, Avec la méthode de projection oblique HR/MPE, il est nécessaire d'ajouter manuellement les composantes représentant les courants couplés avec un circuitélectriquecircuitélectrique. En effet, celles-ci ne sont pas nécessairement retenues par les différents algorithmes de sélection des composantes. Or ne pas inclure ce type d'inconnues reviendrait avec ce type de méthodesméthodes, p.89

, Vitesse de rotation constante

, B Validation sur l'essai en court-circuit Les paramètres de l'essai en court-circuit sont les suivants

, Les bobines du stator sont en court-circuit : seule la résistance du bobinage R 0

, Le rotor tournè a la vitesse nominale (de façon constante

, La simulation est lancée sur N t = 900 pas de temps correspondantàcorrespondantà 10 périodespériodesélectriques

, La machine a ´ eté magnétiséè a l'´ etat initial. Cela signifie qu'un premier calcul qui ne prend pas en compte leséquationsleséquations de circuit permet de calculer l'´ etat magnétique initial X 0 de la MSAP

, Les bobines au stator ne sont pas connectésconnectésà un circuitélectriquecircuitélectrique 2. Le rotor est entra??néentra??né par un couple mécanique constant ? M = 6N.m

, La simulation est lancée sur N t = 9

, La machine a ´ eté magnétiséè a l'´ etat initial

, Lesprobì eme réduit s'´ ecrit alors : 1. Nombre de pôles : 4 2. Fréquence nominale : f n = 50Hz 3. Puissance nominale : P n =

, Vitesse nominale : ? n = 1500tr/minàminà 50Hz 7. Couple nominal : ? n = 42Nm 8

, Les rayons intérieur et extérieur du stator sont respectivement de 75 mm et 110 mm respectivement, avec une profondeur de 140 mm. Le rotor est quantàquantà lui constitué de tôles M400-50A. Les rayons intérieur et extérieur du rotor sont respectivement de 24 mm et 74.5 mm respectivement, avec une profondeur de 140 mm. Il possède 30 encoches semi-ouvertes avec des barres de cuivre CuA1 H12 de longueur 276 mm, Le stator est composé de tôles M800-50HA d'´ epaisseur 0.5 mm. Il comporte 48 encoches avec un bobinagè a 4 pôles concentriques

J. Lumley, Atmospheric turbulence and radio wave propagation, vol.790, pp.166-178, 1967.

L. Sirovich, Turbulence and the dynamics of coherent structures. I-Coherent structures. IISymmetries and transformations. III-Dynamics and scaling, Quarterly of applied mathematics, vol.45, pp.561-571, 1987.

T. Bechtold, B. Salimbahrami, E. B. Rudnyi, B. Lohmann, and J. G. Korvink, Krylov-SubspaceBased Order Reduction Methods Applied to Generate Compact-Electro-Thermal Models for MEMS, Proceedings of MSM, 2002.

G. Lassaux and K. Willcox, Model reduction for active control design using multiple-point Arnoldi methods, vol.616, 2003.

F. Chinesta, A. Ammar, and E. Cueto, On the use of proper generalized decompositions for multidimensional models. Revue européenne desélémentsdeséléments finis, vol.8, 2005.

M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An empirical interpolation method : application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Mathematique, vol.339, issue.9, pp.667-672, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00021702

S. Chaturantabut and D. C. Sorensen, Discrete Empirical Interpolation for nonlinear model reduction, Decision and Control, 2009.

C. Ccc, Proceedings of the 48 th IEEE Conference on, pp.4316-4321, 2009.

R. Everson and L. Sirovich, Karhunenlò eve procedure for gappy data, vol.12, 1995.

K. Willcox, Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition, Computers & fluids, vol.35, issue.2, pp.208-226, 2006.

D. Ryckelynck, A priori hyperreduction method : an adaptive approach, Journal of Computational Physics, vol.202, issue.1, pp.346-366, 2005.

P. Astrid and A. Verhoeven, Application of Least Squares MPE technique in the reduced order modeling of electrical circuits, Proceedings of the 17 th Int. Symp. MTNS, pp.1980-1986, 2006.

G. Fournet and . Electromagnétisme, , vol.2, 1979.

P. Ciarlet, Notes de cours sur les Equations de Maxwell, 2013.

F. Rapetti and G. Rousseaux, Implications of galilean electromagnetism in numerical modeling, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00946904

M. , L. Bellac, J. Levy-leblond, and . Galilean, , vol.14, pp.217-234, 1973.

P. Dular, Modélisation du champ magnétique et des courants induits dans des systèmes tridimensionnels non linéaires, 1994.

T. Henneron, ContributionàContributionà la prise en compte des grandeurs globales dans lesprobì emes d'´ electromagnétisme résolus avec la méthode desélémentsdeséléments finis, vol.1, 2004.

R. Albanese and G. Rubinacci, Formulation of the eddy-current problem, IEE Proceedings APhysical Science, Measurement and Instrumentation, vol.137, issue.1, pp.16-22, 1990.

A. A. Rodríguez and A. Valli, Eddy Current Approximation of Maxwell Equations : Theory, Algorithms and Applications, vol.4, 2010.

Y. and L. Menach, Contribution a la modelisation numerique tridimensionnelle des systemes electrotechniques, 1999.

Z. Ren and A. Razek, Local force computation in deformable bodies using edge elements. Magnetics, IEEE Transactions on, vol.28, issue.2, pp.1212-1215, 1992.

Z. Tang, Estimateurs d'erreur a posteriori résiduels enélémentsenéléments finis pour la résolution de probì emes d'´ electromagnétisme en formulations potentielles, 2012.

B. Heise, M. Kuhne, and U. Langer, A Mixed Variational Formulation for 3D Linear and Nonlinear Magnetosatics in the Space H 0 (rot) ? H(div), Hungarian Electronic Journal of Sciences, 1998.

S. Nicaise, Existence results for the a & ? magnetodynamic formulation of the Maxwell system, Applicable Analysis, vol.94, issue.5, pp.863-878, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00917597

S. Nicaise, Existence results for the A ? ? magnetodynamic formulation of the Maxwell system, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00917597

C. Geuzaine, High order hybrid finite element schemes for Maxwell's equations taking thin structures and global quantities into account, 2001.

F. Rapetti, Approximation deséquationsdeséquations de la magnétodynamique en domaine tournant par la méthode desélémentsdeséléments avec joints, 2000.

T. W. Preston, A. B. Reece, and P. S. Sangha, Induction motor analysis by time-stepping techniques, IEEE Transactions on Magnetics, vol.24, issue.1, pp.471-474, 1988.
DOI : 10.1109/20.43959

C. Bernardi, Y. Maday, C. Mavriplis, and . Patera, The mortar element method applied to spectral discretizations, Proceedings of the Seventh International Conference on Finite Element Methods in Flow Problems, 1989.

D. Rodger, H. C. Lai, and P. J. Leonard, Coupled elements for problems involving movement
DOI : 10.1109/20.106375

, IEEE Transactions on magnetics, vol.26, issue.2, pp.548-550, 1990.

L. Montier, S. Clénet, T. Henneron, and B. Goursaud, Rotation movement based on the spatial Fourier interpolation method, IEEE Transactions on Magnetics, vol.53, issue.6, pp.1-4, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01519739

B. Davat, Z. Ren, and M. Lajoie-mazenc, The movement in field modeling, IEEE Transactions on Magnetics, vol.21, issue.6, pp.2296-2298, 1985.

A. Razek, J. Coulomb, M. Feliachi, and J. Sabonnadiere, Conception of an air-gap element for the dynamic analysis of the electromagnetic field in electric machines, IEEE Transactions on Magnetics, vol.18, issue.2, pp.655-659, 1982.

I. A. , Tsukerman Overlapping finite elements for problems with movement, IEEE Transactions on Magnetics, vol.28, issue.5, pp.2247-2249, 1992.

O. J. Antunes, J. P. Bastos, N. Sadowski, A. Razek, L. Santandrea et al., Comparison between nonconforming movement methods, IEEE Transactions on Magnetics, vol.42, issue.4, p.599, 2006.
DOI : 10.1109/tmag.2006.871431

Z. Ren and A. Razek, Force calculation by Maxwell stress tensor in 3D hybrid finite elementboundary integral formulation, IEEE Transactions on Magnetics, vol.26, issue.5, pp.2774-2776, 1990.

B. Boualem, ContributionàContributionà la modélisation des systèmessystèmesélectrotechniquessystèmesélectrotechniquesà l'aide des formulations en potentiels : applicationàapplication`applicationà la machine asynchrone, 1997.

E. Vassent, G. Meunier, A. Foggia, and G. Reyne, Simulation of induction machine operation using a step by step finite element method coupled with circuits and mechanical equations. Magnetics, IEEE Transactions on, vol.27, issue.6, pp.5232-5234, 1991.

C. Eckart and G. Young, The approximation of one matrix by another of lower rank, Psychometrika, vol.1, issue.3, pp.211-218, 1936.

E. Anderson, Z. Bai, and C. Bischof, Users' guide. SIAM, 1999.

A. C. Antoulas, D. C. Sorensen, and S. Gugercin, A survey of model reduction methods for large-scale systems, Contemporary mathematics, vol.280, pp.193-220, 2001.

I. Jolliffe, Principal component analysis, 2002.

M. N. Albunni, V. Rischmuller, T. Fritzsche, and B. Lohmann, Model-order reduction of moving nonlinear electromagnetic devices. Magnetics, IEEE Transactions on, vol.44, issue.7, pp.1822-1829, 2008.

M. N. Albunni, Model Order Reduction of Moving Nonlinear Electromagnetic Devices, 2010.

T. Henneron and S. Clénet, Model order reduction of quasi-static problems based on POD and PGD approaches, The European Physical Journal Applied Physics, vol.64, issue.02, p.24514, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00851978

D. Schmidthausler and M. Clemens, Low-order electroquasistatic field simulations based on proper orthogonal decomposition, IEEE Transactions on Magnetics, vol.48, issue.2, pp.567-570, 2012.

Y. Sato and H. Igarashi, Model reduction of three-dimensional eddy current problems based on the method of snapshots. Magnetics, IEEE Transactions on, vol.49, issue.5, pp.1697-1700, 2013.

D. Schmidthausler, S. Schops, and M. Clemens, Reduction of Linear Subdomains for Non-Linear Electro-Quasistatic Field Simulations. Magnetics, IEEE Transactions on, vol.49, issue.5, pp.1669-1672, 2013.

Q. Du, V. Faber, and M. Gunzburger, Centroidal Voronoi tessellations : applications and algorithms, SIAM review, vol.41, issue.4, pp.637-676, 1999.

J. Burkardt, M. Gunzburger, and H. Lee, POD and CVT-based reduced-order modeling of navier-stokes flows, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.1, pp.337-355, 2006.

Q. Du and M. Gunzburger, Model reduction by proper orthogonal decomposition coupled with centroidal Voronoi tessellation, Proc. Fluids Engineering Division Summer Meeting, pp.2002-31051, 2002.

T. S. Nguyen, J. Guichon, O. Chadebec, and G. Meunier, Equivalent circuit synthesis method for reduced order models of large scale inductive peec circuits, CEFC 2012, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00757554

A. Pierquin, T. Henneron, S. Clénet, and S. Brisset, Model-Order Reduction of MagnetoquasiStatic Problems Based on POD and Arnoldi-Based Krylov Methods. Magnetics, IEEE Transactions on, vol.51, issue.3, pp.1-4, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01163841

B. Moore, Principal component analysis in linear systems : Controllability, observability, and model reduction, IEEE Transactions on, vol.26, issue.1, pp.17-32, 1981.

K. Willcox and J. Peraire, Balanced model reduction via the proper orthogonal decomposition, AIAA journal, vol.40, issue.11, pp.2323-2330, 2002.

S. Volkwein, Proper orthogonal decomposition : applications in optimization and control. CEAEDFINRIA Numerical Analysis Summer School, 2007.

W. Wang, G. N. Paraschos, and M. N. Vouvakis, Fast Frequency Sweep of FEM Models via the Balanced Truncation Proper Orthogonal Decomposition. Antennas and Propagation, IEEE Transactions on, vol.59, issue.11, pp.4142-4154, 2011.

L. Montier, T. Henneron, B. Goursaud, and S. Clénet, Balanced proper orthogonal decomposition applied to magnetoquasi-static problems through a stabilization methodology, IEEE Transactions on Magnetics, vol.53, issue.7, pp.1-10, 2017.

J. R. Phillips and L. M. , Silveira Poor man's TBR : a simple model reduction scheme. ComputerAided Design of Integrated Circuits and Systems, IEEE Transactions on, vol.24, issue.1, pp.43-55, 2005.

C. W. Rowley, Model reduction for fluids, using balanced proper orthogonal decomposition, International Journal of Bifurcation and Chaos, vol.15, issue.03, pp.997-1013, 2005.

G. Rozza, D. B. Huynh, and A. T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Archives of Computational Methods in Engineering, vol.15, issue.3, pp.229-275, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01722593

A. Quarteroni, G. Rozza, and A. Manzoni, Certified reduced basis approximation for parametrized partial differential equations and applications, Journal of Mathematics in Industry, vol.1, issue.1, p.1, 2011.

M. W. Hess, S. Grundel, and P. Benner, Estimating the inf-sup constant in reduced basis methods for time-harmonic Maxwell's equations. Microwave Theory and Techniques, IEEE Transactions on, vol.63, issue.11, pp.3549-3557, 2015.

M. A. Jabbar and A. B. Azeman, Fast optimization of electromagnetic-problems : the reducedbasis finite element approach, IEEE transactions on magnetics, vol.40, issue.4, pp.2161-2163, 2004.

J. S. Peterson, The reduced basis method for incompressible viscous flow calculations, SIAM Journal on Scientific and Statistical Computing, vol.10, issue.4, pp.777-786, 1989.

M. Drohmann, B. Haasdonk, and M. Ohlberger, Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation, SIAM Journal on Scientific Computing, vol.34, issue.2, pp.937-969, 2012.

Z. Ren, Influence of the rhs on the convergence behaviour of the curl-curl equation, IEEE transactions on magnetics, vol.32, issue.3, pp.655-658, 1996.

A. Nouy, Proper generalized decompositions for a priori model reduction of problems formulated in tensor product spaces : Alternative definitions and algorithms, Proceedings of the Seventh International Conference on Engineering Computational Technology, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01008716

A. Nouy, A priori model reduction through proper generalized decomposition for solving timedependent partial differential equations, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.23, pp.1603-1626, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00455635

P. Ladevèze, J. Passieux, and D. Néron, The LATIN multiscale computational method and the proper generalized decomposition, Computer Methods in Applied Mechanics and Engineering, vol.199, issue.21, pp.1287-1296, 2010.

T. Henneron and S. Clenet, Application of the PGD and DEIM to solve a 3D Non-Linear Magnetostatic Problem coupled with the Circuit Equations. Magnetics, IEEE Transactions, p.99, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01273222

Z. Qin, H. Talleb, and Z. Ren, A proper generalized decomposition-based solver for nonlinear magnetothermal problems, IEEE Transactions on Magnetics, vol.52, issue.2, pp.1-9, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01229635

P. Astrid, Reduction of process simulation models : a proper orthogonal decomposition approach, 2004.

P. Astrid, S. Weiland, K. Willcox, and T. Backx, Missing Point Estimation in Models Described by Proper Orthogonal Decomposition. Automatic Control, IEEE Transactions on, vol.53, issue.10, pp.2237-2251, 2008.

K. Carlberg, C. Farhat, J. Cortial, and D. Amsallem, The gnat method for nonlinear model reduction : effective implementation and application to computational fluid dynamics and turbulent flows, Journal of Computational Physics, vol.242, pp.623-647, 2013.

B. Peherstorfer, D. Butnaru, K. Willcox, and H. Bungartz, Localized discrete empirical interpolation method, SIAM Journal on Scientific Computing, vol.36, issue.1, pp.168-192, 2014.

R. Zimmermann and K. Willcox, An accelerated greedy missing point estimation procedure, SIAM Journal on Scientific Computing, vol.38, issue.5, pp.2827-2850, 2016.

S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, How to find a good submatrix, Matrix Methods : Theory, Algorithms And Applications : Dedicated to the Memory of Gene Golub, pp.247-256, 2010.

N. C. Nguyen, A. T. Patera, and J. Peraire, A best points interpolation method for efficient approximation of parametrized functions, International journal for numerical methods in engineering, vol.73, issue.4, pp.521-543, 2008.

T. Henneron, L. Montier, A. Pierquin, and S. Clénet, Comparison of DEIM and BPIM to Speed up a POD-based Nonlinear Magnetostatic Model, IEEE Transactions on Magnetics, vol.53, issue.6, pp.1-4, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01519746

Z. Drmac and S. Gugercin, A new selection operator for the discrete empirical interpolation method-improved a priori error bound and extensions, SIAM Journal on Scientific Computing, vol.38, issue.2, pp.631-648, 2016.

M. Gu and S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR factorization, SIAM Journal on Scientific Computing, vol.17, issue.4, pp.848-869, 1996.

I. V. Oseledets, S. Dolgov, V. Kazeev, O. Lebedeva, and T. Mach, TT-toolbox 2.2. available online, 2012.

C. Plateforme-code,

T. Henneron and S. Clenet, Model Order Reduction of Non-Linear Magnetostatic Problems Based on POD and DEI Methods. Magnetics, IEEE Transactions on, vol.50, issue.2, pp.33-36, 2014.

L. Montier, T. Henneron, S. Clénet, and B. Goursaud, Transient simulation of an electrical rotating machine achieved through model order reduction, Advanced Modeling and Simulation in Engineering Sciences, vol.3, issue.1, p.1, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01949914

L. Montier, A. Pierquin, T. Henneron, and S. Clénet, Structure preserving model reduction of lowfrequency electromagnetic problem based on pod and deim, IEEE Transactions on Magnetics, vol.53, issue.6, pp.1-4, 2017.

S. Burgard, O. Farle, D. Klis, and R. Dyczij-edlinger, Order-reduction of fields-level models with affine and non-affine parameters by interpolation of subspaces, vol.48, pp.170-175, 2015.

D. Amsallem and U. Hetmaniuk, A posteriori error estimators for linear reduced-order models using krylov-based integrators, International Journal for Numerical Methods in Engineering, vol.102, issue.5, pp.1238-1261, 2015.

D. Wirtz, D. C. Sorensen, and B. Haasdonk, A posteriori error estimation for deim reduced nonlinear dynamical systems, SIAM Journal on Scientific Computing, vol.36, issue.2, pp.311-338, 2014.

A. Quarteroni, R. Sacco, and F. Saleri, Matematica numerica, 2008.
DOI : 10.1007/978-88-470-0818-2

R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK users' guide : solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods, vol.6, 1998.

L. Montier, T. Henneron, S. Clénet, and B. Goursaud, Robust model order reduction of an electrical machine at startup through reduction error estimation, International Journal of Numerical Modelling : Electronic Networks, 2017.

E. Creusé, S. Nicaise, and R. Tittarelli, Space-time residual-based a posteriori estimators for the a-? magnetodynamic formulation of the maxwell system, Computational Methods in Applied Mathematics, vol.14, issue.4, pp.429-460, 2014.

J. Cheaytani, Calcul parélémentsparéléments finis des pertes supplémentaires dans les motorisations performantes, vol.1, 2016.

M. Simulink and M. A. Natick, The mathworks, 1993.

L. Montier, T. Henneron, S. Clénet, and B. Goursaud, Proper generalized decomposition applied on a rotating electrical machine, IEEE Transactions on Magnetics, vol.54, issue.3, pp.1-4, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01691115