another bound that is more accurate for large values ajf because it

converges to a nite value whenK is nite. First we need the following
Lemma 3.5. For any random variablesX and Y and real-valued function (x;y) 7! f (X;y),
Ev log, Ex [exp(f (X; Y )] log, Ex [exp(Ey f (X; Y )]

Proof. See Appendix A.2. O

Corollary 3.1. For any random variables X and Y and positive function (x;y) 7! g(X;y),
expEy log, Ex [9(X; Y )]  Ex [exp(Ey logg(X;Y ))]

Proof. See Appendix A.3. O

Equipped with Lemma 3.5, we compute MI as follows:

P(XjKT).
PXjT) "
PXJKT),
PXjT) "

[(X;K jT)= ErExxjr log,

Et Ex Exjk; T 109,

We introduce hereK ,, a random variable following the same distribution ask .

I (X;K j T) = EyEx Exjx. 7 log, EKF:(PTXJ' Tsz;)T),
= EvEk Exjk 7 log, EKZ%;
= EtEk Exjk 1 109, Ek, exp log, m
By Lemma 3.5 we obtain
P(X jK2;T)

I (X;KjT) Et Ek log, Ex, exp Exjk: T |092W ;

= EvEklogyEk,exp D(Pxijk 1 ji Pxjk,:T) -

This proves inequality (3.5) and Theorem 3.11.

1An alternative proof of inequality  (3.5), which resorts only on convexity arguments, is given in Appendix A.4.
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3.3 Application to Additive White Gaussian Noise

In this section, we develop the results of Theorem 3.1 for leakages with additional white Gaussian
noise. Indeed, this is the most common case for attacks such as DPA, where the noise comes
from the measurement tools.

With this model, we can link the success rate to Shannon's capacityfC = %Iog(l + SNR),
and therefore, to the SNR where SNR= Y2R(CY) Moreover, at the end of this section, we will
extract a parametric estimation of the Mutual Information where the only parameter to know is
the SNR

Remark 3.2. With additive white Gaussian noise, the SNR of the traces can also been written
as:
Var(Y)

SNR= ——-7;

where is the standard deviation of the noise.

3.3.1 Shannon's Channel Capacity

Under the additive white Gaussian noise (AWGN) assumption, it is easily seen that the scalar

mutual information | (X ;Y j T) does not exceed Shannon's capacity. Indeed, we have:

XY JT)=ErI (XY T =1);
SETHXT=0 HX YT = 0);
=ErHf(T K)+NjT=1t)] HXjY)
SECHEQ K)+ N) HOCY);
=H({f(K)+ N) H(XjY);
2logy(2 e (Vary ( (K)) +Var( N)))  H(X jY);

= % log,(1 + SNR) :

Combining this with inequality (3.4) yields a lower bound on the number of traces to reach a

given probability of success:

n+(Ps 1)log,(2" 1) H,(Ps)
110g,(1 + SNR)

(3.12)

Remark 3.3. The number of tracesq to be sure to recover the key is lower-bounded by:

. n
lim q

—_— 3.13
Ps! 1 3 10g,(1 + SNR) (3.13)
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3.3 Application to Additive White Gaussian Noise

However, since as we have seen the Ml can never be higher th&h(K ), the above constant
bound is not accurate for real attacks. The next subsection provides a much more accurate
estimation.

3.3.2 Evaluation of the Kullback-Leibler Divergence

Inequality (3.5) gives an upper bound with a divergence term that depends oy jk ;v (i =1;2).
In the AWGN model, Px k.7 follows a multivariate normal distribution N(y(K;;T); 2Iq). For
such distributions, the divergence is very easy to compute as the covariance matrix is diagonal.
It is easily found that

ky(K; T)  y(K2; T)K3,
22 '

D(Pxjk; T kPxjk ,;1) =

Inequality (3.5), when applied to the AWGN model, becomes

ky(K; T) y(Kg2;T)kZ

n+(Ps 1)log,(2" 1) Hy(Ps) Et Ex log, Ex, exp 572

In order to make a precise evaluation of the r.h.s., we need several lemmas.
Lemma 3.6. Lett =(ty;:::;tg) 2 T9 and (k; 6 k) 2 K2. One has
qI|ilm ky(ki;t)  y(kat)k3 =+ 1 (3.14)

and more precisely:
ky(kist) Y (kz;t)k3 g 9 (Kuka); (3.15)

. _ 1P . “1)) 2
Where (k11k2)— on t=0 (y(klat) y(k21t)) .

Proof. We make use of the assumption made in Section 3.1 that is balanced For k; 6 ky, we
have

xa

ky(ki;t)  y(ka;t)k3 = (y(kiiti)  y(kasti)?;
i=1
X (y(kati)  y(kesti)?.
q q ;
i=1
Xong(y(ke;t)  y(kati)?

q 1

=q
t2T
where n; is the number of times that a particular t 2 T appears in vectort. Ast is balanced,

neyp 1 :
L and therefore:

(y(ki;ti)  y(ka;t)?.
iTj '

X
ky(kast)  y(kes)k3 -

t2T
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Lemma 3.7. Lett 2 T9 be xed andk 2 K be a xed key. We have

ky(kit) y(Kz;t)k3

qI!|lm log, Ek , exp 52 (3.16)
ky (K; t K t)k? s (kK
log, Ex , exp y(kit) 2y2( 2,k o1 1092 exp % (3.17)
Proof. One has
" #
ky (K; t K t)k2 X 1 ky (k; t ko t)k2
log, Ex , exp y(k;t) 2yz( 2, )ks  _ log, e y( )2 3;( 2; 1)k

k2

When g is a multiple of 2" we have exactly
ky(t;ki) y(t;ka)k3 = q: (ki ka)

and the proof of Equation (3.17) is trivial. Otherwise, for k 6 k, we haveexp( q%) 10

asqg!1l ;and fork = k, we have exp( q%) =1. Therefore

" #
X 1 ky (kit) y(ka;t)k3
log, o €XP 52 220%2
k2
O
Lemma 3.8. With the assumptions made in Section 3.1, we have ag! 1
N Nmi .
ErEx log, Ex, exp  D(PxjkjiPxjk,) . n —s-exp( q:min (kijkz))  (3.18)
q'1 2 k16 k2

where nin is the number of indexesk; 6 ks reaching the minimum value of (kq;k2).

This simple asymptotic expression can be used to upper-estimate the Ml for high values af

Notice that for any k; 6 ko, (Ki;kz) = (ks; K1), hencennin is an even number.

Proof. Lett =(t1;:::;tq) be a balanced vector. By Lemma 3.7, we have
. (KK
Ek logEk, exp  D(Pxjk tjiPxjk ,t) " Ex logEk, exp %
where
" y #
(KK 1 c(Kik
Ex logEx, exp % = Exlog o exp % :
2 @ 3
X - (K
=n Eglog41l+ exp ERK2 (2K,2kz) 5:

k> 6 K
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3.4 Link with Guessing Entropy

As the value inside the logarithm vanishes aqy! 1 , consider its rst-order Taylor expansion:

2 3
(KK X (K k
Ex logEx, exp % LN Ex 4 exp % 5.
@ ko6 K
X e
c 1F ey 06K
K16 ko

Let k; 6 k, be a couple such that (ki; k) is the minimum of all the possible . For any other
coupleks 6 k4, there are two possibilities:

1. either (ks;ks) = (Kkz;kz) and the corresponding exponentials will converge at the same
rate;

2. or (ks;ks) > (ki;k) and exp 5% (ks;ks) is negligible wrt. exp 5% (kijkz) .

Hence we can simply count the number of occurrences of the minimum value of. We have
proven that:

Nmin exp qimlnklszkz2 (k1; k2)

Ex logEk, exp  D(Pxjk tliPxjk,t) " N o

As this expansion is true for any vectort that is balanced, and is independent of it, this proves
the lemma. O

Remark 3.4. The simpli cation of Lemma 3.8 is useful to obtain a simple equivalent form for
high values ofg. However, it is also possible to compute a tight approximation of the numerical
value of Er Ex 109, Ex, exp  D(Pxjk jjiPxijk,) -

Remark 3.5. Interestingly, we notice that parameter (ki;kz) is proportional to the confusion
coe cient  (ki;kz) de ned rstin [ 37 for binary leakages, and extended in 36, Equation (45)]
for any leakage:

(ki k2) =4 (Ki;kz):

3.4 Link with Guessing Entropy

Another way to quantify the quality of an attack is the Guessing Entropy [55], de ned as
H(K j X;T). This metric quanti es the complexity of the exclusive search to recover K
knowing the side-channel measurements. Besides, |&x be the average number of tries to

retrieve the secret keyK with the knowledge of X and T. Mathematically, we have:
" #
X -
NK = EXT XT (k)P(ij,T) X
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where xr () is the permutation that re-orders the probabilities P(k j X; T) into the decreasing
order. There exists a relationship betweenNx and H(K j X;T) called the inequality of

Massey [55, Section 2]:

Ny 2H(KIXiT) 249.

We propose here an improved inequality relatingNy with H(K j X;T).

Lemma 3.9 (Improved Inequality of Massey). The average number of tries to recover the
correct key is upper-bounded by:
oH (K jX;T)

Nk > (3.19)

e

Our inequality improves Massey's inequality as soon as the entropy is greater thaitog, (1—5=;)-

_ P
Proof. Let b = (1N1K‘7Nq)k forall k2 N. As b =1, b is a distribution (geometric).
Moreover, by the Gibbs inequality [23],

X X
H(K jX;T)= P(tx) P(kjt;x)log, P(kjt;x)

)t<‘x
P(t;X) P(kJ t;x)|092bXT (k)
X" X

= P(t;x) P(kjt;x) x.-1(k)log,(1 1=Ng)+log,(Nx 1)

t;x k
= log,(1 1=Nk )Nk +log,(Nx 1)
= Nk H2(1=Nk)

In fact, the inequality is strict since equality would hold if and only if P(k jX;T)= b, @,
which is not the case as the support o is nite and the support of b is not. Therefore, we
have proven that:

H(K jX;T)<NkH2(1=Ng):

Last, we notice that the function f (x) = x log,(x) is convex (f (x) = log,(ex) is increasing).
Therefore, fore anyx in the range ]0 1[, we have:

f(x) f(x 1)

XD f 9x) = log ,(ex):

When we apply this for x = Nk , we get:

Nk H2(1=Nk ) = Nk log(Nk) (Nx  1)log,(Nk 1)
log,(eNk ):

Overall, this means that H(K j X;T) < log,(eNk ) which proves the lemma. O
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3.4 Link with Guessing Entropy

The lemma can be exploited by replacingH (K j X;T) by log,(eNk ) in Subsection 3.2.2.

Therefore, instead of using Fano's inequality, we directly have
H(K; T)(X5T)) H(K)+ H(T)  logy(eNk);

leading to:
2 1TOGY T+ H(K)

Nk (3.20)

e
Once more, we can use Theorems (3.4) and (3.5) to estimate the mutual information.
For example, we suppose that we have a Gaussian channel, witBNR = 1=8 and q = 40
traces. We apply Equation (3.4) to obtain that | (X;T jT) q% log(1+ SNR). Foran =28
bits leakage, the average number of tries is lower-bounded by:

220 log, (1+1 =8)+8
Nk

e
24:6

e
89

This means that, for such a channel, it would take at least 8 tries to recover one byte of the
secret key with 40 traces. However, a secret key is made of 16 or even 32 bytes. Supposing
that the attacker has only 40 traces for each key-byte, after the attack, one would need at least

8:916 1:6 10'° tries in average to recover the entire key as there is no way to check only byte

per byte.
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4. APPLICATION

In this Chapter, we apply the results of Lemma 3.2 and Theorem 3.1 to practical cases. In
addition, we also discuss about the di culty to estimate the mutual information 1(X;Y jT)
and therefore, we provide numerical estimations based on the law of grat numbers. With these

estimations, we then notice that that they t well with a parametric estimation.
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4.1 Numerical Approximations for Mutual Information

4.1.1 Numerical Estimation of  1(X;Y jT)

Theorem 3.1 gave analytic bounds to the success rate. However, one may need to obtain a
precise value ofl (X ;Y jT) making the bound tighter. In this section, we propose numerical
tools to obtain an accurate value of the Mutual Information as a function of the number of
queriesq. A full estimation of | (X;Y j T) by numerical integration becomes impossible for

g-dimensional distributions, and we have recourse to simplifying approximations of Ml. Since

XY JT)= HXJT) HX]Y:T)

HXJT) HXJY)

we can estimate only the entropyH (X j T) becauseH (X j Y )= gH(X j Y) is easily computable
with classical numerical tools.

One possible approximation is from the law of large numbers [23, Chapter 3]:
X X

H(X[T)= lim 1 P(t)log, P(x; j t): (4.1)
' t2Taj=1
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4.1 Numerical Approximations for Mutual Information

Unfortunately, such a computation is not tractable since it involves the sum over all balanced
vectors t, which representsq! possibilities. However, we can obtain a good approximation of

H (X j T) with only one vector t form the following

Lemma 4.1 (A Symmetry Property) . Let t = (t1;:::;tq) 2 T and be a permutation in

HXjT=t)=HX|T= (t)): (4.2)

Proof. See Appendix A.1. O O
As a consequence of the symmetry of Lemma 4.1, one needs only one balanced vecttto

estimate H (X j T). Therefore, by the law of large numbers,

1 X
H(X|T) JIlilm 3 log, P(x; jt): (4.3)
! (=1

This leads to Algorithm 1 to evaluate the entropy H (X j T).

Algorithm 1:  Computation of the entropy using the law of large numbers.
input : A balanced vectort
An integer J
The probability distribution P(x j t)
output :An approximation of H(X jT)
Hxt O;
Generate a secret key bytek ;
for j Oto J do
Generate the tracesx with the model ;
Hxt  Hxt log, P(x jt);
end
7 return Hxt

a ~ W N P

(o2}

When the leakage models are not perfectly known (e.g. template attacks), a possible way to
estimate Mutual Information is to approximate numerically the distributions. An example is
given in [35].

Other estimation methods can be used, depending on the distribution of the noise. As an
example, for Gaussian noise, we may consider Gaussian mixtures as discussed in [43].

Such numerical estimations are all the more accurate ad is taken large, which means that
they make take a tremendous amount of time to compute. Havingl (X ; TjT) as a function of g,
even numerically estimated, is very useful as we have the link between the success rate and the

minimum number of traces to reach such probability of success.
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4. APPLICATION

4.1.2 Graphical Comparison

In order to visualize the di erence between the two upper bounds given above, we have plotted
the mutual information | (X;Y jT = t), wheret is a xed balanced vector. The leakage model

chosen is given by the equation
Yy(Kiti) =Hw(Soox (ti  Kk))  (i=1;2:::50)

where Hy, () is the Hamming weight (of the value written in binary), and S,ox () is the AES
substitution box[24]. We suppose that the zero-mean additive white Gaussian noise (AWGN)
has standard deviation = 4. This gives a signal-noise ratioSNR= 1=8.

Figure 4.1 shows the results onl (X;Y j T = t) obtained by Monte-Carlo simulation. We
notice that

as expected in Subsection 3.2.3, the rst upper bound (3.4) is linear irg;

as expected in Subsection 3.2.4, the second upper bouifd.5) converges toH (K) = n = 8.

Figure 4.1: Comparison of the two upper bounds (3.4) and (3.5).
4.1.3 A Parametric Estimation of I(OXGY JT)

An estimation of |1 (X;Y j T) with a simple analytic expression can be obtained by a parametric

estimation of the mutual information. This study is based on an empirical model that ts

52



4.1 Numerical Approximations for Mutual Information

correctly with 1 (X ;Y j T). The information function 1(q)= I (X;Y j T) can be approximated

by the error function such as

(@ n:erf(q: ); (4.4)

where is a constant, and erf the error function de ned as:
Z X

i) = p— e “dt:
0

In order to verify this hypothesis numerically, for a Hamming weight leakage with additive
Gaussian noise, we have plotted in Figure 4.2 the estimated parameter for di erent values of

and di erent number of traces. The mutual information is estimated using the law of large
numbers and therefore, the parameter is obtained by:

_erf Y(1(X;Y jT)=n)
q

Notice that for each value of , is constant, which suggest that our empirical model ts the
MI well.

We can go even further and nd the analytic value of . Indeed, the rst order derivative
of our model isn #%=e &, therefore, the slope at the origin isn #2. We know that | (0) = 0
and (1) = I(X;Y jT) log,(1+ SNR. This means that if we approximate %‘3(0) by
(1) 1(0), we have:

%Iogz(1+ SNR = n é; (4.5)
and therefore, D
= Ty log,(1 + SNR: (4.6)

Therefore, given the value of theSNR one can predict the value of Ml for additive Gaussian
noise. We can see that the approximation(4.4) holds very well for > 2. This happens for low
values of SNRas we encounter in practice when evaluating cryptographic devices. The number
of traces needed to reach a given success rate B therefore lower-bounded by:

4n erf 1 1 H2(Ps) (1 Ps)log,(2" 1)

P “log,(1+ SNR n 47

q

The interest of such bound is that it requires only the knowledge of an additive Gaussian noise
and the calculation of the SNRto be exploited and to therefore predict a tight bound on the

number of traces to reach a given success rate.
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Figure 4.2: Estimation of parameter
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4.2 Application to Two Leakage Models

4.2 Application to Two Leakage Models
4.2.1 Example for Monobit Leakage
In this subsection, we consider amonobit leakage model:
f(ti Kk)=LSB(Spox(ti Kk)) (i=1;2;:::50)

where S« is the AES substitution box and LSB is the least signi cant bit of a number. Figure 4.3
represents the success rate of a monobit leakage with additive Gaussian noise (standard deviation
= 4). The distinguisher used is the maximum likelihood distinguisher which is optimal [39].

The other curves are the bounds obtained with:

a numerical estimation of I (X;Y j T) (using the law of large numbers, as described in
Section 4.1.1);

Ml's upper bound (3.4);

MI's upper bound (3.5).

@ =1 b) =4

Figure 4.3: Success rates with monobit leakage.

The three bounds curves lie above the success rate curve as expected, the one obtained with a
numerical estimation of I (X;Y j T) being the tightest (since it gives the closest approximation

of the MI). The two other curves obtained with Equations (3.4) and (3.5) are not as tight but
very easy to calculate. Theses results show that the better approximation of the MI we have,

the closer we are from the optimal success rate.
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In Figure 4.4, we have plotted the error rate in a semilog scale, so that one can observe that

the curves obtained with Equations (3.4) and (3.5) actually cross each other. This shows that,

(@ =1 (b)y =4

Figure 4.4: Error rate for a monobit leakage in a logarithmic scale

closer to P; = 1 it is more interesting to choose the approximation of Equation (3.5), rather

than Equation (3.4).

Remark 4.1. For this leakage model, with a balanced vectort, one needs at least 8 traces to
obtain 256 di erent vectors vy, since the functionk 7! y(k) is one-to-one.

4.2.2 Example for Hamming Weight Leakage

In practice, the AES algorithms compute SubBytes with 8 bits. The leakage function are
therefore di erent if we take this into account. Our conclusion is the same. We now consider

the leakage model based on the Hamming Weight:

yi=f(ti K =HuwSx(ti k) (i=1;2:::;0

where Sy« is the AES substitution box and H,, is the Hamming weight function. Figure 4.5 shows
the success rate compared with the three other types of estimation with an additive Gaussian
noise with two values of standard deviation . For this model, we recall that SNR= 2= 2.
Once again, we notice that our bounds are above the optimal distinguisher and that the closest

estimation of the MI gives the tightest bound.
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4.3 Practical Applications

@ =1 (b)) =4

Figure 4.5: Success rate for a Hamming weight leakage

4.2.3 Comparison with Duc's Bound

In order to show that our bounds are tight, we have plotted the number of traces needed to
reach a success rate of 90% for a monobit leakage with additional Gaussian noise (same leakage
as Section 4.2.1). In this gure, we compare our bound with the ML distinguisher and the
success rate proposed by Duc et al. in [29].

To compute our bound, we only suppose that the noise is AWGN and we apply the parametric
estimation of the SNR proposed in the previous subsection (cf. Equation (4.7)).

In Figure 4.6, we notice that our bound is always very close to the real success rate, calculated
for the best case for the attacker. This means that our predictions give a good idea of the
security of any device, and we recall that this prediction has been made with the only knowledge
of a Gaussian noise. Therefore, with very low assumptions and very few measurements (needed
to calculate the SNR), we are able to predict the number of traces to reach a given success rate

with a good approximation.

4.3 Practical Applications

In practice, the estimation of the SNRis therefore crucial to estimate the protection level of a
device. In this section, we propose an algorithm that extracts theSNR of a leakage. Then, in
order to compare our results with real world data sets, we apply our methods to that obtained

within the framework of the \DPA Contest" challenge.
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Figure 4.6: Comparison of our prediction with Duc's bound
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4.3 Practical Applications

4.3.1 The SNR estimation

In order to apply Theorem 3.1 or Equation 4.4 with the parametric estimation of the Mutual
Information, one shall estimate the SNR of the leakage. When the leakage is monovariate,
meaning that the attacker has at her disposal one share of the leakage, it is possible to estimate

the SNRon-the-y. The SNRof the leakage can be written as follows:

Var(Y)

Var(N)

Var(Y)
Var(X YY)

_ Var(Y)
" Var(X) Var(Y)’

SNR=

We also notice that sinceX = Y + N, where the noiseN is independent from the signalY
(which depends only on the plain/cipher-text T), we haveY = E[X j T]. This means that the

SNRcan be estimated with:

SNR= Var(E[X jT])

"~ Var(X) Var(E[X jT]) (4.8)

This equation is valid for algorithms such as AES, since the leakage model of AES does not
depend on anything else than the 8 bits of the plaintextT.

When the leakage is multivariate, it is possible to compute dimensionality reduction (c.f. [L5,
Corollary 4]). In such case, a pro ling phase is needed to estimate the noise covariance matrix.
Besides, other methods to estimate the SNR can be used such as Linear Discriminant Analysis
(LDA) [81].

4.3.2 A Real World Case: the DPA Contest

In order to compare our theoretical results with practical evaluations, we used the data set of
the DPA Contest v1 [84]. In the rst version of this contest, the goal is to recover the 56-bit key

of the DES encrypting algorithm. The device is a Side-channel Attack Standard Evaluation
Board (SASEBO) developed by the Japan AIST / RCIS.

According to the data given in the DPA contest, the attacker has at her disposal a high
number of traces, each made up of 20003 samples. An example is given in Fig. 4.7. We will
consider here the rst round of the algorithm (some attacks consider the last round but the
results are very similar).

For example, we have plotted in Fig. 4.8 the SNR of this leakage considering the rst

substitution box. In this gure, we notice that the maximum value of the SNRis 0.144 but we
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Figure 4.7: One trace of DES leakage (from DPA contest v1 [84])
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4.3 Practical Applications

Figure 4.8: SNRof the rst Sbox for the rst round of DES.
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Sbox # | SNR | Prediction for 99% | CPA 99%
0 0.144 112 230
1 0.077 203 350
2 0.075 208 350
3 0.071 220 450
4 0.064 243 300
5 0.151 107 190
6 0.079 198 330
7 0.136 118 270

Table 4.1: SNR for each Sbox for the DPA contest

notice that other points of interest may be used.

We have computed a simple CPA on the rst round of DES with this data set to recover
6 bits of key. Figure 4.9 shows the partial success rate for all the substitution boxes. This
success rate has been obtained with 100 experiments. We have plotted the CPA for the best
time sample (the one that maximizes theSNR) in the green curve and the CPA over all the
time samples (the blue curve). The red curves corresponds to the bound of Equation 4.7.

According to the gures of the table, without any pre-processing the attacker will need at
least 243 traces to recover the secret key with one sample and 138 traces with two samples. This
corresponds to the results obtained without pre-processing or Build-up Sub-keys.

However, in practice, other methods may help the attacker to increase thé&SNR of the leakage
such as BS-CPA [6] where the attacker takes into account one broken subkey to recover others.
For such method, the upper-bound is the bestSNRi.e. 0.151 for one sample leading to 107

traces for key extraction.

4.4 Conclusion

In this chapter, we have linked two metrics used in the eld of side-channel analysis: the
probability of success of an attack (also known as the success rate) and the mutual information
between the leaked traces and the secret key. With such links, designers will be given more
precise tools to secure their cryptographic chips. Our results are of interest to better understand
the di erent factors that impact the success rate of an attack. This is the rst time that a study
gives universal tight bounds to the success rate, in the sense that these bounds are independent

of what the attacker may exploit with the measurements.
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(@) Sbox#0 (b) Sbox #1

(c) Sbox # 2 (d) Sbox # 3

Figure 4.9: Success rate for each DES Sbox
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(e) Sbox # 4 (f) Sbox #5

(9) Shox #6 (h) Sbox # 7

Figure 4.8: Success rate for each DES Sbox
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4.4 Conclusion

This is therefore a great improvement for designers. Indeed, in practice they are not able to
know how their devices will be attacked in the future, but here, we allow them that to ensure
the minimal security of their device in any adversarial context.

In addition, the link that we have made with the notion of guessing entropy gives an idea of

how many attempts have to be made to recover the key after an attack.
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5. WHEN MONOBIT LEAKAGES ARE DEFINED WITH THE CONFUSION
COEFFICIENT

This chapter presents the work accepted at InsCrypt 2018 conference. The conference will
take place in Fuzhou, Chinahttp://xxhb.fjnu.edu.cn/inscrypt2018/
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5.1 Introduction

Today's ciphering algorithms such as AES are considered resistant to cryptanalysis. This means
that the best possible way to recover a 128 bit key is about as complex as to compute an
exhaustive search over the £8 possibilities. With our current computational power, this is
not achievable within a reasonable amount of time. However, it is possible to use plaintexts,
ciphertexts, along with additional side information in order to recover the secret key of a
device. Indeed, the secret key may leak viaside-channels such as the time to compute the
algorithm, the power consumption of the device during the computation of the algorithm, or
the electro-magnetic radiations of the chip.

In order to secure chips from side-channel attacks, designers have to understand how these
work and what could be the future security breaches in the cryptographic algorithm as well as in
the hardware computation. A preliminary step is to identify how the secret keys leak and deduce
leakage models. Then, there are mathematical functions|called distinguishers|that take the

leakage as argument and return an estimation of the secret key. They come in many avouts

1we cover in this chapter the following distinguishers: Di erence of Means or DoM [45], Correlation Power
Analysis or CPA [ 11], Euclidean distance [ 39, x3], Kolmogorov-Smirnov Analysis or KSA [ 90], and Mutual
Information Analysis or MIA [34].
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5.1 Introduction

Figure 5.1: lllustration of the two parts of the side-channel analysis context (in red).

and have di erent gures of merit in di erent contexts. A given context not only involves the
cryptographic algorithm and the device through the leakage model, but also the side-channel
acquisition setup through the measurement characterized by its signal-to-noise ratio§NR). This
is illustrated in Fig. 5.1 borrowed from Heuseret al. [39] (with our annotations in red).

In practice one may encountermonobit leakages, meaning that the output of the leakage
model can only take two values. In this case, as we shall see, the mathematical computations turn
to be simpler and information theoretic tools may be used to precisely describe the link between
the leakage model and the real-world leaking traces. From another perspective, considering
monobit leakages can also be seen as an \abstraction” trick meant to intentionally ignore the
complex e ect of the way the device leaks, thereby keeping only the contribution from the
cryptographic algorithm in the leakage model.

A related question is how the choice of the substitution box in the cryptographic algorithm
may \help" the attacker. The standard AES substitution box was designed to be very secure
against linear and di erential cryptanalysis [25]. On the contrary, under side-channel analysis,
the substitution box may be helpful for the attacker, especially for monobit leakages as shown

below.

Related Work. Distinguishers were often studied empirically, yet such an approach does not
allow for generalizations to other contexts and measurement campaigns. A theoretical approach

consists in analyzing the formal expressions of the distinguishers as mathematical functions.
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COEFFICIENT

Fei et al. have shown that distinguishers such as DoM and CPA can be expressed in terms
of a confusion coe cient [32]. They gave the impetus to extend this formal analysis to other
types of distinguishers. In 2014, Heuseet al. [39] relate KSA to the confusion coe cient, and
also noticed that the confusion coe cient can be related to the resistance of a substitution box
against di erential cryptanalysis.

Whitnall and Oswald [ 89] have proposed therelative distinguishing margin metric to compare
distinguishers. However, it has been shown73] that this metric may not be relevant in all
contexts. Another way to compare distinguishers is to contrast how their success rateSR
in key recovery depends on the numbeq of side-channel traces. However, even if works such
as [32] and [48] were able to provide mathematically models for theSR, the comparison between
di erent distinguishers has never been actually carried out based on such frameworks. We shall
leverage instead on the so-calleduccess exponen{SE) [36] which allows to compare the SR of

various distinguishers based on only one exponent parameter.

Our Contributions. In this chapter we consolidate the knowledge on side-channel attacks
exploiting monobit leakages. We provide a rigorous proof that any distinguisher acting on

monobit leakages depends on only two parameters: the confusion coe cient and the standard
deviation of the noise. Some distinguishers, namely DoM, CPA and KSA, have already been
expressed as a function of those two parameter8p, 3g]. In this chapter, we derive this expression

for MIA and we obtain a simple analytic function when the non zero values of the confusion

coe cient are near = (which is the case of leakages occurring at cryptographically strong
substitution boxes [18]).

Success exponents allow to characterize the e ciency (in terms of number of traces) of
distinguishers to recover the key. We derive the success exponent of these distinguishers in
terms of the confusion coe cient and the standard deviation of the noise. These closed-form
expressions of the success exponent enable the comparison of distinguishers based only on these
two parameters. The ow chart of Fig. 5.2 situates our contributions in relation to the current

state of the art.

Organization. The paper is organized as follows. In Section 5.2, we recall the main de nitions.
In Section 5.3, we mathematically unify all the distinguishers and we show that they are only
functions of two parameters. In Section 5.4, we compare the distinguishers thanks to the success

exponent. Section 8.3 concludes. Appendices provide proofs for technical lemmas.
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q'l
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Empirical
simulations

DoM [45],
CPA [11], Compare
Euclidean Asymptotic SRusing
distance Cor?crrete SE See
[39, x3], Table 5.2
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Figure 5.2: The state of the art in relation to our contributions (in yellow boxes|see also
Tables 5.1 and 5.2 below).

Notations.  Throughout this chapter, we use calligraphic letters to denote sets and lower-case
letters for elements in this set (e.g. x 2 X). Capital letters denote random variables. For
example, X is a random variable taking values inX and x 2 X is a realization of X. The
probability that X is x is noted P(X = x) or simply P(x) when there is ho ambiguity. The
expectation of a random variable is notedE[X ] and its variance Var(X ). The di erential entropy

h(X) of a random variable X following distribution p(x) is de ned as
z

h(X) = . p(x) log, p(x) dx: (5.1)
The mutual information between two random variables X and Y is de ned as

P(X;Y)

7P(X)P(Y) : (5.2)

1(X;Y)= h(X) h(XjY)= E log,

5.2 Modelization and De nitions

5.2.1 The Leakage Model

In order to compare the di erent distinguishers for monobit leakages, we need a leakage model
upon which our computations will be based. A plaintext t meets the secret keyk through
a leakage functionf (t;k ). The resulting variable y(k ) is called the sensitive variable. The
dependence in the plaintextt will be omitted to make equations easier to read when there is no

ambiguity.
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The attacker measures a noisy version of(k ) called trace and denoted byx. When the
key is unknown, the attacker computes a sensitive variable with a key hypothesi%, that is,
y(k) = f (t;k). Thus our model takes the form

(
y(k) = f(tk)

‘= y(k ) (5.3)

where n is an independent measurement noise.

As we consider monobit leakages, we suppose thg{(k) can take only two values. In practice,
t (resp. k) are subsets of the full plaintext (resp. key). Typically, in the case of AES where
attacks can be conducted using a divide-and-conquer approach on a per substitution box basis,
t and k are 8-bit works (i.e., bytes).

The above leakage model can also be written using random variables. L&t the random
variable for the plaintext, Y (k) for the sensitive variable, X for the measurement, andN for the

Gaussian noise. We have:

Y(I;() = fY(Z( l;)+ N: ®4)

In a view to simplify further mathematical computations, we suppose that the leakage random

variable is reduced, that is, centered E[Y (k)] = 0 for all k) and of unit variance (E[Y (k)?] = 1

for all k). The noise is also assumed Gaussian of zero mean and its standard deviation is noted
> 0. Moreover, we assume that for any key hypothesis the sensitive variable isalanced that

is, P(y(k)) = % SinceY (k) is a binary random variable, we necessarily have thaty (k) 2f 1g

in our model, and consequently the signal-to-noise ratio equalSNR= 1= 2,

5.2.2 The Confusion Coe cient

In the side-channel context, the confusion coe cient was de ned by Fei et al. as the probability
that two sensitive variables arising from two di erent key hypotheses are di erent [32, Section 3.1].

Mathematically, the confusion coe cient is written as
(k;k )= P(Y(k) 6 Y(k )): (5.5)

As the secret keyk is constant and understood from the context, we can write (k;k )= (k).
Notice that in practical situations, the EIS (Equal Images under di erent Subkeys [77, Def. 2])

assumption holds, therefore is actually a function of the key bitwise XOR dierence k k .
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Figure 5.3 illustrates the confusion coe cient for a monobit leakage Y (k) = SubBytegT
k) mod 2, where SubBytesis the AES substitution box (application F§ ! F§) and s the

bitwise exclusive or. We notice that except fork = k (here taken = 178), the confusion

Figure 5.3: Confusion Coe cient for the AES SubBytes

coe cient for the AES SubBytesis close tol=. This results from the fact the AES SubByteshas
been designed to be resistant against di erential cryptanalysis. Speci cally, Heuser et al. 38,
Proposition 6] noticed that a \good" substitution box leads to confusion coe cients near =.

The original de nition of the confusion coe cient [ 32] considers only monobit leakages. An
extension for any type of leakage was proposed in [36] whergk) is de ned by

Y(k) Yk 2.

(k)= E :

(5.6)

Equation (5.5) can be easily recovered from this more general expression by noting that when
Y(k) and Y(k ) 2 f 1g, M isoor1 according to whetherY (k) = Y(k ) or
Y(k) 6 Y(k).
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5.2.3 Distinguishers

Distinguishers aim at recovering the secret keyk from the traces and the model. For every key
k, the attacker computes the associated distinguisher. The key hypothesis that gives the highest
value of the distinguisher is the estimated key. The attack is successful if the estimated key is
equal to the secret key.

For every key hypothesisk, a distinguisher is noted Ib(k) and the estimated key isR =

arg max, B (k). Five classical distinguishers are:

Di erence of Means (DoM) [32], also known as the Di erential Power Analysis (DPA) [45]

where the attacker computes
P P
Bk)= —p= X giyido= 1% (5.7)
ijyi (k)=+1 ijyi(k)= 1

Correlation Power Analysis (CPA) [11] where the attacker computes the absolute value of

the Pearson coe cient

= P
Loy Bk B v

" Var(X )Var(Y; (k)

. P

Bk = 2

(5.8)

Notice that Var(Y;(k)) do not depend on the indexi, since repeated measurements are
i.i.d.
Euclidean distance, which corresponds to the Maximum Likelihood (ML) attack under the

Gaussian noise hypothesis, where the attacker actually computes the negative Euclidean

distance between the model and the trace

1 X
Bly= = i ¥ik)= (5.9)
9
Maximizing the value of the distinguisher amounts to minimizing the Euclidean distance.
According to [39)], as the noise is Gaussian and additive, the Euclidean distance is the

optimal distinguishing rule (ML rule) that maximizes the success probability.

Kolmogorov-Smirnov Analysis (KSA) [90] where the traces are used to build an estimation

of the cumulative density function Ib(x), and the distinguisher is
B(k)= Eyu kBXjY(K) Pk (5.10)

where the in nite norm is de ned as klb(x)kl = sup, jlb(x)j. Maximizing the value of the

distinguisher amounts to minimizing the expected in nite norm.
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Mutual Information Analysis (MIA) [ 34] where the attacker computes the mutual informa-
tion between the traces and each model. The traces are used to build an estimation of the
joint distribution of X and Y (k), denoted by p(X;Y (k)), and with this estimation, we

calculate the mutual information

X 1y (K)
B (k) = x;y(k)) lo % 5.11
Wy (k)
Given the available data, the attacker computes the distinguisher as a function ofy;:::;Xq

with expectation E[@(k)] and a variance Var(@(k)).
When the number of queriesq tends to in nity, we assume that the distinguisher converges
in the mean-squared sense:

De nition 5.1  (Theoretical Distinguisher [36€]). The theoretical value of the distinguisher is
de ned as the limit in the mean square sense whem! 1  of the distinguisher. The notation
for the theoretical distinguisher is D (k), which is therefore implicitly de ned as:

E[(B(k) D(k)?! Oasq!l : (5.12)

Put di erently, I@(k) can be seen as an estimator ob (k). An illustration of theoretical
distinguishers is provided in the lower right graph of Figure 5.4. It is easily seen that agy! +1

the distinguishers presented previously have the following theoretical distinguishers:
For DoM, the theoretical distinguisher is

D(k) = E[XY (K)]: (5.13)

For CPA, the theoretical distinguisher is
ELXY (k)] EIXTELY (K)]

D(k) = 1+ 2 (5.14)
For Euclidean distance (ML) distinguisher, we have:
D)= E (X Y(k)?: (5.15)
For KSA, we have:
D(k) = Evu KF(XjY(k)) F(X)ky : (5.16)
For MIA, it is the mutual information
D(k) = I (X;Y(k)): (5.17)
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Figure 5.4. lllustration of a theoretical distinguisher

78



5.3 Theoretical Expressions for Distinguishers

5.3 Theoretical Expressions for Distinguishers

In this section, we show that all distinguishers for monobit leakages are functions of only two
parameters: the confusion coe cient (k) and the SNR= 1= 2. This is con rmed by the
closed-form expressions for classical distinguishers. In particular we derive the one corresponding
to MIA.

5.3.1 A Communication Channel Between Y(k) and Y (k)

To understand the link between any sensitive variableY (k) and the leaking sensitive variable
Y (k ), consider the following information-theoretic communication channel between these two
variables described in Fig. 5.5. This communication channel is simply a theoretical construction
that helps explain the link between Y (k) and Y (k ), which are both binary and equiprobable
random variables taking their values inf 1g. The parameters p and p° are the transition
probabilities de ned as p= P(Y(k )=+1jY(k)= 1) andp’= P(Y(k )= 1jY (k) = +1).

+1 +1

Y (k) Y(k)

Figure 5.5:  Abstract communication channel between Y (k) and Y (k )

Lemma 5.1. The communication channel de ned in Fig. 5.5 is a binary symmetric channel
(BSC) with transition probability equal to the confusion coe cient (k).

Proof. To prove that the channel is symmetric, we show that both transition probabilities
coincide: p= p° In fact, from Fig. 5.5, 3 = P(Y(k )=1)= pP(Y(k)= 1)+(1 pIP(Y (k)=
1) = %(p+ 1 p% hencep= p° Now the confusion coe cient (k) = P(Y (k) 6 Y (k )) can be
expanded as

(k) = % P(Y(k) 8 Y(k)jY(k)=1)+ P(Y(k) 8 Y(k)jY(k)= 1) (5.18)

= % P(Y(k )= 1jY(k)=1)+ P(Y(k)=1jY(k)= 1) (5.19)

= % p+ po =p= pO: (5.20)

This proves that the BSC has transition probability equal to (k). O

According to a well-known information theoretic result [23, p. 187], the Shannon'scapacity
in bits per bit of this channel is
C=1 Hy( (k); (5.21)
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where H(x) is the binary entropy function de ned by

H2(x) = xlog, % +(1  x)log, 11 (5.22)

i
This is represented in Fig. 5.6 as a function of (k). Interestingly, the value (k) = = corresponds

to null capacity while the capacity is evidently 1 bit per bit for (k ) =0, since in this case the

above communication channel reduces to the identity.

Figure 5.6: Representation of the channel capacity according to (k)

5.3.2 A General Result

We can now explain why all distinguishers for monobit leakages depend only on the two

parameters (k) and SNR= 2.

Theorem 5.1. Any theoretical distinguisher D (k) for a binary leakagey can be expressed as a
function of (k) and

Proof. Any theoretical distinguisher is de ned in terms of the joint probability distribution of
X and Y (k), noted p(x;y(k)). Now for any x 2 R and y(k) = 1,

pOxy (k) = PLY(K) plx | Y(K) (529)
= 2p(y(k )+ 1 y(K) (5.24)
X
=27 by + niy(ky(k ) Ply(k ) jy(K) (5.25)
y(k )
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where P(y(k ) j y(k)) is the transition probability of the channel de ned in Fig. 5.5. There are
two possibilities. Either y(k) = y(k ), and in this caseP(y(k )jy(k)) =1 (k), or y(k) 6 y(k )
and in this caseP(y(k )jy(k)) = (k). The sum overy(k ) has two terms and both cases are
represented. Moreover, the Gaussian noise is independent from every other random variable.
Therefore, we have two possibilities for the joint probability:

8

<3 U (ED) W+ (M ()

pOcy (k)= L, e (5.26)
Cp () (T (ERDA (k)

NI NI

where' (x) is the probability density function of a standard normal random variable. As the
noise is centered and Gaussian, the only parameter that characterizes is its standard deviation
. Therefore, a joint distribution of a monobit leakage is fully characterized by and (k). O

This proves that the knowledge of the confusion coe cient and the noise power are essential

to predict the performances of the side-channel attacks for monobit leakages.

5.3.3 Classical Distinguishers as Functions of (k) and 2

To highlight the result of section 5.3.2, we compute the classical distinguishers according to the
confusion coe cient and the noise power. As we mentioned in the introduction, some of them
have already been expressed according to these variables: we recall these results in Table 5.1
with references to the articles where the expression of the distinguisher in terms of(k) is proven.
These expressions con rm the strong link between confusion coe cient (recall Fig. 5.3) and the

values of the theoretical distinguisher (for all key hypotheses, recall Fig. 5.4).

o Original Theoretical expression
Distinguisher Reference
paper with (k)

DoM [45] DKk)=2(= (k) [52]
CPA [11] D(k) =25 L) [52]

Euclidean distance | [39, x3] Lemma 5.2 This chapter
KSA [90] D(k)y=erf 55 j= (k)] [38]
MIA [34] Lemma 5.3 This chapter

Table 5.1: Summary of classical distinguishers. Among all the classical theoretical distinguishers,
we notice that the expression of the theoretical value of DoM with (k) does not depend on .

The new results are given by the following lemmas.
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Lemma 5.2. For monobit leakages, the Euclidean distance distinguisher can be expressed as:
DKk)=4(1= (k) (2+2): (5.27)
Proof. We haveD(k)= E (X Y(k))2 = E (Y(k) Y(k+N)2 = E(Y(k) Y(k)?

2 since the noise is independent fron¥ (k ) Y (k). Then by (5.6), D(k)= 4 (k) ?=
(= (k)) 2 2 where we have stressed the dependence ¥ (k) as in Table 5.1. O

Lemma 5.3. For monobit leakages, when (k) = for k 6 k , the MIA distinguisher can be
expressed at rst order as:

D(k) =2log,(e)( (k) =2)%g( ) (5.28)
where h |
g( )= %E tanh? Z + iz +tanh? Z iz (5.29)
andZ N(0;1). The function g satis es
lim g( ) =1 and lim 2 g()=1: (5.30)
Proof. See Appendix B.1. O
Figure 5.7 plots the shape ofg( ) which tends to 1 when ! 0 and is equivalent to

when !1

When k = k the MIA distinguisher also has a simple expression since it reduces to the
known expression of the channel capacity for channels with binary input and additive Gaussian
noise [9, p. 274]:

1 % e
2

R

y

D(k )= Y

log, cosh(i2 )dy: (5.31)

Remark 5.1. With respect to their theoretical distinguishers, DoM is in bijection with the
Euclidean distance, and CPA is in bijection with KSA. Indeed, the Euclidean distance is
D(k)=4(= (k)) 2 2and isindependent from the choice of the key. Therefore, there
is a bijection between 4{= k) 2 2 and 2(= (k)) which is the theoretical value of
DoM. Regarding CPA and KSA, both distinguishers are functions ofj= (k)j-

We also notice that MIA is in bijection with CPA (and therefore KSA). Indeed, according to
the value of MIA with  (k), the distinguisher is a function of (1= (k))? which is in bijection
with jI== (k)j= (=  (k))2. This means that for monobit leakages, any attack that works
with one of these distinguishers will also work with another, andvice versa
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Figure 5.7: Representation of g( )

5.4 Comparing Distinguishers with the Success Exponent

5.4.1 Mathematical Expression of  SE

In the previous section, we have computed the theoretical values of the classical distinguishers in
terms of (k) and . Now, we wish to compare their success rate. As we mentioned Section 5.2.3,
the attacker computes the estimated distinguisherl‘.@(k) to recover the secret key. This is the
main reason why all distinguishers do not perform equally in key recovery; indeed, they do not
converge at the same speed towards their theoretical value.

In order to compare them, we have computed theirsuccess exponenta metric proposed by
Guilley et al. in [36] that evaluates how fast the success rate of a distinguisher converges to

100%. With a Gaussian assumption, they prove that the success rate can be modeled as
SR=1 exp( q SB; (5.32)

where q is the number of traces andSE2 R* is the so-called success exponent. Therefore, the
greater the success exponent is, the faster the convergence of the success rate.
We present the theoretical values of the success exponent for the di erent distinguishers in

Table 5.2. As a direct consequence of Theorem 5.1, all of these success exponents are function

83



5. WHEN MONOBIT LEAKAGES ARE DEFINED WITH THE CONFUSION

COEFFICIENT

o Closed form SE Numerical value
Distinguisher _ Reference
with (k) and for AES SubBytes

1 (k) N ] 3
DoM > gl{] 14'270() [36, Proposition 4] 339 10

CPA Lemma 5.4 This chapter 339 103

. . 1 (3] N ] 3
Euclidean distance > knglp 1+ 2 ) [36, Proposition 5] 339 10

KSA Lemma 5.5 This chapter 1.08 103

MIA Lemma 5.6 [36, Proposition 6] 852 10 °

Table 5.2: Success exponents for the classical distinguishers. The numerical values ofSE are
obtained for AES SubBytesleast signi cant bit leakage model and noise of standard deviation

= 4. Notice that in the monobit case, Euclidean distance and DoM have strictly the same success
rate because (X Y(k))2= X2+2XY (k) 1,andX?isindependent of the choice of the key.

of (k) and

and the SNRof the leakage, he can predict how fast he recovers the secret key.

. Therefore, if the attacker only knows the type of substitution box that is used

Lemma 5.4 (Success exponent of CPA) The success exponent of CPAIs:

(K

1 . 1 2=
SE= - min -
(K)j

2kek 1+2 2+2j1=2 (5.33)

Proof. See Appendix B.2. O

Lemma 5.5 (Success exponent of KSA) Assuming that the distributions are estimated with
the kernel method using Heaviside step function, the success exponent of KSA is

1 eff bl *(12 j 1= (K))
SE= = min 5 : (5.34)
2kek 2 erf pl- (= j 1= (K)))
Proof. See Appendix B.3. O

Lemma 5.6 (Success exponent of MIA) When 1, the success exponent for an MIA

computed with histograms is

_ 4log,(e)?
= 29%(O°

SE min (21 (k)™ (5.35)

Proof. See Appendix B.4. O

In order to validate our theoretical results, we have simulated attacks within the monobit

model presented in Sec. 5.2. The success rates of these attacks are presented in Fig. 5.8. In

1In [36], CPA is treated as a distinguisher, but without the absolute values. Those remove false positives
which occur in monobit leakages when there are anti-correlations. Our value of the success exponent is, therefore,
di erent from theirs.
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this gure, we notice that, as expected, the Euclidean distance (ML) is the best distinguisher,
closely followed by CPA. Both have similar same success rate. The small di erence is due to the
use the the absolute values in the distinguishing function of CPA (see discussion in Remark 9
of [39]). The KSA is requiring a bit less than the double of traces, compared to Euclidean
distance, DoM and CPA. The MIA performs really bad compared to the other distinguishers.

Error bars represent the inaccuracy while estimating theSR (here, we ran 100 simulations).

Figure 5.8: Success rate for classical distinguishers ( = 4)

These simulations are therefore in complete coherence with the theoretical results of Table 5.2.
Indeed, the order of the distinguishers is the same w.r.t. the success rate and w.r.t. the success
exponent. In addition, according to the de nition of the success exponentSE in (5.32), the
number of tracesq to reach a given success rate (e.gSR=80%) is proportional to the inverse
of SE This quantitative law is satis ed in the simulation of Fig. 5.8. For an accurate validation,
we have plotted in Fig. 5.9 the success exponent vs the success rate, and indeed points are

aligned.
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Figure 5.9: Success rate versus success exponent
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5.4.2 Comparison of Distinguishers Based on their Success Exponent

With the theoretical expressions of the Success Exponent, it is now possible to rank distinguishers
for a given value of and a speci ¢ set of confusion coe cients ( (K))ks«k -

We rst show that for all of the distinguishers presented in Table 5.2, the key that minimizes
the expression of the success exponent is either the one that minimizegk) or the one that
maximizes (k) (for k & k ). Indeed, there are only two values of (k), k 6 k , which are
relevant for the comparison of distinguishers presented in Table 5.2.

Lemma 5.7. For all value of , the value ofk 6 k which minimizes the formal expressions of
monobit distinguishers is either

Kmin =argmin (k) (nearest rival)
k6 k

or
Kmax = argmax (k) (furthest rival) :
k6 k

Proof. For each distinguisher, let us replace (k) by a real-valued variable x 2 [0;1] in the
formal expression of the theoretical distinguishers given in the second column of Tab. 5.2. If the
expression which is a function ofx is increasing, then its minimum value overf (k);k 6 k g
[0;1] is min = (Kmin). Symmetrically, if the function of x is decreasing, than its minimum
value overf (k);k6 k g [0;1]is max = (Kmax).- The argument of the minimum operator is
always either strictly increasing or decreasing withx. Indeed, we take the derivative of each
function and we notice that it is always positive for any value of x 2 [0; 1]:

; i . @1 =1 1+ ?
For DoM and Euclidean distance: &3 =% = 3 77— > 0.

For CPA, we distinguish to cases. Either, the minimum is reached for a valueky such that
(= (ko)) is greater than 0, and in this case, the value of the success exponent is equal
to the Success Exponent of DoM (and thuskp = min ), of (=2 (ko)) is lower than 0.

In this last case, the value of the Success Exponent i$ 5. The derivative of this
function is &3 5% = ¢ 22:;)2 < 0. This means that the higherx is, the smaller the

success exponent is. Hencép = max -

For KSA, the computation is similar to the case of CPA. Either the value which minimizes
the expression in Lemma 5.5 ikg, such that (1= (ko)) is greater than 0, in which
2

. erf pl- .
case the Success Exponent is equal te%%, or (= (ko)) is nega-
2 erf pl= (ko)
. . . . erf pl-
tive, in which case the Success Exponent is equal te—* 1 (ko) . Now,
2 ef p- (1 (ko))
2
e s . - - and e L x
Ox == Gy > 0, hence (ko) = min and@ 5

2 erf 9127 X
erf pi— :
Tj)f < 0, hence (ko) = max-
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For MIA, @x2(1 x)?=4x(1 x)(3 x), which has the signof3 x. As0 x 1, the
Success Exponent for MIA is thus increasing on [0=] and decreasing on¥=; 1]. Thus, the
minimum value of the Success Exponent is either occurring for min (if min < 1 max )
or for max.

O

This means that the wrong keyk that determines the minimum value in the closed form of

the Success Exponent in the expressions from Tab. 5.2:

(regarding DoM and Euclidean distance):is also the one which happens to minimize (k),

k 6 k , i.e., the nearest rival of the correct keyk ;

(regarding CPA, KSA and MIA): is also the one which corresponds to the nearest confusion

coe cient from its bounds (either O or 1).

Lemma 5.7 validates the role of Relative Distinguishing Margin (RDM [89]) metric while
comparing distinguishers. Indeed, the distinguishers DoM and Euclidean distance (resp. CPA,
and at rst order, KSA and MIA) only consider the nearest rivals (resp. nearest or furthest) in
terms of confusion coe cient. This is general property of the distinguisher, since it does not
depend on the noise variance 2.

However, we will highlight other factors that determine the e ciency in terms of \data-
complexity" of the classical distinguishers. To illustrate Lemma 5.7, we have reported in
Table 5.3 the 32 in and nax for the 32 possible fanout bits of Data Encryption Standard
(DES) substitution boxes (sboxes). These values correspond to the 8 sboxes in DES multiplied
by the 4 bits of the output of the LUT. In this table, we notice that each sbox has a particular
behaviour. The value which determines the success exponent represented with a grey background
color. It is interesting to see that CPA, KSA and MIA are actually limited by  nax most of the
time (i.e., 1 max < min, for about 89% of the bits, excluding ties).

Remark 5.2. It was previously unnoticed that, in the case of DES, distinguishers with \absolute
values”, such as CPA, were better than without the absolute values.

Regarding AES, we notice that for the AES SubBytesfunction, the values of i and max
are always the same regardless to the leaking bit. Moreover, we also notice thaty, =1 max -

Indeed, for all output bits of SubBytes we have:

max = 0:5625.
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Element min max
Bit 1 { Sbox 1 | 0.2500| 0.7500
Bit 2 { Sbox 1 | 0.1875| 0.7500
Bit 3 { Sbox 1 | 0.3125| 0.6875
Bit 4 { Sbox 1 | 0.2500| 0.7500
Bit 1 { Sbox 2 | 0.2500| 0.8125
Bit 2 { Sbox 2 | 0.3125| 0.7500
Bit 3 { Sbox 2 | 0.1875| 0.9375
Bit 4 { Sbox 2 | 0.2500| 0.8125
Bit 1 { Sbox 3 | 0.2500| 0.8750
Bit 2 { Sbox 3 | 0.3125| 0.7500
Bit 3 { Sbox 3 | 0.2500| 0.8750
Bit 4 { Sbox 3 | 0.2500| 0.8125
Bit 1 { Sbox 4 | 0.3125| 0.6875
Bit 2 { Sbox 4 | 0.3125| 0.6875
Bit 3 { Sbox 4 | 0.3125| 0.6875
Bit 4 { Sbox 4 | 0.3125| 0.6875
Bit 1 { Sbox 5 | 0.3750| 0.6875
Bit 2 { Sbox 5 | 0.3125| 0.7500
Bit 3 { Sbox 5 | 0.3125| 0.8125
Bit 4 { Sbox 5 | 0.2500| 0.7500
Bit 1 { Sbox 6 | 0.2500| 0.8125
Bit 2 { Sbox 6 | 0.3125| 0.8125
Bit 3 { Sbox 6 | 0.2500| 0.7500
Bit 4 { Sbox 6 | 0.1250| 0.7500
Bit 1 { Sbox 7 | 0.2500| 0.8750
Bit 2 { Sbox 7 | 0.2500| 0.7500
Bit 3 { Sbox 7 | 0.1875| 0.8750
Bit 4 { Sbox 7 | 0.2500| 0.7500
Bit 1 { Sbox 8 | 0.3125| 0.8125
Bit 2 { Sbox 8 | 0.2500| 0.8125
Bit 3 { Sbox 8 | 0.2500| 0.8125
Bit 4 { Sbox 8 | 0.2500| 0.7500

Table 5.3: Numerical values of min and max for DES

89



5. WHEN MONOBIT LEAKAGES ARE DEFINED WITH THE CONFUSION
COEFFICIENT

Lemma 5.8 (CPA correlating positively or negatively) . The CPA correlates negatively (i.e.,
j1=2 (k)j is minimum for k 6 k when 1=2 is positive) when pjn < 1 max - And
vice-versa.

Proof. It is easy to check that

1 min < 1 l max

215 2 o 2 74 gy 0 (T med <@ E ) e

O min < 1 max -
O

Lemma 5.9 (KSA expression of SE). The expression of the Success Exponent for KSA (for
large values of ) is:

8 2
erf pl-
E 22 n— if min <1 max s
2 erf 9127 min
2
erf pi- .
§ 1 S5 it min > 1 max -

erf pi—

Proof. It is a direct consequence of the fact the functionx 2 [0; 1] 7!

increasing (recall Lemma 5.7). O

Lemma 5.10 (MIA expression of SB). The expression of the Success Exponent for MIA (for
large values of ) is:

(

H0020° 2 (1 min)? 0 omin <1 max,
40920° 2 @ wa)? 0 min > 1 max.
Proof. We have:
Moe@ 2 2< 0RO g2 i@ mn) < mad )
0 (max mn)lmx* mn 1]<0
0 mn <1  max:

O

Corollary 5.1 (Revised expressions of the Success Expoennt for the 5 distinguishersjVith
min and max de ned in Lemma 5.7, the success exponents of the 5 distinguishers are written in
Table 5.4. For CPA, KSA and MIA, there are two expressions depending whether min 7 max -

Now, we can proceed to compare distinguishers:

Proposition 5.1  (DoM is always better than CPA). For any value of , the success exponent
of DoM is always greater than the success exponent of CPA.
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Condition
Lo i min < 1 max min > 1 max
Distinguisher
l min
DOM 2 1+ 2 min
1 11
CPA T R~
Euclidean distance FT—
o min
erf pLi- min erf p1- (1 max )
KSA i—z 3 L —
2 erf 9127 min 2 erf 91?7 1 max )
4log,(e)? 4log,(e)?
MIA 000 2 (1 mn)? | Y 2 0 ma)?

Table 5.4: Expression of the Success Exponent for the 5 studied distinguishers

Proof. The expression of CPA is either with i, or with 5. We therefore have two cases:

f mn <1 max » then the expression of CPA is the same as the expression of DoM (cf.
Table 5.4). Therefore, the success exponents of the two distinguishers are the same in this
case.

In the other case, the expression of the success exponent %51“7"‘;: However, as

1 max < mn, We have 3= < s which is the expression of DoM.
Therefore, in this case, the success exponent of CPA is smaller than the success exponent
of DoM.

Overall, DoM is therefore a better distinguisher than CPA in terms of success exponent. [J
Proposition 5.2 (CPA vs KSA). When 1 the success exponent of CPA is always higher
than the success exponent of KSA.

Proof. We consider that 1. This means that the success exponent of CPA (we consider
the formula with  n ) is equivalent to %m—z For KSA, the success exponent is equivalent to
-5 Indeed, when 1, pli— %is equivalent to —2;.

Therefore, when 1, the success exponent of CPA is always higher than the success
exponent of KSA. The calculations are the same if we consider pyay O

Proposition 5.3 (MIA vs DoM) . For > 1, the success exponent of MIA is always smaller
than the success exponent of CPA.

Proof. For DoM, the expression of the success exponent is proportional te while the expression
of the success exponent for MIA is proportional to-%;. O

To highlight these lemmas, we have plotted in Figure 5.10 the success exponents obtained
for every distinguisher with respect to the value of . We notice that the order obtained in the
previous lemmas is veri ed' In this case, the value of ., is lower than the value of 1 ax.

Therefore, the Success Exponent based on the valuey, will be used.

1We did not plot for values of lower than 5, since the lemmas are true for large values on
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Figure 5.10: Success Exponent for DES ( min =0:125, max =0:75)
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Figure 5.11: Success Exponent for DES ( min =0:25; max = 0:8125)

On the contrary, we have plotted in Figure 5.11 the Success Exponents for values ofin
and gax such that min > 1 max - IN this case, the Success Exponents of CPA, KSA and
MIA is based on the value of ax.

In the state-of-the-art, the only assertion which could be done was that the optimal dist-
inguisher is performing the best, i.e., it is better than all others. However, in general, it was
di cult to formal and numerical comparison between distinguishers was not possible. We enable
that. More precisely, we rate distinguishers according to whether they match for minimum or
maximal values of . Then, we classify them when there is one distinguisher better than another
one over the full range of > 0. Finally, we show that depending on the values of , and

max » Some distinguishers might be better than others.

5.5 Conclusion

In this chapter, we have mathematically proven that only two parameters, the confusion coe cient

and the SNR determine the side-channel distinguishing e ciency for monobit leakages. Both of
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them are easy to compute because the confusion coe cient can be calculated with the knowledge
of the operating substitution box and the SNR can be measured o ine.

Our work is useful to predict how fast a distinguisher will succeed to recover the secret key.
Long and painful simulations can be advantageously replaced by the computation of the success
exponent using closed-form expressions.

This chapter also consolidates the state of the art about the classical distinguishers, especially
for MIA and KSA. We have derived the success exponent for these two distinguishers as a

function of the confusion coe cient and the standard deviation of the noise.
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When MIA I1s a Maximum
Likelihood and better than CPA
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6. WHEN MIA IS A MAXIMUM LIKELIHOOD AND BETTER THAN CPA

This chapter covers the work presented at ArticCrypt 2016.
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6.1 Introduction

Many embedded systems implement cryptographic algorithms, which use secret keys that must
be protected against extraction. Side-channel analysis (SCA) is one e ective threat: physical
guantities, such as instant power or radiated electromagnetic eld, leak outside the embedded
system boundary and reveal information about internal data. SCA consists in exploiting the
link between the leakagesignal and key-dependent internal data calledsensitive variables

The cryptographic algorithm is generally public information, whereas the implementation
details are kept secret. For high-end security products, the con dentiality of the design is
mandated by certi cation schemes, such as the Common Criteria32]. For instance, to comply
with ALC_DV@4.ife-Cycle support { Development Security) requirement, the developer must
provide a documentation that describes \all the physical, procedural, personnel, and other security
measures that are necessary to protect the con dentiality and integrity of the TOE (target of
evaluation) design and implementation in its development environmernit[22, clause 2.1 C at
page 141]. In particular, an attacker does not have enough information to precisely model the
leakage of the device. On commercial products certi ed at highest evaluation assurance levels

(EAL4+ or EAL5+), the attacker cannot set speci ¢ secret key values hence cannot pro le
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the leakage® Therefore, many side-channel attacks can only be performed online using some
distinguisher.

Correlation Power Analysis (CPA) [12] is one common side-channel distinguisher. It is
known [39, Theorem 5] that its optimality holds only for a speci ¢ noise model (Gaussian) and
for a speci ¢ knowledge of the deterministic part of the leakage|namely it should be perfectly
known up to an unknown scaling factor and an unknown o set.

Linear Regression Analysis (LRA) R8] has been proposed in the context where the leakage
model is drifting apart from a Hamming weight model. Its parametric structure and ability to
include several basis functions makes it a very powerful tool, that can adjust to a broad range
of leakage models when the additive noise is Gaussian. Incidentally, CPA may be seen as a
2-dimensional LRA [39].

When both model and noise are partially or fully unknown, generic distinguishers have been
proposed, such as Mutual Information Analysis (MIA) [34], Kolmogorov-Smirnov test [86, 90]
or Craner-von-Mises test [86, Sec. 3.3.]. Thorough investigations have been carried out (e.g.,
[17, 60, 88]) to identify strengths and weaknesses of various distinguishers in various scenarios,
including empirical comparisons. In keeping with these results, we aim at showing some
mathematical justi cation regarding MIA versus CPA and LRA. Our goal is thus to structure the
eld of attacks, by providing theoretical motivations why attacks strength may di er, irrespective

of the particular traces datasets.

Contributions. In this chapter, we derive MIA anew as the distinguisher which maximizes
the success rate when the exact probabilities are replaced by online estimations. In order to
assess the practicability of this mathematical result, we show two scenarios where MIA can
outperform its competitors CPA and LRA, which themselves do not estimate probabilities.
In these scenarios, we challenge the two hypotheses needed for CPA to be optimal: additive
Gaussian noise and perfect knowledge of the model up to an a ne transformation. This is
illustrated in Fig. 6.1.
Last, we extend the fast computation trick presented in 9] to MIA: the distinguisher is

only computed from time to time based on histograms obtained by accumulation, where the

accumulated histograms are shared for all the key guesses.

10bviously, this hypothesis only holds provided the device manufacturer does not reuse the same cryptographic
engine in an open platform, such as a JavaCard, where the user is able to use the cryptographic API at its will.
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Section 6.3: MIA > CPA:

CPA is optimal [39]: known model,

known model, ) .
non-Gaussian noise.

Gaussian noise. Section 6.4: MIA > CPA, LRA:

unknown model,

Gaussian noise.
Figure 6.1: lllustration of two practical situations where MIA can defeat CPA

Organization. The remainder of this chapter is organized as follows. Section 6.2 provides
notations, assumptions, and the rigorous mathematical derivation that MIA reduces to a
maximum likelihood distinguisher, where exact leakage probabilities are replaced by online
probabilities. Section 6.3 studies two examples where the attacker knows the one-bit model under
non-Gaussian algorithmic noise, and for which MIA is shown to outperform CPA. Section 6.4
provides a scenario in which the leakage model is partially unknown under additive Gaussian
noise, and where MIA outperforms CPA and LRA. Last, in Section 6.5, we propose a fast MIA
computation deduced from our mathematical rewriting allowing to factor several computations.

Section 6.6 concludes.

6.2 Optimality of Mutual Information Analysis

6.2.1 Notations and Assumptions

We assume that the attacker has at his disposag independentonline leakage measurements

We do not make any precise assumption on the leakage model|in particular the attacker
is not able to estimate the actual probability density in a pro ling phase. Instead we choose

an algorithmic-speci ¢ function f and a device-specic function' to compute, for each key

g =" (f(k€); (6.1)

1We comply with the usual notations of [ 30] where o ine quantities are indicated with a hat, whereas online
quantities are indicated with a tilde. In this chapter, there is no pro ling phase hence no o ine quantities.
2\We use bold letters to indicate vectors while scalars are presented using small italic letters.

98



6.2 Optimality of Mutual Information Analysis

depending on some leakage model but in what followd, and' can be taken arbitrarily such
that they ful Il the following Markov condition.

Assumption 6.1 (Markov condition) . The leakager depends on the actual secret kelg only
through the computed mode = ' (f (k ;€)).

Thus, while the conditional distribution Py (®j€) depends on the valuek of the secret key,
the expressionP(rjg) depends onk only through ¢ = ' (f (k; €)). If we let Py (®;€) be the joint

probability distribution of ® and € whenk = k, one has the Fisher factorization [19]
Pk (»;€) = P(E)Px(»j€) = P(E)P(rj®) whereg = ' (f (k; €)): (6.2)

In the latter expression we haveP(€) =2 9" since all text n-bit words are assumed independent
and identically distributed (i.i.d.) and uniformly distributed.

In the case of an additive noise model, we simply have = ¢ + B where B is the noise
vector, and the Markov condition is obviously satis ed. In general, in order to ful Il the Markov
condition the attacker needs some knowledge on the actual leakage model. We give two examples
regarding the Markov condition:

Example 6.1. If leakagex; is linked to t; and k through the relationship x; = wy (k ti) + n;

then both modelsy; = k tj andy; = wy (k t;) satisfy the Markov condition.

In order to uniquely distinguish the correct key, some conditions on the expressions of are
required. Speci cally, let us denote by yx the function t 7! y,(t) = y(k;t), and let B the set of
bijections on the leakage space&X. We have:

if 8k;9k°6 k; 9 2 B st yo= Vk; then the distinguisher features atie, (6.3)
if 8k;8k°6 k; 9 2B s.t. yo = Yk; then the distinguisher is not sound: (6.4)

Indeed, in Eq. (6.3), there is no way for the distinguisher to tell k from k° and in Eq. (6.4),
the distinguisher yields the same value for all the key guesse's Sections 6.3 and 6.4 give other,
more sophisticated, examples that satisfy the Markov condition.

Example 6.2. In the same scenario as in Example 6.1, consider the bit-dropping strategy (called
7LSBin [34] and used in [72, 89)). Then e.g.,y; = (k t;)[1: 7] (the rst seven bit components)
doesnot satisfy the Markov condition. Note that the leakage model in this example intentionally
discards some information, hence may not be satisfactory [72].

1 We refer the interested reader to the work done in [ 91, Sec. 3]. We note that y; = k t; does not lead to a
sound distinguisher, as for all k% x 7! x kO is bijective, and maps yy to y, o. On the contrary, there is no
bijection  such that forall t, wy (k t)= (wy(k kO t)). So the choice y; = wy (k t;) is sound.
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Let R be the key estimate that maximizes a distinguisherD given g and €, i.e.,
R =arg max D(®; ) (6.5)

where K is the key space.

We also assume that leakage values are quantiz&dn a suitable nite set X. Letting Y denote
the discrete sensitive value space, we havwe 2 X% and g 2 Y8. The actual probability densities
being unknown, the attacker estimates them online, during the attack, from the available data

in the sequences and ¢ (via €), by counting all instances of possible values ok 2 X andy 2 Y:

18
P(x)= = le =x; (6.6)
@i
Py =2 1oy ©.7)
@i
1
P(xy) = = le=xp=y; (6.8)
@i
e POY)
B(xiv) = Fl TRIEXRTY _ i : 6.9
00) g’ iq:1 lg -y P(y) (©9)

where 1, denotes the indicator function of A: 15 =1 if A is true and = 0 otherwise.

De nition 6.1  (Empirical Mutual Information) . The empirical mutual information is de ned
as

X :
e;g) = PGy log, o),

BSAR 2 (6.10)
x2Xyy2Y p(X) p(Y)

which can also be written as

Fle.p) = 8 (r) K (rjp); (6.11)

where the empirical entropies are de ned as

18 (&) X P(x) | —1 (6.12)
R) = x) log .
X2 X ’ P(x)
and
. X 1
B (rjg) = P(x;y) log, ——: (6.13)
X2X:y2Y P(xjy)

These quantities are functions of the sequences and g since P(x;y) is a function of ® and .

They also depend on the key guessed valug, via the expression ofe.

1Some side-channels are discrete by nature, such as the timing measurements (measured in units of clock
period). In addition, oscilloscopes or data acquisition appliances rely on ADCs (Analog to Digital Converters),
which usually sample a continuous signal into a sequence of integers, most of the time represented on 8 bits
(hence X = F§).
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6.2.2 Mathematical Derivation

In this subsection, we show that MIA coincides with the maximum likelihood expression where
leakage probabilitiesP are replaced by online estimated probabilitiesP.

De nition 6.2  (Success Rate§2, Sec. 3.1]) The success rate(averaged over all possible secret
key values) is de ned as:

1 X1
SR= = Py(R= K): (6.14)
k=0

Here we follow a frequentist approach. An equivalent alternative Bayesian approach would

be to assume a uniform prior key distribution [39].

Theorem 6.1 (Maximum Likelihood [20]). Let ¢ = ' (f (k;€)). The optimal key estimate that
maximizes the success rat€6.14) is:

R = arg max P(rje): (6.15)

Proof. We give here a formal proof, which nicely relates to De nition 6.2. Straightforward
computation yields:

1 X" X
SR= Py (2;€) 1,_, (6.16)
k=1 g
1 X" X
= on P(ejg = ' (f (k;®) P(®) 1,_, (by (6.2) & Assumption 6.1)  (6.17)
k=1 g;e
1 XX .
= onterD) Pejg = ' (f(k;®) 1,.¢ (6.18)
k=1 g
= ey PEip = (k= RE): (6.19)
R;€

Thus, for each given sequences; € maximizing the success rate amounts to choosing = R so
as to maximize P(ejg) = P(eje = ' (f (k = R;€))):

R =arg max P(je): (6.20)
O

When no pro ling is possible the conditional distribution

P(ejg) = _ P(eijg) (6.21)

i=1
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is unknown to the attacker. Therefore, Theorem 6.1 is no longer practical and we require a

universal® version of it.

De nition 6.3  (Universal Maximum Likelihood) . Let ¢ = ' (f (k;€)). The universal maximum
likelihood (UML) key estimate is de ned by

R =arg max P(rje); (6.22)

where

P(ejg) = | P(eijw): (6.23)

i=1

Here P, de ned in Equations (6.9), (6.8), (6.7) and (6.6), is estimated directly from the

available data, that is, from the actual values in the sequence® and .

Theorem 6.2 (UML is MIA) . The universal maximum likelihood key estimate is equivalent to
the mutual information analysis (MIA) [34]:

R =arg max P(rjg) = arg max F(r;e); (6.24)

where F(g; @) is the universal mutual information (de nition 6.1).
Proof. Rearrange the likelihood product according to values taken by thee; and @ 's:
. w . Y .
P(ejg) =  P(eijg) = P(xjy)® (6.25)
i=1 x2Xyy2Y

where By, is the number of components &;; %) equal to (x;y), i.e.,

Bxy = Le=xp=y = @P(Xy): (6.26)

The second inequality in Eqn. (6.25) is based on a counting argument: some events collide, i.e.,
we have i; Vi) = ( Xio; yio) for i 6 i°% The exponentry., is meant to enumerate all such possible
collisions. This gives

Y )
P(rjg) = B(xjy)dPoy) =2 et (=ip). (6.27)
x2Xy2Y

(see De nition 6.1). Therefore, maximizing P(®jg) amounts to minimizing the empirical condi-
tional entropy 19 (gjg). Since 19 (r) is key-independent, this in turn amounts to maximizing the
empirical mutual information F(e;e) = B(®) 9(gje). O

LUniversal , in the information theoretic sense of the word, means: computed from the available data without
prior information.
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From Theorem 6.2 we can conclude that MIA is \optimal" as a universal maximum likelihood
estimation. This constitutes a rigorous proof that mutual information is a relevant tool for
key recovery when the leakage is unknown (in the case where the model satis es the Markov
condition) as was already hinted in [34, 66, 72, 88].

Corollary 6.1. MIA coincides with the ML distinguisher as ! 1

Proof. By the law of large numbers, the online probability P converges almost surely to the
exact probability of the leakage asg@!1 . For any xed values of g 2 X;g 2 Y,

P(ejg) ! P(&j®) as:
gl
Thus in the limit, MIA coincides with the maximum likelihood rule. O

Remark 6.1. It is well known [66] that if the mapping €7! =" (f (k; €) is one-to-one (for all
values ofk), then MIA cannot distinguish the correct key. This is also clear from Eg. (6.4) in
footnote 1: given two di erent keys k; k®, there is a bijection betweenyy and yyo, which is simply
= Yko Yy 1. In our present setting this is easily seen by noting that whene = * (f (k; ©),
Pa 1 P q
P(xjy) = —plg" =t = —pm s (6.28)
i=1 ti=y i=1 ‘e =t

1

is independent of the valuek. Note that this is true for any xed number of measurements q
during the attack.

6.2.3 MIA Faster Than ML Distinguisher

Now that we have shown that the Universal Maximum Likelihood distinguisher is strictly

equivalent to the MIA distinguisher, we show that the use of the MIA Distinguisher is cheaper
in terms of calculations than the ML distinguisher. Both distinguishers require the knowledge
of P, the online estimation of the leakage probability. However, the summation is not exactly

the same:

the ML distinguisher consists in a sum ofeg logarithms, whereas

the MIA involves a sum over jXj j Yj logarithms?.
This means that computing a ML requires g logarithm computations while computing a MIA
requires jXj j Yj logarithm computations. As long asjXj j Yj is smaller than g, which is
veri ed for practical signal-to-noise values, the MIA is faster than the ML in terms of logarithm

computations. Furthermore, in section 6.5.2, we present a fast algorithm to compute MIA,; it

takes advantage of precomputations, which are similar to that already presented in [49].

Lin practice, logarithms require a high computational power, hence the number of calls to this function shall
be minimized.
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6.3 Non-Gaussian Noise Challenge

In this section, we show two examples where MIA outperforms CPA due to non-Gaussian noise.
The rst example presented in subsection 6.3.1 is an academic (albeit arti cial) example built
in order to have the success rate of CPA collapse. The second example in subsection 6.3.2 is

more practical.

6.3.1 Pedagogical Case-study

We consider a setup where the variables ar&X = Y + N, with Y =" (f (k ;T)), whereY 2f 1g,
and N  U(f ¢) (meaning that N takes values and + randomly, with probabilities %
and %), where is an integer. Speci cally, we assume thatk , t 2 F5, with n = 4, and that
f:F3 FJ! FD isa (truncated version) of the SERPENT Sbhox fed by the XOR of the two
inputs (key and plaintext nibbles) and ' = wy is the Hamming weight (which reduces to the
identity F,! F, if m =1 bit).

The optimal distinguisher (Theorem 6.1) in this scenario has the following closed-form
expression:

\q
D(»;€) = arg mex P(rj€; k) = arg m?x 2—15‘ (®i;€;K); (6.29)

where :FJ' Fj F)!f 0;1gis de ned as:

8

21 ifx '"(fkt)= ;
(x;t;k)=>1 ifx " (f(k;t)=+ ;

" 0 otherwise

The evaluation of this quantity requires the knowledge of , which by de nition is an unknown

guantity related to the noise. Our simulations have been carried out as follows.
1. Generate two large uniformly distributed random vectors€ and e of length g
2. Deliver the pair of vectors €; & = ' (f (k ;€)) + B) to the attacker;

3. Estimate averages and PMFs (probability mass functions) of this data forese, (= 1), then

for 2@sep, 3@step and so on;

1The least signicant bit Sg of the PRESENT Shox S is not suitable because one has 8z 2 F‘z‘, So(z) =
So(z O0x9) = : Sp(z Ox1) = : Sp(z 0x8). As in Eq. (6.3) of footnote 1, ties occur: it is not possible to
distinguish k , k 0x9, k  0Ox1, k 0x8 (the corresponding bijections are respectively x 7! x and x 7! 1 x).
Therefore, we consider component 1 instead of 0, which does not satisfy such relationships.
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Figure 6.2: Success rate for =2 (left)yand =4 (right), when Y U(f 1gyand N U(f Q)

4. At each multiple of &sep, carry out CPA and MIA.

The attacks are reproduced 100 times to allow for narrow error bars on the estimated success
rate.
Remark 6.2. We do not considerlinear regression analysisbecause the model is not parametric.
The only unknown parameter is related to the noisy part of the leakage, not its deterministic
part.

Simulation results are given in Fig. 6.2 for =2 and =4. The success rate of the \optimal"
distinguisher (the maximum likelihood distinguisher of Theorem 6.1 { see Eqn.(6.29)) is drawn
in order to visualize the limit between feasible (below) and unfeasible (above) attacks. It can
be seen that MIA is almost as successful as the maximum likelihood distinguisher, despite
the knowledge of the value of is not required for the MIA. In addition, one can see that
the CPA performs worse, and all the worst as increases. In this case, the CPA is not the
optimal distinguisher (as e.g., underlined in B9, Theorem 5]) since the noise is not Gaussian
(but discrete).

Remark 6.3. Another attack strategy for the leakage model presented in this subsection would
simply be to Iter out the noise. One could for instance dispose of all traces where the leakage is
negative. The remaining traces (half of them) contain a constant noiseN =+ > 1, hence the
signal Y can be read out without noise. Such attack, known as thesubset attack[62, Sec. 5.2],
is not far from the optimal one (Eqgn. (6.29)). It actually does coincide with the optimal attack

if the attacker recoversY from both subsetsfi=X; > 0g and fi=X; < Og. Still it can noted that
MIA is very close to being optimal for this scenario.

Asymptotics. We can estimate the theoretical quantities for CPA and MIA as follows. We
have Var(Y) =1 and Var(N) = 2, hence a signal to noise raticSNR = 1= 2. In addition, X
can only take four values: 1 . SinceE(XY )= E(X?)+ E(YN)= Var(X)+ E(Y)E(N)=

1+0 0=1, the correlation is simply (X;Y )=1=, which vanishes as increases.
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However, for > 1, the mutual information 1(X;Y ) = 1 bit. Indeed, H(X) = P x2f 1 g P(X =
x)log, P(X = x) = P x2f 1 g % log, 7 = log, 4 = 2 bit, H(Xjy = 1) = log,2 =1 bit, so
I(X;Y)=log,4 P ot 1g P(X = x)log,2=1log,4 log,2 =1 bit, irrespective of 2 N.

The important fact is that the mutual information does not depend on the value of
Accordingly, it can be seen from Fig. 6.2 that the success rate of the MIA is not a ected by the

noise variance. This explains why MIA will outperform the CPA for large enough

6.3.2 Application to Bitslice PRESENT

Bitslicing algorithms is a common practice. This holds both for standard [70] (e.g., AES) and
lightweight [56] (PRESENT, Piccolo) block ciphers. Here the distinguishers must be single-bit:
Y 2f 1g. However, compared to the case of Sec. 6.3.1, the noise takes how more than two
values: On an 8-bit computer, the 7 other bits will leak independently. They are, however,
not concerned by the attack, and constitute algorithmic noise N which follows a binomial law

B(7; %), where is a scaling factor.

Figure 6.3: Success rate for the attack of a bitsliced algorithm on an 8-bit processor, where 7
bits make up algorithmic noise, and have weight 0:5, 1:0 (top) and 0:8 and 2:0 (bottom).

Simulation results for various values of are in Fig. 6.3. Interestingly, MIA is e cient for
the cases where the leakag¥ U(f 1g) is not altered by the addition of noise: For =0:8
and =2:0, itis still possible to tell unambiguously from X what is the value of Y. On the

contrary, when =0:50r =1:0, the function (Y;N) 7! X = Y + N is not one-to-one. For
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instance, in the case =1:0, the value X =2 can result as well fromY = 1andN =3, or
Y =+1and N =2. (see Fig. 6.4).

Figure 6.4: lllustration bijectivity (left) vs. non-injectivity (right) of the leakage function.

6.4 Partially Unknown Model Challenge

Veyrat-Charvillon and Standaert [86, section 4] have already noticed that MIA can outperform
CPA if the model is drifted too far away from the real leakage. However, LRA is able to make
up for the model drift of [86] (which considered unevenly weighted bits). In this section, we
challenge CPA and LRA with a partially unknown model. We show that, in our example, MIA
has a much better success rate than both CPA and LRA.

For our empirical study we used the following setup:
X= (Y(k)+ N Y(k)=wh(Soox(k T));

where S« is the AES substitution box, is the non-linear function given by:

X 0 1 2 3 ] 5 6 7 8
x) 1 +2  +3 +4 0 ] 3 2 1

which is unknown to the attacker, and N is a centered Gaussian noise with unknown standard
deviation . The non-linearity of is motivated by [60], where it is discussed that a linear
model favors CPA over MIA.

The leakage is continuous due to the Gaussian noise. In order to discretize the leakage to
obtain discrete probabilities, we used thebinning method. We conducted MIA with several

di erent binning sizes:
B="f[(i 1) X;i x[;i2Z2g for x=11,;3;5;7;90: (6.30)

In this chapter, we do not try to establish any speci c result about binning, but content ourselves

to present empirical results obtained with di erent bin sizes.
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We have carried out LRA for the standard basis in dimensiond = 9 and higher dimensions

@ (k) =[Sbox(k T)]; where []; : F5 ! F, is the projection mapping onto the j bit. For
d = 37 the attacker additionally takes into consideration the products between all possibleg;
(L j 8)ie,e1 ®2;81 3,981 ¥4 and so on. Consequentlyd = 93 considers additionally
the product between 3g¢'s and d = 163 includes also all possible product combinations with 4

columns. See [37] for a detailed description on the selection of basis functions.

@ =0 () =1

© =2 d =3

Figure 6.5: Success rate for 2 f 0;1;2;3g when the model is unknown

Fig. 6.5 shows the success rate using 100 independent experiments. Perhaps surprisingly,
MIA turns out to be more e cient than LRA. Quite naturally, MIA and LRA become closer as
the the variance of the independent measurement noisdl increases. It can be seen that LRA

using higher dimension requires a su cient number of traces for estimation (ford = 37 around
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6.4 Partially Unknown Model Challenge

100, d = 93 around 150, andd = 137 failed below 200 traces). Consequently, in this scenario
using high dimensions is not appropriate, even if the high dimension in question might t the
unknown function

One reason why MIA outperforms CPA and LRA in this scenario is that the function  was
chosen to have a null covariance. Moreover, one can observe that the most e cient binning
size depends on the noise variance and thus on the scattering of the leakage. Aggrows larger
values of should be chosen. This is contrary to the suggestions made in34], which proposes
to estimate the probability distributions as good as possible and thus to consider as many bins
as there are distinct values in the traces. In our experiments, when noise is absent & 0) the
optimal binning size is = 1 which is equivalent to the step size of Y, while for = 2 the

optimal binning is =5 (see Fig. 6.5(c)).

(@) =1, correct key guess (b) =1, false key guess

(c) =5, correct key guess (d) =5, false key guess

Figure 6.6: Estimated P(XjY) using 40 traces for =2 (see Fig. 6.5(c))

It can be seen that using 40 traces the success rate of MIA with =5 reaches 90%, whereas
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6. WHEN MIA IS A MAXIMUM LIKELIHOOD AND BETTER THAN CPA

using = 1 it is only about 30%. To understand this phenomenon, Fig. 6.6 displays the
estimated P(xjy) in a 3D histogram for the correct key and one false key hypothesis, such
that MIA is able to reveal the correct key using = 5 but fails for = 1. Clearly, the
distinguishability between the correct and false key is much higher in case of =5 than for
=1.

More precisely, as the leakage is dispersed by the noise the population of bins of the false key
becomes similar to the the ones of the correct key when considering smaller binning size (compare
Fig. 6.6a and 6.6b). In contrast, the di erence is more visible when the leakage is quanti ed
into larger bins (compare Fig. 6.6¢c and 6.6d). Therefore, even if the estimation of(r; ) using
P(xjy) for larger is more coarse and thus looses some information, the distinguishing ability

to reveal the correct key is enhanced.

6.5 Fast Computations

In this section, we explain how we compute CPA and MIA in a faster way. We rst show an

algorithm for CPA, then we move to MIA.

6.5.1 Fast computation of CPA

We recall here the de nition of empirical CPA:

P P P

S GO S SIS O 7 (Y
1P m 1
m

1hmoe 1 1P gy AT 2
m i”;l_Xiyi(k) é O I G Yig()) : (6.31)
mOVA(K) (R i (k)

(X;Y (k) =

Ko)

'J
m
i=1 Xi

P P '
mo o (O lx)t m
wherey; (k) = ' (f (k;t;)). For the fast computation the following accumulators are required:

P
s{t] = o, = Xi, the sum of leakages for a commort;
P
st = i =t x2, the sum of leakage squares for a common

P
qtft]=  -,=¢ 1, the number oft which occurred.

We detail the various terms in the two next paragraphs.
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6.5 Fast Computations

6.5.1.1 Averages

First, we simply have:

X X
Xj = sqt];
i=1 t
which is key independent. Second:
X X X
Yi = Yi
i=1 t oi=ti=t
X
= (F (k)

t i=t;=t

" (f (k; ti)atlt];

t

which, quite surprisingly, is key independent.

6.5.1.2 Scalar product

The scalar product can be written the following way:

xn X X
Xi¥i = XiYi
i=1 i=yi=
i Xy i=y xy
= y Xi
X X
= y Xi
y = (f(kti)=y
= ysdlyl;
y

P
where sJy] = = (F (kt)= y sXt]. This optimization is certainly useful for long traces, because
it minimizes the number of multiplications (precisely, only 2™ multiplications are done). But,
we need 2' temporary accumulators to save thesx¥y].

However, in monosample traces, we can also use this more simple computation:

xXn X
Xiyi = Xi" (f(k;ti))
i=1 t i=t;=t
X X
= " (F (ki) X
toi=ti=t
X X
= " (F (ki) Xi
t i=ti=t
X

= (f(kt))sAtl:
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6. WHEN MIA IS A MAXIMUM LIKELIHOOD AND BETTER THAN CPA

6.5.2 Fast computation of MIA

We setup a structure for the PMF, namely an array of hash tables, denoted a®MF[t][x], where
t and x live in the sets F§ and Im(" f)+ supgN). So, let us say we have accumulated}
leakage pairs €; x).

At this stage, we have the joint probability given by
1
P(t;x) = E'PMF[t][x]:

Now, when using MIA as a distinguisher, we need to computdPMF[y][x], wherey 2 F)
(and we expect the ¢; k) 7! y = ' (f (k;t)) function to be non-injective [91], which is the case
in the previous sections). The valuePMF[y][x] implicitly depends upon a key guessk, as:
PMF[y][x] = PMF[y = * (f (k;t))][x]. Now, instead of computing P(x;y) through PMF[y][x]

explicitly for each key guess, we are able to reformulate

X X 1 X
Py;x)=  P(ty;x)= P(tx) = — PMFt][x]:
t =" (F(kt))=y =" (f(kt)=y
Thus, we can reuse the tabulatedPMF[t][x] for each key guess, which requires thus much less
computations as a straightforward implementation.

Recall the expression of the estimated mutual information:

X P(x:y)
Fleig)=  P(xy)log, ————:
Xy P(x) P(y)
The value for P(x) is identical for all key hypotheses and thus can be factored out. Indeed,
this quantity is a scaling constantwhich could be omitted. But for the sake of completeness, we
have

X 1 X
P(x) = P(t;x)= =  PMF[t][x]:
t q t

Lastly, we need to evaluateP(y). This is simply done as:

X
Ply)=  P(xy);

X
Algorithm 2 illustrates the fast computation process for MIA while Algorithm 3 computes
the success rate of MIA. It calls the function MIA-Distinguisher as a subroutine. This last
function corresponds to the of the computation of fast MIA (Alg. 2). However, it is optimized

this way:
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6.5 Fast Computations

Algorithm 2:  Fast computation algorithm for MIA

input :® a set ofg traces which take discrete values,
€ a corresponding set ofg plaintexts/ciphertexts

output : (F(r;®(K)))k2k
/I From g and €, build a hash table

2 | PMFE]R]+=1

3 end

4 for x 2 X do

5 P(x)=0

6 for t 2 F} do

7 | P(x) += PMFt][x]
8 end

9 end

10 for k2 K do // Key enumeration
11 8Xx 2 X;y2Y, P(xy)=0
12 for t 2 F} do

13 for x 2 X do

14 | PO (F(k;t) +=  PMF[t][x]
15 end

16 end

17 | Heip(k) =0
18 for y2 Ydo

PMF[t][x] (i.e., an histogram)

/I B(x) holds mP(x), cf. Eqgn.

Il B(x;y) holds mP(x;y), cf. Eqn.

I y="((k;t), cf. Eqgn.

19 Py)=0 /I B(y) holds mP(y), cf. Eqn.
20 for x 2 X do
21 | Py)+= P(xy)
22 end
23 for x 2 X do
/I Nota bene: (P(x)=0 _P(y)=0) =) P(x;y)=0
24 if P(x) 60 and P(y) 60 then
2 Peip(0) += 2 log, L)
26 end
27 end
28 end
29 end

30 return (&(&; g(k))) k2k

/I As in Eqgn.

(6.6)

(6.8)

(6.1)

(6.7)

(6.10)
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6. WHEN MIA IS A MAXIMUM LIKELIHOOD AND BETTER THAN CPA

Algorithm 3:  Computation of the MIA success rate

input

B a set of g traces which take discrete values,

€ a corresponding set ofg plaintexts/ciphertexts,

k 2 K, the correct key,

&step, typically of the order of @=100 (umber of times the success rate is computec) ,
M, the number of experiments

output : SRy , the empirical rate of MIA (computed as per Eqn. (6.10))

1 SRy =10;:::;09 /I Initialization of M=Mgp values to zero
2 foreach experimen2f1;:::;Mgdo
3 PMF[t][x]=0;8t 2 F);x 2 X
4 foreach step2f 1;:::;§=8sepg dO
5 for i 2f1+(step 1) @ep;:::;SteP @suepd do
6 | PMFt][x] += 1
7 end
8 for k 2 K do // Key enumeration
9 + + scorg = MIA-Distinguisher  (PMF;k) + +
/I See MIA-Distinguisher
10 scorg = MIA-Distinguisher  (PMF; k) /I Function at page 116
11 end
12 if arg maxk scorg = k then
13 | SR [stef += 1=m
14 end
15 end
16 end
17 return SRy /I The empirical Success Rate
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6.6 Conclusion

The values of P(x) and g do not impact the result, hence they are not computed. This
means that lines 4{8 of Alg. 2 are not part of Alg. MIA-Distinguisher, and that in the
accumulation of E(r; g (k)) at line 15 of Function MIA-Distinguisher, the terms P(x) and

@ (present at line 25 of Alg. 2), are simply dropped.

In the line 17 of MIA-Distinguisher, we subtract the term which corresponds to the

denominator P(y) of line 25 of Alg. 2. Notice that all the parameters of the logarithms

Incidentally, the basis of the logarithm can be arbitrarily chosen. If g is really large, say
larger than 10 millions, then log [i] can be precomputed from alli< 10°, and evaluated
otherwise, since anyhow the call ofog for large values is restricted to the case oP(y)

which is expected to be way larger than anyP(x;y).

6.5.3 Standard computation algorithm for MIA

The standard computation for MIA unfolds as in Alg. 4. This algorithm outputs exactly the

same as Alg. 2 but is slower for two reasons:
1. All the g samples are scanned for each key hypothesis;

2. Probability mass functions are normalized. Now, divisions are costly, and also they require

a conversion from integer to oating point numbers;

6.6 Conclusion

We derived MIA anew as the distinguisher which maximizes the success rate when the exact
probabilities are replaced by online estimations. This suggests that MIA is an interesting
alternative when the attacker is not able to exactly determine the link between the measured
leakage and the leakage model. This situation can either result from an unknown deterministic
part or from an unknown noise distribution. We have proved that, if the number of traces is
greater than the number of possible values ok and y, the MIA is faster in terms of logarithm
computations.

We have presented two practical case-studies in which MIA can indeed be more e cient
than CPA or LRA. The rst scenario is for non-Gaussian noise but known deterministic leakage

model. The second scenario is for Gaussian noise with unknown deterministic leakage model,
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6. WHEN MIA IS A MAXIMUM LIKELIHOOD AND BETTER THAN CPA

Function MIA-Distinguisher

input  :PMF[t][x] 2 N2 X a non-normalized bi-dimensional histogram,
k 2 K, a key guess

output :A score, a nely proportional to MIA (computed as per Eqgn. (6.10)), with the
same (irrelevant) a ne scaling factors for all the keys

18X2X;y2Y, P(xy)=0 /I B(x;y) holds mP(x;y), cf. Eqn. (6.8)
2 for t 2 F§ do

3 for x 2 X do

4 | B (F (k1) += PMF[t]X] I y="(f(k:t), cf. Egn. (6.1)
5 end

6 end

7 B(e;g(k)) =0 /I Quantity actually affine with Ble; g (K))
g8 for y2 Ydo

9 | Py)=0 /I B(y) holds mP(y), cf. Egn. (6.7)
10 for x 2 X do

un || Py += P(xy)

12 end

13 for x 2 X do

14 if P(x;y) 80 then /I B(x;y)60 =) (P(x)60" P(y)60)
15 | RBeip(k) += P(y) log [P(x;y)]

16 end

17 Fe;g(k) = P(x) log[P(y)]

18 end

19 end

20 return FE(g;g(k))
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6.6 Conclusion

Algorithm 4:  Standard computation algorithm for MIA

input R a set ofm traces which take discrete values,
€ a corresponding set ofm plaintexts/ciphertexts

output : (F(e; g(K))) k2
1 Fe;e(k) =0, 8x2 X;k2K

2 for k2 K do // Key enumeration

3 for i 2f1;:::;mgdo

4 | PMFL (F (k ti)I[xi] += 1 Il y="(f(k:t), cf. Egn.
5 end
6 8x2 X;y2Y, P(x;y)=0 Il cf. Eqn.
7 for y2 Y do
8 for x 2 X do
9 | P(xy) = t=m PMFy]ix]
10 end
11 end
12 for y2 Y do
13 P(y)=0 /I cf. Eqn.
14 for x 2 X do
15 | P(y) += P(xy)
16 end
17 end
18 for x 2 X do
19 P(x)=0 /I cf. Eqn.
20 for y2 Y do
21 ‘ P(x) += B(x;y)
22 end
23 end
24 for y2 Ydo
25 for x 2 X do
/l Nota bene: (P(x)=0 _P(y)=0) =) P(x;y)=0
26 if P(x) 80 and P(y) 6 0 then
27 Be;p(K) += P(xy)log, modl
28 end
29 end
30 end
31 end
32 return  (E(r;@(K)))k2k /I As in Eqn.

/I From ®r and @, build a hash table = PMF[y][x] (i.e., an histogram)

(6.1)

(6.8)

(6.7)

(6.7)

(6.10)
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6. WHEN MIA IS A MAXIMUM LIKELIHOOD AND BETTER THAN CPA

where one leverages a challenging leakage function which results in failure for CPA, and in harsh
regression using LRA. Incidentally, this example is in line with the work carried out by Whitnall
and Oswald B8] where a notion of relative margin is used to compare attacks. Our ndings go
in the same direction using the success rate as a gure of merit to compare attacks.

Finally, we extended the computation trick given for CPA to MIA avoiding the histogram
estimation of conditional probabilities for each sub key individually, improving the speed of the
computation.

We note that all our results are ' -dependent. It seems obvious that the closer we are to the
actual leakage, the better the success rate will be. An open question is to nd an analytic way
to determine the function model that will provide the highest success rate.

Last, we note that our analysis is monovariate: we consider a leakage which consists in only
one value. A future work would be to extend our results to mutivariate attacks.

Another topic of research is to carry out practical examples where MIA beats CPA. An
viable option would be the exploitation of some speci ¢ timing attacks where the behaviour of

the processor changes at every start-up.
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Practical Issues With Timing
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Introduction

The eld of cryptography is currently very sensitive as it deals with data protection and safety.
Thus, in order to assess the security of cryptographic devices, it is crucial to know and test
their weaknesses. For example, the Advanced Encryption Standard (AES)Z6] is renowned
as trustworthy from a mathematical point of view|there is currently no realistic way to
cryptanalyze the AES-128. However, it is possible to break the 128-bit secret key byte by byte
using side-channel analysis (SCA). SCA exploits the physical fact that the secret key leaks
some information out of the device boundary through various \side-channels" such as power
consumption or timing [number of clock cycles to perform a given operation. These leakages,
correctly analyzed by SCA, yield the secret key of a device.

A good side-channel attack needs a good leakage model. Timing, for example, can be modeled
easily when the implementation is unbalanced: Several successful attack$sd, 14, 75, 76] exploit
a timing leakage in the conditional extra-reductions of Montgomery modular multiplications.
Some conditional operations can also happen in AES, e.g. in eld operations, as for instance
discussed in [27, Alg. 1].
Even when the code is balanced|a recommended secure coding practice|some residual un-
balances in timing can result from the hardware which executes the code. Indeed, processors
implement speed optimization mechanisms such as memory caching and out-of-order execution.
As a consequence, it is not possible to predict with certainty how timing leaks information. The
attacker is then led to make predictions about the way the device leaks.

In this part, we consider side-channel attacks that are performed in two phases:

1. a pro ling phase where the attacker accumulates leakage from a device with a known

secret key;

2. an attacking phasewhere the attacker accumulates leakage from the device with an

unknown secret key.

This type of attack is known as atemplate attack [20]. It has been shown P(] to be very e cient
under three conditions: (a) leakage samples are independent and identically distributed (i.i.d.);

(b) the noise is additive white Gaussian; and (c) the secret key leaks byte by byte, which enables
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a divide-and-conquer approach. For some side-channels, such as power or electromagnetic
radiations, condition (b) is met in practice. However, for timing attacks, the noise cannot be
Gaussian as timing is discrete. Moreover, the noise source is non-additive in this case, since it
arises from complex replacement policies in caches and processor-speci ¢ on-the- y instructions
reordering.

The rst proposed pro led timing attack is the seminal timing attack of Kocher [ 44]. The
same methodology can be used on AES, as noted by Bernstein in 2004.[ Further works used
the same method B, 69, 87]. To our best knowledge, all these works consist in pro ling moments,
such as the average timing under a given plaintext and key. However, it is knownZ0] that the
best attacks should use maximum likelihood

In this part, as illustrated in Tab. 6.1, we focus on a pro ling where the distribution is
characterized and used as such, and is not reduced to its moments. The attacker computes
distributions using histogram methods. These distributions are then used to recover the correct

secret key.

Table 6.1: State-of-the-art on pro led timing attacks

Pro ling method Reference articles
Moments [5, 8, 69, 87]
Distributions This part (Caution about empty bins)

The discrete nature of timing leakage leads to arempty bin issue which appears when a
data value in the attacking phase has never been seen during the pro ling phase. Based on
pro ling only, this data should have a zero probability, which can be devastating for the attack.
One known workaround is to use kernel distribution methods §4] to estimate probabilities since
the smoothing can be such that no empty bins remain. This method can however be seen as a
postprocessing in existing information. This alters therefore the data. In addition, this method
has very large computational complexity and its performance highly depends omad-hoc choices
of several parameters such as kernel type and bandwidth. Moreover the estimation via the

kernel method depends on other parameters such as the choice of the kernel and the size of the

1we will explain in Subsec. 8.2.2 that in practice, maximum likelihood might not always perform better
than moment-based distinguishers in ideal situations (no noise), because the learning stage for probability mass
functions demands too many traces; besides an imperfect pro ling is very detrimental to maximum likelihood
distinguishers, and a ects less the moment-based distinguishers. However, in non-ideal situations, e.g., in the
presence ofrandom delay kind of noise, maximum likelihood remains robust, where the model-based distinguishers
collapse (since they are value-based).
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kernel. In this part, we have decided to keep information as it comes as we focus on information

theoretic distinguishers.

Contributions In this part, we show that even when all abovementioned requirements (a),
(b), and (c) are not present, timing attacks with incomplete pro ling can be achieved successfully
by adapting the maximum likelihood distinguisher and keeping the histogram method for
probabilities estimation. We build six di erent distinguishers, which are all good answers to
the empty bin issue. For some of them, new histograms are built, such that the empty bin
issue totally disappears. Furthermore, we compare these distinguishers and show which one
of them is the best in every speci c context. We underline that, in practice, for a moderate
pro ling with 256 000 o ine measurements, the soft drop and the combined o ine-online

pro ling approaches are clearly the two best strategies: the AES key is typically extracted with
only about 2000 online measurements, i.e., a complete break in about®ms. Finally, we

provide some theoretical results proving how optimal some of the distinguishers can be.

Organization The part is organized according to the following structure. In Chapter 7, we
rst provide the mathematical tools to deal with the empty bins issue. Section 7.1 provides
mathematical tools to understand distinguishers and notations. Section 7.2 introduces new
distinguishers that are suitable in the context of empty bins. Section 7.3 provides simulations
for these distinguishers. In Chapter 8 we focus on the timing leakages for a speci ¢ implemen-
tation. Section 8.1 investigates real attacks on an ARM processor. Interestingly, all proposed
distinguishers work, albeit with very noticeably di erent performances. In section 8.2, some
interpolations of the obtained results in the presence of external measurement noise are derived.

Section 8.3 concludes for both chapters.
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Chapter 7

Methods to Solve the Empty-Bin
Issue
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7. METHODS TO SOLVE THE EMPTY-BIN ISSUE

A part of the work of this chapter has been presented at HASP 2018.
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7.1 Mathematical Derivations

The mathematical notations and assumptions presented here will also be used in Chapter 8.

7.1.1 Notations and Assumptions

We consider a side-channel attack with a pro ling stage and use the following notations:

during the pro ling phase, a vector P of § text bytes is sent and the pro ler garners a

vector of B measurements;

during the attacking phase, a vector€ of g text bytes is sent and the attacker gathers a

vector B of leakage measurements|also customarily known astraces;

we use simpli ed notations t, g and x when discussing either pro ling data or attacking

data;
the probability of a vector x with i.i.d. components x; is denoted by P(x) = Qi P(x);
we de ne the following sets:

1. R, #, & and ¢ are the sets of possible values of componenis B, e and € respectively;
2.X=R[ RandT=P[ ¢

3. K is the set of all possible values for the ke.

k and t are made ofn bits (in particular, they are \bytes" when n = 8).
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7.1 Mathematical Derivations

Here all sample components of one vector are i.i.d. and belong to some discrete set. Typically,
X is a nite subset of N and T is equal tof0; 1g".

In the pro ling stage, the secret key R is known and variable. In the attacking phase, the
secret keyR is unknown but xed. Further, we assume that x; depends only ont; and k for

alli=1;2;:::;q, in the form:
xpi= (i k) (i=1;2:::50 (7.1)

where is the XOR (exclusive or) operator and is an unknown function which may contain
noise, masking and other hidden parameters
Furthermore, in this part, we use of the notation n,; to denote the number of occurrences

of (x;t). Thus we can write

P P
byt = iqzl 1y —wb=t by = iqzl 1y =x;
P q P
BX;t = i=1 1g|:x;§|:t BX

Q .
i=1 1Ei:X'

wherel, =1 if A is true, = 0 otherwise.

De nition 7.1  (Probabilities) . We de ne three? di erent types of probabilities P, P and P. P
is the actual (real) underlying probability distribution, but it is generally not available and has
to be estimated by either P or P.

pis computed using the pro ling data:

1 by
Poct)y= = 1, g = o (7.2)
b, MR
1% b
P(x) = 9 lp=x = FX: (7.3)
i=1
P is computed using the attacking data:
:I.xq Byt
POGt)= = Lp_ye=t= — (7.4)
e, q
x
Bp)= = 1., = 2 (7.5)
.. ]

1The AES meets the secret and the text byte through a xor ( SubBytes) executed in a xed number of clock
cycles. However, the rest of the AES consists in table look-ups and other miscellaneous operations which are

di cult to model and need di erent amounts of time to execute, hence the use of unknown function
2For the sake of evading the empty bin issue, we will also introduce yet another notation\ P " in section 7.2.1
(Equation (7.15)).
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7. METHODS TO SOLVE THE EMPTY-BIN ISSUE

In practice, as the secret key leaks through the function via a XOR (Equation(7.1)), we
shall often considerP(x;t k).

For a fair comparison between distinguishers, Standaert et al.§2] have put forward the
success rateas a measure of e ciency of a given distinguisher.

De nition 7.2 (Success Rate) The success rateSRis probability, averaged over all possible
keys, of obtaining the correct key.

1 Xt
SR= = Pc(R=k); (7.6)
k =0

where R is the key guess obtained by the distinguisher during the attack.

It has been proven B9, Theorem 1, equation (3)] that for equiprobable keys the optimal

distinguisher maximizes likelihood:
D optimal (B; €) = arg ngg&( P(rj€¢ k): (7.7)

In real life, however, the attacker does not know the leakage model perfectly and thuB(rj€ k)
is not available. In order to get an estimation of P, we use the pro ling data to build P de ned

in Equation (7.2). This is the classicaltemplate attack The distinguisher becomes
D rempiate (B; €) = arg max P(ej€  k): (7.:8)

This distinguisher is no longer optimal as it does not use the real distribution P. However, if

pro ling tends to exhaustivity, P and P will be very close since by the law of large numbers,
. . | . .
8x;t  P(x;t) o P(x;t):

Moreover, we notice that non-optimality is not the only issue with template attacks in the
context of discrete leakage. The attacker also faces the problem that the attack is ill-formed.
In practice, it is convenient to use the logarithm arg Lr;%x log b(Eje k). In fact, since the

samples are i.i.d., we have

Y Y
P(eje k)= P(eij§ k) and Pje k)= Peijg k):
i=1 i=1
Therefore, the attacker computes
ﬁ .
Drempiate (%;€) = arg max  logP(rij§ k) (7.9)
i=1
where the logarithm is used to transform products into sums for a more reliable computation.
However, we would like to avoid empty bins for which b():eijﬁ k) = 0; otherwise, Equation (7.9)

would not be well de ned.
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7.1.2 About Empty Bins

and b(gijﬁ k) = 0. This may even happen for the correct key hypothesis, leading to a wrong
key guess during the attack.

0.12
~ 0.1
4
':>_<‘j0.08
a
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©
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Figure 7.1: Empirical probability b(xjt k) for t =0 and k =67 and §= 2560000

Figures 7.1 and 7.2 show how empty bins can look like after a pro ling phase We notice
that some parts of the histograms are left blank, some of them indicated by arrows noticed
as \holes" in the gures. These timing values x are possible \empty bins". When such a hole
is called during the attack, meaning that the attacker gets a trace with corresponding with a
hole, we call this anempty bin. Notice that no additional \binning" is needed as in the case
of continuous distributions. The gures also show that the noise is not Gaussian as can be
observed from the shape of the distribution.

The shortcoming of empty bins can be seen when evaluating the likelihood. The attacker
encounters a zero probability, which makes the product vanish for the probability of a given key
guess, even if many traces are used. As we wrote earlier, the empty bin may appear even for the

correct key guess in template attacks, leading to a null success rate if not taken into account and

LFigures obtained with the STM Discovery Board presented in Section 8.1. The unit of X is the \clock cycle".
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Figure 7.2: Empirical probability b(xjt k) for t =0 and k = 149 and §= 2560000

not well treated. As an example, the number of empty bins for the practical example presented
Section 8.1 for thecorrect key guessis around 500 for a poor learning phase and around 50 for
a good learning phase. This multiplication by zero is not inherent to the attack; it is rather a
pro ling artifact. In fact, with more pro ling traces, the empty bin would likely be populated.
Thus, the empty bin issue is a mere side-e ect of insu cient pro ling, which results in an attack

failure if it is encountered in the computation of the likelihood of the correct key.

7.2 Distinguishers which Tolerate Empty Bins
7.2.1 Building Distributions or Models

Before presenting the novel distinguishers in Subsection 7.2.2, we need to de ne yet another

other type of distribution known as a Dirichlet a posteriori in a Bayesian approach.

The Dirichlet A Posteriori

In order to avoid zero probabilities, we use a method based on Dirichlet Prior calculations [33,

Section 1]. This method leads to a new distribution denoted by® , where > 0is a user-de ned
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parameter whose value (typically = 1) will be discussed next.
Let X be the set of possible values fok and T be the set of possible values fot. For any x,
we setpy: = P(x;t) their joint probability and p = (px:t )xt . Prior to obtaining any trace, pg:

is completely unknown and we consider a Bayesian approach to estimatg .

1. We consider the followinga priori : without further information, we suppose that for all

X;t,
P (xt)= P—X
x0:t0  xOot0
where . > 0is ana priori parameter. To simplify, we may choose : = constant for

all x;t. Let us suppose thatp follows a Dirichlet (prior) distribution, whose probability

density function is

P ) v
) xt x;t .
f(p)= ? ) o (7.10)
x;t Xt/ et
where is the Gamma function de ned for x > 0 as
Z + l
(x)= t* le ' dt: (7.11)
0
The Dirichlet distribution can also be written as
Y i
f(p)=N Pt s (7.12)

X;t

P
whereN = 15‘(—:; is a normalization factor. Notice that the prior distribution is
x;t X;

uniform when ;. = =1 forall x;t.
2. Then suppose we knovk, &, P and €. We can now compute thea posteriori probability
z
P(x;tjk;&;B;€) = f(p;x;tjk;e;B;€) dp:
By Bayes' rule,

f(pixtik;e;B;€) = P(x;tjp; ko; &; B;€)f (pjk; &; ; €):

As componentsx; and t; are i.i.d., we can write

f(p;x;tik;e;B;€) = P(x;tjp) f(pjk;e;P;€ 1)

Pt T (pik;;B;€)
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Again by Bayes' rule,

P(k; ®; € Bjp)f (p)

f (pjk;®;P;€) = P(o g €.0)

b, 04 0+ B0, 0(k)
x002x T Pxo;to

= f
P(k; ®;€;b) (P)
— N Y pbxo;t ot Byop 0t o040 1,
- — 040 .
P(b;g;?; b) x0t02X T .

We recognize another Dirichlet distribution with parameters hyo.ro + Bxoro +  yoto0. Let
100 X0 0T Bx0 0 <%0 o the new normalization constant for this distribution.

x;t ( xt T on;t o+ x Ot 0)

We, nally, obtain

N o= (Q

Pt ERO= py No Pysgs” et e T (7.13)
x0t02X T
Therefore,
z Y
P(x;tjk;R;0;8) =  pe N o SSE%MB*O“M < 1 gp;
x0t02X T

which is known as the Dirichlet a posteriori.

3. The integral can be easily expressed in terms of the Gamma function:
P
X040 Xt + bx";to"' on;to) Kito ( xt t bx°;t°+ Byo.to + x;t)

X0:t0 ( xt *+ byopo+ Byogo)  ( xoto xt byoro + Byogo+ xit)

P(x; tjk; &; D;€) = C(J

which simpli es to

Bt + Bt + xt
Q+ g+ X040 X0it0

P(x; tjk; e; B; €) =

This new distribution will now be noted:

bx;t + Bx;t + X;t
q+ q+ X0:t0 x0:t0

P (x;t) = P(x;tjk;e;P;€) = (7.14)

It is important to notice that for all ( x;t) 2 X T, one hasP (x;t) > 0. In other words,

P hasno empty bin issue
4. With P (x;t) we can calculate

X X' by + Bet + x
P(M)= P (xt)= Dt + Bt +

) L0t o o
b+ B ¢ ot bt Bt

= = | :
g+ q+ X040 X0t0 O+ g+ «0 X0
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where = «t - The resulting conditional probability * is

X

P (x;1) - bx;t + Byt t oxit .

PO T Thirecr

(7.15)

The Learned MIA Model

When § is small, the model cannot be pro led accurately, andP is a bad approximation of
P. However, these pro led valuesg and € can still be useful, yet they require a more robust
distinguisher.

Distinguishers that compute models using pro ling have already been proposed. For example,
[61] computes a correlation on moments. However, correlations analysis may be sensitive to
model errors B5. Mutual Information Analysis (MIA) yields a distinguisher that can be robust
when models are not perfectly known 85, Section 4], but it requires at least a vague estimation
of the leakage model.

Since our function is unknown, we can create a rst-order model P with the pro led data
as

bt R )= Step ni X ki (8t 2 T): (7.16)
i st: b=t
The Stepfunction is a function that ensures the non-injectivity of the model. The simplest way
to de ne Stepis the following:

Xc
d

Step(x) = bd x2R)

whered > O|the greater d, the smaller the step size. This parameterd has to be small enough
in order to make the model non-injective 34, Sec. 4.1]. In our case, we choose, for all our
experiments,d = 1. With such a model, it is possible to compute a MIA, which successfully

distinguishes the correct key.

7.2.2 Robust distinguishers

In this subsection, we present six distinguishers that tackle null probabilities. Some of these
solutions seem quite obvious while others are deduced from the notions presented in the preceding

Subsection 7.2.1.

1We should normally have used the notation B instead of P , but we found this too heavy and confusing;
hence the use of P .
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E Hard Drop Distinguisher
The rst naive method consists in removing all the traces which, for any key guess, have a zero
probability.

De nition 7.3  (Hard Drop Distinguisher). The hard drop distinguisher is de ned as followed:

X
Diara(2;€) =argmax  logP(rij§  k); (7.17)
i2l

where setl is de ned as
0]
l= i2f1:::;e9j8k 2 K; P(ij§ k)> 0 : (7.18)

Recall that P, de ned in Equation (7.2), is an empirical histogram estimated on pro led
data ® (along with corresponding texts b).
The Hard Drop Distinguisher, as the name indicates, drops some data. In very noisy cases,

it may even drop most of the data.

E Soft Drop Distinguisher

The second possibility is to drop values only for some keys. However, it has to be done carefully
because dropping a value in a product implicitly implies a probability value of one. For this
reason, instead of removing the trace, we replace the zero probability by a constant which is

smaller than the smallest probability.

De nition 7.4  (Soft Drop Distinguisher). We de ne the Soft Drop Distinguisher as

X
Dson(®;€) = argmax logP(eij§ k) +
i st: P i€ k)>0
i sit: P(eij ) X
log ; (7.19)
i s:t:b(reij@.;k)=0
where 2 R, is a constant such that8i;k 2f1;:::;3 K; b(leijﬁ k). This means

that we penalize data with zero probability. The smaller , the harder the penalty.

The choice of parameter is thus important in order to get a fair result for the distinguisher.

If we choose % the penalty may be greater than the smallest strictly positive probability.
This case would mean that the penalty is less important than some licit probabilities. On the
other hand, choosing smaller than % means a very strong penalty. In this case, the limit when
I 0 is a distinguisher for which only the number of empty bins is really matters. This leads

to the Empty Bin Distinguisher presented next in De nition 7.8.
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I The Dirichlet Prior Distinguisher

The Dirichlet Prior Distinguisher uses the Dirichlet a posteriori distributions presented in

Subsection 7.2.1.
De nition 7.5  (The Dirichlet Distinguisher) . We de ne the Dirichlet Distinguisher as:
Doirichiet (&; €) = argmax P (ej¢  k): (7.20)

Remark 7.1. As can be seen in the construction of the Dirichleta posteriori, the Dirichlet
distinguisher is -dependent. It is important to evaluate the in uence of  over the success
rate. In practice, =1 seems a natural choice since the corresponding prior is uniform, which
minimizes the impact of the a priori. In contrast, another value of like 1=2 can be interpreted
as ana priori bin count. We may also consider scenarios where 0 to have the least possible
impact to the modi ed values of the histogram.

i Oine-Online Pro ling

The Dirichlet Prior Distinguisher is set by . As we discussed in Remark 7.1, we can choose
any so long as it is strictly positive (the Dirichlet distribution would not be de ned if =0).

However, it is interesting to study its asymptotical behavior as vanishes:

by + By |

Il!moﬁ (xjt) = b 7 B,

This distribution can be denoted as Py(xjt) and resembles a pro ling stage that would start
o ine and continue online.

De nition 7.6 (O ine-Online Proling) . The O ine-Online Pro led (OOP) distinguisher is
de ned as:

Door(®;€) = arg max Po(j®  K) (7.21)

The OOP distinguisher seems easier than the Dirichlet prior distinguisher since is no
longer in use. Of course, it also solves the empty bin issue since for alt;t) 2 X T, one has
Po(x;t) > O

1 Learned MIA Distinguisher

The Learned MIA Distinguisher is constructed with the pro led model function P presented in

Eqgn. (7.16) of Subsection 7.2.1.
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De nition 7.7  (The Learned MIA Distinguisher) .
The Learned MIA Distinguisher is de ned as:

DAL camed = rg Max ¢ ; be k) ; (7.22)

where® is the empirical mutual information [34].

I Empty Bin Distinguisher

The empty bin Distinguisher is yet another intuitive solution based on the idea that instead of
avoiding null probabilities, we may take only these into account. It is the key guess with the

least number of null probabilities that \should" be the correct key.

De nition 7.8. The Empty Bin Distinguisher is de ned as:

xe
Dempygin(e:€) = arg o Ibgeje K=o (7.23)

i=1

The Empty Bin Distinguisher assumed that missing data contain more information than
actual (measured) data. More precisely, a drop should normally not happen unless the guessed
key is wrong; hence, the key guess with the least drops should be the correct key. Obviously,

this distinguisher is not e ective anymore if no drop occurs for at least two key guesses.

Further Remarks All these distinguishers use a pro ling phase. Before comparing them,
we would like to make a priori discussion about their respective e ciency. As the Hard Drop
Distinguisher does not take into account some data, we may suppose that it will be the one
with the least success rate for a given number of traces. The OOP Distinguisher takes into
account two types of data: pro ling and attacking data. Therefore, it should be more e cient
than other distinguishers. Lastly, we build the Learned MIA Distinguisher in order to prevent
model errors, such as inaccurate pro ling. In that case, we suppose that Learned MIA should

work better with few data during the pro ling stage.

7.3 Simulated Results

In this section, we present the results obtained on a simulated model. With these results, we

can give a comparison of the proposed distinguishers.
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7.3.1 Presentation of the Simulated Model

The simulated model is built as follows:

Xi = Hw(Spox (ti Kk ))+ u
(7.24)
="t k)+u=yi(k )+ u;

where u; is a discrete uniformly distributed noiseu; U( ; ), Syox IS the AES substitution
box function, and H,, is the Hamming weight of a byte.

This very simple leakage is used to compare distinguishers in the case the attacker has no
information about the model.

Remark 7.2 (Optimal Distinguisher). The optimal distinguisher (7.7) can be easily calculated if
the model is perfectly known, as

\a
D optimal (&; €) =arg Tza&( (B  Hw(Spbox (8 K)); (7.25)
i=1

where is de ned such that (x) =1 if jX] and 0 otherwise. In Figures 7.3, 7.4 and 7.5,
we include the optimal distinguisher for reference, to show how far the other curves are from
the fundamental limit of performance.

By construction, the leakage simulation (7.24) generates some traces with zero probability,
but notice that there is no i such that P(x;jt;; k) = 0 for the correct key guess. This academic

example is useful to compare the distinguishers de ned in Section 7.2.

7.3.2 Attack Results

We computed the success rate§7.6) of the various attacks (namely attacksE, E, 1,1 andT |
attack I being less e cient than its limit | ) for for =24, n = 4 bits, and § ranging from
small to high values.

The only di erence between Figures 7.3, 7.4, and 7.5, is that we have increased the number
of data during the pro ling stage. When pro ling is bad (Figure 7.3), the best distinguisher is
the O ine-Online pro ling distinguisher, while the Learned MIA Distinguisher is not as good as
was expected. Whenl) =1 600 (Figure 7.4), all distinguishers improve. Finally, when pro ling is
good (f =4 000, Figure 7.5), the best distinguisher is now the Empty Bin distinguisher, followed
by the Soft Drop distinguisher and the O ine-Online pro ling.

Remark 7.3. In this very special case, we can show that the Empty Bin Distinguisher can
accurately approximate the Optimal Distinguisher. Indeed, the actual probability is such that
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Figure 7.5: SRfor §=4 000 and =24 on synthetic measurements

forall (x;t)2 X T,
8
S Lo f X 't k)

POdy() =~ ™ (7.26)

otherwise,

which is constant if x is in the appropriate interval. For the Empty Bin Distinguisher,

P(xiy(k)) > 0 =) P(xjy(k)) = 5 1

due to the leakage model. Therefore, we can predict that at leash= (2 + 1)ijm =3920
pro ling traces are needed to make sure that the Empty Bin Distinguisher becomes as e cient
as the Optimal Distinguisher. As pro ling consists in random draws with replacement the
D empyein distinguisher is found very close to theD gpima distinguisher with § =4 000 pro ling
traces.
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8.1 Results on Real Devices

We have chosen to carry out a timing attack on an STM32F4 discovery board §9]. One
interesting aspect is that we do not make any assumption on the model. In real life, the
leakage model happens to be much more complex than the one employed in simulations (e.g.,
Equation (7.24)). As will be seen, in practice empty bins appear even for the correct key guess
and for a \good" pro ling phase. This observation di ers from the ideal case of our simulations

carried out in the preceding Section 7.3.

8.1.1 The ARM processor

We used a STM32F4 discovery board by STMicroelectronics It contains an STM32F407VGT6
microcontroller, which has an ARM cortex-M4 MCU with 1 MB ash memory for instructions
and data, and a 192 KB Random Access Memory (RAM). The RAM is divided into three
sections: one of 16 KB, another one of 112 KB, and the last one consisting of 64 KB Core
Coupled Memory (CCM). The CCM has a zero ash wait state and is often used to store critical
data such as data from the operating system. Since the RAM is divided into three regions, the

users are unable to make use of the 192 KB RAM as a continuous memory block.

1we emphasize that the attacks we present are not due to a aw in ARM or STMicroelectronics processors.
Instead, as we will discuss next, the CCM feature of STM32F4 processors allows to protect the implementation
against timing attacks by granting a constant execution time.
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STM32F4 microcontrollers contain a proprietary prefetch module (Adaptive Real-Time
memory accelerator - ART accelerator). ART accelerator contains an instruction cache which
has 64 lines and a data cache which contains 8 lines. The line size of both instruction cache
and data cache is 128-bits. The precise details about ART accelerator (cache replacement
policy and cache associativity) are not mentioned as the module is an intellectual property of
STMicroelectronics

The STM32F407VGT6 microcontroller does not have either a CPU cycle counter or a
performance register to measure a cycle accurate time. However, the Data Watchpoint and
Trace (DWT) unit has a cycle accurate 32 bit counter (DWT CYCCNT register), which can be
used for measuring the duration of critical operations. When processor runs at 168 MHz, the
DWT CYCCNT register will over ow at every 25.5 seconds providing enough time window to
measure the encryption / decryption time for an adversary to measure the elapsed time without
timer over owing. In practice, we collected timing data repeatedly within the ARM, and then
dump it as large data bu ers sporadically. This modus operandi allowed us to reach about

10 000 measurements per second.

8.1.2 Weaknesses - Non Constant AES Time

We use OpenSSL (version 1.0.2) AES as the cryptographic library, where th&,. function
is implemented with large 1 KB T-boxes (see ¢3, Sec. 5.2.1, page 18]). Interestingly, the
OpenSSL code (copied in Appendix C.1) does not contain any conditional statement, hence can
be considered constant-time by a code review. However, once programmed on the STM32F4
processor, one notices that the execution duration depends on the inputs. The AES timing
acquisition is illustrated in Figure 8.1. Before each encryption, we reset DWTCYCCNT register.
This yields the exact timing of the AES execution (which is about 2 600 clock cycles in average
| recall Figure 7.1 and 7.2). In a real attack, an attacker would measure a noisy timing using an
external \chronometer". However, our attack models the best case for an attacker; hence, bounds
the security of the analyzed implementation. In particular, we underline that our measurement
methodology is fully non invasive: the timing measurement is performed in parallel to the AES
computation, thereby keeping the victim circuit run at full speed, without interference.

Time deviations for di erent con gurations of Instruction Cache (IC) and Data Cache (DC)
are shown in Figure 8.1. We observe a huge time di erence when data cache is turned O / On.

When DC is turned o, there is no timing leakage as AES is constant time. Yet, when DC is
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Figure 8.1: Measuring elapsed time for AES encryption

turned on, AES is not time constant. This non-constant time on AES leads to the following

conclusions:

This is a weakness for the security of the processor as two di erent plaintext lead to two

di erent time clock to compute AES.

Following Figure 8.1, it seems the enabling or not Instruction Cache, does not modify the

behaviour of the leakages.

Data presented Figure 8.1 are obtained using a xed key and varying one byte of the

plaintext.

Figure 8.1 instructs us that caches shall be disabled to reduce the leakage in timing. However,
we emphasize that such decision has a strongly negative impact on the AES performance: with
DC o, the overall AES execution time is about 27% longer.

Therefore, in a realistic context, we shall assume that both DC and IC are enabled, which
we will do in the sequel (see next Sec. 8.2 for some indications how well attacks perform when

caches are disabled).

8.1.3 Characterizing the leakages for Data Cache On

As seen earlier, when the Data Cache in enabled, the AES computation is not time constant.
This can be due to the T-boxes called during the computation. Indeed, calling a value in a
table also stores this in the Data Cache. If this value is called within the eight next calls, the
load will be faster. In Appendix C.1, we have copied the OpenSSL source code for the AES
encryption with a 128 bits key. In this code, we notice that there are 160 calls to the T-boxes.
In order nd a model of the leakage, we inferred the cache policy of STM32F4 ARM micro-

controllers based on a thorough study of their timing response to some adaptively constructed
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(a) IC ON and DC ON

(b) IC OFF and DC ON

Figure 8.2: Time deviations for di erent con gurations of Instruction Cache (IC) and Data
Cache (DC).
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(c) IC ON and DC OFF

(d) IC OFF and DC OFF

Figure 8.1: Time deviations for di erent con gurations of Instruction Cache (IC) and Data
Cache (DC).
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requests. We discovered that it is actually a FIFO (First-In, First Out) cache. If one requests a
particular table lookup within last eight cache accesses, then the access is a hit (if not, it is a
miss).

In case of a hit, the time to access such register is 5 or 6 clock cycles faster than a miss. To

show this behaviour, we have done a very simple experiment:
We generate a table of length 256;
We generate 16 random values between 0x00 and 0x ;
We call 16 elements of the table corresponding to the 16 values generated previously;
We measure the time to call these 16 elements of the table.

We have plotted in Figure 8.2 the histogram of the clock cycles. the negative number in the
x axis is due to the fact that we have set the 0 at the maximum value of the clock cycles, which
is the obtained value for not hit at all*. We notice that when a hit occurs, the time is faster by
5 or 6 clock cycles. For two hits, there are three possible values: 10, 11 or 12 clock cycles.

Figure 8.2 has to be compared with a full AES encryption timing in order to see if this model
is relevant. Therefore, we have plotted in Figure 8.3 the histogram for a full AES encryption.
Once more, the 0 in the x axis is set to the maximum.

Very interestingly, we can observe in this gure high density levels corresponding to the hits:
1. One hit at -5 and -6;

2. Two hits at -10 and -11;

3. Three hits at -15 and -16.

Below -16 clock cycles, the hits are lost into the noise.
The comparaison of these two gures show that the FIFO model for table hits is correct,

but does not explain all the time leakage due to the cache policy of the processor.

8.1.4 Attack Results

As already noticed above, the leakage model is mostly unknown. We only suppose that the

text byte is mixed with the key through a XOR operation. As a consequence, the optimal
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Figure 8.2: Distribution of the clock cycles for a simple example
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Success rate

Figure 8.3: Distribution of the clock cycles for a full AES encryption

0.8

0.6

0.4

0.2

0

ML soft
ML hard
O -On
Learned MIA
Empty bin
250 500 750 1000 1250 1500 1750 2000 2250 2500

Number of tracesq

Figure 8.4: SRfor §=25 600 on real-world measurements
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distinguisher (giving the limit of performance) is not known. The SNR of the leakage is
Var(E(xjt))=E(Var(xjt)) = 0 :4.
In Figure 8.4, we notice that Learned MIA is the best distinguisher in the case of poor

pro ling. The Hard Drop Distinguisher is not succeeding at all since it drops about 90% of the

data.
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Figure 8.5: SRfor § =256 000 on real-world measurements

Figure 8.5 presents the success rate for a better pro ling stage. We notice the following

interesting improvements:

The Learned MIA distinguisher is only slightly better than in Figure 8.4. To reach 80%

success rate, 1 100 traces are needed as compared to 1 250 traces previously.

The Soft Drop and O ine-Online distinguishers are the best distinguishers in this scenario,

with a small advantage for the Soft Drop distinguisher.

The Hard Drop distinguisher remains unsuccessful.

1This is a voluntary choice as we only focus on the gap between two picks of distribution. The absolute value
has no real sense since we are comparing two computations that are not the same.
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We notice that the Soft Drop Distinguisher has been established using the parameter de ned

in Equation 7.19 such that =1=eq.
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Figure 8.6: SRfor §=2 560 000 on real-world measurements

Figure 8.6 is the continuation of Figure 8.5 with much more traces in the pro ling stage. The
resulting pro ling is very good and one may consider that the approximation of P is tight. In this
case, Soft Drop and OOP Distinguishers are both very successful, which seems natural regarding
the fact that P has converged to the actual probability P. For this attack, we recall that the
timing of 10000 traces can be acquired in one second. Therefore, the attack is successfully in

about 0:2 second using Soft Drop or OOP distinguishers.

As a conclusion to this study on the STM32F4 discovery board, we have learned the following

comparisons between the proposed distinguishers:
when the pro ling stage is poor, the best distinguisher is the Learn MIA Distinguisher;

when there is enough data in the pro ling stage, the best distinguisher is the Soft Drop

Distinguisher, closely followed by the OOP Distinguisher;
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the Empty Bin Distinguisher converges to the optimal success rate, but is not as e cient
as previously in Section 7.3. This can be explained by the fact that we skip a lot of data

in the computation;

the Hard Drop Distinguisher is the slowest to converge to 100% success rate.

Remark 8.1. When comparing Figures 8.5 and 8.6, we notice that the Empty Bin distinguisher
does not improve as the number of pro ling traces increases. An explanation that there is no
more empty bins to be lled between these two situations; then only a more precise estimation
of the probability would make the di erence.

Remark 8.2. As discussed in De nition 7.4, the value of is important. We have run the
same experience as in Figure 8.5 with = qﬁ. The results, we obtained, are presented in
Figure 8.7. When comparing this gure with Figure 8.5, we notice that the performance of

Figure 8.7:  SRfor §=256 000 with = p—5r-

the Soft Drop Distinguisher has dropped and is how much closer to that of the Empty Bin
Distinguisher, as we had forecast.
8.1.5 Nature of Empty Bins

De ned in 7.1.2, Empty Bins can appear under two circumstances. The rst possibility is
insu cient pro ling: some rare occurrences are not encountered by lack of training measurements.
The second possibility is what we callStructural Empty Bins. They are present whatever the

pro ling under xed key and do not depend on the number of traces g in the pro ling stage. In
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order to decide for the reason of Empty Bins, we have drawn the number of empty bins for a

given key according to the number of traces in the pro ling stage.

Figure 8.8: Empirical number of empty bins

Figure 8.8 presents this study obtained with the STMicroelectronics Discovery Board. We

consideredy= 1280000, and de ne the number of empty bins as:

We can see that the number of empty bins decreases, but never reaches 0. At the beginning, the
high number of empty bins is due to both poor pro ling and structural empty bins. With a

good pro ling, we only keep the structural empty bins.

8.1.6 Study on the Mean-Square Error

An interesting point noticed in Figures 8.4, 8.5, and 8.6 is that the Learned MIA distinguisher
is working better than the Soft Drop Distinguisher for a poor learning phase (i.e.,§ = 25 600).
However, with a better learning phase (i.e.,§ = 256 000 and § = 2 560 000), the Soft Drop

Distinguisher has a much better success rate. In order to understand why the Learned MIA
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8. OBTAIN A LEAKAGE MODEL WITH TIMING ATTACKS

Distinguisher does not improve that much with a better learning phase, we have computed
the Mean-Square Error of these two distinguishers for the three learning phases (i.ef 2

f25 60Q 256 0002 560 00@).

De nition 8.1  (MSE, Bias and Variance). Let us consider a random variableX and its
expectation = E[X]. An estimator of the random variable is noted X. The MSE is de ned as
follows:

MSE=E (® )?:

The bias of the estimator is the expectation of the di erence between the estimator and the
mean of the random variable:

Bias= E %
At last, the variance of the estimator is:

Variance= E %2 E % °
From these de nitions, we have the following relation between MSE, bias and variance:
MSE = Bias’ + Variance (8.1)

The Mean-Square Error (MSE) is computed using the following method:

1. For the secret keyk , we calculate the value of the distinguisher i.e. the value oP(j€ k )
for the Soft Drop and | (8;'b(€ k ) for the Learned MIA. We compute this value for
di erent number of traces @ This gives an estimation of the normalized distinguisher for

the correct key.

2. The most accurate estimation is obtained for the highest value ofg. Therefore, taking
the average over a large number of experiences for this highest value gfgives a good

estimation of the Expectation of the estimator.

3. Then we calculate, for every value ofg the bias and the variance of the estimator, and the

Average MSE is obtained using the formula:MSE = Bias’ + Variance

We have plotted in Figures 8.9 and 8.10 the Average MSE for the two distinguishers. In order
to be more relevant, we have plotted the logarithm of the MSE. Furthermore, we have chosen to
plot the MSE separately as the distinguishers are not comparable.

The MSE for the Learned MIA Distinguisher stays almost constant with the improvement
of the learning phase whereas the MSE of the Soft Drop Distinguisher is much smaller. This

means that a better learning phase gives a much better estimator of the distinguisher.
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Figure 8.9: Average MSE for the Learned MIA Distinguisher
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Figure 8.10: Average MSE for the Soft Drop Distinguisher
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To understand more deeply this MSE, we separate bias and variance for these two distinguish-
ers. The results are computed Figure 8.11 for the Learned MIA Distinguisher and Figure 8.12

for the Soft Drop Distinguisher.

Figure 8.11: Variance and bias of the Learned MIA Distinguisher

We notice the following aspects:

For the Soft Drop Distinguisher, the bias is almost equal to zero. In fact, the MSE is the

variance.

For the Learned MIA Distinguisher, it is mainly the opposite: the biggest part of the MSE

is the bias.

To conclude with the MSE, the Soft Drop Distinguisher improves because the estimator has a
much smaller variance with a better learning phase. Meanwhile, the Learned MIA Distinguisher
does not improve because it is a biased estimator and a better learning phase does not reduce

this bias.
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Figure 8.12: Variance and bias of the Soft Drop Distinguisher
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8.2 Success Rate in Presence of External Noise

The measurement setup used in simulation (Sec. 7.3) and on real-world traces (Sec. 8.1) is
ideal. Indeed, the only considered noise is saidlgorithmic, i.e., it consists in the varying timing
which arise from the parts of the algorithm not under study. In this section, we analyse the

e ect of noise external to the monitored cryptographic algorithm. Subsection 8.2.1 discusses
in general terms the e ect of noise addition, and subsection 8.2.2 details quantitatively how
distribution-based distinguishers cope e ciently with noise (while moment-based distinguishers

fail to resist noise).

8.2.1 E ect of Measurement Noise

However, in practice, timing measurements contain a noisy part. Let us give three examples:

1. Measure of a di erence of timing between request and response from the AES (over a

network of unknown latency);

2. Use of a side-channel signal (such as the power or the electromagnetic eld) to observe the
AES computation; the beginning and the end of an AES are easy to identify, as they consist
in sixteen consecutive operations (namely sixteen XOR making up the AddRoundKey
operations). As these patterns have a remarkable signature, they can be extracted with
great accuracy thanks to a mere cross-correlation. Still, the AES itself might not be

executed in constant time, hence some alignments issues;

3. Use of a cache attack, which would disclose that the program ows entered and exited the

AES function. However, the timing for access to cache is non deterministic.

Let us denote the variance of the added noise as?.

Now, it is known that any additive distinguishers (which is the case of our distinguishers),
the number of traces to recover the secret for a given success rate is inversely proportional to
the inverse of the signal-to-noise ratio (see e.g., [36, Corollary 2]).

As a direct consequence, we can predict the complexity of the attacks when IC and DC are
disabled. It can be seen in Figure 8.1 that the timing variation is about divided by three (from

20to 8) when the DC is disabled. Therefore, the number of required traces to recover the

key is about multiplied by three.
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In addition, we can approximate the required number of traces to extract the key in presence
of external noise of standard deviation . In our case-study of OpenSSL AES on ARM, the
algorithmic noise has standard deviation about 20 clock cycles (see Figure 7.1 and 7.2).

So, if the external noise has standard deviation < 20, the impact is small. But when
=20> 1, the in uence of the external noise becomes preponderant. As the algorithmic noise
and the external noise are independent, the number of traces required to extract the key will

actually grow linearly with as soon as=20 1.

8.2.2 Comparison with Existing Methods in the Presence of Noise

In this subsection, we aim at comparing our distribution-based method with the existing methods
(moment-based method mentioned in Tab. 6.1). In particular, we focus on the representative
Bernstein correlation [5] with a learned model [the timing expectation for each value of the
target AES byte], that we refer to as \CPA". This \CPA" between timing measurements and
the learned average of timing per byte of the key does not su er from the empty bin issue. We
start by a comparison with little external noise. In this case, we have plotted in Figure 8.13
the success rate for both the soft drop distinguisher and the CPA. Thex axis represents the
number of traces for the pro ling phase while the y axis is the number of traces needed during
the attack to reach 80% of success rate. We notice that the CPA performs better than the soft
drop method, for any pro ling (even when learning with several million of traces). This can be
due to bias between the pro led distribution and the attack distribution.

However, in a practical case, we encounter noisy timing leakages. In order to compare
our methods with the existing methods (such as CPA) in the presence of external noise, we
plotted Figure 8.14. In this gure, we took a good pro ling phase (§=3 10°), i.e., proling is
performed on su ciently enough traces. This gure is obtained for a noisy timing, that is the

nominal time to compute AES (as in Subsec. 7.1.2), where the noise follows the following law:

0 added time with probability 50%,

8.2
T added (T 2 N, a number of clock periods), with probability 50%. ®.2)

This models the interruption of the CPU from a peripheral when AES is baremetal, or a
descheduling of the AES process during onéme slot on systems with an operating system
(OS). Indeed, such events have the consequence, when they occur, to add a long period of time
(often as long or even longer than the duration of the AES) to the encryption time, so that the
interruption can be served, or so that the OS re-schedules the AES process. We notice that, in

such case, it is more interesting to compute one of our methods, rather than previous existing
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Figure 8.13: Comparison between CPA and soft drop distinguisher at 80% of success rate
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(a) Standard deviation =5

(b) Standard deviation = 50

Figure 8.14: Success rate for soft drop versus CPA for small noise and noise of standard deviation
T =50 (recall (8.2))
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methods such as CPA. Indeed, distribution-based pro ling is more accurate than CPA estimation
with noisy signals. For instance, the results from Hassan Aly and Mohammed ElGayyar]] show
that 222 encryptions are required for a key extraction on a more recent processors (Pentium
Dual-Core and Core 2 Duo), which is signi cantly more than that used by Bernstein CPA in his
original attack [6]. The authors of this paper remark incidentally that the best method is not to
use correlation with the means of each class, but with theminimum value in each class. This
con rms that the complexity of the distributions are better suited for distinguishing that simply
the average per class. This justi es that our study focuses on distribution-based distinguishers
(more robust to binary noise situations encountered while measuring durations) rather than

moment-based distinguishers (recall Tab. 6.1).

8.3 Conclusion and Perspectives

We have derived several \information-theoretic" distinguishers as possible solutions to the empty
bin issue. Some of them, like the Dirichlet Prior and the O ine-Online distinguishers, required
the computation of novel distributions. We have shown in particular that the empty bins,
previously believed to be an annoyance and dropped accordingly, can turn out to be valuable
assets for the attacker as long as they are treated carefully. In all the part, real timing data are
used, making the results very practical.

We have also compared the various distinguishers under two frameworks: a simulated test
with synthetic leakage and real-world timing attacks. In both cases, we noticed that the outcome
of the attacks depends on the quality of the pro ling stage. A good pro ling improves the results,
where the best distinguisher seems to be the Soft Drop Distinguisher. A poor pro ling makes the
traditional distinguishers break down. More sophisticated solutions like O ine-Online Pro ling
and Learned MIA distinguishers are very useful in this case. A possible way to investigate more
on this aspect is to use more powerfull statistical tools in order to extract the most precise
model for the Learned MIA Distinguisher.

The interesting aspect on the studied timing attack is that one does not have to make
any assumption on the leakage model. In addition to this, the main advantage of the new
distinguishers is that the empty bin issue is completely solved. We also introduced distinguishers
which can jointly exploit oine and online side-channel measurements. As an interesting
perspective, our approach could advantageously be analyzed using the \perceived information™

metric recently introduced by Standaert et al. in [71, Eqn. (1)].
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Another perspective would be to compare our information-theoretic attacks with attacks
based on machine learning techniques. Surprisingly and contrary to results reported in other
papers, our preliminary results show that SCA based on support vector machinestp] has poor
performance, even when pro ling with very few traces @ is small), which may be due to the
univariate nature of the leakage.

An interesting observation is that writing cryptographic code robust to timing attacks is
challenging. While the OpenSSL code for AES has no obvious aw (such as unbalanced branches
which depend on sensitive data), the timing of AES is data-dependent, due to microarchitectural
features of the studied ARM core. There seem to exist two classes of solutions against timing
attacks: The rst aims at randomizing the execution timing, as studied for instance in [6]. Such
an implementation can still be attacked with high-order distinguishers, albeit with more traces
than without any protection. The second would attempt to balance the timing, yet this requires

some hardware support such as the CCM feature of the STM32F4 processors.
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9. CONCLUSION

9.1 Conclusion

The title of my Ph.D. is \Towards a Better Formalization of the Side-Channel Threat". When |
was recruited by Olivier Rioul in 2015 to start my Ph.D., Annelie Heuser was nishing writing
her manuscript. During her thesis, she specially focused on the study of distinguishers. | could
therefore use her fresh results to work on my thesis.

During my thesis, | focused on the similarities between a side-channel leakage model and a
communication channel. The main result of these three years is based on a mathematical link
between the success rate of an attack and the signal-to-noise ratio of the leakage. To obtain
this result, | have used information theoretic tools. More speci cally, | focused on the Mutual
Information between the sensitive variable and the measured traces. When the noise is Gaussian,
the Mutual Information is a function of the SNR However, the main di culty is that the
leakage is not independent. This means that the Mutual Information is more complicated than
Shannon's formula. | have therefore investigated on the estimation of Mutual Information for
this particularity of side-channel analysis. This is indeed a particularity since in the literature in
communication theory, most of the channels are considered with independent random variables.

According to me, this result will give a good bound to the e ciency of a model. Indeed, in
side-channel analysis, theSNRis model dependant. With this knowledge of theSNR we have
an upper-bound on the success rate. This gives a rst idea of the level of security of a chip
without making simulations to calculate the success rate.

It is possible to extend this result to protected implementations but the formula of the
mutual information is much more di cult to calculate. A possibility would therefore be to
consider the approximation of Independence even if the bound is therefore looser.

On a more personal point-of-view, this thesis has been for me a very intense period. When
| arrived at Teecom in 2015, | had never heard of cryptography. Side-channel analysis has
therefore been for me a very good mean to enter this particular world. Side-channel analysis is
a mixture between cryptography, electronics, mathematics and physics. This is therefore a very
beautiful topic of research and | am con dent that several talented researchers will invest time
in this eld.

More generally, this three years and a half Ph.D. has made of me a more mature man. When
| started in 2015, | had no idea of what | could do after my thesis. During these three years |
have learned how to be rigorous and how to self-criticize my work. | believe that | will be very

well prepared for my future work.
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9.2 Further Perspectives

Side Channel analysis has a very large spectrum of applications and studies. This topic is quite
new since the rst literature on this subject appeared in the 1990s.

The next challenges for the coming years will be focused on the Atrti cial Intelligence. Indeed,
neural networks will be soon able to extract leakage models and furthermore, be able to recover
secret keys. On the future of cryptography, post-quantum is a big topic of research. To prepare
this quantum revolution, designers are already rethinking asymmetric algorithms (such as RSA)
to be secured against quantum cryptanalysis. These new algorithms will be of course subject to
side-channel analysis and it will be interesting to study them on di erent architectures.

On the study of distinguishers, another interesting topic of research will be the success rate
under a wrong leakage model. In communication theory, this is callednismatch decoding |
mentioned this issue in the appendix but | believe that there is a lot to study in order to predict

the success rate of an attack under this supposition.
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A. APPENDIX ON THE SHANNON BOUND

A.1 Proof of Lemma 4.1

Lett 2 T and be the considered permutation. We have

HXjT=1t)= P(x jt)log, P(x j t))
X o # !
X
= P(K)P(x j t; k) log, P(K)P(x j t; k)
X w k K |
X Y X Y '
= P(k)  P(xijti;k) log, P(k)  P(xijti;k)
X k i=1 k i=1

Re-arranging both products so that they are ordered in accordance with the permutation, we

obtain # |
. X X ¥ _ X ¥ . '
HXjT=1t)= P(k) P(x @t (i);k) log, P(k) P(x Mt (i);k)
X o k i=1 # k i=1 |
X Y ) X Y )
= P(k) P(xi jt ();k) log, P(k) P(xi jt (); k)
X k i=1 k i=1
=HX [T = () N

A.2 Proof of (3.5)

We study the sign of the di erence

= Ey log, Ex [exp(f (X;Y ))] +log , Ex [exp(Ey f (X; Y ))I;

= log, expEy log, Ex o[exp(f (X % Y))] + log , Ex [exp(Ey log, expf (X; Y ))];
exp(Ey log, expf (X;Y)) .

expEy log, Ex o[exp(f (X% Y))]’

=log, Ex expEy [log, expf (X;Y) log, Exo[exp(f (X % Y))I;

expf (X;Y)

ofexp(f (X Y))]

= log, Ex

=log, Ex expEy log, Ex

Since the log function is concave:

expf (X;Y) ]
Ex olexp( (X% Y)]
expf (X;Y) )
Ex o[exp(f (X% Y))]
Ex expf (X;Y)
Exoexp(f (X%Y))
=log, Ev [1];

=0: L]

log, Ex explog, Ev

= |Og2 Ex Ey

=log, Ey
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A.3 Proof of Corollary 3.1
In Lemma 3.5, we have proven that:

Ev log, Ex [exp(f (X;Y )] log; Ex [exp(Ev f (X;Y )]
or

Ev log, Ex [exp(f (X;Y ))]  log, Ex [exp(Ey log expf (X;Y ))]:

Setting g(x;y) = exp(f (X;y)), we have:

Ev log, Ex [9(X;Y)]  log, Ex [exp(Ey logg(X;Y ))]:
Hence,

expEy log, Ex [9(X;Y)]  explog, Ex [exp(Ey logg(X; Y ))]
Ex [exp(Ey logg(X; Y ))] O

A.4 Alternative Proof of (3.5) and Further Comments

Consider, for any random vectorY ©,

= I(X;Y)+ Ey logEyoexp Exjy Iogw

= Ey Exjv Iogp(;((i;{)+ Evy logEyoexp Exjy Iogw

= Ev log expEx vy Iog% + Ey logEyoexp Exjy Iogm

= Ey logEy oexpExjy Iog% + Ey logEvoexp Exjy Iogw
= Ey logEy cexpEx;y log P(ﬁ(;(jp)ggf \J(\)(O)

= Ey logEy oexpExjy Iogw

By the concavity of the log function,
Ey logEyoexplogExy W
= Ey logEx vy w
= Ey logEx vy FI;(();;)
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where the X © distribution is given by P(x% = EyoP(x j Y 9. It is important to note that this
derivation can be applied for any random vectorY °. The derivations made in Section 3.2 were

made for Y © following the same distribution as Y . In this case P(X9 = P(X) and

P(X) _

EY |Og EXjY m -

which proves inequality (3.5). O

Another choice is to take an i.i.d. vector Y © having the same marginals asy . Then

P(XjY9

= Ey logEyoexpEyjy log POX)

and by Corollary 3.1,

Ev log expEx jy IogEYoW

EvoP(X j Y9
P(X)

i P(Xi)  P(XjY)

P(X) PXJY)

LX5Y)  ql(X;Y)

Ev EX iy |Og

Q

Ex.v log

which is to be compared to Lemma 3.3. This proves that if applying our second bound with
such an i.i.d. distribution Y °would lead to a bound that would be worse than the rst upper
bound (3.4).
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A.5 A Discussion about Masking

In chapter 3, we supposed that there was no masking in the AES protocols. Nowadays, as
side-channel analysis becomes a real threat, designers have started to invent new types of security
against side-channel analysis. Masking is a good way to improve the security of a chip. Indeed,
the higher the order of masking is, the more di cult it is to break the security of an embedded
system.

Even if the security of the chip increases, it is though possible to recover the secret key.
Nicolas Bruneau et al. mathematically proved that the best possible attack in case of masking
is the maximum likelihood [16]. We can also cite once again Duc's paper where he showed that
the order of making exponentially increases the security of a chip in the sens that the number of
traces needed to recover the secret key are much higher [29, Equation (10)].

According to the leakage model of 16], we obtain the following framework for the communi-

cation channel.

K — Encoder——— Channel ———— Decoder— 1o

| |

T T

Figure A.1: Representation of Side-Channel with masks

We consider that the masking order isd. In Figure A.1, the notations are the following:

(K;T)! (Y%unYdT)yr (X% x4T)et 1 (A.1)
This means that Lemma 3.2 can be adapted to masking and becomes

H(K) (1 Pg)log,(2" 1) H,(Ps) I(XO:::Xd;KjT): (A.2)
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This means that, one again, the Mutual Information between the traces and the key is
relevant to calculate a bound on the success rate. However, estimating such Mutual Information

iS a open issue.

A.6 About Mismatched Decoding

The upper-bound obtained by Theorem 3.1 is always true for any distinguisher. Moreover, as
we have based our calculations with the best possible case for the attacker. Indeed, the lower
bound is obtained because we have supposed that the attacker knows the leakage model and
therefore the distributions P.

However, in many cases, the attacker only knows an estimation of the leakage distribution
(noted b) that may not be exactly equal to P. In this case, our bound is still correct since
the knowledge ofP is the best possible case for the attacker. In this led, Frarcois-Xavier
Standaert proposed the notion ofPerceived Information [30] as a metric to measure the impact
of the estimation distribution P on the mutual information. In this section, we rst re-write the
Shannon channel coding theorem to show that it is possible to recover the secret key if perceived
information is strictly positive (cf. Subsection A.6.1). Then we discuss about an information
theoretic paper written by Neri Merhav and Amos Lapidoth in 1994 that deals with mismatch

decoding [58](cf. Subsection A.6.2).

A.6.1 The Channel Coding Theorem with Divergence

In Information Theory, the Channel Coding Theorem written and proved by C.E. Shannon
in [79] shows that, it is possible to send a message with an arbitrary small amount of error
through a channel, as long as the rate of the message (i.e. the number of sent bits) is lower than
the mutual information of this channel.

In his demonstration, Shannon supposed that the channel was perfectly known, meaning
that the probability P(yjx) was known. In our case, we only haveP(yjx) at our disposal. This
means that even if Shannon's theory is true, we do not how far we can go with our estimation.
Thus, we will re-write the proof of the channel-coding theorem with the consideration that the
attacker makes an error of estimation.

Theorem 1.1 (Channel Coding with Divergence). Let us consider a channel notedY; P(yjx); X),

where the decoder only know@(ij) an estimation of P(yjx). We suppose furthermore that the
decoder perfectly knows the distribution of X (i.e.P(x)).
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Let a messageM to be sent taken uniformly in a setM and to be sent over a block of length
g. The rate of the transmission is thusR = %. Let "> O, there exists a codeC such that

the probability of error is smaller than " as long asR < I (X;Y) D (P(yjx)jj b(ij))
To prove Theorem 1.1, we rst show the law of great numbers for a random variable taken
under another distribution.

Lemma 1.1. Let X a random i.i.d. vector of size g following the distribution P and P another
distribution taking its values in the same set asX. Then, we have:

% log P(X) I H(X)+D(PjP)

This is a convergence in probability.

Proof for Lemma 1.1. We use the Bienayne-Chebychev inequality to show the convergence. Let
"> 0, we know that:

P glogPX) E LlgPeO i O
P glogPX) HOO+D(RIP " 5
Therefore, we have:
P j %Iogzb(X) H(X)+D(PjP)j " 1 0
As this is true for any " > 0, this proves the lemma. O

We have now shown that the law of great numbers leads to a value which isi (X ) + D( PjjP).
In order to prove the Channel-Coding Theorem, C.E Shannon de ned subsets 0K% Y4 called
typical sets. All the de nitions of the typical sets, and their properties may be found in [23,
Chapter 7]. We de ne here typical sets related to the estimationP of a random variable.
De nition 1.1 (Typical set related to b). Let X a random i.i.d. vector of sizeq following the

distribution P and P the estimation of this distribution. Let "> 0. The typical set related to P
is de ned as:

Ap=fx2X9j] élogzb(x) H(X) D(PjP) g

For two random vectors X and Y, we can also de ne the joint typical set.

De nition 1.2  (Joint Typical set related to b). Let X and Y two i.i.d. random vectors of
length q each. (X;Y) follows the distribution Pxy and the estimation is Pyy . The marginal
distribution of X is Px and the marginal distribution of Y is Py. Let "> 0. The joint typical

set related to P is noted A";XY . (x;y) 2 X% Y9 belongs to Abxv if and only if the three
conditions below are veri ed:
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1j LlogPy(x) H(X) D(PxiiPx)i "
2.) Llog,Py(y) H(Y) D(PyjiPy)i
3. %log,Pxy (x;iy) H(XY) D(PxvjiPxy)i .

In [23], Cover and Thomas prove that the joint typical set has several very interesting

properties. Here, with the joint typical set related to P, we adapt these properties so they can
t with the estimation.

Lemma 1.2 (Properties of the joint typical set related to b). Let (X;Y) a random vector of

length g drawn i.i.d. according to Pxy and estimated bybxy . Let "> 0. We have:
h [
1P (X;Y)2A, I lasq!l

2. AL 20HOGY WD( Py iPxy )+ ")
b><Y

3. For X;¥ two independent random vectors such thaR Px and ¥ Py the marginals
of Pxy , we have:
h i
P (R;®)2A, o N(I(X:Y) D(Pxy jiPxv J+D( Px iPx +D( Py jiPy) 3")
XY

The last property of the Lemma 1.2 seems quite heavy with the number of divergences.
However, in our case, we suppose that the attacker knows the distribution off , meaning that
D(PyjiPy) = 0. Furthermore, we have the relation between D(Py jiPx ) and D(Pxy jiPxy ):

D(Px jiPx)  D(Pxv jiPxv )= D(PyxiPyx) (A-3)
Proof of Lemma 1.2. We prove each term of the lemma one by one. Let > 0.

1. By the law of large numbers we know that there existni; n,;n3 such that:

P i logPe(X) HX) DR} >"

P logPy(Y) HY) DRYPOI>T 4

P ologPor (GY) HOGY) D(PxyiiPa )i>"

Taking n = maxfng;n,;n3g, and the union of the three probabilities, we obtain, for every
q n

h i
P (X:Y) ZA;,XY "

This proves the rst part of the lemma.
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2. We have the following inequality:

X
1= Pyv (x;y)

X;y2X9 Yd
X

bXY (x;y)

x;y2A"'>><Y
i A;‘xv j2 N(HOGY D0 Py i Py )+ )
This show the second part of the lemma.

3. We consiﬁer)‘% and ¥ de ned in the lemma. We have:
i

X
P(R®)2A, = Px )Py (y)

x;yZAbXY

j A.‘; i2 n(H (X )+D( Px jiPx ) ") n(H (Y )+D( PyiiPv) ™)
XY

Putting this with the proof result of item 2, we obtain the inequality.

O

With all of these tools, we are now able to proof the Channel-Coding Theorem with divergence.
This proof will be mainly inspired by the proof of the Coding-Channel Theorem written by
Cover and Thomas in R3]. Our main contribution is to add the divergence into the proof and

use typical sets including divergence to do so.

Proof of the Channel-Coding Theorem. To prove the Channel-Coding theorem, Shannon did
not consider the probability of error of one particular code, but the average of the probability of
error, taken over all the possible codebooks for a given message. Let us consider a r&end
the length q of the sent vector of the message. Shannon proved that the average probability of
error over all the codebooks, is equal to the average probability of error over all the codebooks
supposing that one particular index was sent. Let us consider a massage modeled by the random

M. Let us suppose that we send a 1 over the channel. Then, the average probability of error
over all the codebooks knowing that a 1 is sent is notedP(EjM = 1).
We consider the following decoding schemey (1) is sent over the noisy channel andx is

probability Pxy . An error occurs if y(1) and x are not jointly typical, or if there is another
i 61 such that y(i) and x are jointly typical. Let us note B; the event: y(i) and x are jointly
typical. We notice that if index 1 is sent, then, forany i 6 1, Y (i) and X will be independent as
the code is chosen randomly. The average probability of error over all the codebooks is therefore:
P(EIM = i)= P[BF[ Ba[ :::[ Bowr]
R

P(BY)+  P(Bi)
i=2
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Let " > 0. According to Lemma 1.2, we know that there existsq large enough such that
P(Bf) ". Moreover, for B; with i 6 1, the probabilities are independent. Therefore, we have,
according to Lemma 1.2 we haveP(B;) 2 "(1(X:Y) D(PyixiiPvix) 3 Therefore, we have, for
"> 0 andq su ciently large:

R
P(EM = i) "+ 2 90(Y) D(PyxiiPyjx) 3
i=2
" (2R )2 A0 OGY) D(Pyx iiPyix) 3
m 4 2A(R XY )#D( Py jx jiPyjx 1+37)

2" if R 1(X;Y)+D(PyxjiPyjx)+3"< 0
O

Remark 1.1. We notice that | (X;Y) D(Pyjx kbij) is equal to the Perceived information
metric proposed by Frarcois-Xavier Standeart in [30]. This means that, in a side-channel context,
if the perceived information if positive, it is possible to recover the secret key of the device.

However, we are not able to tell how fast the key recovery will be with this approach since
this calculation only shows the achievability o fa coding rate.

A.6.2 Discussion About Merhav's Paper

In 1994, Merhav et al. published an article dealing with mismatch decoding in information
theory. When the decoding is performed with a maximum likelihood distinguisher based on an
estimation of the distribution P instead of P, the article show that the the maximum achievable
rate of transmission exists and can be calculated. Moreover, if the coding rate is higher than
this limit, the probability of error tends towards 1. In side-channel analysis, to result does not

tell how fast the probability of success of the attack R, will converge to 1.
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B.1 Proof of Lemma 5.3

The MIA distinguisher is expressed as
DK)=1(Y(k )+ N;Y(k))= h(Y(k )+ N) h(Y(k )+ N jY(k)): (B.1)

From Section 5.3.1,Y (k ) knowing Y (k) is a binary random variable with probability (k).
As N is Gaussian independent fromY (k), the pdf of Y (k )+ N knowing Y (k) is a Gaussian

mixture that can take two forms:

Soiige TEaq (e
P y(x)= . 2 o1y 2 o p2 (B.2)
e[ (ke 27+ (k)e z7 ]

By symmetry, their entropy h(Y (k )+ N j Y (k)) will be the same and we can take any of these

pdfs. Letting ' be the standard normal density, we can write

P (0= Prax) 2022 (K)' (9e *sinh(%) ©3)
= PO 2022 (K)tanh( %) (©.4)

where
Pa() = p—Te T +e = Te 77 (oosn(): (8.5)

For notational convenience dene" =2(1=2  (k)), p= p1=2(x), and t = tanh( x). Then

HXY () = h(Y (k )+ N) (Y (k )+ NjY(k) (B.6)
= plogp+  (p(1  "t))log,(p(1  "t)) (B.7)

z z z
= "ptlog, p+ plog,(1 "t) p'tlog,(1 "t): (B.8)

The rst term vanishes since p is even andt odd. We apply a Taylor expansion:
z z

u2t2 ll3t3
LY (K) = p[ 't +0("M]  "pt[ "t

2 3

"2t2 "3t3
2 3

+0("H]:  (B.9)

The odd terms of the expansion are null ag is odd and p even. We therefore obtain:

Z e T Zop
HGY k) = pl ——+ O(")] [ "pt7+ O = ——+0OC): (B.10)
Thus, nally,
D(k) =2log,(e)(1=2  (k)?g( ); (B.11)
where 7
o )= te 72 o (%) cosh(%5) tanh?( = )dx: (B.12)
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There are several ways to expresg( ). For example, we have:
Z

g )=e 77 ' (x)cosh()tanh?(Xydx: (B.13)
R
This expression can be reduced to:
g( )= %Ex tanh2(§+ iz)+tanh 2(5 iz) ; (B.14)

whereX  N(O; 1). By the dominated convergence theoremtanh?(%* + L) is always smaller

than 1) when ! 0, we obtaing(0) =1 and when !1 we obtain the equivalent .

B.2 Proof of Lemma 5.4

The success exponent is de ned by

EB(k) BK)? .

- 2var(B(k ) B(K)’ (8.15)
where in our case
1 xd
Bk)= p——  X;Yi(K): (B.16)
q 1+ 2, 5
First for large q we can consider thatE]j P i XiYi(K)jl=JE[ ; XiYi(K)]j.
- 2= (K]
BB ()] = JEXY (W] = —p——; (8.17)
hence
_1 2= (K,
EB(kk) B(K)= P : (B.18)
Secondly we have
b b _ 1 xd xd .
Var(B(k ) B(k) = mwﬂ i:lxi\(i(k) i:lxi\(i(k) : (B.19)

To remove the absolute values, we distinguish two cases whether the sum is positive or negative.

We consider that q is large enough to have strictly positive or negative values.

xa xd

Var(B(k ) B(k) = qz(lij-l-?)\/ar XiYi(k ) X1 Y; (k) (B.20)
i=1 i=1
-1 v .

TR+ 2)Var - Xi Yi(k) Yi(k) (B.21)

= q(le)Var X Y(kk) Y(K) (B.22)

= q(le)v;ﬂ (Y(k)+ N) Y(k) Y(k (B.23)

= q(?lz)Var Y)Y (K)+ N(Y (k) Y(K) : (B.24)
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The variance term is the di erence of the two following quantities

h i
E( Y)Y+ N(Y(k) Y®K)? =1+2 21 2= (K)j (B.25)
h i
E Y)Y+ N(Y(Kk) Y(k) g 2= (k) 2: (B.26)

Combining all the above expressions we obtain (5.33).

B.3 Proof of Lemma 5.5

To prove the success rate of KSA, we rst need an estimator for the cumulative density function.
We take as kernel a function as simple as possible i.e. the Heaviside function (k) = O if
x<Oand (x)=1if x O.

With this function and for x 2 R, we can estimateF (xjY (k) =1) F(x) by the following

estimator:

P P
liYgk=1 (x Xi) P (x X)),

v (k=1 1

BxjY(k)=1) B(x)= (B.27)

o)

P
We suppose thatq is large enough to consider that ivi (k=1 1= 3 (by the law of large

numbers). Therefore we have:

j (x x) P
B(xjY(k)=1) B(X)= ”Yi(kqu D i (X X)), (B.28)
We notice that P iY: (K)=1 (x Xj)= %P ((Yi(k)+1)( x X;j). Therefore
1 X
PXxjY(k)=1) EB(x)= q Yi(k) ( x Xi): (B.29)

i=1

This estimator is a sum of i.i.d. random variables. We can therefore apply the central limit

theorem.
E[F(xjY(k)=1) EMX)]=E[N(K)(x Xi)] (B.30)
SE[Y(K)(x Y(k) N) (B.31)
= %( (k) 05) erf 142%)+erf 143%( : (B.32)

The maximum of the absolute value is forx = 0 and we obtain:

KE[B(XjY(K)=1) BX)ki =j05  (K)jerf 4%3 : (B.33)
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We notice that KE[F(xjY (k) =1) E(x)]ky = kE[F(xjY (k)= 1) E(x)]k; . To calculate
the variance, we consider thatx = 0 as it is the value that maximizes the expectation of the

distinguisher.

Var(B(k ) B(k)) = Var (x XYk ) Yi(k) (B.34)

The computation of this variance gives:
2
var(B(k ) B(k)=20:5 j 05 (k)j) erf 4% (055 j 05 (k) (B.35)

Overall, the success exponent is:

erf ol 2(= j = (K)))
L i 2 : (B.36)

SE= — 5 .
2kek 2 erf pl- (= j 1= (K))

B.4 Proof of Lemma 5.6

For MIA, we refer to [36, Section 5.3] for the theoretical justi cations. In order to obtain a
simple closed-form expression of the success exponent, we suppose that 1 and that the

probability density functions are all Gaussian. This means that X jY (k) is a Gaussian random

variable of standard deviation P 4 (k)1 (k)) + 2. Moreover, we will keep only the rst

order approximation in SNR= 2 of the SE

h(XjY (k) h(XiY(k)=%|ng(2€ @ (e kp+ 2 %'092(26 ) (B:37)

k k 2
_ %logz 4 (k)@ 2( )+ (B.38)
log, (e)4 (2k)2(1 (k) (B.39)

The Fisher information of a Gaussian random variable of standard deviation is equal to .

Therefore the Fisher information of X knowing Y = y(Kk) is:

FOIY00 = V0D = 5 a0 g7 (8.40)
As this value does not depend on the value of (k), we have:
FOIY (D)= 4ot 1(k))+ _ (B.41)
JXIY ) IXYEN = o (8.42)
0a_ (k). ©43

4

187



B. APPENDIX ABOUT THE MONOBIT LEAKAGES

Last, we have to calculateVar( log, p(XjY (k) = y(k))). Let 2= 2+4 (k)1 (k))and C

the normalization constant. We have:

Var( log, p(XjY (k) = y(k))) = Var log, Cexp tzu (B.44)
= Var log,(C) + tzu (B.45)
= %Var u = 4—14Var(X2) (B.46)
= L 1+ 2)2 L (B.47)

a(2+a (@ (0)2- 2

Overall, the success exponent de ned in 36, Proposition 6] can be simpli ed in the case of

monobit leakage as:

logz(€)® (K)*(1 (k)2

. (B.48)

SE min 4
k6 k
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C. THE OPENSSL SOURCE CODE

C.1 The OpenSSL AES Encryption Code

We have copied here the OpenSSL C code for the encryption function. We notice that this is a

straightline code, and that there is a use of Look Up Tables (the T boxes) that may cause the

non constant time.

void AES_encrypt(const unsigned char *in, unsigned char *out,
const AES_KEY *key) {

const u32 *rk;
u32 s0, sl1, s2, s3, t0, t1, t2, t3;

int r;

# 796 3
((void)0)
# 796

rk = key->rd_key;

sO = (((u32)(in)[0] << 24) ~ ((u32)(in)[1] << 16) ~ ((u32)(in)

[2] << 8) ™ ((u32)(in)[3])) "~ rk[O];

= (((u32)(in + 4)[0] << 24) ~ ((u32)(in + 4)[1] << 16) "~ ((

u32)(in + 4)[2] << 8) ~ ((u32)(in + 4)[3])) " rk[1];

s2 = (((u32)(in + 8)[0] << 24) ~ ((u32)(in + 8)[1] << 16) "~ ((
u32)(in + 8)[2] << 8) ~ ((u32)(in + 8)[3])) " rk[2];

s3 = (((u32)(in + 12)[0] << 24) A ((u32)(in + 12)[1] << 16) ~
((u32)(in + 12)[2] << 8) ~ ((u32)(in + 12)[3])) ~ rk[3];

sl

t0 = TeO[(sO >> 24)] N Tel[(sl >> 16) & Oxff] » Te2[(s2 >>
8) & Oxff] ~ Te3[s3 & Oxff] ~ rk[ 4];

tl = TeO[sl >> 24] "~ Tel[(s2 >> 16) & O0xff] ~ Te2[(s3 >> 8)
& Oxff] ~ Te3[sO & Oxff] ~ rk[ 5];
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t2

t3

sO

sl

s2

s3

t0

tl

t2

t3

sO

sl

s2

s3

t0

tl

t2

t3

TeO[s2 >> 24] ~ Tel[(s3 >> 16) &
& Oxff] ~ Te3[sl & Oxff] ~ rk[ 6];
TeO[s3 >> 24] ~ Tel[(sO >> 16) &
& Oxff] ~ Te3[s2 & Oxff] ~ rk[ 7];

TeO[t0 >> 24] N Tel[(tl >> 16) &
& Oxff] ~ Te3[t3 & Oxff] ~ rk[ 8];
TeO[tl >> 24] N Tel[(t2 >> 16) &
& Oxff] ~ Te3[t0 & Oxff] ~ rk[ 9];
TeO[t2 >> 24] N Tel[(t3 >> 16) &
& Oxff] ~ Te3[tl & Oxff] ~ rk[10];
TeO[t3 >> 24] N Tel[(t0O >> 16) &
& Oxff] ~ Te3[t2 & Oxff] ~ rk[11];

TeO[sO >> 24] ™ Tel[(sl >> 16) &
& Oxff] » Te3[s3 & Oxff] ~ rk[12];
TeO[sl >> 24] ™ Tel[(s2 >> 16) &
& Oxff] ~ Te3[sO & Oxff] ~ rk[13];
TeO[s2 >> 24] ~ Tel[(s3 >> 16) &
& Oxff] ~ Te3[sl & Oxff] N rk[14];
TeO[s3 >> 24] ~ Tel[(sO >> 16) &
& Oxff] ~ Te3[s2 & Oxff] ~ rk[15];

TeO[t0 >> 24] N Tel[(tl >> 16) &
& Oxff] ~ Te3[t3 & Oxff] ~ rk[16];
TeO[tl >> 24] N Tel[(t2 >> 16) &
& Oxff] ~ Te3[t0 & Oxff] ~ rk[17];
TeO[t2 >> 24] N Tel[(t3 >> 16) &
& Oxff] ~ Te3[tl & Oxff] ~ rk[18];
TeO[t3 >> 24] N Tel[(t0 >> 16) &
& Oxff] ~ Te3[t2 & Oxff] ~ rk[19];

TeO[sO >> 24] ™ Tel[(sl >> 16) &
& Oxff] ~ Te3[s3 & Oxff] ~ rk[20];
TeO[sl >> 24] ™ Tel[(s2 >> 16) &
& Oxff] ~ Te3[sO & Oxff] ~ rk[21];
TeO[s2 >> 24] ~ Tel[(s3 >> 16) &
& Oxff] ~ Te3[sl & Oxff] N rk[22];
TeO[s3 >> 24] ™ Tel[(sO >> 16) &
& Oxff] ~ Te3[s2 & Oxff] ~ rk[23];
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#

sO

sl

s2

s3

to

t1

t2

t3

sO

sl

s2

s3

to

t1

t2

t3

rk

944
sO =

(Te2[(t0 >> 24) ] & 0xff000000) ~
(Te3[(t1 >> 16) & Oxff] & 0x00ff0000) A
(TeO[(t2 >> 8) & Oxff] & 0x0000ff00) ~

= TeO[t0O >> 24] ~ Tel[(tl >> 16) &
& Oxff] ~ Te3[t3 & Oxff] N rk[24];
= TeO[tl >> 24] N Tel[(t2 >> 16) &
& Oxff] ~ Te3[t0 & Oxff] ~ rk[25];
= TeO[t2 >> 24] ~ Tel[(t3 >> 16) &
& Oxff] ~ Te3[tl & Oxff] ~ rk[26];
= TeO[t3 >> 24] ~ Tel[(t0 >> 16) &
& Oxff] ~ Te3[t2 & Oxff] ~ rk[27];

= TeO[sO >> 24] ~ Tel[(sl >> 16) &
& Oxff] ~ Te3[s3 & Oxff] ~ rk[28];
= TeO[sl >> 24] "~ Tel[(s2 >> 16) &
& Oxff] » Te3[sO & Oxff] N rk[29];
= TeO[s2 >> 24] » Tel[(s3 >> 16) &
& Oxff] ~ Te3[sl & Oxff] ~ rk[30];
= TeO[s3 >> 24] N Tel[(sO >> 16) &
& Oxff] ~ Te3[s2 & Oxff] ~ rk[31];

= TeO[t0 >> 24] ~ Tel[(tl >> 16) &
& Oxff] ~ Te3[t3 & Oxff] ~ rk[32];
= TeO[tl >> 24] N Tel[(t2 >> 16) &
& Oxff] ~ Te3[t0 & Oxff] ~ rk[33];
= TeO[t2 >> 24] ~ Tel[(t3 >> 16) &
& Oxff] ~ Te3[tl & Oxff] ~ rk[34];
= TeO[t3 >> 24] ~ Tel[(t0 >> 16) &
& Oxff] ~ Te3[t2 & Oxff] ~ rk[35];

= TeO[sO >> 24] N Tel[(sl >> 16) &
& Oxff] » Te3[s3 & Oxff] ~ rk[36];
= TeO[sl >> 24] ~ Tel[(s2 >> 16) &
& Oxff] ~ Te3[sO & Oxff] ~ rk[37];
= TeO[s2 >> 24] ™ Tel[(s3 >> 16) &
& Oxff] ~ Te3[sl & Oxff] ~ rk[38];
= TeO[s3 >> 24] ™ Tel[(sO >> 16) &
& Oxff] » Te3[s2 & Oxff] ~ rk[39];

+= key->rounds << 2;
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C.1 The OpenSSL AES Encryption Code

(Tel[(t3 ) & Oxff] & 0x000000ff) ~

rk[O[;

{ (out)[0] = (u8)((s0) >> 24); (out)[1] = (u8)((s0) >> 16); (
out)[2] = (u8)((s0) >> 8); (out)[3] = (u8)(s0); }

sl =

(Te2[(t1 >> 24) ] & 0xffo00000) ~

(Te3[(t2 >> 16) & Oxff] & 0x00ff0000) ~

(TeO[(t3 >> 8) & O0xff] & 0x0000ffo0) ~

(Tel[(tO ) & Oxff] & 0x000000ff) ~

rk[1];

{ (out + 4)[0] = (u8)((sl) >> 24); (out + 4)[1] = (u8)((sl) >>
16); (out + 4)[2] = (u8)((s1l) >> 8); (out + 4)[3] = (u8)(
s1); }

s2 =

(Te2[(t2 >> 24) ] & 0xffo00000) ~

(Te3[(t3 >> 16) & Oxff] & 0x00ff0000) ~

(TeO[(t0O >> 8) & O0xff] & 0x0000ffo0) ~

(Tel[(tl ) & Oxff] & 0x000000ff) ~

rk[2];

{ (out + 8)[0] = (u8)((s2) >> 24); (out + 8)[1] = (u8)((s2) >>
16); (out + 8)[2] = (u8)((s2) >> 8); (out + 8)[3] = (u8)(
s2); }

s3 =

(Te2[(t3 >> 24) ] & 0xffo00000) ~
(Te3[(t0 >> 16) & Oxff] & 0x00ff0000) ~
(TeO[(t1 >> 8) & O0xff] & 0x0000ffo0) ~
(Tel[(t2 ) & Oxff] & 0x000000ff) ~
rk[3];

{ (out + 12)[0] = (u8)((s3) >> 24); (out + 12)[1] = (u8)((s3)
>> 16); (out + 12)[2] = (u8)((s3) >> 8); (out + 12)[3] = (
ug)(s3); ki
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