Caractérisation du mécanisme de glissement aux joints de grains dans l’aluminium à haute température par mesures de champs in situ MEB - PASTEL - Thèses en ligne de ParisTech Accéder directement au contenu
Thèse Année : 2018

In situ SEM caracterization of the grain boundary sliding mechanism in aluminum at high temperature by field measurement

Caractérisation du mécanisme de glissement aux joints de grains dans l’aluminium à haute température par mesures de champs in situ MEB

Résumé

In many industrial applications, polycrystalline materials are subjected to high temperatures at which grain boundary sliding (GBS) plays an essential part. It is however strongly coupled with intracrystalline plasticity, but very few models account for this coupling. GBS is not well understood and poorly quantified experimentally. To do so we have developed a set-up to perform in-situ compression experiments inside a scanning electron microscope, with a contactless temperature measurement. The tests have been done with large grained aluminium samples (0.1 % wt Mn) at several temperatures between 25°C and 400°C and a low strain rate. The kinematic fields measured by digital image correlation (DIC) have allowed the analysis of the start and development of plasticity mechanisms during deformation and their evolution with temperature. We have shown a strong coupling between intragranular plasticity and GBS. At higher temperature, the deformation is more concentrated at the grain boundaries while intragranular slip gets more complex, involving more glide systems. A DIC method has been used to measure the discontinuities at the grain boundaries and thus quantify the part of GBS with respect to the total plastic deformation at 200°C. Despite a large grain size, GBS contributes significantly to the deformation. GBS appears from the start of the deformation process, then reaches a limit. A local approach has been developed to quantify the local amplitude of GBS. This has allowed to weigh the influence of some geometrical parameters, such as grain misorientation, a coefficient which measures the transfer of intragranular sliding across the grain boundary and the orientation of the grain boundary with respect to the direction of solicitation. This last parameter seems to be the most relevant, but does not suffice to characterize the amplitude of the slip. The local properties of the microstructure cannot be neglected.
Dans de nombreuses applications industrielles les matériaux polycristallins sont soumis à de hautes températures, auxquelles le mécanisme de glissement aux joints de grains (GBS pour grain boundary sliding) tient un rôle essentiel. Il est fortement couplé à la plasticité intra cristalline, cependant peu de modèles tiennent compte de ce couplage. Le GBS est encore un mécanisme mal compris pour lequel nous manquons de quantifications expérimentales. Nous avons développé à cette fin un dispositif pour réaliser des expériences de compression in-situ dans un microscope électronique à balayage, équipé d’une mesure de température sans contact. Les essais ont été menés sur un aluminium à gros grains contenant 0.1% de manganèse entre 25°C et 400°C, à faible vitesse de déformation. Les champs cinématiques mesurés par corrélation d’images numérique ont permis d’analyser la mise en place des mécanismes de plasticité durant la déformation et leur évolution en fonction de la température. Nous avons mis en évidence un fort couplage entre les mécanismes plastiques intragranulaires et le GBS. A mesure que la température augmente nous avons constaté une forte évolution de la plasticité. La déformation se localise de plus en plus aux joints de grains, tandis que la plasticité dans les grains se complexifie impliquant de plus en plus de systèmes de glissement. Une méthode de corrélation d’images a été utilisée pour mesurer les discontinuités du champ cinématique aux joints de grains et quantifier la contribution du GBS à la déformation globale à 200°C. Celui-ci s’active dès le début et tout au long de la déformation. Nous avons constaté que malgré une taille de grains importante la contribution du GBS n’est pas négligeable, elle est plus importante en début de déformation puis semble atteindre un palier. Une approche locale a été développée pour quantifier l’amplitude locale du GBS. Cela a permis d’étudier et de discuter l’influence sur celui-ci de paramètres comme l’angle de désoriention du joint, un coefficient caractérisant le transfert du glissement intragranulaire à travers le joint, et l’orientation du joint par rapport à la direction de chargement. Ce dernier paramètre semble le plus influent, mais il ne suffit pas pour caractériser l’amplitude du glissement. Il apparaît que les propriétés locales de la microstructure influencent fortement celui-ci et ne peuvent être négligés.
Fichier principal
Vignette du fichier
74766_EL_SABBAGH_2018_archivage.pdf (130.46 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02061400 , version 1 (08-03-2019)

Identifiants

  • HAL Id : tel-02061400 , version 1

Citer

Alexandre El Sabbagh. Caractérisation du mécanisme de glissement aux joints de grains dans l’aluminium à haute température par mesures de champs in situ MEB. Mécanique des matériaux [physics.class-ph]. Université Paris Saclay (COmUE), 2018. Français. ⟨NNT : 2018SACLX098⟩. ⟨tel-02061400⟩
562 Consultations
79 Téléchargements

Partager

Gmail Facebook X LinkedIn More