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Professeur, École Centrale de Lille (IEMN) Examinateur

Laurence BODELOT

Professeur Assistante, Ecole Polytechnique (LMS) Co-directeur de thèse
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ABSTRACT

Thepresentworkdealswiththestabilityandpost-bifurcationresponseof isotropicmagnetorheolog-

ical elastomers (MREs). MREs are elastomers comprising a finite volume fraction of magnetizable

iron particles distributed randomly in the volume. A nonlinear magnetoelastic film/substrate sys-

tem is experimentally, numerically and theoretically exploited to obtain active control of surface

roughness. Thenon-intuitive interplaybetweenmagneticfieldandelasticdeformationowestomate-

rial and geometry selection, namely, a ferromagnetic particle composite film bonded on a compliant

passive foundation. Cooperation of two otherwise independent loading mechanisms–mechanical

pre-compression and magnetic field–allows to bring the structure near a marginally stable state and

then destabilize it with either magnetic or mechanical fields. We demonstrate for the first time that

the critical magnetic field is a decreasing function of pre-compression and vice versa. The experi-

mental results are probed successfully with full-field finite element simulations at large strains and

magnetic fields. A theoretical magnetomechanical bifurcation analysis on an infinite magnetoe-

lastic system is employed to explore the effect of the interlayer combined properties on the critical

response and is compared with the available numerical results.

With the perspective of applying the principle of surface actuation to new magnetomechanically

triggered patterns, we further investigate the post-bifurcation of an entirely magnetorheological bi-

layerblock. Theunderlyingideaistocreatedifferent interlayercontrastsofmagneticandmechanical

properties allowing us to trigger a larger range of surface patterns than that already obtained when

using a MRE film on a passive (magnetically insensitive) foundation. Post-bifurcation calculations

of MRE films bonded on MRE substrates allow to reveal novel patterns that lead to significant

curvature localisation and crinkling. In all cases studied, the magnetoelastic coupling allows for the

reversible on/off control of surface patterning under adjustable critical magnetic and mechanical

fields for a single specimen and thus, this study constitutes a first step towards realistic active haptic

and morphing devices.

4



RESUMÉ

Cetteétudetraitedelastabilitéetlapost-bifurcationdesélastomèresmagnétorhéologiquesisotropes

(MRE). Les MRE sont des élastomères comprenant une fraction volumique finie de particules de

fer magnétisables, réparties de façon aléatoire dans le volume. Plus précisément, un système de

film/substrat magnéto-élastique non linéaire est étudié expérimentalement, numériquement et

théoriquement pour obtenir un contrôle actif de la rugosité de la surface du film. L’interaction

non-intuitive entre le champ magnétique et la déformation élastique est due au choix des matériaux

et de la géométrie du système, à savoir un film composite de particules ferromagnétiques lié à un

substrat passif souple. La coopération de deux mécanismes qui sont par ailleurs indépendants, la

pré-compression mécanique et le champ magnétique, permet de rapprocher la structure d’un état

marginalement stable et puis de la rendre instable par des champs magnétiques ou mécaniques.

Nous démontrons pour la première fois que le champ magnétique critique est une fonction décrois-

sante de la pré-compression et vice versa. Les résultats expérimentaux sont ensuite sondés avec

succès par des simulations à champs complets par éléments finis en grandes déformations et champs

magnétiques.

Une analyse théorique de bifurcation magnéto-mécanique sur un système magnéto-élastique

infini est également utilisée pour explorer l’effet des propriétés combinées sur la réponse critique.

En utilisant différents matériaux mous allant du MPa (caoutchoucs) au kPa (gels), nous constatons

que l’augmentation de la douceur du matériau permet de déclencher des instabilités avec des champs

magnétiquesnettementplus faibles età l’intérieurde la sensibilitédes configurationsdecompression

réalistes. Cela s’explique par le fait que plus les couches sont molles, plus elles se déforment sous

le même état de magnétisation. Par conséquent, la façon la plus efficace possible de réduire les

champs critiques et d’élargir la gamme des pré-compressions appliquées est d’utiliser des matériaux

aussi souples que possible, par exemple des gels polymères de module de cisaillement de l’ordre du

kPa. En outre, nous montrons que lorsque on utilise la nature magnéto-élastique des matériaux

sous une forme combinée, le contraste de rigidité entre les couches Gs/G f n’est plus suffisant pour

déterminer la charge critique et les modes de bifurcation. Dans la bifurcation magnéto-mécanique,

le flambement dépend du Gs/G f , ainsi que sur les valeurs absolues des modules de cisaillement, Gs

et G f . Ceci contraste avec le flambement purement mécanique sous incompressibilité, où seul le

rapport Gs/G f relatif entraîne la réponse.
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Dans la perspective d’élargir l’activation de surface à de nouveaux motifs magnéto-mécaniques,

nous étudions plus en détail la post-stabilité d’un système film/substrat entièrement magnéto-

rhéologique. L’idée sous-jacente est de créer différents contrastes de propriétés magnétiques/mé-

caniques entre les couches afin de déclencher une gamme de motifs de surface plus riche que celle déjà

obtenue en utilisant un film MRE sur un substrat passif. Les calculs post-bifurcation des films MRE

liés à des substrats MRE permettent de mettre en évidence de nouveaux motifs qui conduisent à une

localisationde courbure très importante et àdu “crinkling” (gondolement). Pour ce faire, nous effec-

tuons une analyse de localisation de courbure dans l’espace de double paramètre de pré-compression

et de champ magnétique appliqué et nous montrons qu’il s’agit d’une caractéristique intrinsèque

des MRE. Le mécanisme de formation du crinkling est fortement lié à la répulsion des interactions

magnéto-élastiques. Si on tient compte de l’accouplement magnéto-élastique, l’accouplement entre

la courbure de la surface et la polarisation macroscopique magnétique, conduit à l’émergence d’une

couche (largeur de bande) dans laquelle la courbure est très concentrée.

Danstouslescasétudiés, lecouplagemagnéto-élastiquepermetlecontrôleréversibledel’apparition

(/disparition) de motifs de surface sous des champs magnétiques et mécaniques critiques ajustables.

Par conséquent, cette étude constitue un premier pas vers des dispositifs haptiques et morphiques

actifs.
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CHAPTER I

INTRODUCTION

Interest in the buckling behavior of soft materials has grown in the recent years, with a particular

focus on the potential of creating controllable meta-materials with tunable properties. Inspired by

natural and biological processes, such as naturally occuring photonic structures in butterflies (see

Vukusic and Sambles, 2003) and wetting properties of lotus leaves (see Bhushan and Jung, 2011),

attention has been drawn to the use of hierarchical architectures, spanning several length scales

from nanometer to centimeter sizes. Such a concept has been further developed by the technological

improvements in lithography for fabrication of small length periodic structures (e.g., Lai et al., 2005,

Moon et al., 2005). The hierarchical buckling behavior results from geometrical effects coupled with

the material properties of the structural members. Composite materials, such as micron-sized mag-

netic particles embedded in polymeric-based soft matrices (see Fig.I.1), give rise to a magnetoelastic

macroscopic response when subjected to combined magnetomechanical external stimuli (e.g., see

Bodelot et al., 2016, Danas et al., 2012). In particular, the magnetorheological elastomers (MRE),

i.e., ferromagnetic particle-impregnated elastomers, exhibit relatively large deformations (in the

order of 10− 40%), while their response is extremely fast upon application of a magnetic field (in

order of milliseconds) (e.g., see Coquelle et al., 2006, Vidal-Verdu and Hafez, 2007). Under appro-

priate material design, internal reorganization of the fields occurs as the magnetization vectors of

the particles tend to align withan externally applied magnetic field, see Fig.I.2. Hence, magnetically

triggered instabilities emerge in a reversible and repeatable fashion if the particle microstructure

and macroscopic geometry is unfavorably oriented with respect to the applied magnetic field (e.g.,

see Danas and Triantafyllidis, 2014, Huang et al., 2016).

From a novel perspective and by taking advantage of the magnetomechanical coupling, such

material-systems are potentially capable of operating near and beyond “marginally stable” regimes

(e.g., Grabovsky and Truskinovsky, 2013). Such a response leads us to attempt controlling MREs

shape when combined with an appropriate geometry, similarly to most biological systems, e.g., skin

wrinkles, contraction of muscles etc. Our deep interest lies in developing magnetosensitive material-

structures whose shape can be remotely controlled by external magnetic fields (e.g., see Kankanala

and Triantafyllidis, 2008, Oukhaled et al., 2012, Wilhelm et al., 2003). Such magnetomechanical

instabilities can later be exploited in surface patterning for haptic applications (e.g., Horii et al.,

7



a b

Figure I.1: Scanning Electron Micrograph (200x) of a, particle chain alignment in 10% particle volume

fraction MRE, b, randomly distributed particles in 30% particle volume fraction MRE (Pössinger et al.,

2014).

2018, Kawasetsu et al., 2018a, Streque et al., 2010), actively controlled stiffness for cell-growth

(e.g., Wang and Stamenovic, 2000), as well as tunable optical (e.g., Zhang et al., 2008b), auxetic

(e.g., Bertoldi et al., 2008, Danas, 2017) and acoustic (e.g., Bertoldi and Boyce, 2008) properties

under marginal changes in the applied magnetic fields. However, unlike the current modeling of

hierarchical composites, MREs require the development of novel experimental techniques and ad-

vanced nonlinear magnetomechanical models. In this way, one could tailor the desired macroscopic

instability response at finite strains and large magnetic fields.

The motivation of this study thus lies in the magnetomechanical coupling for tailored insta-

bilities. The properties of the magnetorheological elastomers are of main interest here and thus,

require a thorough review. MREs belong to the class of the so-called “active” smart materials, i.e.,

materials that respond in a pre-determined manner to given environmental stimulations, reverting

back to their original state as soon as the stimulus is removed (Takagi, 1990). Such external stimuli

include stress, temperature, pH, moisture, electric or magnetic fields. Available active materials

include piezoelectric ceramics, shape memory alloys, electroactive polymers and magnetostrictive

materials.

Thefirstmagneticallyactivematerials reported in literaturewerefluid-stateanaloguesofMREs.

The magnetorheological fluids (MRF) typically consist of (sub-)micron magnetically susceptible

particles randomly dispersed in a fluid (Rabinow, 1948). When such a suspension is subjected to a

magneticfield, theparticlesacquireamagneticpolarizationandformchains. Tothatend, thesystem

increases its effective viscosity two or three orders of magnitude, while changing from Newtonian

to non-Newtonian fluid to the point of becoming a viscoelastic solid (e.g., see Ginder, 1996, 1998,

Jolly et al., 1999). The physical mechanism behind viscosity increase owes to the alignment of the

microscopic (in the range of 0.1− 10µm) particles along the lines of the magnetic flux. However,

a distinction has to be made between MR fluids and ferrofluids. Ferrofluids contain nanoparticles

suspended by Brownian motion (e.g., see Fannin et al., 1987). In contrast, the particles of MRF

are primarily on the micrometre-scale and thus, are too dense for Brownian motion to keep them

suspended (Lemaire et al., 1995).

8



I.1. FABRICATION AND BEHAVIOR OF MRES

I.1 Fabrication and behavior of MREs

Particle sedimentation of MRFs has been an obstacle to their rapid emergence in engineering ap-

plications, but see recent advances in Feng et al. (2015), Liu et al. (2015). Such a drawback is well

overcome by replacing the fluid matrix with a solid matrix. In this way, magnetic particles of larger

size are able to be used (Davis, 1999). The particles can be either randomly distributed within the

composite or aligned in chain-structures by curing the composite in the presence of a magnetic field,

see Fig.I.1. Indeed, when crosslinking the elastomer under an applied magnetic field, field-induced

interparticle interactions promote the formation of particle chains aligned along the field direction

(e.g., see Bunoiu and Bica, 2016, Pössinger et al., 2014). That leads to a transversely isotropic

macroscopic response (e.g., see Carlson and Jolly, 2000, Chen et al., 2007).

To enhance particle dispersion and structuring, low viscosity polymeric matrices are preferred.

Several research groups have made use of gels, silicones and rubbers as soft matrices (e.g., see Gin-

der et al., 1999, Psarra et al., 2017, Wang et al., 2006), easily processed from liquid pre-polymers

combined with the appropriate hardeners. Natural or nitrile rubbers have also been used in biome-

chanical applications (e.g., see Gong et al., 2005). The effective behavior of MREs depends on

fabrication and material parameters, such as: the matrix composition (e.g., Lokander and Sten-

berg, 2003, Tian et al., 2013), the initial magnetization state of the particles (e.g., Mitsumata et al.,

2002, Shiga et al., 1995), their size and shape (e.g., Demchuk and Kuzmin, 2002, Peng et al., 2009),

the filler volume fraction (e.g., Bednarek, 1999, Zhu et al., 2012), the particle/matrix adhesion (e.g.,

Damiani and Sun, 2017, Qin and Peng, 2013, Qing et al., 2010), the particle microstructure gen-

erated during curing (e.g., Bossis and Lemaire, 1991, Ginder et al., 1999). A recent work of Wang

et al. (2013) on conductive MREs also indicated that the curing temperature affects the electrical

conductivity of the composites.

The mainmechanisms resulting in MREs magnetoelastic coupling combine the magnetic dipole-

dipole (polarization) interactionsbetweenparticles and, in certain cases, themagnetostrictiveprop-

erties of the particle materials (Shiga et al., 1995). Frequently used magnetic materials are the car-

bonyl iron and nickel; examples of more exotic inclusions are the Terfenol-D and Ni2MnGa. Among

them, iron is the most common filler material for its high saturation magnetization, high suscepti-

bility and low remnant magnetization (Kusakawa and Otani, 1964). High saturation magnetization

and susceptibility lead to high interparticle interactions and thereby, to strong magnetomechanical

coupling. Such a coupling can be macroscopically manifested in terms of effective stiffness increase

as the magnetic forces shorten the average particle distance. The macroscopic deformation of MREs

when placed within a uniform magnetic field is termed “magnetostriction” and shall not be con-

fused with the magnetostriction refering to very small strains induced by a magnetic field in bulk

magnetostrictive materials.

For inclusion materials with very small magnetostriction, such as carbonyl iron, nickel or cobalt,

the particles are effectively rigid and the principal mechanisms of magnetomechanical coupling

include magnetic torques and magnetic interactions between particles (Galipeau and Ponte Cas-

9



I.2. EXPERIMENTAL CHARACTERIZATION AND APPLICATIONS OF MRES

Figure I.2: Mechanism of MREs deformation upon application of an external magnetic field. The large

(green-color) arrows indicate the direction of the effective magnetic dipoles, i.e., from south to north pole.

The small (red-color) arrows indicate the direction of the particle motion caused by the magnetic forces

(Danas et al., 2012).

tañeda, 2012). For MREs containing particles of giant magnetostrictive materials, such as Terfenol-

D and Ni2MnGa, the magnetostriction of the particle materials also contributes to the coupling

(Duenas and Carman, 2000). Several experimental works have been concentrated on the optimal

particle volume fraction of iron fillers. That has been found 27-30% for the largest relative change

in stiffness when the particles reach magnetization saturation (e.g., see Davis, 1999, Shiga et al.,

1995). A higher concentration leads to rapid deterioration of the mechanical properties, as well as

to material stiffening that is greater than the increase in magnetostriction (e.g., see Lokander and

Stenberg, 2003, Shiga et al., 1995). This optimal volume fraction is also taken into account when

fabricating MREs with bimodal iron particles (e.g., see Li and Zhang, 2010). To increase their elec-

trical conductivity, graphite can be introduced to conventional MREs (e.g., see Tian et al., 2011).

That permits MREs to be used as sensing materials in force and magnetic field sensors (e.g., see Li

et al., 2009).

MREs as typical particle reinforced elastomers exhibit the Payne and the Mullins (e.g., see Diani

et al., 2009) effect at small and high deformations, respectively. Since their static and cyclic behavior

is dependent on the microstructural bonding, an adequate adhesion between the rigid particles

and the soft matrix is important. Several studies have been dedicated to the improvement of the

interfacial adhesion by modifying the chemical interaction between the matrix and the fillers (e.g.,

see Damiani and Sun, 2017, Pössinger et al., 2014, Qin and Peng, 2013, Qing et al., 2010, Wang et al.,

2013, 2006). Additives are also commonly used to adjust the mechanical and chemical properties

or electrical performance of MREs (e.g., see Leblanc, 2002, Zhang et al., 2008a). Silicone oil is an

additive to increase the distance between the macro-molecules of the matrix (e.g., see Gong et al.,

2005). Graphite powder is an additive that affects the magnetostriction and electrical conductivity

of MREs (e.g., see Bica, 2009, Li et al., 2009). The volume resistivity, crosslink density, tensile

strength, elongation at break, shore hardness and morphology structure are the main parameters

investigated in these works.

I.2 Experimental characterization and applications of MREs

Themicromagnetic interactionsunderanexternallyappliedmagneticfield result infield-dependent

mechanical properties. The resulting effective response has been experimentally investigated under

10



I.2. EXPERIMENTAL CHARACTERIZATION AND APPLICATIONS OF MRES

both steady-state (e.g., Shiga et al., 1995, Wang et al., 2006) and dynamic (e.g., Norouzi et al., 2016,

Tian et al., 2011, Zhu et al., 2012) loading conditions. Jolly et al. (1996) performed quasi-static

shear tests on chain-structured MREs and showed that the magnetic field increases the effective

shear modulus of the composite. Bednarek (1999) measured the magnetostriction of composites

made with randomly distributed particles subjected to very high magnetic fields. Ginder et al.

(2002) and Guan et al. (2008) determined experimentally the magnetostriction of random and chain

structured MREs. Lanotte et al. (2003) investigated the effect of particle rotation on the average

magnetization of the composite. More recently, Diguet et al. (2010) have provided experimental and

theoretical results for the magnetostriction and magnetic saturation of composite samples formed

into a cylindrical shape and exposed to a remotely applied magnetic field. In the absence of a

mechanical loading, the length of the cylindrical specimen reduces when subjected to a magnetic

field along its axial direction. Using a theoretical framework for finitely strained MREs, Danas et al.

(2012) were the first to probe the experimentally measured magnetization and magnetostriction.

Theexperimental characterizationunder tensionandsimple shear (includingtheeffectofpre-stress)

was novel for having minor shape effects, i.e., the specimens were close to the poles of the magnet.

Taking into account the interfacial adhesion between the particles and the matrix, Bodelot et al.

(2016)characterizedMREcompositesunder largedeformationsandmagneticfields. Suchmaterials

have been found to have a small hysterisis in magnetostriction and none in magnetization (e.g., see

Bodelot et al., 2018, Danas et al., 2012, Yin et al., 2006).

The majority of studies on the dynamic viscoelastic behavior of MREs measure the shear defor-

mations (e.g., Chen et al., 2005, Eem et al., 2012, Norouzi et al., 2016, Zhu et al., 2012); that is a

common mode of operation of MRE materials in structural engineering. Such works mainly focus on

the identification of the frequency and strain amplitude effect on the dynamic stiffness (e.g., shear

storage modulus) and vibration damping properties (e.g., loss factor). The experimental findings

are usually fitted by modified simple viscoelastic models (e.g., the Maxwell (Eem et al., 2012), the

Kelvin-Voigt (Norouzi et al., 2016) and the four-parameter (Li et al., 2010) model) that include

the loading history on rate-dependent constitutive relationships. Li et al. (2010) performed dy-

namic tests on particle-column MREs under various harmonic loadings by means of a parallel-plate

rheometer,demonstratingthatsuchMREsbehaveas linearvisocoelasticmaterials. Zhuetal. (2012)

and Norouzi et al. (2016) studied MREs dynamic viscoelastic properties under varying fabrication

parameters, magnetic fields and frequencies in the shear mode. Kallio et al. (2007) tested spring

elements consisting of aligned and isotropic MREs in cyclic compression. Eem et al. (2012) carried-

out combined compression-shear type tests on aligned MREs by varying the distance between the

magnets among other parameters. Chen and Jerrams (2011) modeled the hysteresis obtained from

substituting cyclic loadings into constitutive relationships. Ha et al. (2016) also provided a method

to model the nonlinear hysteresis of MREs by means of describing functions used in structural fre-

quency analysis. Tiercelin et al. (2011a)a performed vibrating magnetometer and magneto-optical

Kerreffectmeasurementsonamagnetoelasticnanostructuredmultilayerdepositedontoapiezoelec-

tric actuator. Demonstrating the magnetoelectric switching of magnetization, that was exploited
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by Tiercelin et al. (2011b)b in the creation of a memory cell, based on a magnetic element with giant

magnetostriction embedded in a piezoelectric matrix. Such multiferroic memory-nanostructures

were found to exhibit magneto-electro-elastic coupling in dynamical behavior (e.g., see Giordano

et al., 2012, 2014).

On the basis of such results, MREs are interesting candidates for vibration control of structural

systems, similar to piezoelectric elements (e.g., see Celli et al., 2018, dell’Isola et al., 2004, Gripp and

Rade, 2018, Lossouarn et al., 2018, Qiu et al., 2004). Variable stiffness control and magnetostric-

tion take place quickly and reversibly, paving the way for tunable dampers and magnetomechanical

(micro-)actuators (e.g., see Liu et al., 2018) and (micro-)motors (e.g., see Ren and Gerhard, 1997).

In virtue of their damping properties under harmonic loadings, MREs are used in the automotive

industry(e.g., seeGinderetal., 1999)andarchitecture(e.g., seeCarlsonandJolly,2000). Avariable-

rate automotive suspension bushing of concentric sleeves made of MREs is currently used by Ford

(Ginder et al., 1999). Other technological advances include ferromagnetic elastomer microwires in

structural health monitoring, stress sensing, invisible cloaking, microwave absorption and biomed-

ical applications (e.g., see Qin and Peng, 2013, Qing et al., 2010). The strong field dependence of

the effective permittivity and transmission/reflection parameters (in the Gigahertz range) indicates

wire-arrays filler MREs as promising candidates for a variety of self-sensing applications (e.g., see

Peng et al., 2009). To that end, Hage-Ali et al. (2009) made use of PDMS substrates in the fab-

rication of reconfigurable microwave devices in high frequency bands. However, albeit potentially

applicable in sensors, actuators and haptic devices (e.g., Ginder et al., 2000, Lanotte et al., 2003),

a non-linear magnetoelastic system for active control of surface roughness has not been devised

yet. Moreover, most efforts have been concentrated in maximizing the magnetostrictive coupling in

MREs to increase the resulting deformations, with little success so far (e.g., see Bellan and Bossis,

2002, Carlson and Jolly, 2000, Coquelle et al., 2006, Ginder et al., 2002, 2000, Gong et al., 2005).

I.3 Theoretical frameworks and modeling of MREs

In the past two decades, there has been an increasing technological interest on MRE solids for both

their magnetostrictive response, as well as the instabilities they undergo. To that end, theoretical

frameworks have been developed to describe their behavior of strong magnetoelastic coupling. The

very first theoretical formulations of the magnetoelastic response date back to the 1950s and 1960s

and are classified into two main categories: (i) an Eulerian-based approach considering conservation

laws of continuum mechanics (e.g., see Maugin and Eringen, 972a, Pao, 1978, Pao and Yeh, 1973,

Tiersten, 1965, Truesdell and Toupin, 1960) and (ii) a Lagrangian-based approach considering the

minimization of potential energy functionals (e.g., see Brown, 1966, Maugin and Eringen, 972b,

Tiersten, 1965). Such approaches were developed independently of each other and give different

results correspondingly to the assumptions each one adopted. The main differences refer to the

background (Maxwell) stresses defined in the entire space, the mechanical jump (surface traction)

conditionatdiscontinious interfaces and thepotential energyof theapplied loads. However, a recent
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study of Kankanala and Triantafyllidis (2004) came to embrace all different frameworks under two

equivalent formulations (a Eulerian and a Lagrangian) that were proven to yield the same governing

equations and boundary/interface conditions.

In turn, the development of Lagrangian variational formulations under finite strains is more re-

centlyevidenced inaseriesofpapersbyDorfmannandcoworkers(e.g., seeBrigadnovandDorfmann,

2003, Dorfmann and Ogden, 2003, 2004, 2005), Kankanala and Triantafyllidis (e.g., see Kankanala

and Triantafyllidis, 2008, Kankanala, 2007, Kankanala and Triantafyllidis, 2004) and Steigmann

(2004) among others. On account of numerical solutions of boundary-value problems, the proposed

continuum formulations may be different but also equivalent. Their main distinction lies on the

choice of the independent magnetic variables. Dorfmann and coworkers (e.g., see Bustamante et al.,

2007, Dorfmann and Ogden, 2004) developed variational principles directly related to the primary

field equations, satisfied by the constitutively related magnetic field H and magnetic induction B.

The free-energy densities used in their work are purely phenomenological, avoiding to use the mag-

netizationvectorasan independentvariableor todecouple themagneticquantities intoan“applied”

and “perturbed”1 component. In contrast, Kankanala and Triantafyllidis (2004) make use of two

magnetic independent variables: the magnetization vector m and a magnetic vector potential A

(such as B = CurlA). The magnetization m is regarded, however, as a secondary quantity that can

be defined in terms of the primary B and H fields. It is noted that the magnetic potential A is a

continuous admissible vector field defined over the entire space, while the magnetization m vector

is defined only within the finite volume and is zero elsewhere. That should not rise frustration how-

ever, but be used correspondingly to the needs of the problem at hand. Additionally, the decoupling

approach in the work of Kankanala and Triantafyllidis (2008) is found very convenient when solving

bifurcation problems. There, the presence of the magnetoelastic solid does not perturb the magnetic

field of the free space along the principal solution, i.e., constant magnetic fields equal to the applied

(see contact with Section IV.1).

Regardless of the choise of the independent magnetic variables {H,B,M}, the proposed vari-

ational principles derive the same governing equations, boundary/continuity conditions. Yet, dif-

ferences have been observed on the magnetic counterpart of the potential energy. Using the (F,M)

formulation (F is the deformation gradient tensor such as F = ∇u+I, with u the displacement field

and I the identity tensor) requires the magnetic loading to be treated as a body force whose potential

is added to the total energy2 (e.g., see Kankanala and Triantafyllidis, 2008). In contrast, the (F,B)

formulation is able to derive the governing equations in the absence of body forces. In the latter

case, the loading potential consists only of the contribution of the mechanical surface traction, see

Section III.1. Very recently, Danas (2017) established connections between different variational

formulations and Helmoltz free-energy expressions in both Eulerian and Lagrangian frameworks.

Such density functions at the heart of the variational formulations provide principles that are

1Perturbed in the sense of how a magnetoelastic solid interferes with the external magnetic field applied
somewhere far.

2It is noted that the potential energy is the sum of the solid’s free energy, plus the magnetic energy of the
entire space, and the work done from the external loadings.
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adapted for finite element implementation of the magnetoelastostatic theory. In that way, the gov-

erning equilibrium equations of nonlinear magnetoelasticity can be solved for non-trivial boundary

value problems, where there is little prospect of obtaining analytical solutions. Such examples of

numerical solutions can be found in the work of Bustamante et al. (2007) in which a finite-difference

method is proposed, in that of Barham et al. (2007) on membrane problems, as well as in that of

Lefèvre et al. (2017) on constitutive modeling of ferrofluids versus iron particle reinforced rubbers.

Theconstitutive responseofMREcomposites changeswhendifferentmicrostructures are taken into

account. In the work of Danas et al. (2012), a phenomenological transversly isotropic free-energy

density, dependent on a supplementary variable of particle chain orientation, was used to model the

experimental characterization of aligned MREs.

In addition to the continuum-based approaches, macroscopic constitutive models have been de-

rived from micromechanical considerations of homogenization theories (e.g., see Borcea and Bruno,

2001, Liu et al., 2006, Yin et al., 2006). Nevertheless, the intrinsic mathematical challenges of carry-

ing out the homogenization limit of the magnetoelastic equations have hindered the construction of

homogenization-based models, save for the results of Lefèvre et al. (2017). Also, the experimental

challenges in testing the material without the structural response of specimens favors the develop-

ment of phenomenological energy densities. Using simplifying assumptions about the local strains

and magnetization fields, Jolly et al. (1996) provided a model based on the dipolar interaction of par-

ticles. The work of Liu et al. (2006) is on the effective properties of a magnetostrictive composite in

the dilute limit. The work of Borcea and Bruno (2001) is on small strain elastic response of isotropic

elastomers filled in with ferromagnetic particles by considering particle-particle forces. The work

of Corcolle et al. (2008) is on small strain Hashin-Shtrikman homogenization. Such analytical ho-

mogenization results are restricted in the limit of small deformations. An approximate estimate of

the effective free-energy of an incompressible and isotropic MRE under finite deformations can be

found in the work of Galipeau and Ponte Castañeda (2013).

More recently, Keip and Rambausek (2015, 2017) conducted computational characterization

of MREs effective response with arbitrary microstructures, while investigating the prescription of

magnetic boundary conditions and macroscopic shape effects, respectively. Rambausek and Keip

(2018) have further provided a constrained minimization formulation of incompressible finite-strain

magneto-electro-elasticity, implementedonamicroscopicboundaryvalueproblemthatretrievesthe

effective constitutive response of a MRE. Another recent work of Lefèvre et al. (2017) on the effective

free-energy of isotropic suspensions of (either iron or ferrofluid) particles in finite deformations and

large magnetic fields provides comparison with 2D and 3D finite element simulations. An effective

variational formulation can also be found in the work of Danas (2017) with applications on auxetic

and chiral isotropically distributed microstructures.
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I.4 Magnetoelastic buckling instabilities

Such frameworks can be implemented in variational potentials when a buckling instability analysis

is also required. In its simplest form, the magnetoelastic buckling refers to the sudden bending

transition of an elastic rod under the influence of a uniform magnetic field applied in the direction of

its thickness (e.g., see Miya et al., 1978, Wallerstein and Peach, 1972). This fundamental physical

phenomenon was initially conceived by Moon and Pao (1968). Moon’s work on metallic plates

paved the way for both experiments and theory, although the measures showed a critical field twice

lower than expected. Later studies reduced that gap down to 15% by considering edge effects on the

magneticfield. Sucheffectscanbeavoided incylindricalgeometries, considered intheworksofMoon

and Hara (1982) and Lefèvre et al. (2017). Recently, Gerbal et al. (2015) developed an analytical

model on the magnetoelastic buckling of a rod. The model considers the variational minimization of

a functional, containing the contribution of a local bending energy and the free magnetic enthalpy,

under the assumptions that the magnetization is constant and mostly axial (i.e., perpendicular to

the external magnetic field) at the post-bifurcation.

Singh et al. (2013) similarly carried-out buckling experiments on aclampedbeamwithamagnet

attachedatitsend. SuchasystemundergoesEulerbucklingwhenplacedwithinanexternalmagnetic

field. The post-instability can be innovatively controlled by switching to a secondary subcritical

mode when an attracting magnet approaches the beam. The experiments were modeled combining

Euler elastica and dipole magnetic interactions analysis. Tipton et al. (2012) similarly investigated

the elastic buckling of a soft cellular solid under magnetostatic loadings. The system consisted of a

passive elastomer square array with embedded earth magnets in circular holes. Past a critical value

of the external field, the sample rapidly rotates in alternate directions, switching into an astroid-like

shape. However, it has to be noted that in the last two works the magnetomechanical coupling

does not arise from the properties of the material itself, but from the combination of different

systems (purely elastic bodies with magnets attached). To conclude on the studies dedicated to

the magnetoelastic buckling, Huang et al. (2016) conducted buckling experiments on paramagnetic

particle chains embedded in a soft polymer gel. In that work, the instability occurs at the level of

the individual particle chains and not at that of the macroscopic body. As a result, the findings were

modeled by means of a coarse-grained molecular dynamics simulations.

The complexity of the solution under a continuum mechanics framework justifies that a com-

prehensive description is restrained to some trivial geometries, such as rods with large aspect ratios

(e.g., see Gerbal et al., 2015, Neukirch et al., 2012) thin plates (e.g., see Moon and Pao, 1968)

and thin film/substrate bilayer blocks (e.g., see Danas and Triantafyllidis, 2014, Kankanala and

Triantafyllidis, 2008, Psarra et al., 2017).
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Figure I.3: Schematic illustration of a film/substrate system under plane-strain deformation along with

optical microscopic images of a-b, wrinkling mode c-d, creasing mode e-f, delaminated buckling mode as

primary instabilities; and g-h, period-doubling mode i-j, folding mode as secondary instabilities evolving

from wrinkling (Wang and Zhao, 2013b).

I.5 Mechanically triggered instabilities on film/substrate sys-

tems

Mechanically stiff films or layers resting on passive compliant substrates are known to undergo

mechanical instabilities under uniaxial compressive loads. The principal solution of such material

systems is unique and stable until the load exceeds a critical value, which causes the film to bifurcate

into a geometric mode influenced by the (visco-)elastic nature of the substrate (e.g., see Huang,

2005, Hutchinson, 2013, Jin and Suo, 2015). The resulting critical buckling mode is determined by

the stiffness contrast, or in simple cases, the substrate-to-film shear moduli ratio Gs/G f , as well as

the geometrical constraints of the stucture (e.g., see Jin et al., 2015a, Kim et al., 2011, Lee et al.,

2008, Wang and Zhao, 2013b). In the post-bifurcation regime, periodic wrinkling is observed within

a Gs/G f range that is lower than a threshold ∼ 0.6 (e.g., see Auguste et al., 2017, Cai et al., 2011,

2012). Upon further compression, wrinkles evolve into more complex morphologies, e.g., folds,

creases, ridges (see Auguste et al., 2017, Budday et al., 2015, Jin et al., 2015b, Lestringant et al.,

2017, Pocivavsek et al., 2008, Sun et al., 2012, Wang and Zhao, 2013b).

In recent decades, extensive experimental, numerical and theoretical studies have been con-

ducted on various one-dimensional modes of mechanically-triggered instabilities in film/substrate

systems, such as wrinkling (e.g., see Huang and Im, 2006, Huang et al., 2005), period-doubling (e.g.,

see Cao and Hutchinson, 2012b), creasing (e.g., see Chen et al., 2014, Jin and Suo, 2015), folding

(e.g., see Shan et al., 2014, Sun et al., 2012), localized ridging (e.g., see Cao et al., 2014, Zang et al.,

2012), crinkling (e.g., see Kothari et al., 2018) and delaminated buckling (e.g., see Wang and Zhao,

2013b). The coexistence and coevolution of different modes has also been observed and analyzed,

see Fig.I.3. Mechanically induced instabilities in planar geometries find application in strechable

electronics, controllable stiffness devices, sensors and actuators (e.g., Bhattacharya and James,

1999, Lacour et al., 2004). The multistable behaviour of non-planar thin structures has also gained

attention for shape-changing structural control, see the works of Freund (2000), Vidoli and Maurini

(2008) and Stoop et al. (2015).
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Figure I.4: Schematics of mode shapes: a, 1D mode b, square checkerboard mode c, hexagonal mode d,

triangular mode and e, herringbone mode (Chen and Hutchinson, 2004).

Surface instabilites can also be triggered by (equi-)biaxial in-plane compression leading to in-

triguing two-dimensional patterns (e.g., Cai et al., 2011, Cao et al., 2014, Huang et al., 2005, Kim

etal., 2011). In the rangeofmoderate to largeoverstress, ChenandHutchinson (2004) computed the

energy in the buckled state of the one-dimensional stripes, two-dimensional square checkboard and

two-dimensionalherringbonewrinklingmodes (seeFig.I.4)andshowedthat the latterhas the lowest

energy. Audoly and Boudaoud (2008a)a studied the post-buckling behavior of the same modes plus

the hexagonal pattern, including the range in which the one-dimensional wrinkling is stable and

transits into the herringbone mode under biaxial (but not equi-biaxial) stress states. The authors

showed that the square mode has the lowest energy in the range of small overstress. In sequential

studies, Audoly and Boudaoud (2008b)b,c used asymptotic methods to explore nonlinear aspects

of the buckling behavior of the herringbone mode, as expected in the range of very large overstress.

I.6 Multiphysically triggered instabilities

The purely mechanical actuation of wrinkling/creasing in film/substrate systems does not allow for

an efficient active control of such surface patterns. Therefore, the interest in buckling instabilities

under multiphysical coupled stimuli gained ground in the recent years. Bilayer surface patterning

and stiffness control can be actively obtained by thermal expansion mismatch (e.g., see Bowden

et al., 1998, Huck et al., 2000, Pye and Roth, 2013), differential growth/swelling (e.g., see Chan

et al., 2008, Trujillo et al., 2008, Zhao et al., 2015), as well as electroactive wrinkling and creasing

(e.g., see Bense et al., 2017, Wang and Zhao, 2013a, Wang et al., 2016). Such externally applied
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stimuli induce a biaxial compressive stress state within the film, which leads in turn to buckling

patterns (2D wrinkles or creases) (e.g., see J. Yoon, 2010, Park et al., 2013, Wang et al., 2014, 2011).

Albeit effective as a method of pattern control, differential swelling requires large times of exposure

to the absorbed water/solvents, thus leading to slow on/off pattern switching. On the other hand,

electro(-mechanical) actuation is extremely fast but requires complex experimental setups, e.g.,

dielectrics in conductive solutions and fairly high voltages. In both types of actuation systems, the

proposed setups are not straightforward for use in haptic devices. However, the interested reader

can refer to the work of Frediani et al. (2014) for recent advances.

Currently exploited in actuators design, piezoelectric materials have been the most popular ac-

tive materials for shape patterning of flexible structures. This is mainly attributed to the linearity

of their response for a large bandwidth of frequencies. Layered structures made of metamaterials,

such as phononic crystals (PnC) on piezoelectric substrates (e.g., Yankin et al., 2014), are promi-

nent in surface acoustic wave propagation for imaging and non destructive control. Nevertheless,

piezoelectric elements produce limited displacements and strains, triggered by either a voltage or a

transverse force. An adapted solution to produce high displacements with moderate actuation loads

is provided by the use of bistable structures, such as buckled beams (e.g., see Cottone et al., 2012,

Qiu et al., 2004, Ren and Gerhard, 1997, Vangbo, 1998) or shallow arches (e.g., see Chen and Lin,

2005, Hsu, 1967). In virtue of the instability, a rather small amount of actuating energy can induce

relatively large deformations. While the majority of the works on the field have been concentrated

on a single-parameter actuation, Maurini et al. (2007, 2009) investigated the multi-parameter active

(post-)buckling of a bistable three-layered piezoelectric beam.

In such surface instabilityproblems, the interplaybetweeneachmultiphysical coupling is related

to geometry and material system selection. In simple words, the loadings are applied on materials

with given properties coupled with structures under given boundaries conditions. Thus, it is clear

that the instability occurs from the coupling between the material properties and the structure.

I.7 Scope of the thesis work

Challenged by the reduction of the actuation fields and the fast on/off control of surface patterns

with the view of a realistic haptic device (Fig.I.5), we propose the use of novel polymeric-based soft

materialsthatexhibitmagnetoelasticcouplingandbecomeunstableatsmall(practicallyattainable)

magnetic fields. In this work, following a less common approach, we exploit experimentally and

numerically the stability and post-bifurcation response of a novel MRE film/substrate material

system by proper control of magnetomechanically induced surface patterns. Precisely, we combine

cooperative instabilities in such a way that surface wrinkles can be triggered by successively smaller

magnetic fields as a result of increasing mechanical pre-compression and vice versa.

To explore the impact of the magnetomechanical loading on the critical loads and bifurcation

modes, we present stability phase diagrams of the system in the parameters space of mechanical

pre-compression and applied magnetic field. The task is carried out first experimentally by intro-

18



I.7. SCOPE OF THE THESIS WORK

Permanent magnet

MRE layer

a b

Figure I.5: Schematics of the working principle for tactile interfaces with patterns created by a, a matrix

of solenoids, b, a permanent magnet placed underneath a MRE layer (Pössinger et al., 2014).

ducing an innovative fabrication for perfectly-bonded MRE film/substrate polymer blocks and then

numerically by employing a user-defined finite element full-field approach. A theoretical analysis

of the bloch-wave bifurcation problem permits to further investigate the influence of the material

parameters on the critical response. Intriguing post-instability crinkling modes are experimentally

and numerically captured and further investigated through a curvature localization analysis. In

virtue of these novel localized modes, the study is expanded to the numerical investigation of MRE

films bonded on MRE substrates in an attempt to further enrich the range of the obtained surface

patterning.

Overall, we present a combined experimental, numerical and theoretical study on various modes

of instabilitiesonfilm/substratesystemsunderacombinedmagnetomechanical loading. Thevariety

of surface patterns owes to coupling between the bilayer structure, the magnetoelastic properties of

the layers and the loading. More specifically:

In the second chapter, we present in detail the fabrication of the MRE film/substrate blocks,

the material properties of the system and the experimental process to obtain the magnetomechan-

ically triggered surface instabilities. An image processing analysis to assess the post-bifurcation

amplitudes of the surface patterns is then presented. Measurements and theoretical estimates are

employed to determine the material properties of the system at hand. Subsequently, the experimen-

tal findings of the magnetomechanical (post-)bifurcation response of a MRE film/passive substrate

system (with given material properties and geometry) are presented. A morphological map pro-

vides experimental evidence of different surface patterns formed with the same material system at

different pre-compressions and magnetic fields. The corresponding stability phase diagram in the

two-field parameter space is then built, revealing the monotonic tendency of the critical magnetic

field to decrease with increasing pre-compression (and vice versa). The experimental findings are

followed by a discussion on possible strategies to enrich the experimentally obtained patterns by

exploring the material properties of the system.

To gain better understanding of the experiment, we investigate numerically the boundary value

problem of the MRE film/substrate block by means of a user-element routine implemented in the

general purpose finite element code FEAP (Taylor, 2011). In the third chapter, we present the
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non-trivial boundary value problem along with the numerical solution of the governing equations

and the stability criterions, obtained from the theory of magnetoelasticity. First, we discuss the

variational formulation within a Lagrangian setting, used in the finite element method algorithms.

Explicit expressions are given for the first variation (i.e., force vector) of the variational principle

that yields the equilibrium and Maxwell equations. Similarly, the second variation (i.e., stiffness

matrix) is derived to form the stability condition. Subsequently, we present the phenomenological

magnetoelastic energy used in the variational continuum formulation and we show an equivalence

betweenexpressionsconsideringdifferent independentmagneticvariables. Inthe followingsections,

we describe the finite element discretization method, as well as the numerical mesh and the applied

magnetic boundary conditions. In the last part, we present a brief mesh convergence study on the

purely mechanical and magnetomechanical problem.

In the fourth chapter, we solve the theoretical bifurcation problem of a semi-infinite MRE film/

passive substrate (plus the semi-infinite air) system and we investigate the influence of the material

properties on the critical response. The first section presents the variational magnetoelastic formu-

lation used in the bifurcation analysis. The second section outlines the principal (non-diverging)

solution of the plane-strain solid subjected to in-plane compression and a transverse magnetic field.

Thethirdsectiondemonstratesthebifurcationanalysis. Suchananalysis isan incrementalapproach

that does not incorporate the effects of a boundary-value system (it considers idealized boundary

conditions). The last section presents the results from the purely mechanical and magnetomechan-

ical bifurcation. The model aims at determining the critical load for the onset of wrinkling and the

associated wavelengths.

In thefifth chapter, we initiallypresenta stiffness sensitivity studyon the primary andsecondary

bifurcation modes of a MRE film/passive substrate block under a) a purely mechanical, b) a purely

magnetic and c) a combined magnetomechanical loading. Subsequently, we properly probe the

experimental findings of Chapter II with full-field finite element simulations at large strains and

magnetic fields. The influence of friction on the experimental setting needs to be taken into account.

Thus, it is investigated by applying variable shear forces at the lateral edges of the virtual specimen.

The full-field numerical analysis reveals the complexity of the coupled fields within the film in the

post-bifurcation and thus, justifies the need of numerical treatment of the problem at hand. In

the last part, we investigate the influence of the film slenderness on the critical loads and modes.

The results correspond to two chosen film thicknesses: H f = 0.2 and 0.8mm in a 40× 40 (mm2)

bilayer block. The geometry with the thicker film is used to fit the experimental data. The thinner

film geometry is used for connection with the theoretical problem in Chapter IV considering an

infinitesimally thick MRE layer.

In the last chapter, we present a study on post-bifurcation crinkling patterns emerged from

harmonic (wrinkling) modes. Such patterns are obtained by further exploiting the magnetoelastic

coupling of the film/substrate structure. First, we carry out a curvature localization analysis at

the post-bifurcation regime of the experimental and numerical MRE film/passive substrate system.

Such an analysis reveals that curvature localization is an intrinsic feature of MRE instabilities that
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leads to crinkling under the given boundary conditions. Next, we investigate the formation and

post-stability evolution of crinkles on MRE films bonded on MRE substrates. The underlying

idea is to create different interlayer contrasts of magnetic/mechanical properties and thus, trigger

a richer range of surface modes than that already obtained when using a MRE film on a passive

(magnetically insensitive) foundation. Subsequently, the study is expanded to higher slenderness

ratios. We vary the magnetic properties of the substrate and we obtain an extremely large range of

unique crinkled surface patterns tuned by the magnetomechanical loading. A full-field numerical

analysis of the fields is presented and accompanied by preliminary experiments. The curvature

localization analysis on a MRE film/MRE substrate is followed by an insight on the magnetization

spatial distribution and how that contributes to the evolution of crinkling.
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CHAPTER II

FABRICATION AND EXPERIMENTS

Summary of the Chapter. In this chapter, we present in detail the fabrication of the MRE film/-

substrate blocks, the material properties of the system and the experimental process to obtain the

magnetomechanically triggered surface instabilities. An image processing analysis to assess the post-

bifurcation amplitudes of the surface patterns is then presented. Measurements and theoretical estimates

are employed to determine the material properties of the system at hand. Subsequently, the experi-

mental findings of the magnetomechanical (post-)bifurcation response of a MRE film/passive substrate

system (with given material properties and geometry) are presented. A morphological map provides

experimental evidence of different surface patterns formed with the same material system at different

pre-compressions and magnetic fields. The corresponding stability phase diagram in the two-field param-

eter space is then built, revealing the monotonic tendency of the critical magnetic field to decrease with

increasing pre-compression (and vice versa). The experimental findings are followed by a discussion on

possible strategies to enrich the obtained patterns by exploring the material properties of the system.
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II.1. MATERIAL SELECTION

The experimental system consists of an elastomeric cube of 40mm edge, in which an isotropic

MRE film of thickness H f = 0.8 (or 0.2) mm and shear modulus G f rests on a (non-)magnetic

substrate of thickness Hs = 39.2 (or 39.8) mm and shear modulus Gs, Fig.II.1. The two layers are

made of elastomers of the same family that are cured simultaneously to prevent film delamination.

Theelasticnatureof such soft andnearly incompressiblematerials is fairlyapproximatedby theneo-

Hookean law for uniaxial (tensile) stretches within the range 1 ≤ λ ≤ 1.25. Nevertheless, challenges

occur when needed to characterize a composite film under compression. Thus, a combined method

of experiments and FE implementations is later employed in Section V.2 to evaluate the stiffness

of the material-layers by numerically probing the amplitudes of the experimental surface patterns.

Measurements and theoretical estimates are also employed to determine the magnetic properties of

the film for later use in a magnetoelastic phenomenological constitutive law.

Stationary air

Deformable air

Specimen

Substrate

MRE film

a b

b0

b0

u2 = 0

u
1
 =

 0

λ0

X2

X1

Hf

Figure II.1: a-b, Schematics of the boundary value problem under plane-strain conditions: a, Stress-free

state of the magnetoelastic specimen surrounded by air. b, Bifurcated specimen of a MRE film bonded on

a substrate. c, Experimental magnetomechanical setup. The loading consists of uniaxial pre-compression

λ0, followed by the application of a magnetic field b0 in the direction of film thickness. The substrate can

be either magnetically insensitive (d-e) or a MRE (f -g). The film thickness can be either H f = 0.8mm

(d-e) or 0.2mm (f -g).

The system is subjected to in-plane uniaxial compression perpendicular to the film thickness

denoted by the stretch measure λ0 = 1+ ε0 such that 0 < λ0 < 1 (or −1 < ε0 < 0). The magnetic

field b0 is then linearly increased beyond the bifurcation point to obtain well-formed wrinkling. We

capture the morphological side patterns of the film using a digital camera system with 12µm/pixel

resolution and we trace the out-of-plane surface displacements as a function of the magnetic field,

after image processing and analysis (see Section II.4). The images are recorded during testing at a

rate of 17 frames per 0.1T. To verify repeatability of the experimental evidences, three specimens of

the same materials and geometry are fabricated and tested under the same conditions.

II.1 Material selection

In the perspective of fabricating a magnetoelastic film bonded on a softer elastic substrate structure

ofadequatemagnetomechanical coupling, the familyofEcoflexsilicones fromSmooth-OnInc.,USA,

is a suitable choice. The substrate material Ecoflex 00-10 is a soft and stretchable silicone elastomer

(see manufacturer’s specifications in Table II.1 and mechanical characterization in Section II.5).

The elastomeric film matrix Ecoflex 00-50 is chosen to be stiffer than the substrate, so as to create
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II.1. MATERIAL SELECTION

a stiffness interlayer contrast that yields one-dimensional wrinkles (if materials incompressible),

see Fig.II.2. When cured, the hyperelastic material-layers are nearly incompressible and isotropic,

undergoing nonlinear stress-strain response at large deformations.

a b c d

20mm

Figure II.2: From fabrication to testing: a, Silicone polymer in liquid state. b, Carbonyl iron powder

comprising spherical particles of median diameter at 5µm. c, Fabricated MRE film/silicone substrate

specimen. d, Wrinkled MRE film/silicone substrate specimen under the magnetomechanical loading.

Ecoflex elastomers are two-part addition-cured platinum-catalyzed systems (RTV-2), mixed at

room temperature. The mixed viscosity of the liquid Ecoflex-0010 (substrate material) allows for

manageable material pouring even at large times close to the pot life1 of 18 min. For the film, it is not

straightforward to achieve a compromise between pot life limit (18 min) and adequate dispersion

when mixing at high particle volume fractions (c ≈ 25%). More specifically, the intrinsic viscosity

of the film matrix (8000 cps) increases when adding the iron particles, while the degassing process

warmsupthecompositematerial speeding thepolymerizationup. Asa result, thepot lifenoticeably

decreases to 10 min and thus, prompt handling is required when fabricating the film. In order to

eliminate the air entrapped during mixing, an adequate film degassing is carried out at least for 5

min. In view of that, providing a material quality that respects both isotropy (perfectly-dispersed

film) and incompressibility (full degassing) is a true challenge for the film polymer, which has 10 min

pot life under real operating conditions. The physical and mechanical properties of the bi-material

are shown in Table II.1 as provided by the manufacturer.

Properties Substrate Film

Shore hardness 00-10 00-50

Elongation at break(%) 800 980

Density [kg/m3] 1.040 1.170

Mixed viscosity [cps] 4000 8000

Table II.1: Material properties of the silicone substrate and silicone film matrix provided by the manu-

facturer.

The filler phase is carbonyl iron powder (CIP) SM from BASF Germany. This powder is made of

spherical particles with a median diameter of 5µm, containing up to 99.8% of Fe with low amounts

1Pot life: Period for which two mutually reactive chemicals remain usable when mixed. Two Ecoflex compo-
nents (i.e., polymer and hardener) polymerize within about 18 min upon mixing and become useless.

24



II.2. FABRICATION OF THE MRE FILM/SUBSTRATE BLOCK

a b c d e

Figure II.3: Fabrication process steps: a, Weighting b, Mixing c, Degassing d, Molding b, Curing

of C, N and O. Soft iron is defined by low coercitivity and magnetic saturation µ0 ms = 0.8T (Haynes,

2013). Hence, the particles are good candidates for active MRE applications without permanent

magnetization requirements. According to the manufacturer, the iron bulk density is within the

range of 1.5− 2.5 kg/m3 in the form of powder and 7.874 kg/m3 in the form of a bulk metal. The

bulk density takes into account the presence of air gaps between the particles, when occupying a

given volume in the form of powder. However, this becomes irrelevant once the particles are mixed

in a viscous liquid elastomer. Hence, the density commonly regarded in the MRE literature is taken

either as that of the bulk iron (e.g., Schubert, 2014), or slightly lower (e.g., Gorodkin et al., 2009) so

as to account for the minute air gaps that can be retained between adjacent particles in interaction

with the polymeric chains.

II.2 Fabrication of the MRE film/substrate block

The substrate is fabricated from silicone elastomer Ecoflex 00-10, mixed in a 1:1 weight ratio (poly-

mer: hardener) for 4 min and degassed inside a vacuum chamber for 6 min, Fig.II.3c. While the

substrate is under vacuum, the film matrix Ecoflex 00-50 is similarly mixed for 3 min, after adding

5µm-diameter iron particles at 20% volume fraction. To ensure proper particle dispersion before

polymerization, the carbonyl powder is first mixed with the polymer and the semi-blend is then

mixed with the hardener. The mixing process is performed at 400rpm by means of a rotating drill-

type tool, Fig.II.3b. The film material is then degassed for 5 min and directly casted into the mold,

so as its intrinsic curing does not prevent pouring. The film compound is poured into a metallic

40×40×H f (mm3), H f = 0.2,0.8mm, mold base previously cleaned and polished. Scraping the top

surface of the material leads its excess quantity to flow out of the mold base, thus creating a flat film

surface. To build the whole 40× 40× 40 (mm3) system, four metallic walls are mounted onto the

aforementioned base to form a taller mold, Fig.II.3d. The substrate material is then poured on the

top of the film. The soft silicone is casted into a thick layer of thickness Hs(= 40−H f )≫ H f .

Heating resistors, encapsulated in silicone and attached to each of the walls (Fig.II.3d), are

connected to a temperature on/off PID regulation system, Fig.II.3e. The PID system delivers

current so that the temperature measured by a thermocouple (inserted in one of the walls) matches

the programmed heating schedule. By virtue of this system, the film/substrate block is subjected to
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II.3. MAGNETOMECHANICAL EXPERIMENT

a 60 min curing process at 70◦C with a 5◦C/min rate of temperature rise (drop) from (to) ambient.

The polymerization is carried out in the absence of a magnetic field, thus leading to an isotropic

MRE film. Ecoflex silicones can also be cured at room temperature within 24h, though the external

heating prevents the gravitational movement of the particles towards the bottom of the mold. The

specimen is unmolded after 24h.

Observations of a cross-section of the bilayer material with a VHX-5000 series Keyence Digital

Microscope confirm a nearly constant film thickness (0.8±0.04 mm) and absence of film delamina-

tion, Fig.II.4d. This owes to material selection with respect to curing conditions; the film and the

substrate are polymers of the same family, simultaneously cured in a joint fashion.

We note that the proposed fabrication process is independent of the tensile pre-stretching of

the substrate, required in a well-known fabrication technique to produce compression in the surface

layer (e.g., see Cao and Hutchinson, 2012a, Sun et al., 2012, Wang and Zhao, 2013b, Wang et al.,

2016). In the latter technique, a thin unstretched film is bonded to a thick pre-stretched substrate.

When such a system is set free, the stretch in the substrate is relaxed, leading to film compression

that triggers wrinkling. As a result, the incremental anisotropy induced to the substrate becomes

an inevitable parameter to be considered. In our case, the film and substrate are jointly compressed

from a stress-free state where the material-layers are isotropic. Hence, the critical response does not

depend on another supplementary field-parameter. To that end, the proposed fabrication process

permits to perform a large range of adjustable loadings in-situ with only one specimen.

Figure II.4: VHX-5000 series Keyence Digital Microscope observations of a, Ecoflex 00-50 silicone film

reinforced with 5µm-diameter carbonyl iron particles at volume fraction c= 25% (particle aggragetion ob-

served); b, Ecoflex 00-10 silicone substrate. c, Cubic specimen made of carbonyl iron particle-impregnated

Ecoflex 00-50 film adhered on Ecoflex 00-10 substrate. d, A well-bonded interface of controllable thickness

H f = 0.8±0.04 mm is observed.

II.3 Magnetomechanical experiment

The compression device is 3D-printed in Verowhite polymeric material so as not to interfere with

the magnetic field during the experiments, Fig.II.5. It is fabricated in a shiny and smooth finish of

injection molded plastic, delimited by the print quality of EDEN260VS Stratasys printer at sub-

0.16mm layer height. The setup consists of three orthogonal walls forming a U shape. As seen in

Fig.II.5b, oneof thewalls inparallel is able to slideon thebottomwall, while theotherat theopposite

is fixed. A non-magnetic screw-driven system controls the distance between the two parallel walls

and thus defines the applied pre-compression stretch ratio λ0 within the range λ0 ∈ [0.7,1).
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II.3. MAGNETOMECHANICAL EXPERIMENT

a b

Figure II.5: a, Solidworks 3D CAD design of the compression device. b, 3D printed compression device

with specimen.

Before compression, silicone oil is applied onto the lateral faces of the film/substrate block in

contact with the setup walls to decrease friction. However, the friction developed at these regions is

not negligible at large pre-compressions. Thus, such boundary effects need to be taken into account

in the numerical analysis to reach a quantitative agreement with the experiments (see Section V.3).

The bottom part of the block remains uncoated to prevent pronounced translations at the bottom of

the substrate. The specimen is placed at the center of the setup and the system is properly assembled

toapply theprescribedpre-compression. Thebilayer structure is compressed fromastress-free state

where both materials are isotropic.

Keeping the pre-compression fixed, the entire system is installed onto an aluminum plate with

the MRE layer perpendicular to the external magnetic field. The system is placed within a 82mm-air

gap that separates two 90mm-diameter poles of a two-coil electromagnet, Fig.II.6. The custom-

built electromagnet consists of two current conducting water-cooled copper coils mounted on a

C-frame, each bearing at its center a truncated conical iron pole. In this way, a nearly homogeneous

field is concentrated across the air gap between the two poles without induced heating during the

experiments. The electromagnet is connected to a four-quadrant bipolar water-cooled power supply

of ±70V and ±70A nominal voltage and intensity, respectively. Generation of the magnetic field

is current-controlled (precision ±50mA), but can also be field-controlled when a magnetic probe

is installed within the air gap. The intensity delivered by the power supply can be varied either

manually or through an analogic entry. A field intensity of b0 = 0.8T is obtained at the center of the

air gap for a current of 68A. The magnetic field b0 is homogeneous within the central zone of the air

gap along all three principal directions (±1mT at ±3mm from the center).

After installation within the electromagnet, the compressed specimen is aligned at the center of

the poles (X1,X2,X3) = (0,0,0). For a given pre-stretch λ0, the screw-driven system properly adjusts

theheightof the compression setup, so that the center of the samplealong thedirectionof theapplied

stretch, X1, is at X1 = 0 of the poles. Non-magnetic centering pins hold the compression device on

the aluminum stand at X3 = 0 of the poles. However, centering the sample at X2 = 0 of the poles

(X2 is the direction of the applied magnetic field in parallel to the film thickness) is in fact a spatial
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Figure II.6: Custom-made setup for the magnetomechanical experiment. The specimens are uniaxially

compressed by means of a non-magnetic screw-driven device. The pre-stretch λ0 is fixed and the system

enters within the two poles of the electromagnet. The magnetic field b0 is applied along the film thickness

in a linear increasing fashion. A camera records the profile of the specimen and thus the surface patterns

of the film.

compromise between the thickness of the specimen after compression at H≃ 40λ2 (mm) 2 and the

air-gap distance between the two poles at 82mm.

The installation holds a 5 Megapixels Tokina camera for optical diagnostics opposite to the

profile of the bilayer, Fig.II.6a. Images of 12µm/pixel resolution of the film/substrate specimen

are recorded during testing at a rate of 17 frames per 0.1T. Given the dimensions of the specimen,

the optimal working distance is 173mm, the field of view is 16mm × 20mm and the depth of field is

8mm. The camera is connected to the custom-designed software Sylvie for image acquisition. The

software is both a camera monitor and a digital controller of photo recording. Setting the acquisition

frequency, the camera software is synchronized with the custom-designed software Agnes, which

is a digital interface of the electromagnet’s hardware. The signals of the external magnetic probe

generated by an encoder are taken to a NI 9215 (BNC) data acquisition card connected to the digital

monitor. The measurement type is in voltage and the sensitivity of data acquisition of the external

magnetic probe is 0.3T/V. The analog signals received from the electromagnet are logged into a

sensor amplifier. The signals are filtered, digitized and sent to the data acquisition card (sensitivity

7A/V) for current control/measurement. The speed control unit of the applied current intensity

is controlled by the computer software using the data acquisition card. Once the experiment has

started, the data acquisition interface monitors the outputs and the signal generator. The progress

of the test is displayed in real time through the plots of the current vs. time and magnetic field vs.

time.

To reduce hysteresis and anisotropic material behaviors during the experiment, the specimens

are subjected to a pre-conditioning loading at prescribed stretch λ0 = 0.85. Such a procedure also

serves in eliminating pre-stresses that may be present after clamping. To that end, the specimens

are both mechanically and magnetically pre-cycled to reach a stabilized (quasi-equilibrated) state

2The elastomeric cube displays a nearly incompressible response expressed by the constraint equation λ1 λ2 λ3 =
1, where λ1 = λ0,λ2 ≃ λ3 ≃ 1/

√
λ 0 are the principal stretches.
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before data recording. The magnetic field is increased linearly from 0 to 0.6T at a rate of 0.002T/s.

The unloading is carried out under the same magnetic rate until the field attains 0T. The external

sensor measures the amplitude of the applied magnetic field as far as possible from the boundary of

the specimen. Data recording acquisition considers 1 measurement per 0.5s (2Hz). The specimen

is magnetically and mechanically unloaded and then retested under an increased pre-compression

value.

While magnetomechanically testing the specimens under twelve pre-stretches within the range

λ0 ∈ [0.7,1), we capture the morphological side patterns of the film using a digital camera system.

Subsequently, we trace the out-of-plane surface displacements versus the magnetic field by means

of image processing and analysis, see Section II.4. To ensure repeatability of the experimental

evidence, three specimens are fabricated and tested under the same conditions, see Fig.II.16,II.19a.

Image

sample

Row

Pixel

0

65535

32768

1 0

Column

FigureII.7: A grayscale image corresponds to a 2D matrix of pixels with grascaling values within [0,65535]

for uint-16 type. Each entry (i,j) represents the color value at the corresponding pixel (location). The

gray levels can be transformed into a binary system, based on a threshold of pixel intensity that sets all

the values lower to that equal to 0 and the rest equal to 1. The jump in [0,1] along the film thickness

direction corresponds to the interface between the black film and the white background, thus making the

out-of-plane trajectories of the film pixels trackable. The process followed requires scanning in rows and

storing the location of the matrix cells in which the jump occurs (per column).

II.4 Post-processing via image analysis

The bifurcation curves are obtained by image processing of 12µm/pixel resolution images, recorded

during testing at a rate of 17 frames per 0.1T magnetic field increment. Due to tight spacing between

the magnetic poles, the current setup does not allow the direct visualization and measurement of

wrinkling from the top of the film. However, such a visualization is carried out by means of a mirror,

placed in 45◦ angle with the camera, see Figs.II.19b,c,d. Future work in different setups is underway

and will allow the quantitative analysis of more complex magnetomechanical wrinkling patterns,

such as those obtained for small pre-compressions in Figs.II.19d,g,j.

The digital images are processed in Matlab so as to obtain the bifurcation amplitude A curves
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Figure II.8: Detection of the film-background interface corresponding to the film profile at λ0 = 0.8 and

b0 = 0.2T. Our image analysis excludes the external wrinkles to avoid measurements affected by friction.

The current amplitude of film deflection A is determined as the average value of the two middle wrinkle

amplitudes, A = (A1 +A2)/2.

of three different specimens under the range of pre-compressions λ0 ∈ [0.7,0.98] tested. Grayscale

images (e.g., Figs.II.16 and II.18) are first normalized so that pixel values in the range of [0,1]

represent their brightness. Each image is a 2D array (or a matrix) with a given number of pixels,

i.e., spatial discretization elements. The experimental images are specified as (29100×24000) pixel

numeric matrices. The measured color intensity at the sampled points is given by an integer that

represents the number of bits per pixel. The data matrix has class uint16 (16-bit intensity) meaning

that the range of pixel intensity is within [0, 65535]. Such a range of grayscaling is not handy to work

with when adequate pixel contrast is needed and thus, matrix conversion to binary images takes

place.

Inordertodetectthefilmprofileevolutionversustheappliedmagneticfield, thecontrastbetween

the dark film and the light background is enhanced and the images are binarized. To convert the 2D

grayscale images fromuint16todouble imagearrays, twomethodsare followed: Otsu’smethodusing

aglobal imagethresholding(e.g., seeFanandZhao,2007)andanotherusingauser-definedthreshold

of pixel intensity. In particular, the first method calls the function graythresh that computes a global

threshold (i.e., level=graythresh(I)), used to convert the intensity I to binary images with im2bw

function. By means of Otsu’s method, the threshold is chosen so as to minimize the intraclass

variance of the black and white pixels (Fan and Zhao, 2007). In turn, the function im2bw(I,level)

replaces the pixels of the input image with luminance greater than the level with the value 0 (white)

and the rest with the value 1 (black). The luminance threshold, returned as a positive scalar, is a

normalized intensity value within the range [0,1]. The default level value of 0.5 corresponds to an

intensity halfway between the minimum and maximum value of the double image array class.

The second method considers an user-defined thresholding in order to test the range of validity

of the binarization matlab functions. In particular, one can treat the input image as a numeric
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Figure II.9: Measurements of the experimental bifurcation amplitude A as a function of the magnetic field

b0 under three compressive pre-stretch ratios λ0 = 0.75,0.85,0.93. The bifurcation amplitude is assessed

from the wrinkled film deflection profile, detected from the experimental images by means of the standard

Matlab binarization (Otsu’s) method and a user-developed method. For λ0 = 0.75,0.85, the bifurcation

curve corresponding to the user-defined method is obtained by detection of the film/air interface. For

λ0 = 0.93, the relevant curve is obtained by detection of the film/substrate interface.

matrix and convert it to an intensity image containing values within the range [0,1] (mat2gray). The

binarization takes place by a user-developed loop, setting a threshold (∼ 0.3) that defines whether a

pixel intensitycorresponds to thefilmor to the lighterbackgroundclose to thefilm. Inbothmethods,

the position vector of the pixels located at the film/background interface (jump from 1 to 0) is stored

for the initial (i.e., zero magnetic field) and magnetically loaded film configurations. However, for

low pre-compressions within the range [0.9,1), the surface patterns are two-dimensional, growing

in several in-plane directions and thus, cannot be accurately measured from the film/air interface

side profile (see Figs.II.19d,g,j). Here, a more rigorous approach would require the detection of the

interface between the film and the substrate by means of the user-defined binarization. To do so,

the luminance threshold is set lower (∼ 0.23), so as to convert white the higher intensity gray pixels

of the substrate. Then, the first occurence of the jump from 0 to 1 is stored while scanning, i.e.,

position of the first cell value that is found one per image row.

We consider that clear wrinkling occurs away from the contact boundaries at which the pre-

stretch is applied and thus, both edge wrinkles are excluded from the bifurcation analysis, see

Fig.II.8. The absolute amplitude of the edge wrinkles tends to be higher than those in the middle

of the specimen due to friction effects (discussed in Section V.3), as well as due to magnetic field

concentration near the corners of the specimen (shown in Figs.V.7,V.12d). The global maximum

(peak) and minimum (valley) of the central wrinkles are then tracked and the corresponding vertical

displacements u2 (along the field direction) are measured from the trajectories of the extreme points.

The amplitude of film deflection A is quantified as the average distance between the peak and the

valley of the two wrinkles, see Fig.II.8. The pixel coordinate system is then transformed into

the laboratory Cartesian system. The difference between the current average amplitude Ai at a
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given magnetic field and the initial (reference) average film amplitude A0, A = Ai −A0, is evaluated

in Figs.II.18q,V.9a. The same process is followed to obtain the numerical bifurcation curves, as

discussed in the context of Fig.V.9.3

Fig.II.9 presents the bifurcation amplitude A measured by means of the standard Matlab bina-

rization (Otsu’s) method and the user-developed one. The amplitude is traced as a function of the

magnetic field for three pre-stretch values λ0 = 0.75,0.85,0.93. For λ0 = 0.93, the bifurcation curve

corresponding to the user-developed method is obtained by detecting the film/substrate interface.

As observed, the two methods converge on the initial post-instability regime, while slight discrep-

ancies appear deep in the post-bifurcation. Since no significant differences are found to affect the

critical loads, the methods are considered equivalent. To that end, Otsu’s method is chosen to be

used throughout the present study.

II.5 Mechanical characterization

For incompressible elastic materials, the critical buckling strain upon uniaxial compression is ob-

tained for substrate/film shear moduli ratios Gs/G f that range from the limit in which the film and

the substrate have the same modulus to a very stiff film on a compliant substrate, Gs/G f ∈ (0,1].

An important limiting case is surface instabilities analyzed by Biot (1965) setting a threshold from

smooth wrinkling to localized patterns. Past that threshold at Gs/G f ≃ 0.6, morphologies more

complex than wrinkling appear, e.g., creases, folds, ridges etc (see a relevant numerical analysis in

Section III.5.1). The mechanical characterization aimed at mapping the ground moduli contrast

Gs/G f of our elastomeric bilayer with its critical behavior under pure compression. In that way,

the critical buckling load can be predicted in the absence of a magnetic field, which is useful when

creating a magnetomechanical phase diagram. Moreover, knowing the bifurcation mode (i.e., mor-

phology of the surface pattern) yielded from one independent field, one can get more information

on the contribution of each loading counterpart (mechanical or magnetic) on coupled-triggered

localizations.

However, since the film/substrate is a structure, a stress-strain curve would inevitably depend

upon the geometrical parameters of the system. For the MRE characterization, it is not straight-

forward to have direct access to the properties when deposited as a film. Measuring the response

of a film is possibly not identical to that of a dogbone specimen, due to fabrication uncertainties

and possible particle clustering while depositing the film. Since it is of no use to subject the MRE

material to a standard tensile test, the mechanical characterization concentrated on the substrate

material.

Cyclic tension tests in independent dog-bone specimens were carried out under different strain

rates ε̇ to characterize the substrate material, Gs ≃ 3.5kPa at ε̇ = 5 ·10−6 (s−1). A quasi-static char-

acterization of very low strain rate is needed to overcome the inelastic effects of such soft materials,

3The numerical surface layer is free from structural fluctuations (experimentally coming from the fabrication)
and thus, the initial amplitude corresponding to the stress-free state is A0 = 0, i.e., perfectly flat film. Therefore,
the considered numerical amplitude is equal to the average current A = Ai.
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a b

d

Figure II.10: a, Schematics of the molds for fabrication of the dogbone specimens. b, Black acrylic paint

dots are drawn with 4 mm distance along the longitudinal direction of the specimen, in order to track the

logarithmic strains by means of video extensometry.

e.g., Mullin’s effects, creep behavior, stress relaxation, inertia phenomena, hysteresis etc (e.g., see

Karadeniz et al., 2011). The uniaxial tensile test gave a neo-Hookean response up to∼ 30% nominal

axial strain. The film modulus G f = 1MPa was fitted directly from the magnetomechanical exper-

iment. Consequently, for substrate-to-film shear moduli ratio Gs/G f = 0.3, the critical behavior

of the system under uniaxial compression is wrinkling, numerically verified in Fig.V.4. For later

use, it is noted that the mechanical buckling stretch is λ c
0 ≃ 0.76 for such nearly incompressible

neo-Hookean systems.

Albeit supplementary progress is required in the area of elastomer testing, our experimental

trials will be subsequently presented. The fabrication of dog-specimens and the characterization

process of the substrate material, as well as the challenges faced in order to provide reliable data will

be discussed in the following.

II.5.1 Fabrication of dogbone specimens

The mechanical characterization of the substrate considers flat dogbone specimens based on the

ISO 37-2 standard. The standards (protocols) provide guidelines for sample shape design, so as

to ensure repeatability in material testing. The shape of the sample depends on both the tested

material and the type of loading. When the tensile specimen is long, the stress field is uniform

within the gage area far away from the clamping (Saint Venant’s principle). However, if the sample

is to be shorter, stress localization at the clamping needs to be attenuated by smooth root-corner

radii from the sample’s head to its gage area. This yields the well-known dogbone (or dumbbell)

samples for tensile testing. For elastomers tested in tension, the corresponding standards are the

American ASTM D412 and the equivalent European counterpart ISO 37. The span region of the

specimen is 25×4×2.5 (mm3) based on ISO 37-2. Nonetheless, this thickness is small for purposes

of video extensometry (i.e., calculation of transverse stretch along thickness) and thus, our molds

were designed to provide specimens of 3 mm thickness, still respecting a good length L to thickness

H ratio, L ≫ H, for uniform strain state.

For the fabrication of Ecoflex-0010 dogbone specimens, the material parts are weighted out in
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a b

Figure II.11: a, Thermal resistors attached on the surfaces of the copper molds for curing. b, Tempera-

ture on/off PID regulation system.

Sartorius TE612 0.01 g-precision scale and catalyzed in a ratio 1:1 (hardener:polymer). The mass

quantities are those of the block substrate, i.e., 50g per part, so as to reproduce the mixing and

degassing quality of the cubic sample. The polymer mixture is degassed in a vacuum chamber

for 6 min. Copper molds with thermal resistors attached on them are carefully cleaned. Copper is

selectedbecauseof itshighthermalconductivityat390Wm−1K−1,whichensuresoptimizedthermal

exchanges throughasignificantthicknessof4mm. The innermoldsurfacesare thensprayedwiththe

commercial Mann Ease 2OO mold release wax. The mold consists of three plates with dimensions

81×60×2 (mm3), providing a full sandwich-like mold when assembled. Two of the plates are innerly

curved with the negative imprint of the dogbone specimen (Fig.II.10a), where a flat plate comes

in between to connect them. The liquid material is poured into the first imprint and the flat plate

comes upon it to seal the material after assembling. The second negative imprint is filled again with

the material and assembled with the previous half-mold. The assembling is guided by pins that

transversely interconnect the plates for proper alignment. The thermal resistors are attached on the

external plates (Fig.II.11a) and connected to a thermal source through a temperature regulation

system Statop 2415 (on/off PID regulator, Fig.II.11b), which correlates the temperature seen by a

thermocouple attached on the inner flat plate and the scheduled heating program of the source. The

selected thermocouple is of type T, providing a 0.5◦C precision (in class 1). The system is subjected

to a 60 min thermal process at 70◦C with a 5◦C/min rate of temperature rise (drop) from (to)

ambient. The cycle of the curing process is that of the cubic specimen for the magnetomechanical

test. The specimens are removed from the mold after 24h so as to have the thermal stresses relaxed.

Once the specimens are prepared, black acrylic paint dots are drawn with a sharp tip along the

longitudinal direction having 4 mm distance, in order to track the logarithmic strains by means of

video extensometry, see Fig.II.10b. The dots are painted within the central parallel portion of the

specimen with relatively uniform stress and strain distributions. This type of specimen is difficult

to grip and the non-uniform elongations near the jaws do not allow to determine the stretch ratios

by simply considering the change in distance between them. This is the reason why the elongation

measurements are concentrated within the span by tracking the motion of the black dots.

34



II.5. MECHANICAL CHARACTERIZATION

II.5.2 Mechanical cyclic tests

Symmetric tension is applied to the dogbone samples by means of a custom-made setup consisting of

two motors (from Oriental Motor) installed in opposition, see Fig.II.12a. The motors are attached

on long cylindrical axes. At the opposite side of the motors, each axis has mounted custom-designed

clamps to hold the sample during testing. The rectangular heads are 3D printed in thermoset in

dimensions 37.5× 17.5× 3 (mm3), see Fig.II.12b. Each pair of clamps consists of two plates with

curved at their inner side a rectangle of dimensions 12.5×12.5×1.5 (mm3) to locate the head of the

specimen. The motors can bear very small loads up to 10N.

a b

load cells jaws

motors

Figure II.12: a, Setup for uniaxial tension tests. b, Solidworks 3D CAD design of the 3D-printed jaws.

The experimental characterization is carried out under ambient conditions. Strains in the gage

area of the samples are measured via non-contact video extensometry. Owing to the large stretch

ratios and Poisson’s ratio values, attention must be paid to how the sample is clamped so as to obtain

valid data (Karadeniz et al., 2011). A 5 Megapixels camera, connected to the custom-made image

acquisition software Sylvie for elongation recording, is initially used to align the sample. The sample

is first placed on the clamps without being locked in place. Then, the load cell force is imposed to

be zero by means of the custom-made software Agnes that controls the loading process. Having

removed the gravitational forces from the system, the specimen is fixed on the clamps. A proper

lighting and background setting are required for clean data recording. A mirror in 45◦ angle with

the camera reflects the image of its side (in the perpendicular plane to its front plane) towards the

camera. In this way, the mirror guides the alignment of the specimen as it is being stretched at 0.05

mm/s displacement rate. The focus of the camera is subsequently adjusted as a tradeoff between the

front and the side profile view. The camera shutter is then adapted based on the lighting conditions.

The longitudinal stretch is measured by extensometry of two boxes, tracking the position of the

black dots at 4 mm distance. The transverse stretches are measured by incremental detection of

the edges. Ten cycles are performed under displacement-controlled sinusoidal signal stimulation of

0.01 Hz, 270◦ phase and 15 mm total amplitude. A single image from the camera provides both the

front and side view of the sample, giving access to the strains along the three principal directions

of the sample. The displacement, strain and force are recorded as a function of the time by means

of the digital data acquisition software (synchronized with the digital camera system). The data

recording rate is set at 0.1 data/sec. Zero displacement and force are set zero both in load frames and

extensiometers. Plots of force vs. time, displacement vs. time and force vs. displacement monitor

during cycling the loading conditions. A tracking algorithm implemented in LabView follows in real
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FigureII.13: a, Substrate dogbone specimen for uniaxial tensile tests. Nominal stress versus stretch curve

for Ecoflex-0010 elastomeric substrate material under uniaxial tension at strain rate ε̇ = 10−3 (s−1). b, The

loading-unloading test consists of 10 cycles of sinusoidal signal with 15mm amplitude, 0.01Hz frequency

and 270◦C phase; c, The fifth stabilized cycle is fitted by the neo-Hookean and the two-term model of

Lopez-Pamies (2010). The entire range of tested stretches (up to 1.5) is fitted by the two-term model,

measuring at uniaxial stretching (λ1 = λ , λ2 = λ3 = λ 1/2 the principal stretches and t1 6= 0, t2 = t3 = 0 the

tractions): Sun = λ−1t1 =
λ 3−1

2λ+λ 4 · 31−aG(λ 2 + 2λ−1)a the scalar Piola–Kirchhoff stress, with a = 1.25 and

G = 7kPa. When the stretch is lower than 1.25, the Ecoflex 00-10 follows the neo-Hookean law: SnH = Sun

for a = 1 and G = 7kPa under the given strain rate.

time the longitudinal and the caliper boxes, thus giving access to the principal Eulerian logarithmic

strains

εi =
∫ li

l0
i

1
li

dli = ln
li

l0
i

= lnλi,

i = 1,2,3 along the three fixed laboratory axis ei. The force exerted on the sample during loading is

measured by the two LCAE-600G single-point load cells from OMEGA.

Fig.II.13 shows the experimental uniaxial nominal stress-stretch curve of the silicone substrate,

together with two fitting hyperelastic models. The shear modulus of the material is found Gs = 7kPa

at strain rate ε̇ = 10−3 s−1 by fitting the stress-stretch data of the fifth loading stabilized cycle.

In Fig.II.13c, the two-term model of Lopez-Pamies (2014) probes the entire stretch ratio range,

1 ≤ λ ≤ 1.5, with strain-stiffening constant a = 1.25. Instead, the incompressible neo-Hookean

model is fitted to the experimental data points within the range of stretch ratio 1 ≤ λ ≤ 1.25. For

incompressible isotropic materials, the neo-Hookean strain energy function writes

W (I1) =
G

2
(I1 −3) =

G

2
(λ 2

1 +λ 2
2 +λ 2

3 −3), (II.1)

with λ1 λ2 λ3 = 1, G the small-strain shearmodulus, I1 = trC thefirst invariantofC the rightCauchy-

Green strain tensor and λ1,λ2,λ3 the principal stretches. The neo-Hookean constitutional law is

basedonstatistical thermodynamicsof cross-linkedpolymerchains. Initially, cross-linkedpolymers

(such as elastomers and thermosets) behave in a neo-Hookean manner, since the polymeric chains

can move relatively to each other when a force (seen as stress by the solid) is applied. When the

load reaches a certain value, the chains are stretched to the maximum length that the covalent

bonds allow. That causes a dramatic increase in the incremental elastic modulus of the material.
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II.5. MECHANICAL CHARACTERIZATION

Such an inrease in modulus cannot be captured by the neo-Hookean model and thus, the two-term

model of Lopez-Pamies (2010), also belonging to the class of incompressible isotropic stored-energy

functions, is used. In practice, the two-term model is a generalized version of the neo-Hookean, since

it a) depends on the first invariant I1 but not on the second I2 = 1
2{(trC)2 − trC2} (similar to the

neo-Hookean law); b) is adequate not only for uniaxial stress states (in contrast to the neo-Hookean)

and c) contains a second variable, the real number a, that controls the incremental modulus in large

deformations. The two-term model is a linear combination of the invariants 31−a

a
· (Ia

1 −3a) instead

of (I1 −3) and writes

W (I1;a) =
M

∑
r=1

31−ar

2ar

·Gr(I
ar

1 −3ar), (II.2)

where the integer M denotes the number of terms included in the summation. The small-strain

shear modulus Gr and the strain-stiffening shear modulus ar (r = 1,2...M) are real-valued material

parameters that need to be determined ultimately from macroscopic experiments (or possibly from

microstructural considerations (Lopez-Pamies, 2010)).

The stress-stretch curve of the Ecoflex-0010 (substrate material) uniaxial tensile test closely

matches the neo-Hookean curve up to∼ 30% stretching. To this extent, the mechanical constitutive

behavior of the substrate bulk material can adequately be described as neo-Hookean and thus, we

assume for simplicity such a response for our Ecoflex silicones. In Section V.2, we show that the

neo-Hookean behavior is sufficient to probe the experimental bifurcation curves up to the level of the

current analysis, Figs.V.9,V.10. However, a more elaborated energy should be taken into account

when huge magnetomechanical coupling is regarded. Such a case is when considering a nonlinear

magnetoelastic substrate, instead of a purely elastic one.

II.5.3 Challenges in characterization

Elastomers show large variations in physical properties based on the weight ratio of the ingredients

(polymer:crosslinkler), strainrate, temperatureandhumidityconditions, inertiaphenomena, stress

relaxation, creep behavior, Mullin’s effect etc. Indeed, a parametric study carried-out by means of

an INSTRON machine, shows a strong dependence of the elastic modulus on the strain rate.

Since the experiment is displacement controlled, the strain is derived as ε = ∆l/l0 with l0 the

initial span length at 25 mm and ∆l the displacement of the jaws at 30mm. For a given strain rate

ε̇, the (un-)loading time is then ∆t = ε/ε̇ and the displacement rate is given as ∆̇l = ∆l/∆t. The

displacement rate ∆̇l is given as input in the INSTRON machine. The true strain is measured by

means of the tensile machine and video extensometry. The encoder of the machine understimates

the engineering strain by 12%. This is because it measures the changes in distance (displacement)

between the grips and thus, takes into account the nonuniform elongations near the grips. Such a

measurement is correct only when no slipping occurs at the grips. Nevertheless, relatively uniform

stress and strain distributions occur throughout its central parallel region. Thus, the elongation

measured within this portion by means of video extensometry is far more accurate.
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FigureII.14: Nominal stress-stretch curves for Ecoflex-0010 elastomeric substrate material under uniaxial

tension for different strain rates. The dependence of the elastic modulus on the strain rate is shown.

The discrete values represent the experiments and the continuous lines the neo-Hookean fitting. The

film/substrate system is pre-compressed in a fixed setup and thus, is in a fully relaxed state. By contrast,

a tension experiment has intrinsic rate effects. As a result, the uniaxial tension test is used as a guide

and not as an independent fitting process.

The validity of our custom-made tensile machine was verified by the INSTRON machine, con-

firming a substrate shear modulus Gs = 7kPa at strain rate ε̇ = 10−3 s−1. Subsequently, lower strain

rates were employed to study their effect on the tensile response. Fig.II.14 shows representative

nominal stress-stretch tensile curves for three strain rates ε̇ = 5 ·10−4, 5 ·10−5,5 ·10−6 s−1. A signifi-

cant decrease of the shear modulus Gs is observed with decreasing strain rate. When ε̇ = 5 ·10−6 s−1,

the shear modulus is found Gs = 3.5kPa, unlike Gs = 7kPa found under ε̇ = 10−3 s−1. Since the

response of such soft material depends on temperature, strain rate and strain measurements4, these

stress-strain curves can provide only a range of values for the substrate shear modulus. The ten-

sile stretching is not necessarily the best independent experiment to recover the response under

compression due to the tension-compression asymmetry.5 In addition, the curing process of a stan-

dard thin-section dogbone sample leads to different polymerization time/process than in a 40mm

edge cubic block. To that end, we make use of bifurcation diagrams together with full-field (mag-

neto)mechanical simulations, so as to obtain a precise estimate of the moduli for the application at

hand.

In a number of recent papers studying film/substrate buckling (e.g., see Sun et al., 2012), the

material parameters are obtained from bifurcation diagrams. In our problem, the numerical fitting

4Instead, the film/substrate system is pre-compressed in a fixed setup, fully relaxed before compression.
5We recall that the magnetomechanical experiment considers strains up to 30% under compression.
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assessment of the experimental wrinkling curves (12 tested pre-compressions × 3 specimens) can

be done independently, see Fig.V.9a. The setup of the magnetomechanical experiment does not

allow for in-situ force measurements. The measurable quantities are the far-applied magnetic field

and the observable patterns and pattern-amplitudes. To identify the material properties, we use

two bifurcation curves experimentally obtained at pre-compression λ0 = 0.8 and 0.85 (see Fig.V.9

for a detailed discussion). Given that the material layers are nearly incompressible, we consider

Lamé compressibility moduli about 100 times larger than the shear moduli. From the fitting of

the experimental bifurcation curves, we obtain the shear moduli for the substrate Gs = 3KPa and

for the MRE film G f = 10KPa, leading to a substrate-to-film ratio of Gs/G f = 0.3. The substrate

modulus is in agreement with the independent uniaxial tensile test at strain rate ε̇ = 5 · 10−6 s−1.

These values are shown in Sections V.2 and V.3 to be sufficient to accurately probe the rest of the

experimental curves.

II.6 Magnetic measurements

The MRE permeability µ f is measured with a Bartington MS3/MS2G sensor and is used to obtain

the relative film susceptibility χ f from the relation χ f = (µ f −µ0)/µ f , with µ0 = 4π10−7 NA−2

the susceptibility of the air. Temperature compensated high precision measurements of the initial

volumesusceptibility χ f areperformedoncylindricalMREsamples. Thesensorofthedevice isavery

high thermal stability oscillator, having a wound inductor as a frequency-determining component

(resolution: 10−6[−] SI). This technique consists in generating a known alternative low-intensity

magneticfield inacoil. Whenthe inductorcontainsonlyair, thevalueof µ0 determines the frequency

of the oscillation. When the inductor is within the influence of the MRE sample, the value of µ f

determines the frequency of the oscillation. This is attributed to a perturbation of current that is

created when the sample is placed inside the coil. The µ0 and µ f dependent frequency values are

then digitized with a resolution of better than 10−6 and the initial susceptibility is measured such

that χ∗
f = (µ f −µ0)/µ0.

Anewmagnetic susceptibilityquantity χ f is howeverdefinedas χ∗
f = χ f /(1−χ f ), 0≤ χ f ≤ 1 and

thus, combining it with the previous expression, one obtains χ f = (µ f −µ0)/µ f . The expression

is also valid for the effective properties of the film writing χ̃ f = (µ̃ f −µ0)/µ̃ f . In the absence of

interphases, the macroscopic permeability reduces to the Maxwell-Garnett (MG) estimate

µ̃ f = µ0 +
3c(µp −µ0)µ0

(2+ c)µ0 +(1− c)µp

µp→∞−−−→ µ̃ f = µ0 +
3c

(1− c)
µ0 =

1+2c

1− c
µ0, (II.3)

where c denotes the particle volume fraction, µ0 and µp the matrix (equal to that of the air) and

particles (infinite) permeability, respectively. When µ0 ≥ µp (µ0 ≤ µp), this result agrees with the

Hashin-Shtrikman upper (lower) bound for a two-phase medium with arbitrary (not necessarily

particulate) isotropic microstructures. In the case of particle composites, the spherical inclusions

model the isotropic repartition of the phases and not the inclusion shape, i.e., they do not have to be

spherical. While the result in (II.3) is not appropriate to describe the permeability of nanoparticle
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Figure II.15: Experimental measurements and analytical estimates of the MRE film relative suscep-

tibility χ f =
(
µ f −µ0

)
/µ f , with µ f and µ0 denoting the magnetic permittivity of the film and the air,

respectively. The analytical homogenization Maxwell-Garnett and differential scheme curves are included

for comparison.

composites observed in experiments, it does describe reasonably well the macroscopic permeability

of mediums filled with micron-sized spherical particles over large ranges of volume fractions of

particles (Lopez-Pamies, 2014).

An alternative estimation of the effective permeability µ̃ f of the film can be given by the differ-

ential scheme that writes: if the volume fraction of the matrix is decreased from c to c−δ by carving

out of the composite a volume fraction δ/c of large spherical cavities and inserting large solid spheres

of permeability µp into these cavities, then the medium surrounding these new inclusions can be

treated as homogeneous with permeability µ∗(c), provided that a) the cavities are placed well apart

from each other and b) their radius is chosen to be sufficiently large compared to the scale of in-

homogeneities present in the original composite. To calculate the effective permeability µ∗(c− δ )

of the new suspension, one can treat it as a dilute suspension of large spheres of permeability µp,

occupying a volume fraction δ/c in a matrix of permeability µ∗(c). At the next step, one can in-

crease the volume from c1 − δ to c1 − 2δ by inserting even larger spheres of permeability µp. By

iterating this procedure, starting from a homogeneous medium with permeability µ0 containing no

spherical inclusions, i.e., c = 1, we build up a material with any desired volume fraction of spheres

of permeability µp, for which the effective permeability can be estimated by (Milton, 2002)

(
µp −µ∗
µp −µ0

)(
µ0

µ∗

)1/3

= c. (II.4)

Tosolve for theeffectivesusceptibility χ̃ f , oneshouldgobacktotherelationof theeffectiveproperties

χ̃ f = (µ̃ f −µ0)/µ̃ f , where µ̃ f = µ∗.

The effect of the iron-particle volume fraction c on the overall magnetic susceptibility (or permit-

tivity) of the MRE composite film is shown in Fig.II.15. For completeness, the two homogenization

estimates are presented, obtained by considering air permittivity µ0 for the silicone matrix and

infinite permittivity for the iron particles (that is a good assumption since results do not change
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significantly if one considers a permittivity 100 times or more than that of the air). The Maxwell-

Garnett estimate is given by µ̃ f /µ0 = (1+ 2c)/(1− c), whereas the differential scheme is given by

µ̃ f /µ0 = (1− c)−3. In Fig.II.15, one can observe that the Maxwell-Garnett is in better agreement

with experiments. Since µ0 denotes the matrix and µp the rigid particles permeability, then µ0 ≤ µp

and thus, µMG
f (µ0)≤ µh

f , where µMG
f (or µ̃ f ) the homogenized permeability of the Maxwell-Garnett

estimate and µh
f (or µ f ) the real effective permeability (if we are able to compute it exactly). The

latter relations lead to a lower bound for the effective permeability µh
f . As a result, a lower bound

for the effective susceptibility χ f should also follow. The estimation of the volume fraction from an

alleged bulk density can be a source of error. Moreover, manufacturing based parameters, such as

debonding(Mullin’s effect), aggregationofparticles, andtrappedairof zerosusceptibilitywithinthe

polymer (see Figs.II.4c,d) could explain why the experimental findings slightly violate the bound.

By setting c = 0.2 (i.e., 20%), one finds χ f = 0.4, which is the value used in the subsequent numerical

simulations.

The saturation magnetization of the MRE material is independent of the mechanical properties

and the microstructure and is obtained by the simple rule of mixtures (see Danas, 2017). By using

earlier experimental results in similar materials (see Danas et al., 2012), we use for the carbonyl iron

a saturation magnetization in the order of µ0miron
s ∼ 2.5T. That gives µ0ms

f = 0.5T for the MRE film

if mixed at c = 20% with a non-magnetic polymeric matrix.

II.7 Magnetomechanical experimental observations

The experimental system consists of an elastomeric cube of 40mm edge, in which an isotropic MRE

film of thickness H f = 0.8mm and shear modulus G f = 10kPa rests on a non-magnetic substrate of

thickness Hs = 39.2mm and shear modulus Gs = 3kPa. The two layers are made of elastomers of the

same family and are cured simultaneously to prevent film delamination. The system is subjected to

in-plane uniaxial compression perpendicular to the film thickness denoted by the stretch measure

λ1 ≡ λ0 = 1+ε0 suchthat0< λ0 < 1 (or−1< ε0 < 0). Themagneticfieldb0 is then linearly increased

beyond the bifurcation point to obtain well-formed wrinkling. We capture the morphological side

patterns of the film using a digital camera system with 12µm/pixel resolution and we trace the

out-of-plane surface displacements as a function of the magnetic field, after image processing and

analysis (see Section II.4). The images are recorded during testing at a rate of 17 frames per 0.1T.

The experimental process considers three specimens of the same geometry, fabricated under the

same conditions.

A representative post-analysis of the experimental measurements is shown in Fig.II.16. Sub-

jected toacompressivepre-stretch λ0 = 0.78, the three specimensbuckleundera1Dsinusoidalmode

at b0 ≈ 0.2T external magnetic field, Figs.II.16b,f,j. From the profile of the wrinkled film in the inset

of Fig.II.16a, we measure the average deflection of the film–referred as bifurcation amplitude A–as

a function of the magnetic field, b0. In Fig.II.16a, we then summarize the supercritical amplitude

A with increasing applied magnetic field b0 for the three specimens. Repeatability in response is
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illustrated for both amplitude measurements (Fig.II.16a) and morphological patterns (Figs.II.16b-

m). Standard deviation of measurements is later included in the experimental phase diagram of

Figs.II.19a,V.9b, for the entire range of tested pre-compressions λ0. As observed in Figs.II.16b-

m, the wavelength of the wrinkles is susceptible to local defects, inherent from the experimental

boundary conditions (lateral friction modeled in Section V.3) and the fabrication. Geometrical

imperfections of the structural properties, such as film thickness, lead to variations in film stiffness

and to non-uniformity of the wrinkles. As the magnetic field increases, the deflection of the wrin-

kled film +A/2 (−A/2) in the peaks (valleys) evolves asymmetrically and progressively gives rise

to a curvature localization mode. When b0 = 0.3T, the curvature at the central valley is notably

larger than that of the peaks aside, implying that the film might have asymmetric bending stiffness.

Asymmetric bending stiffness6 (due to fluctuations of the structural properties) of the surface layer

produce bending configurations with high contrast of curvatures7 between the valley and the peak of

the wrinkle, which seem to promote localizations (Sun et al., 2012). The curvature contrast is grow-

ing larger with increasing magnetic field, leading to a paired-wrinkle pattern of dual period. While

the curvature localization evolves, the wrinkles aside get unloaded in the most favorable fashion to

create the minimum magnetoelastic configuration given the imperfections (see inset of Fig.II.16a).

The post-buckling evolution manifests nonlinear growth of the localization (Figs.II.16c-e,g-i,k-m)

that can be assessed by the second derivative of the out-of-plane displacement (see relevant analysis

in Chapter VI).

The coexistence and coevolution of wrinkling and curvature localization is observed and further

analyzed in Fig.II.17. Here, we plot the bifurcation amplitude A versus the applied magnetic field b0

forthecentral(green)andtheright(red)valley. Whentheappliedfield isrelatively lowb0 < 0.1T,the

flat state of film/substrate system gives the global minimum of the potential energy. As the applied

field reaches a critical value bc
0 ≃ 0.1T, the potential energy of a new state (i.e., wrinkling) becomes

equal to that of the flat state. The system then transits (smoothly due to material imperfections)

into a uniform wrinkling state; all wrinkles have the same amplitude. We note that a state switched

from the non-diverging (flat) one is defined as the primary bifurcation mode. The pre-compression

λ0 = 0.78 is suchthatbrings thestructurenear (butnotat) thecriticalmechanicalbucklingλ c
0 ≃ 0.76

8. In virtue of that, the instability is triggered by a small magnetic field b0 ≃ 0.1T. In this way, one

could possibly make use of ordinary magnets to actively control such magnetoelastic blocks as real

haptic devices.

At a higher applied magnetic field b0 ≃ 0.32T, the central wrinkle diverges from the primary

bifurcated branch, displaying curvature localization. The formation of the secondary pattern is

6Asymmetric bending stiffness occurs when the top and bottom surface of a thin layer object have different local
stiffness due to different types of inhomogeneities at each side. Not to be confused with bending of asymmetrical
sections.

7High contrast for Sun et al. (2012) implies k1 ≫ k2, with k1 and k2 the curvature of the valley and the peak,
respectively.

8For a substrate-to-film shear moduli ratio Gs/G f = 0.3, smooth one-dimensional wrinkling of (ω =)4 wrinkles
is triggered when the bilayer is mechanically buckled at λ c

0 = 0.76. This bifurcation mode, found by a relative
numerical analysis under purely mechanical compression (i.e., b0 = 0) in agreement with the theoretical results
of Danas and Triantafyllidis (2014) (see Fig.V.4 for later use), progressively evolves into a double-wrinkle-pair at
λ c2

0 = 0.69.

42



II.7. MAGNETOMECHANICAL EXPERIMENTAL OBSERVATIONS

#1

Magnetic field, b0 (T)

B
if
u

rc
a

ti
o

n
 a

m
p

lit
u

d
e

, 
A

 (
m

m
)

#2

#3#1
#2
#3

a
b c ed

f g h i

j k l m

Magnetic field, b0 (T)
0.2 0.3 0.4 0.5

0 500 1000 1500
40

42

44

46

48

50

52

54

56

58

60

10 20 30

Reference coordinate, X1 (mm)

P
ro

fi
le

, 
u

2
 (

m
m

)

b0=0.2T
0.3T

0.4T

0.5T

Figure II.16: a, Measurement of the bifurcation amplitude A versus the magnetic field b0 at pre-stretch

ratio λ0 = 0.78 (orelse pre-strain ε0 = 22%). The bifurcation amplitude is assessed from the film deflection

profile (seen in the inset), extracted from the experimental images by means of image processing. A in mm

denotes the average distance between the peaks and valleys of the two central wrinkles. Three specimens

are considered. b-m, Optical images of the morphological patterns versus the magnetic field b0 at

pre-stretch λ0 = 0.78. The bilayer systems undergo an out-of-plane deformation, manifesting curvature

localization at the middle of the surface layer as the magnetic field increases. Despite the imperfections

of the pattern coming from the fabrication, the three specimens show repeatability in response in terms

of morphology (b-m), as well as in terms of wrinkling amplitude (a).

illustrated by the shape configurations in Figs.II.16b-m. A localization develops within the uniform

undulations of the sinusoidal mode, as the neighboring wrinkles grow relatively to each other. Upon

further increase of the magnetic field, the localization process continues with the central undulation

becoming dominant, in the form of a double-wrinkle-pair. The amplitude (depth) of the central

valley grows much larger than that at its right side for b0 > 0.35T, Fig.II.17. This behavior results

fromthe incompatibilityof thebifurcationmodestriggeredbythetwoindependentfieldsunderfinite

strains, coupled with the experimental boundary conditions (later interpreted against numerical

results inSectionV.3). Under suchfinite stretchλ0 = 0.78, the frictiondevelopedbetweenthe lateral

faces of the specimens and the walls of compression device is not negligible. That is manifested by

a noticeable curvature at the corners of the surface layer (see Figs.II.18i,m). The corresponding

curvature affects, in turn, the morphology of the surface pattern by pulling the corners of the

film towards the substrate. Within such finite strain regime, the incremental moduli of the neo-

Hookean substrate is different from the ground state and becomes anisotropic. In turn, a higher

interlayer stiffness contrast might be formed, known (e.g., see Cao and Hutchinson, 2012b) to yield

mechanically localized instabilities when Gs/G f ≥ 0.6 (see context of Figs.V.4,V.5). By contrast,

the film/substrate magnetic contrast is infinite (i.e., χs/χ f = 0) and thus, triggers single-period

wrinkling. Consequently, the morphological pattern is a tradeoff between the purely mechanical

and purely magnetic loading contributions.
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Figure II.17: Measurement of the bifurcation amplitude A versus the magnetic field b0 of the central

(green) and the right (red) wrinkle, for pre-stretch value λ0 = 0.78. The primary instability mode of the

bilayer-system is wrinkling, which soon manifests curvature localization at the center of the film. When

the applied field is relatively low b0 < 0.1T, the film/substrate system is at the flat state. As the applied

field reaches a critical value bc
0 ≃ 0.1T, the system transits (smoothly due to material imperfections) into

a uniform wrinkling state; all wrinkles have the same amplitude. At a higher applied magnetic field b0 ≃
0.32T, the central wrinkle diverges from the primary bifurcated branch, displaying curvature localization.

Asymmetric bending stiffness (due to fluctuations of the structural properties) of the surface layer produce

bending with high contrast of curvatures between the valley and the peak of the wrinkles, which seem

to promote localizations (Sun et al., 2012). This behavior may also result from the incompatibility of

the bifurcation modes triggered by the two independent fields under finite strains, combined with the

experimental boundary conditions.

II.7.1 Morphological patterns

The morphological response of the MRE film/substrate system is summarized in Figs.II.18a-p.

Therein, the block, initially pre-compressed with λ0 = 0.95,0.85,0.8 and 0.75 (Figs.II.18a,e,i,m),

bifurcates as a result of the applied magnetic field b0. The post-buckling evolution of the modes

versus theappliedmagneticfield isalsoconsidered for theaforementionedλ0 (Figs.II.18c-d,g-h,j-l,n-

p). Thismagnetomechanicalmorphologicalmapprovidesexperimental evidenceofdifferent surface

patterns formed with the same material system at different pre-compressions and magnetic fields.

The morphology of the critical modes evolves more drastically with increasing pre-compression,

while it remains almost unchanged with increasing magnetic field once in the post-bifurcation

regime. The magnetoelastic properties of such a structure allow for bifurcation modes of sinusoidal

type (wrinkles) within a large range of pre-compressions, even when λ0 is significantly higher (i.e.,

compressive strain is lower) than the theoretical mechanical bifurcation point for a substrate-to-film

shear moduli ratio of Gs/G f = 0.3, denoted as λ c
0 ≃ 0.76 (Figs.II.18a-l). For small pre-compressions,

e.g., λ0 = 0.95 (Figs.II.18a-d), the wrinkling patterns are complex and two-dimensional (2D) as a

consequence of the high in-plane symmetries of the cubic block, i.e., almost square top surface of the
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Figure II.18: Experimental influence of the magnetomechanical coupling on bifurcation and post-

bifurcation. a-p, Optical images of the morphological pattern evolution versus the magnetic field b0

under different pre-compressions λ0. Scale bar, 20mm. Bifurcation patterns and critical loads depend

on coupling: (a-d) For small pre-compressions, two-dimensional (2D) wrinkling patterns (see inset of

Fig.V.9b blue region) are mainly controlled by the magnetic field, e.g., λ0 = 0.95, bc
0 < 0.4T; (e-l) For

moderate pre-strains, one-dimensional (1D) wrinkling pattern of stable wavenumber ω(= 4) is obtained.

The single-period wrinkling is the most preferable buckling mode in the range of pre-compressions tested.

As pre-compression increases, wrinkling is triggered at smaller magnetic fields, e.g., λ0 = 0.85, bc
0 > 0.2T

and λ0 = 0.8, bc
0 ≈ 0.2T; (m-p) For high pre-compressions, period-doubling is observed while the critical

magnetic fields do not decrease further, e.g., λ0 = 0.75, bc
0 < 0.2T. q, Measurements of the bifurcation

amplitude A as a function of the magnetic field b0, for different pre-compressions λ0. A in mm denotes the

average distance between peaks and valleys of the two central wrinkles. For small pre-compressions (e.g.,

λ0 = 0.95), the amplitude measurements should be analyzed with caution since the camera has no access

to the internal part of the film surface, where higher wrinkling amplitude is developed (see Fig.V.9b-inset

of blue regime).

film at small pre-compression (but see also Audoly and Boudaoud (2008a), Stoop et al. (2015)). By

further pre-compressing, e.g., λ0 = 0.85,0.8 (Figs.II.18e-l), the cubic symmetry breaks, leading to a

one-dimensional (1D) sinusoidal wrinkling pattern of single period and stable wavenumber ω(= 4).

This mode governs the post-bifurcated response for a wide range of λ0 ∈ [0.75,0.9], illustrating

the similarity and cooperation of the magnetic and mechanical primary bifurcation modes. This

similarity results from the substrate-to-film infinite magnetic susceptibility contrast (χs/χ f = 0)

and moderate mechanical moduli ratio (Gs/G f = 0.3), respectively.

Further pre-compression beyond λ0 = 0.75 (Figs.II.18m-p) causes single-period wrinkling to

evolve into period-doubling. The double-period pair bifurcates from the flat state by varying the

amplitude of the middle valley, leading to a period twice of the wrinkles aside. In this latter regime,

the film/substrate block is under the influence of finite strains and significant friction at its lateral

faces in contact with the mechanical compression device. The friction is manifested by the presence

of a non-negligible curvature at the extremal sides of the film (see Figs.II.18i,m). Such a curvature

tends to inhibit the full formation of mechanical wrinkling on the film, even though one reaches the
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point of mechanical wrinkling (λ c
0 ≃ 0.76)9. In view of that, the applied stretch exceeds the point

of mechanical buckling, λ0 < λ c
0 , without undergoing a clear instability, see Fig.II.18m. Instead, it

promotes a mechanical localized mode that resembles closely a crease mode but without self-contact

of the free surface. By contrast, the application of the magnetic field gives rise to pure wrinkles.

This possibly suggests that the mechanical and magnetic bifurcation modes become different in

high pre-compressions and thus, their cooperative nature is lost. Within such finite strain regime,

the incremental moduli of the neo-Hookean substrate is also different from the ground state and

becomes anisotropic, see Fig.II.13b for the substrate stress-strain (tensile) response. In turn, a

higher interlayer stiffness contrast is formed, Gs/G f ≥ 0.6, known (e.g., see Cao and Hutchinson,

2012b) to yield mechanically localized instabilities (see context of Figs.V.4,V.5). As a consequence,

the critical magnetic field saturates as a function of pre-compression, whereby its quantitative

interpretation can already be observed in Figs.II.18q and II.19 (it is also discussed in detail in the

context of Fig.V.9b). Further increase of the magnetic field leads to large out-of-plane deformations

that relaxes the neighboring wrinkles and promotes a single localized pre-crease mode, as shown in

Fig.II.18p.

II.7.2 Bifurcation amplitudes

In the morphological map, one can qualitatively observe a monotonic tendency of the critical mag-

netic field to decrease with increasing pre-compression (and vice versa) (Figs.II.18c,f-g,j,n). To

further explore quantitatively the influence of magnetomechanical coupling over the critical loads,

we measure the evolution of the out-of-plane deflection of the film–referred in this work as bifur-

cation amplitude A–as a function of the applied magnetic field b0 (see image processing method in

Section II.4). In Fig.II.18q, we summarize the supercritical bifurcation amplitude curves for differ-

ent pre-compressions, which plainly depict the decreasing trend of the critical magnetic field as a

function of pre-compression. The transition from the principal solution (A = 0) to the supercritical

bifurcated branch is smooth and increases gradually with the magnetic field, indicating the presence

of unavoidable geometrical and material imperfections deriving from the fabrication process. For

lateruse, wedefinethebifurcationtransitionpoints (λ0,b
c
0)bysettingathresholdover theamplitude

A, as seen in Figs.II.18q and II.19. The threshold here is chosen so that clear wrinkles have been

formed and is in the same range of the film thickness H f .

Selecting two thresholds A = 0.4 and 0.6mm for comparison, the two-field stability diagram is

built in Fig.II.19a and divided in three domains based on pattern distinction: two-dimensional (2D)

wrinkles(pink), one-dimensional(1D)wrinkles(white)andadouble-wrinkle-pair(blue)regimethat

is sequencedbyamechanically triggeredcreaseatλ0 = 0.7. Thegraphreveals thatpatternswitching

is controlled by pre-compression λ0 when the substrate is magnetically insensitive. The reduction

of the critical magnetic load bc with applying pre-compression λ0 is now evident. This reduction is a

direct consequenceof theproper cooperationof themagnetic andmechanicalwrinkling instabilities.

A qualitative explanation behind this decreasing trend is the following: the elastic energy stored by

9That will be discussed in detail in Section V.3, after having solved numerically the problem at hand.
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FigureII.19: a, Identification of bifurcation in the two-field parameter space: mechanical pre-compression

λ0 and magnetic field b0. A decreasing trend of the critical magnetic field bc
0 as a function of the applied

pre-stretch λ0 is observed in the two-field stability phase diagram of morphological patterns. Experimental

(λ0,b
c
0) critical points for 2D wrinkling (pink), 1D wrinkling (white) and wrinkling followed by curvature

localization patterns (blue) are defined from the bifurcation curves (in Figs.II.18q, V.9a and V.10a) by

considering thresholds of macroscopically observed bifurcation amplitude at A= 0.4 and 0.6 mm. Standard

deviation of measurements among three specimens is included in the experimental data points. b-d, Top

view; e-g, side view; h-j, overall view of localizations, 1D wrinkling and 2D wrinkling, respectively.

compressive pre-straining λ0 brings the system closer to a mechanically critically stable state. Such

a state subsequently contributes in triggering a cooperative magnetic instability at a lower magnetic

field bc.

At smaller pre-compressions (pink region), we observe morphological 2D effects since there is

no bias to plane strain modes, shown in Figs.II.19d,g,j. Here, the local variation of thickness and

stiffness in the film highly affects the morphological paths, i.e., defect-sensitive pre-compression

regime. At high pre-compressions, the magnetic field saturates in an asymptotic response with no

further reduction of the bc. It is noted that this latter regime is under the influence of finite strains

and boundary friction at the side walls of our specimen (later treated in Section V.3) that leads to

a pronounced curvature at the edges of the block, see Figs.II.16b,f,j and II.18m. Nevertheless, the

maximum field reduction achieved because of the magnetomechanical coupling is up to 50% versus

the almost purely magnetic case. More specifically, the critical magnetic field when the block is

under significant pre-compression, λ0 = 0.75, reduces to half with respect to that in the presence of

small pre-compression, λ0 = 0.98.

The variety of surface patterns owes to coupling between the magnetoelastic properties of the

layers, the structure and the combined loading. In the present experiment, we use polymers to fabri-

cate the film and the substrate and systematically vary the pre-compression of the joint bilayer from

a stress-free state. Given the magnetic film is stiffer than the passive substrate (perfect interfacial

adhesion), the experiment demonstrates a systematic set of instabilities: (i) If the in-plane symme-

try of the square film surface is strong, then 2D labyrinth-like patterns are formed, Figs.II.19d,g,j.

(ii) If the in-plane symmetry is broken due to (moderate-to-high) pre-compression, then 1D smooth

wrinkling is formed, Figs.II.19c,f,i. (iii) If the system is under high pre-compressions, then the co-
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existence of wrinkling and localizations is observed, Figs.II.19b,e. (iv) Further pre-compressing at

λ0 = 0.7 gives a mechanical crease, Fig.II.19h. To our knowledge, this is the first time in literature

that such experimental results are shown in a two-field stability diagram. The interplay between

the two fields (magnetics and mechanics) in surface pattern tuning is generally non-intuitive. The

proper combination of the coupled loading allows for the observation of various surface patterns, as

well as the reduction of the critical fields. However, this is the case only when one has cooperative in-

stabilities, i.e., both of the fields have to trigger the same bifurcation modes. Otherwise, the solution

bypasses the mechanical primary mode and is driven directly to later advanced bifurcations.

A general and quantitative understanding of the various modes of instabilities given the material

properties of the layers is of significant importance. The proposed fabrication technique provides a

single material that serves as a magnetomechanical device for the active control of surface patterns

and critical loads. In this way, the need for multiple material-specimens under different pre-loads,

suchasother fabrication techniquesdo(e.g., substrate tensionprior tofilmattachment) is overcome.
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Figure II.20: Measurement of the bifurcation amplitude A versus the magnetic field b0 under compressive

pre-stretch values λ0 = 0.78,0.85,0.88. Both magnetic loading and unloading are regarded to show the

size of the hysteresis effect on the response.

All the above-discussed morphological patterns reversibly vanish with slight hysteresis after

magnetic loading removal. Without including a dissipative rate-dependent magnetoelastic theory,

it is not possible to identify what part of the hysteresis owes to the viscoelasticity of the polymer

and/or to the magnetic hysteresis of the MRE film. However, most of the hysteresis should be due to

the polymer viscosity, since for the magnetic part we use magnetically soft iron. Danas et al. (2012)

have shown that soft particle MREs exhibit very small hysteresis in magnetostriction and none in

magnetization. To provide an idea of the size of the effect, we show in Fig.II.20 three experimental

magnetomechanical (un-)loading bifurcation curves versus the applied magnetic field at applied

pre-stretch λ0 = 0.78,0.85,0.88. The effect of hysteresis increases with increasing pre-compression,

growing large as high pre-compressions are reached. A light magnetomechanical cyclic loading is

appliedbeforemeasurements to relax residual stresses in the specimens coming from the fabrication.

However, the magnetic loading rate effects are not studied in the present study (we use a fixed one
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at 0.17A/min).

II.8 Perspectives: material design

Withtheperspectiveofdesigningnewmaterialshavinguniqueprescribedmagnetoelastic responses,

we make use of combined material properties on an entirely magnetorheological bilayer block. In

that way, we could possibly create different interlayer contrasts of magnetic/mechanical properties

and widen the range of surface patterns that are triggered by using a MRE film on a passive (i.e.,

magnetically insensitive) substrate. As already mentioned in Section II.2, the two polymers have

been chosen from the same family, so as to obtain an adequate adhesion while jointly cured. In

addition, the film Ecoflex 00-50 has been chosen for having the highest shore hardness, while the

substrate 00-10 for having the lowest among the family products. This material selection serves in

obtaining a stiff film on a highly compliant substrate and thus, the mechanical interlayer contrast to

be moderate-to-low (indeed, Gs/G f = 0.3). For incompressible elastic materials, this contrast given

in terms of the substrate-to-film shear moduli ratio Gs/G f (i.e., neglecting the compressibility Lamé

constants since λ1λ2λ3 = 1, see constitutive models in Section II.5) yields 1D smooth wrinkling when

the bilayer is subjected to uniaxial in-plane compression.

However, when we make use of the magnetoelastic nature of the materials under a combined

magnetomechanical loading, the ratio Gs/G f is no longer sufficient in determining the critical loads

and bifurcation modes. In virtue of this coupling in material properties, geometry and loading, new

contrasts between the mechanical and magnetic properties of the layers take the lead in bifurcation.

It is noted that these contrasts cannot be written in form of ratios if the constitutive behavior of

the materials is non-linear in magnetic properties (see relevant analysis in Section VI.2). After all,

the goal is set to keep the Gs/G f shear moduli ratio low (so as to avoid the mechanical actuation of

localizations)andtestarangeoffinitemagnetic interlayercontrasts, expressedasratiosofcomposite

substrate-to-filmparticlevolumefractioncs/c f . Inthatway,wecanpotentially triggeraricherrange

of surface patterns and study the contribution of the magnetic substrate to actuation of localizations

by use of a magnetic field.

Given the material parameters of the layers used in the magnetomechanical experiment, the

mechanicalandmagneticpropertiesoftheelastomersareestimatedversustheparticleconcentration

c by means of homogenization estimates and bounds. It is noted that the mechanical parameters

are assessed after numerical (FE) fitting of the experimental bifurcation curves that considers small

magnetoelastic coupling in the energy functional (see Section III.2 eq.(III.34)). However, having

identifiedthe shearmodulusof thecompositefilmG f = 10kPaatc= 20% fromthebucklinganalysis,

we use the homogenization differential scheme to identify the shear modulus of the film matrix

G0
f = 5.7kPa. The differential scheme reads G f /G0

f = 1/(1−c)5/2 for an incompressible matrix (i.e.,

bulk modulus K0 → ∞) filled with mechanically rigid particles (i.e., shear modulus Gp → ∞ and bulk

modulus K p → ∞, implying a stiffness Cp → ∞ since C = 2GK+3KJ, withK and J the fourth-order

deviatoric and volumetric unit tensors, respectively). The approximation of rigid particles is quite
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Figure II.21: Analytical homogenization estimates for isotropic incompressible elastomers filled with ran-

dom isotropic distributions of rigid particles considering a, the substrate-to-film shear moduli ratio Gs/G f

and susceptibility ratio χs/χ f ; b, the susceptibility χ and the shear modulus G of a composite film and

substrate versus the concentration of particles. The plots consider (i) the Hashin–Shtrikman lower bound

(or Maxwell–Garnett scheme) for the magnetic permettivity, µ/µ0 = (1+2c)/(1− c), with µ and µ0 the

permittivity of the filled and the pure polymer, taken the latter (i.e., the matrix) to be equal to that of the

air. The relative susceptibility is then given by χ = (µ −µ0)/µ. (ii) the differential scheme for the shear

modulus giving G/G0 = (1− c)−5/2, with G and G0 the shear modulus of the composite and the matrix,

respectively. The selection of the estimates is based on better agreement with experimental results, i.e.,

Fig.II.15 for magnetics and Lopez-Pamies (2010) for mechanics. The plots refer to a composite film of

elastic modulus G f = 10kPa and magnetic susceptibility χ f = 0.43 at volume fraction c f = 20%. Given

the material properties of the film used in the magnetomechanical experiment, we explore the maximum

particle concentration in the substrate (and the corresponding magnetic and mechanical properties) in

order to prevent Biot’s instabilities, cmax
s = 18% from (a) giving Gs = 5.5kPa and χs = 0.4 from (b).

accurate for MREs, since the modulus of the particles is several orders of magnitude higher than

that of the soft elastomeric matrix.

For the mechanical properties, the differential scheme has been found in better agreement with

experiments (Lopez-Pamiesetal., 2013) thantheHashin-Strikman lowerboundthat readsG f /G0
f =

(2+3c)/(2−2c). When the matrix is softer than the particles G0 ≤ Gp, with G0 the matrix and Gp

the particle modulus, the Hashin-Shtrikman bound gives GHS(G0) ≤ Gh, with GHS the estimated

and Gh the effective stiffness. It has been shown that the Hashin-Shtrikman bound significantly

underestimates the effective response for particle volume fractions c ≥ 0.1 (Lopez-Pamies et al.,

2013), while the differential scheme result is in between the bounds. On the other hand, when the

particles are magnetically rigid, the Hashin-Shtrikman is in better agreement with the experiments,

as seen from the susceptibility measurements versus the analytical estimates in Fig.II.15. Here,

the approximation of magnetically rigid particles (albeit soft magnets) is quite accurate for MREs,

since the elastomeric matrix is magnetically insensitive. Consequently, the mechanical properties

of the composite elastomers are estimated by means of the differential scheme, while the magnetic

properties are estimated by means of the Hashin-Shtrikman bound.

From Fig.II.21, it is straightforward that given the properties of the film already fabricated

and used in the magnetomechanical experiment, i.e., G f = 1MPa and χ f = 0.43 at volume fraction
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c f = 20%, the magnetic substrate can be reinforced up to a maximum concentration cs = 18% if

mechanical wrinkling is preferable, i.e., Gs/G f ∈ (0,0.6] to prevent surface localizations (see more

in Figs.V.4,V.5). The corresponding maximum magnetic contrast in terms of susceptibility ratio is

then χs/χ f = 0.9 from Fig.II.21a, with Gs = 5.5kPa and χs = 0.4 from Fig.II.21b.
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Figure II.22: A surface including all the possible combinations of film/substrate magnetomechanical

material properties versus the film particle volume fraction c f , given as base materials the Ecoflex 00-10

and 00-50 for the substrate and the film, respectively. Limitations: the particle volume fraction of the

film should be c f ≤ 0.25 (fabrication-wise) and the interlayer shear moduli ratio should be within the

range (0,0.6] (so as to avoid the actuation of localizations due to mechanical compression).

Fabrication-wise, the highest particle concentration that can be achieved is c ≈ 25%. Beyond

that threshold, the viscosity of the material prevents pouring in the mold and diminishes the pot life.

Therefore, given that (i) the moduli ratio Gs/G f should be within the range (0,0.6] to prevent surface

localizations (Cao and Hutchinson, 2012b); (ii) the mechanical properties of Ecoflex 00-10 and 00-

50 for the substrate and the film, respectively, have been assessed from the magnetomechanical

experiment, given the restrictions of the numerical fitting is terms of energy densities and (iii) the

particle volume fraction for both layers should be c f ,cs ≤ 0.25 experiment-wise, we design a map of

all the feasible combinations of material properties that respect the above mentioned specifications.

As seen in Fig.II.22, this map represents a surface in the three-parameter space of substrate-to-

film shear moduli ratio Gs/G f , substrate-to-film susceptibility ratio χs/χ f and film particle volume

fraction c f . The bounds of the plot prevent increasing the shear moduli ratio above Gs/G f = 0.395

for a composite film at maximum reinforcement c = 25% and that provides a magnetic contrast of

χs/χ f = 0.73. Numerical simulations of the magnetoelastic bilayer block under magnetomechanical

buckling will be subsequently presented in Chapters V and VI.
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In the present experiment, we use polymers to fabricate the film and the substrate and systemat-

ically vary the film thickness, the elastic moduli, the susceptibility and the saturation magnetization

of the magnetoelastic layers, as well as the pre-compression of the joint bilayer from a stress-free

state. This analysis reveals the surface patterns obtained by the contribution of a magnetized sub-

strate in bifurcation and map the limitations of our experimental materials. After all, in case the

base materials cannot manifest new surface patterns but wrinkling due to their intrinsic properties,

then modified ones can be obtained by changing the weight ratio of polymer-to-crosslinker.

II.9 Concluding remarks

In this chapter, we present in detail the fabrication of the MRE film/substrate blocks, the material

properties of the system and the experimental process to obtain the magnetomechanically triggered

surface instabilities. We note that the present work does not address the development of silicone-

based MREs fabrication. Such a process serves only in the implementation of our proof of concept.

However, the proposed fabrication technique is novel and brings an advantage: it is independent

of the substrate tensile pre-stretching, which is required in a well-known fabrication technique to

produce compression in the surface layer (e.g., see Cao and Hutchinson, 2012a, Sun et al., 2012,

Wang and Zhao, 2013b, Wang et al., 2016). In the latter technique, the incremental anisotropy

induced to the substrate becomes an inevitable parameter to be considered. In our case, the surface

patterns do not depend on any supplementary field-parameter, apart from the applied loading that

triggers the instabilities. In that way, we succeed to perform magnetomechanical tests under in-situ

adjusted loadings with only one specimen.

The mechanical properties of the materials at hand are identified from tensile tests under a

low strain rate in combination (and agreement) with the experimental and numerical buckling

analysis in Section V.2. The uniaxial tensile tests are used as a guide and not as an independent

fitting procedure. The magnetic properties of the film are obtained from measurements versus

theoretical estimates. Such estimates and bounds are useful in designing new responses of tunable

magnetomechanical properties for the substrate.

The morphological response of a MRE film/passive substrate system (with film thickness H f =

0.8mm) under the magnetomechanical loading is presented. Repeatability in response is illustrated

for both amplitude measurements and morphological patterns. The coexistence and coevolution

of wrinkling and curvature localization is observed and analyzed. A morphological map provides

experimental evidence of different surface patterns formed with the same material system at dif-

ferent pre-compressions and magnetic fields. To further explore quantitatively the influence of

magnetomechanical coupling over the critical loads, we measure the evolution of the out-of-plane

deflection of the film–referred in this work as bifurcation amplitude A–as a function of the applied

magnetic field. Then, we summarize the supercritical bifurcation amplitude curves for different

pre-compressions, which plainly depict the decreasing trend of the critical magnetic field bc as a

function of pre-compression λ0.

52



II.9. CONCLUDING REMARKS

The corresponding two-field parameter space stability phase diagram is built, illustrating that

pattern switching is controlled by pre-compression when the substrate is passive. The reduction of

the critical magnetic field bc with applying pre-compression λ0 is now quantified. This reduction is a

direct consequenceof theproper cooperationof themagnetic andmechanicalwrinkling instabilities.

A qualitative explanation behind this decreasing trend is the following: the elastic energy stored

by pre-straining λ0 brings the system closer to a mechanically critically stable state. Such a state

subsequently contributes in triggering a cooperative magnetic instability at a lower magnetic field.

The proposed fabrication technique provides a single material-structure that serves as a magne-

tomechanical device for the active control of surface patterns. The variety of surface patterns owes

to coupling between the magnetoelastic properties of the layers, the structure and the combined

loading. In the present experiment, we use soft silicones to fabricate the film and the substrate

and we systematically vary the pre-compression of the joint bilayer from a stress-free state. Given

that the magnetic film is stiffer than the passive substrate, the experimental findings demonstrate a

systematic set of instabilities: (i) If the in-plane symmetry of the square film surface is strong, then

2D labyrinth-like patterns are formed, Figs.II.19d,g,j. (ii) If the in-plane symmetry is broken due

to pre-compression, then 1D smooth wrinkling is formed, Figs.II.19c,f,i. (iii) If the system is under

highpre-compressions, thenthecoexistenceofwrinklingand localizations isobserved, Figs.II.19b,e.

(iv) Further pre-compressing at λ0 = 0.7 gives a mechanical crease, Fig.II.19h.

The experimental findings are followed by a closing discussion on the possible strategies to enrich

the experimentally obtained patterns by exploring the material properties of the system. With the

perspective of designing new materials having unique prescribed magnetoelastic responses, we dis-

cuss the potential of making use of combined material properties on an entirely magnetorheological

bilayer block. In that way, we could possibly create different interlayer contrasts of magnetic/me-

chanical properties and widen the range of surface patterns that are triggered by using a MRE film

on a passive (i.e., magnetically insensitive) substrate.
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CHAPTER III

THEORETICAL FRAMEWORK AND NUMERICAL IMPLEMENTATION

Summary of the Chapter. In this chapter, we present the non-trivial boundary value problem of a

MRE film/substrate plane-strain block, along with the numerical solution of the governing equations and

the stability criterions arised from the theory of magnetoelasticity. First, we discuss the variational for-

mulation within a Lagrangian setting, used in the finite element method algorithms. Explicit expressions

are given for the first variation (i.e., force vector) of the variational principle that yields the equilibrium

and Maxwell equations. Similarly, the second variation (i.e., stiffness matrix) is derived to form the

stability condition. Subsequently, we present the phenomenological magnetoelastic energy used in the

variational continuum formulation and we show an equivalence between expressions considering different

independent magnetic variables. In the following sections, we describe the finite element discretization

method, as well as the numerical mesh and the applied magnetic boundary conditions. In the last part,

we present a brief mesh convergence study on the purely mechanical and magnetomechanical problem.
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To systematically account for the various bifurcations modes, we regard the film/substrate

structure as a thermodynamically energetic (reversible) system and we consider its potential energy.

The potential energy evolves in the parameter space of uniaxial pre-compression and transverse

magnetic field. In the undeformed configuration, the experimental system is an incompressible

cube of 40mm side length, in which an isotropic magnetoelastic film of thickness H f (= 0.8mm) and

shear modulus G f (= 10kPa) rests on a (non-)magnetic substrate of thickness Hs(= 39.2mm)≫ H f

and shear modulus Gs(= 3kPa)≪ G f . The neo-Hookean law applies to the substrate under uniaxial

tensilestretchwithintherange1≤ λ1 ≤ 1.25(Fig.II.13). Thesystemissubjectedtoin-planeuniaxial

compression perpendicular to the film thickness denoted by the stretch measure λ1 ≡ λ0 = 1+ ε0

such that 0 < λ0 < 1 (or −1 < ε0 < 0). The magnetic field b0 is then linearly increased beyond the

bifurcation point to obtain well-formed wrinkling.

To gain better understanding of the experiment, we investigate numerically the boundary value

problem of the MRE film/substrate block by means of a user-element routine implemented in the

general purpose finite element code FEAP (Taylor, 2011). The geometry of the thin film/substrate

is designed in Abaqus and imported to FEAP. We consider a two-dimensional plane-strain (i.e.,

the stretch λ3 = 1 in direction X3) block surrounded by air, as shown in Fig.III.1. The film and the

substrate are taken to have the dimensions of the experimental bilayer. The size of the surrounding

air region ensures magnetic field uniformity far from the specimen in the free air space (Fig.III.1a).

Due to the finite strains, a significant part of the air needs to be deformed via a penalty-function

method, in order to avoid severe mesh distortion near the film/air interfaces (see Section III.4).

To numerically mimic the experimental procedure, we first apply a pre-compressive stretch

λ0 ≡ λ1 in direction X1 on the vertical right side of the block, i.e., a displacement-controlled loading

u1 = 40(λ1−1). Then, we linearly increase the magnetic field b0 ≡ b0
2 in direction X2, Fig.III.1b. The

magnetic loading is applied on the external boundary of the air domain (see context of Fig.III.2) via

the magnetic vector potential A3(X1,X2) = −B0
2 X1, with B0

2 = λ1 b0
2 the magnetic field and (X1,X2)

the global coordinates in the reference configuration, respectively. Zero normal displacement u1

is prescribed on the vertical left side of the block. Normal displacement u2 and shear traction t1

are also taken to be zero on the bottom side. Tangential forces f2 are prescribed to approximately

model the experimentally observed friction at the lateral faces between the block and the walls of

the compression device (see Fig.III.1). The shear forces increase linearly with the applied normal

compressive stretch λ0. This applied non-zero shear traction t2 results in a curvature at the lateral

face of the MRE film, similar to the experimental observations in Figs.II.18j,m. This point is rather

technical and is further detailed in V.3.

Continuityofthedisplacementsacrossthefilm/substrateandfilm/air interfaces isautomatically

satisfied by use of nodal elements, while the tangential component of the magnetic vector field b is

allowed to jump at these interfaces. In the present boundary value problem, the non-uniformity of

the magnetic field at the corners of the film geometry, as well as the applied friction, are unavoidable

sources of imperfections, leading to the numerical bifurcation curves in Fig.V.9a without any need

for user-defined geometrical imperfections. Since the experiments have been carried-out in air,
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the surface energies of the polymers have been neglected due to their small values and negligible

effect in the current system (Wang and Zhao, 2013b). The length of the film is found to be on the

magnitude of 4-20 wavelengths of the sinusoidal (wrinkling) pattern, based on two film thicknesses

tested: H f = 0.2 and 0.8mm. The thickness of the substrate is taken to be 199 times greater than

the film thickness for H f = 0.2mm and 49 times greater for H f = 0.8mm. As a result, the substrate

is adequately (or theoretically-considered infinetely) deep, so as to ensure that the surface modes

will not interact with the bottom of the structure (bottom of the substrate). This is later verified in

SectionsV.1.1,V.1.3andV.5viacomparisonof thenumerical resultswith the theoreticalpredictions

of Section IV.4.

The numerical calculations are carried out by use of standard four-node quadrilateral bilinear

isoparametric elements, with 3 degrees of freedom per node: the displacements u = {u1(X1,X2),

u2(X1,X2),0} and the magnetic vector potential A = {0,0,A3(X1,X2)}, where (X1,X2) denote the

global reference coordinates. The nonlinear solutions of the field equations were obtained incre-

mentally with the use of a standard Newton-Raphson scheme. A more detailed description of the

numerical algorithms and meshes is presented in Section III.3 and III.4, respectively.

Stationary Air

Deformable air

Specimen

Substrate

MRE film

a b

b0

b0

u2 = 0

u
1
 =

 0

0

f2f2

X2

X1

Figure III.1: Schematics of the numerical boundary value problem. a, MRE film adhering to a substrate

under plane strain conditions, surrounded by deformable and stationary air. b, The block is subjected

to uniaxial pre-compression λ0 and tangential forces f2 to mimic friction between the specimen and the

compression device. Subsequently, the magnetic field b0 is uniformly applied at the exterior boundary of

the air, i.e., far from the block, and perpendicular to the film, i.e., along direction X2.

III.1 Variational formulation for finite magnetoelasticity

In order to deal with the finite strains and large magnetic fields, we work in a Lagrangian setting

and define the deformation gradient F = Gradx = I+Gradu and its determinant J = detF > 0, with

x = X+u(X) denoting the position vector of a material point in the deformed configuration, X

the position vector of the same point in the reference configuration and u the displacement vector.

This implies that the reference density of the solid ρ0 is related to the current density ρ by ρ0 = ρJ.

We recall that the deformation gradient F (we use standard notation grad ≡ Grad in the reference

configuration) is a two-point tensor describing the transformation of a material point from the

reference Ωi to thedeformed Ω configuration. Wealsonote for lateruse that thepolardecomposition

of the deformation gradient is F = RU, where R is the rotation and U is the stretch tensor. Since
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the rotation R (that is an orthogonal tensor R−1 = RT ) induces no stress during transformation,

we define the right Cauchy-Green tensor such as C = U2 = R−1RT FT F = FT F. We also define

the relation between the current (Eulerian) magnetic field b and reference (Lagrangian) one B via

b = J−1FB. Using the minimum energy formulation of Dorfmann and Ogden (2003) (but see also

Danas and Triantafyllidis (2014), Kankanala and Triantafyllidis (2004)) and neglecting the purely

mechanical body (gravity) forces, the potential energy P of the system may be expressed in terms

of the displacement field u and the magnetic vector potential A (B = CurlA) such that

P(u,A) =
∫

Ωi

ρ i
0Φi (F,B) dΩ+

∫

ℜ3

1
2µ0J

‖F ·B‖2 dΩ

−
∫

∂Ωt
i

T ·udS, (III.1)

for i = film ( f ), substrate (s). Here, ‖.‖ denotes the standard Euclidean norm, ρ i
0 is the reference

density and Φi denotes the Helmholtz free energy of the solids in the reference volume Ωi. The second

term in (III.1) serves to describe the background magnetic (Maxwell) energy in the entire space ℜ3

and thus it accounts for all three phases, i.e., film, substrate and air. T is the mechanical surface

traction vector applied at the traction part of the boundary of the reference volume ∂Ωt
i. It is noted

that in order to model the air domain, it suffices to set ρair
0 = 0. As a consequence, all subsequent

expressions are valid for all phases (i.e., MRE film, substrate and air).

Inpuremagneticsandintheabsenceofdeformation(F= I), thecurrent(Eulerian)magneticfield

b is divergence-free (∇ ·b = 0), the current h-field h is curl-free (∇×h = 0) and the magnetization

per unit current volume m is defined by

b = µ0(h+m) on Ω, (III.2)

where µ0 is the magnetic permeability in vacuum and Ω is the volume in the current configuration.

This equation is used to identify one out of the three vector fields, when one vector is used as an

independent variable and the other two are constitutively related. The relation between the current

h field and reference one H is defined via H = FT h, see Dorfmann and Ogden (2003), Kankanala

and Triantafyllidis (2008). In finite magnetoelasticity (F 6= I), this relation is valid in the absence

of material or when the material is non-magnetic, see also eq.(III.17). It should be noted that the

Eulerianmagnetizationmdoesnotneedtosatisfyanydifferential constraintsorboundary/interface

conditions, in contrast to b (or B) and h (or H) magnetic fields. The Lagrangian magnetization is

defined via a non-unique form M=m/ρ, see Danas (2017). The magnetization is a field determined

by the material occupying a given space. In the present analysis, it is not constitutively related with

any magnetic field. In virtue of that, the magnetic field H (h-field pulled back in Ωi) is a function of

the magnetic induction B and the deformation F that serve as independent variables, see eq.(III.17).

However, alternative but equivalent formulations exist and later presented in Sections III.2.2 and

IV.1.
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III.1.1 First variation of the potential energy and force vector

In equation (III.1), u and A serve as independent variables with respect to which the potential

energy in (III.1) is minimized. This is achieved first by considering the first variation of P with

respect to the independent variables that yields the force vector in the numerical implementations.

The stationarity of the first variation of the potential energy (III.1) with respect to the independent

variables u and A reads

δP = P,u δu+P,A δA = 0, (III.3)

with ‘,’ denoting partial derivation. We note that the magnetic vector potential A is a continuous

admissible vector field defined over ℜ3 (while the magnetization vector M(X) is defined only on the

volume Ωi, M(X) = 0 for X ∈ ℜ3\Ωi). The admissible displacements u(X) can also continuously

extendoverℜ3 without lossof generality, althoughtheymakephysical senseonlywithin thematerial

volume, X ∈ Ωi. In theory, the deformation in the air is F(X) = I, X ∈ ℜ3\Ω. Writting the first

variation with respect to the deformation gradient tensor F and the Lagrangian magnetic field B,

we obtain the equivalent form

δP =
∂P

∂F

∂F

∂u
δu+

∂P

∂B

∂B

∂A
δA = P,F δF+P,B δB = 0, (III.4)

with F and B serving as independent variables. To be more specific, it is helpful to define the

following variations, where C = FT ·F denotes the right Cauchy-Green tensor such that1

δF = δ (u∇), δC = 2FT ·δ (u∇), δB = ∇×δA

δρ =−ρ F−T : δ (u∇), δ
(
J−1)=−J−1 F−T : δ (u∇) =

δρ

ρ0
. (III.5)

Then, dropping for simplicity the indexes i referring to material properties and using (III.3)

together with (III.5), one gets

δP =
∫

Ω
ρ0

{
∂Φ

∂F
: δ (u∇)+

∂Φ

∂B
· (∇×δA)

}
dΩ

+
∫

ℜ3

{
δ
(
J−1
)

2µ0
(∇×A) ·C · (∇×A)+

1
µ0 J

(∇×A) ·C · (∇×δA)

+
1

2µ0 J
(∇×A) ·δC · (∇×A)

}
dΩ−

∫

∂Ωt
T ·δudS, (III.6)

1We use the following vector-tensor product notation. For two second-order tensors, A and B, we define the
operations A ·B = AikBk j, A : B = Ai jB ji. For a second-order tensor A and a vector v, we denote A ·v = Ai j v j,
vv = vi v j and v ·v = vi vi.
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which can be rewritten in terms of δF and δB by use of definitions (III.5) as

δP =
∫

Ω
ρ0

{
∂Φ

∂F
: δF+

∂Φ

∂B
·δB

}
dΩ

+
∫

ℜ3

{
− 1

2µ0J
‖F ·B‖2 F−T : δF+

1
µ0 J

(F ·B) · [F · (δB)]+
1

µ0 J
[(F ·B) B] : δF

}
dΩ

−
∫

∂Ωt
T ·δudS. (III.7)

The variations δu and δA (or equivalently δF and δB from (III.4)) are arbitrary and thus,

P,u δu = P,A δA = 0. To derive the equilibrium equation and the corresponding tractions, we

consider the minimization of P in (III.7) with respect to the displacement field u

P,uδu =
∫

Ω

{
ρ0

∂Φ

∂F
: δ (u∇)

}
dΩ+

∫

ℜ3

{
− 1

2µ0J
‖F ·B‖2 F−T +

1
µ0J

(F ·B)B

}
: δ (u∇)dΩ

−
∫

∂Ωt
T ·δudS = 0. (III.8)

Use of integration of (III.8) by parts for the terms involving δu∇

∫

Ω

{(
ρ0

∂Φ

∂F
− 1

2µ0J
‖F ·B‖2 F−T +

1
µ0J

(F ·B)B

)
δu

}
·∇dΩ

−
∫

Ω
∇ ·
{

ρ0
∂Φ

∂F
− 1

2µ0J
‖F ·B‖2 F−T +

1
µ0J

(F ·B)B

}
δudΩ

+
∫

ℜ3\Ω

{
− 1

2µ0J
‖F ·B‖2 F−T +

1
µ0J

(F ·B)B

}
: δ (u∇)dΩ−

∫

∂Ωt
T ·δudS = 0 (III.9)

and subsequent application of Gauss’ divergence theorem on the first term of (III.9) 2 yield the

strong form of the equilibrium equation, DivS = ∇ ·S = 0, in the absence of mechanical body forces.

The operator Div is identified with respect to reference position X. The corresponding traction (see

page footnote) is

T =

[[
ρ0

∂Φ

∂F
− 1

2µ0J
‖F ·B‖2 F−T +

1
µ0J

(F ·B)B

]]
·N (on ∂Ωt

i), (III.10)

where [[·]] denotes the jump condition and N the outward normal to the boundary in the reference

configuration. The total first Piola-Kirchoff stress S, such that T = [[S]] ·N, is given from the

combinationof (III.9)withGauss’ theorem(footnote)and is in formof indexes i referring tomaterial

properties

S = ρ i
0

∂Φi

∂F
− 1

2µ0 J
‖F ·B‖2 F−T +

1
µ0 J

B(F ·B) (on Ωi) (III.11)

By use of the relation between the stress in the initial and current configurations, σ = 1
J
S ·FT , acting

2writing
∫

Ω

{(
ρ0

∂Φ

∂F
− ‖F·B‖2

2µ0J F
−T + 1

µ0J (F ·B)B

)
δu

}
·∇dΩ =

∫
∂Ωt

{
ρ0

∂Φ

∂F
− ‖F·B‖2

2µ0J F
−T + 1

µ0J (F ·B)B

}
δu ·

NdS
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on (III.11), we obtain the total Cauchy stress

σ = ρ i ∂Φi

∂F
: FT − 1

2µ0 J2 ‖F ·B‖2 +
1

µ0J
(F ·B)(F ·B)

︸ ︷︷ ︸
maxwell stressσ maxw

(on Ω), (III.12)

whichsatisfies thegoverningequationdivσ = 0atstaticequilibriumandintheabsenceofmechanical

body forces, as well as the symmetry condition σ = σT due to angular momentum balance. In this

expression, div is the divergence operator with respect to current position vector x. The Cauchy-

stress includes both mechanical and magnetic contributions and can be decoupled into a solid and

a background (Maxwell) counterpart, σmaxw. It is noted that the Maxwell stress is defined in every

material point (solid and air) within ℜ3. Thus, in the absence of a material or when the material is

non-magnetic, there is still a stress that is induced by the magnetic field.

For the caseof amagnetoelastic solid, equation (III.12)mustbe replacedby the continuity condi-

tion [[σ ]] ·n = t at an interface, where n is the Eulerian normal to the interface. The corresponding

traction is given by the jump condition for the total Cauchy stress along the solid/air boundary

t = [σ+−σ−] ·n = [σ+−σmaxw] ·n, with σ+ the stress within the solid. In the view of (III.12), the

traction gets

t =

{
ρ i

(
∂Φmec

i

∂F
+

∂Φ
mag
i

∂F

)
: FT

}
·n (on ∂Ωt), (III.13)

with Φmec
i the purely mechanical component and Φ

mag
i the magnetic component of the material

free energy density, ρiΦi = ρi

(
Φmec

i +Φ
mag
i

)
(see discusion in Section III.2). It follows that the

energy function fully describes the behavior of the magnetoelastic materials when combined with

the Maxwell energy density. To be more specific, the magnetic fields are not only stored within the

solidbuttheyextendintotheair(oranothernon-magneticmedium). Whenanon-magneticmaterial

is within the magnetic field, the magnetic stresses are self-equilibrated and magnetic fields have no

effect on the traction, t = ρ i
(

∂Φmec
i (F)

∂F
: FT

)
·n. We recall that in pure elasticity, the traction is just

the normal component of the total Cauchy stress, t = σmec ·n, since the vacuum induces no stress,

σmaxw = 0. However, when the material is magnetic, the Maxwell stresses (i.e., stresses induced

by the magnetic field) affect the mechanical traction measured on the boundary of the specimen.

In view of that, the internal stresses equilibrate the external traction and hence, the equilibrium

equations.

Use of the vector potential A, such that B = ∇×A, together with the stationarity conditions in

(III.3) yield the strong form of the Maxwell field equations

∇ ·B = 0 (on ℜ3) (III.14)

(automatically satisfied) and the Lagrangian magnetic H-field. In view of arbitrariness of δA in
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(III.3), we consider from (III.6) and (III.7)

P,AδA =
∫

Ω

{
ρ0

∂Φ

∂B
(∇×δA)

}
dΩ+

∫

ℜ3

{
1

µ0J
(F ·B) ·F(∇×δA)

}
dΩ

=
∫

Ω

{
∇×

(
ρ0

∂Φ

∂B
+

1
µ0J

(F ·B) ·F
)

δA

}
dΩ+

∫

ℜ3\Ω

{
∇×

(
1

µ0J
(F ·B) ·F

)
δA

}
dΩ = 0.

(III.15)

Recallingtherelationbetweenthereferenceandcurrentmagneticfieldb= J−1FBandthedefinition

of the right Cauchy-Green tensor C = FT F, the vector field appearing in the volume integrals in

(III.15) is

ρ0
∂Φ

∂B
+

1
µ0

(
1
J
(∇×A) ·C

)
= ρ0

∂Φ

∂B
+

(
1
µ0

b

)
·F = h ·F = H (III.16)

or else the Lagrangian H-field is

H = ρ0
∂Φ

∂B
+

1
µ0 J

FT · (F ·B) (on ℜ3), (III.17)

and m = −ρ0

∂Φi

∂B
: F−T . In view of arbitrariness of the vector field A, one can restate (III.15) in

view of (III.17) as the Euler-Lagrange differential equation

∇×H = 0 (on ℜ3). (III.18)

In other words, under quasi-static conditions, the magnetic induction B and the magnetic field H

satisfy the conservation equations. The corresponding continuity conditions at an interface are

given by [[B]] ·N = 0 and [[H]]×N = 0, respectively.

III.1.2 Second variation of the potential energy and Jacobian matrix

Similarly, the second variation of the potential energy (III.1), which forms the Jacobian of the

numerical system of equations can be written in the form

∆δP = (P,uuδu)∆u+(P,AuδA)∆u+(P,uAδu)∆A+(P,AAδA)∆A, (III.19)

The second-order variation is evaluated by direct derivation of the potential energy ((III.7) that is

equivalent to (III.6)) in the view of (III.4), such that

∆δP =

(
∂ 2P

∂Fkl∂Fij
δFij +

∂ 2P

∂Fkl∂Bi
δBi

)
∆Fkl

+

(
∂ 2P

∂Bk∂Fij
δFij +

∂ 2P

∂Bk∂Bi
δBi

)
∆Bk, (III.20)
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or in matrix notation (and by use of definitions (III.5)) as

∆δP = {∆F ∆B}




∂ 2P

∂F∂F

∂ 2P

∂F∂B

∂ 2P

∂B∂F

∂ 2P

∂B∂B








δF

δB





. (III.21)

Considering direct derivation of (III.8) and (III.15) with respect to the independent variables u and

A and recalling that δFi j = δui, j and
∂F−1

ji

∂Fkl
=−F−1

jk ·F−1
li (also note that 3), the two terms of the δu

component get

P,uu∆uδu =
∫

Ω
δFi j

{
ρ0

∂ 2Φ

∂Fi j∂Fkl

}
δFkl dΩ+

∫

ℜ3
δFi j

{
1

2µ0J
‖F ·B‖2

[
F−1

lk F−1
ji −F−1

jk F−1
li

]

− 1
µ0J

[
FksBsBlF

−1
ji +FimBmF−1

lk B j −δikBlB j

]}
δFkl dΩ (III.22)

and

P,Au∆Aδu =
∫

Ω
δBi

{
ρ0

∂ 2Φ

∂Bi∂Fkl

}
δFkl dΩ+

∫

ℜ3
δBi

{
1

µ0J

[
−F−1

lk CipBp +BlFki +FkpBpδil

]}
δFkl dΩ,

(III.23)

while the two terms of the δA component are

P,AA∆AδA =
∫

Ω
δBi

{
ρ0

∂ 2Φ

∂Bi∂Bk

}
δBk dΩ+

∫

ℜ3
δBi

{
1

µ0J
Frk Fri

}
δBk dΩ (III.24)

and

P,uA∆uδA =
∫

Ω
δFi j

{
ρ0

∂ 2Φ

∂Fi j∂Bk

}
δBk dΩ+

∫

ℜ3
δFi j

{
1

µ0J

[
−CkqBqF−1

ji +FikB j +FimBmδ jk

]}
δBk dΩ.

(III.25)

It is straightforward in view of (III.23) and (III.25) that P,uA = P,Au.

III.2 Material selection: magnetoelastic energy density functions

for MREs

To restate the problem for connection with the previous sections, we are interested in a system

of a magnetoelastic film/substrate block surrounded by air. At the boundaries of the air, i.e.,

far away from the solid, a Eulerian magnetic field b is applied. Each constituent layer material

can be either purely elastic or magnetoelastic. For the latter case, the material at hand is a two-

phase composite, consistingof ferromagnetic particles inamagnetically insensitive andhyperelastic

3 ∂ (FwsBsFwqBq)
∂Fkl

= δwkδslBsFwqBq +FwsBsδwkδqlBq = δwkBlFwqBq +FwsδkwBsBl = 2FksBsBl

and ∂ (FwsBsFwqBq)
∂Bk

= FwsδskFwqBq +FwsBsFwqδqk = 2FwsFkwBs = 2CkqBq
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matrix. The particles are considered mechanically stiff but magnetically soft. Instead of making use

of homogenization, the approach followed is phenomenological accounting for both the magnetic

field effects and the finite strains. The constitutive behavior of the materials is defined by an

energy density function, or potential, Wi (i =film, substrate), which is taken to be a function of the

deformation gradient tensor F and the Lagrangian magnetic field B

Wi(F,B) = ρ i
0Φi(F,B)+

1
2µ0J

(FB) · (FB) in Ωi. (III.26)

As equation (III.26) implies, we make use of a “decoupling” approximation, splitting the magnetoe-

lastic energy into a material component ρ i
0Φi, together with a magnetostatic component evaluated

in the undeformed configuration. In turn, the Helmoltz free-energy Φi(F,B) reads

Φi(F,B) = Φmec
i (F)+Φ

mag
i (F,B), (III.27)

where Φmec
i (F) the purely mechanical component and Φ

mag
i (F,B) the coupled magnetoelastic com-

ponent, denoting stored-energy functions for the (magnetic) elastomer i in the absence and presence

ofamagneticfield, respectively. Without lossofgenerality, this free-energy functioncanbeextended

to vacuum, recalling that ρair
0 = 0. Assuming no dissipative effects under fixed temperature, i.e.,

there is no strain or magnetization hysteresis, we recall from Section III.1.1 that the constitutive

response of the (magneto)elastic material i is defined by the energy-density function Wi, such that

the first Piola-Kirchhoff stress S and the Lagrangian magnetic field H in material are respectively

given by (see in Section III.1.1, eq.(III.11) and (III.17))

S =
∂Wi(F,B)

∂F
= ρ i

0
∂Φi

∂F
− 1

2µ0 J
‖F ·B‖2 F−T +

1
µ0 J

B(F ·B) (in Ωi) (III.28)

and

H =
∂Wi(F,B)

∂B
= ρ i

0
∂Φi

∂B
+

1
µ0 J

FT · (F ·B) (in Ωi). (III.29)

III.2.1 F-B formulation

After a push-forward to the current configuration and recalling the relation between the applied

Eulerian b and the Lagrangian B magnetic field, b = 1
J
F ·B, as well as the mass conservation

equation, ρ0 = ρJ, the free-energy (III.26) in view of (III.27) can be written as

wi(F,b) = ρ iφ mec
i (F)+

1
2µ0

b ·b+ρ iφ mag
i (F,b) (in Ω), (III.30)

where the first term describes a purely mechanical contribution in the absence of magnetic field and

the sum of the two last terms describe the magnetoelastic contribution to the total energy. From

(III.26), (III.30) and the previous definitions, it is straightforward to state that

wi(F,b) =
Wi(F,JF−1b)

J
, (III.31)
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where wi the energy-density in the current configuration, or else for the magnetic Helmoltz-free

energy in the reference Φmag and current φ mag configuration respectively

φ mag
i (F,b) = Φ

mag
i (F,B) = Φ

mag
i (F,JF−1b). (III.32)

Now, mathematical expressions should be assigned to the magnetic and mechanical components

of the energy functions, so as to form a derivable total potential and to solve for the unknowns

(admissibledisplacementfielduandmagneticvectorpotentialA)oftheprobleminthepre-andpost-

bifurcation, as discussed in Sections III.1.1 and III.1.2. To begin with, we consider the film and/or

thesubstratetobemagnetically isotropicbutnonlinear. Thus,wemakeuseofaLangevin functionto

phenomenologically describe the magnetic behavior of the magnetically sensitive elastomers, based

on macroscopically measured properties. Although other models could be used (e.g., see Danas,

2017), the Langevin model should be adequate to approximately describe a magnetic behavior that

exhibits saturation but no hysteresis in magnetization, such that of magnetically soft iron (e.g., see

Galipeau and Ponte Castañeda, 2012). The model accounts for the initial (linear) susceptibility χ i

and saturation magnetization µ0mi
s of the material i, so that the isotropic magnetic energy in the

current configuration is given by

ρ iφ mag
i (b) =

µ0(m
i
s)

2

3χ i

[
ln

(
3χ i‖b‖

µ0mi
s

)
− ln

(
sinh

(
3χ i‖b‖

µ0mi
s

))]
(in Ω), (III.33)

where µ0 the magnetic permeability in vacuum and ‖b‖=
√

b ·b = J−1
√
(F ·B) · (F ·B) the stan-

dard Euclidean norm of the Eulerian magnetic field, so that the magnetic function is independent

of the deformation of the elastomer, φ mag
i (F,b) = φ mag

i (b). After a pull-back to the reference con-

figuration and in view of mass conservation ρ0 = ρJ, the Langevin fuction gives the magnetoelastic

contribution to the coupled energy

ρ i
0Φ

mag
i (F,B) =

Jµ0(m
i
s)

2

3χ i

[
ln

(
3χ i‖b‖

µ0mi
s

)
− ln

(
sinh

(
3χ i‖b‖

µ0mi
s

))]
(in Ωi). (III.34)

For the case of nearly-incompressible elastomers, this magnetomechanical coupling denoted by

(J = detF,b= ‖b‖) isverysmall. Thiscouldbeapossibledrawbackofthemodelwhencharacterizing

MREs with strong coupling. After all, the energy approximation (as the sum of a purely mechanical

and a magnetoelastic contribution to the energy) exploits the fact that the magnetic energy of the

composite depends only on the applied magnetic field and not on the deformation of the material.4

In the limit of small magnetic fields B → 0, the defined energy-density (III.33) becomes quadratic

in B (or b), such that

ρ i
0Φ

mag
i (F,B) =− χ i

2µ0J
FB ·FB =− Jχ i

2µ0
b ·b = ρ i

0φ mag
i (F,b). (III.35)

This last expression of actual linearization of (III.33) outlines the behavior of an ideal material

4Considering an elastomeric but passive material, we note that the mechanical component is independent of
B and the magnetostatic energy is self-equilibrated, just as it is in vacuum Wi(F,B) = ρ i

0Φmec
i (F)+ 1

2µ0J (FB) ·
(FB) in Ωi and wi(F,b) = ρ iΦmec

i (F)+ bb

2µ0
in Ω
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with no saturation. For the definition of the mechanical component of the energy, a constitutive law

for hyperelastic isotropic materials should be a fair approximations for MREs, upon comparison

with experimental measurements in large deformations. In the present study, it suffices to propose

a neo-Hookean law as discussed in Section II.5 such that

ρ i
0Φmec

i (F) =
Gi

2

(
FT : F−3−2lnJ

)
+

G′i

2
(J−1)2, (III.36)

where Gi is the shear modulus and G′
i(= 100Gi) the second Lamé compressibility constant. As dis-

cussed in Section II.5.2, the use of a simple neo-Hookean mechanical response for the MRE material

constitutes a fair approximation, which accurately probes the experimental post-bifurcation am-

plitudes for the entire range of the loading states considered in this study. In turn, a non-magnetic

substrate leads to the vanishing of the last term in (III.27) and thus, is simply described by the purely

mechanical neo-Hookean model. The nearly incompressible response of the film/substrate system

imply an out-of-plane deformation λ2 ≃ 1/λ0, in accordance with the experimental measurements.

This is satisfied via a large Lamé compressibility constant in the above-described constitutive laws

of the solids.

III.2.2 From F-B to F-M formulation

In this section, we show that working with the continuum framework of the deformation gradient

tensor F and the Lagrangian magnetic field B as independent variables of the potential energy is

equivalent to working with the deformation gradient tensor F and the Lagrangian magnetization

M as an alternative set of independent variables. From Section III.2, we recall that the energy-

density functionsusedtodescribe themagnetoelastic responseof thematerials, consideringboththe

magnetic field effects and the finite strains in the reference and current configuration, are equivalent

such that

Wi(F,B) = ρ i
0Φi(F,B)+

1
2µ0J

(FB) · (FB)

= ρ i
0Φi(F,JF−1b)+

J

2µ0
b ·b

= J

(
ρ iφi(F,b)+

1
2µ0

b ·b
)
= Jwi(F,b). (III.37)

By use of the partial Legendre-Fenchel transform on the augmented variational formulation with

respect to H, reading5 for a functionWi(F,B) : R3 → [0,+∞)with H(B) = ∂Wi(F,B)

∂B
(see eq.(III.29))

that B = H−1(H(B)) = ∂Ŵi(F,H)

∂H
, we obtain

Wi(F,B) = H ·B−Ŵi(F,H)

= Jb ·h−Ŵi(F,h), (III.38)

5Let’s consider a convex function f (x) : A → R, with p(x) =
d f (x)

dx such that p(x) : 1− 1 (i.e., d2 f

dx2 6= 0). Then,

x(p) = p−1(p(x)) =
dg(p)

d p and dx
d p = d2g

d p2 6= 0. The Legendre transformation of f (x) and g(p) read g(p) = px− f (x)

and f (x) = px−g(p) respectively, with x = f (p).
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in view of H = F ·h (see eq.(III.15)) and b = J−1F ·B, which are the relations between the reference

and current magnetic h- and b-field, respectively. Next, we write the total potential Ŵi(F,h) by use

of a partial decoupling approach, defined as the sum of the material-volume stored energy and the

free-space energy component (Kankanala and Triantafyllidis, 2008), such as

Ŵi(F,h) = ρ i
0φ̂i(F,h)+

Jµ0

2
h ·h. (III.39)

The energy function φ̂i(F,h) can be subsequently defined by use of inversion with respect to m such

that

ρ i
0φ̂i(F,h) = Jµ0m ·h−ρ i

0φ̌i(F,m). (III.40)

The total potential W (F,B) in (III.37) can be then written with combination of (III.38), (III.39),

(III.40) and the relation b = µ0(h+m) as

Wi(F,B) = ρ i
0φ̌i(F,m)− Jµ0m ·h− Jµ0

2
h ·h+ Jb ·h

= ρ i
0φ̌i(F,m)− Jµ0m ·h− Jµ0

2
h ·h+ Jµ0m ·h+ Jµ0h ·h

= ρ i
0φ̌i(F,m)+

Jµ0

2
h ·h = W̌ (F,m,h). (III.41)

Combining (III.37) and (III.40), the material potential φ̌i(F,m) is written as

ρ i
0φ̌i(F,m) = ρ i

0φi(F,b)+
J

2µ0
b ·b− Jµ0

2
h ·h. (III.42)

We recall from (III.5) that the relation between the magnetization in the reference and current

configuration is defined by m = ρM and thus, the energy-density with respect to M can be written

in view of (III.37) and (III.32) as

ρ i
0Φ̌i(F,M) = ρ i

0Φ̌i(F,
m

ρ
) = ρ i

0φi(F,b∗)+
J

2µ0
b∗ ·b∗− Jµ0

2
h∗ ·h∗, (III.43)

with b∗ = b(m
ρ ) and h∗ = h(m

ρ ).

A simple example of energy conversion from W (F,B) to W̌ (F,m,h) will be now given, as illus-

trated in Danas (2017). To avoid complexity in derivations, we will work with linearized energies

that correspond to ideal materials, i.e., no saturation. This conversion in the space of independent

variables will be subsequently used in Chapter IV for comparison between magnetoelastic varia-

tional frameworks, used in the bifurcation analysis of film/substrate systems (e.g., see Danas and

Triantafyllidis, 2014, Dorfmann and Ogden, 2003). So, in the limit of small magnetic fields, B → 0,

the defined magnetoelastic energy becomes quadratic in B or b, such that

ρ i
0Φ

mag
i (F,B) =− χ i

2µ0J
FB ·FB =− Jχ i

2µ0
b ·b = ρ i

0φ mag
i (F,b). (III.44)

We recall from (III.35) that this expression is the zero order term of Taylor expansion series about B

of the Langevin magnetoelastic energy, which is non-linear in I5 = (FB) · (FB), as seen in (III.34).

Simirarly, the eq.(III.44) can be obtained by the first derivative of the energy with respect to I5
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(see (IV.10) for the definition of invariants). In view of the energy decoupling φi(F,b) = φ mec
i (F)+

φ mag
i (F,b), the magnetization is subsequently defined by derivation of (III.44) as6

m =−ρ0

J

∂φ

∂b
=−ρ0

J

∂φ mag

∂b
=−ρ0

J

∂φ mag

∂B
: F−T , (III.45)

which yields from (III.44) in combination with the relation b = µ0(h+m) (see Section III.1)

b =
µ0

χ i
m or h =

1−χ i

χ i m, χ i > 0. (III.46)

Substituting the above expressions in (III.42) in combination with (III.44) gives

ρ i
0φ̌i(F,m) = ρ i

0φ mec
i (F)+

Jµ0(1−χ i)

2χ i
m ·m

= ρ i
0φ mec

i (F)+
J(ρ i)

2
µ0(1−χ i)

2χ i
M ·M

= ρ i
0φ mec

i (F)+
(ρ i

0)
2
µ0(1−χ i)

2Jχ i
M ·M. (III.47)

For test purposes presented in Chapter IV, we use the neo-Hookean model for the mechanical

component of the energy function writing the potential in F−M

ρ i
0Φi(F,M) =

Gi

2

(
FT : F−3−2lnJ

)
+

G′i

2
(J−1)2 +

(ρ i
0)

2 µ0(1−χ i)

2Jχ i
M ·M (III.48)

versus the augmented potential in F−B

ρ i
0Φi(F,B) =

Gi

2

(
FT : F−3−2lnJ

)
+

G′i

2
(J−1)2 − χ i

2µ0J
(FB) · (FB) , (III.49)

which will be used with the subsequent material parameters corresponding to soft Ecoflex silicones

as presented in Table III.1.

ρ0(g · cm−3) G (kPa) χ µ0ms (T) µ0 (µN ·A−2)

Film 1.1 10 0.4 0 4π10−1

Substrate 1.07 3 0 0 4π10−1

Table III.1: Material properties of the film/substrate system in experimental, numerical and theoretical

analysis.

6Note that ∂φ mag

∂Bi
< 0, so as mi > 0, (i = 1,2 in plane-strain problems).

67



III.3. FINITE ELEMENT DISCRETIZATION IN TWO-DIMENSIONS

III.3 Finite element discretization in two-dimensions

One can discretize the above equations by discretizing the total volume Ω in Ne discrete finite

elements (and Nn nodes) by

Ω =
Ne

∑
I=1

ΩI
e, (III.50)

with ΩI
e denoting the volume of each element. Then, the element vector of unknowns δqe is given

readily by

δqe = {δu,δA}. (III.51)

Next, we define (in a general fashion) the discretized form of the unknown variables, i.e., u and A,

using standard notation

δu = Nu ·δqe, δA = Nα ·δqe, (III.52)

where Nqe
are the matrices associated with the element shape functions. In order to compute the

gradients, one has

δ (u∇) = Gu ·δqe, ∇×δA = Gα ·δqe, (III.53)

with Gqe
denoting the gradient of the Nqe

matrices. This allows for the definition of the element

force vector fe conjugate to the element vector of unknowns δqe and it is given readily by

fe ·δqe =
∫

Ωe

δP dΩ =

[∫

Ωe

{
∂P

∂F
: Gu +

∂P

∂B
·Gα

}
dΩ

]
·δqe. (III.54)

Gathering the variations with respect to δF and δB, one obtains the following quantities in index

notation

∂P

∂Fi j

= ρ0
∂Φ

∂Fi j

− 1
2µ0 J

‖F ·B‖2
F−1

ji +
1

µ0 J
Fim Bm B j (in ℜ3),

∂P

∂Bi

= ρ0
∂Φ

∂Bi

+
1

µ0 J
Frp Bp Fri (in ℜ3), (III.55)

where,

∂Φ

∂Fi j

=
ninv

∑
P=1

∂Φ

∂ IP

∂ IP

∂Fi j

(III.56)

∂Φ

∂Bi

=
ninv

∑
P=1

∂Φ

∂ IP

∂ IP

∂Bi

. (III.57)
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Similarly, the element stiffness matrix ke is defined by

∆qe ·ke ·δqe =
∫

Ωe

∆δP dΩ = ∆qe ·





∫

Ωe

[
GT

u GT
α

]




∂ 2P

∂F∂F

∂ 2P

∂F∂B

∂ 2P

∂B∂F

∂ 2P

∂B∂B







Gu

Gα




dΩ





·δqe.

(III.58)

The second-order derivatives are evaluated by direct derivation of the potential energy (III.1), such

that

∂ 2P

∂Fi j∂Fkl

=ρ0
∂ 2Φ

∂Fi j∂Fkl

+
1

2µ0J
‖F ·B‖2

[
F−1

lk F−1
ji −F−1

jk F−1
li

]

− 1
µ0J

[
Fks Bs Bl F−1

ji +Fin Bn F−1
lk B j −δik Bl B j

]
(in ℜ3), (III.59)

and

∂ 2P

∂Fi j∂Bk

=ρ0
∂ 2Φ

∂Fi j∂Bk

+
1

µ0J

[
Fik B j +Fin Bn δ jk −Ckr Br F−1

ji

]
(in ℜ3), (III.60)

and

∂ 2P

∂Bi∂B j

= ρ0
∂ 2Φ

∂Bi∂B j

+
1

µ0J
Ci j (in ℜ3). (III.61)

The above equations will also need the evaluation of

∂ 2Φ

∂Fi j∂Fkl

=
ninv

∑
P=1

ninv

∑
Q=1

∂ 2Φ

∂ IP ∂ IQ

∂ IP

∂Fi j

∂ IQ

∂Fkl

+
ninv

∑
P=1

∂Φ

∂ IP

∂ 2IP

∂Fi j ∂Fkl

, (III.62)

∂ 2Φ

∂Fi j∂Bk

=
ninv

∑
P=1

ninv

∑
Q=1

∂ 2Φ

∂ IP ∂ IQ

∂ IP

∂Fi j

∂ IQ

∂Bk

+
ninv

∑
P=1

∂Φ

∂ IP

∂ 2IP

∂Fi j ∂Bk

, (III.63)

∂ 2Φ

∂Bi∂B j

=
ninv

∑
P=1

ninv

∑
Q=1

∂ 2Φ

∂ IP ∂ IQ

∂ IP

∂Bi

∂ IQ

∂B j

+
ninv

∑
P=1

∂Φ

∂ IP

∂ 2IP

∂Bi ∂B j

. (III.64)

The invariants Ip (p = 1, ..,6) of the problem are defined such as

I1 =Cii = Fki Fk j, I2 =
1
2

[
C2

rr −Cik Cki

]
, J = I3 = detF, (III.65)

I4 = Bi Bi, I5 = BiCi j B j, I6 = BiCik Ck j B j. (III.66)

Wewritethe forcevectorandstiffnessmatrix in indexnotationandwedefinethe local-to-globalcoor-

dinate transformation by the Jacobian matrix, denoted as [J ] = ∂Xi/∂ξ j = ∑
Nn

I=1(∂NI/∂ξ j)X I
i , i =
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1,2, pertinent to the shape functions N. Subsequently, we evaluate the quantities u∇ and ∇×A by




∂u1/∂X1

∂u1/∂X2

∂u2/∂X1

∂u2/∂X2

∂A3/∂X2

−∂A3/∂X1




︸ ︷︷ ︸
[dqdx]

=




J −1
11 J −1

12 0 0 0 0

J −1
21 J −1

22 0 0 0 0

0 0 J −1
11 J −1

12 0 0

0 0 J −1
21 J −1

22 0 0

0 0 0 0 J −1
21 J −1

22

0 0 0 0 −J −1
11 −J −1

12




︸ ︷︷ ︸
[JI]




∂u1/∂ξ1

∂u1/∂ξ2

∂u2/∂ξ1

∂u2/∂ξ2

∂A3/∂ξ1

∂A3/∂ξ2




︸ ︷︷ ︸
[dqdxi]

, (III.67)

and the vector dqdxi by




∂u1/∂ξ1

∂u1/∂ξ2

∂u2/∂ξ1

∂u2/∂ξ2

∂A3/∂ξ1

∂A3/∂ξ2




︸ ︷︷ ︸
[dqdxi]

=




G11 0 0 G21 0 0 G31 0 0 G41 0 0

G12 0 0 G22 0 0 G32 0 0 G42 0 0

0 G11 0 0 G21 0 0 G31 0 0 G41 0

0 G12 0 0 G22 0 0 G32 0 0 G42 0

0 0 G11 0 0 G21 0 0 G31 0 0 G41

0 0 G12 0 0 G22 0 0 G32 0 0 G42




︸ ︷︷ ︸
[NG]




u
(1)
1

u
(1)
2

A(1)

u
(2)
1

u
(2)
2

A(2)

u
(3)
1

u
(3)
2

A(3)

u
(4)
1

u
(4)
2

A(4)




︸ ︷︷ ︸
qe

.

(III.68)

Then, the derivative matrix [G] is given by

[G] = [Gu Gα ] = [JI] [NG] . (III.69)

III.4 Mesh and boundary conditions

To solve the boundary value problem of a finite geometry in nonlinear magnetoelasticity, we im-

plement the above described magnetoelastic element in the general code FEAP (Taylor, 2011).

We define a simple, but largely sufficient, plane-strain 4-node quadrilateral isoparametric element,

with 3 degrees of freedom per node: the displacements u = {u1(X1,X2),u2(X1,X2)} and the magnetic

vector potential α = A3(X1,X2), with (X1,X2) the global reference coordinates. The (A1,A2) compo-
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nents are zero since B = {B1,B2,0} = {∂A3/∂X2,−∂A3/∂X1,0} (we remind that B = ∇×A). The

nodal unknowns qe ≡ {δu1,δu3,δα} were interpolated by δqi(X1,X2) = ∑
4
j=1 δq

j
i N j(X1,X2) (with

δq
j
i denoting the 4 nodal values of the degrees of freedom), using linear shape functions,

N1(ξ1,ξ2) =
1
4
(1−ξ1)(1−ξ2), N2(ξ1,ξ2) =

1
4
(1−ξ1)(1+ξ2),

N3(ξ1,ξ2) =
1
4
(1+ξ1)(1+ξ2), N4(ξ1,ξ2) =

1
4
(1+ξ1)(1−ξ2), (III.70)

with (ξ1,ξ2) ∈ [−1,1] denoting the local coordinates.

Following convergence studies, the number of elements in the film is 1200, in the substrate 5200

and in the air 10160. The nonlinear solutions of the field equations are obtained incrementally with

the use of a standard Newton-Raphson scheme. However, the air domain needs special treatment,

since it has no mechanical energy and thus, the deformation gradient is undefined therein. In view

of this, we partitioned the air mesh into two domains: one with a structured mesh and the rest with

unstructured mesh, as shown in Fig.III.2.

Stationary air

Deformable air

b0

Substrate

MRE film

u2= 0

u
1
 =

 0

λ0

f2f2

Rf Δlair

FigureIII.2: Mesh of the film/substrate/air system. All regions are meshed with quadrilateral bilinear, 4-

node isoparametric, (magneto)mechanical elements. A structured mesh with deformable elements (blue)

is defined by the distance R f from the solid boundary. The rest of the air region, defined by distance ∆lair

from the solid boundary, is unstructured and stationary (purple).

Specifically, the first structured domain is deformable and spatially defined by a square of side

length 2R f + L, concentric to the solid square of side length L(= 40mm). We use R f = 0.5∆Lair,

where ∆Lair is the half length size of the entire air domain minus the solid domain, see Fig.III.2. The

elements within the deformable air domain are forced to deform to avoid severe mesh distortion

near the specimen/air interface. This fictitious air deformation does not alter the solution of the

problem, since the air density is zero and thus does not contribute to the mechanical energy of the

system. To achieve this fictitious deformation, we follow the steps below:

(i) for all nodes lying in the deformable air domain, we find the closest node on the specimen

boundary by a simple search algorithm, thus defining a set of pairs of size Na−s.

(ii) foreachpairofair-solidnodes,wedefinethelinearconstraintfunctioncu =(1−|x(2)i −x
(1)
i |/R f ) ·
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u
(2)
i −u

(1)
i = 0, with i = 1,2. In this last expression, node (1) belongs to the deformable air and

node (2) to the solid domain, respectively.

(iii) the above constraint function can be achieved with either a Lagrange multiplier or a penalty

formulation. For simplicity, we choose the second option and we define the penalty energy

Φpen(ui) =
Na−s

∑
n=1

2

∑
i=1

1
2ε

[(
1− |x(n,solid)

i − x
(n,air)
i |

R f

)
u
(n,solid)
i −u

(n,air)
i

]2

(III.71)

which is added to the original variational formulation (III.1).

(iv) we choose a sufficiently small value for ε = 10−7 such that the constraint function is satisfied to

a good accuracy. This value and approach leads in general to more accurate results and better

convergence than that of using a small but finite shear and bulk moduli for the air domain.

(v) we consider first and second variations in (III.71) with respect to ui and amend the original

force vector and stiffness matrix of the entire system.

Finally, for theundeformableairdomain,weapply identicallyzerodisplacementsui = 0 (i= 1,2).

In turn, the magnetic field is applied via the vector potential α by imposing at the outer boundary

of the air the following condition

α(X1,X2) = εi j(B0)i X j, Xi ∈ ∂ℜ3, B0 = b0. (III.72)

In the above equation, we have abused the notation ℜ3 to denote the boundary of the undeformable

(outer) air domain. In addition, the Lagrangian, B0, and Eulerian, b0, magnetic fields are equal in

the stationary air domain by definition.

III.5 Numerical mesh convergence

In this section, some examples of numerical implementation will be given in order to investigate the

mesh sensitivity of the structure.

III.5.1 Mesh sensitivity in the purely mechanical problem

The plane-strain boundary value problem of a thin film of (H f =)0.2mm thickness and (G f =)10kPa

shear modulus bonded on a softer Gs = 3kPa substrate of (Hs =)19.8mm thickness, subjected to an

in-plane uniaxial compressive stretch λ1(= ε11+1) is adressed by means of the linear buckle analysis

in Abaqus and the full-field simulation under finite strains in FEAP.

The eigenvalue buckling problem employed in Abaqus is generally used to estimate the criti-

cal (bifurcation) load of linear materials, i.e., stiff structures. It consists of a linear perturbation

procedure around equilibrium, where the loads are calculated relatively to the base state, i.e., the

unloaded configuration in the present study. Since the eigenvalue buckling process is the first step in
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our analysis, the base state of the problem is formed by the initial conditions. The eigenvalue prob-

lem reads Ku = 0, where K is the tangent stiffness matrix and the u are the nontrivial displacement

solutions. In order to find such nontrivial solutions, one needs to search for the loads that cause the

model stiffness matrix to become singular, detK = 0. Since geometric nonlinearities and preloads

are omitted, the incremental problem reads (λiK
mn
D )um

i = 0, where Kmn
D the load (tangent) stiffness

matrix due to the incremental perturbation loading Qn, λi the eigenvalues and um
i the buckling mode

shapes (eigenvectors). The critical buckling load is then λiQ
n; the magnitude of Qn is not important

at the eigenvalue prediction step, since it is later scaled by the load factor λi extracted from the solu-

tion. The corresponding eigenmodes um
i are normalized vectors (so as the maximum displacement

is 1) and thus, they do not represent actual magnitudes of deformations at the critical load. For

choosing an appropriate scale factor, one can set an order of magnitude lower than the film thickness

for the first mode, sequentially decreasing it by half at each next eigenmode. The eigensolver used to

extract the desired number of eigenvalues, i = 3, is the subspace iteration method. The maximum

number of iterations is set at 1000. Mechanical boundary conditions are prescribed at the initial

(base state) step at the left edge of the block, where u1 = 0, and the bottom edge of the block, where

u2 = 0. The uniformly applied compressive displacement at the right edge of the block is set at the

buckling prediction step, reading u1 = −1. The real magnitude of the loading is not asked to be

defined, as discussed before. The buckling eigenmodes are affected by the stresses in the base state

(zero in the present case), as well as by the incremental stresses due to the perturbation loading in

the buckling step. These stresses depend on the incremental boundary conditions used for “stress

perturbation and buckling mode calculation” (i.e., our selected option).

Linear, quadrilateral plane-strain elements with hybrid formulation and high incompressibility

are selected; the element type is CPE4H (4-node bilinear, hybrid with constant pressure). Note that

these elements can only be used with the subspace iteration eigensolver and not the Lanczos. Edge

biased seeding is also employed, as convergence studies indicate (Fig.III.5b). This is because a finer

mesh is required close to the film/substrate interface, relaxing towards the bottom bulk mass of the

substrate. For a given bias ratio B and a given number of elements N, the length ratio of an element

(i+1) to its previous element (i) along the biasing direction is li+1
li

= B
1

N−1 . The element sizes and the

nodal spacing can be calculated from this relation.

The constitutive material layers are modeled as linear elastic, which is not the realistic behavior

of our soft structure. However, even when the response is nonlinear before bifurcation, a general

eigenvalue buckling analysis can provide an estimate of bifurcation critical loads and wavelengths.

For the post-buckling regime, higher-order perturbation analysis is necessary to obtain adequate

accuracy on the post-buckling wavelength evaluation. A predicted linear buckle load uc
1 = 9.2183

for the first mode (i.e., wrinkling) is representatively given in Fig. III.3.

In case the stucture has eigenmodes with closely spaced eigenvalues, it is noted that a preload

can be applied. This is very likely in imperfection-sensitive structures. There, one can apply

a preload Pn close to the buckling load Qn and then perform the eigenvalue extraction step. If

Pn = µQn, the structural stiffness takes into account the load stiffness Kmn
0 due to the preload, such
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U, Magnitude

+0.000e+00
+8.333e-02
+1.667e-01
+2.500e-01
+3.333e-01
+4.167e-01
+5.000e-01
+5.833e-01
+6.667e-01
+7.500e-01
+8.333e-01
+9.167e-01
+1.000e+00

Step: Step-buckle
Mode 1: EigenValue = 9.2183
Primary Var: U, Magnitude

ODB: buckle_15-350.odb Abaqus/Standard 3DEXPERIENCE R2016x HotFix 3 Tue Jan
X

Y

Z

Figure III.3: Results from the linear buckle analysis on a stiff film/substrate block (film thickness H f =

0.2mm) under Dirichlet boundary conditions and in absence of user-defined geometric nonlinearities. The

first mode depicted in half (symmetric) plane is wrinkling, obtained under a critical buckling displacement

uc
1 = 9.2183 (the value is normalized so that the magnitude of maximum displacement is one) or stretch

ratio λ c
1 = 0.7695. Scale factor used 0.1.

that Kmn
0 +µKmn

D , and the buckling load becomes (µ +λi)Q
n. The process is equivalent to a dynamic

eigenfrequency extraction with shift µ. However, the eigensolves do not converge when the preload

reaches the buckling load (or give inaccurate predictions). Thus, the static Riks procedure is instead

recommended to be employed (Abaqus, 2009, ABAQUS/Explicit, 2005).

A mesh sensitivity study of the purely mechanical problem in Abaqus is presented in Table

III.2. There, the first column contains the number of film elements along e2 direction, the second

the number of film elements along e1 direction, the third the number of substrate elements along

e2 direction, the fourth the bias ratio of the substrate elements (along e2 direction) and the final

the critical buckling stretch. The number of film elements along e2 direction is set 10, 15 or 20, i.e.,

a dense choice along film thickness at 0.2mm over total block thickness at 40mm. The number of

elements in the substrate along e2 and the corresponding edge seeding are such that a) the length of

the film and the substrate elements at the interface (along e2) are equal, l+f = l−s ; and b) the aspect

ratio of the substrate elements7 approximates one (i.e., square). In virtue of that, the influence of

film meshing along e1 direction is investigated. It is observed that the greater the mesh refinement,

the lower the compressive buckling load. The value of the latter starts converging after 350 elements

along e1 direction. However, in the case of FEAP full-field simulations, the selection of the mesh has

to be in a compromise with the computational cost, mostly for the magnetomechanical loading case

in which the free space is also modeled in detail.

7Rectangles are constructed with edges passing through the element edge midpoints. The aspect ratio of the
quadrilateral is the ratio of a longer side to a shorter side of whichever rectangle is the most stretched.
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film elements // e2 film elements // e1 substrate elements // e2 bias ratio λ c
1

10 80 65 - 0.70915

10 160 65 130 0.752565

15 350 85 160 0.7695425

15 350 160 80 0.769515

10 360 85 160 0.7699325

10 800 80 40 0.7719775

10 1600 160 80 0.7728275

20 1600 160 100 0.7728425

20 2000 160 100 0.7733425

Table III.2: Mesh convergence via Abaqus investigating the critical stretch ratio λ c
1 versus the mesh

density in film and substrate. Film thickness H f = 0.2mm and shear modulus G f = 10kPa. Substrate

thickness H f = 19.8mm and shear modulus Gs = 3kPa. CPE4H high incompressibility elements are used.

Subsequently, a standard static analysis is carriedout for the hyperelastic bilayerblock in FEAP.

Fig. III.4 presents the critical bifurcation point and the subsequent post-bifurcated response of a

neo-Hookeanfilm/substrate stuctureunderuniaxial compression. Here, themeshof thesolidphases

have to be designed in combination with the air mesh used in the magnetomechanical loading case.

Given the mesh sensitivity study in Table III.2, as well as that in the subsequent Section III.5.2 for

the coupled loading case, 15× 350 elements is a rational mesh density for the film (0.2× 40 mm2).

From Table III.2, one can also tell that the response is already converged for 85× 350 substrate

mesh elements (bias ratio=160). Thus, one can try to decrease the number of the elements in the

substrate.

Thecurves inFig. III.4representthreedifferentmeshesofconstantfilmmeshat15×350elements

and variable substrate and air mesh. The blue and red curve (with film shape configuration also in

the same color) correspond to 85×350 elements substrate mesh, but different air box penalty values

ε at 1e-6 and 1e-7, respectively (for air box see Section III.4 and eq.(III.71)). We note that ε ≤ 1e-6,

so that the calculations for such delicate meshes to run. The yellow curve corresponds to air box

penalty ε =1e-7 and lighter substrate and air mesh densities (i.e., substrate mesh: 75×350 elements

and bias ratio=220, structured air mesh: 45 elements along e2 direction and bias ratio=330). The

three curves converge for the primary critical load λ w
1 = 0.7721. The air box penalty is found to

slightly affect the post-bifurcation response around the secondary bifurcation branch. The second

(red) mesh leads to creases deep in the post-bifurcation, in contrast to the other two.

The mesh of the air acts as an inevitable imperfection due to its unstructured elements, which

renders the mesh uncontrollable at high strains. More specifically, the free space is distinguished

into a deformable and a stationary regime. This is applied by a penalty function that progressively

calls-off the nodal deformations from the solid boundaries to a given distance from the center of the

rectangular block, i.e., boundaries of the deformable air, see context of Fig.III.2. The deformable

regime is modeled with structured elements (area of mesh sensitivity study) and the rest with

unstructured. The latter includes 20 nodes per edge at the external air boundaries.
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Figure III.4: Mesh sensitivity on substrate and air mesh for fixed film mesh at 15×350 elements (film

thickness H f = 0.2mm). Bifurcation amplitude A versus the applied compression ε0 for: a, blue curve/film

pattern: substrate mesh 85×350 elements and bias ratio = 160, structured air mesh 60 elements along

e2 direction, bias ratio = 180 and air box penalty ε = 1e-6; b, red curve/film: substrate mesh 85×350

elements and bias ratio = 160, structured air mesh 60 elements along e2 direction, bias ratio = 180 and

air box penalty ε = 1e-7; c, yellow curve/film: substrate mesh 75× 350 elements and bias ratio = 220,

structured air mesh 45 elements along e2 direction, bias ratio = 330 and air box penalty ε = 1e-7. Half

(symmetric) plane of the block is shown. The air is not depicted.

The critical load λ w
1 (= 0.7721) corresponds to sinusoidal wrinkling as primary buckling mode,

whichevolvestoperiod-doublinguponfurthercompression,λ pd
1 = 0.735. Theprimarybuckling load

found by FEAP is in agreement with the linearized ‘buckle’ calculation in Abaqus (see Table III.2).

This owes to the neo-Hookean behavior of the bilayer, which is close to that of linear materials about

the primary buckling point. However, for other nonlinear elastic materials, e.g., with finite strains

up to 200%, the incremental moduli are different from the ground state and become anisotropic.

In that case, the buckle analysis would not accurately predict the critical response. Generally,

the response of the substrate is highly nonlinear and induces an anisotropic elastic state under

incremental deformation. Beyond the primary instability point, the post-bifurcation is defined by

wrinkles of increasing amplitude that often lead to folding (see Sun et al., 2012). This or other (e.g.,

creases, ridges, crinkles) higher-order patterns manifest finite strains around localizations. In all

these cases, a linear (small deformation) stability analysis is not sufficient to predict the critical

eigenvalues/eigenmodes.

III.5.2 Mesh sensitivity in the magnetomechanical problem

The formal method for mesh convergence requires a critical result parameter plotted against some

measure of mesh density. This curve is then used to indicate when convergence is achieved, or
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Figure III.5: Mesh sensitivity analysis on wrinkling amplitude and critical wavenumber of a bilayer block

of (H f =)0.2mm film thickness subjected to a given pre-compression λ0 = 0.85. The average amplitude

of the wrinkles A is plotted as a function of the applied magnetic field b0 for different meshes: a,

5×80, 5×160, 10×160, 10×320, 15×350, 20×350, 15×380 elements in the film. That is the number of

elements along e2 direction × the number of elements along e1 direction. The surface patterns underneath

the labels correspond to the amplitude curves of the same color for b0 = 0.45T. A converged response on

the critical modes and amplitudes is obtained for 15× 350 film discretization. b, biased and unbiased

substrate and air meshing for a fixed film mesh at 6 elements along e2 direction versus 80 elements along

e1 direction. It is straightforward that the critical magnetic field is sensitive to a gradual meshing.

how far the most refined mesh is from full convergence. The present problem is defined by several

critical result parameters needed to converge: the critical fields in a two-parameters space, the

corresponding wavenumbers, the bifurcation amplitudes. The mesh parameters of the problem are

alsoa few: film, substrateand(un-/)structuredairmeshdensity, penalty functionvalue. Asa result,

it is not trivial to find a compromise between all these parameters and simultaneously keep low the

computational cost, especially since the problem requires direct and detailed air meshing.

InFig.III.5a,weplottheaverageamplitudeofthewrinklesAasafunctionoftheappliedmagnetic

field b0 for different film/substrate meshes. The corresponding surface patterns are depicted for

applied magnetic field b0 = 0.45T. The labels in color denote the number of film elements along

e2 direction × the number of film elements along e1 direction. The surface modes underneath

the labels correspond to the amplitude curves of the same color. Following convergence studies

corresponding to MRE film thickness at (H f =)0.2mm, one needs at least 350 elements along e1

direction to guarantee convergence of the critical wavenumber (=17 wrinkles) under a given pre-

stretch λ0 = 0.85. Given that, the number of film elements along e2 direction has to be at least 15,

in order to obtain convergence on the critical magnetic field (see inset) and uniform post-bifurcated

wrinklingamplitudes. Theamplitudecurvecorrespondingto thefilm/substrategeometryof thicker

film (H f =)0.8mm is plotted against the curves for (H f =)0.2mm for comparison reasons.

The penalty value ε is found to affect the post-bifurcated behavior under finite strains, but not

the critical fields. The solution leads to converged morphological responses for air box penalty value
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ε ≤1e-7. The substrate is meshed with 75× 350 elements and bias ratio 220 along e2 (thickness)

direction. The structured regime of the air is modeled with 45 elements and bias ratio 330 along e2

direction, for penalty value ε = 1e-7. This air mesh converges with the heavier (blue and red) ones

presented for the mechanical problem in Fig.III.4. An alternative to the penalty method is to assign

elastic properties to the air, so as to activate its deformation. The shear modulus of the air is of order

ε. Therefore, relatively large penalty values (e.g., ε ≥1e-4) should be avoided, so that the modulus

of the air is not comparable to that of the substrate.

In Fig.III.5b, the influence of gradual meshing of the air and the substrate along both directions

is shown for a fixed film mesh with 6 elements along e2 direction versus 80 elements along e1 direction.

The substrate is meshed with 30× 80 elements. The structured (deformable) regime of the air is

modeled with 25 elements along e2 direction for penalty value ε = 1e-7. One mesh considers a bias

ratio (along e2 direction) with values 120 and 140 for the substrate and the air, respectively. The

other mesh considers zero bias ratio between the elements of the film/substrate and the film/air.

The wrinkling amplitude curve corresponding to the gradual mesh is shifted to a significantly lower

critical magnetic field with respect to the one in the absence of gradual meshing. To conclude, it is

clear that gradual meshing (bias) is necessary for mesh convergence of the problem at hand.

III.6 Concluding remarks

To conclude, the present chapter presents the finite element method (FEM) used to numerically

investigate the plane-strain boundary value problem of the MRE film/substrate block by means

of a user-element routine in FEAP. On account of numerically solving such a non-trivial problem,

the proposed continuum formulation by Dorfmann and Ogden (2004) is a Lagrangian variational

approach. Such an approach pertains to the minimization of a potential energy with respect to the

independent variables: the displacement field u and the potential vector of the magnetic field A.

The potential energy includes the internal elastic energy of the solid bilayer, the work done by the

external forces and the Maxwell background energy defined in the entire space. This yields all the

appropriate governing equations and boundary/interface conditions.

In the center of the analysis lies a phenomenological isotropic free-energy density that consists

of the neo-Hookean combined with the Langevin model. In virtue of such energy function selection,

the developed variational principle is directly related to the primary field equations, satisfied by the

constitutivelyrelatedmagneticfieldHandmagnetic inductionB. It followsthattheenergyfunction

fullydescribes thebehaviorof themagnetoelasticmaterialswhencombinedwiththeMaxwell energy

density. In particular, the magnetic fields are not only stored within the solid but they extend into

the air (or another non-magnetic medium). When a non-magnetic material is within the magnetic

field, the magnetic stresses are self-equilibrated and magnetic fields have no effect on the traction.

However, when the material is magnetic, the Maxwell stresses (i.e., stresses induced by the magnetic

field) affect the mechanical traction measured on the boundary of the specimen.

The nonlinear solutions of the field equations are obtained incrementally with the use of a stan-
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dardNewton-Raphsonscheme. In thatway, thegoverningequilibriumequationscanbesolvedwhen

a buckling instability analysis is also required. The stability criterion derives from the incremental

positive definitess of the Jacobian stiffness matrix, i.e., the second derivatives of the potential energy

with respect to the independent variables.

A standard static analysis is carried out for a stiff and hyperelastic bilayer block in Abaqus and

FEAP, respectively. The mesh of the solid phases have to be designed in combination with the air

mesh used for the magnetomechanical loading case. In turn, the air domain needs special treatment,

since it has no mechanical energy and thus the deformation gradient is undefined therein. In view

of that, we partition the free space into a (structured) deformable and a (unstructured) stationary

regime. This is appliedbyapenalty functionthatprogressivelycalls-offthenodaldeformations from

the solid boundaries to a given distance from the center of the rectangular block, i.e., boundaries of

the deformable air. The mesh of the air acts as an avoidable imperfection due to its unstructured

elements, which renders the mesh uncontrollable at high strains.

A mesh sensitivity study of the combined magnetomechanical problem is also carried-out in

FEAP. To obtain convergence of the critical loads, modes and post-bifurcation amplitudes for both

purely mechanical and magnetomechanical loadings, the final mesh selection for the geometry of

0.2mm film thickness considers 15 elements along the thickness and 350 elements along the length

of the film (15×350). The substrate is meshed with 75×350 elements and bias ratio 220 along the

thickness direction. The structured regime of the air is modeled with 45 elements and bias ratio 330

along the thickness direction, for penalty value ε = 1e-7.
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CHAPTER IV

THEORETICAL BIFURCATION MODEL

Summary of the Chapter. In this chapter, we solve the theoretical bifurcation problem of a semi-

infinite MRE film/passive substrate (plus the semi-infinite air) system and we investigate the influence of

the material properties on the critical response. The first section presents the variational magnetoelastic

formulation used in the bifurcation analysis. The second section outlines the principal (non-diverging)

solution of the plane-strain solid subjected to in-plane compression and a transverse magnetic field. The

third section demonstrates the bifurcation analysis. Such an analysis is an incremental approach that

does not incorporate the effects of a boundary-value system (it considers idealized boundary conditions).

The last section presents the results from the purely mechanical and magnetomechanical bifurcation. The

model aims at determining the critical load for the onset of wrinkling and the associated wavelengths.
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IV.1. ALTERNATIVE VARIATIONAL FORMULATION

IV.1 Alternative variational formulation: perturbation magnetic

field

The potential energy of the entire system – which accounts for the magnetoelastic energy stored

withinthematerialvolume,aswellasthemagneticbackgroundenergythatisaffectedbythepresence

of the solid – can be reformulated taken into account an exact decomposition of the Lagrangian

magnetic field B. In virtue of that, the total magnetic field B can be separated into an externally

applied background B0 and a perturbed (due to the presence of the magnetoelastic solid within the

field) B̃ component, such that

B = B0 + B̃. (IV.1)

Both the externally imposed and the background field have to satisfy the divergence-free condition,

as well as the corresponding boundary condition1

∇ ·B0 = 0, [[B0]] ·N = 0 and ∇ · B̃ = 0, [[B̃]] ·N = 0 (IV.2)

and thus, one can express B0 and B̃ in terms of a Lagrangian vector potential A0 and Ã respectively,

such that

B0 = ∇×A0 and B̃ = ∇× Ã. (IV.3)

We note that A = A0 +Ã, which in index notation and in view of (IV.3) gets εi jkBj Xk = εijkB0
j Xk +

εijkB̃j Xk, with εi jk the Levi-Civita operator and Xk the reference configuration coordinate of a ma-

terial point, i, j,k = 1,2,3.

In view of (IV.1), the potential energy (III.1) can be rewritten as

P(u,A) =
∫

Ωi

ρ i
0Φi (F,B) dΩ+

∫

ℜ3

1
2µ0J

(FB0) · (FB0)dΩ+
∫

ℜ3

1
2µ0J

(FB0) · (FB̃)

+
∫

ℜ3

1
2µ0J

(FB̃) · (FB̃)dΩ−
∫

∂Ωt
i

T ·udS. (IV.4)

Afterneglectingthesecond(constant)termoftheenergy, inducedbytheexternallyappliedmagnetic

field, andshowing2 that the thirdtermin (IV.4) is zero, since B̃→ 0at |x|→±∞, thepotential energy

writes

P(u,Ã) =
∫

Ωi

ρ i
0Φi

(
F,B0 + B̃

)
dΩ+

∫

ℜ3

1
2µ0J

(FB̃) · (FB̃)dΩ−
∫

∂Ωt
i

T ·udS. (IV.5)

The energy within the solid volume Wi (i =film, substrate), described by the functional of the first

1The following relations are straightforward since the divergence is a linear operator.
2
∫

Ω
1

2µ0
(FB

0) · (FB̃)dΩ =
∫

Ω
J

2µ0
b

0 · b̃dΩ =
∫

∂Ω
J

2µ0
b

0 · (∇× ã) ·ndS = 0 (divergence theorem) for finite volume

Ω → ℜ3, since |ã| → 0 at X2 →±∞.
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IV.2. GEOMETRY AND PRINCIPAL SOLUTION

Stationary Air

Specimen
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MRE film

a b

b2
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Figure IV.1: Schematics of a plane-strain infinite system. a, A MRE film adheres to a substrate that is

extended towards negative infinity. On the top of the film, there is air extended to positive infinity. All

phases are taken to be infinitely long. b, The solid system is initially subjected to uniaxial pre-compression

λ1, followed by a transverse magnetic field b0
2 of Eulerian nature.

term in combination with the background energy, gets in view of (III.26), (III.27) and (IV.1)

Wi(F,B̃) = ρ i
0Φmec

i (F)+
1

2µ0J
(FB̃) · (FB̃)+ρ i

0Φ
mag
i (F,B0 + B̃), (IV.6)

recalling that Φmec
i (F)+Φ

mag
i (F,B) = Φi(F,B).

Without loss of generality, the expression (IV.6) canbealso extended toair, ρair
0 = 0. At theprin-

cipal solution (i.e., uniform displacements and magnetic fields), the presence of the magnetoelastic

solid does not perturb the magnetic field of the free space. Thus, it is more convenient to work on the

analytical bifurcation with the perturbed component of the magnetic potential vector Ã, instead of

the total vector potential A. Indeed, the functions Φi(F,B) and Φi(F,B̃) are different. However,

their derivatives with respect to B̃(= 0) are the same, see Section IV.3. We will subsequently show

that the approach with the perturbed and the total field are almost the same and the differences will

be given in parallel.

IV.2 Geometry and principal solution

We consider a plane-strain infinite system consisting of a MRE layer bonded on a substrate extended

towards negative infinity. On the top of the film, air is extended towards positive infinity, as seen

in Fig.IV.1. All phases are taken to be infinitely long. The reference configuration of the (mag-

neto)elastic solid is its stress-free state. Following the experimental and numerical process, the sys-

tem deforms under plane-strain conditions due to the application of in-plane compression λ1(= λ0),

followed by a transverse magnetic field b0
2(= b0). Note that the response is path-independent and

thus, the application of the loads can be reversed.

The film is made of a nonlinear magnetoelastic, isotropic and nearly incompressible material,

as thorougly discussed in Section III.2. Such a material can be fairly approximated by the simple

combination of a Neo-Hookean elastic energy and a Langevin (without hysteresis) magnetic energy
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(see (III.34)) such that

ρ i
0Φi(F,B) =

Gi

2
(I1 −3−2ln I3)+

G′i

2
(I3 −1)2

+ I3
µ0(m

i
s)

2

3χ i

[
ln

(
3χ i

I3µ0mi
s

√
I5

)
− ln

(
sinh

(
3χ i

I3µ0mi
s

√
I5

))]
, (IV.7)

where i = f ,s for the film and the substrate, respectively. In equation (IV.7), Gi is the shear modulus,

G′i the second Lamé compressibility constant, χ i the susceptibility, mi
s the saturation magnetization

and µ0 the permeability of vacuum. The nearly incompressible response of the bilayer-system up to

O(δ 2) impliesanout-of-planedeformationλ2 ≃ 1/λ1 that is solvedbymeansof theNewton-Raphson

method. This is satisfied via a large Lamé compressibility constant a for G′i = aGi, i = f ,s. The

effect of the compressibility a = 10,100,1000 on the critical response is demonstrated in Fig. IV.7b.

In the incompressible case, one needs to first map the deformations (λ2 = 1/λ1) and then solve for

the hydrostatic pressure independently from the deformation kinematics.

A linear magnetoelastic (without saturation) energy in the augmented variational formulation

has also been employed, so as to obtain a direct comparison with the bifurcation analysis in Danas

and Triantafyllidis (2014), see the energy potentials in (III.48) and (III.49). To discard Jacobian

singularities, one can use a small dependence on I6 invariant, with the F−B potential writing

ρ i
0Φi(F,B) =

Gi

2
(I1 −3−2ln I3)+

G′i

2
(I3 −1)2 − χ i

2µ0I3
I5 +

C6

2µ0I3
I6. (IV.8)

.

Due to isotropy, it has been shown by Kankanala and Triantafyllidis (2004) that the free energy

depends on the invariants I1 and I3 of the rank two right Cauchy-Green deformation tensor, as well

as on the magnetoelastic invariant I5. The invariants I1, I3, I4, I5 and I6 of the problem are defined

such as

I1 =Cii = Fki Fk j, J = I3 = detF = Fii, (IV.9)

I4 = Bi Bi, I5 = BiCi j B j, I6 = BiCik Ck j B j. (IV.10)

This constitutive laws permit to plug in the material properties i(=film, substrate) from macro-

scopic measurements and homogenization estimates. As seen in Table IV.1, we use the experimental

and numerical material parameters corresponding to soft Ecoflex silicones. A Lamé compressibility

constant, 100 times higher than the shear moduli of the materials, leads to nearly incompressible

material phases, see Fig. IV.7b.

ρ0(g · cm−3) G (kPa) G′/G χ µ0ms (T) µ0 (µN ·A−2)

Film 1.1 10 100 0.4 0.5 4π10−1

Substrate 1.07 3 100 0 0 4π10−1

Table IV.1: Material properties of the film/substrate system in numerical and theoretical analysis.
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To avoid boundary layer effects, the admissible displacement u field and the magnetic vector

potential Ã = Ã3 = a 3 must also satisfy the continuity conditions at the film/substrate interface

X2 = 0 and the film/air boundary X2 = H f = h respectively:

u1(X1,0
+) f = u1(X1,0

−)s, u1(X1,h
+)air = u1(X1,h

−) f ,

u2(X1,0
+) f = u2(X1,0

−)s, u2(X1,h
+)air = u2(X1,h

−) f ,

a(X1,0
+) f = a(X1,0

−)s, a(X1,h
+)air = a(X1,h

−) f , (IV.11)

with index f for the film and s for the substrate.

For the sake of algebraic simplicity, the principal solution is solved in the current configuration.

Attheprincipalsolution, themechanicalandmagneticfieldsareuniform. Theperturbedcomponent

of the magnetic field thus disappears, B̃ = b̃ = 0, implying from (IV.1) that B = B0 and b = b0.

Due to the transverse nature of the magnetic field, the in-plane component is nonexistent, i.e.,

b1 = b0
1 = 0, leaving λ2 as the unknown quantity. In view of the relation between the magnetic field

at the reference and current configuration, B = JF−1b, we obtain the vertical component of the

Lagrangian applied magnetic field

B0
2 = J

(
F−1

21 b0
1 +F−1

22 b0
2

)
= J F−1

22 b0
2 = λ1 b0

2, (IV.12)

with the deformation gradient F = λ1(e1 ⊗ e1)+ λ2(e2 ⊗ e2) = FT or in index notation the corre-

sponding determinant J = F11 F22 = λ1 λ2. Here, the magnetic field that is feasible to be controlled is

the Eulerian b2 = b0
2. This is because the specimens in actual experiments are placed within a field

far from the poles of the magnet. The poles are stable and do not follow the transformation of the

specimen, setting the problem of Eulerian nature. As a result, what can be actually measured is the

current b0
2 and not the reference B0

2 magnetic field.

The only existent term of the applied magnetic potential vector A0(= a0) writes a0 = A0
3 =

ε3jk B0
j Xk =−B0

2 X1+B0
1 X2,withεi jk, i, j,k= 1,2,3theLevi-Civitaoperator. Theunknownprincipal

stretch λ2 is obtained from the traction condition applied at the film/substrate interface, X2 = 0, for

the substrate and the film/air boundary, X2 = h, for the film. Using the expression (III.13) regarded

in the current configuration, the vertical component of the traction requires to satisfy

t2 = 0 =
ρ i

0

J

∂Φi

∂F2k

∣∣∣
B̃2=0

Flk nl, k, l = 1,2, (IV.13)

where the energy function ρ i
0Φi can be replaced by (IV.7) or (IV.8). By means of the Newton-

Raphson method, the principal solution, i.e., F22 = λ2, is solved considering the function t2, its

derivative and an initial value of the variable F22 such that

Fn+1
22 = Fn

22 −
t2(F

n
22)

t ′2(F
n

22)︸ ︷︷ ︸
dF22

, (IV.14)

3Since B̃ = ∇×Ã and B̃3 = 0 giving B̃1 =
∂ Ã3
∂X2

and B̃2 =− ∂ Ã3
∂X1

by ignoring X3 dependence of the quantities, the

only nonzero component of Ã is Ã3. For the sake of simplicity in notation, a ≡ Ã3.
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wherenan iterationand ‘′’ thederivationwith respect to thenormal componentF22. Toapproximate

the root of the nonlinear equation, the quantity dF22 needs to decrease towards zero versus the

iterations, assuming that the process has worked accurately when dF22/F22 < 10−3.

IV.3 Bifurcation analysis

Starting fromzerofields, theprincipal solutioncorresponds touniformstrainandconstantmagnetic

quantities for the flat film. Given a set of loading values
{

λ1,b
0
2

}
, the corresponding out-of-plane

stretch λ2, traction t1 and magnetic field h1 are found by minimizing the potential energy P(u,Ã)

in (IV.5) with respect to the independent variables g ≡ u,Ã, i.e.,

δP = P,g(g)δg = 0, (IV.15)

or else P,u δu = P
,Ã

δÃ = 04.

Considering a given pre-compression λ1, the principal solution remains stable in the parameter

space of the applied magnetic field b0
2, i.e., g0

(
λ1,b

0
2

)
is a local minimizer of the potential energy

satisfying P,gg(g0)∆gδg > 0 for any arbitrary perturbation δg 6= 0. Upon further increase, the

magnetic field reaches a critical value bc
2, where the solution g0 (λ1,b

c
2) is no longer a minimizer of

the potential energy. That causes the film to bifurcate under a deformation mode that satisfies the

critical condition

P,gg(g0)δg∆g = 0. (IV.16)

In virtue of this stability criterion, the present approach aims at exciting the principal solution

(i.e., at B̃i = b̃i = 0, i = 1,2) 5 and searching for corresponding soft modes, i.e., components of the

stiffness matrix that get vanished. To that end, one writes the second variation of the potential

energy presented in (III.20) in view of (IV.16) such that

∆δP =

(
∂ 2P

∂Fkl∂Fi j

δFi j +
∂ 2P

∂Fkl∂ B̃i

δ B̃i

)
∆Fkl

+

(
∂ 2P

∂ B̃k∂Fi j

δFi j +
∂ 2P

∂ B̃k∂ B̃i

δ B̃i

)
∆B̃k = 0, (IV.17)

recalling from (III.5) that ∆F = ∆(∇u) (or in index notation ∆Fkl = ∆uk,l) and ∆B̃ = ∆(∇× Ã) (or

∆B̃k = ∆Ã3,l ε3kl = ∆a,l εkl). Due to the arbitrariness of ∆F and ∆B̃, the stability condition in (IV.17)

4We also recall the equivalent expressions: δP = P,u δu+P
,Ã

δÃ = ∂P
∂F

· ∂F
∂u

δu+ ∂P

∂B̃
· ∂B̃

∂Ã
δÃ = P,F δF+

P
,B̃

δB̃ = 0.
5After bifurcation, one can no longer excite the principal solution but the bifurcated one, where B̃ 6= 0.
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reads

(P,guδg)∆u =





∂ 2P

∂Fkl∂Fi j︸ ︷︷ ︸
P,FF

δui, j +
∂ 2P

∂Fkl∂ B̃i︸ ︷︷ ︸
P

,B̃F

εi j δa, j





∆uk,l︸︷︷︸
∆Fkl

= 0 (IV.18)

and

(
P

,gÃ
δg
)

∆Ã =





∂ 2P

∂ B̃k∂Fi j︸ ︷︷ ︸
P

,FB̃

δui, j +
∂ 2P

∂ B̃k∂ B̃i︸ ︷︷ ︸
P

,B̃B̃

εi j δa, j





εkl ∆a,l︸︷︷︸
∆B̃k

= 0. (IV.19)

with ‘, ‘ denoting partial derivation, see full derivations in Sections III.1.1 and III.1.2. Consider-

ing the potential energy of the perturbation in (IV.5), the second derivatives with respect to the

independent variables g ≡
{

u,Ã
}

(or
{

F,B̃
}

) can be subsequently assigned to the fourth-order

incremental stiffness moduli such that

L uu
i jkl =

∂ 2P

∂Fkl∂Fi j

= ρ0
∂ 2Φm(F,B)

∂Fkl∂Fi j

∣∣∣
B̃=0

+
1

2µ0J

∥∥∥F · B̃
∥∥∥

2(
F−1

lk F−1
ji −F−1

jk F−1
li

)

− 1
µ0J

(
FksB̃sB̃lF

−1
ji +FimB̃mF−1

lk B̃ j −δikB̃lB̃ j

)
=

∂ 2P

∂Fi j∂Fkl

= L uu
kli j (IV.20)

while the tangential ∆u and ∆Ã components, i.e., third-order incremental moduli, get

L au
jkl =

∂ 2P

∂Fkl∂ B̃i

εi j =

{
ρ0

∂ 2Φm(F,B)

∂Fkl∂ B̃i

∣∣∣
B̃=0

+
1

µ0J

(
−F−1

lk CipB̃p + B̃lFki +FkpB̃pδil

)}
εi j

=
∂ 2P

∂ B̃k∂Fi j

εkl = L ub̃
i jk ·L b̃a

kl = L ua
i jl (IV.21)

and the remaining term of the ∆Ã component, i.e., second-order incremental moduli

L aa
jl = εi j

∂ 2P

∂ B̃k∂ B̃i

εkl = εi j

{
ρ0

∂ 2Φm(F,B)

∂ B̃k∂ B̃i

∣∣∣
B̃=0

+
1

µ0J
Cki

}
εkl = εi j

∂ 2P

∂ B̃i∂ B̃k

εkl = L ab̃
ji ·L b̃b̃

ik ·L b̃a
kl = L aa

l j ,

(IV.22)

where m = f ,s for the film and the substrate, respectively (or else for the air: Φa = 0). We also note

that the function Φm (F,B) is different from the function Φm

(
F,B̃

)
. However, their derivatives 6

are the same since

∂Φm

∂Bi

=
∂Φm

∂ B̃ j

∂ B̃ j

∂Bi

=
∂Φm

∂ B̃ j

δ ji. (IV.23)

As a result, the first- and second-order derivations of the function Φm(F,B) in (IV.7) with respect

to g ≡ {F,B̃} are given by the relations in (III.57) and (III.62)–(III.64), where B is substituted by

B̃.

6and thus, ∂ 2Φm

∂Fkl ∂Bi
= ∂

∂Fkl
( ∂Φm

∂Bi
) = ∂

∂Fkl
( ∂Φm

∂ B̃i

) = ∂ 2Φm

∂Fkl ∂ B̃i

.
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Writing (IV.18) (and (IV.19)) in view of (IV.20) and (IV.21) ((IV.21) and (IV.22)), one gets

(P,guδg)∆u = 0 ⇒
∫

R3

(
L uu

i jklδui, j +L au
jklδa, j

)
∆uk,l dΩ = 0,

(
P

,gÃ
δg
)

∆Ã = 0 ⇒
∫

R3

(
L ua

i jl δui, j +L aa
jl δa, j

)
∆a,l dΩ = 0, (IV.24)

whichyield theEuler-Lagrangedifferential equationsafter standard integrationbyparts,7 such that

{(
L uu

i jklδui, j +L au
jklδa, j

)
,l
}

m
= 0, X ∈ R

3

{(
L ua

i jl δui, j +L aa
jl δa, j

)
,l
}

m
= 0, X ∈ R

3. (IV.25)

with m = f ,s,a for the film, the substrate and the air, respectively. Note that the coupled terms

L au
jkl ,L

ua
i jl are zero for the substrate and the air when one works on the perturbation problem, but

nonzerowhenonesuses thetotalmagneticvectorpotentialA (insteadofÃ)as independentvariable.

The absence of deformation in the air is satisfied by setting F = I and thus, the magnetic term L aa
jl

of the air is indeed existent. These equations need to be supplemented with the appropriate natural

boundary/interfaceconditionsattheMREfilm/substrate interfaceandtheMREfilm/airboundary,

which are found to be from (IV.18) and (IV.19)

{
L uu

i jk2δui, j +L au
jk2δa, j

}
f
=
{
L uu

i jk2δui, j

}
s
, (X1,X2) ∈ R

3 ×{0}
{
L ua

i j2δui, j +L aa
j2 δa, j

}
f
=
{
L aa

j2 δa, j
}

s
, (X1,X2) ∈ R

3 ×{0}
{
L uu

i jk2δui, j +L au
jk2δa, j

}
f
=
{
L uu

i jk2δui, j

}
a
, (X1,X2) ∈ R

3 ×{h}
{
L ua

i j2δui, j +L aa
j2 δa, j

}
f
=
{
L aa

j2 δa, j
}

a
, (X1,X2) ∈ R

3 ×{h}. (IV.26)

Taking the interface conditions at the film/substrate interface (the same is valid for the film/air

boundary), one has

(k = 1)
{

L uu
1212δu1,2 +L uu

2112δu2,1 + ε12L
b̃u

112δa,2

}
f
= {L uu

1212δu1,2 +L uu
2112δu2,1}s

,

(k = 2)
{
L uu

1122δu1,1 +L uu
2222δu2,2 + ε21L

b̃u
222δa,1

}
f
= {L uu

1122δu1,1 +L uu
2222δu2,2}s

,
{
L ub̃

121ε12δu1,2 +L ub̃
211ε12δu2,1 + ε12L

b̃b̃
11 ε12δa,2

}
f
=
{

ε12L
b̃b̃

11 ε12δa,2

}
s
, (X1,X2) ∈ R

3 ×{0}

(IV.27)

where εi j ≡ εi j3 the Levi-Civita operator, with i, j = 1,2. To the above natural boundary/interface

conditions, one must also add the essential boundary/interface conditions. The latter reflect the

continuity of displacement and magnetic perturbation potential, as seen in (IV.11). Here, we should

note that the rest of the coupled components are zero and thus, do not appear in the Euler-Lagrange

equations or in the boundary conditions, e.g., L ub̃
111 = L ub̃

221 = L ub̃
122 = L ub̃

212 = 0.

7e.g.,
(
L uu

i jklδui, j +L au
jklδa, j

)
∆uk,l =

[(
L uu

i jklδui, j +L au
jklδa, j

)
∆uk

]
,l
−
(
L uu

i jklδui, j +L au
jklδa, j

)
,l

∆uk
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MRE film. The Euler-Lagrange equations for the MRE film read

{
L uu

i jklδui, jl +L au
jklδa, jl

}
f
= 0

and
{
L ua

i jl δui, jl +L aa
jl δa, jl

}
f
= 0, (X1,X2) ∈ R

3 × [0,h]. (IV.28)

The X2-invariance of the principal solution allows a Fourier decomposition of the eigenmode with ω

the corresponding wavenumber, such that

∆u j(X1,X2) = eiωX1 ∑
I

∆U I
j e

JIωX2

and ∆a(X1,X2) = eiωX1 ∑
I

∆ÃIeJIωX2 , (IV.29)

where I the number of independent eigenmodes and JI the eigenvalues (per material phase). The

unknowns of the problem are the ∆U I
1,∆U I

2 and ∆ÃI. Taking the first and second derivatives of the

preferable form of solution (IV.29) with respect to X1 and X2 and introducing them into the Euler-

Lagrange equations (IV.28), one gets the following algebraic system with constant coefficients in

direction X1 (l = 1)

(k = 1)

(
−L uu

1111 ∑
I

∆U I
1 + iL uu

2211 ∑
I

JI ∆U I
2 − ε21 L b̃u

211 ∑
I

∆ÃI

)
ω2 eiωX1eJIωX2 = 0,

(k = 2)

(
iL uu

1221 ∑
I

JI ∆U I
1 −L uu

2121 ∑
I

∆U I
2 + iε12 L b̃u

121 ∑
I

JI∆ÃI

)
ω2 eiωX1eJIωX2 = 0,

(
−L ub̃

112ε21 ∑
I

∆U I
1 + iL ub̃

222ε21 ∑
I

JI∆U I
2 − ε21 L b̃b̃

22 ε21 ∑
I

∆ÃI

)
ω2 eiωX1eJIωX2 = 0 (IV.30)

and the relevant system of equations in direction X2 (l = 2)

(k = 1)

(
L uu

1212 ∑
I

J2
I ∆U I

1 + iL uu
2112 ∑

I

JI∆U I
2 + ε12 L b̃u

112 ∑
I

J2
I ∆ÃI

)
ω2 eiωX1eJIωX2 = 0,

(k = 2)

(
iL uu

1122 ∑
I

JI ∆U I
1 +L uu

2222 ∑
I

J2
I ∆U I

2 + iε21L
b̃u

222 ∑
I

JI ∆ÃI

)
ω2 eiωX1eJIωX2 = 0,

(
L ub̃

121 ε12 ∑
I

J2
I ∆U I

1 + iL ub̃
211 ε12 ∑

I

JI∆U I
2 + ε12 L b̃b̃

11 ε12 ∑
I

J2
I ∆ÃI

)
ω2 eiωX1eJIωX2 = 0,

(IV.31)

which can be written in implicit eigenvalue form for JI, with (∆U I
1,∆U I

2,∆ÃI) the corresponding
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amplitudes, such that




−L uu
1111 + J2

I L uu
1212 i JI (L

uu
2211 +L uu

2112) L b̃u
211 + J2

I L b̃u
112

i JI (L
uu

1221 +L uu
1122) −L uu

2121 + J2
I L uu

2222 i JI

(
L b̃u

121 −L b̃u
222

)

L ub̃
112 + J2

I L ub̃
121 i JI

(
−L ub̃

222 +L ub̃
211

)
−L b̃b̃

22 + J2
I L b̃b̃

11




︸ ︷︷ ︸
Q f (JI)





∆U I
1

∆U I
2

∆ÃI





= 0, (IV.32)

where JI the six roots of the bi-cubic characteristic equation, implying that the integer I ranges from

1 to 6. In order to have a non-trivial solution of the system, the determinant of the tensor Q f must

vanish, i.e., detQ f (JI) = 0, 1 ≤ I ≤ 6. In this way, solving for the JI roots yields 6×3 eigenmodes (or

vector of unknowns: H f
q = ∆U I

1, ∆U I
2, ∆ÃI, 1 ≤ I ≤ 6).

For each root JI, one can find from (IV.32) the linear relationship between the corresponding

∆U I
j and ∆ÃI; 1 ≤ j ≤ 2,1 ≤ I ≤ 6, such that

∆U I
2 =

Q
f
21 Q

f
13 −Q

f
11 Q

f
23

Q
f
11 Q

f
22 −Q

f
21 Q

f
12︸ ︷︷ ︸

∆U I
2

∆ÃI, ∆U I
1 =−Q

f
12

Q
f
11

∆U I
2 +

Q
f
13

Q
f
11︸ ︷︷ ︸

∆U I
1

∆ÃI, (IV.33)

where the coefficients Q
f
i j, i, j = 1,2,3 (introduced for convenience in notation) are functions of the

constants Luu,Lub̃
,L

b̃u
,L

b̃b̃
defined in (IV.32). As a result, one reduces the equations of the film

from 18 to 6, written in terms of ∆ÃI.

Passive substrate. The system of equations for the substrate is significantly simplified since it

has no magnetomechanical coupling. The Euler-Lagrange equations for the passive substrate read

{
L uu

i jklδui, jl

}
s
= 0 and

{
L aa

jl δa, jl
}

s
= 0, (X1,X2) ∈ R

3 × (−∞,0). (IV.34)

The form of solution that one searches for is

∆u j(X1,X2) = eiωX1 ∑
I

∆V I
j eξIωX2

and ∆a(X1,X2) = eiωX1 ∑
I

∆ÃI
s eθsωX2 , (IV.35)

where I the number of independent eigenmodes and ξI and θs the eigenvalues. The unknowns of the

problem are the ∆V I
1 and ∆Ãs

I
. For the ∆u component of the eigenmode, substitution of (IV.35) into

(IV.34) leads to the following algebraic eigenvalue problem for ξI and the corresponding amplitudes
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(∆V I
1 ,∆V I

2 ):




−L uu
1111 +ξ 2

I L uu
1212 iξI (L

uu
2211 +L uu

2112)

iξI (L
uu

1221 +L uu
1122) −L uu

2121 +ξ 2
I L uu

2222




︸ ︷︷ ︸
Qs(ξI)





∆V I
1

∆V I
2





= 0, (IV.36)

In the above expression, ξI are the four roots of the bi-quadratic characteristic equation. However,

the decay condition for the eigenmode ∆u reads ∆u → 0 as X2 →−∞. In order for this conditions to

be satisfied, it is straightforward from (IV.35)1 that when −∞ < X2 < 0, then ξI ω > 0, with ω > 0

and thus, one gets Re(ξI)> 0. As a result, out of the four complex roots, only the two with positive

real part are considered. This implies that I ranges from 1 to 2.

In order to find a non-trivial solution of the system, the following conditions needs to be satisfied:

detQs(ξ I) = 0; Re(ξ I)> 0,1 ≤ I ≤ 2. For each root ξI of (IV.36), one can find the linear relationship

between ∆V I
1 and ∆V I

2 , namely:

∆V I
2 =−Qs

11

Qs
12︸ ︷︷ ︸

∆V I
2

∆V I
1 , (IV.37)

where the coefficients Qs
i j (i, j = 1,2) are functions of the constants Luu defined in (IV.36). For the

independent ∆a component of the eigenmode, substitution of (IV.35)2 into (IV.34)2 leads to the

following algebraic equation, relating θs to the corresponding amplitude ∆ÃI
s:

[
−L b̃b̃

22 +θ 2
s L b̃b̃

11

]
·∆ÃI

s = 0, 1 ≤ I ≤ 2; θs =

(
L b̃b̃

22

L b̃b̃
11

)1/2

. (IV.38)

Similarly, out of the two real roots of the above equation (it can be shown that L b̃b̃
22 /L

b̃b̃
11 > 0), only

the positive root is considered in order to satisfy the decay condition ∆a → 0 for the eigenmode as

X2 → −∞. Here, we recall that A3 = a+A0
3 and thus, the eigenmode corresponding to the total

magnetic vector is ∆A(X1,X2) = eiωX1 ∑I ∆ÃI
a eθaωX2 + εi jk B0

j Xk. Now, if −∞ < X2 < 0 then θa > 0,

so as to have B̃i → 0 (1 ≤ i ≤ 2) as X2 → −∞, meaning that bi = b0
i at X2 → −∞. In this way, the

total number of system equations for the substrate is reduced from 5 to 3 considering a vector of

unknowns: H s
q = ∆V I

1 , ∆Ãs, 1 ≤ I ≤ 2).

Air. The system of equations for the air is also simplified, since B̃ = 0 vanishes Luu,Lau,Lua

components in (IV.20) and (IV.21). The Euler-Lagrange equations for the air simply read

{
L aa

jl δa, jl
}

a
= 0, (X1,X2) ∈ R

3 × (h,+∞). (IV.39)
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As before, the following eigenmode ∆a is the solution of the constant coefficient equation (IV.39):

∆a(X1,X2) = eiωX1 ∑
I

∆ÃI
a eθaωX2 . (IV.40)

Upon substitution of the eigenmode expression (IV.40) into the governing equation (IV.39), one

obtains the following relation between θa and the corresponding amplitude ∆ÃI
a

[
−L b̃b̃

22 +θ 2
a L b̃b̃

11

]
·∆ÃI

a = 0, 1 ≤ I ≤ 2; θa =

(
L b̃b̃

22

L b̃b̃
11

)1/2

, (IV.41)

where again one can easily show that L b̃b̃
22 /L

b̃b̃
11 > 0. Since ∆a → 0 for the eigenmode as X2 →+∞ (so

as B=B0 at infinity), it is straightforward from (IV.40) that θaω < 0, with ω > 0 when 0 < X2 <+∞

and thus, θa < 0. That implies that only the negative root is considered to satisfy the decay con-

dition. Consequently, only one equation is considered for the air, corresponding to the unknown

∆Ãa = H a
q .

Determination of critical loads and corresponding eigenmodes

The critical loads and corresponding eigenmodes can been found upon substitution of the prefer-

able form of (eigenmode) solution on the natural and essential boundary/interface conditions. To

this end, recalling from (IV.26) and (IV.11) the natural and essential interface conditions and taking

into account the orthotropy of the incremental moduli tensor L , one obtains (see also (IV.27)) at

the film/substrate interface, (X1,X2) ∈ R3 ×{0}
{
L uu

1212δu1,2 +L uu
2112δu2,1 +L b̃u

112δa,2

}
f
= {L uu

1212δu1,2 +L uu
2112δu2,1}s

,
{

L uu
1122δu1,1 +L uu

2222δu2,2 −L b̃u
222δa,1

}
f
= {L uu

1122δu1,1 +L uu
2222δu2,2}s

,
{

L ub̃
121δu1,2 +L ub̃

211δu2,1 +L b̃b̃
11 δa,2

}
f
=
{

L b̃b̃
11 δa,2

}
s
,

{∆u1} f = {∆u1}s ,

{∆u2} f = {∆u2}s ,

{∆a} f = {∆a}s (IV.42)

and at the film/air boundary, (X1,X2) ∈ R3 ×{h}
{
L uu

1212δu1,2 +L uu
2112δu2,1 +L b̃u

112δa,2

}
f
= 0,

{
L uu

1122δu1,1 +L uu
2222δu2,2 −L b̃u

222δa,1

}
f
= 0,

{
L ub̃

121δu1,2 +L ub̃
211δu2,1 +L b̃b̃

11 δa,2

}
f
=
{

L b̃b̃
11 δa,2

}
a
,

{∆a} f = {∆a}a . (IV.43)

In view of (IV.33), we recall that the eigenmodes of the film ∆U I
i (i = 1,2; I = 1..6) are written in

terms of ∆ÃI, such that ∆U I
i = ∆U I

i ·∆ÃI. In view of (IV.37), the substrate eigenmodes ∆V J
2 (J = 1,2)
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are written in terms of ∆V J
1 , i.e., ∆V J

2 = ∆V J
2 ·∆V J

1 . Substituting the eigenmode expressions of each

layer, according to (IV.29), (IV.35) and (IV.40), into the interface/boundary conditions (IV.42)

and (IV.43), we recover a 10×10 linear system, written in implicit form

10

∑
q=1

Dpq(Λ,ωH)Hq = 0, 1 ≤ p ≤ 10 (IV.44)

with Hq the total vector of unknowns

Hq =
{
H f

q ,H s
q ,H

a
q ,
}
=
{

∆ÃI,∆V J
1 ,∆Ãs,∆Ãa

}
, 1 ≤ I ≤ 6; 1 ≤ J ≤ 2. (IV.45)

and Dpq (p,q = 1..10) the Jacobian matrix coefficients, such that

D1q =
{

JI L
uu

1212∆U I
1 + iL uu

2112∆U I
2 + JI L

b̃u
112

}
f
, q = 1, ..,6

D1q =−
{

ξI L
uu

1212 + iL uu
2112∆V I

2

}
s
, q = 7,8, D1q = 0, q = 9,10

D2q =
{

iL uu
1122∆U I
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}
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}
s
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1

}
f
, I = 1, ..,6, q = I
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}
f
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}
f
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uu
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eJIωh
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, I = 1, ..,6, q = I

D7q = 0, I = 1, ..,4, q = I +6
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iL uu
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uu
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]
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}
f
, I = 1, ..,6, q = I
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D8q = 0, I = 1, ..,4, q = I +6

D9q =
{[

JI L
ub̃

121∆U I
1 + iL ub̃

211∆U I
2 + JI L

b̃b̃
11

]
eJIωh

}
f
, I = 1, ..,6, q = I

D910 =−
{[

θa L b̃b̃
11

]
eθaωh

}
a
, D9q = 0, I = 1,2,3 q = I +6

D10q =
{

eJIωh
}

f
, I = 1, ..,6, q = I

D1010 =−
{

eθaωh
}

a
, D10q = 0, I = 1,2,3 q = I +6

In the eigenvalue bifurcation problem, we search for the loads Λ that lead the model stiffness

matrix to become singular, so that the problem DH = 0 has nontrivial solutions. The critical load

Λ =
{

λ1,b
c
0

}
is found from the vanishing of the determinant of the 10×10 matrix in order to have a

non-trivial solution, i.e., detD((λ1,b
c
0),ωh) = 0. The critical values

{
λ1,b

c
0

}
are those that minimize

1− λ1 ≥ 0 and bc
0 ≥ 0, over all non-dimensional wavenumbers ωh ∈ R along the chosen loading

path. Note that the stability criterion is based on the incremental positive definitess of the tangent

(Jacobian D) stiffness matrix, i.e., the second derivatives of the potential energy with respect to the

independent variables. Such an approach is called the “bloch-wave” problem.

IV.4 Theoretical results

To summarize the bifurcation method, an infinitely long plane-strain system made of a magne-

toelastic film bonded on a infinitely deep elastic substrate is subjected to a magnetomechanical

loading. The loading consists of applying compression along the X1 direction, keeping λ1(< 1)

constant and subsequently increasing magnetic field b0
2 along the X2 direction. Given the applied

pre-stretch λ1 ≡ λ0, one subsequently solves for the out-of-plane stretch λ2 for zero out-of-plane

traction (t2 = 0) along the film top boundary ((X1,X2) ∈ R2 ×{h}) and the film/substrate interface

((X1,X2)∈R2×{0}). The stability of the principal solution is satisfied by incremental verification of

the positive definitess of the stiffness matrix, which includes the second derivatives of the potential

energy with respect to the admissible displacement field u and the magnetic vector potential A. The

film is made of a nonlinear elastic, slightly compressible and very soft material that magnetostric-

tively responds to magnetic fields. This material is fairly approximated by a neo-Hookean model

combined with either a Langevin saturation magnetization (IV.7) or with a linear magnetoelastic

model (IV.8) (i.e., the first order term of the Langevin function expansion about small magnetic

fields, B → 0, see Section IV.2). The nonlinear elastic substrate is also modeled as a neo-Hookean

solid. The present development pertains to the onset of the bifurcation in the bilayer system and

does not deal with the stability of the bifurcated branches.
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Figure IV.2: a, Magnetostriction ∆λ2 and stretch ratio λ2 (in inset) versus the applied magnetic field

b0
2 for different applied pre-stretches λ1. The measures are in the direction of the external field, X2.

The magnetostriction ∆λ2 is defined as the difference of the incremental out-of-plane stretch ratio,

λ2(b
0
2), from the initial stretch ratio for zero magnetic field, λ2(b

0
2 = 0). The response is indistinguis-

able for very small fields, while the effect of pre-compression is notable above b0
2 = 0.04T. b, First

Piola-Kircoff in-plane stress S11 versus the applied magnetic field b0
2 for different applied pre-stretches

λ1. The monotonically increasing stress remains compressive throughout the entire magnetic loading

path for large pre-compressions λ1 < 0.9, while changes sign in large magnetic fields for smaller pre-

compressions, λ1 ≥ 0.9. The costitutive law used in all plots: ρ i
0Φi(F,B) = Gi

2 (I1 −3−2ln I3)+
G′i
2 (I3 −

1)2 + I3
µ0(m

i
s)

2

3χ i

[
ln
(

3χ i

I3µ0mi
s

√
I5

)
− ln

(
sinh

(
3χ i

I3µ0mi
s

√
I5

))]
represents a slightly compressible and very soft

magnetoelastic bilayer, with material properties given in Table IV.1.

IV.4.1 Principal solution

The principal solution refers to uniform strains (or constant stretches λ1,λ2) in each layer and

uniform magnetic fields for the MRE layer. It is incrementally obtained by means of the Newton-

Raphson method while solving the equation (III.10) for the two constitutive models ((IV.7) and

(IV.8)), with the loading parameter being the magnetic field b0
2 for a given pre-compression λ1 (and

vice versa). For magnetically susceptible materials, the magnetostrictive strain is an important

property. It corresponds to the magnetically induced deformation when no mechanical traction is

applied. Fig.IV.2a shows the effect of the pre-compression λ1 on the magnetostrictive response of

the bilayer versus the applied magnetic field b0
2. Here, the magnetostriction ∆λ2 is defined as the

difference of the incremental stretch ratio in the direction of the external field, λ2(b
0
2), from the

initial stretch ratio for zero magnetic field, λ2(b
0
2 = 0). The response is indistinguishable for very

small fields, while the effect of pre-compression is notable above b0
2 = 0.04T. The magnetostriction

∆λ2 monotonically increases with increasing applied magnetic field, however with a decreasing

rate with increasing pre-compression λ1. The expansive stretch ratio λ2 increases with increasing

applied magnetic field and increasing pre-compression, see the inset of Fig.IV.2a and Fig.IV.3a. The

magnetostriction monotonically decreases as a function of the applied pre-compression for a fixed

magnetic field, with an increasing rate as higher fields are approached. The stretch λ2 exhibits the

opposite behavior, as seen in Fig.IV.3a.

Similarly in Fig.IV.2b, the in-plane component of the Piola-Kircoff stress S11 is plotted versus
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the magnetic field b0
2 for different pre-compressions λ1. The monotonically increasing stress remains

compressive throughout the entire magnetic loading path for large pre-compressions λ1 < 0.9. How-

ever, it becomes extensive in high magnetic fields for smaller pre-compressions, λ1 ≥ 0.9. The stress

decreases as a function of the applied pre-compression for a fixed magnetic field with an increasing

rate as the magnetic fields become higher, Fig.IV.3b. The in-plane decreasing stress S11 remains

compressive throughout the entire mechanical loading path for small magnetic fields b0
2 ≤ 0.1T,

while it becomes extensive along the mechanical loading path for increasing magnetic fields higher

than 0.1T. For stretch values greater than 0.95, the code does not converge. This is because the ini-

tial S11(b
0
2 = 0) stress (in the direction of compression) is extensive (and monotonically increasing)

under compression. In all plots, the constitutive model considered is that of Langevin (IV.7) with

saturation in magnetization.
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Figure IV.3: a, Stretch ratio λ2; b, First Piola-Kircoff stress S11 versus the applied stretch ratio λ1 for dif-

ferent values of the externally applied magnetic field b0
2. The monotonically increasing out-of-plane stretch

λ2 versus pre-compression λ1 is notably affected by the presence of relatively high magnetic fields, e.g.,

b0
2 = 0.4T. The in-plane decreasing stress S11 versus the pre-stretch λ1 remains compressive throughout the

entire mechanical loading path for small magnetic fields b0
2 ≤ 0.1T, while progressively changes sign along

the mechanical loading path for increasing magnetic fields higher than 0.1T. The costitutive law used in

all plots: ρ i
0Φi(F,B) = Gi

2 (I1 −3−2ln I3)+
G′i
2 (I3 −1)2 + I3
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represents a slightly compressible and very soft magnetoelastic bilayer, with material properties given in

Table IV.1.

IV.4.2 Mechanical critical behavior

Anexactbifurcationanalysis is employedtoreveal thecriticalappliedstrainat theonsetofwrinkling

whenb0
2 = 0(absenceofmagneticfield). Weconsideraneo-Hookeanfilmbondedonaninfinitelydeep

(softer) neo-Hookean substrate with the entire plane-strain system undergoing axial compression.

Bothlayersare infinitely longinthedirectionofthe interface. Letλ1(< 1)betheappliedstretchratio.

When λ1 is relatively small, the bilayer is uniformly compressed and the surface is flat. When the

stretch ratio exceeds a critical value λ c
1 , the film undergoes wrinkling for a given critical wavenumber

that minimizes 1−λ c
1 ≥ 0.
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The potential energy P of the system is written with respect to the admissible displacement

field P = P(u) and all magnetic contributions are neglected. One needs then to apply a sinusoidal

mode as the form of the expected solution. It is noted that interfacial debonding is not considered

in this model. The eigenvalue problem for the two solid phases is that of equation (IV.36), i.e.,

only L uu terms survive. For the film, the bi-quadratic characteristic equation gives four roots. For

the substrate, the two positive roots are regarded to satisfy the decay condition, see Section IV.3.

The natural and essential boundary conditions (IV.42),(IV.43) regard only the purely mechanical

contributions, given in terms of the admissible displacements u. Note that no jump condition is

now applied at the film/air boundary, i.e., mechanical traction t = σ ·n. As a result, the boundary

conditions in total (=6) are as many as the unknowns
{

∆U I
2,∆V J

2

}
, I = 1, ..4, J = 1,2. Thus, the

final algebraic system is a 6×6 linear system, where the components of Dpq, p = 1, ..,6,q = 1, ..,6,

do not include any information about the air. Checking for changes in the sign of the imaginary

part of the jacobian matrix components (real part is always zero) yields the critical {λ c,ωhc} values,

see e.g. Fig.IV.5. In Fig.IV.4, the absolute values of the stretch ratio λ1 are plotted versus the

corresponding wavenumber ωh that satisfy a negative jacobian eigenvalue. The critical values are

those corresponding to the lowest strain (or highest stretch ratio λ1 = 1− ε11).
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Figure IV.4: Critical applied stretch ratio λ1 versus the corresponding dimensionless wavenumber ωh

that satisfy a negative jacobian eigenvalue. An incremental bifurcation analysis in the absence of mag-

netic field, i.e., b0
2 = 0 and λ1(< 1), provides the critical mechanical load λ c

1 = 0.7984 for the onset of

wrinkling and the associated wavenumber ωhc = 0.6227, for shear moduli ratio Gs/G f = 0.3 and Lamé

compressibility constant G′
i = 100Gi, i = f ,s for the film and the substrate, respectively.

The mechanical bifurcation analysis provides the critical mechanical load λ c
1 = 0.7984 for the

onset of wrinkling and the associated wavenumber ωhc = 0.6227 for a moderate shear moduli ratio

Gs/G f = 0.3 and Lamé compressibility constant G′
i = 100Gi, i = f ,s for the film and the substrate,

respectively. Since incompressibility is satisfied, the critical values depend only on the mechanical

interlayer contrast Gs/G f .
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Figure IV.5: a, Imaginary; b, Real part of the stiffness matrix determinant plotted along a mechanical

loading path 0.75 ≤ λ1 ≤ 1 over all non-dimensional wavenumbers ωh ∈ (0,1], for a fixed value of the

applied magnetic field b0
2(= 0.03T). When the stretch ratio λ1 is within the range 0.8 . λ1 ≤ 1, the

determinant is positive, det(D) = 0+ 0.01i, for the entire range of the scanned wavenumbers ωh. Upon

further pre-compression λ1 . 0.8, the imaginary part of the determinant exhibits changes in its sign (from

positive to negative and vice versa) along the wavenumber ωh scanning path and for any sequential λ1.

The critical pair value (λ1,ωhc) selected is that of the wavenumber ωhc minimizing the strain 1−λ1 ≥ 0

for the given external field bc
2.

IV.4.3 Magnetomechanical critical behavior

In this section, we show the results obtained from the magnetomechanical bifurcation analysis

for the MRE film/substrate assembly. The critical buckling fields {λ1,b
c
2} and the corresponding

wavenumber ωhc are found similarly to the mechanical solution: for a given applied magnetic field

b0
2 6= 0, one searches for changes in the sign of the tangent stiffness matrix determinant in (IV.44),

given the real part is zero, e.g., see Fig.IV.5b. More specifically, Fig.IV.5a presents the imaginary

part of the stiffness matrix determinant det(D) plotted along a chosen mechanical loading path

0.75 ≤ λ1 ≤ 1 over all non-dimensional wavenumbers ωh ∈ (0,1], for a fixed applied magnetic field

b0
2(= 0.03T). When the stretch ratio λ1 is within the range 0.8 . λ1 ≤ 1, the determinant is positive,

det(D) = 0+ 0.01i, for the entire range of the wavenumbers ωh. Upon further increase of the pre-

compression λ1 . 0.8, the imaginary part exhibits changes in its sign (from positive to negative

and vice versa) along the wavenumber ωh scanning path and for any sequential λ1. The critical

pair (λ1,ωhc) corresponds to the wavenumber ωhc of the smallest critical strain 1−λ1 ≥ 0 for the

given external field bc
2. In each case, the lowest critical field occurs for an eigenmode with the lowest

wavenumber. The critical two-field loading parameters {λ1,b
c
2} are plotted in Fig.IV.6a for the

material properties given in Table IV.1 corresponding to the experimental values of our soft silicones

(see Section II.1). For validation purposes, the critical buckling fields{λ1,b
c
2}are presented for three

different models. The first is the finite element method (FEM) on a finite size specimen and Dirichlet

boundary conditions, presented in Sections III.3 and III.4. This model resorts to a full numerical

analysis, solving numerically the bifurcation equations of the augmented variational formulation
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P(F,B) (see Section III.1) for the boundary value problem of a finite MRE film/substrate block

surrounded by air.

The second model (“FB theory”) is the present bifurcation analysis on an infinitely long material

system of a finite thickness film bonded on an infinitely deep substrate. Unlike the FEM boundary

value analysis considering the total Lagrangian magnetic field B as an independent variable, the

theoretical infiniteproblemissolvedintermsoftheperturbedmagneticfieldB̃(formore information

see Section IV.1 and IV.3).

The third model (“FM theory”) is that of Danas and Triantafyllidis (2014), considering the

same infinite medium and a continuum formulation equivalent to FB. In the FM formulation, the

deformation gradient tensor F and the magnetization M are the independent variables of the po-

tential energy.8 Each model considers an isotropic energy density function representing a slightly

compressible, magnetoelastic elastomer for plane-strain deformations and magnetic field effects.

Therefore, we make use of neo-Hookean solids combined with the magnetoelastic Langevin law

(IV.7) for the FEM and the FB theory model versus a non-saturating law for the FM model. In the

latter case, the non-saturating FM energy density of (III.48) is equivalent to that of the linear FB

(IV.8), obtained by use of Legendre transform as already shown in Section III.2.2.

In the present plot, we make use of I1(F), I3(F) and I5(F,B) invariants for the saturating FB

model. The non-saturating FM model employs I1(F), I3(F) and I6(F,M) = M ·M invariants, with

a supplementary small dependence in I7(F,M) = M ·F2 ·M to discard jacobian singularities. The

stress contributionarising from I7(F,M)dependence in relativelyhighfieldsandsmall compressions

occurs slight differences in the critical buckling values between the two theoretical models, see also

Fig.IV.9 in the Appendix of the Chapter.

The critical magnetic field bc
2 decreases monotonically with increasing pre-compression λ1 until

the mechanical buckling load, λ c
1 (b

0
2 = 0), is reached. This decreasing trend drives motivation for

the design of actively controlled material-structures. Such systems can be led near (but not exactly

at) a critical state by applying in-plane strain and, subsequently, undergo bifurcation with a small

magnetic field. The system at hand buckles before magnetization saturation of the film is reached

(set for the FEM andthe FBtheoreticalmodel at µ0ms
f = 0.5T). Eachcritical curve divides the phase

diagram into a stable (right to the curve) and an unstable (left) regime. The equilibrium of the flat

film surface is maintained in the stable regime. A wrinkled equilibrium is obtained in the unstable

regime. The differences in the critical values observed between the numerical and the theoretical

models are attributed to the finite structure of the first. The boundary conditions and the existence

of corners (regions of magnetic quantities concentration) inevitably affect the solution.

Fig.IV.6b shows the influence of the mechanical interlayer contrast Gs/G f on the magnetome-

chanical instability, for nearly incompressible material layers (G′
f ,s = 100G f ,s). Here, the critical

values of the external magnetic field bc
2 are plotted as a function of the applied compressive stretch

λ1, for fixed film parameters χ f = 0.4, µ0ms
f = 0.5T and G f = 10kPa and three different ratios

8Such an analysis inevitably considers the B as a second independent magnetic variable, since there are no
boundary conditions for the magnetization M.
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Figure IV.6: Phase diagrams in the parameter space of the applied magnetic field bc
2 and the compressive

stretch ratio λ1. Critical values of the applied magnetic field bc
2 versus the interface stretch ratio λ1 for

a, a fixed substrate-to-film shear moduli ratio Gs/G f = 0.3 and three different models: the FEM FEAP

with finite size specimen and Dirichlet boundary conditions, the FB bifurcation and the FM bifurcation

model. For test purposes presented in Section III.2.2, we use the neo-Hookean law combined with the

magnetoelastic Langevin law for the FEM and the FB theory model: ρ i
0Φi(F,B) = Gi

2 (I1 −3−2ln I3)+
G′i
2 (I3 − 1)2 + I3

µ0(m
i
s)

2

3χ i

[
ln
(

3χ i

I3µ0mi
s

√
I5

)
− ln

(
sinh

(
3χ i

I3µ0mi
s

√
I5

))]
versus a non-saturating law for the FM

model: ρ i
0Φmec

i (F,M) = Gi

2

(
FT : F−3−2lnJ

)
+ G′i

2 (J − 1)2 +
(ρ i

0)
2 µ0(1−χ i)

2Jχ i M ·M. b, the FB bifurcation

model and three different shear moduli ratios Gs/G f = 0.2,0.3,0.4. The material parameters used in the

plots correspond to soft silicones, with G f ,s = 100G f ,s a large Lamé constant for both layers, G f = 10kPa

the shear modulus, χ f = 0.4 the magnetic susceptibility and µ0 ms
f = 0.5T the saturation magnetization

of the film.

Gs/G f = 0.2,0.3,0.4 that practically affect the stiffness of the substrate. When bc
2 = 0, each curve

attains the purely mechanical critical stretch corresponding to a given Gs/G f , i.e., buckling of the

film/substrate under uniaxial compression. The mechanical buckling strain εc
11(= λ c

1 (b
c
2 = 0)−1)

increases with increasing interlayer stiffness contrast Gs/G f , see also Fig.V.4a. In the limit of

Gs/G f → 0, the critical load λ c
1 (b

c
2 = 0)→ 1 (and the corresponding wavenumber ωhc → 0). This

is because such a limit corresponds to the zero compressive axial load of an infinitely long and

unsupported Euler beam (Danas and Triantafyllidis, 2014). Upon a threshold Gs/G f ≈ 0.6, non-

periodic primary instability modes arise (see e.g., Hutchinson, 2013) that are beyond the scope of

the present model. In that case, one needs to employ FEM calculations (see Section V.1.1). Mod-

erate shear moduli ratios within the range Gs/G f ∈ (0,0.6) yield wrinkling and thus, are reasonable

to be considered. As seen in Fig.IV.6b, the lower the ratio Gs/G f (for material parameters of the

same magnitude of order), the more unstable under a given pre-compression the system at hand

gets. Apart from shifting the critical curves on the purely mechanical axis, the smaller the interlayer

mechanical constrast, the faster the system destabilizes until mechanical buckling is reached.

Next, we present a study on the influence of the magnetomechanical properties on the coupled

critical buckling loads. The magnetoelastic law used is that of (IV.8) for non-saturating media (i.e.,

linear in I5). Neglecting the saturation magnetization permits to explore the interplay between the

magnetic and the mechanical properties in terms of simpler magnetomechanical ratios. Such ratios
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Figure IV.7: Critical values of the applied magnetic field bc
2 versus the interface stretch ratio λ1 for fixed

shear moduli ratio Gs/G f = 0.3, film susceptibility χ f = 0.4 (non-saturating film) and a, different film

shear moduli G f = 1,10,100,1000 kPa under a given compressibility state G′ = 100G b, different Lamé

compressibility constants G′ = 10G,100G,1000G for a given film shear modulus G f = 100kPa.

regard the shear modulus Gi and the susceptibility χi between the two solid phases, i = f ,s for the

film and the substrate, respectively. The motivation here is to examine the possible control of the

bifurcation with the perspective of designing an efficient haptic device. The energy density function

contains a small dependence on an additional invariant I6(F,B) = B ·C2 ·B when the film is non-

saturating. This is needed to discard the jacobian singularities, otherwise the magnetomechanical

coupling coming solely from I5(F,B) = (F ·B) · (F ·B) is minor.

The influence of the absolute value of the film shear modulus G f is shown in Fig.IV.7 for fixed

shear moduli ratio Gs/G f = 0.3, film susceptibility χ f = 0.4 and Lamé constants G′
f ,s = 100G f ,s. The

critical magnetic field bc
2 reaches a very sharp asymptote when the polymeric film is very stiff, e.g.,

G f = 1MPa. Such high modulus leads the film to bifurcate in the presence of very high fields and

within a very small range of pre-compressions that is practically beyond the sensitivity of realistic

setups. This behavior comes from the restriction of the MRE layer magnetization, despite the

increase of the applied magnetic field. Increasing the material softness permits to trigger bifurcation

with notably lower magnetic fields and within a realistic range of pre-compressions. This is because

the softer the layers, the more compliant they are to deform under the same magnetization state. As

a result, the critical magnetic field decreases with decreasing modulus for a given pre-compression.

Overall, a way to induce bifurcation with low magnetic fields and within a wide range of applied

strains is to use materials as soft as possible, e.g., polymeric gels of 1kPa shear modulus.

The influence of the compressibility factor on the critical fields {λ1,b
c
2} is studied in Fig.IV.7b,

for fixed shear moduli ratio Gs/G f = 0.3, film shear modulus G f = 100kPa and film susceptibility

χ f = 0.4. The critical external magnetic field bc
2 is plotted versus the applied pre-compression λ1 for

three different Lamé constants G′ = 10G,100G,1000G. The compressibility of the two layers is taken

always the same. The G′/G = 1000 value is considered a fair approximation of incompressibility.

Thus, converging with G′/G = 1000 apart from a small area 0.15 < bc
2 < 0.25 T, the ratio G′/G = 100

satisfies slight compressibility conditions.
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Figure IV.8: Critical values of the applied magnetic field bc
2 versus the interface stretch ratio λ1 for fixed

shear moduli ratio Gs/G f = 0.3, Lamé compressibility constant G′
f ,s = 100G f ,s and three different film

susceptibility values χ f = 0.3,0.4,0.5 for a, film shear modulus G f = 10kPa b, fixed magnetomechanical

ratio Gs/(χ f µ0 ms
f ) = 0.0058.

Keeping constant the mechanical properties of the system at hand, i.e., shear moduli ratio

Gs/G f = 0.3, film shear modulus G f = 10kPa and Lamé compressibility constants G′
f ,s = 100G f ,s

forbothlayers,onecanexploretheeffectoffilmsusceptibilityonthecriticalbucklingfields. Fig.IV.8a

shows the critical external magnetic field bc
2 plotted versus the applied pre-compression λ1 for three

different values of the film susceptibility χ f = 0.3,0.4,0.5. As expected, the more susceptible the

film, the more unstable the system at hand for a given pre-compression. A more interesting fea-

ture of the magnetomechanical coupling is outlined by another ratio of combined parameters, i.e.,

Gs/(χ f µ0 ms
f
2). It can be easily shown that this ratio arises from the linear (in magnetoelastic

invariants I5, I6) energy of (IV.8). For reasons of dimensional consistency (Pa = T2 ·N−1A2), the

saturation magnetization ms
f has to be included into the ratio. However, since the MRE film is

selected to be non-saturating, the saturation magnetization can take the form of an arbitrary con-

stant without affecting the solution, e.g., ms
f = 1 (Am−1). Now, the system at hand, defined by the

same susceptibilities χ f = 0.3,0.4,0.5 and a purely mechanical ratio Gs/G f = 0.3, can be re-designed

upon control of the magnetomechanical ratio Gs/(χ f µ0 ms
f
2). Adjusting the shear moduli Gs and

G f to satisfy Gs/(χ f µ0 ms
f
2) = 5.8 ·10−3 for the given susceptibilities, the critical magnetic field bc

2

is plotted versus pre-compression λ1 in Fig.IV.8b. Here, one observes that the initial slopes of the

critical curves now overlap for small magnetic fields, bc
2 . 0.1 T.

IV.5 Concluding remarks

The “bloch-wave” approach considers for stability criterion the incremental positive definitess of the

tangent(JacobianD)stiffnessmatrix, i.e., thesecondderivativesof thepotentialenergywithrespect

to the independent variables. The linearization of the problem derives from the compressibility

condition, where λ2 ≃ 1/λ1 up to O(δ 2). This approach is an incremental bifurcation analysis that

does not incorporate the effects of a boundary value system. The model aims at determining the
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IV.6. APPENDIX I. F-M BIFURCATION MODEL

critical load for the onset of wrinkling and the associated wavelengths. The problem results in a

highly nonlinear eigenvalue problem, where the characteristic equation provides the critical fields.

Theamplitudesharingbetweentheeigenstates isdecidedbythefilm/airandfilm/substrate interface

conditions in compatibility with the deformation of the surface layer. The interface compatibility

conditions provide the bifurcation eigenvalue problem for the wavenumber ωh of the sinusoidal

magnetomechanical buckling. The magnetic nonlinearity is found to have an impact on the critical

fields for low pre-compressions.

The theoretical bifurcation (but not the post-bifurcation) analysis has already been presented in

Danas and Triantafyllidis (2014) and is repeated here using the equivalent continuum formulation

of Dorfmann and Ogden (2004). Nonetheless, some non-negligible differences with respect to this

idealized theoretical model have been observed in our experiments. Such differences have been

partially related to frictional boundary effects. To that end, the non-trivial boundary value problem

is considered essential to be solved, in order to examine the coupling between the magnetic and

mechanical effects in a more realistic higher-order surface patterning.

IV.6 Appendix I. F-M bifurcation model
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Figure IV.9: a, Stretch ratio λ2; b, First Piola-Kircoff stress S11 versus the applied stretch ratio λ1

for different values of the externally applied magnetic field b0
2. The monotonically increasing out-of-

plane stretch λ2 versus pre-compression λ1 is notably affected by the presence of relatively high magnetic

fields, e.g., b0
2 = 0.4T. The in-plane decreasing stress S11 versus the pre-stretch λ1 remains compressive

throughout the entire mechanical loading path for small magnetic fields b0
2 ≤ 0.1T, while progressively

changes sign along the mechanical loading path for increasing magnetic fields higher than 0.13T. The

costitutive law used in all plots: ρ i
0Φi(F,M) = Gi

2

(
FT : F−3−2lnJ

)
+ G′i

2 (J − 1)2 +
(ρ i

0)
2 µ0(1−χ i)

2Jχ i M ·M
represents a slightly compressible and very soft magnetoelastic bilayer, with material properties given in

Table IV.1.
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CHAPTER V

RESULTS I: MRE FILM/PASSIVE SUBSTRATE

Summary of the Chapter. In this chapter, we initially present a stiffness sensitivity study on the

primary and secondary bifurcation modes of a MRE film/passive substrate block under a) a purely

mechanical, b) a purely magnetic and c) a combined magnetomechanical loading. Subsequently, we

properly probe the experimental findings of Chapter II with full-field finite element simulations at large

strains and magnetic fields. The influence of friction on the experimental setting needs to be taken into

account. Thus, it is investigated by applying variable shear forces at the lateral edges of the virtual

specimen. The full-field numerical analysis reveals the complexity of the coupled fields within the film in

the post-bifurcation and thus, justifies the need of numerical treatment of the problem at hand. In the

last part, we investigate the influence of the film slenderness on the critical loads and modes. The results

correspond to two chosen film thicknesses: H f = 0.2 and 0.8mm in a 40× 40 (mm2) bilayer block. The

geometry with the thicker film is used to fit the experimental data. The geometry with the thinner film

is used for connection with the theoretical problem in Chapter IV considering an infinitesimally thick

MRE layer.
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An isotropic MRE film layer on a soft and passive substrate may produce multimodal wrinkles

(or localizations) as the primary wrinkling amplitudes grow large, Figs.II.18a-p,V.10b-d. While the

bifurcation of wavelengths at the first buckling point could be captured with the theoretical analysis

described in Chapter IV, we further analyze highly nonlinear large-amplitude wrinkles evolving into

localized patterns via a finite element (FE) method. Bifurcation is a nonlinear deformation process

and hence, the prediction of the post-buckling wavelength by first-order perturbation analysis have

limited accuracy beyond the primary bifurcation point. The post-bifurcation regime is defined by

large amplitudes that often lead to folding (Sun et al., 2012). This or other (e.g., creases, ridges,

crinkles) higher-order patterns manifest finite strains around localizations. As a result, high-order

perturbation analysis are expected to improve the accuracy of the evaluation of the post-bifurcation

wavelengths. Especially since the substrate becomes highly nonlinear under finite deformations

and induces elastic anisotropy under incremental deformation. To that end, the present chap-

ter numerically investigates the evolution of the post-buckling large-amplitude wrinkling towards

localizations.

MRE sample

Electromagnet
a b

V

s N

Figure V.1: Standard experimental setups for the study of a, magnetorheological elastomers and b,

electroactive polymers.

In the post-buckling regime, the magnetic Maxwell stresses and fields become highly heteroge-

neous inside and outside the film, since there are magnetic fields in the surrounding air (see e.g.,

Keip and Rambausek, 2017, Lefèvre et al., 2017). The reason lies in the applied magnetic boundary

conditions, which are set (relatively) far from the specimen in magnetoelasticity and are of Eulerian

form (Danas, 2017). Thus, a substantial difference exists between magnetoelastic and electroelastic

wrinkling, see Fig.V.1. In the context of electroelasticity, the electrodes are attached on the sur-

faces of the specimen and the (Maxwell) electrically induced stress fields follow the deformation of

the specimen even in the post-bifurcation regime. In that case, the (Maxwell) stresses outside the

specimen are zero, while the applied electric field is of Lagrangian nature, following the material

deformation.

In addition to this particularity, the present experiment is determined by strong frictional effects

acting on the lateral faces of the specimen. In Figs.II.18j,m corresponding to large pre-compressions

(λ0 ≤ 0.8), one can easily observe a non-negligible curvature at the lateral faces of the film/substrate

block incontactwith thecompression setup. This curvatureat thecorners is adirect result of friction

(see Section V.3) affecting the pre- and post-bifurcation response. Thus, it needs to be taken into
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V.1. PRIMARY AND SECONDARY BIFURCATIONS

account in the present analysis. To that end, we resort to a full numerical analysis of the boundary

value problem at hand, so as to properly fit the experimental findings.

For such reasons, we have employed a full numerical analysis, which is proven adequate to cap-

ture even quantitatively the bifurcation amplitudes. The model allows for the full post-bifurcation

response, revealing very complex strain and magnetization fields in the wrinkled state. By obser-

vation of Figs.V.12c-f, it is difficult to think of a simple analytical treatment of the edge effects and

the magnetic domains of the film.

V.1 Primary and secondary bifurcations

Wrinkling modes are determined within a specific range of mechanical interlayer contrasts (e.g.,

Gs/G f ) for a two-layered 2D system comprised of a neo-Hookean film bonded to a neo-Hookean sub-

strate, with the entire structure undergoing compression and/or magnetic effects. As theoretically

shown in Section IV.4 (Fig.IV.6,IV.7 and IV.8), this range is determined by the absolute values of

the material properties. However, in real structures, it is also conjugated with geometric features/

constrains. Therefore, the effect of the substrate-to-film shear moduli ratio Gs/G f on the critical re-

sponse is numerically studied in Sections V.1.1, V.1.2, V.1.3 on a virtual finite specimen. In the first

section (λ0 6= 1, b0
2 = 0), we compute the stretch ratio λ c

0 needed to buckle the structure as a function

of the shear moduli ratio Gs/G f . The effect of the mechanical compression is further explored by

accounting for the critical wavenumber (ω H)c as a function of the relative moduli contrast. In the

second section (λ0 = 1, b0
2 6= 0), we compute the critical magnetic field bc

2 as a function of Gs/G f

under zero applied strain. In the third section (λ0 6= 1, b0
2 6= 0), we present the effect of combining

the independent loadings on the critical response and post-buckling regime.

Withinafinite element (FE) framework, theplane-strainnumerical simulationscanalsouncover

advanced post-bifurcation modes. On the contrary, the previous theoretical analysis is restrained

in the stability of the principal solution for a preferable (i.e., wrinkling) mode (see Section IV.3).

The secondary modes include period-doubling, creasing and the newly identified “crinkling” mode,

presented in Sections V.2, V.3, V.5 and VI.1. The results correspond to two chosen film thicknesses:

H f = 0.2 and 0.8mm in a 40×40 (mm2) bilayer block. The geometry of thicker film is used to fit the

experimental data. The thinner film geometry is used for connection with the theoretical problem in

Section IV.4 (Fig.IV.6a) considering an infinitesimally thick MRElayer. In the present calculations,

the magnetic field b0
2 is always applied in the direction of the film thickness, while the stretch λ0 is

applied along the interface direction.

V.1.1 Purely mechanical loading

Let λ0(≡ λ1)be the stretch ratio. When λ0 is relatively small, the film/substrate bilayer is uniformly

compressed and the surface is flat. Upon further increase, the stretch ratio λ0 exceeds a critical value

λ c
0 andthefilmbuckleswith the substratedeformingcoherently, forming surfacewrinkles. Typically
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Figure V.2: Stability and (post-)bifurcation of a two-layer 2D system comprised of a neo-Hookean film

bonded to a finite neo-Hookean substrate with the entire bilayer undergoing compression, denoted by

the stretch ratio λ0. The bifurcation amplitude A (in mm) is plotted versus the applied stretch ratio.

The amplitude is measured as the incremental average distance of the two central peaks from the central

valley. As the compressive strain ε11(= λ0 −1) increases, the flat film surface becomes unstable forming

surface wrinkles at λ c1
0 = 0.763, which subsequently evolve into a double-period pair at λ c2

0 = 0.7. The

secondary mode gets unloaded at even higher strains, λ0 < 0.68. The surface modes are presented for

both numerical simulations and experimental findings, apart from wrinkling for the latter. Wrinkling

modes cannot be experimentally evidenced due to high frictional effects acting on the lateral faces of

the specimen (modeled in Section V.3). Following the experimental process, the numerical system is

described as a 40×40 (mm2) bilayer block, with film thickness H f = 0.8 mm, shear modulus G f = 10 kPa,

mechanical interlayer contrast Gs/G f = 0.3 and no user-defined geometrical nonlinearities. Both layers

are slightly compressible, a condition satisfied via a large Lamé constant G′
i = 100Gi, i = f ,s, for the film

and the substrate, respectively.

when λ0 < λ c
0 , a linear theory (in Abaqus e.g.) is out of use and one must consider the geometrically

nonlinear behavior of the wrinkles. This opens up various generalizations to include the effects of

anisotropy coming from the substrate fabrication (not studied in the present work), different types

of nonlinear behaviors1 etc. The wrinkles result from the compromise between the bending and the

stretching film energy, subjected to the geometric constraints imposed to the system. As a result,

the critical response depends on the mechanical properties of the film and the substrate (e.g., shear

moduli, compressibility factors), the boundary conditions, as well as the geometrical features of the

system (e.g., substrate-to-film thickness ratio, Hs/H f , for mimicking an infinitely deep substrate).

The present 2D system is described as a 40× 40 (mm2) bilayer block of mechanical interlayer

contrast Gs/G f . The dimensions of the block are those of the experimental specimen. The system

considers a rubber-like G f = 1 MPa film, with thickness H f = 0.8mm and no user-defined geometri-

cal nonlinearities. Following the experimental process, the isotropic free energy complies with a film

polymerized in the absence of a magnetic field. Both layers are taken to be nearly incompressible,

i.e., second Lamé constant G′
i = 100Gi, i = f (for the film) and s (for the substrate). The interface is

assumed to be perfect, i.e., absence of interfacial delamination in agreement with the experimental

1For instance, folding of the wrinkles requires multiple symmetry-breaking nonlinear material characteristics
of both the substrate and the surface layer (asymmetric bending conditions). A neo-Hookean substrate is not able
to fold the wrinkles regardless of the elastic surface-layer nonlinearity. In that case, an Ogden substrate combined
with asymmetric bending stiffness film should be selected to reproduce folds (Sun et al., 2012).
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V.1. PRIMARY AND SECONDARY BIFURCATIONS

findings. The displacements and the tractions are continuous across the interface, satisfied by use

of nodal elements. A constant mesh is designed in Abaqus and consists of 10865 elements for the air,

6084 elements for the substrate and 1325 elements for the film (8 elements across its thickness). The

compressive stretch ratio λ0 is linearly decreased from 1 to 0.5 in 1000 time increments. For numeri-

cal reasons, the magnetic field b0
2 is assigned with a tiny positive value at 10−6T. The primary critical

load corresponds to the first non-positive eigenvalue of the stiffness matrix. More particularly, the

smallest eigenvalue of the system incrementally decreases until it reaches a first minimum close to

zero. That point is defined as the primary instability point. Subsequently, the smallest eigenvalue

increases but then decreases again towards a second minimum. This is then defined as a secondary

instability point. Supplementary case studies have been carried out on the effect of the penalty func-

tion method applied on the air region (see Section III.4). A converged (post-)bifurcation response

was obtained for penalty value ε =1e-10. An alternative to the penalty method would be to assign

the air a low shear modulus.

As illustrated in Fig.V.2, a FE (post-)bifurcation analysis in the absence of magnetic field,

i.e., λ0 6= 1, b0
2 = 0, provides the critical mechanical stretch λ c

0 = 0.76 at the onset of wrinkling

and the associated wavenumber ω = 4 (macroscopic length scale). Upon further increase of the

applied strain (ε11 = λ0 −1), the plane-strain simulations reveal a period-doubling configuration at

λ c2
0 = 0.7. That, inturn,becomesunstableandgetsunloadedat largercompressivevalues, λ0 < 0.68.

This response corresponds to a mechanical interlayer contrast Gs/G f = 0.3, in agreement with the

characterization of our material layers 2. Although our experimental materials are softer (silicones)

than the rubber-like ones used in the simulations, this is of no importance for the purely mechanical

buckling under incompressibility, where only the relative ratio Gs/G f (and not the absolute values)

drives the response.3 The double-period pair bifurcates from wrinkling by varying the amplitude of

the middle valley, leading to a period twice that of the wrinkles aside. However, the experimental

observations are biased by strong frictional boundary effects suppressing wrinkling, see Fig.V.3.

The experimental result bypasses the point of primary wrinkling without undergoing bifurcation,

see Fig.V.3. That suggests that an appropriate choice of boundary conditions could tune the surface

patterns by suppressing or bypassing modes and driving the solution directly to later bifurcations.

In Fig.V.3, we probe the experimental behavior upon numerical prescription of shear forces

at the lateral edges of the system, f2 = 75µN. In the presence of friction, wrinkling tends to be

suppressed. In that case, it is not easy to capture secondary modes without the prescription of

numerical imperfections. However, the numerics in the absence of user-defined imperfections and

the experiments are in a quite good agreement.

To give a first indication whether the experimental geometry corresponds to the case of a deep

substrate (one that theoretically can be considered as infinite), we include in Fig.V.4 the purely me-

chanical bifurcation analysis for an infinite system of Danas and Triantafyllidis (2014) and compare

2The mechanical properties of the film are found by direct fitting of the magnetomechanical experiment, as
described in detail in Section V.2.

3When the loading is magnetomechanically coupled, buckling does not depend only on the ratio Gs/G f , but
also on the absolute Gs and G f shear moduli values, see Fig.IV.7a.
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Figure V.3: Numerical versus experimental morphological response of the film/substrate system under

uniaxial mechanical compression λ0 and friction acting on the lateral faces of the system. Friction tends

to suppress wrinkling and to lead directly to localizations. The simulations are in the absence of a user-

defined imperfection and thus, it is not easy to capture the secondary mode. Interlayer stiffness contrast,

Gs/G f = 0.2. Value of friction in the numerical simulations, f2 = 75µN.

it with the present finite (numerical) geometry. The full range of the film/substrate moduli ratio

Gs/G f is considered from the limit of a traction-free homogeneous substrate (Hutchinson, 2013)

(Gs/G f → 1) to very stiff films on compliant substrates (Gs/G f → 0). Fig.V.4a presents the criti-

cal value of the stretch ratio λ c
0 versus the substrate-to-film shear ratio Gs/G f . The numerical and

theoreticallypredictedbyDanasandTriantafyllidis (2014)buckling loadsλ c
0 are inquitegoodagree-

ment. We note that the theoretical study is carried out for infinite boundary conditions, whereas the

numerical study is on a finite structure mimicking the experimental one. The critical buckling strain

εc
11(= λ c

0 −1) increases with increasing interlayer contrast Gs/G f . That implies that the stiffer the

substrate, the more elastic energy needs to be stored in order for the system to buckle. In the limit of

Gs/G f → 0, the critical load λ c
0 (b

c
2 = 0)→ 1 (as well as the corresponding wavenumber (ωH)c → 0).

That is the case of zero compressive axial load of an infinitely long and unsupported Euler beam

(Danas and Triantafyllidis, 2014). A unique wavelength wrinkling is observed for Gs/G f ∈ (0,0.6],

validating our theoretical bifurcation model in Chapter IV.

When Gs/G f ∈ (0.6,1), the post-bifurcated configuration becomes non-periodic, indicating

possible initiation of creases in accordance with literature (e.g., see Cao and Hutchinson, 2012a,

Hutchinson, 2013, Wang and Zhao, 2013b). In this latter case, the instability is generated before the

so-called “surface bifurcation” of Biot (1965) (Gs/G f = 1). In finite strains, geometry and material

properties are coupled. The surface bifurcation is attributed to the stiff substrate (Gs/G f > 0.6),

in combination with the divergence from Euler buckling geometry4 due to high strains (εc
11 ≥ 35%)

that set H f comparable to the length l. The maximum value of critical stretch is λ c
0 = 0.54 (or critical

strain εc = 0.46) for Gs/G f = 1, in consistence with Cao and Hutchinson (2012a), Wang and Zhao

(2013b). Biot’s result, εw = 0.456, corresponds to surface wrinkling of a homogeneous (Gs/G f = 1)

neo-Hookean half space5 under plane-strain compression. Since there is no length scale associated

4i.e., Euler beam requires: H f ≫ l, where H f the thickness and l the length of the film
5half space: −∞ < X1 < ∞ (in-plane direction) and −∞ < X2 < 0 (thickness direction)
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Figure V.4: a, Critical mechanical stretch; b, normalized wavenumber (left axis) for an infinite (pink

curve) and a finite film/substrate system (pink symbols) and number of finite wrinkles (right axis) for the

structure (black symbols) versus the substrate-to-film shear moduli ratio Gs/G f . The infinite system is

described as an infinitely long two-dimensional bilayer with the film bonded on an infinitely deep substrate.

The finite system is described as a 40× 40 (mm2) bilayer block, with film thickness H f = 0.8 mm and

none user-defined geometrical nonlinearity. The shear modulus of the film is fixed at (G f =)1 MPa. Both

layers are slightly compressible, a condition satisfied via a large Lamé constant G′
i = 100Gi, i = f ,s, for the

film and the substrate respectively. For Gs/G f = 0.3, the number of wrinkles is ω = 4. That is the value

also found in the magnetomechanical experiment while approaching the mechanical bifurcation point at

λ c
0 ≈ 0.76 (see Figs.II.16, II.17, II.18a-p).

with the homogeneous half-space, the bifurcation mode in this limit can have any wavelength (Cao

and Hutchinson, 2012a). However, it has been shown that surface wrinkling of a homogeneous

half-space is highly unstable and imperfection-sensitive, such that imperfections will trigger surface

creases before wrinkling is attained (Cao and Hutchinson, 2012a).

In the present study, a reasonable question is how the film bifurcates to advanced patterns

(creases) in the absence of user-defined geometrical imperfections. First, it should be stated that

it is the size (i.e., magnitude of order) and not the type (e.g., linear, sinusoidal, Gaussian bump

function etc) of the imperfection that affects the critical modes. In our case, the tiny magnetic field

b0
2 = 10−6 T (applied for numerical reasons) acts as a slight imperfection in the corners of the film,

where the concentration of magnetic quantities has been observed (see Fig.V.7). As a result, the

non-uniformity of the magnetic field due to the presence of sharp changes in geometry, as well as

the presence of the (unstructured) air mesh act as sufficient imperfections to trigger mechanical

buckling.

InFig.V.4b, thewavenumbercorrespondingtothecriticalbuckling load isplottedasan integerω

and as a normalized value (ωH)c versus the shear moduli ratio Gs/G f . The normalized wavenumber

of the boundary value system reads (ωH)c = 2π/L, with ω the number of wrinkles, H the thickness

of the film and L the wrinkling wavelength at the onset of buckling. The numerical values are in

accordance with the theoretical solution of Danas and Triantafyllidis (2014), giving direct access to

the number of wrinkles for a given film thickness. This is an indication that the present geometry
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Figure V.5: Morphological response of the film under compression in the parameter space of the stretch

ratio λ0, for three different values of the substrate-to-film shear modudi ratio: Gs/G f = 0.2,0.3,0.5.

Depending on the mechanical properties of the phases, the equilibrium points vary. In the post-bifurcation

regime, the wrinkles evolve into localized modes versus the moduli contrast Gs/G f . Beyond the secondary

bifurcation, the depth of the localizations grows upon further compression. The secondary surface modes

are presented for both numerical and experimental findings. The numerical two-dimensional system is

described as a 40×40 (mm2) bilayer block, with film thickness H f = 0.8 mm, shear modulus G f = 1 MPa

and none geometrical nonlinearity. Both layers are slightly compressible, a condition satisfied via a large

Lamé constant G′
i = 100Gi, i = f ,s, for the film and the substrate respectively. The incremental ratio of

the film thickness-to-length H/l increases with increasing shear moduli contrast Gs/G f . As a result, the

amplitude of the primary wrinkling mode decreases with increasing Gs/G f ratio.

is indeed representative of a film/substrate system. The maximum number of wrinkles in the finite

stucture is four within the range 0.3 ≤ Gs/G f ≤ 0.4. This is also in agreement with our experimental

findings, shown in the magnetomechanical morphological map of Figs.II.18a-p. The critical stretch

ratio corresponding to this range is 0.76 ≥ λ c
1 ≥ 0.71.

The critical wavenumber (ωH)c initially shows a sharp increase as it increases from zero, while

it becomes less sensitive to the interlayer shear moduli ratio for Gs/G f > 0.2. Contrary to small-to-

moderate moduli ratios, the surface instabilities do not display wrinkling but creasing. Although

the bifurcation theory on the infinite system of Danas and Triantafyllidis (2014) considers wrinkling

for Gs/G f > 0.6, the boundary value system would buckle under a creasing mode in this regime of

materialproperties. Arepresentativemorphologyof thenon-periodicmodes6 is shown inFig.V.4a,b

(red inset figures). Fig.V.4 can be of use for designing different surface patterns on film/substrate

systems made of different materials, under mechanical compression.

Next, the morphological instabilities and the post-instability evolution of the system are consid-

ered in Fig.V.5. The system exhibits a rich behavior and thus, a map of three indicative evolution

paths is developed in the parameter space of the mechanical loading λ0 and the relative stiffness

6Such modes are a direct consequence of the finite size boundary-value problem we analyze.
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properties of the layers Gs/G f . The system undergoes secondary bifurcations, following patterns

that are sensitive to the interlayer stiffness contrast. We classify the configuration space for three

substrate/film shear ratios: Gs/G f = 0.2,0.3,0.5. The advanced bifurcation modes are triggered in

the absence of user-defined imperfections and thus, they approximately occur as secondary instabil-

ities on a perfect system. For each material contrast, we show the shape configuration in the primary

post-bifurcated regime (pink), immediately after the secondary bifurcation (yellow), as well as deep

in the secondary post-bifurcated regime (purple and grey). It is recalled that the primary bifurca-

tion corresponds to the first non-positive eigenvalue of the stiffness matrix. More particularly, the

smallest eigenvalue of the system incrementally decreases until it reaches a first minimum close to

zero. That point is defined as the primary instability point. Subsequently, the smallest eigenvalue

increases but then decreases again towards a second minimum, which is then defined as a secondary

instability point.

Once the compressive strain reaches the first critical instability point, the layer forms wrinkles

underasinusoidalpattern (Gs/G f < 0.6), Figs.V.5a,e,i (pinkregime). Theamplitudeof thewrinkles

under a given stretch λ0 decreases with increasing stiffness contrast Gs/G f . For Gs/G f = 0.2, the

maximum amplitude is at 1.15mm (well-touchable pattern), while for Gs/G f = 0.5, it gets less

than the half at 0.6mm. Further increase of the loading triggers symmetry breaking into non-

symmetric modes of growing and decaying valleys with, respectively, progressively increasing and

decreasing amplitudes, Figs.V.5b,f,j (yellow regime). As loading increases beyond the secondary

instability point, advanced localizations emerge, Figs.V.5c,d, g,h,k,l (purple and grey regime).

The secondary critical modes are sensitive to Gs/G f contrast: a ratio of Gs/G f = 0.2 favors a

double localization of different amplitudes (Figs.V.5b), a ratio of Gs/G f = 0.3 favors a double-

period pair (Figs.V.5f), a ratio of Gs/G f = 0.5 favors a crease (Figs.V.5j). The depth (amplitude) of

localizations grows upon the increase of compression, while the decaying valleys get unloaded, i.e.,

they morphologically flatten-out followed by stress decrease. As the contour plots in Figs.V.5c,g,k

illustrate, the localization of the amplitude is respectively followed by stress concentration. The

local strains around the creases are large (∼ 40%) (see also Zhao and Suo, 2009) and thus, only finite

element methods under finite strains are able to capture these modes. A linear (small deformation)

stability analysis is not adequate to analyze the critical strains of creasing instability.

Experimental evidence of the well-formed secondary modes accompany the numerical simula-

tions at Figs.V.5c,d,g,h,k,l (purple and grey regime). Although it is difficult to measure the exact

shear moduli of our experimental materials (see discussion in Section II.5.3), changing the quan-

tity of the hardener in the polymeric mixture creates different material behaviors. More precisely,

the hardener affects the number of cross-links in the polymeric chains and as a result, the macro-

scopic stiffness of the material. In that way, for fixed film material properties, two substrates of

0.85:1 and 1.3:1 hardener:polymer mass ratios are fabricated, corresponding to mechanical con-

trasts Gs/G f < 0.3 and Gs/G f > 0.4, respectively. As seen in Fig.V.5, the surface patterns under

experimental compressions, λ0 < 0.73, are in agreement with the secondary numerical modes. The

critical loads are also sensitive to the material contrast; the greater the ratio Gs/G f , the greater the

111



V.1. PRIMARY AND SECONDARY BIFURCATIONS

Substrate/film shear moduli ratio, Gs/Gf

N
o

rm
a

liz
e

d
 c

ri
ti
c
a

l 
m

a
g

n
e
ti
c
 fi

e
ld

, 
b

2
c
/μ

0
m

fs

Figure V.6: Numerical study on the critical value of the dimensionless applied magnetic field bc
2/µ0 ms

f

versus the substrate/film shear moduli ratio Gs/G f , in the absence of stretching λ0 = 1. The buckling and

post-buckling configurations are also shown for different mechanical interlayer contrast Gs/G f regimes.

compressive strain needed to trigger a secondary bifurcation, Figs.V.5b,f,j.

V.1.2 Purely magnetic loading

Inthissection,weexaminethecriticalmagneticfieldbc
2 neededtotriggertheinstabilityintheabsence

of a pre-stretch (λ0 = 1). The magnetic field b0
2 is applied perpendicular to the film. The mechanism

of the magnetic buckling can be intuitively understood by considering the interaction of magnetized

particles dispersed in a soft matrix with the external magnetic field. The applied magnetic field first

magnetizes the particles, which in turn interact one with another, trying to be realigned into the

minimal magnetic energy configuration. The compliance of the soft medium allows the magnetized

particles to induce small deformations, producing internal stresses. If the matrix is soft enough,

the external magnetic field can induce significant changes in the geometrical shape, as well as in the

mechanical properties of the composite (e.g., see Ginder et al., 2000, Kankanala and Triantafyllidis,

2004). At the macroscopic level, the magnetized film exhibits the compass effect (it rotates to align

with the field direction). Instabilities arise from the compromise between competitive effects. The

presence of the substrate penalizes the elastic bending energy of the film while trying to align with

the external field. The competition between the magnetic and the elastic energy leads to buckling

at some critical magnetic field value.

The bilayer specimen is that used in the previous purely mechanical loading case. It consists

of a 40× 40 (mm2) block of H f = 0.8mm film thickness. The constant mesh does not include any

geometrical imperfection, apart from the unstructured air regime and the corners of the block.

Following convergence studies (not shown here), the air penalty value is set at ε =1e-10. The
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isotropic magnetoelastic film is modeled as a rubber, with shear modulus G f =1MPa. The magnetic

properties of the film are found from experimental measurements and theoretical estimates (see

Section II.6), presented in Table IV.1 and plugged into the Langevin law (see Section III.2). The

model accounts for the susceptibility of the film χ f = 0.4 and the saturation magnetization µ0 ms
f =

0.5T. The vacuum permeability µ0 is set equal to 4π 10−1NA−1 for unit compatibility with the shear

moduli given in MPa. The two neo-Hookean layers are set nearly incompressible via a large Lamé

constant G′
i = 100Gi, i = f ,s for the film and the substrate, respectively. Zero susceptibility and

saturation magnetization are assigned to the substrate and the air. For pre-stretch λ0 = 1, the

external magnetic field is linearly applied at the boundaries of the free space from 0 to 3T in 1000

steps. More precisely, the magnetic loading is applied in form of displacement via the magnetic

vector potential a =−B0
2 X1, with B0

2 = λ0 b0
2 the magnetic field and X1 the coordinate component in

the reference configuration, respectively.

Fig.V.6 shows the critical value of the normalized applied magnetic field bc
2/µ0 ms

f as a function

of the substrate-to-film shear moduli ratio Gs/G f . At the top of the graph, the (post-)buckling

configurations are also shown. The modes evolve in a different manner than those under a purely

mechanical loading. Here, a given shape configuration defines a range of Gs/G f ratios and not just a

single value. The critical magnetic field monotonically increases as a function of Gs/G f , attaining an

asymptote due to saturation of magnetization at Gs/G f = 0.035. To give a possible explanation for

this phenomenon: when the substrate is relatively stiff compared to the film, the magnetic energy

(the work done by magnetic body forces if it helps to visualize it as such) is highly penalized under a

given magnetization saturation state, despite the increase of the applied magnetic field. This result

is also found by Danas and Triantafyllidis (2014), while working with an equivalent continuum

formulation. The Gs/G f = 0.035 value (with G f = 1 MPa) denotes an upper limit for the substrate

stiffness, beyond which the onset of instability is prevented. In the view of applications for surface

patterning triggered by magnetic fields, softer materials would be recommended so as to widen the

range of Gs/G f . In that way, the layers would be more compliant to deform under the same state

of magnetization (see also the effect of material properties on the critical response, obtained by the

theoretical bifurcation analysis in Fig.IV.7a and Fig.IV.8a).

A classical bending mode is obtained for 0.003 ≤ Gs/G f < 0.008, while a long-wavelength con-

figuration describes the initial post-bifurcated regime for 0.008 ≤ Gs/G f ≤ 0.018. A primary well-

defined wrinkling is then attributed to 0.018 < Gs/G f ≤ 0.035. Note that the operational range

0 < Gs/G f ≤ 0.035 for the onset of wrinkling under a purely magnetic loading is essentially lower

than that of the purely mechanical loading, 0 < Gs/G f ≤ 0.6. To expand the validity of this range

and to increase the wrinkling wavenumber, a combined magnetomechanical loading is proposed in

Section V.1.3.

The distribution of the magnetic field throughout the film and the surrounding space in the

pre- and post-bifurcated regime is considered in Fig.V.7a and V.7b, respectively. The magnetic

flux b2(= b||e2) is plotted along a horizontal line located in the middle of the film (X2 =+19.6 mm)

for applied magnetic field b0
2 = 0.28T and b0

2 = 0.5T, respectively. The magnitude of the field is
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Figure V.7: Variation of the magnetic flux b2(= b||e2) along a horizontal line throughout the film and the

surrounding air (X2 =+19.6 mm) for applied magnetic field a, b0
2 = 0.28T corresponding to pre-bifurcation

and b, b0
2 = 0.5T corresponding to post-bifurcation.

symmetric about the direction e2. The magnetic flux sharply increases when it approaches the

boundaries (X1 →±20 mm), where it reaches its maximum value for both pre- and post-bifurcation

configurations. Inthepre-bifurcatedregime(Fig.V.7a), thefluxisuniformwithinthefilmapartfrom

the boundary. That uncovers the effect of the corners on the concentration of magnetic quantities

(e.g., magnetization is affected in the same way, see Fig.V.12f). In the post-bifurcation regime

(Fig.V.7b), the flux also varies within the film as the system wrinkles. To conclude, the existence

of the corners alters the uniformity of the magnetic flux b2, since the sharp changes in geometry

constitute concentration areas. This acts as an unavoidable imperfection in the magnetoelastic

system (plus the unstructured mesh of the air) and thus, is sufficient to trigger the bifurcation in the

absence of an additional user-defined geometrical imperfection.

V.1.3 Coupled magnetomechanical loading

Instabilities onMREfilm/substratebilayersare triggered forawider rangeof systemsbyacombined

magnetomechanical loading, rather than by the independent loads (e.g., see Danas and Triantafyl-

lidis, 2014). A prior step to the experimental verification of this concept is a numerical study that

aids to design our materials and loading setups. Here, the effect of the coupled loading versus the

independent loadings is studied in the parameter space of the mechanical properties Gs/G f of the

bilayer system, for a fixed film modulus G f = 1 MPa. It should be noted that the magnetomechan-

ical bifurcation is a rich problem that does not depend only on the applied magnetic field b0
2, the

applied stretch ratio λ0 and the substrate-to-film shear modulus Gs/G f . Other parameters affecting

the critical response have been discussed in Section IV.4. In this section, the loading case consists

of applying a pre-stretch λ0 close to (but not at) the mechanical instability and then increasing

the magnetic field b0
2 beyond the instability point to obtain surface wrinkles. Illustrating that this

process is feasible, one comes a step closer to verify the initial concept of Danas and Triantafyllidis
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Substrate/film shear moduli ratio, Gs/Gf

Figure V.8: Numerical study on the critical value of the normalized wavenumber (ωH)c and the number

of wrinkles ω formed on the finite film/substrate sytem versus the substrate-to-film shear ratio Gs/G f for

the purely mechanical (b0
2 = 0) and the magnetomechanical (b0

2||e2) loading case. The continuous curve

corresponds to the results of Danas and Triantafyllidis (2014) on an infinite bilayer, as described in Section

IV.2. The discrete values correspond to the numerical boundary value problem, also described in Section

III. The loading case consists of applying a pre-stretch λ0 close to (but not at) the mechanical instability

and then increasing the magnetic field b0
2 beyond the instability point to obtain surface patterns. For

Gs/G f = 0.3, we show the experimental pattern that is magnetically-triggered at bc
2 = 0.2T. The applied

pre-stretch is λ0 = 0.78, which is not far from the mechanical instability point λ c
0 ≈ 0.76. The experimental

wavenumber, ω = 4, is in agreement with the theoretical and numerical results.

(2014) applied on a non-trivial boundary value system and to get a better insight into the design of

the experiment system.

Thephenomenologicalapproachusedneedstoaccount fornonlineareffectsassociatedwithfinite

strainsandmagnetic saturationof theparticlesat sufficientlyhighmagneticfields. For thedefinition

of the free energy, it suffices in the present study (see discussion in Section II.5.2 and III.2) to propose

a simple combination of a Neo-Hookean elastic energy and a Langevin (without hysteresis) magnetic

energy. The input values of the problem are set as follows: the magnetic properties of the film are

found from experimental measurements and theoretical estimates (see Section II.6), presented in

Table IV.1 and plugged into the Langevin law. The model accounts for the susceptibility of the film

χ f = 0.4 and the saturation magnetization µ0 ms
f = 0.5T. The vacuum permeability µ0 is set equal

to 4π 10−1NA−1 for unit compatibility with the shear moduli expressed in MPa. The hyperelastic

layers are set nearly incompressible via a large Lamé constant G′
i = 100Gi, i = f ,s for the film and

the substrate, respectively. Zero susceptibility and saturation magnetization are assigned to the

substrate and the air. The bilayer specimen is that used in the previous purely mechanical and

purely magnetic loading cases. It consists of a 40× 40 (mm2) block of H f = 0.8mm film thickness.
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The constant mesh does not include any geometrical imperfection, apart from the unstructured air

region and the corners of the block (see Fig.V.7). Following convergence studies, the air penalty is

set at ε =1e-10. For a given Gs/G f value, the applied pre-stretch λ0 is linearly decreased from 1 close

to the critical pre-stretch λ c
0 +0.1 over 100 time increments. Then, the applied magnetic field b0

2 is

linearly increased from 0 to 3T over 1900 increments.

The most direct comparison between the magnetomechanical and the independent loadings in

the parameter space of the mechanical contrast Gs/G f , can be done in terms of the wavenumber at

the onset of wrinkling. In Fig.V.8, we plot the critical value of the normalized wavenumber (ωH)c

and the number of wrinkles ω formed on the finite film/substrate system under a purely mechanical

(b0
2 = 0)andamagnetomechanical (b0

2||e2) loadingasa functionof thesubstrate-to-filmshearmoduli

ratio Gs/G f . The normalized wavenumber (ωH)c is plotted for the infinite problem of Danas and

Triantafyllidis (2014) bifurcation analysis, as well as the numerical finite structure. A very good

agreement is found between the theoretical analysis and the numerical simulations, carried-out in

two different but equivalent variational frameworks.

A first feature observed in Fig.V.8 is that the number of the wrinkles in the block increases by one

uponapplicationofthecoupled loading, forGs/G f = 0.03, 0.2and0.6. Incomparisonwiththepurely

magnetic loading case, the long wavelength configurations give rise to finite-wavelength wrinkling.

Moreover, the range of the film/substrate stiffness contrast is that of the purely mechanical loading

case, i.e., Gs/G f ∈ (0,0.6]. In virtue of the magnetomechanical loading coupling, the Gs/G f range is

now expanded to impressively higher values that can be experimentally applied, unlike the purely

magnetic loading case (where 0 < Gs/G f ≤ 0.035). The bifurcation is found to be triggered by

magnetic fields decreased by 200% with respect to the purely magnetic loading case (not shown

here). We note that the critical magnetic field follows an increasing trend with increasing Gs/G f

ratio.

For Gs/G f = 0.3, the relevant response of the experimental MRE film/substrate specimen is

presented. Surface wrinkling is magnetically-triggered at bc
2 = 0.2T, under a pre-compression λ0 =

0.78 that is close to the mechanical instability point λ c
0 ≈ 0.76. The experimental wavenumber,

ω = 4, is in agreement with the theoretical and numerical results. To conclude, Fig.V.8 can be

used to design the response of MRE film/substrate blocks for different mechanical ratios (fixed

G f = 1MPa), under given magnetic properties for the film (i.e., susceptibility χ f = 0.4, saturation

magnetization µ0 ms
f = 0.5T). These magnetic properties correspond to the film we experimentally

fabricate. As a result, a next step is to fit the experimental magnetomechanical findings on soft

silicones with moderate Gs/G f ≈ 0.3, performed within a wide range of applied pre-compressions.

V.2 Experiments versus numerical simulations

A combined method of experiments and FE implementations is employed to evaluate the stiffness of

the material-layers by numerically fitting the amplitudes of the experimental surface patterns. This

is attributed to the difficulties in characterization of composite films under compression, see Section
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II.5.3. The experimental (post-)bifurcation amplitudes are successfully probed with the full-field

finite element calculations. For clarity, we show in Fig.V.9a such comparisons for three values of pre-

compression. We note that the amplitude curves corresponding to a pre-compression λ0 = 0.8,0.85

have been used to identify the shear moduli of the MRE film (G f = 10KPa) and the substrate

(Gs = 3kPa), thus leading to a substrate-to-film shear moduli ratio Gs/G f = 0.3. Considering

an almost incompressible response and small magnetomechanical coupling, the total number of

material parameters used in the modeling is four. An additional parameter related to the applied

shear force is used to model the lateral friction between the specimen and the compression device

(see Section V.3). These assumptions have been found sufficient to extract all (twelve) experimental

curves. Nevertheless, this does not necessarily mean that the obtained model is unique, due to the

strong nonlinearities. The strategy to fit the model with the minimum set of experiments will be

summarized as following:

1) The magnetic susceptibility of the MRE material is obtained by fabricating and measuring

the susceptibility χ f of an independent cylindrical sample.

2) For the magnetic saturation ms
f of the film, previous experimental and theoretical results state

that the magnetic saturation of a two-phase composite, with one phase being non-magnetic, is only a

function of the volume fraction and the magnetic saturation of the magnetic phase itself (see Danas,

2017, Danas et al., 2012).

3) For the shear moduli of the substrate and the film, the curing processes of the 40mm edge cube

and the thin-section dogbone sample lead to different polymerization times/processes, see Section

II.5.3. In addition, the film/substrate system is pre-compressed in a fixed setup under a fully relaxed

state, while a tension experiment has intrinsic rate effects. The incremental moduli of neo-Hookean

solids also exhibit tension-compression asymmetric response. Thus, the tensile stress-strain curve

cannot accurately recover the response under compression. For the MRE material characterization,

it isnotstraightforwardtohavedirectaccess tothepropertieswhendepositedasafilm. Theresponse

of a film is possibly not identical to that of a dogbone specimen, due to fabrication uncertainties

and possible particle clustering while depositing the film. As a result, we use two bifurcation curves

obtained experimentally, corresponding to pre-compressions λ0 = 0.8 and λ0 = 0.85. For further

validation of the substrate shear modulus and the neo-Hookean constitutive law, we carried out

independent uniaxial tension tests at a very low rate (ε̇ = 5 ·10−6 s−1) in a standard dogbone sample

and obtained a neo-Hookean response up to 10% straining with shear modulus Gs = 3.5kPa. From

the fitting of the bifurcation curves, we obtain Gs = 3kPa for the substrate and G f = 10kPa for

the MRE film, such that Gs/G f = 0.3. These values are then sufficient to fit the rest of the nine

experimental curves accurately.

5) Acting on the lateral faces of the film/substrate block to simulate friction, the maximum

applied shear force is obtained by fitting (to the best possible accuracy) the bifurcation curve for

λ0 = 0.75 (see Fig.V.10). Table V.1 summarizes the material parameters corresponding to the

experimental and numerical MRE film/passive substrate. Given the very good agreement between

the numerical and experimental results for a very large range of pre-compressions and magnetic
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Figure V.9: Identification of bifurcation in the two-field parameter space: mechanical pre-compression

λ0 and magnetic field b0. A decreasing trend of the critical magnetic field bc
0 as a function of the applied

pre-stretch λ0 is observed in: a, Supercritical bifurcation curves for λ0 = 0.8,0.85,0.9. Continuous lines cor-

respond to numerical predictions, while symbols correspond to experimental data reported in Fig.II.18q.

The insets present, at λ0 = 0.8 and b0 = 0.25T, comparisons between experimental and numerical profiles,

as well as the experimental film profile used to obtain the amplitude curves. b, A two-field stability

phase diagram of morphological patterns. Experimental and numerical (λ0,b
c
0) critical points for 2D

wrinkling (blue), 1D wrinkling (white) and wrinkling followed by curvature localization patterns (orange)

are defined from the bifurcation curves (in Figs.II.18q, V.9a and V.10a) by considering a threshold of

macroscopically observed bifurcation amplitude A = 0.6mm. Standard deviation of measurements among

three specimens is included in the experimental data points.

fields, the proposed simple-material model is indeed sufficient to probe the problem at hand.

H f Hs/H f Gs Gs/G f χ f µ0ms
f fmax

(mm) (kPa) (T) (µN)

0.8 49 3 0.3 0.4 0.5 72

Table V.1: Geometry and material properties of the film/substrate block, used in the experimental and

numerical analysis.

The rest of the numerical estimates are then found to be in good agreement with the experi-

mental measurements for the aforementioned loading parameters. The numerical simulations are

capable to reproduce the decrease of the critical magnetic field bc
0 with increasing pre-compression

λ0. Agreement between the numerics and the experiments is also obtained in terms of the surface

patterns, as shown in the inset of Fig.V.9a. The numerical results predict exactly four wrinkles

along the film length. This fair comparison allows us to use the FEM results in the following sec-

tion, so as to investigate the resulting magnetic fields in the post-bifurcation. Fig.V.9a illustrates

the evolution of the bifurcation amplitude A versus the applied magnetic field b0 for three different

pre-stretches λ0. When the applied field b0 is relatively low, the flat state of film/substrate system

gives zero wrinkling amplitude. As the applied field approaches a critical value bc
0, the potential

energy of a new state becomes equal to that of the flat state and the system transits into wrinkling,

i.e., non-zero amplitude. The transition is, however, smooth due to imperfections coming from the
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applied boundary conditions. It is noted that we define the wrinkling state switched from the flat

state as the initial instability mode.

UsingnexttheexperimentalandnumericalcurvestogetherwiththethresholdvalueA(= 0.6mm),

we propose a comprehensive two-field stability phase diagram in Fig.V.9b. The stability map shows

that pattern switching can be achieved by proper control and cooperation of the magnetic and

mechanical fields. In addition, the reduction of the critical magnetic field bc
0 with increasing pre-

compression is experimentally quantified and numerically probed. For instance, when the block is

under significant pre-compression (e.g., λ0 = 0.8), the critical magnetic field bc
0(= 0.2T) reduces to

half of that for small mechanical pre-compression (e.g., λ0 = 0.98, bc
0 = 0.38T).

Based on pattern distinction, this diagram can be qualitatively divided into three representa-

tive domains: 2D wrinkling (blue), 1D wrinkling (white) and a 1D period-doubling (orange, see

Fig.II.18o) regime that is followed by a mechanical crease at λ0 = 0.7, see inset picture. At smaller

pre-compressions (blue region), one observes 2D wrinkling as a result of high biaxial in-plane sym-

metry of the system and no particular bias to plane-strain modes. In this regime, the numerical and

experimental results exhibit a slight deviation. This can be explained by noting that the numerical

calculations assume plane-strain conditions, while the experimental camera-setup does not have

access to the middle of the film surface, where the maximum amplitudes occur, see inset Fig.V.9b

in blue regime. In turn, under moderate-to-high pre-compressions (especially for λ0 < 0.85), the

experimental and numerical bifurcation points (λ0,b
c
0) are in excellent agreement. This is a re-

sult of the uniquely prescribed plane-strain conditions. Such a response validates qualitatively the

simplified bifurcation analysis carried out in Chapter IV.

Interestingly, thecriticalbc
0 fielddecreases linearlywith increasingpre-compressionε11(= λ0−1)

up to the theoretical mechanical bifurcation point, λ c
0 ≃ 0.76. Beyond that point, an asymptotic

response is observed with no further reduction of bc
0 (orange regime in Fig.V.9b). The asymptotic

saturation of the critical magnetic field at large pre-compressions is a direct consequence of friction

and curvature effects at the lateral faces of the film, see context of Fig.II.18m-p. As a result of such

frictional effects, the mechanical (i.e., localized) and the magnetic (i.e., wrinkled) bifurcation modes

become different and thus, non-cooperating. In turn, this incompatibility prevents further decrease

of the critical magnetic field bc
0, despite the increase of pre-compression. One could improve this

effect with a thinner film, see Section V.5. Then, the number of wrinkles increases and the boundary

effects become less important. Nevertheless, the influence of friction upon the observed bifurcation

mode is by itself an interesting result that requires further investigation, see Section V.3 .

To conclude Fig.V.9b, the critical field reduction is clearly demonstrated for the first time. Such

a result is a direct consequence of the magnetomechanical coupling and the proper cooperation

of the resulting mechanical and magnetic instabilities. The qualitative explanation behind it is

the following: the elastic energy stored by pre-compression λ0 brings the system near (but not

exactly to) a mechanically critically stable state. Such a state aids in turn to trigger a cooperative

magnetic instability at a lower magnetic field bc
0. The low magnetic fields at play and the simplicity

of the proposed MRE film/substrate geometry (e.g., one can easily touch the film surface during the
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experiment and feel the roughness at a mm scale) makes the present system a potential candidate for

an actual magnetomechanical device that allows for dynamic active control of surface patterns. The

critical magnetic field can be further reduced by more unstable microstructures, such as particle-

chain ones (e.g., see Danas and Triantafyllidis, 2014). Such a work is under way and will be presented

in the future.

V.3 Friction effects at large pre-compressions

In this section, we numerically investigate the response of the MRE film/substrate system under

large pre-compressions λ0 ∈ [0.7,0.78] and we probe the relevant experimental findings. This study

aims to give an insight on the experimental absence of wrinkling under compression (b0 = 0), even

beyond the purely mechanical bifurcation point λ c
0 = 0.76. We note that the mechanical bifurcation

point is obtained numerically for interlayer stiffness contrast Gs/G f = 0.3.

Webegintheanalysisafterobservinganoticeablecurvatureat thecornersof thefilminFigs.II.18

e,f,i,j,m,n. Such a curvature grows with increasing pre-compression and is related to frictional

effects at the boundary of the specimen in contact with the compression device7. Under finite pre-

strains, the curvature is no further negligible when compared to the thickness of the film and the

size of the specimen, Figs.II.18,m,n. As numerically verified in Figs.V.3,V.9b, the frictional effect

inhibits a clean mechanical wrinkling and leads to a localized pattern. Albeit experimentally not

observed, the primary mechanical buckling is numerically found at λ c ≃ 0.76, see Fig.V.2. About

thatcompressivestretch, the incrementalmodulusof theneo-Hookeansubstrate ispossiblydifferent

from the ground state and becomes anisotropic. Such an indication can be retrieved from the tensile

stress-strain response of the soft silicone substrate, following the neo-Hookean law within the range

1 ≤ λ ≤ 1.25. We note that compression and tension are not necessarily anti-symmetric about the

nominal stress axis; the incremental modulus of neo-Hookean solids undergoes different slopes in

the tensile and compressive direction. As a result, a tensile stress-strain curve cannot accurately

recover the response under compression8. In turn, a higher interlayer stiffness contrast is possibly

formed, Gs/G f ≥ 0.6, known to yield mechanically localized instabilities, e.g., creases.

Considering the complexity of the air modeling and the partial continuity of the magnetic fields,

we employ an approximate procedure to model friction that does not necessitate the direct modeling

of contact. Specifically, one can bypass the contact problem by adding an empirical tangential force

f2 (in the X2 direction) at the lateral edges of the block to mimic contact, see Fig.III.1. This force is

a function of the applied pre-compression λ0 and reads

f2 = fmax

1−λ0

1−λ max
0

, fmax = 72µN, λ max
0 = 0.73. (V.1)

The quantity λ max
0 corresponds to the maximum compressive pre-stretch experimentally achieved.

This law is related to a nonlinear friction relation, in the sense that the applied stretch in direction

7even after silicone oil is applied onto the lateral faces that are in contact
8e.g., PDMS exhibits uniaxial neo-Hookean behavior within the range 0.7 ≤ λ ≤ 1.5 (see Sun et al., 2012).
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Figure V.10: Role of lateral friction on critical loads and patterns for high pre–compressions λ0. Friction

is modeled by applying a tangential force f2 = 72µN along X2 direction at the lateral edges of the two-

dimensional solid. a) Comparison between the experimental bifurcation curves (symbols) and numerical

curves with and without friction (continuous and dashed lines respectively) for λ0 = 0.73,0.75,0.78; (b-d)

Experimental and (e-j) numerical morphological modes with friction (film in blue) and without friction

(film in red), respectively. At high pre-compression λ0 = 0.75 < λ c
0 and in the presence of friction (e), the

mechanical wrinkling mode vanishes but not in the case without friction (h); The numerical pattern with

friction turns into a more localized configuration (g), which fits better the experimental period-doubling

and localized morphology (d) than the numerical pattern without friction (j).

X1, i.e., λ0 ≡ λ1, is related in a nonlinear fashion to the normal force f1 applied on the lateral face.

The maximum force fmax is then a simple fitting parameter, which is obtained by fitting the early

stage of the post-bifurcation response at λ0 = 0.73.

In Fig.V.10a, we examine quantitatively the effect of friction on the bifurcation amplitude under

three pre-stretches, λ0 = 0.73,0.75,0.78. The main observation is that the bifurcation stagnates

with increasing pre-compression when friction is applied (continuous curves denoted with “W/

friction”). By contrast, when the numerical calculations are frictionless, the curves exhibit a strong

dependence on pre-stretch λ0. For sufficiently small λ0(= 0.73), the numerical wrinkles develop

a non-zero amplitude well before the application of the magnetic field b0. There is of course a

transition point, which is directly linked to the purely mechanical critical wrinkling load, λ c
0 = 0.76.

In this case, the bifurcation curve would start exactly at the origin in Fig.V.10a. This observation

implies that by reducing the friction and hence the boundary effects, one can achieve wrinkling via

a critical magnetic field that is very close to zero, bc
0 ∼ 0T, as theoretically suggested by Danas and

Triantafyllidis (2014). That is a significant point that deserves further investigation and will be

addressed in a future work.

The influenceof frictiononthecriticalmodes isdepicted inFigs.V.10b-j forpre-stretchλ0 = 0.75.

Here, we compare qualitatively the experimental morphological patterns (Figs.V.10b-d) versus the

numerical configurations with (Fig.V.10e-g) and without (Fig.V.10h-j) friction. In the absence of

friction, thenumericalsimulations illustratewell-formedwrinklesofuniformamplitude,Figs.V.10h-

j. Upon prescription of friction however, the numerical wrinkles vanish (Fig.V.10e), whereby a
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Figure V.11: Critical magnetic field bc
2 as a function of the applied pre-compression λ0 under different

values of shear force f2 mimicking lateral friction. The value f2 = 8e−5N is selected to fit the experimental

findings. At pre-compression λ0 = 0.8, the bifurcation amplitude is plotted versus the applied magnetic

field b0
2 for the corresponding shear forces f2 (inset).

non-zero curvature appears at the film boundaries (Figs.V.10b,e). Upon further increase of the

magnetic field, a slight localization at the center of the wrinkled film develops, Fig.V.10g. Such a

morphological configuration resembles qualitatively the experiments, Figs.V.10c-d,f-g.

To conclude, the frictional FEM calculations under large pre-compressions result in: a) the

saturation of the magnetic field beyond the critical mechanical point λ c
0 (Figs.II.19, V.9b); b) a

pronounced curvature at the edges of the film that increases monotonically with pre-compression

(Figs.II.18a,e,i,m for experimentsandFig.V.10b-j fornumerics); andc) the inhibitionofmechanical

buckling and appearance of a magnetomechanically-triggered localized pattern instead (Fig.V.9m-

p for experiments and Fig.V.10b-j for numerics). This new configuration arises from the coexistence

of magnetically-induced wrinkling and mechanical creasing. The latter is due to the boundary

conditions, i.e., restrictedextensiveout-of-planedisplacementuponcompressivefrictionattheedges

of the film. The magnetic and mechanical instabilities are not cooperative and as a consequence, no

further decrease of the critical magnetic field bc
0 can be achieved. However, further investigations

should be carried out to better understand the coexistence of mechanical localized modes and

magnetic wrinkles.

The influence of friction on the critical response can be further illustrated in Fig.V.11, where the

critical magnetic field bc
2 is plotted versus the applied pre-compression λ0 under four different values

of shear force f2 = 0,5e−5,8e−5,1e−4N.Thegreater theshear forcemimicking friction, thegreater

the value of the critical magnetic field bc
0 under a given pre-compression. When f2 = 0, the critical

curve attains zero magnetic field at the purely mechanical buckling point. For non-zero forces,

f2 6= 0, the saturation of the critical field is unavoidable. The value f2 = 8e−5N is selected to fit the

122



V.4. FULL-FIELD NUMERICAL ANALYSIS

f

m2

Stable, m1=0

Post-bifurcation, m1 > 0 

Pre-compression,0 0.18 0.27 0.36

Magnetic and mechanical fields at b0=0.4T Magnetic field, b0 (T)

M
a
g
n
e

ti
z
a
ti
o
n
, 
m

1
 a

t 
p
o
in

t 
P

-0.3 -0.15 0 0.15 0.3

E11

a

E22

-0.15 0.1 0.4 0.6 0.9

b

b1

-0.11 -0.04 0 0.04 0.11

c

b2

0.4 0.45 0.5 0.55 0.6

d

g

m1

-0.07 -0.04 0 0.04 0.07

e

X2

X1

Point P

m1

Contour at b0=0.4T

b0

-0.07 -0.04 0 0.04 0.07

0.09

b0

λ0=0.8

Figure V.12: Numerical post-bifurcation results for the MRE film/substrate system at applied pre-

compression λ0 = 0.8 and magnetic field b0 = 0.4T. Simulation parameters: H f = 0.8mm, Hs = 39.2mm,

G f = 10KPa, Gs = 3KPa, χ f = 0.4, µ0 ms
f = 0.5T. a-f, Deformed configurations and contour plots of the

spatial distribution of the Green-Lagrange strains, magnetic fields and magnetization along X1 and X2

directions. For clarity: bottom part of the substrate is not shown. g, Supercritical bifurcation curve of

magnetization m1 as a function of the applied magnetic field b0, at a fixed point P within the film.

experimental critical curve. In the inset of the figure, the bifurcation amplitude A is plotted versus

the applied magnetic field b0
2 for the corresponding shear forces f2 and pre-stretch λ0 = 0.8. There,

one can observe that the application of friction delays the occurence of the magnetically-triggered

bifurcation. Moreover, only the frictionless system undergoes a sharp bifurcation transition. The

rest curves bifurcate gradually as a result of the friction that acts as imperfection of the system.

V.4 Full-field numerical analysis

To understand better the magnetomechanical bifurcation, we show representative contour plots

fromthe full-fieldsimulations inFig.V.12a-f, omittingthesurroundingair. TheMREfilm/substrate

system is at a post-bifurcated state at b0 = 0.4T, exhibiting wrinkling for λ0 = 0.8 (white regime in

Fig.V.9b). The spatial distribution of the Green-Lagrange strains E is shown in Fig.V.12a,b. The

correspondingmagneticfieldbandthemagnetizationmaredepictedinFig.V.12c,dandFig.V.12e,f,

respectively. The strain fields are classical for such problems, i.e., bending deformation state within

the film that gradually becomes uniform within the substrate, upon increasing distance from the

film/substrate interface.

In turn, the magnetic fields display an interesting distribution pattern. The components b2 and

m2, which are in the direction of the applied magnetic field b0, are more pronounced near the corners

and remain positive in the entire film and substrate. However, the perpendicular to the applied

field b0 components b1 and m1 exhibit symmetrical alternating patterns, ranging from negative to

positive values. While b1 and m1 fields are locally heterogeneous, on average they can be thought as

magnetic phase domains with interchanging magnetization direction. Such a polarization further

enhances the wrinkling amplitude and, in turn, the overall deformation of the system upon increase

of the applied magnetic field b0, until magnetic saturation is reached.

For completeness, in Fig.V.12g, we show the magnetization component m1 at a representative
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point P located within the MRE film with positive values of m1 (see inset). At this point P, the mag-

netization displays a supercritical pitchfork post-bifurcation response versus the applied magnetic

field b0. Such a magnetization curve exhibits a similar trend to the bifurcation amplitude curves

shown in Fig.V.9, although it can only be currently accessed via full-field numerical simulations.

In the magnetoelastic problem, the stresses are magnetomechanically coupled and the stress

state induced by the applied magnetic field is not straightforward to be explained. This is due to the

tremendouseffectof themagneticboundaryconditionsonthe localfieldswithin thematerial andthe

surrounding space. Specifically, the magnetic field is decomposed into an applied and a perturbed

component, the latter caused by the existence of the magnetic material within the applied magnetic

field, see Section IV.1. However, the out-of-plane first Piola-Kircoff stress component S2 is extensive

everywhere within the film at pre- and post- bifurcation and thus, the response is probably not

stress-driven. This is in contrast with the electroactive problem, where the out-of-plane attraction

of the electrodes and the produced voltage create an in-plane biaxial compressive stress state that

leads to film buckling, upon the imposition of in-plane boundary conditions. Instead, we argue that

the creation of alternating (+ and -) magnetization patterns within the post-bifurcated film plays

the predominant role in the magnetic instability.

The components b1 and b2 of the magnetic field, as well as the corresponding Maxwell stresses,

are highly heterogeneous and non-zero outside the film. That is a direct consequence of the Eulerian

applied magnetic field far from the specimen (e.g., see Danas, 2017, Keip and Rambausek, 2017,

Lefèvre et al., 2017). As a result, the analytical treatment of the post-bifurcation problem becomes

difficult or even it can be accessed only via numerical analysis. Such an analysis requires a better

discussion, since the stress field in magnetoelastic problems can be substantially different than

that in the electroactive problems. The magnetic Maxwell stresses are highly non-uniform inside

and outside of the film, since there exist magnetic fields in the surrounding air. The background

energy sits everywhere within the entire space and causes the stress to be non-zero outside the

material. The Maxwell-Cauchy stress σ is in the order of (F ·B) · (F ·B) ≈ b2 ≈ (µ0 m)2, with F

the deformation gradient tensor, B the Lagrangian magnetic field, b the eulerian magnetic field

and µ0 m the magnetization. By contrast, when electrodes are attached on the specimen surfaces,

the (Maxwell) electrically induced stress fields follow the deformation of the specimen even in the

post-bifurcation regime. Therefore, the stress outside the material is zero and within the material

is uniform at the pre- and post-bifurcation. Some recent papers of Danas (2017), Lefèvre et al.

(2017) and Keip and Rambausek (2015) are trying to address that question. On the contrary, the

bifurcation problem is analytically tractable (except when friction effects are present) and it has

been presented in Section IV.3.

To conclude, the present numerical model has been carried-out to understand better the ex-

perimental response of the given MRE film/substrate system. The fact that it has also proven to

be quantitatively accurate allows us to use it in further studies, so as to explore MRE film/sub-

strate systems in an extended geometrical and material parameter space. Such a work considering

a thinner film is presented in the subsequent Section.
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V.5 Film slenderness effects on the (post-)bifurcation response

In this section, we discuss how a thinner film affects the magnetoelastic critical response of a finite

MRE film/substrate block. The numerical model has been found quantitatively accurate to probe

the experimental findings (see Sections V.2,V.3) and thus, provides confidence to be employed in

further parametric studies. Modeling the experimental structure in Section V.2 aims at having one

to one correspondence between the experimental observations and the numerical implementations.

However, onecould furtherstudytheeffectofvariousgeometricalparametersonthecritical response

of the structure, e.g., the length l and thickness H of the specimen would certainly affect the critical

fields and the corresponding patterns.

To mimic an infinitely deep substrate, the thickness of the specimen should be significantly

larger than the expected wavelength, H ≫L. For a given film thickness H f , a large (domain) length

with respect to the wavelength, l ≫ L, is favorable to induce large wavenumbers ω. We recall that

the experimental geometry is a cube of 40mm edge, with film thickness (H f =)0.8mm. To show

whether such geometry corresponds to the case of a deep substrate (one that theoretically can be

considered as infinite), we design a 40× 40 plane-strain bilayer geometry of film thickness (H f =

)0.2mmandwesubject ittothemagnetomechanical loadingoftheexperimentalprocess. Theloading

consists of applying a pre-compression within the range λ0 ∈ (0.71,1) and then linearly increasing

the magnetic field b0 beyond bifurcation.9 Slightly compressible neo-Hookean and magnetically

saturating materials are once more employed for both layers. The material parameters are those of

the previous studies (experimental, theoretical and numerical), so as to have a comparison between

all the different analyses (all having the material properties of Table V.1).

Fig.V.13a presents the post-bifurcated morphological response of the bilayer-system consider-

ing a thinner film (H f = 0.2mm over H = 40mm specimen thickness). At this point, the numerical

simulations neglect the effect of friction acting at the lateral sides of the specimen. This is fairly at-

tributedto the slenderness (effective length-to-thickness) ratio10 l(= 40λ0)/H f (= 0.2) thatprevents

pronounced boundary effects (curvature due to friction). The wrinkled patterns correspond to a

fixed magnetic field b0 = 0.3T under four different compressive pre-stretches λ0 = 0.8,0.85,0.9,0.95.

The applied pre-strains are lower than the mechanical instability load and thus, the morphological

instability is triggered by the magnetic field b0. When the magnetic field reaches a critical value,

the initially flat top layer deforms into a pattern of wrinkles. Once wrinkling occurs, the response

is representative with respect to the minimum wavelength; this is a standard theory of bifurcation

(see Section IV.4.3). The critical wavenumber (H f = 0.2mm, 16-19 wrinkles) is now notably higher

than that in the experiments/simulations considering a thicker film (H f = 0.8mm, 4 wrinkles). The

wrinkling wavelength L is inversely proportional to the wavenumber, L = l/ω, and a monotonic

function of film thickness, L= f (H f ), for fixed length l = 40λ0. As a result, increasing the slender-

ness ratio l/H f , drives the numerical solution into higher wavenumbers (under increasing stretch

9The geometry is designed in Abaqus and the numerical implementations take place in FEAP, see Section
III.4. The ratio of the wavelength to the element size is found to be approximately 20.

10Slenderness ratio is a measure of how long a beam-column is compared to its cross-section’s effective thickness
(resistance to bending or buckling).
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Figure V.13: Geometrical and material parameters for numerical simulations and experimental observa-

tions: H f = 0.2mm, Hs = 39.8mm, G f = 10kPa, Gs = 3KPa, χ f = 0.4, µ0 ms
f = 0.5T. a, Numerical post-

bifurcated pattern of the MRE film/substrate system corresponding to a fixed magnetic field b0 = 0.3T

under four different compressive pre-stretches λ0 = 0.8,0.85,0.9,0.95. Bottom part of the substrate is

not shown. b, Experimental wrinkling at λ0 = 0.8 and b0 = 0.3T. Two views: From the top of the film

and from the side of the bilayer (profile plane) - only half plane is depicted. c, Numerical wrinkling

amplitude A versus the applied magnetic field b0. The supercritical bifurcation curves correspond to

five pre-stretches λ0 = 0.8,0.85,0.9,0.95,1. The bifurcation point is defined at the point of divergence

(sharp change due to absence of geometrical imperfections). A decreasing trend of the critical magnetic

field with increasing pre-compression is evidenced. d, Critical wavenumber (ω H)c = 2π/L, with L the

wavelength) and (integer) number of wrinkles ω versus the applied pre-compression λ0. The continuous

curve results from the theoretical analysis on an infinite system, while the discrete points correspond to

the numerical and experimental boundary value problem.

ratio λ0(= ε +1)).

In Figs.V.13a,d, the evolution of the wavenumber in the parameter space of pre-compression

is evidenced in agreement with the theoretical predictions. We recall that the theoretical analysis

considers idealized boundary conditions of an infinitesimally thick film bonded on a semi-infinite

substrate (plus the semi-infinite air, see Section IV.3). In Fig.V.13d, we plot the wavenumber

(number of wrinkles) as a normalized real number, as well as the integer appeared on the surface

layer of the finite structure, versus the applied pre-compression λ0. Although this feature is absent

from the initial experiment (see Fig.II.18a) due to a small slenderness l/H f ratio, it has been now

numericallyandtheoretically shownthat thewavenumber followsadecreasing trendwith increasing

pre-compression. To validate this trend, a set of experiments is conducted on samples of MRE

Ecoflex bilayers for the present thickness ratio, Hs(= 39.8)/H f (= 0.2). As seen in Fig.V.13d, the

experimental and numerical critical wavenumber are in agreement within the range of the pre-
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Figure V.14: Geometrical and material parameters for numerical simulations and experimental observa-

tions: H f = 0.2mm, Hs = 39.8mm, G f = 10kPa, Gs = 3KPa, χ f = 0.4, µ0 ms
f = 0.5T. Post-bifurcated pattern

of the MRE film/substrate system corresponding to a fixed magnetic field b0 = 0.1T under two different

compressive pre-stretches λ0 = 0.715,0.75. Once the pre-compression increases beyond the purely mechan-

ical instability point, the mechanically-triggered wrinkling switches to a new behavior upon activation of

the magnetic field. The bottom part of the substrate is not shown.

stretches λ0 tested. The corresponding theoretical critical wavenumbers are obtained as (ω H)c =

2π/L (with L the wavelength), defining directly the number of the wrinkles in the finite structure.

The critical wavenumbers approximately match the theoretical predictions. Therefore, one can

conclude that the present geometry is indeed representative of a film/substrate system.

In Fig.V.13c, the amplitude of the wrinkles A in mm is plotted versus the applied magnetic

field b0 (T). The bifurcation curves are supercritical following the previous results on the thicker

film, see Figs.V.9a,V.10a. However, the wrinkling amplitudes on the present film (0.2mm) are

notably lower than that of the thicker (0.8mm), i.e., amplitude is a monotonic function of the film

thickness. Due to lack of geometrical imperfections (or friction that acts as a source of imperfection),

the curves diverge in a sharp manner from the principal solution. In view of that, the critical

magnetic field needed to trigger the instability is determined directly from the divergence point

and no thresholds over amplitude (for smooth curves) are needed (see Section V.2). A decreasing

trend of the critical magnetic field with increasing pre-compression is also manifested, as shown in

Fig.V.16. The numerical simulationsare followedby experimental evidences of the wrinkledpattern

for λ0 = 0.8 and b0 = 0.3T. In Fig.V.13b, two views of the pattern are considered: From the top of

the film and from the side of the bilayer (profile plane). Once the magnetic field is removed, the

pattern spontaneously disappears and the surface of the film returns to the flat state. Structural

imperfections lead to variations in film stiffness and non-uniformity of wrinkling; the thinner the

film, the higher the defect-sensitivity.

Once the pre-compression increases beyond the mechanical instability point, new patterns with

multiple wavelengths emerge. Such modes of superimposed wavelengths are triggered by the mag-

neticfieldandare sensitive to thefilmslenderness l/H f ratio: a thinnerfilm(foragiven length) favors

their appearance. That ispossiblyattributed to the sufficientlyhigh slenderness ratio thatallows for

the appearance of large wavelengths. Such wavelengths might be larger than the characteristic size

of the specimen under a lower slenderness and thus, cannot develop. Instead, smaller-wavelength

127



V.5. FILM SLENDERNESS EFFECTS ON THE (POST-)BIFURCATION RESPONSE

(than the size of the specimen) wrinkles are only able to appear, such as in the case of H f = 0.8mm

film.

Fig.V.14 presents numerical simulations and experimental observations of the post-critical

multi-period patterns under two pre-compressions λ0 = 0.715,0.75 and applied magnetic field

b0 = 0.1T. When λ0 = 0.75, the mechanically-triggered wrinkling switches to a new behavior with

twice the period, upon activation of the magnetic field. Once the magnetic field reaches a critical

value b0 ≈ 0.1T, the sinusoidal surface of the MRE film folds against itself to form a double-period

pattern. More specifically, the critical magnetic field triggers symmetry breaking into a wrinkling

mode with periodically deeper valleys. Once the pre-compression is further increased, λ0 = 0.715,

a period-hextupling pattern occurs for b0 < 0.1T. This secondary pattern alternates between grow-

ing and decaying valleys with progressively increasing and decreasing amplitudes. The pattern

displays six distinct wavelengths Li (i = 1, ..,6), without any localization emerging. The numerical

simulations stop, however, before b0 = 0.15T is reached, probably due to absence of user-defined

geometrical imperfections. Preliminary experimental findings in such thin film (H f = 0.2mm)under

such high strains accompany the numerical patterns.

Subsequently,afull-fieldnumericalanalysisofthethinfilmispresentedinFig.V.15. Thisanalysis

serves for later comparison with the fields formed when the substrate is magnetic. In Figs.V.15a,b,c,

the transverse component of the displacement u2 and Green-Lagrange strain E22, as well as the in-

plane component of film magnetization m1, are plotted along the reference (undeformed) length

(at 40 mm) of the magnetic layer, under pre-stretch λ0 = 0.78 and different magnetic field values,

b0 = 0.026,0.08, 0.18,0.24,0.34,0.4,0.5T. The smallest magnetic field b0 = 0.026T corresponds to

the pre-bifurcation regime, i.e., uniform fields - flat film surface. The subsequently applied fields

correspondtoawrinkledpatternof16wrinkleswithincreasingamplitudeversus increasingmagnetic

load. The depicted fields are symmetric about the out-of-plane e2 direction. The strain u2 and

magnetization m1 are also symmetric about e1 direction, altrernating from positive to negative

values.

At high magnetic fields, b0 = 0.5T, a new pattern starts growing on the single-period wrinkles,

manifested in terms of displacement u2 and strain E22. This secondary pattern seems to be altered

at the boundaries of the film. As seen in Figs.V.15a,b and contour plot in Fig.V.15d, the wrinkles

at the boundary are pulled towards the substrate, even though no lateral shear forces (friction)

have been added. Fig.V.15d presents the magnetization m1 of two fixed points (pink and blue

dots) within the film versus the applied magnetic field b0 (pink and blue curves, respectively). The

magnetization m1 exhibits a supercritical pitchfork bifurcation of short stable regime. This is due

to the high pre-compression (λ0 = 0.78), close to the mechanical instability point. Following the

morphological response, the magnetic instability occurs under a tiny magnetic field b0 < 0.05T;

the same value of the wrinkling amplitude divergence. The blue fixed point sitting on the peak of

a central wrinkle corresponds to the transition from positive to negative magnetization and is the

lower magnetization curve with amplitudes about zero. This curve attains zero in high magnetic

fields, which is a possible indication of change in the wavenumber. Nevertheless, the finite geometry
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Figure V.15: Numerical pre- and post-bifurcation results for the MRE film/passive substrate system un-

der fixed pre-stretch λ0 = 0.78 and several applied magnetic fields b0 = 0.026,0.08, 0.18,0.24,0.34,0.4,0.5T.

Simulation parameters: H f = 0.2mm, Hs = 39.8mm, G f = 10KPa, Gs = 3KPa, χ f = 0.4, µ0 ms
f = 0.5T.

Spatial distribution of the a, transverse displacement u2; b, transverse Green-Lagrange strain E22; c,

in-plane magnetization m1 along the reference coordinate X1 (undeformed length). d, Supercritical bifur-

cation curves of magnetization m1 versus the applied magnetic field b0 of two fixed points (blue and pink

dots) within the film. Each colored curve corresponds to the material point of the same color.

does not allow to visualize such changes and an infinitesimally thick film should be employed.

In Fig.V.16a, we summarize the magnetomechanical critical response of the MRE film/passive

substrate obtained by several analysis: the boundary value system of (H f =)0.8mm film thickness

with friction to fit the experiment (blue), the boundary value system of H f = 0.8mm without friction

(red continuous), the boundary value system of thinner film H f = 0.2mm without friction (red

dotted), as well as the theoretical infinite problem of an infinitesimally small film thickness (green).

The phase diagrams for a MRE film/passive substrate are separated by the curve of the decreasing

critical magnetic field bc with increasing applied pre-compression λ0. The regime right to the curve

is stable (flat film surface), while the regime at left is unstable (formation of surface patterns).

Experimental and numerical wrinkled patterns for λ0 = 0.78 are shown for the two film thicknesses.

When H f = 0.8mm, four wrinkles emerge along the film surface, numerically probed considering

lateral shear forces (bluefilmconfiguration). Asa resultof theunfavorablefilmslenderness ratio, the
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Figure V.16: Phase diagram in the parameter space of applied pre-compression λ0 and critical magnetic

field bc
0 needed to trigger the instability. Material parameters: G f = 10KPa, Gs = 3KPa, χ f = 0.4,

µ0 ms
f = 0.5T. The magnetomechanical critical response of the MRE film/passive substrate is summarized

for several analyses: the boundary value system of H f = 0.8mm film thickness with friction fitting the

experiment (blue), the boundary value system of H f = 0.8mm without friction (red continuous), the

boundary value system of H f = 0.2mm without friction (red dotted), as well as the theoretical infinite

problem (green). Experimental and numerical patterns for λ0 = 0.78 are shown for both film thicknesses.

When H f = 0.8mm, four wrinkles emerge along the film surface, numerically probed considering lateral

friction (blue film configuration). When H f = 0.2mm, sixteen wrinkles of notably lower amplitude are

formed (yellow film configuration) and experimentally evidenced given the fabrication imperfections.

pattern is subjectedtopronouncedfrictionaleffects. Undersuchhighpre-compressionλ0 = 0.78, the

cornersof thefilmarepulledtowards thesubstrateandadouble-periodpair emerges. It is interesting

to note that the system without friction is led to single-period wrinkling instead of period-doubling

(see Figs.V.10b-j). When H f = 0.2mm, sixteen wrinkles of small amplitude are formed (yellow film

configuration) and experimentally evidenced given the fabrication imperfections. The number of

wrinkles is hence a decreasing function of increasing film thickness. The thinner film (H f = 0.2mm)

leads to higher wavenumbers and thus, prevents the observations far from the boundaries to be

affected by frictional effects. Nevertheless, only preliminary experiments are included at this stage.

The numerical curves of H f = 0.8mm with and without friction undergo the same trend in

small pre-compressions; however, the influence of friction becomes very soon non-negligible (see for

better understanding Fig.V.11). Under high pre-compressions, the numerical curve with friction

manifests saturation in the critical magnetic field bc, while the perfect system attains the mechanical

buckling point for zero magnetic field. In Figs.V.4,V.8, we show that the experimental system

of H f = 0.8mm recovers the (magneto)mechanical infinite film/substrate bifurcation for stiffness

contrast Gs/G f = 0.3. Such an analysis is used to have one to one correspondence with the initial

experiments. When H f = 0.2mm, the critical curve is shifted towards the theoretical response along

the mechanical loading axis. However, there is indeed the difference that the film/substrate block
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is a finite structure, while the theoretical problem considers a semi-infinite size specimen. A larger

slenderness ratio leads to higher wavenumbers of notably lower amplitude, see also Fig.V.16. To

that end, the selection of the geometrical parameters of a MRE film/substrate block is application-

oriented, e.g., in haptic systems, thicker films would probably be preferable when user-accessibility

is required.

V.6 Concluding remarks

A FE (post-)bifurcation analysis in the absence of magnetic field, i.e., λ0 6= 1, b0
2 = 0, provides the

critical mechanical stretch λ c
0 = 0.76 at the onset of wrinkling and the associated wavenumber ω = 4

(macroscopic length scale). Upon further increase of the applied strain (ε11 = λ0 − 1), the plane-

strain simulations reveal a period-doubling configuration at λ c2
0 = 0.7, which becomes unstable and

gets unloaded at larger compressive values, λ0 < 0.68. This response corresponds to a mechanical

interlayer contrast at Gs/G f = 0.3, in agreement with the material characterization of our material

layers. However, the experimental findings are biased by strong frictional boundary effects that

suppress the primary wrinkling. To fit the experiment, the numerical solution is able to bypass the

point of primary wrinkling without undergoing bifurcation when lateral boundary friction is added.

Thus, an appropriate choice of boundary conditions could tune the surface patterns by suppressing

or bypassing modes and driving the solution directly to later instabilities.

The film/substrate system subjected to a purely mechanical loading exhibits a rich behavior in

the parameter space of the interlayer mechanical contrast, considered from the limit of a traction-

free homogeneous substrate (Gs/G f → 1) to very stiff films on compliant substrates (Gs/G f → 0).

The corresponding patterns vary from wrinkling for small ratios (Gs/G f ≤ 0.6) to localizations

when higher ratios (Gs/G f > 0.6) are reached. On the top of the primary instabilities, the system

undergoes secondary localized patterns that are also sensitive to the interlayer stiffness ratio.

The numerical estimates of the MRE film/passive substrate block simulating the experiment

(withfilmthickness H f = 0.8mm)are found ingoodagreementwith theexperimentalmeasurements

for the aforementioned loading parameters. The simulations are able to reproduce extremely well

the decrease of the critical magnetic field with increasing pre-compression, as well as the obtained

morphological patterns. Well-defined wavelengths that are close to those predicted by the infinite

film/substrate bifurcationanalysis are recovered and thus, the results are representative of infinitely

deep geometries. Such fair comparisons allows us to use the FEM in order to investigate the resulting

magnetic fields in the post-bifurcation regime.

In turn, the magnetic quantities display an interesting distribution pattern. Concentration of

the magnetic field and the magnetization is observed at the corners of the specimen (edge effects).

The in-plane components of these magnetic quantities exhibit symmetrical alternating patterns

ranging from negative to positive values. While these fields are locally heterogeneous, on average

they can be conceived as magnetic phase domains with interchanging magnetization direction. This

further enhances the bifurcation amplitude and in turn, the overall deformation of the system upon
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increaseof theappliedmagneticfield(untilmagneticsaturation isreached). Inaddition, the in-plane

magnetization component at a material point, located within the MRE film, displays a supercritical

pitchfork post-bifurcation response versus the applied magnetic field. Such a magnetization curve

has a similar trend to the bifurcation amplitude curves, although it can only be currently accessed

via full-field numerical simulations.

The numerical simulations of H f = 0.8mm geometry is used to have one to one correspondence

with the initial experiments. The numerical FEM model is further employed in parametric studies,

so as to investigate the effect of film slenderness on the critical and post-critical system behavior. In-

creasing the slenderness ratio leads to a slightly more unstable response of higher wavenumbers and

notably lower amplitudes. Therefore, the selection of the geometrical parameters of a MRE film/-

substrate system can be application-oriented, e.g., in haptic systems, thicker films would probably

be preferable when user-accessibility is required.
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CHAPTER VI

RESULTS II: FROM WRINKLES TO CRINKLES

Summary of the Chapter. In this chapter, we present a study on post-bifurcation crinkling patterns

emerged from harmonic (wrinkling) modes. Such patterns are obtained by further exploiting the mag-

netoelastic coupling of the film/substrate structure. First, we carry out a curvature localization analysis

at the post-bifurcation regime of the experimental and numerical MRE film/passive substrate system.

Such an analysis reveals that curvature localization is an intrinsic feature of MRE instabilities that leads

to crinkling under the given boundary conditions. Next, we investigate the formation and post-stability

evolution of crinkles on MRE films bonded on MRE substrates. The underlying idea is to create different

interlayer contrasts of magnetic/mechanical properties and thus, trigger a richer range of surface modes

than that already obtained when using a MRE film on a passive (magnetically insensitive) foundation.

Subsequently, the study is expanded to higher slenderness ratios. We vary the magnetic properties of

the substrate and we obtain an extremely large range of unique crinkled (secondary) surface patterns

tuned by the magnetomechanical loading. A full-field numerical analysis of the fields is presented and

accompanied by preliminary experiments. The curvature localization analysis on a MRE film/MRE sub-

strate is followed by an insight on the magnetization spatial distribution and how that contributes to the

evolution of crinkling.
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VI.1. CRINKLING OF MRE FILM ON PASSIVE SUBSTRATE

A surface pattern manifesting curvature-localization has been experimentally observed on the

(H f =)0.8mm film thickness geometry of the MRE film/passive substrates in Section II.7 (see

Figs.II.18m-p) and numerically probed after considering frictional boundary effects in Section V.3

(see Fig.V.11). In the prior magnetomechanical findings, this localized pattern gradually evolves

from harmonic (wrinkling) modes, manifesting symmetry-breaking deformations under large am-

plitudes and resulting in a sawtooth mode of straight segments, see Fig.II.18p. Kothari et al. (2018)

and Li et al. (2018) recently reported the existence of such a surface pattern on graphene sandwich

nanostructures triggered by (electro-)mechanical loading mechanisms. This newly evidenced shape

configuration was called “crinkling”, after the theoretical work of Pipkin (1986) on functions that

exhibit sawtooth-type response (i.e., functions with a weakly convergent average value, but highly

oscillating first derivative). In the study of Kothari et al. (2018), crinkling was found to result

either from a secondary supercritical interlayer-shear (snake) mode evolving from a sinusoidal pro-

file (wrinkles) under mechanical buckling1 or as a primary subcritical hinge (or sawtooth) mode

emerged when flexoelectric interactions are taken into account. The coupling between (atomic-

)layer curvature and electric-charge polarization, i.e., quantum flexoelectricity, was found to lead

to the emergence of a boundary layer (band width) in which curvature is highly concentrated.

In this chapter, we analyze the experimentally observed curvature localization in MRE films

bonded on a passive substrate. The analysis is also extended to magnetic (MRE) substrates. Com-

peting mechanisms that cause curvature localization are investigated using numerical and experi-

mental results.

VI.1 Crinkling of MRE film on passive substrate

The evolution of curvature localization was initially observed while analyzing the amplitude of

wrinkled patterns under high applied pre-compressions. In Fig.II.17 for instance, we plotted the

bifurcation amplitude A versus the applied magnetic field b0 for two neighboring undulations of

the wrinkled pattern at pre-stretch λ0 = 0.78. As the applied field reaches a critical value bc
0 ≃

0.1T, the system transits from the non-diverging (flat) state into a uniform wrinkling state; all

wrinkles have the same amplitude. Upon further increase of the magnetic field b0 ≃ 0.32T however,

the translational symmetry of the surface layer breaks, with the undulation around the center

diverging from the primary bifurcated branch. For b0 > 0.35T, the amplitude (depth) of the central

valley grows much larger than those at its sides, resulting in the formation of a double-period

wrinkling pair, also illustrated by the shape configuration in Fig.VI.1e for λ0 = 0.75 and b0 = 0.4T.

As the magnetic field reaches higher values b0 ≃ 0.5T, the central undulation becomes dominant,

forming a symmetric kink-type localization with flat-zone segments. This localization manifests

the maximum deflection in the neighborhood, relaxing the amplitude of the surrounding wrinkles

1Under a purely mechanical buckling, the predominance of the interlayer-shear (snake) mode of deformation
over the overall-bending mode (Euler long-wavelength) depends on the slenderness of the surface layer. If the film
is extremely slender, i.e., the length is beyond a critical value for a given number of atomic layers, the structure
develops wrinkles in the overall-bending mode under axial compression. Otherwise, the structure develops crinkles.
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Figure VI.1: a, Profile evolution of the displacement u2 on the top surface of the MRE film at λ0 = 0.75

and various applied magnetic fields b0 as a function of the current coordinate x1. b, Normalized curvature

kh (h the film thickness) of the central wrinkle/crinkle at the same applied magnetic fields b0 as a function

of the current coordinate x1. Upon increase of the magnetic field, the post-bifurcation mode evolves from a

quasi-smooth wrinkled pattern (initiation of period-doubling) to a crinkled shape configuration, focusing

its curvature within a decreasing width band. The regime within the curvature localization analysis is

focused corresponds to the displacement span of continuous line. c-f, Optical images of the experimental

pattern, illustrating the morphological evolution of curvature localization from the flat to the crinkled

state versus increasing magnetic field b0.

into an energetically minimum configuration. The resulting post-bifurcated configuration will be

called “crinkling” mode, Fig.VI.1f.

The magnetomechanical experimental observations inFigs.II.16b-m,II.18m-phave revealed the

formationofanevolvinglocalizationaroundthecenterofthesurfacelayerunderfinitepre-stretching.

In such cases, the 1D wrinkled configuration subjected to strong frictional (boundary) effects is

highly unstable, magnetically switched to an 1D localization under very small post-bifurcation

amplitudes. To further study such peculiar pattern evolution, we carry out a curvature localization

analysis considering sequential post-buckling shape configurations upon increase of the magnetic

field. The direct experimental measurement of a moment-curvature relationship2 is difficult for

such a thin film. Therefore, we evaluate the bending state by considering the second derivative of

the out-of-plane displacement (k =)(∂ 2u2/∂x2
1)/(1+(∂u2/∂x1)

2)3/2, x1 the current position. The

2For elastic beam bending: k = M/EI, M the moment, E the Young’s modulus, I the area moment of inertia,
EI the flexural rigidity ≡ resistance of the beam to bending for a given curvature.
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displacement profile is obtained from the trajectory of the surface layer, detected from the film/air

interface by means of image processing, see Fig.II.8. Subsequently, we define the span of interest

in which the curvature localization evolves (continuous line regimes in Figs.VI.1b,VI.3a) and fit it

with a 9th degree polynomial (converged at every point). The curvature is then assessed from the

second derivative of the fitted displacement profile within the span of interest.

InFig.VI.1a, wepresent theout-of-planedisplacementprofileof the surface layer, fromwhichthe

curvature is evaluated. The post-bifurcated deflection progressively evolves from a quasi-smooth

pattern (initiationof adouble-period sine) at b0 = 0.1Ttoa single crinkle configurationat b0 ≃ 0.5T.

For b0 > 0.2T, the curvature at the valley of the central wrinkle becomes noticeably larger than that

at its peaks. Simultaneously, the amplitude of this undulation grows larger upon increase of the

magnetic field, while the neighboring wrinkles progressively decay in the most favorable fashion to

create the minimum energetic configuration (given the imperfections). In Fig.VI.1b, we plot the

curvaturecorrespondingtothecentralundulation for increasingappliedmagneticfieldb0 andafixed

compressive pre-stretch λ0 = 0.75. The normalized curvature kh (h the film thickness) is plotted

along the current coordinate (position) x1 attached to material points in the deformed film. As

the magnetic field increases, the curvature amplitude and distribution (width) evolve progressively

as a monotonic function of the decreasing kink angle, θ ∼ π
2 − ∂u2

∂x1
, depicted in the continuous line

regime of Fig.VI.1a. Starting from an infinitesimal curvature at b0 = 0.1T spread along a wide area

of∼ 3mm, the localized regime progressively focuses its curvature within a decreasing width band of

increasing amplitude. Figs.VI.1c-f show corresponding optical images of the experimental system,

capturing the morphological evolution of curvature localization from the flat state to a crinkling

pattern with increasing magnetic field. Starting from period-doubling (Fig.VI.1d) at the onset of

buckling b0 ≃ 0.1T, the post-bifurcation develops a kink mode with nearly straight ends (Fig.VI.1f)

at higher fields b0 > 0.4T.

As discussed in Section II.7, competitive surface patterns enhanced by nonlinear deformation

features canbe related to the formationof localizations. Theobservedcurvature-localizingbehavior

might result from the incompatibility of the bifurcation modes triggered by the two independent

fields (mechanical and magnetic) under finite strains that are coupled with the experimental bound-

ary conditions (interpreted in Section V.3). Under large pre-compressions, the friction developed

between the lateral faces of the specimens and the walls of compression device is not negligible,

manifested by a noticeable curvature at the corners of the surface layer (see Figs.II.18i,m). The cor-

responding curvature affects, in turn, the morphology of the surface pattern by pulling the corners

of the film towards the substrate. Within such finite strain regime, the incremental moduli of the

neo-Hookean substrate is different from the ground state and becomes anisotropic. In turn, a higher

interlayer stiffness contrast is possibly formed, known (e.g., see Cao and Hutchinson, 2012b) to yield

mechanically localized instabilitieswhen Gs/G f ≥ 0.6 (seeFig.V.4). Bycontrast, thefilm/substrate

magnetic contrast is infinite (i.e., χs/χ f = 0) and thus, the magnetic field triggers 1D single-period

wrinkling. Consequently, the morphological pattern is a trade-off between the purely mechanical

and purely magnetic loading contributions.
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Figure VI.2: Numerical post-bifurcation curvature localization on the MRE film/substrate block (H f =

0.8mm film thickness) at λ0 = 0.75. a, Morphological patterns with increasing magnetic field b0; b, profile

evolution of the displacement u2 on the top surface of the MRE film at various applied magnetic fields b0

as a function of the current coordinate x1; c, normalized curvature kh (h the film thickness) of the central

wrinkle/crinkle as a function of the current coordinate x1. The bifurcation primarily emerges under a

(magnetically-triggered) wrinkling mode subjected to frictional boundary effects. Upon further increase

of the magnetic field, the middle undulation grows deeper than the neighboring wrinkles towards the

substrate, e.g., b0 = 0.2T, with the overall surface shape remaining stable as the amplitudes grow larger,

e.g., b0 = 0.5T. The post-bifurcation of increasing amplitudes supercritically localizes the curvature of the

middle undulation in a decreasing band width < 3mm. This behavior is representative for bilayers under

simulation parameters: Gs = 3KPa, G f = 10KPa, χ f = 0.4, µ0 ms
f = 0.5T, Hs/H f = 49, fmax = 8e−5N.

In addition to the prior mechanisms, asymmetric bending stiffness3 due to fluctuations in film

thickness and/or roughness (coming from the fabrication) lead to variations in film stiffness and

thus, to non-uniform wrinkles (e.g., see Lipowsky, 2014, Sun et al., 2012). Asymmetric bending

stiffness owed to variations in the structural properties of the surface layer has been shown to

produce bending configurations with high contrast of curvatures4 between the valley and the peak

of a wrinkle (experimentally observed in Fig.VI.1b) and that seems to promote localizations (Sun

et al., 2012). In the present case, it is not erroneous to assume that the film comprises an asymmetric

distribution of iron particles on the top and bottom of its surface, as a consequence of gravitational

forces present during the deposition and subsequent curing of the MRE layer. Besides, optical

microscopy observations of the specimens have shown that the substrate close to the film/substrate

interface isweaklyporous(Fig.II.4b)andthus, the localmechanicalpropertiesonthebottomsurface

of the film must be lower than those on the top.

To identify a possible mechanism of crinkle formation and further understand the localizing pro-

cess, we carry out the same curvature localization analysis on the numerical specimen under plane-

strain simulations considering lateral friction. To provide a direct comparison with the experiments

under finite strains, Figs.VI.2b and c present the displacement profile u2 and the normalized cur-

3Asymmetric bending stiffness occurs when the top and bottom surface of a thin layer object have different local
stiffness due to different types of inhomogeneities at each side. Not to be confused with bending of asymmetrical
sections.

4High contrast for Sun et al. (2012) implies k1 ≫ k2, with k1 and k2 the curvature of the valley and the peak,
respectively.
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Figure VI.3: a, Normalized curvature kh (h the film thickness) distribution versus position x1 attached

to material points in the (current) deformed film, under four pre-stretch values λ0 = 0.75,0.8,0.85,0.9

and fixed applied magnetic field b0 = 0.5T. Upon increase of the pre-compression, the post-bifurcation

symmetry-breaking wrinkling pattern focuses its curvature within an increasing width band. The regime

within the curvature localization analysis is concentrated corresponds to the displacement span of orange

color in the inset of the figure, i.e., the central undulation. b-e, Optical images of shape configurations

illustrating the morphological evolution of curvature localization on the experimental system for increasing

pre-compression.

vature kh respectively, along the deformed film length for applied magnetic field b0 = 0.2,0.3,0.5T

and fixed applied pre-stretch λ0 = 0.75. The surface layer primarily bifurcates into wrinkling with

the particularity that the side wrinkles are subjected to friction and thus, their deflection is lower,

e.g., b0 = 0.2T in Fig.VI.2a,b. Upon increase of the magnetic field, the middle undulation grows

deeper than the neighboring wrinkles towards the substrate, e.g., b0 = 0.3T, with the overall sur-

face shape remaining stable as the amplitudes grow, e.g., b0 = 0.5T. The post-buckling evolution

shows curvature localization (continuous line regime in Fig.VI.2b) that can be assessed by the sec-

ond derivative of the out-of-plane displacement, k = (∂ 2u2/∂x2
1)/(1+(∂u2/∂x1)

2)3/2, x1 the current

position. Upon increase of the magnetic field, the post-bifurcated mode of increasing amplitudes

supercritically localizes the curvature of the middle undulation in a decreasing band width< 3mm.

The curvature distribution evolves monotonically as a function of the kink angle θ(∼ π
2 −

∂u2
∂x1

).

To investigate whether the curvature-localizing process is sensitive to finite pre-compressions,

we plot in Fig.VI.3a the normalized curvature kh versus the current position x1 for four different

pre-compressions λ0 = 0.75,0.8,0.85,0.9 and a fixed applied magnetic field b0 = 0.5T. The post-

bifurcated shapes corresponding to b0 = 0.5T evolve from a smooth wrinkling profile under low pre-

compressionstosymmetry-breakingwrinkling(adouble-periodpair)ashigherpre-compressionsare

reached. The central undulation (orange regime in the displacement profile of Fig.VI.3a inset) pro-

gressively grows large within the neighboring wrinkles upon increase of pre-compression, as shown

by the optical images of the morphological evolution, Fig.VI.3b-e. Under a low pre-compression on
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Figure VI.4: Evolution of curvature localization in the two-field parameter space of applied pre-

compression λ0 = 0.75,0.8,0.85,0.9 and magnetic field 0≤ b0 ≤ 0.5T, corresponding to the a, experimental

and b, numerical specimens. The localization does not require substantial uniaxial compression in order

to be formed, i.e., it evolves within the entire range of low-to-high pre-stretches that provide 1D surface

modes, λ0 ≤ 0.9. Hence, the curvature localization seems to be an intrinsic feature of the MRE instability

under the existing boundary conditions.

the threshold of 2D to 1D wrinkling, λ0 = 0.9 (see Fig.II.19a), the parabolic deflection of the central

bump (Fig.VI.3e) leads to a flat plateau in Fig.VI.3a that is broadly distributed over the entire span

of study (orange regime). Subsequently, the curvature distribution monotonically increases with

pre-compression and the decrease of the kink angle (similar to Figs.VI.1b,VI.2c). In particular, the

curvature expands within a band width (< 1mm), in which the distance between the symmetric

inflection points of the curve for a given curvature value decreases with applying pre-compression.

As a result, the curvature distribution is found to be dependent on the kink angle of the localization.

In Fig.VI.4a and b, we summarize the curvature-localization amplitude in the two-field pa-

rameter space of applied pre-compression λ0 = 0.75,0.8,0.85,0.9 and magnetic field 0 ≤ b0 ≤ 0.5T,

corresponding to the experimental and numerical specimens, respectively. Both experimental find-

ings and numerical simulations undergo a supercritical curvature localization versus the applied

magnetic field b0. The flat state is a local minimum of the energy for kh = 0. As the curvature

diverges from the principal solution, its value monotonically increases as a function of the magnetic

field, undergoing distinct regimes of different slope. Each such regime corresponds to a progressive

morphological step in the localization process. In Fig.VI.4a, these regimes confirm the sensitivity

of the onset of the bifurcation modes on the pre-compression, optically observed and reported in

previous Sections (e.g., see Figs.II.18a-p). The primary (sine-wave) and secondary (double-period

sine-wave) configurations become less stable with increasing pre-compression, i.e., they evolve to

the subsequent configuration in lower magnetic fields. When λ0 = 0.75, the single-period wrinkling

mode is even bypassed with the primary mode being the period-doubling, as analyzed in Fig.VI.1.

The same behavior will be subsequently illustrated when having a magnetic substrate in Section

VI.1.
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Thepost-bucklingevolutionmanifestsnonlineargrowthof thecurvatureas thedominantcrinkle

is formed and the wrinkles in the neighborhood are flattened-out. These features are qualitatively

obtained by the numerical calculations, but are less faithful in quantitative terms when compared

with thecorrespondingexperimentalfindings. Onepossible reason for suchaquantitativedifference

could be due to the fact that capturing localizations accurately requires the use of precise imperfec-

tions that are not used in our calculations. However, the numerics confirm the monotonicity of the

curvatureevolutionversuspre-compression, which isanovel feature. It appears that the localization

does not require substantial uniaxial compression in order to be formed, i.e., it evolves within the

entire range of low-to-high pre-stretches that provide 1D surface modes, λ0 ≤ 0.9. Hence, curvature

localization seems to be an intrinsic feature of the MRE film/substrate instability under the given

boundary conditions. In Section VI.3, it will be further shown that the mechanism of formation of

crinkling is strongly related to repelling magnetoelastic interactions.

VI.2 Crinkling of MRE film on MRE substrates

In this section, we investigate the formation and post-stability evolution of crinkling modes on MRE

films of (H f =)0.8mm bonded on MRE substrates.

With the perspective of extending surface actuation to obtain novel magnetomechanically trig-

gered patterns, we investigate the (post-)stability of an entirely magnetorheological bilayer block.

The underlying idea is to create different interlayer contrasts of magnetic/mechanical properties

and trigger a wider range of surface modes than that already obtained when using a MRE film

on a passive (magnetically insensitive) foundation. To study the contribution of the magnetizable

substrate tomagnetically triggered localizations, the interlayer stiffness contrast remainsmoderate-

to-low Gs/G f = 0.3, so as to avoid the mechanical actuation of creases (for more information on the

mechanical patterning see Fig.V.4). As shown in Figs.V.2,V.4,V.5, such stiffness ratio yields 1D

smooth wrinkling when the bilayer is subjected to uniaxial in-plane buckling. However, when the

magnetoelastic nature of the bilayer under a combined magnetomechanical loading is employed, the

ratio Gs/G f is no longer sufficient in determining the bifurcation modes.

In virtue of this coupling in material properties, geometry and loading, new contrasts between

themechanical Gs,G f andmagnetic χs,χ f ,m
s
s,m

s
f properties of the layers take the lead inbifurcation.

These contrasts can be written in form of ratios, e.g., Gs/(χ f µ0 ms
f ), only if the constitutive behavior

of the materials is linear, see relevant theoretical analysis in Section IV.4. In the present numerical

investigation, we use the non-linear Langevin magnetoelastic law eq.(III.34) and thus, magnetome-

chanical property ratios are meaningless. To that end, the finite magnetic interlayer contrasts will

be simply given in the form of substrate-to-film particle volume fraction cs/c f ratios, for fixed me-

chanical contrast Gs/G f = 0.3. For clarity, it is emphasized that the particle concentrations are

used to assign magnetic properties to the layers, as deduced by means of theoretical estimates and

bounds (see Section II.8). In other words, by increasing cs/c f , we increase the magnetic sensitivity

of the substrate with respect to that of the film.
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Figure VI.5: Numerical simulations of the average bifurcation amplitude A versus the applied magnetic

field b0, under four pre-compressions λ0 = 0.73,0.8,0.9,1 applied on a MRE film of shear modulus G f =

10kPa and particle volume fraction c f = 0.2, bonded on a MRE substrate of shear modulus Gs = 3kPa

and particle volume fraction a, cs = 0.05; b, cs = 0.2. The particle concentrations are just to assign

magnetic properties to the layers, χs, µ0 ms
s, under fixed mechanical properties. c-h, Plane-strain contours

of the post-bifurcated shape configurations illustrating the evolution from wrinkling to crinkling with

increasing magnetic field. Such an evolution of curvature localization retains invariant its sequential

form of patterns within the entire range of applied pre-stretches. Instead, the amplitude of the patterns

evolves differently as a function of the pre-stretch. i-m, Optical images of the MRE bilayer block under

the magnetomechanical loading. Both experiments and numerics exhibit curvature localization in the

middle wrinkle/crinkle. The comparison between experiments and numerics is only qualitative. This is

due to strong friction observed at the lateral faces of the experimental specimen, whereas no friction is

used in the numerical calculations.

The elastomeric substrate is gradually reinforced from 0 to 40% particle volume fraction. Using

the Hashin-Shtrikman lower bound and the rule of mixtures (see Section II.6), we estimate the

magnetic susceptibility χs and the saturation magnetization µ0 ms
s of the substrate, respectively. For

the sake of keeping the number of parameters low, the shear modulus of the substrate is numerically

fixed, Gs = 3kPa. Inpractice, this canbeachievedbyusingsofter/harderpolymers for the two layers,

since the increase of the particle volume fraction affects the mechanical properties as well. The

material properties of the film are those of the prior studies, G f = 10kPa, χ f = 0.4 and µ0 ms
f = 0.5T

(c f = 20%). At this stage, the numerical simulations are carried-out in the absence of friction, so as

to illustrate the ideal response of the MRE block.

InFigs.VI.5aandb, weshowtheaveragebifurcationamplitudeAof the surface layerasa function

of the applied magnetic field b0, for particle volume fraction cs = 0.05 (or cs/c f = 0.25) and cs = 0.2

(or cs/c f = 1), respectively. The instability and post-instability patterns develop in a progressive

mannerwith increasing substratevolume fraction; range testedcs ∈ [0,0.4]. However, only these two
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distinct but representative cases will be presented. The rest of the cases are discussed briefly since

they exhibit similar responses. For low particle volume fractions cs ∈ (0,0.05), the film magnetically

buckles under a stable sine-wave configuration of four wrinkles within the entire range of applied pre-

compressions λ0 ∈ (0.73,1). This wavenumber is in agreement with that of the MRE film/passive

substrate system, cs = 0. For pre-compressions beyond the mechanical buckling point λ c
0 (≃ 0.76),

the bifurcation amplitude is non-zero for zero applied magnetic field, i.e., A 6= 0 for {b0 = 0 and

λ0 < λ c
0} (as also seen in Figs.VI.5a,b for λ0 = 0.73). For volume fractions cs ∈ [0.05,0.1), the film

bifurcates into the standard wrinkling mode within the range λ0 ∈ (λ c
0 ,1)

5. Beyond the mechanical

buckling point, the sinusoidal mode exhibits a decrease in the wavenumber (by half wrinkle) as the

amplitude grows, Fig.VI.5a. Manifested by a jump in the bifurcation amplitude at b0 ∼ 0.35T,

the change in the wavenumber is the first feature demonstrated by a magnetic substrate (slightly

magnetizable).

For volume fractions cs ∈ [0.1,0.25), the surface patterns progressively evolve from wrinkling to

crinkling within the entire range of pre-stretches tested λ0 ∈ (0.73,1), Figs.VI.5c-h. For compressive

stretches beyond the mechanical buckling, e.g., λ0 = 0.73, the change in the wavenumber (Fig.VI.5c-

d) is now followed by a crinkle evolving around the center of the film (Fig.VI.5f-h). The middle valley

of the pattern grows larger as the side wrinkles flatten-out with increasing magnetic field. This

pattern gradually results in a single long-wavelength crinkle that is spread along the entire surface

layer; that isanentirelynewmode. Suchanevolutionofcurvature-localization,Figs.VI.5e-h, retains

invariant its sequential form of patterns within the entire range of applied pre-stretches. Instead,

the amplitude of the patterns evolves differently for the various applied pre-stretches, as shown in

Figs.VI.5a,b. Nevertheless, theonsetofeachsuchpattern is insensitivetothepre-stretch, depending

solely on the magnetic field value for a given substrate cs. However, we recall that the bifurcation is

shifted in higher magnetic fields with decreasing pre-compression. Thus, if the system has not yet

bifurcated for a given magnetic field (b0 < bc
0) under a pre-stretch value, the corresponding to that

field pattern is bypassed. Eventually, the system will buckle under a following mode at b0 = bc
0. For

instance, we observe in Fig.VI.5b that the sinusoidal wrinkles do not emerge for λ0 = 0.9,1, whereas

the primary bifurcation is the localization of Fig.VI.5f. The other way round, as the particle volume

fraction cs increases under a given pre-stretch, less modes emerge versus the magnetic field 6.

Figs.VI.5i-m show optical images of preliminary experimental findings under selective loadings.

Both experiments and numerics exhibit curvature localization in the middle wrinkle/crinkle. At

this stage, the comparison between experiments and numerics is only qualitative. This is due to

strong friction observed at the lateral faces of the experimental specimen, whereas no friction is used

in the numerical calculations.

For further correlation with the experimental findings, the friction sensitivity of surface patterns

for (non-)magnetic substrates can be seen in Fig.VI.6. Here, we show the pre- and post-bifurcation

5We note that the mechanical buckling load is found λ c
0 ≃ 0.76 for 0.8mm film thickness, see Fig.V.16 for

geometrical sensitivity.
6To provide an example, for λ0 ∈ [0.8,1), the last two crinkling configurations (Figs.VI.5g-h) are formed when

cs = 0.25, whereas only the very final long-wavelength (Fig.VI.5h) configuration is formed when cs = 0.4.
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Figure VI.6: Friction sensitivity of surface patterns for passive and magnetic substrate. Pre- and post-

bifurcation morphology of the film/substrate system versus the applied magnetic field under fixed pre-

stretch λ0 = 0.78. The system is defined by fixed interlayer stiffness contrast Gs/G f = 0.3 and variable

magnetic contrast and lateral shear forces: a-g, cs/c f = 0, f2 = 8e−5N; h-n, cs/c f = 0.75, f2 = 8e−5N;

o-u, cs/c f = 0.75, f2 = 0, respectively.

morphology of the film patterns versus the applied magnetic field b0, under a fixed pre-stretch

λ0 = 0.78. The system is defined by a fixed interlayer stiffness contrast Gs/G f = 0.3, but variable

magnetic contrast cs/c f and applied lateral shear force f2. Figs.VI.6a-g consider the evolution

of the MRE film/passive substrate system, subjected to lateral forces f2 = 8e−5N that fitted the

experimental findings in Section V.2, cs/c f = 0. Prescribed to model the experimental friction,

the same tangential forces are now applied on the MRE film/MRE substrate of magnetic ratio

cs/c f = 0.75 inFigs.VI.6h-n. Inaddition, Figs.VI.6o-u include the samemagneticfilmandsubstrate

cs/c f = 0.75, in the absence of friction f2 = 0 (reference magnetic patterns). The lateral edges of

the film are subjected to forces in the opposite to the displacement (negative) direction, creating a

negative7 curvature at the film corners (Figs.VI.6h vs. Figs.VI.6o). This curvature subsequently

affects the morphology of the pattern by either vanishing wrinkling (Figs.VI.6i,p) or changing

the wavenumber (Figs.VI.6k-l,r-s) on the surface layer. However, what makes a difference is that

prescribing frictional forces leads the corners of the film to be pulled down (Figs.VI.6h-k) similarly

to the experiments (Figs.VI.5i-m). Increasing the numerical friction value is expected to provide a

better correlation with the experiments in high magnetic fields. Such a study is left for future work.

The numerical critical response of the MRE film/MRE substrate for sequentially magnetizated

substrates is summarized in Fig.VI.7. The critical magnetic field bc
0 needed to trigger the primary

instability is plotted versus the applied pre-compression λ0 for different substrate particle volume

fractions, cs = 0,3,5,10,15,20,25, 40%. A non-monotonic critical response is observed with in-

creasing volume fraction in this three-parameter phase diagram. Starting from the passive case,

cs = 0, the incremental increase of the volume fraction delays the onset of bifurcation to higher

7Negative in the sense that the layer bends towards the interior compartment.
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Figure VI.7: Numerical phase diagram of a MRE film bonded on a MRE substrate in a three-parameter

field. The critical magnetic field needed to trigger the primary instabiliry bc
0 is plotted as a function of the

applied pre-compression λ0, for different substrate particle volume fractions cs = 0,3,5,10,15,20,25,40%.

The particle concentrations are used to assign magnetic properties to the layers, χs,µ0 ms
s, under fixed

mechanical properties. A non-monotonic trend of the onset of buckling as a function of the particle volume

fraction is obtained, also demonstrated for three pre-stretches λ0 = 0.8.85,0.9 in the inset of the figure.

Such a behavior is representative for magnetoelastic bilayers under simulation parameters: H f = 0.8mm,

Hs/H f = 49, Gs = 3KPa, G f = 10KPa, χ f = 0.4, µ0ms
f = 0.5T (c f = 20%).

magnetic fields b0 for a given pre-stretch λ0. However, for cs ≥ 10%, further increase of the particle

concentration shifts down the critical point to sequentially lower magnetic fields. As the volume

fraction increases, the critical magnetic field monotonically reaches saturation within a wider range

of applied pre-stretches. At very large volume fractions, e.g., cs = 40%, the long-wavelength crinkle

instability (exclusive mode at this cs) is triggered by tiny magnetic fields bc
0 ≤ 0.1T, which nearly

saturates throughout the entire pre-stretch regime. This non-monotonic evolution of the onset of

buckling can be also seen in the inset of Fig.VI.7, for three pre-stretches λ0 = 0.8.85,0.9. Moreover,

the mechanical buckling point, i.e., λ c
0 ≃ 0.76 for b0 = 0, is invariant to the substrate volume fraction.

To investigate the surface patterns triggered on the composite silicones that we can practically

fabricate, we deduce the magnetic and mechanical material properties of the substrate from homog-

enization estimates and bounds, respecting the restrictions of our Ecoflex materials as discussed

in Section II.8. Given the properties of the film already fabricated and used in the magnetome-

chanical experiment, i.e., G f = 1MPa, χ f = 0.4 and µ0 ms
f = 0.5T at volume fraction c f = 20%, the

magnetic substrate can be reinforced up to cs = 18% if mechanical creasing is not desirable8. The

corresponding maximum magnetic contrast in terms of susceptibility ratio is then χs/χ f = 0.9 from

Fig.II.21a, with Gs = 5.5kPa and χs = 0.4 from Fig.II.21b. Respecting these bounds, two cases

of cs = 10% and cs = 15% were explored under a stiffness contrast Gs/G f = 0.38. The numerical

8i.e., Gs/G f ∈ (0,0.6] to prevent Biot’s surface localizations (see for such localizations in Fig.V.4).
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findings revealed a stable sawtooth (crinkle) response of four peaks, growing large in amplitude with

increasing magnetic field and pre-compression. Such an instability mode was also found to coexist

with the pre- and post-instability deformation mode of the system under a curvature that increases

with increasing substrate volume fraction (see more in Section VI.3).

VI.3 Numerical study of crinkling and film thickness

Increasing the slenderness ratio (effective length-to-thickness) of the film was shown to increase

the wrinkling wavenumber in Section V.5 (for an infinitely deep substrate). Here, we explore

the evolution of crinkling patterns on magnetic bilayers, providing enough space (or a favorable

slenderness) to the mechanisms to develop far from the side boundaries (lateral edges). Therefore,

we carry out numerical simulations of a 40× 40 (mm2) MRE film/substrate block under a thinner

(H f =)0.2mm film, varying the magnetic interlayer contrast cs/c f for a fixed shear moduli ratio

Gs/G f = 0.3. The film is once more modeled as the experimental system, with G f = 10kPa, χ f = 0.4,

µ0 ms
f = 0.5T (c f = 20%). The simulations are followed by a post-processing curvature localization

analysis to illustrate the formation and evolution of crinkling.

We start the analysis by plotting in Fig.VI.8 the bifurcation amplitude A of the patterns as a

function of the applied magnetic field b0, for two filler contrasts cs/c f = 0.75,1.25 (or cs = 0.15,0.25)

and four different pre-stretches λ0 = 0.78,0.8,0.83,0.85. The bifurcation amplitude is defined as

the distance between the highest peak and the lowest valley of the evolving pattern. A feature

initially observed in the thicker film specimen (e.g., Fig.VI.5 for cs/c f = 1 and λ0 = 0.9,1) is now

illustrated in clarity: the pre-bifurcation solution exhibits non-uniform displacements versus the

applied magnetic field. The primary divergence occurs upon a non-zero solution where A 6= 0 for

b0 < bc
0. That implies that the film is not flat before bifurcation, but is pulled upwards from the

corners in a quartic manner versus the external field (see Fig.VI.16 in Appendix).

Such a non-intuitive response is related to shape effects (e.g., see Diguet et al., 2010, Lefèvre

et al., 2017) coming from the magnetic nature of the bulky substrate (not observed for passive

foundations). The bifurcation (divergence) point is evident though, shifted in lower magnetic fields

with increasing pre-compression λ0 and magnetic ratio cs/c f . However, such amplitude measure-

ments can only be seen qualitatively: they trace the trends of the critical response and illustrate the

nonlocal behavior. This is because the magnetostriction of the system evolves as well throughout

the post-bifurcation, until magnetization saturation is reached (see clearer pattern evolution in

Figs.VI.9,VI.10). As a result, the measurements of the post-bifurcated amplitude account for this

long-wavelength deflection9.

For magnetic ratio cs/c f = 0.75 and pre-compression λ0 = 0.78, we observe in Fig.VI.8 the se-

quential loss of the formed wrinkles, displayed as jumps in the bifurcation amplitude versus the

applied field. This feature is in consistence with the behavior of the thicker film specimen, Fig.VI.5.

9e.g., in the inset configuration of Fig.VI.8 for cs/c f = 1.25, wrinkling grows upon a slope coming from the
curvature of the magnetostrictive bending.
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Figure VI.8: Numerical simulations and post-processing measurements of the film deflection amplitude A

as a function of the applied magnetic field b0, for two substrate/film magnetic contrasts cs/c f = 0.75,1.25

and four different pre-stretches λ0 = 0.78,0.8,0.83,0.85. Part of the numerical morphological patterns is

shown under selective loads {λ0,b0}, with the corresponding wavenumber (number of wrinkles or crinkles)

noted. Simulation parameters: H f = 0.2mm, Hs/H f = 199, Gs = 3KPa, G f = 10KPa, χ f = 0.4, µ0 ms
f = 0.5T

(c f = 0.2).

The change in the wavenumber coexists with the gradual switch of wrinkling to sawtooth configura-

tions (see also Figs.VI.11a,VI.15a,c). The crinkles subsequently evolve into a stable configuration

upon further increase of the applied magnetic field. This process involves the relaxation of the side

crinkles under the influence of increasing shape effects and magnetic fields, until the equilibrated

mode upon saturation magnetization (of eight crinkles in this case) is formed.

When the substrate is more magnetizable than the film, cs/c f = 1.25, the structure in Fig.VI.8

buckles in lower magnetic fields, in agreement with the phase diagram in Fig.VI.7. The patterns now

manifest lower wavenumbers than those in bilayers of lower magnetic contrasts, e.g., cs/c f = 0.75.

This is also in agreement with the previous (thicker film) analysis in Section VI.2. For λ0 = 0.8

for instance, we find that the bifurcation emerges with eight sine-waves progressively decreased to

four sawteeth (see similar morphological patterns in Fig.VI.10 1m-1o for λ0 = 0.78). The bending

deflectionof thefilmis regardedasadeformationmode(coming frommagnetostrictive shapeeffects)

and not an instability. This can be easily verified by checking the positive definitess of the jacobian

matrix before primary wrinkling. When wrinkles emerge, that is the first time a non-positive

eigenvalue appears. In the pre-bifurcation, the curvature seems to be insensitive to the applied

pre-compression.

When the substrate is magnetic, the reponse is found to be dependent on its magnetic prop-

erties. The new features observed are a) the shape-driven curvature and b) the significantly high

concentration of the magnetic field at the corners of the film. The curvature localization is related to

pronounced extensive deformations (E22 > 0) at the lateral edges of the substrate that pull upwards
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the corners of the film versus the magnetic field (visualized in strain contours of Fig.VI.10). These

deformations and magnetic concentrations are found to be increasing functions of the magnetic

interlayer contrast cs/c f and the applied pre-compression λ0. The response of the MRE block is

governed by such magnetostrictive shape effects 10 that are due to the uniform field applied far for

the specimen. The present boundary value problem is definitely different from the theoretical bifur-

cation analysis that does not take into consideration such effects. Prescribing a negative11 curvature

(through lateral negative forces for instance) on the initial configuration of the numerical specimen

gives insight to the sensitivity of the evolution of the modes on the shape effects, see discussion in

Fig.VI.6.

VI.3.1 Morphological strain maps for different pre-compressions

In Figs.VI.9,VI.10, several cases of crinkling evolution paths are shown in the triple parameter-

space of pre-compression λ0, magnetic field b0 and magnetic interlayer contrast cs/c f (for fixed

stiffness ratio Gs/G f = 0.3). These morphological maps illustrate when the patterns are formed

and how long they stay active versus the magnetic field, under representative combinations of pre-

stretches and magnetic interlayer contrasts. In Figs.VI.9 1a-1l and 2a-2l, we show contours of the

transverse component of the Green-Lagrange strain E22 versus the applied magnetic field b0, for

magnetic contrasts cs/c f = 0.75,1. For each magnetic ratio cs/c f , three representative (per case)

pre-stretches are considered.

AsseeninFig.VI.9, theMREbilayersystemsdisplayarichvarietyofpost-bucklingpatterns. The

primary instability always develops on the top of the pre-bifurcated curvature. Once the primary

waves appear, they start diminishing from the sides to the center of the film upon increase of the

magnetic field. Simultaneously, the rest of the undulations grow their amplitude and switch into

crinkles early in the post-bifurcation regime. To do so, the curvature around the extrema (peaks

and valleys) of the undulations is localized, leading to the formation of sawtooth configurations (see

also deformed configurations in Figs.VI.11a,VI.15a,c).

The patterns observed in VI.9 can be significantly varied from short (1h,1l) to long wavelength

(1d,2d,2h,2l) modes that are sensitive to pre-stretch λ0. Low pre-compressions (or high stretches

λ0) delay the instability to higher magnetic fields (Figs.VI.9 1b,1f,1j). The modes developed un-

der low axial loading illustrate clearer the evolution of the magnetostrictive curvature, until the

critical magnetic fields are reached (Figs.VI.9 1a-1d,2a-2d). Large pre-compressions cause the in-

stability to emerge at lower fields, but under a higher wavenumber (Figs.VI.9 1b,1f,1j). It is easily

observed that the greater the pre-compression, the faster the critical wavenumber diminishes in the

post-bifurcation (Figs.VI.9 2b-2d,2f-2h,2j-2l). That implies that the uniaxial loading advances the

curvature localization (also shown for the experimental specimens in Figs.VI.3,VI.4) and thus, the

undulations in the surroundings of the central crinkle are faster decompressed. In view of Fig.VI.11b

10Such magnetostrictive effects have been also observed in the MRE film/passive substrate (zero magnetic
interlayer contrast) but in a much milder manifestation, see Fig.V.7.

11negative in the sense that the film bends towards the interior compartment. By definition, a positive curvature
is visualised by an arrow, which points from the concave side to the convex side of the curved beam.
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FigureVI.9: Numerical contours of the transverse component of the Green-Lagrange strain E22 versus the

applied magnetic field b0, for fixed mechanical interlayer contrast Gs/G f = 0.3 and magnetic contrast 1a-

1l, cs/c f = 0.75; 2a-2l, cs/c f = 1. For each interlayer contrast, three representative (per case) pre-stretches

are presented. Fixed simulation parameters: H f = 0.2mm, Hs/H f = 199, Gs = 3KPa, G f = 10KPa, χ f = 0.4,

µ0ms
f = 0.5T (c f = 0.2).

showing the spatial distribution of the transverse strain E22 along the film, the deformation at the

lateral edges of the specimen increases with applied pre-compression. In turn, such extensive mag-

netostriction focuses more the layer curvature.

Atsomeappliedfieldb0, themodestabilizesintoanequilibratedcrinkledshape(Fig.VI.9 1d,1h,1l,

2d,2h, 2l). Such a shape is a multiple interfaces shape configuration of straight segments (crinkles),

whose wavelength depends on the pre-compression under a given magnetic contrast cs/c f . For

cs/c f = 0.75 and λ0 = 0.8, a deep crinkle develops around the center of the layer (point of maximum

deflectionoftheglobalmode)surroundedbysmalleramplitudecrinkles,Figs.VI.9 1i-1l. Suchapost-

buckling configuration of multiple interfaces emerges in lower magnetic ratios (0.5 < cs/c f ≥ 1) and

requires substantial pre-compression (λ0 ≤ 0.85).

The patterns are also sensitive to the magnetic interlayer contrast. Increasing the magnetic

ratio cs/c f shifts the instability to lower magnetic fields b0 but larger strains λ0. For instance, when

cs/c f = 1, the first strain at which instability occurs is λ0 = 0.88 (Fig.VI.9 2p). In contrast, when

cs/c f = 0.75, the system manifests instabilities already at λ0 = 0.93 (Fig.VI.9 1d). When cs/c f = 1

and λ0 > 0.88, only the magnetostrictive deformation mode appears within b0 ∈ [0,3]T. This feature

will be further illustrated in the context of Figs.VI.10.
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VI.3.2 Morphological strain maps for different interlayer magnetic contrasts

In Figs.VI.10 1a-1t and 2a-2t, we present contours of the transverse component of the Green-

Lagrange strain E22 versus the applied magnetic field, for pre-stretches λ0 = 0.78 and λ0 = 0.83,

respectively. For each pre-stretch, five representative magnetic ratios cs/c f = 0,0.75,1,1.25,2 are

considered for fixed film concentration c f = 0.2. Following parametric studies, the magnetic in-

terlayer ratio is set to be cs/c f ≥ 0.25, in order for magnetostrictive shape effects and crinkles to

be observed. These two features emerge together in the simulations, implying that crinkling and

curvature localization are related (see also curvature localization analysis in Fig.VI.14).

When the substrate reinforcement is relatively small cs/c f < 0.25, the behavior is qualitatively

similar to that of the passive substrate. The primary wavenumber is a decreasing function of the

magnetic contrast cs/c f (Figs.VI.10a,e,i,m,q). As seen in thecontours, increasing the substratefiller

leads to higher deformations at the lateral edges of the substrate and that, in turn, focuses more the

overall curvature of the upper surface of the specimen (see similar effects in Lefèvre et al. (2017)).

That process leads to lower wavenumbers. Following this critical trend under a fixed pre-stretch, the

sequential post-buckling patterns are triggered by lower magnetic fields with increasing magnetic

contrast cs/c f . As a result, a surface configuration can be triggered by more than one combinations

of magnetic loading and substrate properties, e.g., Figs.VI.10 2k-2l,2m-2n.

The crinkling post-buckling behavior changes dramatically for large substrate reinforcements.

A single long-wavelength crinkle (Fig.VI.10 1p) emerges in the post-bifurcation, especially when

large pre-compressions are considered, λ0 ≤ 0.83. As such crinkle forms, it relaxes the compression

in the film on both sides of itself and thereby, the amplitude of the crinkles in the neighborhood is

reduced. Such a configuration is equilibrated and is shifted to lower fields with increasing magnetic

interlayer contrast. For instance, when cs/c f ≥ 1.25, it emerges at magnetic fields that are slightly

larger than the bifurcation field, Fig.VI.10 1m-1p,2m-2p. This long-wavelength localization mode

is observed in all simulations performed in the range of substrate reinforcement cs ∈ [0.2,0.25] (or

cs/c f ∈ [1,1.25]) and λ0 ≤ 0.85.

The larger themagnetic contrast cs/c f , thegreater thepre-compression λ0 atwhich the (magnet-

ically triggered) instabilities start toemerge. Suchadistinctivecase is seen inthemorphologicalmap

in Fig.VI.10 2q-2t for cs/c f = 2: when λ0 ≥ 0.85, the structure solely develops the magnetostrictive

deformation mode, growing large upon the activation of the magnetic field. To obtain such a mode

requires substantial substrate reinforcement and not large pre-compressions. However, the higher

the magnetic ratio, the more insensitive it becomes to the pre-compression. This shape deformation

is different from the long-wavelength crinkle mode, which requires λ0 ≥ 0.78 to be magnetically

triggered (Fig.VI.10 1q-1t). The latter emerges at magnetic fields that are slightly larger than the

critical field, see Figs.VI.10 1q-1t.
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FigureVI.10: Contours of the transverse component of the Green-Lagrange strains E22 versus the applied

magnetic field b0, for five interlayer magnetic contrasts cs/c f = 0,0.75,1,1.25,2 (under a fixed mechanical

ratio Gs/G f = 0.3) and two pre-compressions: 1a-1t, λ0 = 0.78 and 2a-2t, λ0 = 0.83. Fixed simulation

parameters: H f = 0.2mm, Hs/H f = 199, Gs = 3KPa, G f = 10KPa, χ f = 0.4, µ0 ms
f = 0.5T (c f = 0.2).

VI.3.3 Local magnetomechanical fields

In Fig.VI.11, we present a full-field numerical analysis of the thin MRE film bonded on a MRE

substrate under magnetic contrast cs/c f = 0.75. Figs.VI.11a-b report the transverse component

150



VI.3. NUMERICAL STUDY OF CRINKLING AND FILM THICKNESS

Coordinates in reference configuration, X1 (mm)

-20 -15 -10 -5 0 5 10 15 20
8

10

12

14

16

b=0.32b0=0.32T

-20 -15 -10 -5 0 5 10 15 20
9

11

13

15

b=0.3b0=0.3T

-20 -15 -10 -5 0 5 10 15 20
10

11

12

13

b=0.26b0=0.26T

-20 -15 -10 -5 0 5 10 15 20
10

10.5

11

11.5

b=0.13 b=0.2b0=0.13T b0=0.2T

D
is

p
la

c
e
m

e
n
t,

 u
2
 (

m
m

)

Coordinates in reference configuration, X1 (mm)

-20 -15 -10 -5 0 5 10 15 20
0.06

0.1

0.14

0.18

0.22

b=0.3

-20 -15 -10 -5 0 5 10 15 20
0.11

0.16

0.21

b=0.26b0=0.26T

-20 -15 -10 -5 0 5 10 15 20
0.18

0.23

0.28

b=0.13 b=0.2b0=0.2Tb0=0.13T

-20 -15 -10 -5 0 5 10 15 20
0.02

0.1

0.18

b=0.32

b0=0.3T

b0=0.32T

S
tr

a
in

, 
E

2
2

Coordinates in reference configuration, X1 (mm)

-20 -15 -10 -5 0 5 10 15 20

-0.06

-0.03

0

0.03

0.06

b=0.13 b=0.2b0=0.2Tb0=0.13T

-20 -15 -10 -5 0 5 10 15 20

-0.08

-0.04

0

0.04

0.08

b=0.26b0=0.26T

-20 -15 -10 -5 0 5 10 15 20

-0.09

-0.045

0

0.045

0.09

b=0.3b0=0.3T

-20 -15 -10 -5 0 5 10 15 20

-0.1

-0.05

0

0.05

0.1

b=0.32b0=0.32T

M
a

g
n

e
ti
z
a

ti
o

n
, 

m
1
 (

A
/m

)

b0=0.26T

b0=0.3T

b0=0.32T

Coordinate in reference configuration, X1 (mm)

-20 -15 -10 -5 0 5 10 15 20
0.05

0.1

0.15

0.2

St=600 St=850b0=0.13T b0=0.2T

-20 -15 -10 -5 0 5 10 15 20
0.16

0.2

0.24

St=1100

-20 -15 -10 -5 0 5 10 15 20
0.2

0.22

0.24

0.26

0.28

0.3

St=1360

-20 -15 -10 -5 0 5 10 15 20
0.18

0.22

0.26

0.3

St=1250M
a
g
n

e
ti
z
a
ti
o
n
, 
m

2
 (

A
/m

)

b0=0.26T

b0=0.3T

b0=0.32T

Figure VI.11: Numerical results of the spatial distribution of the a, transverse displacement u2; b,

transverse Green-Lagrange strain E22; c, in-plane magnetization m1; d, transverse magnetization m2 along

a contour line of reference coordinate X1 within the film. The plots correspond to magnetic interlayer

contrast cs/c f = 0.75 (fixed mechanical ratio Gs/G f = 0.3), pre-stretch λ0 = 0.8 and different applied

magnetic fields b0 = 0.13,0.2, 0.26,0.3,0.32T. Fixed simulation parameters: H f = 0.2mm, Hs = 39.8mm,

G f = 10KPa, Gs = 3KPa, χ f = 0.4, µ0ms
f = 0.5T (c f = 0.2).

of the displacement u2 and the corresponding Green-Lagrange strain E22 along a reference (at

40mm)contour linewithin thefilm. Figs.VI.11c-dpresent the twocomponentsof themagnetization

m = (m1,m2), plotted along the same reference line. The quantities are considered for pre-stretch

λ0 = 0.8 and five magnetic field values, b0 = 0.13, 0.2,0.26,0.3,0.32T. The depicted plots correspond

to the contours in Figs.VI.9 1i-1l.

The smallest external magnetic field b0 = 0.13T corresponds to the pre-bifurcation regime of

the system. In Fig.VI.11a, the displacement profile u2 illustrates the non-uniformly deformed layer

at b0 = 0.13T. The primary instability to emerge is wrinkling on the top of the magnetostrictive

curvature (b0 = 0.2T). Upon further increase of the magnetic field, the wrinkles progressively evolve

into crinkles. Such a process involves the localization of the curvature around their extrema, as

seen for b0 = 0.26T and b0 = 0.3T. The pattern experiences a decreasing wavenumber of increasing

amplitudes with increasing magnetic field. The relaxation of the side crinkles is related to the

increasing deformation of the lateral edges within the substrate versus the applied field (shown in

Figs.VI.9,VI.10).

The evolution of wrinkling to crinkling is also outlined by variations of the strain field E22 in

Fig.VI.11b. For relatively small magnetic fields b0 < 0.26T, the strain is following a smooth and

periodic (apart from the boundaries) trend. When b0 = 0.26T, the regime around the peaks of the
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pattern manifests a rapid spatial variation of strain, maintaining nonetheless the periodicity of the

trend. Within the straight segments of the pattern (not close to the extrema), the strain is relatively

smooth and varies monotonically. Between two closest peaks in u2, E22 increases until the valley is

attained and then decreases to the next peak. For b0 > 0.26T, the translational symmetry of the

pattern breaks about X1 ≃ 0. The central undulation manifests higher strain than the rest, while the

layer localizes its curvature about the center of the layer (see also curvature localization analysis in

Fig.VI.14). At b0 = 0.3T, a change in the wavenumber breaks the reflection symmetry (three versus

four crinkles at the two opposite sides of the folded film). At b0 = 0.32T, a sequential change in the

wavenumber restores that symmetry about X1 = 0.

From the displacement u2 and corresponding strain E22 plots in Figs.VI.11a,b, it is evident that

thepatternis formedintwoscales: i)theshort-wavelengthcrinklesandii)theshape-drivencurvature

localization of the entire film. As the magnetic field increases, the film is stretched so as the peaks

approach the valleys so closely that they form very small segments of negative slope, see deformed

configuration in Fig.VI.11a, b0 = 0.32T. These small segments concentrate rapid variations of strain

with increasing magnitude versus the magnetic field. The long (straight) segments of positive slope

experience a non-monotonic variation of strain that first increases and then decreases, as the next

small segment is approached.

The magnetization m1 is antisymmetric and oscillates between local minima and maxima. The

system develops the m1 component perpendicular to the applied field b0(≡ b2), as a result of the

deformed pattern itself, which is not exactly perpendicular to the applied field (see also Fig.VI.12e).

In the right half plane, m1 alternates between positive maxima, and minima that start negative at

X1 ≃ 0 and switch sign as one approaches the right edge. The oscillation of the other half (left) plane

is described by the antisymmetric trend. Such a feature is a direct consequence of the magnetic

substrate, since m1 is entirely symmetric for a magnetically insensitive substrate, see Fig.V.15.

The antisymmetry itself implies that apart from the level of oscillatory undulations, a larger-scale

magnetic pattern is formed between the two opposite sides about the point of maximum deflection,

X1 = 0. This will be better illustrated for higher substrate concentrations in Fig.VI.15d.

The amplitude and the period of m1 oscillation increase with the magnetic field b0. As the

crinkling pattern evolves for b0 > 0.26T, m1 tries to be constant along the (long) segments of positive

slope on the crinkled pattern (the wrinkled pattern can be seen in Fig.VI.11a). In these regimes, the

solutionisrelativelysmoothfar fromthejointpoints(corners)withtheneighboring(small) segments

of negative slope. When the joint points are reached, the solution makes a jump to opposite sign

values. At the right (left) half plane, the attained negative (positive) minima (maxima) correspond

to the small negative slope segments. That implies that these regimes are alternating magnetized

from the longer positive slope segments. This is not the case as one approaches the edges, where the

film is under oscillatory values of the same sign. When the joint point of the two central co-axially

magnetized segments is reached, the solution in m1 alternates signs (blue window in Fig.VI.11c).

The transverse component m2 is positive along the reference length of the layer, as it prefers to

align with the direction of the applied magnetic field b0(≥ 0). However, m2 also oscillates around
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Figure VI.12: Wrinkling (green) versus crinkling (red). a, Transverse component of displacement u2; b,

in-plane component of magnetization m1; c, curvature localization k; d, transverse component of magne-

tization m2 of the middle undulation on the surface layer versus the reference position. e, Magnetization

vector m plotted along a contour (reference position) line within the film and on the top of the deformed

crinkled configuration.

the small linear segments of negative slope of the pattern. The highest magnitude of the field is at

the edges of the film. The depicted u2, E22 and m2 fields are not necessarily reflectional symmetric

about X1 = 0, see b0 = 0.3T. This owes to the unequal change of the wavenumber between the

regimes X1 = [−l/2,0) and X1 = (0, l/2], l = 40 (mm) the length of the film. When the joint point

of two co-axially magnetized segments is reached, the solution in m2 makes a jump (blue window in

Fig.VI.11d). These variations in the fields leading to a crinkle are also illustrated in Fig.VI.12a-d.

There, the local fields of the central crinkle are plotted versus those of a wrinkle formed under a

lower magnetic field. In this way, the evolution of the fields outlines the mechanisms of the gradual

pattern change, i.e., curvature localization and gradually sharper magnetic interfaces versus the

applied magnetic field.

In Fig.VI.12e, we plot the magnetization vector m along a contour line X2 = 19.89 (mm) within

the film, on the top of the deformed crinkled configuration. The pattern corresponds to a MRE

bilayer of magnetic contrast cs/c f = 0.75 under applied fields λ0 = 0.8 and b0 = 0.33T. Once more,

the transverse component m2 aligns with the externally applied magnetic field. The component

m1 develops perpendicular to the applied magnetic field. The magnitude of component m2 is much

larger than that of m1
12 and thus, the vectors are all nearly pointing the out-of-plane direction.

The linear segments of the pattern are found co-axially magnetized to their neighbors. As seen in

the bottom figure of Fig.VI.12e, the magnetization repels the two opposite segments of the central

12The difference between m1 ∼ 0.03 and m2 ∼ 0.25 (A/m) in Figs.VI.12a,b is significant.
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VI.3. NUMERICAL STUDY OF CRINKLING AND FILM THICKNESS

crinkle and contracts them with the smaller segments (of negative slope) of the neighboring crinkles.

The mechanism of crinkling formation is not straightforward to be explained from the numerical

solutions. The local fields are structured in such a way to minimize the total energy. That permits

the creation of magnetic walls, where the magnetization jumps accross their interface. These walls

correspond to the joint points (local extrema) between neighboring segments of the pattern and tend

to form sharp interfaces (regimes where the rapid spatial variations occur, Figs.VI.11,VI.15). In

such regimes, the continuity is possibly not satisfied and charges are accumulated (not divergence-

free points). However, the closer one gets to the edges of the film, the smaller the difference between

the (opposite sign) oscillatory values of neighboring domains becomes, until the smaller (absolute)

value switches sign. Then, the charges in the neighborhood relax and thus, the crinkles flatten-out

(Figs.VI.15b,d). This process spreads from the edges to the center of the film versus the applied

magnetic field. This implies that the magnetization and the morphological crinkling are closely

related. The solution far from the walls is relatively smooth, as also seen in Figs.VI.11c,VI.15b,d.

VI.3.4 Wrinkling to crinkling as a cascade of bifurcations

The evolution of the post-buckling behavior is defined by sequential patterns of reducing wavenum-

ber and curvature localization. To better understand the post-bifurcated response, we present in

Fig.VI.13 the magnetization component m1 at several points located within the film. The magne-

tization m1 is traced versus the applied magnetic field b0 under a pre-stretch λ0 = 0.8, for magnetic

interlayer contrast cs/c f = 0.75 and mechanical shear moduli ratio Gs/G f = 0.3. Each curve corre-

ponds to a given nodal (material) position, depicted by the same color on the deformed film contours
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Figure VI.13: Magnetization component m1 at five material points located within the film. The curves

are plotted for a MRE bilayer of magnetic interlayer contrast cs/c f = 0.75 at pre-stretch λ0 = 0.8. Each

magnetization curve correponds to a given nodal (material) position, depicted with the same color on the

deformed film contour of magnetization m1.
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of magnetization m1 in Figs.VI.13a-g. Each contour corresponds to a given applied magnetic field

b0, marked in the magnetization plot.

Themagnetizationm1 increases linearlywiththemagneticfieldalongthepre-bifurcationregime,

b0 < 0.15T.Whenb0 = 0.15T,theprimarybifurcation(wrinkling inFig.VI.13a)causesafirstchange

in the slope of the nodal magnetization m1 curves. For b0 > 0.15T, the curves undergo sequential

and abrupt changes of slope. At each magnetic field for which such a change occurs, the wavelength

of the wrinkles (or subsequently the crinkles for higher fields) increases, Figs.VI.13a-g. Considering

the positive definitess of the jacobian matrix, these sudden changes of slope correspond to a new

zero eigenvalue. That implies that the system undergoes multiple sequential bifurcations from the

primary wrinkles to the crinkles.

The primary instability corresponds to the first non-positive eigenvalue of the stiffness matrix

at b0 = 0.15T. To do so, the smallest eigenvalue of the system incrementally decreases, until it

reaches a first minimum close to zero. Subsequently, this eigenvalue increases and another one

(corresponding to a new nodal point) decreases again towards a second minimum. Then, that is

defined as a secondary instability point at b0 = 0.23T. This process of sequentially new minima

is followed until the equilibrated mode is reached at b0 = 0.32T. To obtain such clear variation of

eigenvalues corresponding to unique paths (one eigenmode per time), one needs to run saturatedly

convergedsimulationsofvery largenumberof timesteps (∼ 4000). Thematerialpoints thatareclose

totheedgesdisplaymagneticbifurcationsof increasingmagnitude. Thepointsclosertothemiddleof

the film display bifurcations of alternating signs. Such an oscillating (+ and -) magnetization within
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Figure VI.14: Numerical post-bifurcation curvature localization of the MRE film/MRE substrate block

(H f = 0.2mm film thickness). Curvature k is plotted versus position X1 attached to material points in

the (reference) undeformed film, under four magnetic field values b0 = 0.2,0.25,0.3,0.35T and a pre-

stretch λ0 = 0.8. The bifurcation primarily emerges under a wrinkling mode. Upon further increase of

the magnetic field, b0 ≃ 0.3T, the middle undulation grows deeper than the neighboring wrinkles and

gradually evolves into a stable crinkle for b0 = 0.35T. The curvature of the middle undulation is localized

within a decreasing band width. Fixed simulation parameters: H f = 0.2mm, Hs = 39.8mm, G f = 10KPa,

Gs = 3KPa, χ f = 0.4, µ0 ms
f = 0.5T (c f = 0.2).
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the post-bifurcated film illustrates the formation of magnetic walls that decay as one approaches

the edges.

To provide a direct relation with the magnetization patterns analyzed under pre-compression

λ0 = 0.8 in Figs.VI.12,VI.13, we carry out a curvature localization analysis on the numerical spec-

imen under the same loading. In Fig.VI.14, we plot the spatial distribution of the curvature k

corresponding to a central valley of the film. The curvature is plotted along the reference coordinate

(position) X1 (attached to material points in the undeformed film configuration) and for increasing

applied magnetic fields b0. As expected, the primary wrinkles focus their curvature into a decreas-

ing band width, as a central crinkle grows large upon increase of the magnetic field. The deformed

configurations of the MRE film/MRE substrate are also shown in Fig.VI.14.

VI.3.5 Numerical local fields: pre-compression and magnetic contrast sensi-

tivity

In Fig.VI.15a,b, the displacement u2 and the magnetization m1 are reported for the same magnetic

contrast cs/c f = 0.75 as in Fig.VI.11a,c, but lower applied pre-compression λ0 = 0.93. Under the

same applied field values b0, the sensitivity of the fields on pre-compression can be better illustrated.

In the pre-bifurcation regime, the evolution of the magnetostrictive curvature can be seen from

the displacement profile u2 for b0 = 0.2T and 0.26T. The displacements are significantly lower with

respect to Fig.VI.11a under λ0 = 0.8. The primary instability of the buckling system is under four

wrinkles, switching to three stable crinkles for b0 > 0.3T. The in-plane magnetization m1 displays

antisymmetry already from the pre-bifurcation regime. At the half right (left) plane, the oscillation

of m1 is between positive maxima (negative minima), and minima (maxima) that switch sign from

negative (positive) to positive (negative) as the oscillatory pattern approaches the edge. For b0 =

0.32T,thechangeinthewavenumberisdepictedinallfields,althoughtheymaintaintheirreflectional

symmetry about X1 = 0. The magnetization m1 saturates for b0 ≥ 0.32T. The field along the positive

slope segments of the pattern is piecewise constant. The valleys (peaks) of the pattern at right

(left) plane correspond to the small segments of negative slope, alternating magnetized from their

neighboring segments. The equilibrated configuration for λ0 = 0.93 manifests less crinkles than

that of the prior pre-compression, λ0 = 0.8. However, these crinkles seem to be more resistant to

relaxation versus the magnetic field, than those under the higher axial loading.

Fig.VI.15c,d reports the same fields for applied pre-compression λ0 = 0.8 and a higher magnetic

contrast cs/c f = 1.25, so as to illustrate the effect of substrate concentration. Increasing substrate

filler leads to lower wavenumbers. The pattern manifests almost eight wrinkles (b0 = 0.13T) that

very soon reduce to six (b0 = 0.17T), before turning into two crinkles (b0 = 0.2T). In turn, the

pattern finally stabilizes under a single long-wavelength localization (b0 = 0.32T). The equilibrated

configuration in Fig.VI.15b is totally different from that under the same loading (λ0 = 0.8,b0 =

0.32T) but lower interlayer magnetic contrast (cs/c f = 0.75) in Fig.VI.11a. For b0 > 0.2T, the

magnetization m1 relaxes the charges in each half plane. The long-wavelength crinkle is defined by a

nearly constant antisymmetric m1 pattern (b0 = 0.32T). The central joint point (at X1 = 0) of highly
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Figure VI.15: Numerical results of the spatial distribution of the a,c, transverse displacement u2; b,d,

in-plane magnetization m1 along a contour line of reference coordinate X1 within the film. The plots

correspond to a-b, magnetic interlayer contrast cs/c f = 0.75 and pre-stretch λ0 = 0.93; c-d, magnetic

interlayer contrast cs/c f = 1.25 and pre-stretch λ0 = 0.8 under four different applied magnetic fields.

localized curvature connects two regions of uniformly but similarly magnetized domains that repel

each other. Now, the field is entirely positively (negatively) magnetized at the right (left) side of

the localization (that is a new magnetic pattern). Such a pattern evolution occurs to reduce the

total energy. The long-wavelength crinkle has the magnetic charges relaxed at its opposite sides,

but concentrated at the joint point in the middle (discontinuity).

VI.4 Concluding remarks

Inthischapter,wepresentthegradualandcontinuousevolutionofwrinkling(sinusoidal)tocrinkling

(sawtooth) patterns. The analysis of the MRE film/MRE substrate reveals focused distributions

of curvature and magnetization spatial oscillations between alternating values. The curvature

localization is closely related to magnetostrictive shape effects that lead to symmetry-breaking

instabilities. This curvature is a non-local deformation feature, in the sense that it captures the

entire length of the surface layer. It also occurs as a result of the high concentration of the magnetic

properties at the corners of the film. When the magnetic field is zero, the radius of that curvature is

infinite,whileasthefieldincreases, theradiusdecreasestozero. Here,weshowthattheprimarymode

for each interlayer contrast is wrinkling, progressively switching to crinkling under the influence of

the growing magnetostrictive deflection. Beyond the first bifurcation point, we report sequential

bifurcations upon increase of the applied magnetic field. The corresponding complex patterns are
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generated by sequential bifurcations of the equilibrated wrinkled state. The wrinkle-crinkle process

might provide a fashion of concealing the potential energy.

At the same time, the co-axial magnetization interaction between neighboring segments is pe-

nalized by the elastic nature of the substrate and that leads to crinkles. The crinkled film on the

top of a magnetostrictive curvature seems to accomodate the potential energy by bending the film

with decreasing crinkling (wave)number. The relaxation of the crinkles starts from the edges and

gradually spreads to thecenterof thefilm. Thevaluesof themagnetizationdipoles comecloserasone

approaches the edges, with the smaller (absolute) value switching sign upon further increase of the

magnetic field. In that way, the side crinkles pulled by the corners exhibit decay as one approaches

the edges. Under high interlayer magnetic contrasts, passing from a crinkled pattern with multiple

interfaces to an overall single sharp interface possibly reduces the total energy. To date, the for-

mation mechanisms underlying such large-amplitude crinkle patterns are still not well understood,

owing to the broad-scale nonlinear deformation features entailed in the crinkle formation process.

VI.5 Appendix I. Curvature fitting

The curved pre-bifurcated part of the amplitudes is fitted for both cs/c f = 0.75 and cs/c f = 1.25 with

a fourth-degree polynomial in Fig.VI.16a and b, respectively. The fitting is carried-out by means of

polynomial interpolation in Matlab, using the lowest possible degree that passes through the points

of the dataset. As seen in the insets of the figures, the quartic functions increase to positive infinity at

both ends13, but are not reflection symmetric. A quadratic function closely fits the bifurcation curve

up to 0.14 T and 0.08 T for cs/c f = 0.75 and cs/c f = 1.25, respectively. The global amplitude for

cs/c f = 1.25 is observed to grow faster versus the applied magnetic field than that for cs/c f = 0.75;

an indication that a highly magnetic substrate favors the long-wavelength bending mode.

13the coefficient of the leading-degree term is positive
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Figure VI.16: Numerical measurements and fitting of the film deflection amplitude A as a function of the

applied magnetic field b0, for four different pre-stretches λ0 = 0.78,0.8,0.83,0.85 and two substrate/film

magnetic contrasts a, cs/c f = 0.75 and b, 1.25. A fourth-degree polynomial fits the entire pre-bifurcated

curve as it is insensitive to pre-compression. A quadratic function closely fits the curve up to 0.14T and

0.08T for cs/c f = 0.75 and 1.25, respectively. Fixed simulation parameters: H f = 0.2mm, Hs/H f = 199,

Gs = 3KPa, G f = 10KPa, χ f = 0.4, µ0 ms
f = 0.5T (c f = 0.2).

VI.6 Appendix II. Mesh sensitivity on curvature localization

At this point, we should recall that the curvature localization analysis was carried out by means of

linear quadrilateral finite elements, see Section III.4. In order to compensate the fact that we try to

capture highly localized curves with linear elements, it is evident that we need to use significantly

dense meshes. Therefore, a mesh sensitivity study of the curvature localization is necessary to verify

convergence on the number of film elements. Following prior mesh convergence studies in Section

III.5.2, we recall that the substrate and air have to be also designed in accordance with the film mesh

density, respecting good edge seeding and element aspect ratios at the interfaces with the film.

In Fig.VI.17, we show the spatial distribution of the curvature k for different film meshes under a

relatively high magnetic field, b0 = 0.35T. Such a magnetic field is considered high within the scale

the patterns emerge and thus, it is expected to form a highly localized pattern. The surface modes

underneath the labels in color correspond to the curve of the same color. The labels denote the

number of film elements along the thickness × the number of film elements along the length. We

observe that the width band, in which curvature localizes, is a decreasing function of the number

of elements, as expected. Our simulations are carried out with the mesh (blue curve) of 15 and

350 elements along the thickness and the length of the film, respetively. Presented in Section III.5,

this is a mesh already converged in terms of bifurcation modes, loads and amplitudes. This mesh

is supplementarily converged on curvature localization with a higher density mesh of 15 and 380

elements along the thickness and the length, respectively.
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Figure VI.17: Mesh sensitivity study on curvature localization using different film meshes. The surface

modes underneath the labels in color correspond to the curvature distribution of that color. The labels

denote the number of film elements along the thickness × the number of film elements along the length.
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CHAPTER VII

CONCLUSION AND PERSPECTIVES

The magnetorheological elastomers (MREs) are ferromagnetic particle impregnated elastomers

whose mechanical (rheological) properties are altered by the application of external magnetic fields.

These properties comprise, among others, the high manifestation of elastic strains under a magnetic

field and the dependence of the magnetic permeability on stress (see Bednarek, 1999). An interest-

ing feature of such composites is their elastic contraction when placed within a uniform magnetic

field, an effect called magnetostiction. To that end, MREs exhibit field-stiffening effects and large

magnetostrictive deformations that lead to continuously adjustable hardness upon a fast response

to external fields (of the order of milliseconds). When the particle microstructure and macroscopic

geometry is unfavorably oriented with respect to the applied magnetic field, magnetically triggered

instabilities are possible to emerge in a reversible and repeatable fashion. Such a response is possibly

applicable in actively controlled haptic systems and controllable stiffness devices, in order to induce

surface patterns by means of external magnetic fields.

Inspired by the concept of combining unstable materials and structures, we investigate experi-

mentally, theoretically and numerically the active control of surface roughness. To do so, we exploit

the (post-)bifurcation response of a critically stable MRE film bonded on a nonlinear elastic and

highlycompliant substrate. As theoreticallyandnumerically shown, suchasystemcanbuckleunder

a) purely mechanical uniaxial compression; b) a purely magnetic field applied perpendicular to the

film (compass effect mechanism); or c) a combination of the two above-mentioned loadings. Taken

independently, the critical fields needed to trigger the instability are significantly high (see Danas

and Triantafyllidis, 2014), however they are reduced when coupled. To that end, the key idea is to

mechanically bring the structure near (but not at) a marginally stable state and then destabilize

it with relatively small magnetic fields. Such a study provides a proof of concept for operating

near marginally stable regimes and passing beyond them with low (path independent) fields. This

is attributed to the magnetoresponsive MRE material that is coupled with a prone to mechanical

buckling structure.

Following a less common approach, we present experimentally, theoretically and numerically

stability phase diagrams in the two-parameter space of applied pre-compression and magnetic field.

In virtue of the critical response, we show the monotonic reduction of the critical magnetic field with
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increasing pre-compression. The experimental findings are obtained upon fabrication of a MRE film

(ofvolumefraction20%)onamagnetically insensitive(passive)substrate. Repeatability inresponse

is illustrated forbothamplitudemeasurementsandmorphologicalpatterns. Thefabricationprocess

is novel and allows for the realization of a single material-structure that manifests a variety of surface

patterns (e.g., 1D and 2D wrinkling, period-doubling, crinkling, creases) under a large range of

applied fields. Such a range of actuation fields owes to the material selection, as the theoretical

bifurcation analysis shows.

The purely mechanical and magnetomechanical “bloch-wave” theoretical bifurcation analysis

is carried out on a plane-strain infinite magnetoelastic system. Such an approach is an incremental

bifurcationanalysisthatdoesnotincorporatetheeffectsofaboundaryvaluesystem. Themodelaims

at determining the critical load for the onset of wrinkling and the associated wavelengths (it does not

deal with the stability of the bifurcated branches). To that end, we carry out a study on the influence

of the material properties of the layers on the critical response. Slightly compressible neo-Hookean

and magnetically (non-)saturating materials are employed. The material properties at hand are the

compressibility Lamé constants, the shear modulus of the film G f and substrate Gs respectively, the

susceptibility of the film χ f and their combined interlayer ratios, Gs/G f , Gs/(χ f µ0 ms
f ).

ByuseofdifferentsoftmaterialsrangingfromMPa(rubbers)tokPa(gels),wefindthatincreasing

the material softness permits to trigger instabilities with notably lower magnetic fields and within

the sensitivity of realistic compression setups. This is explained by the fact that the softer the layers,

the more compliant they are to deform under the same magnetization state. As a result, the most

efficient way to decrease the critical fields and expand the range of applied pre-compressions is to

use materials as soft as possible, e.g., polymeric gels of shear modulus of order of kPa. In addition,

we show that when one makes use of the magnetoelastic nature of the materials under a combined

loading, the interlayer stiffness contrast Gs/G f is no longer sufficient in determining the critical

loads and bifurcation modes. In the magnetomechanical bifurcation, the buckling depends on the

ratio Gs/G f , as well as on the absolute shear moduli values, Gs and G f . This is in contrast with the

purely mechanical buckling under incompressibility, where only the relative Gs/G f ratio drives the

response.

The experimental and theoretical critical response are in good agreement for low pre- compres-

sions. However, some non-negligible differences are observed between the experimental findings

and the idealized model under finite strains. Such differences are partially related to frictional ef-

fects acting at the lateral faces of the film/substrate block, those in contact with the walls of the

experimental compression device. To that end, the non-trivial boundary value problem needs to be

solved. Within a finite element framework, numerical plane-strain simulations are employed for a

finite structure that mimics the experimental specimen and boundary conditions. Following a num-

ber of similar works in the literature, we mainly present experimental versus numerical comparisons

for the post-bifurcation amplitude and the observed geometrical patterns. The magnetomechanical

modeling proposed, albeit simple, captures the morphological response of the experimental samples

(even the more complex shape configurations at large strains). The experimental results are probed
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successfully with the aid of full-field finite element simulations at finite strains and large magnetic

fields. To achieve that, we use a simple nonlinear magnetoelastic Helmholtz free energy with magne-

tization saturation for the MRE film, a classical nonlinear elastic constitutive law for the substrate

and direct simulation of the surrounding air. This allows to reach a quantitatively good agreement

between the experimental measurements and the numerical results.

As shown experimentally and numerically, the decrease of the critical magnetic fields is obtained

only when the bifurcation modes are cooperative. In simple words, one needs the bifurcation modes

triggered by the first field (say the mechanical one) to be the same or very similar to the modes

induced by the second field (say the magnetic field). Then, one can achieve a noteworthy reduction

of the critical magnetic field with increasing pre-compression. In any other case where the instability

patterns are not similar, the two fields act independently. However, even though they do not bring

furtherdecreaseof thefields, theydo leadtoanotherwise impressivesuperpositionofdifferentmodes

(such as wrinkles triggered by the magnetic field and localized modes triggered by the mechanical

loading). This non-collaboration of the magnetic and mechanical bifurcation modes in finite pre-

compressions with no further reduction of the critical fields is also non-trivial. Such a response is

related to the frictional boundary effects. The role of friction in this regime (numerically probed) is

an interesting result by itself.

The magnetomechanical modeling of the boundary value problem gives access to the complete

contours of the magnetic and mechanical fields. The fields are heterogeneous inside both solids and

across the film in the post-bifurcation regime and in principle cannot be resolved analytically. This

is because the magnetic field is applied far from the specimen, as it happens in the real experiment.

To satisfy magnetic field uniformity far from the specimen, we consider a big free space at whose

extremities a magnetic field of Eulerian nature is applied. The numerical simulations allow for the

detailed study of the local fields and better understanding of the post-bifurcation response. The

concept of the magnetic instability, numerically manifested as patterns of alternating signs in-plane

magnetization within the wrinkled film, is novel. The post-bifurcation response is shown to be

supercritical both mechanically and magnetically, thus allowing to magnetically load/unload the

material system in a cyclic and reversible manner, switching on and off the morphological patterns.

The numerical model can be also used for the systematic study and optimization of the MRE

material-systems. To that end, we show the influence of the film slenderness on the magnetoelastic

critical response of the system. As expected, a sufficiently large slenderness ratio makes the effect of

the boundary conditions on the morphological response less pronounced. The numerical solution is

led to higher wavenumbers of notably lower wrinkling amplitude with increasing slenderness ratio.

The critical wavenumber is found to be a decreasing function of pre-compression, as theoretically

predicted. Sucha result is numerically revealedonlyunder favorable (large) slenderness ratios. Sim-

ilarly, past the mechanical bifurcation point, the magnetic field triggers multi-period superimposed

patterns. The long-wavelength wrinkles of these patterns cannot emerge under a low slenderness

ratio, if they are comparable (or larger) to the characteristic size of the specimen.

The plane-strain numerical simulations can also uncover advanced post-bifurcation patterns.
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The coexistence and coevolution of wrinkling and curvature localization deep in post-bifurcation

is experimentally observed and numerically probed. New sawtooth (straight segments) shape con-

figurations, displaying curvature localization, progressively emerge from wrinkling and are called

“crinkles”. To that end, we carry out a curvature localization analysis in the double parameter space

of applied pre-compression and magnetic field and we show that it is an intrinsic feature of MREs.

The mechanism of formation of crinkling is strongly related to repelling magnetoelastic interac-

tions. When the magnetoelastic coupling is taken into account, the coupling between surface layer

curvature and magnetic macroscopic polarization, is found to lead to the emergence of a boundary

layer (band width) in which curvature is highly concentrated.

Finally, we investigate the formation and post-stability evolution of crinkling modes on MRE

films bonded on MRE substrates. In virtue of the coupling in material properties, geometry and

loading, new contrasts between the mechanical and magnetic properties of the layers take the lead

in bifurcation. Therefore, we create different interlayer magnetic ratios and we trigger an extremely

wide range of surface patterns. The new features observed for a magnetic substrate are a) a shape-

driven curvature along the entire length of the film and b) the significantly high concentration of

the magnetic field at the corners of the film. Very large extensive deformations are observed at the

lateral edges of the substrate. Such magnetostrictive shape effects pull upwards the corners of the

film versus the magnetic field at the pre- and post-bifurcation. As a result, the film is not flat before

bifurcation and the principal solution is not defined by uniform fields.

A general and quantitative understanding of the various modes of instabilities given the ma-

terial properties of the layers is of significant importance. Varying the magnetic properties of the

substrate leads to an extremely large range of unique crinkled (primary and sequentially secondary)

surface patterns that can be tuned by the magnetomechanical loading. Numerical evidence of crin-

kling evolution paths are shown in the triple parameter-space of pre-compression, magnetic field

and magnetic interlayer contrast (for fixed stiffness ratio). The morphological patterns can be

significantly varied from short to long wavelength modes that are sensitive to the parameter fields.

Thematerial-systemis foundtoundergomultiple sequentialbifurcations fromtheprimarywrin-

kles to the crinkles. The evolution of the post-buckling behavior is defined by sequential patterns of

reducing wavenumber and curvature localization. This process involves the relaxation of the side

crinkles under the influence of the increasing shape effects and magnetic fields, until the equilibrated

mode upon saturation magnetization is formed. These features are reflected in the evolution of all

mechanical and magnetic local fields. To that end, the numerical analysis of the MRE film/MRE

substrate reveals antisymmetric magnetization spatial oscillations between alternating values. The

antisymmetry itself implies that apart from the level of oscillatory undulations, a larger-scale mag-

netic pattern is formed between the two opposite half sides of the pattern. Such a feature is another

direct consequence of the magnetic substrate.

The evolution of the local fields in the above-mentioned parameter-space outlines the mecha-

nisms of the gradual pattern change, i.e., curvature localization and gradually sharper magnetic

interfaces within the deformed film versus the applied magnetic field. The curvature localization is

164



closely related to the magnetostrictive shape effects that lead to symmetry-breaking instabilities.

The oscillatory (+ and -) in-plane magnetization within the post-bifurcated film illustrates the for-

mation of magnetic walls that decay as one approaches the edges. These walls correspond to the

joint points between neighboring crinkled segments and are regimes where rapid spatial variations

occur. In such regimes, the continuity is possibly not satisfied and charges are accumulated (not

divergence-freepoints). Consequently, these interfaces ofhighly localizedcurvature connect regions

of uniformly but similarly magnetized domains that repel each other. In the parameter space of

interlayer magnetic contrast, one can pass from a crinkled pattern with multiple interfaces to an

overall single sharp interface (wall) that possibly reduces the total energy.

To summarize, this study describes surface instabilities of a stiffer magnetoelastic film on a soft

substrate driven by the combined action of magnetic fields and mechanical compression. Although

wrinkling of bilayers driven by a variety of factors has been well studied in the literature, the use of

magnetic field is particular interesting from the perspective of rapid and non-invasive/non-contact

switching of surface morphology. Such a material-structure coupling can produce several surface

patterns with one material if properly in-situ adjusted. This is experimentally achieved for the

first time. In addition to that, we propose the use of one material (e.g., no need for fabrication

under different tensile pre-stretches that rises the number of material samples) that can be seen as

a touchable (user-accessible) device. Such a response is scalable and thus, the present system could

also be built at the micron-scale by means of more advanced fabrication techniques.

Figure VII.1: Structure of flexible tactile sensor that is able to detect an applied normal force and

vertical deformation. To describe the operation principle: in the absence of a contact force, a certain

amount of magnetic flux generated by the magnet penetrates the MRE film/substrate and the magnetic

transducer. The force applied to the elastomer surface deforms the top MRE film and causes a decrease

in the distance between the MRE and the transducer. This distance determines the amount of magnetic

flux penetrating the transducer, since the magnetic permeability around the transducer is increased by

approaching the MRE. As a consequence, the applied force can be estimated by the amount of magnetic

flux penetrating the transducer (Kawasetsu et al., 2018b).

In closing, the present idea of using two (or more) fields to control instabilities in the post-

bifurcation regime is more general and can be used in any coupled/active material system if properly

designed (e.g., see Bense et al., 2017, Danas, 2017). To that end, this work is able to contribute
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to the development of magnetic flexible tactile surfaces/sensors. Even though several types of

flexible tactile sensors have been proposed, various technical issues remain, such as a large amount

of deformation that fractures the sensing elements and a poor maintainability. Kawasetsu et al.

(2018b) recently proposed the use of a MRE film/passive substrate (Fig.VII.1) to design a sensor

that can have high sensitivity, extremely low rigidity with respect to the surface deformation and

an extremely fast response (in the order of milliseconds). In their case, the sensor was designed to

measure the applied forces on the MRE surface by detecting the changes in the magnetic field caused

by the displacement of the magnet. We thus believe that the combination of the experiments and

numerical simulations presented in this study can pave the way for a realistic instability-triggered

polymer-basedmagnetorheologicaldevice fortheactivecontrolof surfacepatternsatsmallmagnetic

fields.
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Titre : Une étude théorique, éxperimentale et numérique sur des structures magnéto-élastiques

Mots clés : bifurcation, film/substrat, élastomères magnétorhéologiques, magnéto-élasticité

Résumé : Cette étude traite de la stabilité et la post-

bifurcation des élastomères magnétorhéologiques

isotropes (MRE). Les MRE sont des élastomères

comprenant une fraction volumique finie de particules

de fer magnétisables, réparties de façon aléatoire

dans le volume. Plus précisément, un système

de film/substrat magnéto-élastique non linéaire

est étudié expérimentalement, numériquement et

théoriquement pour obtenir un contrôle actif de la

rugosité de la surface du film. L’interaction non-

intuitive entre le champ magnétique et la déformation

élastique est due au choix des matériaux et de la

géométrie du système, à savoir un film composite

de particules ferromagnétiques lié à un substrat pas-

sif souple. La coopération de deux mécanismes qui

sont par ailleurs indépendants, la pré-compression

mécanique et le champ magnétique, permet de rap-

procher la structure d’un état marginalement stable

et puis de la rendre instable par des champs

magnétiques ou mécaniques. Nous démontrons pour

la première fois que le champ magnétique critique

est une fonction décroissante de la pré-compression

et vice versa. Les résultats expérimentaux sont en-

suite sondés avec succès par des simulations à

champs complets par éléments finis en grandes

déformations et champs magnétiques. Une analyse

théorique de bifurcation magnéto-mécanique sur un

système magnéto-élastique infini est également uti-

lisée pour explorer l’effet des propriétés combinées

sur la réponse critique.

Dans la perspective d’élargir l’activation de surface

à de nouveaux motifs magnéto-mécaniques, nous

étudions plus en détail la post-stabilité d’un système

film/substrat entièrement magnéto- rhéologique.

L’idée sous-jacente est de créer différents contrastes

de propriétés magnétiques/mécaniques entre les

couches afin de déclencher une gamme de motifs de

surface plus riche que celle déjà obtenue en utilisant

un film MRE sur un substrat passif. Les calculs post-

bifurcation des films MRE liés à des substrats MRE

permettent de mettre en évidence de nouveaux motifs

qui conduisent à une localisation de courbure très im-

portante et à du “crinkling” (gondolement). Dans tous

les cas étudiés, le couplage magnéto-élastique per-

met le contrôle réversible de l’apparition(/disparition)

de motifs de surface sous des champs magnétiques

et mécaniques critiques ajustables. Par conséquent,

cette étude constitue un premier pas vers des dispo-

sitifs haptiques et morphiques actifs.

Title : A study on magnetosensitive solids : Experiments, Theory and Numerics

Keywords : bifurcation, film/substrate, magnetorheological elastomers, magnetoelasticity

Abstract : The present work deals with the stabi-

lity and post-bifurcation response of isotropic magne-

torheological elastomers (MREs). MREs are elasto-

mers comprising a finite volume fraction of magne-

tizable iron particles distributed randomly in the vo-

lume. A nonlinear magnetoelastic film/substrate sys-

tem is experimentally, numerically and theoretically

exploited to obtain active control of surface rough-

ness. The non-intuitive interplay between magnetic

field and elastic deformation owes to material and

geometry selection, namely, a ferromagnetic particle

composite film bonded on a compliant passive foun-

dation. Cooperation of two otherwise independent loa-

ding mechanisms–mechanical pre-compression and

magnetic field–allows to bring the structure near a

marginally stable state and then destabilize it with ei-

ther magnetic or mechanical fields. We demonstrate

for the first time that the critical magnetic field is a de-

creasing function of pre-compression and vice versa.

The experimental results are probed successfully with

full-field finite element simulations at large strains and

magnetic fields. A theoretical magnetomechanical bi-

furcation analysis on an infinite magnetoelastic sys-

tem is employed to explore the effect of the interlayer

combined properties on the critical response and is

compared with the available numerical results.

With the perspective of applying the principle of sur-

face actuation to new magnetomechanically triggered

patterns, we further investigate the post-bifurcation of

an entirely magnetorheological bilayer block. The un-

derlying idea is to create different interlayer contrasts

of magnetic and mechanical properties allowing us to

trigger a larger range of surface patterns than that al-

ready obtained when using a MRE film on a passive

(magnetically insensitive) foundation. Post-bifurcation

calculations of MRE films bonded on MRE substrates

allow to reveal novel patterns that lead to significant

curvature localisation and crinkling. In all cases stu-

died, the magnetoelastic coupling allows for the re-

versible on/off control of surface patterning under ad-

justable critical magnetic and mechanical fields for a

single specimen and thus, this study constitutes a first

step towards realistic active haptic and morphing de-

vices.
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