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Résumé

La méthode Smoothed Particle Hydrodynamics (SPH) est une méthode la-
grangienne, sans maillage développée initialement pour des simulations de
phénomènes astrophysiques. Depuis, elle a connu de nombreuses applications,
notamment pour la simulation des écoulements des fluides. Contrairement
aux méthodes utilisant un maillage, la méthode SPH peut gérer de manière
naturelle et sans traitement spécifique les simulations des écoulements à sur-
face libre et multiphasiques avec interface subissant de grandes déformations.
Dans cette thèse, une modélisation SPH des écoulements des fluides multi-
phasiques a été réalisée en tenant compte de différentes complexités (écoulements
à surface libre et multiphasiques interfacials) et de natures d’ecoulement (si-
mulation des fluides, des sols et les deux en interactions). Un modèle SPH fai-
blement compressible (WCSPH) a été proposé pour simuler les écoulements
des fluides multiphasiques avec interface comprenant plus de deux phases
de fluide. Ce modèle inclut le développement d’une nouvelle formulation de
force de tension de surface en utilisant un opérateur SPH consistant de pre-
mier ordre. Une modification de condition généralisée aux parois solides a
été apportée pour qu’elle soit appliquée sur les écoulements des fluides mul-
tiphasiques avec des rapports de densité et de viscosité élevés. Une nouvelle
loi de comportement dépendant de la pression nommée RBMC - αµ (Regula-
rized Bingham Mohr Coulomb où αµ est un paramètre libre) a également été
développée. Cette loi peut simuler les fluides (Newtonien, Binghamien), les
sols (cohésif, frictionnel) et les deux en interactions. La loi précédente étant
sensible à la pression, une extension du terme diffusif δ -SPH a été faite
pour le cas des écoulements des fluides multiphasiques afin de réduire les
oscillations de pression à haute fréquence qui sont dues à l’utilisation d’une
équation d’état. La validation et l’application des modèles développés dans
cette thèse sont montrées à travers plusieurs cas tests de difficulté croissante.





Abstract

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian gridless method developed
initially to simulate astrophysical phenomena, and since it has been known for a large number
of applications, especially for fluid flow simulations. Contrary to the grid-based method, the
SPH method can handle free surface and interfacial fluid flow simulation including large
deformations naturally and without the need for any specific treatment. In this thesis a
SPH modeling of multiphase fluid flows has been achieved with consideration of different
complexities ( free surface and interfacial fluid flows) and natures (simulation of fluids,
soil and both in interactions). A consistent weakly compressible SPH model (WCSPH)
has been proposed to simulate interfacial multiphase fluid flows with more than two fluid
phases. This model includes a new expression of the surface tension force using a first order
consistency SPH operator. A modification to the well known generalized wall boundary
condition have been brought in order to be applied to multiphase fluid flow with large density
and viscosity ratios. A new pressure-based constitutive law named RBMC-αµ (Regularized
Bingham Mohr Coulomb with αµ is free parameter) has been developed in this thesis. This
model can simulate fluids (Newtonian, Binghamton), soils (cohesive, frictional) and both
in interactions. Because the previous model is pressure sensitive, an extension of δ -SPH
diffusive term has been proposed for multiphase fluid flows to overcome the hight frequency
pressure oscillations due to the determination of pressure from an equation of state. The
validation and application of the developed models have been shown in this thesis through
several test-cases of increasing difficulty.
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Chapter 1

Introduction

Le présent travail porte sur la modélisation et la simulation des écoulements de fluides
multiphasiques de différentes complexités et natures. Les complexités comprennent la
simulation des écoulements des fluides multiphasiques confinés, à surface libre, à grande
déformation, avec présence d’interface et/ou avec des rapports de densité et de viscosité
élevés, tandis que pour les natures, différentes lois de comportement (Newtonien et / ou
non Newtonien) sont utilisées pour définir le comportement des fluides. En utilisant le code
développé dans le cadre de cette thèse, une gamme d’applications peut être simulée afin de
servir les domaines de recherche et de l’ingénierie. Parmi ces applications, nous pouvons
citer par exemple:

• En ingénierie offshore, notamment pour les dispositifs de séparation pétrole-eau, la
compréhension de la dynamique des bulles de pétrole (fluide multiphasique avec
présence d’interface) à travers la simulation numérique a une grande importance
pour l’exploitation et le traitement des ressources pétrolières [109, 129, 358].

• La simulation des écoulements granulaires (un fluide non Newtonien qui s’écoule
sous un critère spécifique) peut être réalisé en utilisant le code développé. La
compréhension des écoulements granulaires peut avoir des directes applications
dans l’industrie telles que la simulation de poudres et de granules, ainsi que pour
les problèmes géophysiques, tels que la simulation de glissements de terrain [113],
l’avalanche de roches [354] et de la neige [285]. La simulation de ces risques naturels
peut aider à comprendre comment nous devrions procéder dans l’avenir pour atténuer
les pertes humaines et matérielles. La catastrophe de Shenzhen est un bon exemple
d’un aléa naturel causé par un glissement de terrain. Cette catastrophe naturelle a
eu lieu à Shenzhen, Guangdong, dans le sud-est de la Chine, le 20 décembre 2015,
77 personnes ont été tués et 33 bâtiments ont été enterrés ou endommagés [113]. La
figure 1.1 décrit les séquences avant et après cet aléa.
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• Les problèmes d’interaction eau-sol (écoulement de fluide multiphase sous différentes
natures) sont plus compliqués par rapport aux exemples précédents, car ils in-
cluent deux natures physiques différentes (fluide et structure). La compréhension
du phénomène d’interaction eau-sol joue un rôle important dans l’évaluation et
l’atténuation de nombreux problèmes environnementaux et géotechniques, tels que
l’érosion du sol, l’érosion autour des structures offshore, les vagues de tsunamis
générées par les glissements de terrain, etc. L’exemple du tsunami Lituya Bay
(Gilbert Inlet-Alaska en 1958 ) causé par un glissement de terrain subaérien est l’un
des tsunamis les plus importants dans les temps modernes, et la modélisation de
l’interaction entre l’eau et le sol peut être très utile pour comprendre son mécanisme.
La figure 1.2 présente le scénario du tsunami de Lituya Bay et montre les différentes
dimensions de Gilbert Inlet et de l’espace terrestre détruit.
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1.1 Motivation and Objectives

The present work deals with the modeling and the simulation of multiphase fluid flows
under various complexities and natures. Complexities include the simulation of confined,
free surface, large deformation and/or interfacial multiphase fluid flows with high density
and viscosity ratios, whereas for the natures, different constitutive laws ( Newtonian and/or
Non-Newtonian ) are used to define the fluid or the fluid-like mass behavior. Using the
developed code in the framework of this thesis, a range of applications can be simulated in
order to serve range of research and engineering fields. Among these applications we can
cite for instance:

• In offshore engineering, especially for oil-water separation devices, the understand-
ing of oil bubbles dynamics (interfacial multiphase fluid) through the numerical
simulation has a great importance for exploitation and processing of oil resources
[109, 129, 358].

• The simulation of granular flows (a non-Newtonian fluid that yields under a specific
criterion ) can be done using the developed code. The understanding of the granular
flows can have an obvious applications in industry such as for the simulation of
powders and granules, and in geophysical problems, such as for the simulation of
landslides [113], rock avalanche [354] and snow avalanche [285]. The simulation of
these natural hazards can help to understand how we should proceed in the future to
mitigate losses in human life and material. The Shenzhen-landslide is a good example
of a natural disaster caused by a landslide. This natural disaster occurred in Shenzhen,
Guangdong,Southeast China in December 20, 2015, where 77 people were killed
and 33 buildings were buried or damaged [113]. Figure 1.1 illustrates the sequences
before and after this disaster.

Figure 1.1 – Shenzhen, Guangdong,Southeast China before (December 18, 2015) and after
(December 21, 2015) the landslide (taken from [113]).

• The Water-Soil interaction problems (multiphase fluid flows under different natures)
which are more complicated than previous examples since it includes two different
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physics natures (Fluid and structure). The understanding of water-soil interaction
phenomenon plays an important role in the assessment and mitigation of many
environmental and geotechnical problems, such as soil erosion, scouring around
offshore structures, landslide-generated tsunamis waves ... and so on. The example
of Lituya Bay tsunami ( Gilbert Inlet-Alaska in 1958) caused by subaerial landslide
is the one of the largest known tsunami in modern times [110], and modeling of
water-soil interactions can be a very useful way to understand its mechanism. Figure
1.2 presents the Lituya Bay tsunami scenario and shows the different dimensions of
Gilbert Inlet and destroyed land space.

Figure 1.2 – Lituya Bay tsunami: Gilbert Inlet illustration showing landslide dimensions,
impact site and tsunami runup to 524 m on spur ridge directly opposite to landslide im-
pact. Direction of view is north and the front of Lituya Glacier is set to 1958 post-slide
position.(taken from [110])

1.2 Thesis outline

The following PhD thesis is structured as follows. In Chapter 2, a state of the art on
the smoothed particle hydrodynamics method (SPH) is given, underlining in particular an
overview of mesh-based and meshless numerical methods and the principal basics and
applications of SPH method. Chapter 3 discusses the fluid governing equations and different
methods of SPH discretization. The Chapter 4 is devoted to modeling multiphase interfacial
fluid flows including our original contribution regarding the surface tension formulation and
conditions initialization via the damping technique. In chapter 5, the modeling of water-soil
interactions using a SPH multiphase approach is presented. The validation and application of
the developed SPH multiphase model, SPH interfacial multiphase model and SPH water-soil
interactions model are shown through Chapter 6 , Chapter 7 and Chapter 8, respectively.
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1.3 Contributions

The contributions of the present thesis can be summarized in the following points:

— Past and recent advances in SPH method improvement algorithms are presented;
— Different SPH discretization techniques of governing equations are discussed;
— A consistent SPH model was proposed to deal with interfacial multiphase fluid flow

simulations;
— Robust non-conservative surface tension formulation that respects its tangential

character to deal with two and more interfacial fluid phases is developed;
— A modification of the generalized wall boundary conditions proposed in [4] is pre-

sented to allow its use for the simulation of wall-bounded multiphase fluid flows
— Validation of the proposed SPH model via the application on several challenging test

cases of multiphase fluid flows;
— Experimental verification of applicability and accuracy of the proposed SPH interfa-

cial multiphase model is done;
— A weakly compressible multiphase smoothed particle hydrodynamics model was

developed to deal with Water-Soil interaction problems.
— A Regularized Bingham Plastic/Mohr-Coulomb (RBPMC-αµ ) constitutive law was

developed to model soil, water and both in interaction;
— Development of a new multiphase diffusive term Dδ−MSPH to reduce the pressure

oscillations in the context of Weakly compressible SPH;
— Validation of the SPH multiphase water-soil interactions model through several

benchmarks .

1.4 Publications

1.4.1 Journals

— Abdelkader Krimi , Mehdi Rezoug , Sofiane Khelladi , Xesús Nogueira ,Michael
Deligant , Luis Ramírez, “Smoothed Particle Hydrodynamics : A consistent model
for interfacial multiphase fluid flow simulations”, Submitted to the Journal of Com-
putational physics., 2016.

— Abdelkader Krimi , Sofiane Khelladi, Xesús Nogueira, Michael Deligant, Riadh
Ata, Mehdi Rezoug, “Multiphase Smoothed Particle Hydrodynamics approach for
modeling Soil-Water interactions”, Submitted to the Advances in Water Resources,
2017.
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— Luis Ramírez, Xesús Nogueira, Sofiane Khelladi , Abdelkader Krimi, Ignasi Colomi-
nas, “A very accurate Arbitrary Lagrangian-Eulerian meshless method for Computa-
tional Aeroacoustics”, Submitted to Computer Methods in Applied Mechanics and
Engineering , 2017.

— Abdelkader Krimi , Sofiane Khelladi, Xesús Nogueira, “An overview on Smoothed
Particle Hydrodynamics method and applications on fluids, structures and both in
interactions problems”, to be submitted to the Annual Review of Fluid Mechanics,
2017.

1.4.2 Conferences

— Abdelkader Krimi, Mehdi Rezoug, Sofiane Khelladi, Michaël Deligant,"Fast and
accurate algorithm for modeling complex free surface flows", The 11th International
Conference for Mesoscopic Methods in Engineering and Science. July 14-18, 2014.
New York.

— Abdelkader Krimi, Mehdi Rezoug, Sofiane Khelladi, Michaël Deligant,"A Lagrangian
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Chapter 2

State of the art

Dans ce chapitre, un état de l’art est fait sur les différentes méthodes numériques utilisant
un maillage ou sans maillage pour mettre en évidence la méthode SPH. Les principes de
base des formulations de la méthode SPH sont aussi abordés. Nous avons présenté quelques
codes de calcul parallèle Open Source exploitant la méthode SPH. Des différents exemples
d’applications sur des problématiques liées au fluide, structure et les deux en interaction
sont extraits de la littérature pour montrer le grand intérêt que la méthode SPH a connu
dans le domaine de recherche et de l’ingénierie.
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In this chapter, a state of the art is achieved on the different grid-based and gridless
numerical methods in order to highlight the SPH method. The basic principles of the
formulations of the SPH method are also discussed. We have presented some open source
parallel codes exploiting the SPH method. Examples of applications on problems related to
fluid , structure and both in interactions are extracted from the literature to show the large
interest that SPH method has experienced in the field of research and engineering.

2.1 Numerical simulation

Computational simulations or in other words numerical simulations using computers plays
an important role for solving many practical problems in both engineering and science. A
numerical simulation converts important aspects of a physical phenomenon into mathematical
equations written in a discrete form, transfers the problem to computer in order to solve it,
and inspects phenomena virtually following the requirements of the analysts. The advances in
numerical analysis, coupled with the increasing power of computers, have greatly expanded
the scope of numerical simulation.

Numerical simulation can be considered as a powerful tool for scientific investigation. It
can reduce the expensive, time-consuming and in situ or in laboratory experiments. Numerical
tools present advantages compared with classical experimental methods. It can provide
complete information that is generally difficult to obtain through other means. Computational
simulations play a principal role in providing a validation for theories, offers additional
information on experimental results and helps in the interpretation or even the discovery
of new phenomena. However, computational simulations are strongly interconnected to
physical models and theoretical predictions as it is shown in figure 2.1 .

Figure 2.1 – Relation between the numerical simulations, theories and experiments.

Generally, numerical simulation techniques should follow a similar flow-chart as schemat-
ically shown in figure 2.2. Starting from the observed physical phenomena with a focus on
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the aspects that need to be investigated, simplified mathematical models are established under
some assumptions in the form of governing equations with proper limit conditions (initial
conditions and boundary conditions). The governing equations are explicitly dependent of
the nature of physical phenomena targeted for the investigation and can take several forms
as: partial differential equations (PDE), ordinary differential equations (ODE), integration
equations and so on.

In order to solve numerically the governing equations, the geometry of the problem that
will be treated needs to be represented by interconnected discrete components. The domain
discretization techniques may be different from a method to another. The step of domain
discretization is followed by numerical discretization that provides means to obtain discrete
representation of continuous forms of governing equations which correspond to the domain
discretization technique. The last step is to translate the discrete form of governing equations
into a computer code. The complete procedure of numerical simulation is summarized in
figure 2.2.

Figure 2.2 – Procedure of numerical simulation.

2.2 Grid based numerical methods

Grid based numerical methods adopt a computational domain which is composed of
nodes, where the field of physical variables are evaluated, and their relations are predefined
by a specific topography of nodal connectivity (mesh). The mesh cell size and the mesh
patterns are the principal factors that define the accuracy of the numerical approximation.
There are two fundamental descriptions in grid based methods: the Eulerian description
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Lagrangian approach Eulerian approach
The absence of convective term in the gov-
erning equation facilitate the numerical
treatment phase.

The convective term should be handled in
the simulation.

The ease of tracking the time-history of the
physical variables at any point of material.

The difficulty of tracking the time-history
of the physical variables at fixed point of
material.

The ease of mesh adaption to complex and
irregular geometries and description of ma-
terial interfaces and moving boundaries.

A bad adaption of the mesh to complex ge-
ometries and difficulty in the determination
of material interfaces and representation of
moving boundaries.

The grid is needed only within the contin-
uum.

the grid should be large enough in order to
cover also the part of the space where the
continuum can be moved.

A poor numerical accuracy due to the mesh
distortion is presented when large deforma-
tion is occurring to the continuum.

The large deformation occurred to the con-
tinuum does not cause neither the mesh dis-
tortion nor infect the accuracy.

An expensive adaptive mesh algorithm is
needed to overcome the previous problems.

No adaptive mesh numerical accuracy is
needed.

Table 2.1 – Comparison of Lagrangian and Eulerian approaches (advantages and drawbacks).

and the Lagrangian description. The Eulerian description is a spatial description. Here the
computational grid is assumed to be fixed on the physical space; the volume and shape of
mesh cells remain unchanged during all the period of the computation while the materials
are flowing across the mesh. The mass flux across mesh cell faces is simulated to compute
the distribution of physical quantities in the problem domain. The finite difference method
(FDM) is the typical example to represent the Eulerian description [164, 138, 350]. The
Lagrangian description is a material description. Contrary to the Eulerian description, the
grid is attached on the material and moves with it in the entire process of the computation.
Here, there is no mass flux between adjacent cells because of the transportation of the mass
with the movement of the mesh cells. The well-known and widely used method is the
Finite Element Method (FEM )[361, 64]. Both description have advantages and suffer from
drawbacks that are principally summarized in the table 2.1 .

In order to strengthen the advantages of Eulerian and Lagrangian approaches and avoid
their drawbacks, combined approaches has been developed. The Coupled Eulerian La-
grangian (CEL) [213] and the Arbitrary Lagrange Eulerian (ALE) [26, 140, 24] methods are
the most known methods belonging to this approach. However, the grid based methods are
not well suited for situations where large deformations, moving material interfaces, large
inhomogeneities, deformable boundaries and/or free surfaces are presented in the simulation
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case. In the figure 2.3, the Lagrangian, Eulerian and Combined approaches are schematically
illustrated.

Figure 2.3 – Representation of Lagrangian, Eulerian and combined approaches of falling
drop water. They are classed from the left to the right of the figure, respectively. This figure
is reproduced from [59].

2.3 Meshfree numerical methods

For the purpose of avoiding all problems related to the connectivity between the nodes,
another class of numerical methods so-called Meshfree methods was developed. The basic
idea of the meshfree methods is to discretize the continuum into a set of nodes without
presence of any connectivity between these nodes. This property makes treatment of large
deformation problems, and representation of the free and moving interfaces an easier task
while keeping a reasonable computational effort. When the nodes represent a massive
element (particle) of the material domain and carrying its physical properties, the methods
are so-called “meshfree particle methods (MPMs)” [198] (see figure 2.4). This kind of
methods follows in general a Lagrangian approach.

The Meshfree Particle Methods (MPMs) include: lattice gas Cellular Automata (CA)
[351, 167], Dissipative Particle Dynamics (DPD) [143, 96], Particle-in-Cell (PIC) [131, 132],
Marker-and-Cell (MAC) [132], Fluid-In-Cell (FLIC) [114], Particle-Particle (PP), Particle-
Mesh (PM), Particle-Particle-Mesh (P^M) [142], Moving Particle Semi-implicit (MPS) [176],
Smoothed Particle Hydrodynamics (SPH) [210, 240] and other various meshfree particle
methods. It is shown by Shao and Shao [301] and Souto-Iglesias et al [311] that the two last
cited methods MPS and SPH are closely equivalent.
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Figure 2.4 – Mesh free particle representation of the falling drop water.

2.4 Smoothed Particle Hydrodynamics (SPH) method

In this thesis, one of the most efficient and robust meshfree particle methods is highlighted.
This method is called Smoothed particle hydrodynamics (SPH). It is a Lagrangian method for
the numerical approximations of the governing equations solutions that works by replacing
of continuum material with a set of particles in interaction. Generally, this method can be
seen via two different points of view [245]:

• From the mathematicians point of view, the particles are considered as interpolation
points from which properties of the continuum material can be approximated.

• From the physicists point of view, the SPH particles are also a continuum material
particles that can be treated like any other material system.

The smoothed Particle Hydrodynamics (SPH) method was originally formulated by Lucy
[210] and Gingold and Monaghan [118] for astrophysical applications. Since this seminal
work, it has been successfully applied to a vast range of problems. These include astrophysical
problems: galaxies formation and claps [249, 310] , dusty gas dynamics[232, 259] , stars
and steller collisions [242, 27, 282] ; Hydrodynamics and compressible flow problems : dam
break [243, 72, 303] , dam spillway [292, 189] fish pass [104] , multiphase flow [254, 151] ,
spersonic flow [102, 274] , shock waves [235, 265] , detonation and explosion [201, 202] ;
Bioengineering problems: swemming bodies [136, 168, 68] , microfluidics [139, 11] , heart
valves [298], blood flows [22, 250] ; heat transfer problems: [67, 348], structure problems;
[66, 124, 137]; multi-physics problems[6, 332, 331], and many other applications.
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2.5 Basics of SPH method

2.5.1 Kernel approximation

The highlight of the SPH method is related to its ability to represent numerical approxima-
tions for functions and their spatial derivatives without need to any topological connectivity
between nodes (mesh).

Let us consider the sufficiently regular function field f , defined on the n-dimensional
domain Ω and its border ∂Ω. The filed f may be defined at the position vector ri ( f (ri))
from the following convolution product:

f (ri) =
∫

Ω

δ (ri − r j) f (r j)drn
j (2.1)

Where drn
j is the elementary volume located at the position r j, and term δ (ri−r j) denotes

the Dirac or the delta function. Because the delta function is not regular ( it lacks continuity
and differentiability properties), it is replaced in the context of SPH method by an alternative
well behaved function W called smoothing kernel function or simply kernel. Thus, the
integral approximation in term of smoothing kernel function W reads as:

f (ri)≈
∫

Ω(kh)

W (ri − r j,h) f (r j)drn
j (2.2)

Where, h represents the smoothing length, and it is usually defined as constant value
proportional to the initial inter-particle distance ∆x0 [186]. The smoothing length h can be
chosen variable for each individual particle in order to enhance the accuracy of SPH method.
For more details about the variation of h, we advice the reader to refer to [242, 135].

In SPH, the kernel function is defined over a compact support of radius equal to kh where
the particle of position ri interacts only with neighboring particles r j. Therefore, the global
domain Ω is restricted to the compact support domain Ω(kh) which subsequently reduces the
computation time. The constant k depends on the choice of the smoothing kernel function.
More details are shown in figure 2.5.

The smoothing kernel function W should fulfill some properties [200]. The most general
ones are summarized below :

— The smoothing function W should be a good approximation tof the Dirac delta
function δ as h −→ 0

— The smoothing function W should decrease monotonously from the position ri.
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Figure 2.5 – Geometrical details of basics principles of SPH method. Ω is global domain
that represent the continuum. W is the kernel function, Ω(kh) is the support compact of W
centered at ri. r j are the neighboring particles of ri within the support domain Ω(kh) .∆x0 is
the initial inter-particles distance.

— The smoothing function W should be a spherically-symmetric even function: W (ri −
r j,h) = W (r j − ri,h) = W (ri j,h). Here, the ri j denotes the distance between the
position vectors ri and r j (ri j = ∥ri − r j∥).
The gradient of kernel W is expressed as : ∇riW (ri − r j,h) =

∂W (r,h)
∂ r

ri−r j
r =

−∇r jW (r j − ri,h)
Where ∇ is the nabla operator (gradient).

— The smoothing function W should have a compact support Ω(kh): W (r,h) = 0 for
r ≥ kh

— The smoothing function W should satisfy the normalization condition:
∫

Ω(kh)
W (ri − r j,h)dr j = 1

— The smoothing function W should be positive within the compact support area:
W (ri − r j,h)≥ 0 for r < kh

— The smoothing kernel function W should be sufficiently smooth (differentiable).

2.5.2 Choice of the smoothing kernel function

The smoothing kernel function can be represented in a general form as :

W (ri j,h) =W (r,h) =
ηn

hn Q
( r

h

)
=

ηn

hn Q(q) (2.3)

Where n is the number of space dimension, Q is function of dimensionless distance q = r
h ,

and ηn is constant depends of the choice of kernel function and the space dimension n. The
letter r denotes the variable distance bestrewn tow points (r = ri j = ∥ri − r j∥ ). In literature,
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a several kernel functions which satisfy the list of conditions discussed above are treated in
the context of SPH method. Some of the most frequently used kernel function are discussed
as follows:

— The Gaussian kernel introduced by Gingold and Monaghan [118]. It is the simplest
kernel whose spatial derivative is infinitely smooth and therefore exhibits good ac-
curacy and stability properties especially for disordered particles (smoother kernel
functions result generally in more stable SPH formulations [319, 253]). However, it
lacks of a compact support (It never goes to zero theoretically), and it is computa-
tionally very expensive. Gaussian Kernel function follows the form of equation 2.3
where the function Q(q) reads as

Q(q) = e−q2
(2.4)

With the constants η1 = 1√
π

, η2 = 1
π

and η3 = 1
π
√

π
for 1, 2 and 3 dimensions,

respectively.
— The B-spline kernel function or cubic spline kernel function [248]. It is the most

commonly used kernel since it has a small compact support and resembles a Gaussian
function. However, it is less stable than smoother kernels. The function Q(q) is
expressed as follows

Q(q) =





1− 3
2q2 + 3

4q3 0 ≤ q < 1
1
4(2−q)3 1 ≤ q < 2

0 q ≥ 2

(2.5)

With the constants η1 =
2
3 , η2 =

10
7π

and η3 =
10
π

for 1, 2 and 3 dimensions, respec-
tively.

— The Quartic and Quintic kernel functions are introduced by Morris [252, 253]. These
kernels are higher order functions and have the advantage of smoother derivatives
which more closely approximate the Gaussian kernel function and they are more
stable. The functions Q(q) are expressed for the Quartic and Quintic Kernel functions,
respectively as:
Q(q) of Quartic kernel function:
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Q(q) =





(2.5−q)4 −5(1.5−q)4 +10(0.5−q)4 0 ≤ q < 0.5

(2.5−q)4 −5(1.5−q)4 0.5 ≤ q < 1.5

(2.5−q)4 1.5 ≤ q < 2.5

0 q ≥ 2.5

(2.6)

With η1 =
1
24 , η2 =

96
1199π

and η3 =
1

20π
for 1, 2 and 3 dimensions, respectively.

Q(q) of Quintic kernel function:

Q(q) =





(3−q)5 −6(2−q)5 +15(1−q)5 0 ≤ q < 1

(3−q)5 −6(2−q)5 1 ≤ q < 2

(3−q)5 2 ≤ q < 3

0 q ≥ 3

(2.7)

With η1 =
1

120 , η2 =
7

478π
and η3 =

1
120π

for 1, 2 and 3 dimensions, respectively.
— The Quartic smoothing function introduced by Liu et al [200]. This function fulfills

the normalization condition, and has a common compact support with its first deriva-
tive. The Quartic kernel gives better results than cubic kernel function (equation (2.5))
since it has only one piece [200, 199]. The function Q(q) reads as

Q(q) =




− 5

32q4 + 19
24q3 − 9

8q2 + 2
3 0 ≤ q < 2

0 q ≥ 0
(2.8)

With η1 = 1, η2 =
15
7π

and η3 =
315

208π
for 1, 2 and 3 dimensions, respectively.

— The kernels of Wendland [347] are also often used. It is recommended by Robinson
and Monaghan [286] since it reduces the SPH tensile instability [51]. Some Q(q)
functions of Wendland kernels are expressed as follows:
Q(q) Wendland C2:

Q(q) = (1− q
2
)4(2q+1) (2.9)

With η2 =
7

4π
and η3 =

21
16π

for 2 and 3 dimensions, respectively.
Q(q) Wendland C4:

Q(q) = (1− q
2
)6(

35
12

q2 +3q+1) (2.10)

With η2 =
9

4π
and η3 =

495
256π

for 2 and 3 dimensions, respectively.
Q(q) Wendland C6:
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Q(q) = (1− q
2
)8(4q3 +

25
4

q2 +4q+1) (2.11)

With η2 =
39

14π
and η3 =

1365
512π

for 2 and 3 dimensions, respectively.

2.5.3 Kernel approximation of a function derivatives

When substituting gradient of the function field ∇ f in kernel approximation formulation
(2.2), the following is obtained:

∇ f (ri)≈
∫

Ω(kh)

∇ f (r j) W (r,h) drn
j (2.12)

By applying the divergence theorem (Gauss theorem) in (2.12), it becomes:

∇ f (ri)≈−
∫

Ω(kh)

f (r j) ∇r jW (r,h) drn
j +

∫

∂Ω(kh)

f (r j) W (r,h) n∂Ω drn−1
j (2.13)

The second integral on the right-hand side of the equation (2.13) is evaluated on the
surface elements drn−1

j of the border ∂Ω(kh) of the domain Ω(kh). The vector n∂Ω is unit
outward vector normal to ∂Ω(kh). As it is mentioned before among the list of conditions that
the smoothing kernel function should satisfy, the domain Ω(kh) must be a support compact.
in other words, the kernel value is equal to zero on the border ∂Ω(kh) inside the continuum
domain. Therefore, the second integral of the formation (2.13) will vanish. When the border
of kernel support ∂Ω(kh) intersects the border of continuum global domain ∂Ω, the second
integral of the formation (2.13) may be evaluated following [104, 192].

Because of ∇riW (ri − r j,h) =−∇r jW (r j − ri,h) the formulation (2.13) can read as:

∇ f (ri)≈
∫

Ω(kh)

f (r j) ∇riW (r,h) drn
j (2.14)

Or simply:

∇ f (ri)≈
∫

Ω(kh)

f (r j) ∇W (r,h) drn
j (2.15)

2.5.4 Accuracy of kernel approximation

The second order Taylor expansion of the function f (r j) around of ri can read as
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f (r j) = f (ri)+(r j − ri) ·∇ f (ri)+O(h2) (2.16)

When the Taylor expansion (2.16 ) is introduced in the right hand side of kernel approxi-
mation of equation (2.2)

∫

Ω(kh)

f (r j)W (r,h) drn
j =

∫

Ω(kh)

{
f (ri)+(r j − ri) ·∇ f (ri)+O(h2)

}
W (r,h) drn

j

= f (ri)
∫

Ω(kh)

W (r,h) drn
j

+∇ f (ri) ·
∫

Ω(kh)

(r j − ri)W (r,h) drn
j +O(h2)

(2.17)

From the mathematical development (2.17), it is clear that the kernel formulation of
equation ( 2.2) is a second-order accurate approximation if :

∫

Ω(kh)

W (r,h) drn
j = 1 (2.18)

and

∫

Ω(kh)

(ri − r j) W (r,h) drn
j = 0 (2.19)

It is possible to obtain a higher order accuracy (kth order) when all moments of W (until
the kth moment Mk) equal to zero [207, 23, 87, 88].

Mk =
∫

Ω(kh)

(ri − r j)
k W (r,h) drn

j = 0 (2.20)

If the Taylor expansion (2.16) is introduced in (2.15), the fowling expression is obtained
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∫

Ω(kh)

f (r j) ∇W (r,h) drn
j =

∫

Ω(kh)

{
f (ri)+(r j − ri) ·∇ f (ri)+O(h2)

}
∇W (r,h) drn

j

= f (ri)
∫

Ω(kh)

∇W (r,h) drn
j

+∇ f (ri) ·
∫

Ω(kh)

(r j − ri)⊗∇W (r,h) drn
j +O(h2)

(2.21)

As it is concluded before for order of accuracy of the kernel approximation, and from
the mathematical development (2.21), it is obvious that the gradient kernel approximation is
second order accuracy if the following identities are satisfied

∫

Ω(kh)

∇W (r,h) drn
j = 0 (2.22)

and ∫

Ω(kh)

(r j − ri)⊗∇W (r,h) drn
j = I (2.23)

Where I is the identity tensor.

2.5.5 Particle approximation

In SPH, the computational domain (continuum) is represented by a set of particles
carrying all the generic variables (density, pressure, velocity ...). These particles are in
interaction within a range controlled by the smoothing kernel function support called here
Ω(kh) (see figure 2.5 for more details ). The integrals under their continuous forms can be
approximated with a summation applied on the finite number of neighboring particles with
volume Vj. This process is the so-called particle approximation [112, 198, 200]. Therefore,
the discrete form of the integral kernel approximation of the function f at position ri (equation
(2.2)) is obtained by using the surrounding particles r j (the neighboring particles within the
support domain of W centered at ri ) and can read as :

f (ri)≈
nb

∑
j

f (r j)Wi jVj (2.24)
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Where, nb is the number of particles j in the neighborhood of the particle i, the volume
Vj of particle j is defined as Vj =

m j
ρ j

, with m j and ρ j the mass and the density of the particle
j, respectively. The notation Wi j denotes Wi j =W (ri j,h) =W (ri − r j,h).

With some mathematical manipulation, the discrete form of kernel approximation of the
continuous gradient of the function field f can also be estimated as:

∇ f (ri)≈
nb

∑
j

f (r j) ∇Wi j Vj (2.25)

Alternative expressions for the gradient of the field function f can be obtained by
considering the following two identities [242]:

∇ f =
1
ρ
{∇(ρ f )− f ∇ρ} (2.26)

∇ f = ρ

{
∇

(
f
ρ

)
− f

ρ2 ∇ρ

}
(2.27)

By substituting the equations (2.26) and (2.27) into the equation (2.25), the following
paired particles forms of gradient function are obtained respectively

∇ f (ri)≈
1
ρi

nb

∑
j

m j
(

f (r j)− f (ri)
)

∇Wi j (2.28)

∇ f (ri)≈ ρi

nb

∑
j

m j

(
f (r j)

ρ2
j

+
f (ri)

ρ2
i

)
∇Wi j (2.29)

The equation (2.28) has a asymmetric form (as seen when particles i and j swap places).
This formulation has the advantage over (2.25) since it returns exactly the derivative of a
constant function (this formulation is called zeroth order consistency C0), while the equation
(2.29) has an symmetric form which it obeys the propriety of “the action is minus of the
reaction”, thus, the conservative form is fulfilled whose use is favored in the discretization of
the momentum equation [239]. Note, the divergence can be approximated using the same
formulations as the gradient (2.28) and (2.29). The second order derivative of the field
function f can be approximated by differentiating the equation (2.24 ) a twice :

∆ f (ri) = ∇
2 f (ri) = ∇ ·∇ f (ri)≈

nb

∑
j

f (r j)∇
2Wi jVj (2.30)

This expression suffer from a lot of issues such as its strong sensitivity to the particle
disorder and need and also it can results a large errors at low particle resolution, especially
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when the employed kernel function is a low-order [43, 255].To deal with this issues, a useful
approach was proposed by Monaghan [231] in the context of heat conduction treatment, This
approch reads as :

∆ f (ri)≈ 2
nb

∑
j

f (ri)− f (r j)

∥ri − r j∥2 (ri − r j) ·∇Wi jVj (2.31)

This expression results from a hybrid combination between a finite difference derivative
and a first-order SPH derivative. This formulation is also used by many researchers to
discretize the second-order derivative [255, 67, 325] .

2.6 Performance optimization and open source codes of
SPH method

One of the major problems presented in the use of smoothed particle hydrodynamics is
its high cost in terms of computational time. This problem is communally found in all
lagrangian methods for a many reasons. We can quote for instance, the cost of mathematical
and physical proprieties calculations on each particle which is based on the interpolation
with a considerable number of surrounding particles. Furthermore, the motion of particle
involved the updating of search for new list of surrounding particles in each time step hold
on each particle, unlike in the Eulerian methods, the connectivity of the nodes is known in
advance and doesn’t require any updating according to time. And also, the high number of
iterations needed to simulate a given physical time. The last drawback is generally due to
the explicitness of the integration scheme which requires a very small time step in order to
preserve the numerical stability.

With performance growth presented in hardware architectures of the recent computers, a
several contributions in the literature were done to make the SPH method cost-effective.
In the context of shared memory architecture on both GPU and CPU, large parallelization
techniques for WCSPH were developed in the literature thanks to the explicitness and
independence of calculation tasks hold on each individual particle. For instance, in the
framework of Dualphysics project : open source SPH solver [79], which is based on the
Monaghan discretization scheme [242], a parallelism implementation both on GPU and CPU
was progress in several works. Firstly it was implemented on a single GPU using the CUDA
language [78]. This approach was limited for millions of particles due to the limitation of the
device memory used in GPU cards. To deal with this problem, a multi-GPUs parallelization
technique using massage passing interface "MPI" paradigm is used to communicate between
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several devices memories of Nvidia CUDA cards [335]. But this approach was not optimized
regarding the fixed technique of interface communication between the memory devices of
GPUs cards that causes a high computational time due to the amount of data transfer and
its maladjusted with the particle motion that causing later a loss in load balancing. In the
reference [90] an enhancement of the last method was done to optimize the communications
between memory by sharing the particles between GPUs memory devices following the
kinematic of particles flow. Later in reference [89] an optimized strategy was described which
based on the keeping of the calculation tasks maximum as possible in GPU to minimize the
CPU-GPU data transfer. In the last reference a multi-threading parallelization technique on
CPU using the OpenCL library was proposed. Another free SPH Solver Parallel on GPU
so-called AQUAgpusph was recently developed [53] to be widely supported in various cards
architecture (Nvidia, AMD, IBM, Intel, etc...) thanks to OpenCL computing language which
is not possible for CUDA language that works only on NVIDIA Cards technology.

Josephine is a parallel SPH code on CPU used to simulate free surface flow in open basin
[60] using Colagrossi and Landrini [72] and Ferrari et al. [105] approaches. The principal of
parallelism method used in the context of Josephine is based on a vertical decomposition
domain with updating the interface separating between processes which define the buffer
exchange zone to fellow the kinetic of flow in order to guarantee a good load balancing
between the processors by using a single way zone interaction based on the QuickSelect
algorithm to determine the abscissa dividing the particles of interaction zone into tow subset.

2.7 Applications

Nowadays, SPH methods have gained a wide interest for application in research and
engineering. Herein, some of its applications are addressed such as in fluid, structure and
interactions.

2.7.1 Fluid applications

The dam break flow problem is one of the most known benchmarks used in the SPH
framework [243, 36, 72, 204, 288, 339, 77, 105, 216]. It includes all the complexity that
makes SPH a particularly well suited method for its simulation such as the presence of the
free surface and its large deformation. Figure 2.6 shows the simulation sequences of the
dam break realized by Marrone et al [216] in the context of diffusive scheme δ -SPH. The
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comparison of pressure results with available experimental data made by Buchner [44] are
presented in figure 2.7.

Figure 2.6 – Snapshots of the evolution of the dam-break flow against a vertical wall
(Marrone et al [216]).

Lid-driven cavity flow has been widely used as a benchmarking test to validate numerical
models in the context of confined fluid flow. For SPH applications, we can refer to [188,
357, 85, 5, 192]. We show via the Figure 2.8 the results obtained by Leroy et al [192] using
incompressible SPH (ISPH) scheme with unified semi-analytical wall boundary conditions
(USAW) compared with the Finite volume results (FV). While in figure 2.9 a comparison
of the velocity profiles between the ISPH-USAW [192] , SPH with the multiple boundary
tangent method (SPH-MBT) [357], finites volumes , and the results of Ghia et al [116].

For multiphase fluid flows applications, the most popular investigated test is the Rayleigh–Taylor
instability problem [80, 150, 128, 149, 238, 297, 58]. In figure 2.10 the positions of the SPH
particles at dimensionless time 5 is taken form the work of Monaghan and Rafiee [238]. The
results obtained are similar to that of Cummins and Rudman [80] and Grenier et al [128].
figure 2.11 show the ariation of the highest point of the low-density fluid for different particle
resolutions compared with Layzer theory [307].

Many other applications can be quoted such as in aerodynamics [218] (see figure 2.12),
bubbly flow and coalescence in framework of SPH interfacial multiphase method [129, 358],
simulation with a high particle resolution (more than 109 particles) for large wave interacting
with an off-shore oil rig platform [90] and so on.
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Figure 2.7 – Dam-break flow against a vertical wall. Comparison between the pressure loads
measured experimentally by Buchner [44] and predicted by the numerical model at probes
P1 (top panel) and P2 (bottom panel). Results are shown for three different space resolutions.
(Marrone et al [216]).

2.7.2 Structure applications

The SPH method can be applied successfully to different problems behavior, such as
elastic, plastic, and elasto-plastic behaviors.

Oscillating plate [124, 277, 359] and collision of two rubber rings [124, 206, 314] are
two typical tests for simulation of elastic deformation of structure. figures 2.16 and 2.17
show the simulation sequences of the oscillating plate and the collision of two rubber rings,
respectively. The convergence of SPH elastic model can be shown through the figure 2.18
that represents the time evolution of the vertical position of a point on the end of the plate for
different resolution. all these figures are taken form the work of Gray and Monaghan [124].

The geomaterials can be considered as purely plastic materials. The SPH method offers a
good advantage for the simulation of this kind of material via a Non-Newtonian fluid model
that yields under a certain criterion ( such as Mohr-Coulomb [227, 75] or Drucker–Prager
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Figure 2.8 – Lid-driven cavity for Reynolds Re = 1000: comparison of the results obtained
after convergence with ISPH-USAW (left) and with FV (right). (Leroy et al [192])

Figure 2.9 – Lid-driven cavity for Re = 100. Comparison of the velocity profiles in x+ = 1/2
and z+ = 1/2 between ISPH-USAW, Incompressible SPH with the multiple boundary tangent
(ISPH-MBT) [357], ,FV and the result sof Ghia et al [116]. (Leroy et al [192])
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Figure 2.10 – The positions of the SPH particles at the dimensionless time 5 using 150×300
particles. The blue particles assign the light fluid.(Monaghan and Rafiee [238])

Figure 2.11 – The time evolution of the highest point of the low-density fluid. The Layzer
theory is shown by the continuous blue line. The small open circles the results for 50×100
particles. Red line hows the results for 75× 150 particles and green the results for the
simulation with 150×300 particles.(Monaghan and Rafiee [238])

[93] yield criteria). This model is so-called visco-plastic model. A lot of applications of
this method for the simulation of the flow behavior of granular materials can be found
in the literature [13, 52, 153, 320]. Also the elasto-plastic constitutive models have also
demonstrated that are suitable for simulation of granular materials [46, 49, 57, 260]. Figures
2.19 and 2.20 show the equilibrium state of 2D sediment dam break and the collapse of
cylindrical sand column simulated using visco-plastic and elasto-plastic models, respectively.
Douillet-Grellier et al [92] use Drucker-Prager and Grady-Kipp [28, 29] in the context of
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Figure 2.12 – WCSPH simulation of inviscid flow around a circular cylinder for Re = 2400.
Comparison of the predicted vorticity field between SPH (left) and Finite difference Navier-
Stokes Solver (right) [74]. (Marrone et al [218])

Figure 2.13 – Bubbly flow in a simplified closed oil-water separator. Density fields are
shown at different times.(Grenier et al [129])

elasto-plastic SPH model to simulate the failure in uniaxial compression of gypsum samples
that contain an angled flaw (see figure 2.21).

2.7.3 Fluid structure interactions

The deformation of an elastic plate subjected to time-dependent water pressure is a
well-known benchmark proposed by Antoci et al [6] to validate the interaction between the
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Figure 2.14 – The SPH snapshots of the oblique coalescence at some characteristic time
instants (top); the experimental snapshots in Brereton and and Korotney [42] (middle); the
velocity field around the bubbles (bottom). (Zhang et al [358])

Figure 2.15 – Different instants t = {2.2,3.2,10}[s] of the simulation of a large wave
interacting with an off-shore oil rig platform using 109 Particles. (Dominguez et al [90])

fluid and elastic structures codes [6, 144, 277]. Figures 2.22 and 2.23 show comparative
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Figure 2.16 – Simulation sequences of the elastic plate oscillation. (Gray and Monaghan
[124])

results between SPH and experimental tests for simulation sequences and the time-evolution
of the horizontal and vertical displacements of the plate free end .

There is also another benchmark for modeling a breaking dam on hypoelastic baffle [277]
compared with Particle Finite Element Method (PFEM) [157] that can be also used for the
validation of fluid-elastic structures interactions codes. Figure 2.24 shows a comparison of
simulation sequences of dam break interaction with hypoelastic baffle between two numerical
method Particle Finite Element (PFE) and Smoothed Particle hydrodynamics methods (SPH)
[277].

For fluid and land interactions, a classical simple example of numerical modeling of
submarine landslide generated waves [275, 52, 353] can be used for the validation of SPH
codes thanks to its available experimental data (Rzadkiewicz et al [290]). Figure 2.25 shows
the position of fluid and land particles at the times t = 0[s] and t = 0.8[s], from the left to the
right, respectively (Capone et al [52]). In the figure 2.26 comparison curves of the water free
surface obtained with SPH method [52] and experimental data [290].

For fluid and rigid body interactions, a very good synthetic test case was proposed by
Canelas et al [50] in order to simulate the impact of a violent water wave over a real geometry
of container terminal of the Sines port (it is a big infrastructure on the Portuguese coast) to
explore the possibilities of SPH method regarding complex, industrial scales. figure 2.27
shows four selected sequences of this application.
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Figure 2.17 – Simulation sequences of the collision between two elastic rings . (Gray and
Monaghan [124])

Figure 2.18 – Convergence study of the oscillating plate test case using three particle
resolutions with n = {10,20,30} particles towards the direction of the plate thickness . (Gray
and Monaghan [124])



2.7 Applications 57

Figure 2.19 – The sediment dam break comparison between: (a) the experimental data of
Bui et al [46], (b) Fourtakas and Rogers [108] results obatained via the visco-plastic model
(c) comparison of the experimental profile and yielded surface of the sediment Bui et al.[46]
and the Fourtakas and Rogers [108] model at the equilibrium state (t=0.64s) . (Fourtakas and
Rogers [108])

Figure 2.20 – Equilibrium state of collapse of a cylindrical sand column. The particles are
colored with accumulative equivalent plastic strain. (a) side view; (b) isometric view. (Chen
and Qiu [57])
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Figure 2.21 – Failure in uniaxial compression of gypsum sample with an angled flaw. The
top figure shows the initial state of sample, while the bottom figures show the SPH crack
simulation with considering several flaw angles.(Douillet-Grellier et al [92])
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Figure 2.22 – Comparison between frames from the experiment and images of SPH particle
positions [6] every 0.04s from t = 0[s] (a) until t = 0.4[s] (k). (Antoci et al [6])

Figure 2.23 – Horizontal and vertical displacements of the free end of the plate. (Antoci et
al [6])
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Figure 2.24 – Comparison between Particle Finite Element Method (PFEM) [157] results
and SPH [277] simulations for dam break on a hypoelastic baffle. (Rafiee and Thiagarajan
[277] )

Figure 2.25 – Submarine landslide simulation: the left image represents the initial particles
position of the land and the water (at t = 0[s]), wile the right image is at t = 0.8[s]. (Capone
et al [52])
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Figure 2.26 – Elevation of the water free surface at time t = 0.8[8]: comparaison between
SPH [52] results and experimental data by Rzadkiewicz et al [290] . (Capone et al [52])

t = 0[s] t = 14[s]

t = 18[s] t = 60[s]

Figure 2.27 – Simulation of the impact of a violent water wave over Sines container terminal
at times t = {0,14,18,60}[s]. (Canelas et al [50])





Chapter 3

SPH : Numerical development and
governing equations discretization

Dans ce chapitre nous abordons les principales équations régissant le comportement d’un
milieu continu (fluide et structure). Différentes formulations de discrétisation SPH extraits
de la littérature sont discutées. Les principales méthodes utilisées pour la détermination de
la pression afin de fermer le système des équations physique sont introduits. Nous donnons
un aperçu théorique sur les différentes stratégies et méthodes de simulation des écoulements
multiphasiques ainsi que les différentes formes de force de tension de surface utilisées dans
le contexte de la méthode SPH. Les différentes stratégies de couplage multiphysiques entre le
fluide et la structure sont brièvement discutées. Les méthodes de correction et amélioration
de précision et stabilité de la méthode SPH sont présentées. La modélisation de différentes
conditions aux limites, les schémas d’intégration en temps ainsi que les critères de stabilité
dans le cadre de la méthode SPH sont aussi abordés.
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In this chapter we present the governing equation describing the behaviour of a continuous
medium (fluid and structure). Various SPH discretization formulations extracted from the
literature are discussed. The main methods used to determine the pressure in order to close the
governing equations system are introduced. We provide a theoretical overview of the different
strategies and methods of multiphase flow simulation as well as the different forms of surface
tension force used in the context of the SPH method. The different multiphysics coupling
strategies between fluid and structure are given. Methods for correcting and improving the
accuracy and stability of the SPH method are discussed. The modeling of different boundary
conditions, time integration schemes and stability criteria in the framework of the SPH
method are also presented.

3.1 Governing equations

Among the wide range of applications that can be dealt by the SPH method, we highlight
in this work the physical phenomena generated from fluid, solid and their interactions. When
the fluid and solid behave under isothermal conditions, their evolution can be described
completely by the continuity, the momentum conservation and displacement equations.
These equations are represented in Lagrangian form as follows:





dρ

dt =−ρ∇ · v
dv
dt = 1

ρ
∇ ·σ +Fs +Fb

dr
dt = v

(3.1)

where d(.)
dt = ∂ (.)

∂ t +v ·∇(.) represents the Lagrangian derivative (material derivative). ∇ is the
nabla operator, ρ,v,r,Fs and Fb represent density, velocity vector, position vector, surface
force vector and volumetric body force vector respectively. The surface and body forces
can represent for instance the surface tension force, gravity force, electrical force and etc
[150, 254, 278] . σ is the Cauchy stress tensor. For more details about the development of
conservation equations of the system (3.1), we advise the reader to refer to [221, 283, 119]

The Cauchy stress tensor σ can be decomposed into two parts, the isotropic part (−pI)
and deviatoric part (τ):

σ =−pI + τ (3.2)

With p and I denote the hydrostatic pressure (also called mean stress for solid mechanics
with p = −1

ntr(σ), where n is number of space dimensions and tr is the notation of trace
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of square matrix) and the identity tensor, respectively. The notation of the deviatoric tensor
(τ) is related to any continuum material, for the fluid material it can be called also viscous
stress tensor. The deviatoric is often writing as a function of the rate of strain tensor D. This
relation is called constitutive law.

By substituting the equation (3.2) into the momentum equation of the system (3.1), it
becomes

dv
dt

=−∇p
ρ

+
∇ · τ

ρ
+Fs +Fb (3.3)

When the inertial forces are dominant over the viscous ones in the fluid material, it will
be treated as inviscid or ideal fluid where the viscous forces are neglected in the computation
(τ = 0). For the Newtonian fluid flow, the stress tensor can not be neglected, and it is linearly
proportional to the rate of strain tensor with a constant coefficient, the so-called dynamic
viscosity (µ) [20, 269]. Thus, the viscous stress tensor (deviatoric tensor) for the Newtonian
fluid flow can be expressed as

τ = µ D (3.4)

Where D denotes the rate of strain tensor and it is defined as D = ∇v+(∇v)T , with ∇v
represents the velocity gradient tensor, and the superscript T is the transpose tensor symbol.
For incompressible Newtonian fluid, since ∇ · v = 0, the divergence of the viscous tensor
∇ · τ further reduces to

τ = µ∇
2v (3.5)

Where ∇
2 = ∇ ·∇ = ∆ is the Laplacian operator.

All fluids that do not obey equation (3.4) are regrouped under one category so-called
non-Newtonian [360, 124, 145, 61, 165]. The figure shows the three categories of non-
Newtonian fluids classification: The purely viscous time- independent, time-dependent fluids
and viscoelastic fluids [165].

The fluid belongs to the purely viscous time-dependent category, when the shear stress is
a function only of the rate of strain but in different manner than described in equation (3.4).
Figure 3.2 shows different models of viscous time-independent non-Newtonian fluids.

The pseudoplastic (shear thinning) [34] and dilatant (shear thickening) [17] models have
their shear stress depend in a nonlinear way only on the shear rate. for both models, no
initial stress is required to initiate yielding. The macromolecular and concentrated solids
suspension fluids are examples of pseudoplastic and dilatant fluids, respectively [267].
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The Bingham plastic model [33] (also called viscoplastic model) is one of the simplest
and more commonly used among the viscous time-dependent category of fluids. In this
model, when the yield stress limit (τy) is exceeded, the material behaves as Newtonian fluid.
Otherwise, it behaves as a rigid body. The constitutive law for a Bingham Plastic can be
written in tensorial form as





τ =
{

τy

∥D∥F
+µ

}
D ∥τ∥F ≥ τy

D = 0 ∥τ∥F < τy

(3.6)

The notation ∥.∥F refers to Frobenius norm (see equations (5.8) and (5.9) ). In equation
(5.7) the yielding criterion of soil materials is defined using the Von Mises criterion [226].

∥D∥F =

(
1
2

D : D
) 1

2

(3.7)

∥τ∥F =

(
1
2

τ : τ

) 1
2

(3.8)

The formulation (5.7) can be written under a smooth form to avoid the numerical difficul-
ties resulting from its discontinuous form. The exponential model [270] and the Bercovier
and Engelman (BE) model [30] are used for instance to deal with this.

The typical example of Bingham plastic model is the toothpaste, which will not flow out
only when certain stress is applied on the tube [281].

Under the Herschel–Bulkley model (also called a nonlinear viscoplastic model) [76], the
fluid behaves exactly as with Bingham plastic model but after exceeding the yield stress
they following the pseudoplastic model instead of the Newtonian one. Mud flow can be
considered as a Herschel–Bulkley fluid [152].

The time-dependent fluids have a hysteresis loop which depends on the time-dependent
rate at which the shear stress is applied. The pseudoplastic time-dependent fluid (thixotropic)
[257] and the dilatant time-dependent fluid (rheopectic) are two models belonging to this
category (see figure 3.2). The waxy crude oil [329] and Bentonite clay suspension [267] are
the examples of thixotropic and rheopectic fluids, respectively .

Viscoelastic fluids [276], as can be understood from their name, they possess both viscous
and elastic properties. The egg white and polymer melts are examples of Viscoelastic fluids
[281].

For the study of the elastic dynamic behavior of any solid structure, the constitutive
equation based on Hooke’s formulation corrected by by Jaumann rate [163] can be used
[124]. It reads as
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Figure 3.1 – Classification of fluids.(Roproduced from Johnson [165])

Figure 3.2 – Flow curves of shear stress as a function of shear rate for time-dependent
fluids.(Roproduced from Johnson [165])

Figure 3.3 – Flow curves of shear stress as a function of shear rate for time-independent
fluids.(Roproduced from Johnson [165])

dτ

dt
= G

(
D− 1

3
tr(D)I

)
+ τω +ωτ (3.9)
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Where G is the shear modulus. For the isotropic materials, the shear modulus G can be
written as a function of the Young’s modulus E, the Poisson’s ratio ν and the bulk modulus
K [184].

G =
E

2(1+ν)
=

3K(1−2ν)

2(1+ν)
(3.10)

The tensor ω denotes the rotation-rate tensor that can be expressed as

ω =
1
2
(
∇v− (∇v)T) (3.11)

The notation tr(D) presents the trace of the square matrix D.

There are other alternative laws for the time derivative of the deviatoric stress that can be
used in the context of elastic behavior modeling as those proposed by Ellero et al [95] for
studying viscoelastic flows.

Modeling of solid mechanics equations using SPH method has been largely employed
thanks to the meshless nature of the method. It was firstely carried out by Libersky and
Petschek [194] to simulate the fracture process in brittle solids. After that, it was be extended
by Randles and Libersky [279] and then Gray and Monaghan [124] to be applied on the
elastic dynamics. The commonly used model for the study of plastic behavior of solids in the
context of SPH model is the Drucker-Prager model [93]. It was used firstly by Bui et al [46]
to study soil collapse and slope stability. Since that, it has been used in other applications, for
instance: the study of the failure due to compression in a Brazilian test [86, 272], modeling
large soil deformation [45, 47, 57, 260], and the study of the failure in uniaxial compression
of gypsum samples [92]. For more details about the model, we refer the reader to consult the
references [46, 92].

3.2 Determination of pressure

The system of equations (3.1) is open, and should be closed by the determination of
pressure variable. Three principal approaches are commonly used for the pressure determina-
tion in the SPH method: Weakly compressible smoothed particle hydrodynamics (WCSPH),
Truly incompressible smoothed particle hydrodynamics (ISPH), and explicit incompressible
smoothed particle hydrodynamics (EISPH).
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3.2.1 Weakly Compressible Smoothed Particle Hydrodynamics

In weakly compressible smoothed particle hydrodynamics (WCSPH) approach, the
determination of pressure is done by using an explicit equation of state (EOS) that relates
the pressure with particle density ρ and artificial speed of sound c0. The most commonly
used EOS in the framework of WCSPH is the MacDonald [211] equation. It is also largely
known as Tait equation of state in SPH community, This application is stated incorrect by
Monaghan in [234]. The MacDonald equation of state is expressed as

p = pr

{(
ρ

ρ0

)γ

−1
}
+ pb (3.12)

where ρ0, pr and pb denote the reference density, the reference pressure and background
pressure, respectively. The reference density is related to the reference speed of sound c0 by
the following equation

pr =
ρ0c2

0
γ

(3.13)

the parameter γ is generally set constant and equal 7 . In some references the γ = 1.4 is
also used to simulate the air material [72, 128, 129, 358]. It is stated by Morris in [255] , that
when the density fluctuations increases, small errors in density correspond to increasingly
larger errors in pressure. Therefore, for lower Reynolds numbers, more accurate pressure
estimates are obtained using SPH if γ = 1, since errors in density and pressure remain
proportional. The linear equation of state (when γ = 1) is used in lot of references such as
[254, 216].
The reference speed of sound c0 in the case of fluid flow can be determined as [254, 308]

c2
0 ≈ max

{
U2

0
δρ

,
∥g∥L0

δρ
,

µe f fU0

ρ0L0δρ

}
(3.14)

Where U0, L0, µe f f and σ are the reference velocity, reference length, and effective
dynamic viscosity (apparent viscosity), respectively. The term δρ represent the ratio of
density variations about the initial density which is usually set equal to 1% (δρ = 0.01 )
[243].

For numerical problems involving single-phase free surface fluid flows and also for
solid dynamics, the background pressure is generally set to zero (pb = 0). Furthermore, for
simulations of single or multiphase confined fluid flows, the pressure is chosen as a positive
value sufficient to guarantee the positivity of the calculated pressure field via the equation
of state in order to avoid the tensile instability [218]. Several formulation of background
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pressure are used in the literature such as: Marrone et al [218] use (pb = 3ρ0U2
0 ) for confined

single fluid flow, and Krimi et al [178] use (pb ∝ 0.05pr) for the simulation of confined
multi-phase flow.

In order to enhance the numerical stability of the multiphase fluid flow simulations,
Colagrossi and Landrini [72] recommend the use a common reference pressure of all fluid
phase.

In the case of the simulation of solid deformation, the linear equation of state ( Equation
(3.12) with γ = 1) is usually employed with a calculated artificial speed of sound using the
following equation [124, 6, 293]

c2
0 ≈

K
ρ0

(3.15)

Where K is the bulk modulus.

3.2.2 Incompressible Smoothed Particle Hydrodynamics

In Incompressible Smoothed Particle Hydrodynamics (ISPH) approach, the determination
of pressure is done by solving the Poisson’s equation via the projection method. This
method is originally developed in the context of grid-based method by Chorin [62, 63],
and implemented by Cummins and Rudman [80] to deal with incompressible SPH flow but
without a free surface. The free surface condition was introduced in incompressible SPH
model by Shao and Lo [303]. It has since been of great interest [302, 150, 355, 158]. In
ISPH, the continuity equation of the system (3.1) is simplified to the divergence-free velocity
by taking into account that the density is a constant parameter. It reads as

∇ · v = 0 (3.16)

The original incompressible smoothed particle projection method [80, 188] is referred
under the name of ISPH divergence-free velocity field (ISPH_DF method). Here, the density
and mass of particles are constant and their positions rn

i are advected with velocity vn
i to an

intermediate positions r∗i as follows

r∗i = rn
i +δ t vn

i (3.17)

At the position r∗i , An intermediate velocity v∗i is calculated based on all forces governing
the movement of particle i at the time n except the pressure ones

v∗i = vn
i +δ t

(
∇ · τ

ρ
+Fs +Fb

)
(3.18)
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Determination of pressure at time n+1 by solving the following pressure Poisson equation
(PPE) t

∇ ·
(

1
ρ

∇pn+1
)

i
=

1
δ t

∇ · v∗i (3.19)

The velocity at the final time-step n+1 (vn+1
i ) will result from the projection of v∗i . Thus,

vn+1
i = v∗i −

δ t
ρ

∇pn+1
i (3.20)

The particle position at the final time-step is calculated by

rn+1
i = rn

i +δ t

(
vn+1

i + vn
i

2

)
(3.21)

The ISPH_DF scheme provides accurate and smooth pressure fields. However, it presents
instabilities since it leads to highly anisotropic particles arrangements [197]. This problem
can be avoided by using particle shifting algorithm as proposed by Xu et al [355] and
improved by Lind et al [197] or the one proposed by Fatehi and Manzari [100].

Two alternative methods have been developed to enhance the accuracy and stability of
the ISPH_DF method. The first method is referred as ISPH_DI (incompressible smoothed
particle hydrodynamics based on keeping density invariance) [303], this method is similar to
ISPH_DF for all steps except of the solving Poisson equation step. In ISPH_DI, the right
hand side of Pressure Poisson equation is expressed with relative density difference instead
of divergence of velocity in ISPH_DF. Therefore, the Pressure Poisson Equation can read as

∇ ·
(

1
ρ∗∇pn+1

)

i
=

ρ0 −ρ∗

ρ0δ t2 (3.22)

With ρ∗ is the intermediate particle density approximated through the continuity equation.

As it is stated by Xu et al [355], the ISPH_DI scheme presents more stable simulations
than with ISPH_DF one, but its accuracy is deteriorated. To benefit from both schemes
ISPH_DF and ISPH_DI, Hu and Adams [150] proposed a combined a scheme which is
referred as ISPH_DFDI. This scheme requires two pressure Poisson equations to be solved,
and thus, computational cost becomes higher.

The main differences between weakly compressible smoothed particle hydrodynamics
(WCSPH) and the incompressible smoothed particle hydrodynamics (ISPH) methods can be
summarized by Table 3.1.
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WCSPH ISPH
Fully explicit nature of the scheme resolu-
tion

Semi-implicit nature of the scheme resolu-
tion

The pressure is calculated via an equation
of state

The pressure is calculated via solving the
Poisson equation

Suffer from a high frequency oscillations of
pressure

Stable and smooth pressure

Free surface flow condition is maturely ful-
filled

Imposition of free surface flow is required

Easy to program More difficult to program than WCSPH
Small time step due to CFL condition re-
lated to the artificial speed of sound c0

More important time step

Shifting particle algorithm is not needed (It
presents good particles distribution)

Need for shifting algorithm in order to well
distribute

Table 3.1 – Comparison between WCSPH and ISPH schemes.

3.2.3 Explicit Incompressible Smoothed Particle Hydrodynamics

The explicit incompressible smoothed particle hydrodynamics method (EISPH), is firstly
developed by Hosseini et al [145] for the simulation of non-Newtonian fluid flow. It was
employed after in other works as in [277, 14, 15]. This method uses the projection method as
in ISPH [80] but relies on an explicit approximation of Poisson equation instead of solving it.
Therefore, this method reduces the pressure oscillations and reduce the computational effort
[82]. For more details about the formulations, we advise the reader to refer to [145, 82].

3.3 Discretization of governing equations

Generally, the asymmetric form of SPH first derivative ( Equation 2.28) is employed to
write the right hand side of the continuity equation of the system (3.1) (also called divergence
equation [245] ) in SPH discrete form. Thus, the discrete form at the particle i can be read as

dρi

dt
=

nb

∑
j

m j vi j ·∇Wi j (3.23)

and also

dρi

dt
= ρi

nb

∑
j

m j

ρi
vi j ·∇Wi j (3.24)

With vi j = vi − v j.
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Otherwise, the density can be also directly approximated via the basic SPH interpolation
( 2.24 ) applied on the density ρ at the particle i. This summation form is expressed as

ρi =
nb

∑
j

m j

ρ j
ρ j Wi j =

nb

∑
j

m j Wi j (3.25)

The discrete formulation of the continuity equation (3.23) can be seen as the he time
derivative version of the summation form (3.25) [245].

The advantage of the density summation formulation (3.25) over the formulations (3.23)
and 3.24 is that it conserves exactly the mass [242]. An alternative version of density sum-
mation formulation is presented by Hu et Adams [151] (equation (3.26) ) . This formulation
conserves exactly the mass as well as (3.25), and in addition it allows for density discon-
tinuities when the particle i interacts with the neighboring particles j that present a large
particle-mass differences, for instance, it is well suited to dealing with multiphase fluid flow
with large density ratio.

ρi = mi

nb

∑
j

Wi j (3.26)

The problem of the density summation formulations (3.25) and (3.26) is that it works
badly in cases of free surface flows, because they can not reproduce a zero pressure in the
free surface particle. While, with the use of the density divergence equations (3.23) or (3.25)
the zero pressure in the free surface particle is reproduced naturally. The formulation (3.25)
is recommended for use over equation (3.23) when the problem concerns multiphase fluid
flow with hight density ratio ( ≥ 2) [69, 245], because in the summation of the right hand
side of the equation (3.23) , the mass of neighboring particles affects the calculation, whereas
with the formulation (3.24) it is the volumes that affects it.

In order to achieve the conservation of momentum, one of the following symmetric
expression can be used for the calculation of divergence operator of the Cauchy stress tensor
σ [242]

1
ρi

∇ ·σi =
nb

∑
j

m j

(
σi

ρ2
i
+

σ j

ρ2
j

)
∇Wi j (3.27)

If the density varies significantly, Monaghan [234] has recommended to use another
discrete symmetric form of Cauchy stress divergence [338]

1
ρi

∇ ·σi =
nb

∑
j

m j

ρiρ j

(
σi +σ j

)
∇Wi j (3.28)
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With σi is expressed as σi =−piI + τi.

An asymmetric expression can be used to discretize the divergence of Cauchy stress
tensor as it is used in [56, 279]

1
ρi

∇ ·σi =
nb

∑
j

m j

ρiρ j

(
σ j −σi

)
∇Wi j (3.29)

The formulation is generally used with normalization technique of the kernel gradient
explained in the section 3.7 (equation (3.67)) [56, 279].

The three formulation of the Cauchy stress tensor divergence ∇ ·σi are usually employed
in the context of solid mechanics, especially for modeling the elastic behavior where the
deviatoric part τ is determined from time integration of a differential equation as equation
(3.9) or as used in [95]. For fluid dynamics applications, the form of momentum equation
(3.3) is preferred, where the gradient of pressure and the viscous tensor divergence τ are
discretized separately in different ways.

The discretization of the pressure gradient follows the same three formulations [242, 338,
279]. Thus, they can be represented as

− 1
ρi

∇pi =





−∑
nb
j m j

(
pi
ρ2

i
+

p j

ρ2
j

)
∇Wi j

−∑
nb
j

m j
ρiρ j

(pi + p j) ∇Wi j

−∑
nb
j

m j
ρiρ j

(p j − pi) ∇Wi j

(3.30)

For the divergence of the viscous stress tensor. A hybrid formulation between the SPH
gradient approximation and finite difference estimation of second derivative operator has
been proposed by Morris [255] :

1
ρi

∇ · τi =
nb

∑
j

m j
(µi +µ j)

ρiρ j

ri j ·∇Wi j

r2
i j

vi j (3.31)

This formulation (3.31) conserves linear momentum exactly, while preserving angular
momentum approximately [19].

Violeau and Issa [339] have derived from the artificial viscosity term used in the the
work of Monaghan and Gingold [235] the following formulation for the approximation of
the divergence of viscous stress tensor

1
ρi

∇ · τi =
nb

∑
j

m j
8

ρi +ρ j

(
µi

ρi
+

µ j

ρ j

)
ri j · vi j

r2
i j +η2 ∇Wi j (3.32)
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Another formulation for the calculation of viscous stress tensor divergence was introduced
by Cleary [65] and can read as

1
ρi

∇ · τi =
nb

∑
j

m j
ξ

ρiρ j

4µiµ j

µi +µ j

ri j · vi j

r2
i j +η2 ∇Wi j (3.33)

The parameter ξ was set as 4.96333 through calibration against known solutions in a
Couette flow. Basa et al have stated in [19] that this value of ξ gives highly inaccurate
velocities for the simulation of Poiseuille flow and the value of ξ = 4.24 provides much
better results.

Note that the parameter η2 is taken generally as small value (η2 = (0.1h)2) to prevent
singularities (zero denominator) when two particles become too close.

For the multiphase fluid flow applications, Hu et Adams [151] have proposed approxima-
tions of spatial derivatives with particle-averaged in which the neighboring particles j of the
particle i only contribute to the summation by their specific volumes and not their masses.
This technique maintain exactly the mass conservation, and allows naturally for density
discontinuities across phase interfaces. Therefore, the pressure gradient can be expressed as
[151, 1]

− 1
ρi

∇pi =− 1
mi

nb

∑
j

(
V 2

i pi +V 2
j p j
)

∇Wi j (3.34)

This expression is similar to the form of gradient pressure preferred by Monaghan
[242].This form conserves linear momentum exactly since exchanging of particle positions i
and j within the sum results an opposite pressure force.

Another form of gradient pressure [2, 4]

− 1
ρi

∇pi =− 1
mi

nb

∑
j

(
V 2

i +V 2
j
)

p̃i j∇Wi j (3.35)

With p̃i j is the density-weighted inter-particle averaged pressure [150]

p̃i j =
ρi p j +ρ j pi

ρi +ρ j
(3.36)

This form p̃i j (3.36) ensures that 1
ρ

∇p is continuous even when a discontinuity is present
in the density field.

While for the divergence of the viscous tensor is taken as
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1
ρi

∇ · τi =
1
mi

nb

∑
j

(
V 2

i +V 2
j
)

µ̃i j
vi j

ri j

∂W
∂ ri j

(3.37)

With µ̃i j is the inter-particle-averaged shear viscosity

µ̃i j =
2µiµ j

µi +µ j
(3.38)

This form of the viscous force (3.37) conserves linear momentum. The angular conserva-
tion of momentum can be achieved using other formulations, for instance the one used by
Hu and Adam [148] which is extended for multiphase flow applications by Krimi et al [178]

1
ρi

∇ · τi =
ζ

mi

nb

∑
j

(
V 2

i +V 2
j
)

µ̃i j
vi j · ri j

r2
i j

∇Wi j (3.39)

Where ζ = n+2, and n is the space dimension number.

Note that here the volume is calculated as Vi =
mi
ρi

, with the mass mi is taking as constant
during all simulation time, and the density ρi is computed using the summation formulation
(3.26).

Other principles of SPH discretization in the context of multiphase flow can be found in
the literature. For instance, the work of Grenier et al [128] , derives the governing equations
following a Lagrangian variational principle that leads subsequently to an Hamiltonian
system of particles. This formulation permits to model flows where both interfaces and a
free surface are present. The details of these formulations are not discussed here, but can be
found in [128, 127, 130, 129].

For modeling of Non-Newtonian fluids within the principle of Generalized Newtonian
Fluids (GNL) technique [33, 343], other form of divergence of viscous stress tensor (devia-
toric tensor) is usually found in literature [98, 352]

1
ρi

∇ · τi =
nb

∑
j

m j

ρ j

µi +µ j

r2
i j +η2

{
vi j
(
ri j ·∇Wi j

)
+ ri j

(
vi j ·∇Wi j

)}
(3.40)

Krimi et al [177] have extended this formulation to be applied to the Non-Newtonian
multiphase fluid and/or fluid-like mass framework. It reads as

1
ρi

∇ · τi =
1
mi

nb

∑
j

{
V 2

i +V 2
j

r2
i j

}
ρiµ j +ρ jµi

ρi +ρ j

{
vi j
(
ri j ·∇Wi j

)
+ ri j

(
vi j ·∇Wi j

)}
(3.41)
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3.4 Surface tension for multiphase fluids

As is stated by Monaghan [234], there are at least three ways to include the surface
tension within the SPH framework.

The first one, is to assume that the SPH particle are real physical particles and introduce
between them a forces in order to mimic the effects of surface tension [154, 324, 21, 262,
328].

The second way, the surface tension equations are modeled by including for SPH flows
an extra energy term in the particle Lagrangian [236, 254].

The third way, is to use the surface tension force within transition region at the interface
between the fluid phases (see figure 3.4 ) under well known forms : Continuum Surface
Force (CSF) form or Continuum Surface Stress (CSS) form.

fluid 1 

fluid 2 
Transition region 

interface 

!!

n

Figure 3.4 – Transition region of surface tension.

The Continuum Surface Force (CSF) formulation [40] describes the pressure-jump
condition normal to the separation interface of the fluids. Assuming that the surface tension
coefficient σ (1−2) is constant between two fluid phases (1 and 2), the expression of the force
can be expressed as

FST(1−2) = σ
(1−2)

κ n δΣ (3.42)

In equation (3.42), κ , n and δΣ denote the curvature, the unit normal vector to the
interface (see figure 3.4) and the delta function, respectively. In the context of the SPH
method, equation (3.42) reads as

F
ST(1−2)
i =−σ

(1−2)
∇ ·ni ∇C (3.43)
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where C is the color function that has a unit jump across the interface. It’s equal to 1 in one
particle fluid phase and 0 in its neighboring particle of other fluid phase.

Other alternative tensorial formulation of surface tension so-called the Continuum Surface
Stress (CSS) [180] can be also used. It is equivalent to the CSF formulation given in equation
(3.43)

FST
i = ∇ ·Πi (3.44)

where Πi defines the immiscible mixture surface stress tensor of the particle i (capillary
pressure tensor). Assuming that the particle i belongs to the l fluid phase, then the mixture
surface stress can be expressed as

Πi = ∑
k ̸=l

Π
kl
i (3.45)

In equation (4.16), Π
kl
i is the fluid surface stress tensor between phases k and l, defined as

Π
kl
i =

σ kl

∥∇Ckl
i ∥
(
∥∇Ckl

i ∥2I −∇Ckl
i ⊗∇Ckl

i

)
(3.46)

Moriss [254] employs both formulation (CSF) and (CSS) in the context of WCSPH, The
obtained results have been reasonable. Hu and Adams [151] used the CSS with introducing
modification in order to have more statable results. Adami et al [2] use the CSF formulation by
using new accurate divergence approximation to compute the curvature with good precision.
Krimi et al [178] exploit the idea of Adami et al [2] and use it in the framework of CSS
surface tension to simulate accurately the fluid problems including more than two phases.

3.5 Rigid body-fluid interaction

We consider a system of fluid containing a floating rigid body with center of mass R and
the velocity at R is referred to V . The equation of motion of the center of mass of discretized
rigid body can be expressed as

M
dV
dt

=
nk

∑
k

mk fk (3.47)

Where k refer to kth rigid particle constituting the global rigid body. The force fk is the
hydrodynamics force per unit mass acting on the boundary particle k, mk is mass of rigid
particle k and nk is total number of rigid body particle. The force fk is expressed as
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fk =
nFPs

∑
l

fkl (3.48)

Where fkl is the force per unit mass exerted by the fluid particle l on the boundary particle
k [316, 284, 316]

The equation of rotation of rigid body can read as

I
dΩ

dt
=

nk

∑
k

mk(rk −R)× fk (3.49)

Where Ω denotes angular velocity, I is the moment of inertia and rk is the position of the
rigid particle k. The mathematical notation × refers to cross product.

The values of V and Ω are predicted by integrating the equations (3.47) and (3.49). The
rigid body boundary particles move as part of the rigid body, thus, the position of boundary
particle k is given by

drk

dt
= vk =V +Ω× (rk −R) (3.50)

The above described technique conserves both linear and angular momentum [237, 245].
Hashemi et al [133] use another approach for modeling body motion by employed surface
integration on pressure and viscosity forces applied on the body elements.

3.6 Fluid-structure coupling strategies

In SPH method two ways of coupling strategies between the fluid and structure are
possible: Weak coupling (also called partitioned) and strong coupling (also called monolithic)
strategies.

For weak coupling between fluid and structure, either of the materials does not depend
on the other, it can be analyzed first. Herein, the solution on each material will be done
separately. For instance, as in the work of Shi et al [306], the fluid is solved first using a
Navier-Stokes solver by considering that the structure is a rigid moving wall. Subsequently,
the structure is solved using the assigned constitutive equation taking into consideration
the storage forces applied on it by the fluid. The drawback of this technique is that it may
allow for inter-penetration between the particle of both materials which leads to use a very
time step for the simulation. This coupling strategy is largely employed to manage the
interactions between fluid and rigid bodies [237, 245, 133, 174, 316, 284, 316], where the
fluid considers the rigid body as a dynamic wall boundary, whereas for rigid bodies, their
movement is determined from the forces applied by the fluid through the equations of motion
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described in the section 3.5. The algorithms of coupling fluid-structure which are based on
the use of explicit imposition of continuity conditions on the interface between fluid and
structure (continuity of normal stress and velocity) may lead to a weak coupling because of
the necessity to advance the solution from one material to another as it is realized in [181].

In the case of strong coupling of fluid and structure, both are solved simultaneously. The
lagrangian nature of the SPH method allows this strategy to be the simplest for the application
and the more robust one. It works just by introducing the contribution of all particles to the
summation in the SPH discretized equations regardless of their nature. Here, the coupling
conditions on the interface would be naturally satisfied [6, 277].Among the works achieved
in this context, we advice the reader to refer to [13, 52, 169, 299, 215, 108, 331, 345, 315].

The above description of fluid-structure coupling strategies concerns only the SPH-SPH
applications (fluid ans structure are modeled with SPH method). Several other numerical
method can also be coupled in the fluid structure interactions framework such as SPH-FEM
(SPH method for fluid and finites elements method for structure ) [107, 356, 147, 209, 208].
This category of coupling is general classed as a weak (partitioned) because of the different
natures of the methods and solvers.

3.7 Improvement in SPH method

The improvement of accuracy, stability and consistency of smoothed particle hydro-
dynamics method (SPH) can be seen via two general directions [296]: By improving the
approximation of the kernel function with its derivatives and/or by recovering the SPH
particle approximation of the governing equations.

3.7.1 Improvement in kernel approximation

The improvement of the kernel approximation can enhance significantly the SPH results
specially when (i) the support of kernel is truncated with the boundaries (free surface or solid
boundaries for instance), (ii) small number of particle are present within the kernel [67], (iii)
the particles are not uniformly distributed [245].

Shepard formulation

Shepard formulation or also called Shepard filter [304] represents the simplest correction
of the kernel approximation of the function f at the position ri. It reads as
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f (ri)≈
nb

∑
j

f (r j)W S
i jVj (3.51)

With

W S
i j =

Wi j
nb

∑
j

W S
i jVj

(3.52)

Note that, the using of Shepard formulation garantees the normalization condition even
when the kernel support is not full (truncated by the free surface and/or solid boundaries)
and presents 0th order consistency C0. The Shepard formulation is usually employed to
re-initialize the density in order to smooth pressure oscillations and stabilize the simulation
[81, 122, 196], and also it is used for the measurement of physical proprieties at any given
position [178].

damping technique

The imposition of initial conditions in the framework of the SPH method may cause
spurious high-frequency oscillations due to artificial sound waves propagating through the
simulation domain. Monaghan et al [247] proposed a damping technique applied during
a predefined time period to reduce Such artefacts. This damping technique smoothes the
particle distribution and otherwise accelerates particles. The damping time TD defines the
time period during which the acceleration due to the body force is mitigated by the factor
ξD(t). The factor ξD(t) is defined as [4]

ξD(t) =





(
sin
(

t
TD

−0.5
)

π +1
)

t ⩽ TD

1 t > TD

(3.53)

MLS kernel

The Moving Least Square kernel (MLS) is developed by Dilts [87] and Belytschko et
al [23]. It presents an approximation of first-order consistency C1 or in other words, it can
reproduce exactly a linear function. The function f can be approximated with MLS kernel at
position ri as follows

f (ri)≈
nb

∑
j

f (r j)W MLS
i j Vj (3.54)
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W MLS
i j =

(
A−1 · e

)
·b Wi j (3.55)

Assuming that the position r has in 3D space as coordinates rT = [x y z], the vector e, the
vector b and the matrix A are expressed as





bT = [1,(x j − xi),(y j − yi),(z j − zi)]

eT = [1,0,0,0]

A =
nb

∑
j
(b⊗b)Wi jVj

(3.56)

The symbol ⊗ represents the outer product.

The MLS approximation is used generally to smooth density in order to mitigate the
spurious oscillations in pressure in the context of weakly compressible flow hypothesis
[72, 268]. Colagrossi and Landrini [72] state that it is enough to use the MLS method to
smooth the density only once for each 20 time iterations in order to make the computation
time cost effective.

Kernel correction technique [36, 35]

The kernel correction technique [36, 35] is similar to MLS method [87]. It is based on the
enforcement of a any linear field to be exactly evaluated through the kernel approximation
formulation. Therefore, the function f (ri) is evaluated as

f (ri)≈
nb

∑
j

f (r j)WC
i j Vj (3.57)

with,
WC

i j = α(ri)
[
1+β (ri) · (ri − r j)

]
Wi j (3.58)

Where α(ri) and β (ri) are the scalar and vector functions evaluated at the position ri,
respectively.

Assuming that φ(ri) is a linear function (φ(ri) = φ0 +φ1ri). This function can be written
via the formulation (3.57) as follows

φ(ri) = φ0 +φ1ri =
nb

∑
j

(
φ0 +φ1r j

)
WC

i j Vj (3.59)

As φ0 and φ1 are arbitrary, the following relations (3.60) and (3.61) can be concluded
from (3.59) as
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nb

∑
j

WC
i j Vj = 1 (3.60)

nb

∑
j

(
ri − r j

)
WC

i j Vj = 0 (3.61)

By substituting the formulation (3.58) into the relations (3.60) and (3.61), the parameters
α(ri) and β (ri) can be evaluated explicitly after simple algebra as follows

β (ri) =

[
nb

∑
j

(
ri − r j

)
⊗
(
ri − r j

)
Wi j Vj

]−1 nb

∑
j

(
r j − ri

)
Wi j Vj (3.62)

and,

α(ri) =
1

nb

∑
j

[
1+β (ri) · (ri − r j)

]
Wi j Vj

(3.63)

Gradient correction of the kernel function

A corrected form of kernel gradient of equation 2.28 is developed by Randles and
Libersky [279] and since it presented in [36, 338, 55]. This corrected gradient can improve
the accuracy of the asymmetric gradient formulation to the second order [264] and makes it
a first-order consistent [99]. The principal idea is to enforce the fulfillment of the condition
(2.23) to be satisfied in the context of gradient with asymmetric form (2.28). The Corrected
gradient of the kernel function can be expressed as :

∇WC
i j = L(ri) ∇ ·Wi j (3.64)

with L(ri) is the normalization matrix expressed as the inverse of the discretized version
of the identity condition (2.23). It can read as

L(ri) =

(
nb

∑
j
(r j − ri)⊗∇W (r,h) Vj

)−1

(3.65)

The corrected first-order consistent gradient operator of the function f (ri) is expressed in
terms of L(ri) as follows :

∇ f (ri)≈ L(ri)
nb

∑
j

f ji∇Wi jVj (3.66)
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With f ji = f (r j)− f (ri).

The matrix L(ri) need to be firstly constructed and then inverted. To avoid this additional
computational task , Adami et al [2] have proposed another simple explicit expression based
on the two identities presented in Español and Revenga [97]. This formulation can be
expressed as

∇WC
i j = l(ri) ∇Wi j (3.67)

Where l(ri) is a scalar function and it is expressed as

l(ri) =
n

∑
nb
j (r j − ri) ·∇Wi j Vj

(3.68)

With n is the number of spatial dimensions.

The corrected first-order consistent gradient operator of the function f (ri) is expressed in
terms of the scalar l(ri) as follows :

∇ f (ri)≈ l(ri)
nb

∑
j

f ji∇Wi jVj (3.69)

Note that it is possible to use these gradients kernel correction (L(ri) and/or l(ri) ) into
the asymmetric form of the equation 2.28.

Correction of the SPH Laplacian operator

The SPH Laplacian approximation (2.31) is only zero-order consistent, and making it
higher order consistent via the kernel function correction is quite complex. Schwaiger [295]
proposed a method more consistent than the last one, and can achieve an approximation of
the second order consistency. Later on, Fatehi and Manzari [99] gave an new formulation
that grantee exactly a second-order consistency. this technique requires the computation of a
fourth-order tensor. This formulation of SPH Laplacian operator of the function f (ri) is then
expressed as:

∇ ·∇ f (ri)≈ Bi : [2
nb

∑
j

Vjri j ⊗∇Wi j

(
fi j

r2
i j
− ri j

r2
i j
·∇ f (ri)

)
.] (3.70)

With ∇ f (ri) is the first order consistent gradient formulation given through the equation
(3.66), and Bi = B(ri) is a fourth-order symmetric that can be determined from
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Bi :

{
nb

∑
j

Vj
ri j

r2
i j
⊗ ri j ⊗ ri j ⊗∇Wi j

+

(
nb

∑
j

Vj

r2
i j

ri j ⊗ ri j ⊗∇Wi j

)
·Li ·

(
nb

∑
j

Vjri j ⊗ ri j ⊗∇Wi j

)}
=−I

(3.71)

With Li = L(ri) is the normalization matrix tensor given by the equation (3.65) . The
determination of the fourth order tensor Bi is done through solving the system (3.71) which
makes this approach relatively expensive in terms of computation task.

3.7.2 Improvement by recovering the SPH particle approximation of
the governing equations

Ferrari’s diffusive term

Ferrari et al [105] proposed a diffusive term inspired from Riemann-based SPH schemes
[338, 256, 25] by introducing the Rusanov flux into the continuity equation. This term
improves the numerical stability of the SPH scheme without use of an artificial viscosity.

DFerr
i =

nb

∑
j

m j

(
max{c0i,c0 j}

ρ j
(ρ j −ρi)

)
ei j ·∇Wi j (3.72)

Where ei j is the inter-particles unite vector that is expressed as ei j =
ri j
ri j

.

Fatehi’s diffusive term

Fatehi and Manzari [100] have been developed a diffusive term (DFat) to deal with non-
physical oscillations in the pressure. This term is associated with the checkerboard problem
[106] which is in the context of grid-based method. The use of this diffusive terms gives the
advantageous of no need for neither artificial viscosity nor artificial stress for garantee the
stability of SPH scheme [100].

DFat
i =−ρiδ t

{〈
∇ ·
〈

∇p
ρ

〉〉

i
−
〈

∇ · ∇p
ρ

〉

i

}
(3.73)

Where, 〈
∇ ·
〈

∇p
ρ

〉〉

i
=

nb

∑
j

Vj
(
∇∇Wi j

)
·
(〈

∇p
ρ

〉

j
−
〈

∇p
ρ

〉

i

)
(3.74)



86 SPH : Numerical development and governing equations discretization

and

〈
∇ ·
〈

∇p
ρ

〉〉

i
= Bi :

{
2

nb

∑
j

Vjri j ⊗∇Wi j

(
pi − p j

r2
i jρi j

− ri j

r2
i j
·
〈

∇p
ρ

〉

i

)}
(3.75)

Here, Bi denote the normalization matrix determined from solving of the system (3.71)
and With Li = L(ri) is the normalization matrix tensor given by the equation (3.65). The
operation

〈
∇p
ρ

〉
i

is the first order consistent gradient formulation of the quantity
(

p
ρ

)
given

through the equation (3.66).

δ -SPH

δ -SPH term is an artificial diffusive term used in the context of weakly compressible
SPH (WCSPH). It was first proposed by Molteni and Colagrossi [228], and has since been
improved by Antuono et al [10] to deal better with free surface flow simulation, and then, it
was applied in several works such as [9, 7, 216–218]. This term (Dδ−SPH) is added into the
right hand side of the continuity equation to reduce the spurious numerical high-frequency
oscillations from the pressure field. The diffusive term Dδ−SPH is expressed at the particle i
as

Dδ−SPH
i = δ hi c0

nb

∑
j

Ψi j∇Wi jVj (3.76)

The vector Ψi j is written as

Ψi j = 2
(
ρi −ρ j

) ri j

r2
i j
−
{
⟨∇ρ⟩L

i + ⟨∇ρ⟩L
j
}

(3.77)

The symbol ⟨∇ρ⟩L
i denotes renormalized density gradient calculated through the equation

(3.66) .
The advantages and drawbacks of the using of the diffusive term Dδ−SPH into the SPH

scheme are discussed in the work of Antuono et al. [8].

XSPH correction

The XSPH [230] is a simple method method used to prevent particle inter-penetration and
to smooth the flow field in order to avoid a highly disordered configurations where negative
pressures can be occurred. This is done by moving each particle with a velocity closer to the
average one within its support kernel. The XSPH method modify the displacement equation
of the governing equations system (3.1) as
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dri

dt
= vi + εXSPH

nb

∑
j

m j
v ji

ρi j
Wi j (3.78)

Where the constant εXSPH is taken within the range of 0 to 1. The commonly used value
of ε is ε = 0.5 [120, 293]. Liu and Liu [198] stated that ε = 0.3 seems to be a good choice
in simulating incompressible flows. ρi j denotes the average density between the particle i
and j (ρi j =

ρi+ρ j
2 ).

Artificial viscosity

The artificial viscosity is an additional term added to the momentum equation in order
to improve the stability of numerical scheme. This term stops particles from approaching
each other when they are very close or in other words, it prevents the inter-penetration of
particles. This term was firstly introduced by Lucy [210] and then improved by Monaghan
and Gingold [235] in order to ensure the linear and angular momentum conservation. The
viscous term, denoted by Πi j is added to the pressure terms in SPH momentum equations to
give

dvi

dt
=−

nb

∑
j

m j

(
pi

ρ2
i
+

p j

ρ2
j
+Πi j

)
∇Wi j (3.79)

Or more generally

dvi

dt
=

nb

∑
j

m j

(
σi

ρ2
i
+

σ j

ρ2
j
−Πi jI

)
∇Wi j (3.80)

Where I is the identity matrix and Πi j is defined as

Πi j =−α
hi jc0i j

ρi j

(
vi j · ri j

r2
i j +η2

)
(3.81)

Here η2 = (0.1h)2 is used to ensure a non-zero denominator, and ρi j , hi j and c0i j denote
the averages of the density, the smoothing length and the speed of sound of the particles i
and j, respectively.

This artificial viscosity can be translated into a physical viscosity [245] in order to
simulate viscous flows [247, 327, 4]. Therfore, The relation that links the physical kinematic
viscosity ν and the parameters of artiifial viscosity is given as

ν =
1

2(n+2)
α hi j c0i j (3.82)
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Where n represents the number of space dimensions.
It is found that the formulation of artificial viscosity Πi j works well for shocks of

moderate strength [235]. However, when Mach number becomes very high, this formulation
will not serve the problem [245]. To deal with this problem, Monaghan [242] has added an
extra term to the artificial viscosity (3.81)

Πi j =





−αc0i j Φi j+βΦ2
i j

ρi j
vi j · ri j < 0

0 vi j · ri j ≥ 0
(3.83)

Where Φi j is read as

Φi j =
hi j vi j · ri j

r2
i j +η2 (3.84)

Here, α and β are free parameters that depend on the problem to be simulated. Good
results have been obtained with the choice of α = 1 and β = 2 [245]. This form is naturally
deduced by considering the aspects of the dissipative term in shock solutions based on
Riemann solvers [233]. It reads as

Φi j =−K vsig
vi j · ri j

ρi j ri j
(3.85)

With the parameter K = 0.5 and the vsig denotes signal velocity and it is defined as

vsig = c0i + c0 j −βvi j · ei j (3.86)

Where ei j =
ri j
ri j

and β = 4.

Tensile instability and its correction

The tensile instability can be defined in the context of SPH method as a numerical
artifact due to the attraction, clustering and clumping of the SPH particles. For WCSPH
fluid simulation, the clumping of particle may be caused by the negative pressure resulting
from the approximation of the equation of state [244, 255]. For the solid material simulation,
the behavior of SPH particles mimic the one of the physical atoms of the solid material.
Therefore, when the solid material is exposed to the compression, the SPH particles repel
each other. Whereas, when the solid material is exposed to tension, the SPH particles form
clumps which induce subsequently the tensile instability [255, 319]. Swegle et al [319]
have performed Von-Neumann analysis to investigate the stability of SPH method. They
concluded that the sufficient condition for an unstable growth is
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W”σ > 0 (3.87)

Where W” is the second derivative of the kernel function W or also represents the
slop of the first derivative of the kernel W ′ , and σ is particle stress that is by convention
negative (σ < 0) in compression and positive in tension (σ > 0). The figure 3.5 summarizes
schematically the stability regimes in the case of cubic B-spline kernel function. When the
slope of the derivative of kernel function, the scheme is stable in tension and unstable in
compression, and vis-versa.

Figure 3.5 – Stability regimes for cubic spline kernel function.

several attempts have been made to remove the tensile instability using different ap-
proaches [55, 94, 280], the most successful one has been the artificial stress approach
[244, 124]. The idea behind the artificial stress approach is to include small repulsive force
between two neighboring particles when they are subjected to the attraction due to the tensile
state in order to avoid the clumping and clustering of particles. By applying this approach,
the momentum equation is modified from the equation (3.80) to the following one

dvi

dt
=

nb

∑
j

m j

(
σi

ρ2
i
+

σ j

ρ2
j
−Πi jI + f nAS

i j (Ri +R j)

)
∇Wi j (3.88)

Where nAS is an exponent factor (is generally taken equal to 4) and fi j is defined as

fi j =
W (ri j,h)
W (∆x0,h)

(3.89)
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Where ∆x0 is the initial particles spacing. Assuming that computational problem is in 2D
with planar Cartesian coordinates (x,y), the components of the artificial stress tensor R are
given by the following transformation expressions





Rxx = R′
xx cos2 θ +R′

yy sin2
θ

Ryy = R′
xx sin2

θ +R′
yy cos2 θ

Rxy = sinθ cosθ(R′
xx −R′

yy)

(3.90)

Where R′
xx and R′

yy are the diagonal components of the stress tensor R′ described in the
coordinates frame (x′,y′). The coordinates frame (x′,y′) are rotated with respect to (x,y) by
an angle of θ which is given as

tan2θ =
2σxy

σxx −σyy
(3.91)

By this rotation, the stress tensor in the rotated frame becomes a diagonal tensor. Here,
σxx, σxy and σyy denote the components of the Cauchy stress tensor wrote in the 2D original
frame (x,y). The diagonal component R′

xx of the artificial stress R′ frame is given by [124]

R′
xx =




−εAS

σ ′
xx
ρ

if σ ′
xx > 0

0 otherwise
(3.92)

Where εAS is a small parameter chosen as 0 < εAS < 1. The same rule applies for R′
yy

with (xx) replaced by (yy). The components of the Cauchy stress tensor σ
′ described in the

rotated frame (x′,y′) can be expressed in terms of those in the original frame (σ ) as follows





σ ′
xx = cos2 θσxx +2cosθ sinθσxy + sin2

θσyy

σ ′
yy = sin2

θσxx −2cosθ sinθσxy + cos2 θσyy
(3.93)

3.8 Search neighboring particles

It is necessary to know the neighbors of any given particle i in order to approximate at
that point the field of particle variables using SPH discretized formulations. The neighbors
of the particle i are defined as all the particles j within the compact support Ω(kh) centered
at that point. Since the connectivity between the computational particles does not exist, the
distribution of particles changes in time as the continuum material evolves in space. Thus,
the neighbors of all particles i requires to be searched continuously at each time step. The
straightforward method to search the neighbors of any given particle i is to check its distance
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with all other particles j and select those that have a distance less than or equal the radius
of chosen kernel function (kh), in other words: j is neighbor of i only when ∥ri − r j∥≤ kh.
This searching method is so-called All-pair search [198]. This method has an algorithmic
complexity of O(N2) which could be cost prohibitive in terms of computational time. Here
N denotes the total number of particles within the global domain Ω.

The most popular alternative method to search particle neighbors is the so-called linked
list method [229, 142]. This method is generally used when a constant smoothing length h
is employed for all particles. In this method a temporary regular grid (square for 2D and
cubic for 3D space) is overlaid on the problem domain. The size of grid cells is carefully
selected to match with the radius of used kernel function kh. All particles are assigned to the
corresponding cell via a linked list. This method restricts the search of the neighbors j of the
particle i only in the surrounding cell of the particle i. This method is quite efficient in terms
of computational time since it can present an algorithmic complexity of O(N) [111]. The
biggest difficulty with this problem is when a variable smoothing length h is used [117].

When a variable smoothing length is employed; the tree-algorithms for searching neigh-
bors can be more efficient [111]. It works by creating ordered trees that correspond to the
particle positions. Subsequently, the structure of trees will be used to find the neighboring
particles. The complexity of this algorithm is of order O(N log(N)) [135]. The operating
principle of this algorithm is discussed in more detail in [12, 18, 134, 214].

3.9 Boundary conditions

3.9.1 Wall boundary conditions

The repulsive force technique proposed by Monaghan [243] is based on the use of
Lennard-Jones forces between fluid particles and the walls. This technique is very simple
to implement, however it may generate large numerical oscillation in the solid boundary
[199, 205]. Later, softer version of repulsive force technique was developed by Rogers and
Dalrymple [287] for modeling of tsunami waves with SPH method.

The Ghost Particles technique was first proposed by Libersky et al [195] to reflect
a symmetrical condition using the opposite velocity on the reflecting image of particles.
Colagrossi and Landrini [72] have extended this technique to be applied on rigid boundary by
introducing into the ghost particles the density, pressure and velocity reflections. Morris et al
[255] have proposed a technique to implement non-slip boundary conditions by introducing
a virtual velocity into the ghost particles. This condition provides full compact support near
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Figure 3.6 – The principle of linked list algorithm.

boundaries by using ghost particles. The drawback of this technique is presented in the
treatment of complex geometries of boundaries (for instance the corners ).

In the Dummy particles technique proposed by Takeda et al [322], fixed layers of particles
are placed in order to represent the solid boundary on the one hand, and fill the compact
support near it on the other hand. Comparing with Ghost Particle technique, this one can
handle with complex geometrical shapes of boundaries. Issa et al [160] have extended this
technique to investegate the turbulence modeling in the framework of SPH method. Adami
et al [4] proposed a generalized formulations of the dummy particle technique by providing
an accurate pressure approximation on the boundaries particles based on local force balance.
Krimi et al [178] have extended this technique based on the work of Adami et al [4] to be
applied in the context of multiphase fluid flow with different densities and viscosities.

The fixed Ghost Particles proposed by Marrone et al [216, 219], it is based on fixed
layers of ghost particles placed around the of the solid boundary. On these particles the fluid
properties are interpolated by using high order accuracy kernel function.

The coupled dynamic solid boundary treatment technique is introduced by [203], it
consists of the use of two types of virtual particles, repulsive particles and fixed particles to
represent the solid boundary in order to benefit from the advantages of each technique. The
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repulsive particles are placed right on the solid boundary, whereas for the fixed particles are
placed outside the solid boundary area.

A semi analytical wall boundary condition was developed in 2D by Ferrand et al [104]
based on the works of Kulasegaram et al [179] and De Leffe et al [84]. In this method the
wall boundaries are discretized using boundary elements (segments and vertices ). This
technique consists of overcoming the completeness of the kernel support near boundaries
by computing surface integrals and using renormalization factor in the weakly compressible
SPH (WCSPH) discrete interpolation. Macia et al [212] and Leroy et al [192] use this method
in the context of incompressible SPH method (ISPH). Mayrhofer et [223, 222] extend this
method to 3D applications. A it is stated by Valizadeh and Monaghan [336] this method
gives a reasonable results, while it is difficult to be implemented and make the simulations
more time consuming.

Fatehi and Manzari [100] have proposed a new technique for modeling wall boundary
conditions with the use of one layers of solid particles, This condition is imposed in the
accurate calculation of pressure on the wall to prevent the penetration of the particles in the
wall. This technique performs well in situations of complex geometry. The method was
succefly applied by Hashemi et al [133] in order to simulate the motion of rigid bodies in
Newtonian fluid flows.

(a) (b)

(c) (d)

Figure 3.7 – Wall boundary conditions techniques: (a) repulsive force technique. (b) Ghost
Particles technique. (c) Dummy particles Fixed Ghost Particles techniques. (d) Coupled
dynamic boundary technique.



94 SPH : Numerical development and governing equations discretization

3.9.2 Inflow and OutFlow boundary conditions

Generally, the inflow and outflow boundary conditions are modeled using two buffer areas
of particles placed alongside the inlets and outlets of the fluid domain [185, 146, 334, 101].
The width of the inflow and/or outflow buffer zones according to the flow direction is taken
equal to or greater than the radius of support of the kernel function (≥ kh) in order to insure
the completeness of support kernel (see figure 3.8).

As the particles within the inflow buffer zone move toward the fluid domain under
prescribed velocities, they become fluid particle which evolve in accordance with the SPH
equations. At the same time when the inflow particles enter the fluid domain, new alternative
inflow particles are created in the inflow zone in a periodic way. Moreover, only the inflow
particles effects fluid particles and not vice-versa.

In a similar manner , when fluid particles leave the fluid domain, they become outflow
particles in outflow zone where the physical properties remained frozen in time except for
their positions. The outflow particles will be deleted when they move out of outflow zone.

Leroy et al [191] and Ferrand et al [103] have extended the unified semi analytical
wall boundary condition method [104] to be applied in the open boundaries conditions
(inflow/outflow boundaries) in the framework of incompressible et weakly compressible SPH
(ISPH and WCSPH). Here, no buffer zones are required for modeling inflow and outflow
conditions. for more details about this method, we advise the reader to refer to [191, 103].

Figure 3.8 – Inflow and Outflow open boundary conditions.
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3.9.3 Periodic boundary conditions

The periodic boundary condition is a classic open boundary condition in the fluid me-
chanics. This condition has a large range of applications in the context of SPH method as in
[255, 4]. Particles near to a periodic boundary interact with the particles close to the comple-
mentary open periodic boundary on the other side of the domain. Therefore, the information
is shared in both ways. Moreover, if a particle leaves the computational fluid domain through
a periodic boundary, the same particle is reintroduced at the complementary boundary. When
a support of kernel function of a particle is clipped by periodic open boundary, the SPH
interpolation at this particle is recover by the remainder part of its clipped support applied at
the complimentary open periodic boundary [121] (see figure 3.9). It is also possible to do the
SPH interpolation by using buffer zones with a width equal to or greater than the radius of
support kernel (≥ kh) at the open periodic boundaries that contain a mirror of computational
fluid particles near of the complementary boundaries (see figure 3.10).

Figure 3.9 – Open periodic boundary condition with clipped kernel support method.

3.9.4 Free surface condition

The treatment of a free surface boundary requires the application of the kinetic and
the dynamic boundary condition. The kinetic condition consists in ensuring that the initial
free surface particles remain on the boundary, This condition is naturally fulfilled for both
WCSPH and ISPH schemes, since the particles move according to their Lagrangian velocities
[340]. The dynamic condition consists in imposing of null-pressure (p= 0) at the free surface.
For WCSPH this condition is implicitly satisfied due to use of equation of state [70, 71, 263].
Wherase for the ISPH scheme, the free surface particles should first be detected correctly
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Figure 3.10 – Open periodic boundary condition with buffer zones method.

and thus imposed a null-pressure condition. Several methods have been used in the literature
in order to detected the free surface particles. The traditional technique is done by evaluating
the particle intermediate densities ρ∗, if the (ρ∗

i < 0.99ρ0) , then the particle i is at the free
surface [303, 300, 171, 172, 170, 13]. A similar volume based technique was proposed in
[295]. Other free surface detection technique was proposed in [188] based on the calculation
of the divergence of particle position which is compared subsequently to a threshold value
fixed accordingly to the number of space dimensions n. A simple purely geometrical-based
technique was proposed in [16]. A more sophisticated and accurate free-surface detection
algorithm based on SPH interpolations is proposed by Marrone [220]. The implementation
of this algorithm does not require complex geometrical procedures.

3.10 Time integration algorithm

The SPH method transforms the physical continuum equations that are generally partial
differential equations (PDEs) into ordinary differential equations (ODEs). Therefore, any
time integration scheme of desired accuracy can be used. We can cite some algorithms
among the most popular ones used in SPH, for instance : Predictor-Corrector algorithm
[230]; velocity-Verlet algorithm [337, 4], Symplectic algorithm [245]; Leap-Frog algorithm
[202, 48]; Runge–Kutta algorithm [161, 72, 60].
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3.11 Stability conditions

In order to guarantee a stable SPH computation, several time-step criteria [242, 255, 80,
67] must be satisfied.

The CFL time-step condition for ISPH and EISPH [82] methods

δ t ≤ 0.25
h

max(∥vi∥)
(3.94)

The CFL time-step condition for WCSPH method

δ t ≤ 0.25
h

max(c0i)+max(∥vi∥)
(3.95)

When the artificial viscosity of equation (3.83) is taking into account, the time step will
be subjected to new condition given by Monaghan [230]

δ t ≤ 0.3min
hi

c0i +1.2(αc0i +β maxφi j)
(3.96)

The viscous-diffusion condition

δ t ≤ 0.125
h2

max( µi
ρ0i

)
(3.97)

The body force condition

δ t ≤ 0.25
(

h

∥Fb∥

)1/2

(3.98)

surface tension condition (in the case of interfacial multiphase SPH fluid flow ) [40, 151]

δ t ≤ 0.25
(

min(ρk,ρl)h3

2πσ k−l

)1/2

(3.99)

Where σ k−l denotes the surface tension coefficient between the fluid phases k and l.
The final time-step is taking as the minimum of all time-steps based on the above

conditions.





Chapter 4

SPH : Modeling of interfacial multiphase
fluid flows

Au cours des dernières décennies, la modélisation des écoulements de fluides multi-
phasiques a beaucoup intéressé les chercheurs, les scientifiques et les ingénieurs, en raison
de sa large application dans le domaine industriel et dans la nature. Des modèles numériques
utilisant le maillage ou sans le maillage sont disponibles pour traiter des problèmes de
simulations des écoulements fluides multiphasiques via la discrétisation des équations de
Navier-Stokes. Dans le contexte de l’approche avec maillage, des techniques de capture ou
de suivi de l’interface entre les phases de fluide sont généralement requises. Les techniques
les plus courantes comprennent la méthode VOF (Volume Of Fluid) [141], la méthode LS
(level set) [266] et la méthode de suivi du front [261] [333]. Le principal inconvénient de
ces techniques est la difficulté de prévoir l’évolution du mouvement de l’interface située
entres les phases de fluide. La mauvaise prédiction de l’évolution de cette interface va
causer par la suite une mauvaise approximation de sa courbure et son vecteur normal, ce qui
provoque explicitement des erreurs en termes de forces de tension de surface. L’utilisation
des algorithmes adaptés au raffinement du maillage [31] permettent de minimiser ces erreurs.
Cependant, la génération d’une grande quantité de mailles conduit à un grand temps de
calcul. La méthode SPH (Smoothed Particle Hydrodynamics) est une méthode sans maillage
qui permet de gérer naturellement les interfaces entre les phases de fluide sans utiliser
des algorithmes spécifiques. Cette méthode a été développée en 1977 pour réaliser des
simulations en astrophysiques [118] [210]. Plus tard, en 1988, elle a été appliquée à la
simulation des écoulements de fluides [241]. Depuis ce moment, la méthode SPH a reçu
beaucoup d’attention et de grandes améliorations ont été développées.

Dans le contexte de la méthode SPH, plusieurs formulations de tension de surface ont été
développées pour traiter les problèmes d’écoulement de fluides multiphasiques. La plupart
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d’entre elles sont basées sur la méthode Continuum Surface Force (CSF) développée par
Brackbill et al [40] ou avec sa variante, la méthode Continuum Stress Surface (CSS) [180].

Les méthodes CSF et CSS ont été initialement développées dans le cadre de methodes
numérique utilisant le maillage. Morris [254] a étendu ces formulations pour des applica-
tions aux méthodes sans maillage, notamment la méthode SPH. Cependant, Hu et Adams
ont rapporté dans [151] qu’une contribution de pression négative à la contrainte de ten-
sion de surface peut apparaître lorsque la formulation CSS est explicitement appliquée.
Cette contribution de pression négative pourrait causer des problèmes d’instabilité près
de l’interface des fluides, et ils ont proposé une modification de la formulation CSS afin
de l’éliminer. Par la suite, cette formulation a été appliquée à de nombreux cas de fluides
multiphasiques [150, 149, 128, 258]. Néanmoins, la formulation CSS ne remplit pas le
caractère tangentiel du tenseur des contraintes de surface (tenseur de la pression capillaire)
[127]. Une formulation alternative de la tension de surface pour SPH a été présentée dans
[154, 324, 326]. Cette formulation considère les particules SPH comme des vraies particules
fluides avec des forces attractives / répulsives imbriquées entre elles. La définition de ces
forces pour reproduire les effets de la tension de surface a permis d’obtenir des résultats
prometteurs dans plusieurs cas de test impliquant des gouttes et des écoulements à travers
des milieux fracturés.

Dans ce travail, nous présentons une extension de la formulation de tension de surface
proposée par Adami et al [2] pour qu’elle soit applicable dans le cas de simulation de plus de
deux phases de fluide. Cette formulation est basée sur la méthode Continuum Stress Surface
(CSS) et présente trois majeurs avantages. Premièrement, elle améliore la stabilité en utilisant
une approximation consistante de premier ordre pour calculer l’opérateur de divergence.
Deuxièmement, la modification proposée respecte le caractère tangentiel physique de la
tension de surface. Troisièmement, la formulation proposée bénéficie de tous les avantages
de la formulation d’Adami et al [2], et de plus, elle peut être appliquée à des simulations
avec plus de deux phases de fluide. Ces avantages font de notre formulation de tension de
surface une bonne alternative à celle proposée par Adams et Hu [151], qui est largement
utilisée dans le contexte de la méthode SPH [150, 149, 128, 258]. Malheureusement, et de
manière similaire à la formulation de [2], notre formulation ne conserve pas exactement
le moment. Afin de permettre l’application du modèle SPH développé pour des problèmes
d’écoulement multiphasique avec présence de paroi rigides, nous présentons également une
modification des conditions aux limites des parois généralisées [4].

À la fin, nous présentons une extension de la technique d’amortissement numérique
(Damping) présentée dans [4] pour stabiliser la phase initiale transitoire de simulation
d’écoulement de fluide multiphase gravitationnelle.
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In recent decades, modeling of multiphase fluid flows has been attracted a large interest from
researchers, scientists and engineers, due to its large applications in natural and industrial
fields. Numerical models in both Mesh-based and Meshless approaches are available to deal
with multiphase fluid flows simulations problems via the discretization of Navier-Stokes
equations. In the context of grid-based approach techniques for capturing or tracking the
phase interface are usually required. The most common techniques include the VOF (Volume
Of Fluid) method [141], the LS (level set) method [266] and the front tracking method [261]
[333]. The main drawback of these techniques is the difficulty in predicting the evolution of a
moving interface. The inaccurate prediction of the evolution of interface causes subsequently
a wrong approximation of its curvature and normal vector which explicitly causes errors
in terms of surface tension forces. The use of adaptive mesh refinement algorithms [31]
can minimize these errors. However, the generation of a large amount of grid cells in these
methods leads to a large computational time. The Smoothed Particle Hydrodynamics (SPH)
method, is a meshless method that has the ability to deal with moving interfaces naturally,
without using any algorithm for interface tracking. This method was first developed in 1977
to treat astrophysical simulations [118] [210]. Later, in 1988 it was applied to the simulation
of fluid flows [241]. Since then, the SPH method has received lots of attention and large
improvements have been developed.

In the context of SPH method, several surface tension formulations have been developed to
deal with multiphase fluid flows problems. Most of them are based on the Continuum Surface
Force (CSF) method developed by Brackbill et al [40] or with its variant, the Continuum
Stress Surface (CSS) method [180]. CSF and CSS methods were initially developed for
mesh-based applications. Morris [254] extended these formulations to meshless applications
in the framework of the SPH method. However, Hu and Adams reported in [151] that a
negative pressure contribution to the surface stress may appear when the CSS formulation
is applied. This negative pressure contribution might cause instability problems near to the
fluids interface, and they proposed a modification to the CSS formulation in order to eliminate
it. Afterwards, this formulation was applied to many multiphase fluid flows applications
[150, 149, 128, 258]. However, the CSS formulation does not fulfill the tangential character
of the surface stress tensor (capillary pressure tensor) [127]. An alternative formulation of
the surface tension for SPH was presented in [154, 324, 326]. This formulation consider
SPH particles as real fluid particles with attractive/repulsive forces among them. Defining
these forces to reproduce the effects of surface tension has been obtained promising results
in several test cases involving drops and flows through fractured media.

In this work, we present an extension of the surface tension formulation proposed by
Adami et al [2] to be applicable in the case of more than two fluid phases simulations.
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It is based on the Continuum Stress Surface formulation (CSS) and presents three major
advantages. First, it enhances the stability by using a first-order consistency approximation
to calculate the divergence operator. Second, the proposed modification respects the physical
tangential character of the surface tension. Third, the proposed formulation benefits from all
the advantages of the formulation of Adami et al [2], and in addition, it can be applied to
simulations with more than two fluid phases. These advantages make our surface tension
formulation as a good alternative to the one proposed by Adams and Hu [151] which is widely
used in the context of SPH method [150, 149, 128, 258]. Unfortunately, and similarly to the
original formulation of [2], the formulation does not conserve exactly the total momentum.
In order to allow the application of the developed SPH method to multiphase fluid flow wall-
bounded problems, we also present a modification of generalized wall boundary conditions
[4] .

Finally, we present an extension of the damping technique presented in [4] to smooth the
initial transient phase of gravitational multiphase fluid flow simulations.

4.1 Multiphase model

4.1.1 Governing equations

In this work we assume a weakly compressible viscous fluid flow in isothermal condi-
tions. Under these hypothesis, the Navier-Stokes and displacement equations expressed in
Lagrangian form read as





dρ

dt =−ρ∇.v
dv
dt = 1

ρ

(
−∇p+FVis +FST)+g

dr
dt = v

(4.1)

where d(.)
dt represents the material derivative following an infinitesimal fluid element. ∇

is the nabla operator (gradient), ρ, p,v,r and g represent density, pressure, velocity vector,
position vector, and the gravitational acceleration vector, respectively. FVis and FST denote
the viscous and surface tension forces, respectively.

The weakly compressible smoothed particle hydrodynamics approach (WCSPH) was used in
this work [243]. In order to close the system (4.1)it is required the use of an equation of state
(EOS) which explicitly defines the pressure from the density instead to solve the Poisson
equation. In this work the isothermal equation of state [254] is used which is expressed as
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p = pr

{(
ρ

ρ0

)
−1
}
+ pb (4.2)

where ρ0, pr and pb denote the reference density, the reference pressure, and the background
pressure, respectively. For the linear constitutive equation of state given by equation(5.2) the
reference pressure is a function of the reference density and reference speed of sound c0

pr = ρ0c2
0 (4.3)

The use of the physical speed of sound as a reference leads to a very small time step according
to the stability conditions explained in 4.1.4. It is then a common practice to use an artificial
speed of sound as a reference. Thus, following [254] and [308] the value of c0 is determined
here as

c2
0 ≥ max

{
U2

0
δρ

,
∥g∥L0

δρ
,

σ

ρ0L0δρ
,

µU0

ρ0L0δρ

}
(4.4)

Where U0, L0, µ and σ are the reference velocity, reference length, dynamic viscosity and
surface tension coefficient, respectively. δρ denote the dimensionless density variation which
is set to 1% (δρ = 0.01 ).

In the case of multiphase fluid flows, the reference pressure is chosen to be identical for all
fluid phases, following [72]. Therefore, the speed of sound in each phase will be different in
such a way that the reference pressure for all fluid phases is conserved.

pr = pr1 = ...= prNf
(4.5)

pr = ρ01c2
01
= ...= ρ0Nf

c2
0Nf

. (4.6)

where the subscript N f denotes the number of fluid phases. This condition enhances the
numerical stability of the computations [72]. Hence, the choice of the artificial speed of
sound c0 is taken in such a way that both equations (5.4) and (5.6) are satisfied in all fluid
phases.

For numerical problems involving single-phase free surface fluid flows, the background pres-
sure is generally set to zero (pb = 0). Furthermore, for simulations of single or multiphase
confined fluid flows, the pressure is chosen as a positive value sufficient to guarantee the
positivity of the calculated pressure field via the equation of state in order to avoid the tensile
instability [218]. In this work, the numerical experiments show that the ideal background
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pressure pb is chosen as a function of the reference pressure and it is proportional to 0.05pr

(i.e : pb ∝ 0.05pr).

4.1.2 Discrete form of governing equations

The smoothed particle hydrodynamics is a meshless method. It discretizes the physical
space into many discrete elements, usually called particles, without any connectivity among
them. This method is based on the approximation of any physical scalar (or vector) field
using the convolution formulation. Numerically, it is performed by replacing the Dirac
delta function with a regular smooth function, which is called kernel. This function must
satisfy some conditions such as symmetry (even function), normalization, compactness of it
support, among others. We refer the interested reader to [200] for more details. The kernel
function used in this work is the quintic spline [253] defined in equation (4.7). This kernel
was selected since it prevents a high disorder in the particle distribution [? ]. The kernel
function depends on a parameter h, called the smoothing length, which defines the domain of
influence of the kernel function. In this work, the smoothing length h is a constant which
is chosen relative to the initial inter-particle distance δx0 (h = 1.33δx0). The initial particle
volume is taken as V0 = δx0

d , with d is the space dimension number. The mass of each
particle i of different fluid phases is chosen to be constant and equal to m = ρ0PhaseV0 during
all the simulation time.

W (r,h) = αd





(3− r
h)

5 −6(2− r
h)

5 +15(1− r
h)

5 0 ≤ r
h < 1

(3− r
h)

5 −6(2− r
h)

5 1 ≤ r
h < 2

(3− r
h)

5 2 ≤ r
h < 3

0 r
h ≥ 3

(4.7)

where αd = 1
120h , αd = 7

478h2π
and αd = 3

359h3π
for 1D, 2D and 3D cases, respectively. r is

the distance between two neighboring particles i and j

Hu and Adams [151] developed a formulation that exactly guarantees mass conservation. In
this formulation, the continuity equation of the Navier-Stokes system (4.1), can be replaced
by the expression

ρi = mi

nb

∑
j

Wi j (4.8)



4.1 Multiphase model 105

where ρi and mi are the density and the mass of the particle i, respectively. Wi j =W (ri j,h) is
the Kernel function, ri j = ri − r j is the distance between the particle i and its neighbours j.
The number of particles in the neighborhood of particle i is denoted as nb.

This formulation is widely used in SPH codes, and it works very well in the case of confined
fluid flow simulations and allows the use of high values of the CFL number. However,
this formulation is very sensitive to the particle disorder. Small variations of the particle
positions cause high fluctuations in the particle density and thus in pressure, specially in the
case of gravitational fluid flows. In practice, this problem can be alleviated by an adequate
redistribution and acceleration of the initial particle positions and velocities by using a
damping technique. This will be detailed in Section 4.1.5.

dvi

dt
=

1
ρi

(
−∇pi +Fi

Vis +Fi
ST
)
+gi (4.9)

Following [2], the acceleration of the particle i due to the gradient of pressure is approximated
as

1
ρi

∇pi =
1
mi

nb

∑
j

(
V 2

i +V 2
j
)

p̃i j∇Wi j (4.10)

Where Vi =
mi
ρi

is the volume of particle i. The term
(

∇Wi j =
∂W
∂ ri j

ei j

)
is the gradient of the

kernel function, and ei j =
ri j
ri j

=
ri−r j

ri j
is the unit inter-particle vector.

The term p̃i j is defined to ensure the continuity of pressure even for the case of discontin-
uous density between fluid particles (for example, when they belongs to different phases).
Following [150] this term reads as

p̃i j =
ρ j pi +ρi p j

ρi +ρ j
(4.11)

The acceleration due to the viscous forces can be expressed as in [2]

1
ρi

Fi
Vis =

1
mi

nb

∑
j

(
V 2

i +V 2
j
)

µ̃i j
vi j

ri j

∂W
∂ ri j

(4.12)

Where vi j = vi − v j is the relative velocity between the particle i and j. The term µ̃i j is the
inter-particle-averaged dynamic viscosity which is defined as

µ̃i j =
2µiµ j

µi +µ j
(4.13)
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In equation (4.13), µi is the dynamic viscosity of the particle i.

This form of viscous acceleration conserves the linear momentum [2], and performs well in
the case of short-time simulations. In this work we have chosen an alternative formulation
[148] which conserves both angular and linear momentum in order to perform long-time
simulations. This alternative formulation reads as

1
ρi

Fi
Vis =

ζ

mi

nb

∑
j

(
V 2

i +V 2
j
)

µ̃i j
vi jri j

r2
i j

∇Wi j (4.14)

Where ζ = d +2, and d is the space dimension number.

The surface tension force:

In the case of a two-phase fluid, a Continuum Surface Force (CSF) formulation [40] may be
used to represent the surface tension force. This formulation describes the pressure-jump
condition normal to the separation interface of the fluids. However, if more than two phases
are present in the flow, the explicit use of this formulation becomes impractical in the context
of SPH method.

Thus, an alternative formulation should be used in these cases. The Continuum Surface
Stress (CSS) [180] is a tensorial formulation of the surface tension force equivalent to the
CSF formulation given in equation (B.2). The CSS formulation can be expressed as a body
force applied through a transition region of finite thickness. The size of this finite thickness
is equal to the diameter of Kernel function (see figure 4.1)

Using the CSS formulation, the surface tension force is defined as

FST
i = ∇ ·Πi (4.15)

where Πi defines the immiscible mixture surface stress tensor of the particle i (capillary
pressure tensor). Assuming that the particle i belongs to the l fluid phase, then the mixture
surface stress can be expressed as

Πi = ∑
k ̸=l

Π
kl
i (4.16)

In equation ( 4.16 ) Π
kl
i is the fluid surface stress tensor between phases k and l, r is defined

as( r = ri j = ∥ri − r j∥ ).
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Figure 4.1 – Geometrical description of the principal parameter of surface tension formulation
in the case of two immiscible fluids 1 and 2: interface, transition region, normal vector n.
The thickness of the transition region is equivalent to the diameter of the kernel function (6h
for the quintic kernel function).

Π
kl
i =

σ kl

∥∇Ckl
i ∥
(
∥∇Ckl

i ∥2I −∇Ckl
i ⊗∇Ckl

i

)
(4.17)

By assuming that the particle i belongs to the phase l, the gradient of the color function at
the interface between two different phases k and l (∇Ckl

i ) reads as [2]

∇Ckl
i =

1
Vi

nb

∑
j

(
V 2

i +V 2
j
)

C̃kl
i j ∇Wi j (4.18)

The inter-particle-averaged color function C̃kl
i j is defined as

C̃kl
i j =





ρi
ρi+ρ j

if the particle j belongs to the k fluid phase

0 Otherwise
(4.19)

The CSS formulation given by equations (4.16) and (4.17) is a variation of the CSF
formulation (see Appendix ( Demonstration of the equivalence between CSS and CSF
formulations)). In the CSS formulation, the interior efforts associated to the surface stress
tensor Π are tangent to the interface, which is coherent with the propriety of surface tension
force (the details are presented in the Appendix ( The internal forces associated to the surface
stress tensor are tangent to the interface ?) )

Unfortunately, the direct application of the CSS formulation in the context of the SPH
method, could lead to numerical instabilities [254, 151, 2]. In this work , we present a
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modification to the CSS formulation in order to improve the stability of the CSS formulation
in SPH methods. Based on the divergence formulation used in [2] for the calculation of
the curvature of the interface, we modify the computation of the divergence of the capillary
pressure tensor on equation (4.15). Thus, the modified discrete form of equation (4.15) is

FST
i = d ·

nb

∑
j

VjΠi j∇Wi j

nb

∑
j

Vjri j
∂W
∂ ri j

(4.20)

where we define the inter-particle surface stress tensor as Πi j = Πi −Π j, d is the number of
space dimensions and ri j = ∥ri − r j∥ is the inter-particle distance. Note that this formulation
does not require a matrix inversion and gives a first-order consistency approximation to
reproduce exactly the divergence of any linear field.

Note that with this formulation, the surface tension force does not exactly conserve the
total momentum. However, It guarantees a good approximation even when a disordered
particles distribution is presented or the support of the kernel function is not full with particles
contained within the transition region. This force takes effect as a body one. This formulation
takes all advantageous of the formulation proposed in [2], and in addition it can be applicable
in the case of more than two-phases fluid flows simulation problems.

4.1.3 Wall boundary conditions

In this work, we also present a modification of the generalized wall boundary condition
method proposed by [4] to deal with multiphase fluid flows. In this method, three layers
of dummy particles must be added in the normal direction to the wall interface (see figure
5.4). The dummy particles are placed to represent the wall in such a way that it ensures the
completeness of the support of kernel function, in order to obtain an accurate integration
of the field variables near the wall interface. Free-slip or no-slip wall boundary conditions
can be applied using this method. The free-slip boundary condition is applied by omitting
the viscous interaction between the fluid particle with the adjacent dummy particles in the
calculation of fluid viscous forces (equation 4.14). In the case of no-slip wall boundary
condition, a virtual velocity vw is imposed to the wall-dummy particle interacting with the
fluid particle i in equation 4.14. This velocity is defined as

vw = 2vi − ṽi (4.21)
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where vi is the prescribed velocity of wall particle i and ṽi denotes the interpolation of the
smoothed velocity field of the fluid phase to the dummy particle position. The term n f refers
to the number of neighboring fluid particles j of the wall particle i.

ṽi =

n f

∑
j

v jWi j

n f

∑
j

Wi j

(4.22)

The pressure in the dummy-wall particle is calculated from the neighboring fluid particles j
according to [4]

pw =

n f

∑
j

p jWw j +(g−aw)
n f

∑
j

ρ jrw jWw j

n f

∑
j

Ww j

(4.23)

where the term aw represents a prescribed wall acceleration, if moving walls are present.
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Figure 4.2 – Geometrical description of different parameters used in the generalized wall
Boundary condition. Figure based on that presented in [4]

The method proposed in [4] computes the density of the dummy particle via the equation
of state and is applicable for the case of single fluid with constant viscosity or in case of
multiphase inviscid flows [235, 98, 273]. In the case of multiphase viscous flows where
different viscosities are associated to each phase, this formulation becomes unusable because
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of the ambiguity in the choice of the viscosity for the wall-dummy particles. This is specially
noted when the neighboring particles belong to different fluid phases. Here we solve this
ambiguity by using a method based on the fluid particle mirror similarity. We assume that
each fluid particle considers all their wall-dummy neighbor particles as similar to it in terms
of density, viscosity and volume. Using this approach we need to modify equations (5.31),
(4.12) or (4.14) as follows

1
ρi

∇pi =
1
mi

nb

∑
j
P̃V

i j∇Wi j (4.24)

1
ρi

Fi
Vis =

1
mi

nb

∑
j

µ̃i j
V vi j

ri j

∂W
∂ ri j

(4.25)

1
ρi

Fi
Vis =

ζ

mi

nb

∑
j

µ̃i j
V vi jri j

r2
i j

∇Wi j (4.26)

Where PV
i j and µ̃i j

V are defined as

P̃V
i j =





(
V 2

i +V 2
j

)
ρ j pi+ρi p j

ρi+ρ j
if the particle j is a fluid particle

V 2
i (pi + p j) if the particle j is a wall particle

(4.27)

µ̃i j
V
=





2
(

V 2
i +V 2

j

)
µiµ j

µi+µ j
if the particle j is a fluid particle

2V 2
i µi if the particle j is a wall particle

(4.28)

Note that the direct application of the proposed wall boundary conditions method can
present spurious currents when the interfaces between the fluid phases includes a surface
tension next to the wall boundaries. To deal with this issue, a special treatment as proposed
in [3] can be added to this method. However, this problem is not addressed here since it is
out of the scope of the present work.

4.1.4 Time integration

In this work a Predictor-Corrector scheme is proposed for time integration. An explicit Euler
method is used to predict the velocity (ṽi

n+1) and the position (r̃i
n+1) of the particle i.

The corrected velocity at n+ 1 (vi
n+1) is approximated by using the trapezoidal-rule,

using predicted parameters (̃.)n+1 instead of the final ones (.)n+1. Note that, the density and
pressure at time n (ρn, pn) and the predicted values of velocity and position (ṽn+1, r̃n+1)are
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used to predict the right hand-side of momentum equation
(

d̃vi
dt

)n+1

. The final position

ri
n+1 is advected by the corrected velocity.

The following algorithm summarizes the prediction step.





ṽi
n+1 = vi

n +δ t
(

dvi
dt

)n

r̃i
n+1 = ri

n +δ t
(

dri
dt

)n (4.29)

and the correction step is summarized as follows





vi
n+1 = vi

n + δ t
2

{(
dvi
dt

)n
+

(
d̃vi
dt

)n+1
}

= 1
2

{
vi

n + ṽi
n+1
}
+ δ t

2

(
d̃vi
dt

)n+1

ri
n+1 = ri

n +δ tvi
n+1

(4.30)

The final density (at time n+1) is calculated as ρ
n+1
i = mi ∑

nb
j W (r̃i j)

n+1. Afterwards,
the final pressure pn+1 = p(ρn+1) is calculated according to the equation of state (5.2),
pn+1 = p(ρn+1).

The superscripts n and n+ 1 refers to the time step, whereas {̃.} refers to the predicted
physical parameter {.} . For more details about the use of this scheme in the context of
interfacial multiphase SPH model please see the Appendix ( Pseudo-code of SPH interfacial
multiphase model).

To ensure the stability of the method, the time step (δ t) must be chosen to fulfill the kinetic,
viscous, body force and surface tension conditions [246] [41]

δ t =CFL
h

max(c0i)+max(∥vi∥)
(4.31)

δ t ≤ 0.125
h2

max( µi
ρ0i

)
(4.32)

δ t ≤ 0.25
(

h
∥g∥

)1/2

(4.33)

δ t ≤ 0.25
(

min(ρk,ρl)h3

2πσ k−l

)1/2

(4.34)
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By using the density summation formulation (equation 4.8) with this time integration scheme,
the simulations were stable with CFL numbers equal to one. In the numerical simulations
presented here, a value of CFL = 1 is employed.

4.1.5 Damping strategy for multiphase fluid flow

In the framework of weakly compressible fluid flows, the accuracy on the determination of
the pressure field using an equation of state depends on the density estimation. Here, the
density of the particles is updated using the equation (4.8). It becomes obvious that a good
estimation of the position of the particles is crucial to obtaining a good approximation of the
pressure.

In this work, an initial regular lattice distribution of particles is chosen to perform the
simulation. However, in the context of gravitational fluid flow problems, the use of the
density summation formulation (equation (4.8)) to update density (and thus the pressure with
equation (5.2)) in a regular distribution particles may spoil the imposed initial hydrostatic
pressure and cause spurious high-frequency oscillations. In single fluid flow formulations,
such artifacts can be reduced using a damping technique during the initial transient of
simulations [4, 247]. This damping smooths both the distribution and the velocity of the
particles to mitigate the oscillations. In fact, we introduce a mitigation factor (ξD(t) ≤ 1)
which acts as a multiplication factor on the body force in the momentum equation (4.9) as
well as in the wall pressure equation 5.50, to obtain a gradual introduction of the gravity
force. The mitigation factor is only activated during the time TD (damping time), and is
defined as

ξD(t) =





(
sin
(

t
TD

−0.5
)

π +1
)

t ⩽ TD

1 t > TD

(4.35)

Note that other expressions are possible instead of 4.35, as for example, the Hill equation
[115].

Unfortunately, these damping techniques [4, 247] are not applicable in the case of
the simulation involving gravitational multiphase flows. This is due to the difference in
density between the fluid phases (buoyancy force), which generates a considerable motion
of the particles during the damping period. To extend the application of this technique to
gravitational multiphase fluid flow simulations, a new strategy must be defined. In this work,
all the physical properties of all fluid phases (reference density, viscosity, mass ...) are set
to be equal to those of the heavier phase during the damping procedure, in order to avoid
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any motion due to the different properties between the phases. This technique allows the
particles to be slightly redistributed and accelerated in order to reach a good estimation of the
initial hydrostatic pressure and velocity. After the damping time, the real physical properties
must be assigned again to each phase, and the calculation procedure continues as usual. The
reader is referred to the Appendix ( Pseudo-code of SPH interfacial multiphase model) for
more details about the use of this technique in the case of interfacial multiphase fluid flow
simulations.

4.2 Conclusion

In this work, a consistent smoothed particle hydrodynamics model for multiphase flows
is proposed. The model includes a surface tension formulation which ensures the tangential
properties of the tensor surface stress and improves the stability of the numerical method.
The numerical stability is improved through the use of a divergence operator with first-order
consistency and also with a damping technique that avoids the numerical issues due to the
transients on initial conditions. A modification of the generalized wall boundary conditions
that allows its use for the simulation of wall-bounded multiphase fluid flows is also presented.





Chapter 5

SPH : Modeling of water-soil
interactions using a multiphase approach

L’analyse des interactions sol-eau joue un rôle important dans l’évaluation et l’atténuation
de nombreux problèmes environnementaux et géotechniques, tels que l’érosion des sols,
l’érosion des structures offshore, les tsunamis générés par les glissements de terrain et leurs
effets sur les structures adjacentes. La simulation numérique est considérée comme un outil
puissant pour l’analyse de ces problèmes. Les problèmes d’interaction sol-eau sont de nature
multi-composantes et se caractérisent généralement par des grandes déformations. Les
méthodes numériques utilisant le maillage (éléments finis, volumes finis ou différences finies)
sont difficilement applicables à ces problèmes en raison de l’enroulement, de la torsion et de
la distorsion excessifs du maillage qui peuvent se produire.

Une autre méthode numérique dite la méthode Smoothed Particle Hydrodynamics (SPH)
est peut être utilisée. Cette méthode sans maillage est largement utilisée pour simuler des
problèmes à grandes déformation. La méthode SPH a été initialement développé en 1977
pour des applications astrophysiques [118] [210]. Plus tard, en 1988, elle a été appliquée
à la simulation des écoulements de fluide [241]. Depuis, la méthode SPH a été largement
utilisée et a connu beaucoup d’améliorations [234].

Dans le contexte de la méthode SPH, quatre approches sont généralement utilisées
dans la littérature pour modéliser les interactions sol-eau. Dans chacune de ces quatre
approches, l’écoulement fluide est modélisé en utilisant les équations de Navier-Stokes ou
alternativement les équations d’Euler avec une viscosité artificielle. La différence entre les
quatre approches repose sur la méthode utilisée pour la modélisation du sol.

Dans la première approche, le sol est considéré comme un solide rigide. Ceci est
généralement utilisé lorsque le sol est moins exposé à la déformation, et également lorsque
l’analyse se concentre uniquement sur le comportement de l’eau résultant du mouvement de
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masse du sol. Les vagues impulsives générées par le glissement de terrain est le phénomène
le plus modélisé en utilisant cette approche.

La deuxième approche est basée sur la modélisation du sol sous forme de fluide Newtonien
(le sol est considéré comme un fluide à très haute viscosité) à l’aide des équations de Navier-
Stokes. Cette approche peut donner des résultats acceptables seulement lorsqu’une valeur
précise de viscosité est utilisée pour le sol. Cependant, les résultats donnés par cette
approche ne sont pas très précis dans certains problèmes car aucune propriété physique du
sol n’est introduite dans le modèle. Schwaiger et al [294] ont utilisé cette approche pour
simuler le tsunami causé par glissement de terrain subaérien de 1958 à Lituya Bay (Alaska)
[225].

Dans la troisième approche, un modèle de comportement élasto-plastique est utilisé
pour décrire le sol. Le principal avantage de cette approche, comparée aux approches
précédentes mentionnées ci-dessus, est que les propriétés physiques du sol utilisées dans ce
modèle, comme le coefficient de Poisson ν , le module de Young E, la cohésion c, l’angle de
frottement phi, sont réalistes. Cependant, le mouvement des particules de sol et d’eau est
résolu séparément en utilisant différents modèles SPH (modèle de Navier-Stokes pour l’eau
et un modèle de comportement élasto-plastique pour le sol) qui conduit à un couplage faible
entre le sol et l’eau. Un traitement spécial est nécessaire pour le couplage. Cette approche a
été appliquée à plusieurs problèmes géotechniques tels que les vagues d’eau générées par
un glissement de terrain [306], des simulations de la fouille par un jet d’eau sur un sol sec
et saturé, et l’érosion local sur des tumulus causée par un débordement d’eau provoqué par
un tsunami [315].

La dernière approche est basée sur l’utilisation d’un modèle de fluide non Newtonien.
Le sol est considéré comme une masse rigide au-dessous de certaine contrainte (appelée
contrainte critique de déformation τy). Cette contrainte peut être une valeur constante égale
à la cohésion du sol (τy = c) pour les matériaux non frictionnels (Binghamiens / matériaux
purement cohésifs) ou variable selon la pression, la cohésion c et l’angle de frottement (
modèle rhéologique dépendant de la pression). Dans ce dernier cas, le sol est modélisé à
l’aide de modèles de rupture plastique tels que les critères de Mohr-Coulomb [227] [75] ou
Drucker-Prager [93]. Dans cette approche, le sol est considéré comme purement plastique
avec une élasticité négligeable. L’avantage par rapport à tous les modèles précédents est le
couplage fort entre le sol et l’eau, sans aucun traitement spécifique. Dans cette approche, les
équations de Navier-Stokes sont utilisées pour les phases de l’eau et du sol. Cette approche
a été utilisée pour simuler de nombreux problèmes géotechniques causés par les interactions
sol-eau. Nous recommandons le lecteur à consulter [13, 52] pour des applications dans le
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contexte de sol non frictionnel ( matériau Binghamien) et [169, 299, 215, 108, 331, 345, 315]
pour les applications qui se basent sur des modèles rhéologiques dépendant à la pression.

Dans ce travail, un modèle SPH faiblement compressible (WCSPH) a été développé pour
traiter des problèmes d’écoulement multiphasiques. Le modèle est également capable de
gérer les interactions sol-eau. Ici, le couplage entre le sol et l’eau est réalisé de manière
forte et naturelle. Nous proposons un nouveau modèle rhéologique régulier dépendant de la
pression, capable de simuler le comportement du sol (sol purement cohésif et frictionnel) et
de l’eau (ou de tout autre fluide Newtonien). Le modèle proposé est nommé RBPMC - αµ , il
est basé sur une loi de comportement Binghamien plastique régularisée incluant le critère
de rupture de Mohr-Coulomb. Ce modèle dépend d’un paramètre constant positif (αµ ), qui
régularise le modèle ainsi qu’il permet de contrôler le pas de temps de la simulation.

De plus, nous proposons une version modifiée du terme diffusif artificiel (Dδ−SPH) in-
troduit dans [10] dans le contexte d’hypothèses d’écoulement faiblement compressible,
pour atténuer les oscillations numériques à haute fréquence (parasitiques). Cette mod-
ification (Dδ−MSPH) nous permet d’étendre la formulation Dδ−SPH à des problèmes des
écoulements multiphasiques avec une loi de comportement incluant le critère de rupture de
Mohr-Coulomb.
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The analysis of soil-water interactions plays an important role for the assessment and
mitigation of many environmental and geotechnical problems, such as soil erosion, scouring
around offshore structures, landslide-generated tsunamis and their effect on reservoirs and
adjacent structures ... and so on. Numerical simulation is considered as a powerful tool for
the analysis of these problems. soil-water interaction problems are of a multi-component
nature, and they are generally characterized by large deformations. Mesh-based numerical
methods (Finite element, Finite Volume or Finite Difference ) are hardly applicable in these
problems due to the excessive winding, twisting and distortion of the mesh that may happen.

An alternative numerical method is the Smoothed Particle Hydrodynamics method (SPH).
This meshless method is widely used to deal with the simulation of large deformation
problems. SPH was first developed in 1977 for astrophysical applications [118] [210]. Later,
in 1988 it was applied to the simulation of fluid flows [241]. Since then, the SPH method
was widely used and got lots of improvement [234].

In the context of SPH method, four approaches are generally used in the literature to
model soil-water interactions. In all of these four approaches, the water flow is modeled
using Navier-Stokes equations or, alternatively, Euler equations with an artificial viscosity.
The difference between the four approaches relies on the method used for soil modeling.

In the first approach, the soil is considered as a rigid solid. This is used generally when
the soil is less exposed to the deformation, and also when the analysis is focused only on the
water behavior resulting from the soil mass motion. The landslide generated impulsive water
wave is the most modeled phenomenon using this approach [275, 346, 13] .

The second approach is based on the modeling of the soil as a Newtonian fluid (the soil
is considered as a fluid with a very high viscosity ) using Navier-Stokes equations. This
approach can give acceptable results only when an appropriate Newtonian viscosity is used
for the soil. However, the results given by this approach are not very accurate in some
problems because no physical proprieties of soil is introduced to the model. Schwaiger et
al [294] used this approach to simulate the 1958 subaerial landslide Tsunami at Lituya Bay
(Alaska) [225].

In the third approach, an elasto-plastic constitutive model is used to describe the soil
behavior. The main advantage of this approach, compared with the previous approaches
mentioned above, is that the physical properties of soil used in the model, such as Poisson
coefficient ν , Young modulus E, Cohesion c, angle of friction φ , are realistic. However, the
motion of soil and water particles is solved separately using different SPH models (Navier-
Stokes model for Water and an elasto-plastic constitutive model for soil) which leads to a
weak coupling between the soil and water. A special treatment is needed for the coupling.
This approach was applied on several geotechnical problems such as, the landslides generated
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water wave [306], simulations of excavation by a water jet on dry and saturated soil [48]
[344], and local scouring on rubble mound due to tsunami overflow [315].

Finally, the last approach is based on the use of a Non-Newtonian fluid model. The soil is
considered as a rigid mass under certain stress (called yield stress τy). The yield stress can be
a constant value equal to the cohesion of soil τy = c for non-frictional materials (Bingham/
purely cohesional materials) or it can be variable depending on pressure, cohesion c and angle
of friction (pressure-dependent rheology model). In the latter case, the soil is modeled using
plastic strength models such as Mohr-Coulomb [227] [75] or Drucker–Prager [93] yield
criteria. In this approach, the soil is considered as purely plastic with negligible elasticity.
The advantage compared with all the previous models is the strong coupling between soil
and water, without the need of any special treatment for the coupling. In this approach, the
Navier Stokes equations are used for both water and soil phases. This approach has been
used to simulate many geotechnical problems caused by soil-water interactions. We refer
the reader to [13, 52] for applications in the context of non-frictional soil (Bingham soil)and
to [169, 299, 215, 108, 331, 345, 315] for applications of the pressure-dependent rheology
model.

In this work, a weakly compressible smoothed particle hydrodynamics (WCSPH) model
for multiphase problems was developed. The model is also able to deal with soil-water
interactions. Here, the coupling between the soil and water is achieved with a strong and
natural manner. We propose a new regularized pressure-dependent rheology model that is
capable of mimicing the behavior of soil (purely cohesive, and frictional soil) and water
(or any other Newtonian fluid). The proposed model, named RBPMC-αµ , is based on a
Regularized Bingham Plastic constitutive law including Mohr-Coulomb failure criterion.
This model depends on a positive constant parameter (αµ ), that regularizes the model and
allows us to obtain greater time steps in the simulation.

Moreover, we propose a modified version of the artificial diffusive term (Dδ−SPH) in-
troduced in [10] in the context of weakly compressible flow hypothesis, for the mitigation
of spurious numerical high-frequency oscillations. This modification (Dδ−MSPH) allows us
to extend the Dδ−SPH formulation to multiphase problems with constitutive law including
Mohr-Coulomb failure criterion.

5.1 Governing equations and physical model

In this work, the soil material is assumed to be a fluid-like mass. The motion of soil and
fluid phases are modeled using Navier-Stokes equations. It is assumed that the fluid phase is
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weakly compressible, viscous and flow in isothermal conditions. With this assumptions, the
Navier-Stokes and displacement equations can be written in a Lagrangian framework as





dρ

dt =−ρ∇.v

dv
dt = 1

ρ


 −∇p+∇ · τ︸ ︷︷ ︸

∇·σ=∇·(−pI+τ)


+g

dr
dt = v

(5.1)

where d(.)
dt represents the Lagrangian derivative. ∇ is the nabla operator, ρ, p,v,r and g

represent density, pressure, velocity vector, position vector, and the gravitational acceleration
vector, respectively. σ is the Cauchy stress tensor and τ is known as the deviatoric part of
the Cauchy stress tensor (for any continuum material) or also called the viscous tensor (for
fluids).

Under the weakly-compressible hypothesis, an explicit equation of state (EOS) is used to
compute the pressure from the density. In this work we use the isothermal equation of state
proposed in [254]

p = pr

{(
ρ

ρ0

)
−1
}

(5.2)

where ρ0 and pr denote the reference density and the reference pressure, respectively. The
reference density is related to the reference speed of sound c0 by the following equation

pr = ρ0c2
0 (5.3)

The reference speed of sound c0 can be determined as [254, 309]

c2
0 ≥ max

{
U2

0
δρ

,
∥g∥L0

δρ
,

µe f fU0

ρ0L0δρ

}
(5.4)

Where U0, L0, µe f f and σ are the reference velocity, reference length, and effective dynamic
viscosity (apparent viscosity), respectively. The term δρ represent the ratio of density
variation. In this work we set this value to 1% (δρ = 0.01 ).

In the case of multiphase fluid flows, the reference speeds of sound are chosen to fulfill
the equality of reference pressures for each fluid phase

pr = pr1 = ...= prNf
(5.5)
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pr = ρ01c2
01
= ...= ρ0Nf

c2
0Nf

. (5.6)

where the subscript N f denotes the number of fluid phases. This condition enhances the
numerical stability of the computations [73].

The hypothesis of non-Newtonian fluids [360, 61] to model the behavior of geomaterials
(soil, land, sediment, ...) is commonly accepted. A non-Newtonian fluid can withstand to
deformation and remains rigid until a certain value of shear stress (called the yield stress
(τy)) is reached. When this value is reached, these materials begin to flow.

The Bingham plastic model [33] is one of the simplest and more commonly used Non-
Newtonian model. In this model, when the yield stress limit (τy) is exceeded, the material
behaves as Newtonian fluid. Otherwise, it behaves as a rigid body. The constitutive law for a
Bingham Plastic can be written in tensorial form as





τ =
{

τy

∥D∥F
+µ

}
D ∥τ∥F ≥ τy

D = 0 ∥τ∥F < τy

(5.7)

Where D is the rate of strain tensor and µ is the dynamic plastic viscosity which defines the
viscosity of the fluid-like material (soil) after yielding.

The rate of strain tensor is defined as D=∇v+(∇v)T , where ∇v denotes the velocity gradient
tensor, and the superscript T denotes its transpose tensor.

The notation ∥.∥F refers to Frobenius norm. In equation (5.7) the yielding criterion of
soil materials is defined using the Von Mises criterion [226].Therefore, the quantities ∥D∥F

and ∥τ∥F can be expressed as follows

∥D∥F =

(
1
2

D : D
) 1

2

(5.8)

∥τ∥F =

(
1
2

τ : τ

) 1
2

(5.9)

The discontinuity in the expression of the Bingham Plastic constitutive model (5.7) leads
to considerable numerical difficulties; hence, smooth models are usually preferred and several
different approaches have been used. For instance we cite the exponential model [270] and
the Bercovier and Engelman (BE) model [30].

The Bingham model can be regularized using a control parameter (εr > 0) for the approx-
imation of the discontinuous model. The resulting model is similar to the one developed in
[30].
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τ =





τy√
∥D∥2

F + ε2
r

+µ



D (5.10)

When εr = 0 in equation (5.10) with ∥D∥F ̸= 0, we return to the original constitutive
model (5.7). For this reason, the parameter εr must be chosen sufficiently small to insure the
convergence between the regularized and original Bingham plastic models.

In the framework of Generalized Newtonian Fluids (GNL) [33, 343], the viscous stress
tensor τ is given by the following constitutive equation:

τ = µe f f (∥D∥F)D (5.11)

Where µe f f is the effective viscosity.
From the equations (5.10) and (5.11) the effective viscosity can be expressed as:

µe f f (∥D∥F) =
τy√

∥D∥2
F + ε2

r

+µ (5.12)

The choice of a stable simulation time step is related to the maximum value that the
effective viscosity can reach in the rigid part of the material during the simulation period (see
the viscous stability condition in section 5.2.3, equation (5.59)). The direct use of the model
(5.10) or even the exponential [270] or the BE [30] models can greatly restrict the simulation
time step.

In order to solve this problem, we propose a new regularized constitutive law that allows
previously the choice and the control of the computational time step. Let us suppose that
the maximum effective viscosity presented in the rigid region can be expressed linearly in
terms of the yielding viscosity (plastic viscosity) µ as max(µe f f ) = αµ µ , with αµ a positive
constant.

It is obvious that the maximum value of µe f f is reached in the undeformable regions
(∥D∥F → 0).Therefore, from equation (5.12) the regularization parameter εr of the equation
(5.10) results in εr =

τy
(αµ−1)µ . Hence, we get

τ =





µ(αµ −1)τy√(
µ(αµ −1)∥D∥F

)2
+ τ2

y

+µ



D (5.13)

In figure 5.1, the regularized Bingham constitutive model (5.13) with different values
of the constant αµ = {10,20,100,1000} is plotted and compared with the discontinuous
Bingham plastic model (5.7). We can clearly observe that the proposed regularized Bingham
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plastic model converges to the original discontinuous model (5.7) when the constant αµ is
sufficiently large.
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Figure 5.1 – Proposed Regularized Bingham Plastic Model (RBPM) with αµ =
{10,20,100,1000} and original Bingham Plastic Model (BPM) (solid line).

The regularized Bingham plastic model presented in this work (equation (5.13)) can be
considered as the smooth version of the discontinuous bilinear model presented by Hosseini
[145].

5.1.1 Determination of the yield stress

Now, the yield stress τy must be determined in order to close the model. At continuum
level, the geomaterials are generally described using pressure-dependent yield criteria where
the Von Mises criterion [226] cannot be satisfyingly represented because it does not include
the pressure in its formulation. The Mohr-Coulomb [227] [75] or the Drucker-Prager [93]
strength criteria are the most widely used for pressure sensitive materials. The difference
between these criteria is that the Drucker-Prager criteria includes all the principal stresses
(Three principal stresses in 3D space and two in 2D space) similarly to Von-Mises criterion,
whereas the Mohr-Coulomb criterion includes only two principal stress (the maximum and
minimum principal stress, similarly to Tresca criterion). Note that Mohr-Coulomb and
Drucker-Prager criteria are identical in a two dimensional space.

The Mohr-Coulomb criterion is based on a linear failure envelope which combines the
normal and shear stresses (σ ,τ) on the failure plane by the relation

τ = c−σ tanφ (5.14)
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Where c and φ denote the cohesion and the angle of internal friction ( equivalent to the
repose angle) of the material. Both parameters represent the physical proprieties of materials.

!

!! !
!

!

Figure 5.2 – Mohr-Coulomb yield criterionn. The Mohr circle is based on the principal
stresses σ1 and σ2. The onset of yielding is occurring when the Mohr circle is tangent to the
failure envelope.

The materials governed by the Mohr-Coulomb criterion for any given stress state fails
(yields) when the Mohr’s circle is tangent to the failure envelope (figure 5.2). By using
trigonometric relations, an alternative form of the relation in terms of principal stresses can
be expressed as

σ1 −σ2

2
=−σ1 +σ2

2
sinφ + ccosφ (5.15)

The second invariant J2 of the deviatoric stress tensor and the hydrostatic pressure p
(negative mean stress) can be expressed in terms of principal stresses in two dimensions
space as

J2 =
1
2

τ : τ

=
1
2

tr
(
τ

2)

=
1
2

tr

({
σ − I1

2
I
}2
)

=
1
2

(
tr(σ2)− I2

1
2

)

=
1
4
(σ1 −σ2)

2

(5.16)

The notation tr(A) presents the trace of the square matrix A. The terms σ1 and σ2

denote by convention the biggest and smallest principal stresses of the Cauchy stress tensor



5.1 Governing equations and physical model 125

σ (σ1 > σ2), respectively. While I1 represents its first invariant that can be written in a
two-dimensional space as

I1 = σ1 +σ2 (5.17)

The hydrostatic pressure p can be expressed in terms of the first invariant I1 or principal
stresses as

p =−I1

2
=−σ1 +σ2

2
(5.18)

Therefore, the Mohr-Coulomb criterion envelope can also be written in terms of hydro-
static pressure p and the second invariant J2 as

√
J2 = psinφ + ccosφ (5.19)

As explained previously, the Bingham Plastic material starts to yield under the Von Mises
criterion when

∥τ∥F =
√

J2 = τy (5.20)

Hence, from the equations (5.20) and (5.19), the yielding stress τy of a material which yields
under the Mohr-Coulomb criterion can be expressed as

τy = psinφ + ccosφ (5.21)

Summarizing the previous developments, in this work the geomaterials have a Bingham
Plastic behavior and yield under the Mohr-Coulomb criterion. This leads to a regularized
constitutive law that we name RBPMC-αµ

τ =





µ(αµ −1)(psinφ + ccosφ)√(
µ(αµ −1)∥D∥F

)2
+(psinφ + ccosφ)2

+µ



D (5.22)

The use of the equation of state to determine the pressure from the density can lead to a
negative pressure. For this reason an alternative positive pressure {p}+ = max{0, p} is used
instead of p. Thus, the RBPMC-αµ model (5.23) reads as

τ =





µ(αµ −1)({p}+ sinφ + ccosφ)√(
µ(αµ −1)∥D∥F

)2
+({p}+ sinφ + ccosφ)2

+µ



D (5.23)

The present RBPMC-αµ constitutive law (equation (5.23)) can be specialized to other
rheological models by changing the following parameters:
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— Newtonian fluid (water, ...): set (c = φ = 0) in equation (5.23) and use the Newtonian
dynamic viscosity instead of µ;

— Cohesionless or purely frictional materials: set c = 0 in equation (5.23) ;
— Bingham fluid (non-frictional/purely cohesional materials): use the value of yielding

stress τy as material cohesion c (τy = c) and set the frictional angle to zero (φ = 0).

In this way, only the presented RBPMC-αµ constitutive model is used to describe all fluid
and/or fluid-like materials involved in the test cases presented here. Note that the flexibility
of our formulation makes very easy its implementation in existing codes.

In some previous works [159, 251], the yielding stress of purely frictional materials is
generally taken as τy = p tanφ which is equivalent to the presented model for small values of
frictional angle φ . However, for greater values of φ this formulation becomes impractical
and can distort the simulation results [91]. Note that this problem is avoided with the use of
the formulation given by equation (5.23).

The effective viscosity can be expressed in term of pressure, cohesion, and frictional
angle as

µe f f (∥D∥F) =
µ(αµ −1)({p}+ sinφ + ccosφ)√(

µ(αµ −1)∥D∥F
)2

+({p}+ sinφ + ccosφ)2
+µ (5.24)

For the simulation of the granular materials the dynamic plastic viscosity can be calculated
using the µ(I) rheology method [166] , as it is considered in [54, 159]. It is shown in the
work of Ionescu et al [159] that the choice of constant value of the plastic viscosity does not
change much the results if it is within the good interval comparing with those obtained from
value of the µ(I) rheology [166]. In this work the plastic viscosity is chosen to be a constant
value.

In the case of the modeling soil-water interactions ,the plastic viscosity is set equal to the
viscosity of the water [291].

5.2 Discrete form of governing equations

We use as in previous chapter the quintic spline kernel function [253] to perform the
SPH approximation of physical field. This kernel function prevents a high disorder in the
particle distribution. The smoothing length h is chosen constant and relative to the initial
inter-particle distance δx0 (h = 1.33δx0) as in previous chapter.

In this work, the discrete form of the continuity equation of system (5.1) is expressed as
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dρi

dt
= ρi

nb

∑
j

Vjvi j∇Wi j = ρi

nb

∑
j

m j

ρ j
vi j∇Wi j (5.25)

Where Vi =
mi
ρi

is the volume of particle i. The term
(

∇Wi j =
∂W
∂ ri j

ei j

)
is the gradient of the

kernel function, and ei j =
ri j
ri j

=
ri−r j

ri j
is the unit inter-particle vector. The initial particle

volume is taken as V0 = δx0
d , with d is the space dimension number. The mass of each

particle i of different fluid phases is chosen to be constant and equal to m = ρ0PhaseV0 during
all the simulation time.

This formulation is accurate for the case of more than one fluid phase and specially with
large density ratios as is reported in [69, 246].

In the context of a weakly compressible flow hypothesis, the determination of the hy-
drostatic pressure via the equation of state can originate numerical artifacts,in the form of
spurious numerical high-frequency oscillations in the pressure field. This is specially critical
when the Mohr-Coulomb criterion is used. In order to mitigate this, Molteni and Colagrossi
[228] proposed the addition of an artificial diffusive term Dδ−SPH to the right hand side of
the continuity equation (5.25), resulting in

dρi

dt
= ρi

nb

∑
j

m j

ρ j
vi j∇Wi j +Dδ−SPH

i (5.26)

with

Dδ−SPH
i = δhic0

nb

∑
j

Ψi j∇Wi jVj (5.27)

and Ψi j is defined as

Ψi j = 2
(
ρi −ρ j

) ri j

r2
i j

(5.28)

Unfortunately, the use of Dδ−SPH method with equation (5.27)for multiphase fluid flows
can generate important numerical issues at the interface between the phases. These issues
are principally caused by the repulsive forces generated by the difference in density between
the phases. In order to alleviate these problems, Fourtakas and Rogers [108] proposed to use
the Dδ−SPH formulation in the fluid phase and sediment phase independently. That is,only
particles belonging to the same fluid phase are considered in the computation of Dδ−SPH .
However, this strategy does not completely solve the numerical issues, specially in the case
of simulations that present a low motion.
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In this work, we propose a modified version of the Dδ−SPH term , that is able to deal with
single and multiphase fluid applications. The principal idea is to assume that all particles j
neighbors of the particle i are part of the same phase as i (that is, they have the same density
reference ρ0i), but they also conserve their original particle density ratio βρ j =

ρ j
ρ0 j

(see figure

5.3 ). Applying this assumption on the equation (5.28), we get:

Ψ
MSPH
i j = 2

(
βρi −βρ j

)
ρ0i

ri j

r2
i j

(5.29)

Then, the multiphase diffusive term can be written as

Dδ−MSPH
i = δ hi c0

nb

∑
j

Ψ
MSPH
i j ∇Wi jVj (5.30)

The value of the dimensionless parameter δ is chosen as (δ = 0.1). This value is used in
this work for all examples.

Note that the formulation of multiphase diffusive term of equation (5.30) returns the
classical form (equation (5.27)) in single fluid phase problems.
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Figure 5.3 – The illustration of the hypothesis taken to calculate the diffusive term for
multiphase fluid flow (Dδ−MSPH

i ) .

Using the modified formulation in equation equation (5.26), the value of the density,
and thus of the pressure are significantly improved as demonstrated later via the example of
Section 8.1.
The acceleration of the particle i due to the gradient of pressure is approximated following
[2] as

1
ρi

∇pi =
1
mi

nb

∑
j

(
V 2

i +V 2
j
)

p̃i j∇Wi j (5.31)
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The term p̃i j is defined to ensure the continuity of pressure even for the case of discontin-
uous density between fluid particles (for example, when they belongs to different phases).
Following [150] this term reads as

p̃i j =
ρ j pi +ρi p j

ρi +ρ j
(5.32)

Using the same idea for the approximation of the divergence of the viscous tensor
(deviatoric tensor) we obtain

∇ · τi =
1
Vi

nb

∑
j

(
V 2

i +V 2
j
)

τ̃i j∇Wi j (5.33)

where the inter-particle viscous tensor τ̃i j is defined as

τ̃i j =
ρiτ j +ρ jτi

ρi +ρ j
(5.34)

The Taylor expansion of any quantity A around the position ri can be expressed as

A(r j) = A(ri)+∇A(ri)(r j − ri)+O(r2
i j) (5.35)

and ,

∇A(ri)≈
A(ri)−A(r j)

r2
i j

(ri − r j)≈ ∇A(r j) (5.36)

The rate of strain stress tensor is expressed in terms of the velocity gradient as D =

∇v+(∇v)T . Using equation (5.36) we conclude that

D(ri)≈ D(r j)≈ D (5.37)

Equation (5.33) can be expressed using the equations (5.11) and (5.37) as follows:

∇ · τi =
1
Vi

nb

∑
j

(
V 2

i +V 2
j
) ρiµe f f jD j +ρ jµe f f iDi

ρi +ρ j
∇Wi j

=
1
Vi

nb

∑
j

(
V 2

i +V 2
j
) ρiµe f f j +ρ jµe f f i

ρi +ρ j
D ∇Wi j

(5.38)
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The term
(
D ∇Wi j

)
can be simplified as :

D ∇Wi j = (∇v+(∇v)T )∇Wi j

=
1
r2

i j

(
vi j ⊗ ri j

)
∇Wi j +

1
r2

i j

(
ri j ⊗ vi j

)
∇Wi j

=
1
r2

i j

{
vi j
(
ri j ·∇Wi j

)
+ ri j

(
vi j ·∇Wi j

)}
(5.39)

where ⊗ denotes the outer product.

Finally, the divergence operator of the viscous tensor reads as

∇ · τi =
1
Vi

nb

∑
j

{
V 2

i +V 2
j

r2
i j

}
ρiµe f f j +ρ jµe f f i

ρi +ρ j

{
vi j
(
ri j ·∇Wi j

)
+ ri j

(
vi j ·∇Wi j

)}
(5.40)

This obtained formulation is similar to that presented in [98, 352].

The effective viscosity is calculated using the equation (5.24). Assuming that the velocity
vector in two-dimensional space is v = [u w]T , the Frobenius norm of the rate strain ∥D∥F

can be expressed as

∥D∥F =

√√√√2

((
∂u
∂x

)2

+

(
∂w
∂y

)2
)
+

(
∂u
∂y

+
∂w
∂y

)2

(5.41)

In this work, the formulation developed by Adami and al [2] is adopted to approximate
the space derivative of the velocity components. This formulation achieves a first order
consistency approximation without the need for matrix inversion operations, contrary to the
alternative version of Randles and Libersky [279]. The velocity components derivatives are
expressed in 2D space as

〈
∇u
〉
=

[
∂u
∂x

∂u
∂y

]T

= 2
∑

nb
j Vj(ui −u j)∇Wi j

∑
nb
j Vjri j

∂W
∂ ri j

(5.42)

〈
∇w
〉
=

[
∂w
∂x

∂w
∂y

]T

= 2
∑

nb
j Vj(wi −w j)∇Wi j

∑
nb
j Vjri j

∂W
∂ ri j

(5.43)

The notation
〈
.
〉

denotes the first order consistency approximation of the quantity {.}.
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5.2.1 Modeling of the water suspended sediment

When water flows at a sufficient large velocity over a surface of sediment bed (soil), the
sediment particles are picked up and transported on the surface, to be deposited again when
the velocity of flow diminishes. This erosion process occurs when the shear stress generated
by the frictional force of water flowing over the sediment overcomes the forces acting on the
sediment grains (gravity, pressure, and viscosity forces). The simulation of this suspended
load of sediment bed is not explicitly modeled using our immiscible multiphase SPH model
detailed above. To deal with this problem, a transitional layer between the soil and water
represented as a mixture phase are nested on the soil surface. The particles within this layer
are treated as soil but with an altered mixture viscous proprieties. The easiest way to model
this layer is to consider it as a Newtonian fluid. A simple relation is used to calculate the
particle viscosity within the suspended sediment phase (νmix) [123, 299]

νmix =
νl√

1+ cs
ρs
ρl

(5.44)

In equation (5.44), νl denotes the kinematic viscosity of the liquid (water) phase, whereas
cs, ρs and ρl present the volume fraction of the sediment phase, the density of sediment and
liquid (water), respectively. Therefore, the dynamic viscosity of the mixture can be expressed
as

µmix =
µl (ρscs +(1− cs)ρl)

ρl

√
1+ cs

ρs
ρl

(5.45)

The volume fraction of the particle sediment i within the mixture phase csi can be
estimated as:

csi =
∑

nb
j ksWi j

∑
nb
j Wi j

(5.46)

Where Wi j =W (ri j,h) and ks denotes the sediment particle indicator

ks =





0 if j is a particle of the liquid phase

1 if j is a particle of the sediment phase
(5.47)

Note that the mixture viscosity µmix given by equation (5.45) is applied on the sediment
particles of the mixture phase (suspended sediment load) when the sediment volumetric
fraction cs < 1. Otherwise, the viscosity of sediment particles is modeling using RBPMC-αµ

rheology explained above.
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5.2.2 Wall boundary conditions

In this work, the rigid wall boundary condition method proposed by Krimi et al [178] is used.
This method is presented as the modified version of generalized wall boundary condition
method [4] to be well adapted with multiphase fluid flows. In this method, three layers of
dummy particles must be added in the normal direction to the wall interface (see figure 5.4).
The Free-slip or no-slip wall boundary conditions can be applied using this method. The
free-slip boundary condition is applied by simply omitting the viscous interaction between
the fluid particle with the adjacent dummy particles in the calculation of fluid viscous forces
(equation (5.33)). In the case of no-slip wall boundary condition, a virtual velocity vw is
imposed to the wall-dummy particle interacting with the fluid particle i in equation (5.33).
This velocity is defined as

vw = 2vi − ṽi (5.48)

where vi is the prescribed velocity of wall particle i and ṽi denotes the interpolation of the
smoothed velocity field of the fluid phase to the dummy particle position. The term n f refers
to the of neighboring fluid particles j of the wall particle i.

ṽi =

n f

∑
j

v jWi j

n f

∑
j

Wi j

(5.49)

The pressure in the dummy-wall particle is calculated from the neighboring fluid particles j
according to [4]

pw =

n f

∑
j

p jWw j +(g−aw)
n f

∑
j

ρ jrw jWw j

n f

∑
j

Ww j

(5.50)

where the term aw represents a prescribed wall acceleration, if moving walls are present.

This method is based on the fluid particle mirror similarity, in other words it assumes that
each fluid particle considers all their wall-dummy neighbor particles as similar to it in terms
of density, viscosity and volume. Using this approach we need to modify equations (5.31),
and (5.33) as follows
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Figure 5.4 – Geometrical description of different parameters used in the generalized wall
Boundary condition. Figure based on that presented in [4]

1
ρi

∇pi =
1
mi

nb

∑
j
P̃V

i j∇Wi j (5.51)

∇ · τi =
1
Vi

nb

∑
j

µ̃e f fi j
V

r2
i j

{
vi j
(
ri j ·∇Wi j

)
+ ri j

(
vi j ·∇Wi j

)}
(5.52)

Where PV
i j and µ̃e f fi j

V are defined as

P̃V
i j =





(
V 2

i +V 2
j

)
ρ j pi+ρi p j

ρi+ρ j
if the particle j is a fluid particle

V 2
i (pi + p j) if the particle j is a wall particle

(5.53)

µ̃e f fi j
V
=





(
V 2

i +V 2
j

)
ρ jµe f f i+ρiµe f f j

ρi+ρ j
if the particle j is a fluid particle

2 V 2
i µe f f i if the particle j is a wall particle

(5.54)

5.2.3 Time integration

In this work a Predictor-Corrector scheme proposed by Krimi et al [178] is used for time
integration. This scheme uses an explicit Euler method to predict the velocity (ṽi

n+1) and the
position (r̃i

n+1) of the particle i.
Subsequently, the predicted velocities and positions are used to compute the final velocity

at n+1 of the particle i (vi
n+1), by using an implicit trapezoidal-rule to enhance its accuracy.
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The position ri
n+1 is advected by the corrected velocity vi

n+1. The density used for the
velocity correction is the one approximated at the time step n. Finally, the density at time
n+1 (ρn+1) is computed from the predicted particles velocities (ṽn+1) and positions (r̃n+1)
and also the density at previous time n (ρn) using equation (5.26).

The following algorithm summarizes the prediction step.





ṽi
n+1 = vi

n +δ t
(

dvi
dt

)n

r̃i
n+1 = ri

n +δ t
(

dri
dt

)n (5.55)

and the correction step is summarized as follows





vi
n+1 = 1

2

{
vi

n + ṽi
n+1
}
+ δ t

2

(
d̃vi
dt

)n+1

ri
n+1 = ri

n +δ tvi
n+1

ρ
n+1
i = ρn

i +δ t
(

ρn
i ∑

nb
j

m j
ρn

j
ṽi

n+1
∇W (r̃i

n+1)+Dδ−MSPH
i (ρn, r̃i

n+1)
)

(5.56)

The superscripts n and n+ 1 refers to the time step, whereas {̃.} refers to the predicted

physical parameter {.}. Note that the term
(

dṽi
dt

)n+1
is computed using the predicted velocity

ṽi
n+1 and the density of the previous time step ρn. This scheme is second order accurate as

in [4, 243].
To ensure the stability of the method, the time step (δ t) must be chosen to fulfill, the kinetic,
the body force, and viscous conditions [245] [40]

δ t ≤ 0.25
h

max{c0i +∥vi∥}
(5.57)

δ t ≤ 0.25
(

h
∥g∥

)1/2

(5.58)

δ t ≤Cµ

h2

max{νe f f }
=Cµ

ρ0h2

αµ µ
(5.59)

In previous works [352, 145, 303, 255], other authors assign the value of Cµ = 0.1 in
order to keep the simulation stable. In the present work, we have used the value Cµ = 0.2
, that preserves the stability and accuracy of the simulation when the viscous condition is
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dominated. Thus, the use of the proposed formulation allows us the choice of a δ t two times
bigger than in previous SPH formulations.

The choice of the value of the positive constant αµ depends on the applied efforts for
each case. We select a value of αµ as small as possible keeping the stability.

Note that the use of a very large value of the control parameter αµ leads to a more
accurate approximation of the rigid part of the soil, which is characterized by a maximum
viscosity µmax (µmax = αµ µ). However, this large value of αµ leads to the use of a very
small time step following the condition (5.59). Because of this, a good compromise for the
value of αµ must be found for each problem.

5.3 Conclusion

In this work, a weakly compressible multiphase Smoothed Particle Hydrostatic (SPH)
model was developed in order to simulate soil , water (or any Newtonian fluid) and their
interaction problems. A RBPMC-αµ pressure-sensitive rheology model is proposed to model
Newtonian fluids, purely frictional and cohesional (Binghamian) soils at the same time.
Because of the developed rheology model is pressure-sensitive, a multiphase diffusive term
called Dδ−MSPH is developed in order to damp the pressure oscillations due to the use of
equation of state.





Chapter 6

Validation and application of SPH
multiphase model

Ce chapitre est consacré à la démonstration de la capacité du modèle SPH présenté
dans ce travail pour simuler des écoulements multiphasiques sous l’effet de gravité tout
en négligeant la tension de surface. Les exemples abordés ici sont, l’évolution de deux
phases de fluide stratifiées et l’instabilité de Rayleigh-Taylor. Le premier exemple n’est
pas seulement fait pour examiner l’effet de stabilisation de la technique d’amortissement
numerique (Damping), mais aussi pour valider les modifications proposées sur les conditions
aux limites généralisées liées aux parois rigides lorsque les phases de fluide se rencontrent à
la paroi. Le second exemple est fait pour comparer les résultats du modèle SPH multiphasique
avec ceux utilisant la méthode Level-Set [128] et d’autres modèles SPH [238], ainsi qu’avec
l’approche analytique présentée dans [187]. À la fin, nous présentons l’exemple de deux
bulles montantes à travers une colonne d’eau en utilisant une résolution de particules plus
élevée par rapport aux exemples précédents.
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This chapter is devoted to demonstrating the ability of the presented SPH model for
the simulation of multiphase flows under gravity effects neglecting surface tension. The
examples addressed here are the evolution of the two-phase stratified fluid layers and the
Rayleigh-Taylor instability (RTI). The first example is not only performed to examine the
stabilization effect of the damping technique but also to validate the proposed modifications
on generalized wall boundary conditions when the two fluid phases meet the solid boundaries.
The second example, is done to compare the results of the presented SPH multiphase model
with the ones using Level-Set [128] and other SPH [238] models, and also with the analytical
approach presented in [187]. Finally, we present the example of two rising bubbles through a
water column using a higher particle resolution than in the previous examples.

6.1 Vertical fluid column: Hydrostatic pressure condition

In this test, we set three configurations of two stratified fluid layers which have the same
dimensions ([0,L]× [0,2L] (see figure 6.1) with different density ratio ρ2

ρ1
= 1, ρ2

ρ1
= 2 and ρ2

ρ1
=

4 [190]. Each test case is investigated using three different particle resolutions {24×49,49×
99,99×199}. The subscripts 1 and 2 denote the upper and the lower fluids, respectively.

fluid 2 fluid 2 

fluid 1 fluid 1 

L

2L

L

2L

fluid 2 fluid 2 

fluid 1 fluid 1 

L

2L

L

2L

Figure 6.1 – Geometrical details of the initial configuration of vertical fluid column: The
figure on the left describes the setup of the problem for the hydrostatic pressure condition.
On the right, we show the initial state for the Rayleigh–Taylor instability test.

The half-length of the column is chosen as L = 1 [m], the interface between two fluids is
located at the middle of the column (at height equals to L). The initial particle distribution is
a regular lattice for each of the three resolutions considered. The density of the lighter fluid
is ρ1 = 1 [kg/m3] . The dynamic viscosity is chosen constant as µ1 = µ2 = 0.1 [Pas.s] for all
phases in all the configurations. The vertical fluid column is assumed to be under the action
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of an unit gravity (g = (0,−1) [m/s2]) . The reference speeds of sound are chosen according
to the condition discussed in Section 4.1.2, resulting in the values of c01 = 10 [m/s] for all
configurations and c02 = {20,14.142,10} [m/s] for the configurations of ρ2

ρ1
= 1, ρ2

ρ1
= 2 and

ρ2
ρ1

= 4, respectively. The background pressure is chosen as (pb = 0.05pr = 5 [Pa]). The
no-slip boundary condition is applied at all boundaries.

In order to show the efficiency of the damping technique to reach quickly the equilibrium
state, the three configurations are tested with and without the damping technique for the
coarsest particle resolution 24×49. The value of the damping period is chosen as TD = 1 [s].

Figure 6.2 shows the effect of the damping technique on the simulation results for the pressure
for the three configurations. We can see clearly that using the damping technique leads to
lower amplitude of the pressure oscillations and to a faster convergence to the stabilized
hydrostatic value. It is also observed that for the highest density ratio, the pressure has an
important amplitude of oscillation.In this case, using the damping technique reduces the
amplitude of the oscillations, but they are still important. This is principally due to the change
of the physical parameters of the lighter fluid after the damping time. This change creates the
jump in density, viscosity and mass and thus the pressure. Despite that, it converges faster
and presents less oscillations than in the case of the simulation without using of the damping
technique. A remedy to further reduce the oscillations is to increase the damping time (TD).
In the case of unit density ratio the oscillations of the pressure are very limited and reachs
the stabilized value of the hydrostatic pressure very quickly.

After the stabilization of the pressure field using the damping technique, we compare the
obtained pressure profiles using the present SPH model with the analytical ones for different
density ratios and different particle resolutions (see figure 6.3). The numerical results agree
well with the analytical ones.

In figure 6.4, we show the particle distribution and hydrostatic pressure at equilibrium for the
three particle resolutions for the ρ2

ρ1
= 4 case. Pressure isolines are plotted in order to check

the hydrostatic pressure levels obtained with the tree different resolutions. It is observed
that the same pressure levels are reached for all the particle resolutions. This indicates the
convergence of the presented numerical model for the simulation of gravitational multiphase
fluid flows. Note that the background pressure pb = 5 [Pa] is included in the range of
computed pressure variation.

From the results presented in figures 6.3 and 6.4 we can also conclude that the proposed
modifications to the generalized wall boundary conditions method [4] (see section 4.1.3)
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Figure 6.2 – Time-evolution of pressure at the point (0.5,0.5) (upper curves) and (0.5,1.5)
(lower curves) with (Dotted line with small circle) and without (dotted line with small square)
the damping technique. The solid lines represent the stabilized pressure, and the dashed line
presents the background pressure.

give good results. In order to perform an additional analysis of the efficiency of this method,
the same example was investigated under high density and viscosity ratios. The density
ratio was chosen to be equal ρ2

ρ1
= 100, with ρ2 = 100[kg/m3] and ρ1 = 1[kg/m3]. While the

viscosity ratio is taken as µ2
µ1

= 10, with µ1 = 0.01[Pa.s] and µ2 = 0.1[Pa.s]. The reference
speed of sound of the fluid phase 2 is set to c02 = 10[m/s] and c01 = 100[m/s] for the
phase 1 that give a reference pressure of pr = 104[Pa]. The background pressure is taken as
pb = 0.05pr = 500[Pa]. The simulation was performed using 49×99 particles, a damping
period of TD = 1[s] and no-slip condition is applied on all wall boundaries.

After the damping period (TD = 1[s]) the hydrostatic pressure field oscillates until it
reaches the stabilized values at time t = 18[s] as it is shown in the figure 6.5. When the
pressure field stabilizes, we perform a comparison between the numerical and analytical
hydrostatic pressure profiles taken from the centerline of the vertical fluid column. The
results are shown in figure 6.6. A very satisfactory agreement is observed between the
pressure results obtained with the present approach and analytical results. Figure 6.7 shows
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Figure 6.3 – Hydrostatic pressure variation ∆p = p− pmin for the three different density
ratios ρ2

ρ1
. Below, we plot a zoom of the selected zones (a) (b) (c) (d).

the vertical fluid column particles distribution at stabilized state. The fluid particles are
colored with phases (gray for the fluid 2 and black for the fluid 1) in order to show that the
interface between the two fluid phases that meet the vertical wall boundaries is stable. As it
is shown in the center of the figure 6.7, there are spurious currents which present a maximum
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Figure 6.4 – The fluid column particles colored with normalized hydrostatic pressure for
the density ratio ρ2

ρ1
= 4 with the three particle resolutions 24×49 (left), 49×99 (center),

99×199 (right). It is also shown the pressure isolines in the range 3.5 to 8 [Pa].
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Figure 6.5 – Time-evolution of pressure at the point (0.5,0.5) (upper curves) and (0.5,1.5)
(lower curves) after the damping period for the for the density and viscosity ratios of ρ2

ρ1
= 100

and µ2
µ1

= 10 . The solid lines represent the stabilized pressure, and the dashed line presents
the background pressure.

velocity magnitude of order O(10−3). A smooth hydrostatic pressure field is observed via
the right side of figure 6.7.
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Figure 6.6 – Hydrostatic pressure variation ∆p = p− pmin for the density and viscosity ratios
of ρ2
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Figure 6.7 – The fluid column particles for the density and viscosity ratios of ρ2
ρ1

= 100 and
µ2
µ1

= 10. The left figure represents the fluid particles colored with phase color (gray color for
fluid 2, black color for fluid 1). The figure of the center show the velocity magnitude of every
fluid particle. The right figure represents the fluid and wall particles colored with hydrostatic
pressure filed.

6.2 Rayleigh–Taylor instability

The Rayleigh-Taylor instability (RTI) is a widely used benchmark [80, 150, 128, 238] to
test the accuracy of numerical methods for multiphase gravity flows. The Rayleigh–Taylor
instability, occurs at an interface between two fluids of different densities when the lighter
fluid pushes the heavier fluid. This phenomenon occurs in a multitude of physical (salt domes,
weather inversions, etc) and industrial applications.
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In this work a Rayleigh-Taylor with sinusoidal asymmetric interface perturbation is studied.
The computational domain is [0,L]× [0,2L] with L = 1 [m]. The computational domain is
divided in two sub-domains by a sinusoidal interface y(x) = 1−0.15sin(2πx) (see figure
6.1). The lower sub-domain is occupied by the lighter fluid (referred as phase 1) which
has a density ρ1 = 1 [kg/m3], while the upper sub-domain is occupied by the heavier fluid
(referred as phase 2) with density ρ2 = 1.8 [kg/m3]. The Reynolds number is defined here as

Re =

√
∥g∥L3

ν
, and a value of Re = 420 is chosen. In the previous definition, ∥g∥= 1[m/s2]

is the modulus of the gravity acceleration vector, and ν = ν1 = ν2 = 0.0024 [m2/s] is the
kinematic viscosity which is chosen to be equal and constant for both fluids phases.

The particles have an initial regular lattice distribution. The RTI test is solved with three
different particles resolutions {49×99,99×199,133×267} . The reference speeds of sound
are taken as {c01,c02}= {13.41,10} [m/s], for the lighter and heavier fluids, respectively.
The reference pressure is chosen equal to 9 [Pa]. The no-slip boundary condition is applied
on all solid boundaries.

In figure 6.8 we compare three different particle resolutions at three different times t = 1 [s],
t = 3 [s], t = 5 [s] . Quantitatively, it’s shown that the three particle resolutions are able to
simulate substantially the same phenomena of RTI. Nevertheless, at the low resolution 49×99
the roll-up of the small structures at the mushroom-shaped head are not well reproduced. For
the finer resolutions, all the small structure phenomena due to the development and roll-up of
the mushroom-shaped heads are captured. The two finer resolutions (99×199 and 150×300
) are very similar to each other in terms of the shape of the instability.

We also performed a comparison between the RTI interfaces reproduced with the proposed
SPH model and two different numerical methods. In figure 6.9, we compare the results at
time t = 5 [s] with the resolution of 150× 300 particles with those of a Level-set method
[128] and another SPH model [238]. There are some differences between the SPH method
[238] and the method presented here. For instance in [238] a Wendland kernel function
[347] and time-integration of continuity equation for the density are used instead of the
quintic spline kernel 4.7 and summation-based density 4.8 used in the presented SPH method,
respectively. The present SPH model can reproduce the RTI interface in good agreement
with the other numerical models which have more resolution (Level-Set: a grid of 312×624
cells, and SPH model[238]:150×300 particles). Globally, the RTI interface reproduced with
the proposed SPH approach is closer to that reproduced with the SPH model of [238]. This
is probably due to the same nature of both models. We note, however that in some places
the interface with the proposed SPH method is closer to that obtained by the Level-set one
[128]. These results are only of a qualitative nature. Monaghan et al [238] prefer to examine
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49×99

99×199

150×300

Figure 6.8 – Rayleigh–Taylor instability at three different times t = 1 [s] (left column),
t = 3 [s] (center column), t = 5 [s] (right column) after the damping period, and three
different resolutions: 49× 99 particles (top), 99× 199 particles (middle) and 150× 300
particles (bottom).

the convergence by comparing the time evolution of the position of the Y−coordinate of the
highest particle of the lighter fluid (phase 1) with that obtained from the Layzer’s theory
[187, 83]. Thus, the highest point of the phase 1 fluid for the three particle resolutions
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{49× 99,99× 199,150× 300} is plotted in figure 6.10 together with the curve obtained
using the Layzer’s theory. The results are in good agreement with the Layzer theory. Note
that the the Layzer theory is for a periodic domain, while the results are obtained from the
simulation in a rectangular rigid domain with no-slip boundaries. This fact may explain some
of the deviations of the numerical results from the theoretical line.
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Figure 6.9 – Comparison between the fluid interfaces of the present work and the references.
The left figure compares the fluid interface of present SPH model with that of SPH model
developed by Monaghan et al [238].The right figure compares the fluid interface of the
present SPH method with that of Level-Set method [128].

6.3 Interaction of two rising bubbles through a fluid col-
umn

In this last test case we solve a case based on the one presented in [128]. Two bubbles are
initially set close to each other and rise through a fluid column. The upper bubble is larger
than the lower one. The smaller bubble has a radius R = 0.1 [m]. The geometrical setup of
the problem is based on the radius of the smaller bubble and is detailed in figure 6.11. The
physical parameters for the setup of this problem are given in Table 6.1 , respectively.

We use here a discretization of 500×750 particles.
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Figure 6.10 – Time-evolution for the highest point (Ymax) of the lighter fluid. Dotted line
with small open triangles shows the results for the simulation with 99×199 particles, the
small open square for 49×99 particles and the small open circles for 150×300 particles.
Layzer’s theory curve is represented by the continuous solid line.

ρ1 [kg/m3] ρ2 [kg/m3] µ1 [Pa.s] µ2 [Pa.s] σ [N/m] ∥g∥ [m/s2] Re Eo
ρ1
ρ2

µ1
µ2

1000 100 0.156 0.078 0 2.9 1794 ∞ 10 2

Table 6.1 – Setup for the interaction of two rising bubbles through a fluid column test case.
With Reynolds number Re =

ρ1vcLc
µ1

and Eötvös number Eo =
ρ1v2

cLc
σ

.

The reference speeds of sound {c01,c02}= {9.32,29,47} [m/s] are chosen for fluid water
column and the fluid of the two bubbles, respectively. The simulation is damped for a period
of TD = 0.25 [s]. Left and right boundaries are set as free-Slip boundaries, whereas no-slip
boundary conditions are set at top and bottom boundaries. The results for pressure variation
∆̃p = p− pmin , velocity magnitude of the fluid column and of the bubble are presented in
figures 6.12 and 6.13.

During the evolution process of the two rising bubbles, the upper bubble covers the lower
one. This generates more efforts over the lower bubble. Due to this forces, the lower bubble
deforms. This deformation generates two fluid ejections that go thinner as the rising process
continues. Finally, the two bubbles merge but this state is not stable and they split in two
parts.

6.4 Conclusion

The accuracy, stability and applicability of the proposed SPH model to deal with gravita-
tional multiphase fluid problems were shown. Using the proposed damping technique leads
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Figure 6.11 – Interaction of two rising bubbles through a fluid column: Geometrical setup.

to lower amplitude of the pressure oscillations. The modifications brought in this work to
the generalized wall boundary conditions [4] for the multiphase applications is shown its
efficiency to simulate gravitational multiphase fluid flow with high density ratio.
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Figure 6.12 – Interaction of two rising bubbles through a fluid column First and second
images columns represent the pressure and magnitude velocity, respectively. The third
column presents the magnitude velocity with particle direction vector of isolated bubble. The
simulations are presented in order at the times t = {0,0.25,0.5} [s].
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Figure 6.13 – Two rising bubbles through a fluid column. First and second images columns
represent the pressure and magnitude velocity, respectively. The third column presents the
magnitude velocity with particle direction vector of isolated bubble. The simulations are
presented in order at the times t = {0.75,1} [s].



Chapter 7

Validation and application of SPH
interfacial multiphase model

Ce chapitre est dédié à l’étude de la consistance et la convergence de la formulation
non-conservatrice de la force de tension de surface proposée dans ce travail, dans le cas
d’écoulement diphasique (deux phases) et triphasique (trois phases) avec présence de points
de jonction triple. Ceci est fait par le bais da la comparaison avec des solutions analytiques
disponibles. Les exemples abordés dans cette catégorie sont, la déformation d’une gouttelette
carrée [2], l’étalement d’une goute placée entre deux couches de fluide stratifiées [39] [193],
et le test d’onde capillaire-visqueuse [254, 151, 150, 149, 2]. Par la suite, nous examinons
l’effet des rapports de densité et de viscosité élevés. La montée d’une bulle d’air à travers
une colonne d’eau de’un seul fluide et de deux couches de fluide stratifiées est étudiée. Les
résultats sont comparés à ceux obtenus avec d’autres méthodes numériques (Volume-Of-Fluid
[155], Level-Set [318]) et aussi avec des résultats expérimentaux [37].
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This chapter is dedicated to investigating the consistency and the convergence of the
non-conservative formulation for the surface tension force proposed in this work, for the case
of two and three phase flows with presence of triple junction points. This is done through the
comparison with available analytical solutions. The examples addressed in this category are
the square droplet deformation [2] ,the spreading lens between two stratified fluid layers [39]
[193], and the capillary-viscous wave test [254, 151, 150, 149, 2]. Thereafter, we introduce
high density and viscosity ratios effects. The rising of an air bubble trough a water column
and through two stratified fluid layers are investigated. The results obtained with the new
method are compared to those obtained with other numerical methods (Volume-Of-Fluid
[155], Level-Set [318]) and also with experimental results [37].

The simulations of the bubble rising behavior can be characterized by the Reynolds and
the Eötvös dimensionless numbers [155] and also the density and viscosity ratio (ρ1

ρ2
, µ1

µ2
).

The Reynolds number Re gives the ratio of inertial to viscous effects and is expressed as

Re =
ρ1vcLc

µ1
. (7.1)

While the Eötvös number Eo compares buoyancy effects to capillary ones :

Eo =
ρ1v2

cLc

σ
. (7.2)

The subscripts 1 and 2 refer to the heavier and lighter fluid, respectively. The characteristic
velocity is defined as vc =

√
2R∥g∥ and Lc = 2R refers to the characteristic length. R is

initial radius of the bubble and ∥g∥ is the magnitude of the gravity acceleration vector.

7.1 Square droplet deformation

In this first test case, the SPH method with CSS model of the surface tension force is applied
to the simulation of the deformation of a square droplet under the action of the surface tension
force. This example has already been investigated by Adami et al [2] using a SPH method
with CSF model. The square droplet is defined by an edge length ld = 0.6 [m] units. It is
placed on the center of an square box with sides Ls = 1 [m]. The fluid within the square
droplet is referred as phase 1 whereas the fluid outside the droplet is referred as phase 2 (see
fgure 7.1). The densities of the each fluid phases are chosen as ρ1 = ρ2 = 1 [Kg/m3] and
the dynamic viscosity is taken as µ1 = µ2 = 0.2 [Pa.s]. The surface tension coefficient is
σ1−2 = 1 [N/m].
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fluid 1 fluid 2 
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Y

Dimensions Initial state Equilibrium state

Figure 7.1 – The evolution of square droplet under the surface tension effort : The left
figure describes the geometrical details. The middle figure shows the initial fluid particles
at (t = 0 [s]) for the particle resolution ls

40 . The right figure describes droplet in equilibrium
state after its evolution for the particle resolution ls

40 .

We investigate the evolution of the square droplet deformation using three different number
of particles: ls

40 , ls
80 and ls

160 . The smoothing length is chosen equal to h = 1.33δx0. The
reference speed of sound is set to (c0 = 10 [m/s]) for all resolutions. A positive background
pressure is taken as (pb = 5 [Pa]). A non-slip boundary condition is applied on all sides of
the square box.

The evolution of the kinetic energy of the particles inside the droplet (Ek =
1
2∑

id

mid∥vid∥2

where id refers to the droplet particles) is plotted in figure 7.2. The deformation of the square
droplet starts at the corners because of a local high surface tension due to the high curvature
at corners. This effect is reflected by the peak in the kinetic energy which evolves until the
stabilization in a value close to zero for all resolutions.
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Figure 7.2 – Time evolution of droplet kinetic energy for particle resolutions ls
40 , ls

80 and ls
160 .

At the stabilized state (equilibrium state) the particles are at rest, and the square droplet is
totally transformed in a circular droplet. Under the fluid incompressibility hypothesis, both
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phases must conserve their volumes (areas in 2D) during all the evolution process. Thus,
the equality πR2 = l2

d holds for for the square droplet, and therefore the equilibrium radius
is R = ld√

π
≈ 0.338 [m]. From Laplace’s law, the pressure of the fluid particles inside the

droplet (phase 1) must be higher than that of the surrounding particles (phase 2), and the
jump of pressure between the two phases must satisfy the condition

∆p =
σ1−2

R
≈ 2.954 [Pa] (7.3)

Figure 7.3 – Surface tension forces orientation (on the left) and magnitude of the velocity
(on the right) of droplet at equilibrium state for the particle resolution ls

40 .

The surface tension forces orientation and the magnitude of the velocity are shown in
figure 7.3. We observe that the surface tension force has a radial direction, oriented towards
the center of droplet. This orientation corresponds to the direction of normal vectors to the
interface between the fluid phases (see the left side of the figure 7.3 ). On the right side of the
figure 7.3 the magnitude velocity of every particle is represented. The velocity magnitude
is in the order of O(10−3). When forces due to this spurious effect are comparable to other
physical forces such as viscous, gravitational, and surface tension forces, errors will be
greater.

In figure 7.4 we show the cut of pressure field at Y = 0 (X-axis) obtained in the simulations
and also the analytical pressure predicted by Laplace’s law. It is observed a good agreement
between the numerical results and the theoretical pressure. These results show that the SPH
method with the CSS non-conservative surface tension model is able to represent correctly
the equilibrium state of this two phase flow problem.

When a low viscosity of µ1 = µ2 = 0.001[Pa.s] is used (small viscous forces) to simulate
the square droplet deformation test case, the pressure profile at the equilibrium state is less
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Figure 7.4 – Square droplet test case.The left figure plots the normalized pressure ( p−p2
p1−p2

)
at the final stabilized state. The figure on the right plots a cut of the pressure field at Y = 0
obtained by the numerical method and the theoretical solution for different particle resolutions

ls
160 , ls

80 and ls
40 .

accurate. This is because in this case viscosity forces are comparable with the forces due
to the parasitic currents (see figures 7.5 and 7.6). Note however that the circular shape
of droplet is well approximated. Parasitic currents are a numerical artifact suffered for
numerical approaches of the surface tension based on the use of CSF or CSS formulations.
The elimination of this effect is not addressed here. For more details about parasitic currents
artifact and their elimination, please refer to [271, 330, 162].

Figure 7.5 – Square droplet test case using low viscosity (µ1 = µ2 = 0.001[Pa.s]) for the
particle resolution of ls

80 . Particles colored with fluid phases (left). Magnitude velocity field
(right).

Three density ratios ρ2
ρ1

= {1,10,1000} are investigated in order to show the influence
of the variation of density ratios on the obtained pressure results. In figure 7.7, the pressure
profiles at Y = 0 are plotted for three selected density ratios. Despite the obtained results of
pressure are not as accurate as for the case of density ratio ρ2

ρ1
= 1, we observe relatively a

good agreement with the analytical solution for the density ratios of ρ2
ρ1

= 10 and ρ2
ρ1

= 1000.
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Figure 7.6 – A cut of the pressure field at Y = 0 obtained by the theoretical solution and the
numerical method and numerical method with viscosity µ1 = µ2 = 0.2[Pa.s] (dotted line with
small circles) and µ1 = µ2 = 0.001[Pa.s] (dotted line with small triangles) for the particle
resolution of ls

80 .
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Figure 7.7 – A cut of the pressure field at Y = 0 obtained by the theoretical solution and
the numerical method and numerical method with viscosity µ1 = µ2 = 0.2[Pa.s] and three
density ratios ρ2

ρ1
= {1,10,1000} for the particle resolution of ls

80 .

7.2 Spreading lens between two stratified layers

This example aims to test if the presented SPH model can deal with triple junction points
problems [193]. Thus, the classical test of the spreading of a lens between two stratified
fluid layers is investigated. A circular lens of radius 1

6 [m] is placed at the center of a square
box with length sides (lb = 1 [m]). The square box contains two different fluid phases in an
stratified arrangement. These fluid phases are respectively referred as fluid phases 1 (the
phase at the top of the stratification) and 2 (the phase at the lower part of the stratification
arrangement) whereas the lens is referred as phase 3. Due to the effect of the surface tension,
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the lens evolves until an equilibrium state (see figure 7.8). The contact angles at the triple
junction point follows the Young’s relation

sinθ1

σ2−3 =
sinθ2

σ1−3 =
sinθ3

σ1−2 (7.4)

fluid 1 

fluid 2 

fluid 3 θ2

θ3

R
32

θ1
�h

�d

X

Y

Figure 7.8 – Schematical representation of contact angles at a triple junction point.

Fluid densities are set as (ρ1 = ρ2 = ρ3 = 1 [Kg/m3]) for the three fluid phases. The dynamic
viscosities are identical for the three fluid phases (µ1 = µ2 = µ3 = 0.5 [Pas.s]). The interfacial
surface tension applied on all fluids interfaces is (σ1−2 = σ2−3 = σ1−3 = 5 [N/m]), in order
to obtain a symmetric lens. The analytic solution is obtained from Laplace’s law and Young’s
relation. The theoretical value of the pressure jump between phases (∆p) is obtained in 2D
case from equation (7.5). The shape of the half lens ( symmetric with respect to the X axis)
at equilibrium state is assumed to be a circular segment with following parameters (see figure
7.8): The distance between the two triple junction points (d̃), the contact angles of the ith

phase (θi), the sagitta (the distance from the center of the arc to the center of its base) of the
segment (h̃), the radius of the curvature of the interface between the phases i and j (Ri j) (in
figure 7.8, we represent the curvature between the upper fluid of the stratification (1) and the
fluid of the lens (3) ).

∆p = pi − p j =
σ i− j

Ri j
(7.5)

At the equilibrium state the lens area A, the distance between triple junction points d̃, and the
contact angles θi can be expressed follows the relation [173]
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d̃ =

(
1

8A

(
2(π −θ1)− sin((π −θ1))

sin2(π −θ1)
+

2(π −θ2)− sin((π −θ2))

sin2(π −θ2)

))− 1
2

≈ 0.4617 [m]

(7.6)

Note that in this test case, the surface tension coefficients are taken identical. Then, the
Young’s relation (equation (7.4)) reads as θ1 = θ2 = θ3 =

2π

3 .

Geometrical consideration leads to the following results

R31 = R32 =
d̃

2sin θ3
2

≈ 0.2665 [m] (7.7)

h̃ = R32

(
1− cos

θ3

2

)
≈ 0.1333 [m] (7.8)

All the particles are initially at rest. The no-slip boundary condition is applied on the upper
and lower boundaries. On the left and right boundaries a periodic boundary condition is
applied. The reference speed of sound and the background pressure are taken as ((c0 =

55 [m/s]) and pb = 150 [Pa]) ).

The time evolution of kinetic energy for three different resolutions lb
40 , lb

80 and lb
160 is plotted in

the figure 7.9. The kinetic energy converges to approximate zero and reaches the equilibrium
state. As it is observed, the magnitude of the velocity decreases considerably (order of
O(10−2); see figure 7.10 ) at later time for the three particle resolutions. This indicates that
the parasitic currents do not create a serious effect on the obtained results.
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Figure 7.9 – Spreading lens between two stratified layers: Time-evolution of kinetic energy
for three different particle resolutions.



7.2 Spreading lens between two stratified layers 159

Figure 7.10 shows the pressure field, the particle distribution of three phases stratification
arrangement and magnitude of velocity filed at the equilibrium state. The initial circular
shape of the lens evolved to an elliptical shape at the equilibrium state. The pressure jump
profile along X = 0 and Y = 0 lines are plotted with the analytical solution obtained from
equation (7.5), which gives ∆p = p3 − p1 = p3 − p2 ≈ 18.7591 [Pa]. Quantitatively a good
agreement between the numerical solution and analytical one is observed for both pressure
profiles (along the X = 0 and Y = 0 lines). A pressure instability appears near the triple
junctions points (following the X axis) for both resolutions (see figure 7.11). This instability
tend to disappear with increasing of resolution ( The instability in low resolution is more
marked than in higher one). Note that for a higher particle resolution, the SPH numerical
solution becomes closer to the analytical one in terms of pressure and geometrical details of
lens which guarantees thereafter the convergence of the proposed SPH interfacial multiphase
model to deal with a triple junction points problems.

Figure 7.10 – Spreading lens between two stratified layers: pressure field (left), particle
distribution of three-phases stratification arrangement (middle) and magnitude velocity filed
(right).
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Figure 7.11 – Spreading lens between two stratified layers: pressure jump profile along
Y = 0 (left) and X = 0 (right) lines.

The wettability of a fluid phase in contact with other two phases can occur either partially
or totally, depending on the surface tensions between the three fluid interfaces. The degree
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of wettability can be determined by the spreading parameter Sp [349]. If the spreading
parameter is positive the fluid of this phase will spread completely on the interface between
the other phases (total spreading). Here, in order to check if the proposed method reproduces
accurately this phenomenon, we consider two different configurations following the work
presented in [39].

We define the spreading parameter for the lens (Sp3) and the upper fluid (Sp1) phases as
follows

Sp3 = σ
1−2 − (σ1−3 +σ

2−3) (7.9)

Sp1 = σ
2−3 − (σ1−2 +σ

1−3) (7.10)

The first configuration of the problem is defined by choosing the values of interfacial surface
tensions as

{
σ1−2,σ1−3,σ2−3}= {3,1,1} [N/m] (Sp3 = 1 [N/m]> 0). This choice leads

to the total spreading of the lens phase 3 on the interface phases 1-2

For the second configuration, the values of interfacial surface tensions are chosen as{
σ1−2,σ1−3,σ2−3}= {1,1,3} [N/m] (Sp1 = 1 [N/m]> 0). This choice leads to the total

spreading of the upper fluid phase 1 on the interface phases 2-3.

In figure 7.12 we show the evolution of the spreading until the equilibrium state is reached
for the two configurations considered. In both cases, the triple points disappear and the
equilibrium interfaces are plane in the first case and spherical in the second simulation case.
The results obtained are in agreement with those obtained in [39].

(a)

(b)

Figure 7.12 – Total spreading evolution of the fluid lens for the configurations : a){
σ1−2,σ1−3,σ2−3}= {3,1,1} [N/m] and b)

{
σ1−2,σ1−3,σ2−3}= {1,1,3} [N/m].
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7.3 Capillary-viscous wave

In this example, the dynamic test case involving a liquid-droplet oscillation in a liquid
phase under the action of capillary forces is investigated. This test was already simulated
in the SPH framework in several works such as [254, 151, 150, 149, 2]. The liquid-droplet
(referenced with a d subscript) has a radius of R = 0.1875[m] and is surrounded with another
liquid phase (referenced with a l subscript). Both fluids are placed at the center of a square
box of size Lx = Ly = 1[m]. The densities and dynamic viscosities of the droplet and its
surrounding fluid are considered the same and equal to ρd = ρl = 1[Kg/m3], µd = µl =

0.05[Pa.s], respectively. The surface tension coefficient between the two phases is set as unity
(σd−l = 1[N/m]). A divergence-free initial velocity field is assigned to all fluid particles and
it reads as

vx = v0
x
r0

(
1− y2

r0r

)
e−

r
r0 (7.11)

vy =−v0
y
r0

(
1− x2

r0r

)
e−

r
r0 (7.12)

Where r denotes the distance between the particle position (x,y) and the droplet center.
Terms v0 and r0 are the characteristic velocity and distance, and are taken as v0 = 10[m/s] and
r0 = 0.05[m]. We study the convergence properties using three different number of particles
900, 3600, 14400 particles. The reference speed of sound is chosen equal to c0 = 10 [m/s] for
both fluid phases under all resolutions. A positive background pressure is set as (pb = 5 [Pa]).
A no-slip boundary condition is applied on the square box sides.

Figure 7.13 shows droplet particles positions at t = {0.0,0.08,0.16,0.26}[s], under the
resolution of 14400 particles ( about the same resolution used by Morris et al [254] ). A good
agreement is observed comparing with Morris et al [254] and also with Adami et al results
(see figure 6 in [254] ). Comparing these results with those of [254], it is observed that the
present SPH model provides a more regular particle distribution and an smoother interface,
with the consideration that the initial distribution of the particles are different.

Figure 7.14 shows the time evolution of the center of mass position of the upper right-
quarter section of the droplet with different resolutions. It is observed that with increasing
resolution the difference in results becomes less significant (the results with resolutions 3600
and 14400 particles are very close comparing with the lowest resolution of 900 particles).
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Figure 7.13 – Droplet oscillation : droplet particle positions at t = {0.0,0.08,0.16,0.26}[s].
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Figure 7.14 – Convergence test of droplet oscillation: Center of mass position of the upper
right-quarter section of the droplet.
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7.4 Single bubble rising through a vertical column of wa-
ter

The purpose of this test is to show the efficiency of the present SPH model to simulate a two
phase interfacial fluid flow with low and high density ratios. These tests are taken from the
work of Hysing et al [155]. A single bubble rising in a vertical column due to gravity effect.
The initial bubble position and dimensions of the vertical column are described related to the
bubble radius R (see figure 7.15). The physical variables and parameters are summarized at
Table 7.1 as Case 1.
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Figure 7.15 – Single bubble rising through a vertical column of water. Geometrical details of
the initial setup. On the left it is schematically described the low-density ratio configuration
(Case 1)[155] (R = 0.25 [m]) and on the right it is described the setup for the high-density
ratio configuration (Case 2) [317](R = 0.025 [m]).

This test is done with two different particle resolutions 66×133 and 133×267. The damping
technique is applied here with TD = 1. The reference speeds of sound for the two phases are
set to {c01 ,c02}= {5.7,18} [m/s]. No-slip boundary conditions are applied on the upper and
lower solid boundaries, while free-slip boundary conditions are applied on the left and right
boundaries.

The position of the gravity center GCy of the bubble and its vertical velocity vGC are computed
as follows

GCy =
∑ iNbyi

Nb
. (7.13)

vGC =
∑ iNbvyi

Nb
. (7.14)
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Nb denotes the number of particles in the bubble, and yi is the Y coordinate of the particle
i which belongs to the particle set of the bubble. The term vyi denotes the vertical component
of the velocity of the particle i.

In figure 7.16 we compare our results for the time evolution of the vertical position of the
gravity center of the rising bubble and its vertical velocity with the ones obtained in [155]
using the VOF method. Basically, a good agreement is found between our SPH numerical
results and those of reference [155], even tough a slight difference for the position of the
gravity center is detected, and some oscillations are observed around the VOF velocity curve.
However, the overall SPH results are in good agreement with the reference ones.

In figure 7.17, we also compare the shape and position of the bubble interfaces at time
t = 3 [s]. We observe a perfect agreement in this case.
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Figure 7.16 – Single bubble rising through a vertical column of water. Case 1: Time evolution
of the position of the gravity center (left) and vertical velocity (right) of the rising bubble for
different number of particles. The solid line represents the results obtained by VOF method
[156].

Figure 7.18 shows the pressure and the magnitude velocity of the water column for two
different particle resolutions at two different times t = 1 [s] and t = 2 [s]. Moreover, in figure
7.19 we show the direction of the velocity vector of the particles inside the bubble for the
previous two resolutions at time t = 1 [s]. The results obtained for both particle resolutions
are very similar, indicating the convergence of the numerical model.

Now we address the same case with a higher density ratio [317, 73, 128]. In this case,
during the rising motion, the bubble undergoes a large deformation that subsequently splits it
into three parts. The initial setup is presented in figure 6.1 and the physical variables and
parameters for this test case are summarized at Table 7.1 as the Case 2.
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Figure 7.17 – Single bubble rising through a vertical column of water. Case 1: Comparison
between the bubble interfaces at time t = 3 [s]: 66×133 SPH (Small triangles), 133×267
SPH (Small circles). Dashed line represent the interface obtained with the VOF method
[155].

In this test we use a discretization of 240× 400 particles. The reference speeds of sound
are {c01 ,c02}= {7,221.35} [m/s]. The damping technique is used here with (TD = 0.05 [s]).
The boundary conditions are the same than for Case 1 of this section.

Figure 7.20 shows the velocity and relative pressure (∆̃p = p− pmin) of the column of water
at the dimensionless time t

√
∥g∥/R = 3.6. The bubble is strongly deformed and it is split

in three parts during its evolution. The evolution of the bubble is presented in figure 7.21
at nine different instants. The particles inside the bubble are colored with the magnitude
of the velocity. In figure 7.22 we compare the results obtained with the SPH method with
those obtained using a Level-Set method [318]. The results of the SPH and Level-Set
methods are in good agreement. During the rising process, the bubble deforms and takes
a horseshoe shape. After that, the extremities roll-up until they undergo a big deformation
which subsequently splits the bubble to form other small ones. The main difference between
the results is that near to the symmetric axis the bubble obtained using the present SPH
method is thicker than the one obtained by the level-Set method. The results for the width of
the bubble remains in very good agreement during all the simulation period for both methods.
We observe that in the Level-set solution the bubble splits in several very small bubbles that
are not predicted by the present SPH method. Thereafter, these smaller bubbles disappear
gradually from the Level-Set simulation.
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t = 1 [s] t = 3 [s]

Figure 7.18 – Single bubble rising through a vertical column of water. Case 1: Pressure
(top) and velocity (bottom) fields at times t = 1 [s] and t = 3 [s] for two different particle
resolutions, 66×133 (left) and 133×267(right).

Case ρ1 [kg/m3] ρ2 [kg/m3] µ1 [Pa.s] µ2 [Pa.s] σ [N/m] ∥g∥ [m/s2] Re Eo
ρ1
ρ2

µ1
µ2

1 1000 100 10 1 24.5 0.98 35 10 10 10
2 1000 1 0.035 0.0045 0.1226 9.81 1000 285.63 1000 7.77

Table 7.1 – Setup for Case 1 and Case 2 tests.

7.5 Gas bubble rising through two stratified fluid layers

This test example describes the behavior of a rising gas bubble through two stratified fluid
layers (see figure 7.23 ). The gas bubble can cross the interface between layers with or
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Figure 7.19 – Single bubble rising through a vertical column of water. Case 1: Direction
of the velocity vector of the particles inside the bubble at t = 1 colored with magnitude
velocity. On the left, results for 66×133 particles, and on the right we plot the results for the
133×267 particles case.

Figure 7.20 – Single bubble rising through a vertical column of water. Case 2: Relative
pressure (∆̃p = p − pmin) and magnitude of the velocity of the column of water at the
dimensionless time t

√
∥g∥/R = 3.6

without entrainment of the heavier fluid into the lighter, or it could even remain trapped in
it. Greene et al [125, 126] suggest a criterion on the bubble volume to predict this behavior
based on a macroscopic balance between surface tension forces and buoyancy forces. Thus,
if the bubble volume is greater than a critical volume Vc (Vb >Vc), the bubble will penetrate
the interface layer and it will eventually entrain into the heavier fluid, otherwise the bubble
will be trapped between the interface layers. The critical volume is calculated as follows

Vc =

(
2π( 3

4π
)1/3σ2−3

(ρ3 −ρ1)∥g∥

) 3
2

(7.15)
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Figure 7.21 – Single bubble rising through a vertical column of water. Case 2: Evolution of
the bubble at nine different instants. The Bubble is colored with velocity magnitude field.

In equation (7.15) the subscript(or superscript for surface tension) 1 corresponds to the lower
fluid, 2 refers to the bubble, and 3 refers to the upper fluid.

This problem is very challenging from the numerical point of view since it involves high
density and viscosity ratios and the presence of triple point junctions. The setup of the
problem presented here is taken from [37]. The density and dynamic viscosity of fluid
1 (95% glycerin + water) are ρ1 = 1244 [kg/m3] , µ1 = 550.1× 10−3 [Pa.s], in the case of
the buble (fluid 2) the chosen values are those of the air: ρ2 = 1.205 [kg/m3] and µ2 =

5× 10−3 [Pa.s].Note that the value of air bubble viscosity is chosen greater than the real
one and equal µ2 = 5×10−3 [Pa.s] instead the use of the real gas viscosity with an artificial
one to guarantee the stability of the algorithm [245] . Finally, for the fluid 3 (47V500
oil), the values are ρ3 = 965. and µ3 = 530.7× 10−3 [Pa.s] . The surface tensions are
σ1−2 = 45.1613× 10−3 [N/m],σ1−3 = 21× 10−3 [N/m],σ2−3 = 28× 10−3 [N/m] , and
the speeds of sound are taken as {c01,c02,c03}= {3.7,118.88,4.2} [m/s]. The radius of the
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Figure 7.22 – Single bubble rising through a vertical column of water. Case 2: Evolution of
the bubble at nine different instants. Results obtained with the present SPH method (blue
circles) and with a Level-Set approach [318] (black diamonds).

air bubble is R = 3.5×10−3 [m]. These data correspond to a Reynolds number Re ≈ 4.15
and Eötvös number Eo ≈ 13.24. For the simulation, a regular lattice with 50×166 particles
is employed. No-slip boundary conditions are applied on the top and bottom boundaries,
and periodic boundary conditions are applied on the left and right edges of the domain. The
dimensions of computational domain are detailed in figure7.23. The damping technique is
used with TD = 0.05 [s].

The critical volume is computed using equation (7.15) which gives Vc ≈ 3.92×10−8 [m3].
This implies a critical radius of Rc ≈ 0.021 [m]. In this example, the initial radius of air bubble
R = 0.0035 [m] is greater than the critical one which logically involves that the Vc <VBubble.
With this values, the air bubble penetrates the interface fluid layers [38].

In figure 7.24 we show the numerical results for the relative hydrostatic pressure field
∆̃p = p− pmin, the magnitude of the velocity field and the distribution of the three different
phases in different instants. The dimensionless interval between two images is taken equal to
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Figure 7.23 – Gas bubble rising through two stratified fluid layers. Geometrical details of the
problem setup.

∆t
√

∥g∥/R= 4.3 [37]. In figure 7.25 we compare the numerical results with the experimental
images obtained in [37]. The numerical results are in good agreement with the experimental
ones. The differences between the numerical and experimental sequences are maybe due to
uncertainties in the initial conditions of the experimental test and possibly to any 3D effect.

7.6 Conclusion

A series of numerical tests have been devoted in order to the validation of the accuracy
and convergence of the surface tension formulation and achievement of the high ratio of
density and viscosity of multiphase fluid flows. The obtained results are very satisfactory
which demonstrate the consistency, stability and applicability of our proposed SPH interfacial
multiphase fluids model including high density and viscosity ratios and triple junction points.
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Figure 7.24 – Gas bubble rising through two stratified fluid layers. Starting from the left, first
and second columns show the relative hydrostatic pressure field ∆̃p = p− pmin for different
normalized times t+ = t

√
∥g∥/R. Third and fourth columns present the magnitude of the

velocity field. The last two columns show the fluid phases distribution.
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Figure 7.25 – Gas bubble rising through two stratified fluid layers. On the top, we show the
experimental sequence taken from [37]. On the bottom we plot the results obtained using the
proposed SPH method. The dimensionless interval between two images is taken equal to
∆t
√

∥g∥/R = 4.3



Chapter 8

Validation and application of SPH
water-soil interactions model

Dans ce chapitre, la robustesse, la précision et l’applicabilité de notre modèle multi-
phasique sont démontrées via plusieurs benchmarks. La validation de l’efficacité du terme
diffusif multiphasique développé Dδ−MSPH est montré en utilisant l’exemple d’une colonne
de deux couches de fluide Newtonien stratifiées en repos. L’applicabilité pour la simulation
dynamique des matériaux granulaires est démontrée via les benchmarks de l’effondrement
d’une colonne de fluide Binghamien et l’étalement d’une pile de matériau granulaire sur une
surface horizontale. Tandis que pour la simulation des problèmes d’interactions eau-sol, les
exemples de glissements de terrain sous-marins et subaériens sont consacrés. Un modèle
de sédiments en suspension dans l’eau est imbriqué dans notre modèle SPH multiphasique
pour bien capter les phénomènes d’érosion. Une simulation d’un écoulement de rupture
de barrage sur un banc de sédiments érodables est utilisée pour démontrer l’efficacité du
modèle de sédiment en suspension dans l’eau. À la fin, un benchmark démonstratif des
phénomènes multiphysiques ( le glissement de terrain subaérien générant des vagues d’eau
impulsives, inondation et érosion) lié à l’interaction sol-eau est proposé pour montrer la
capacité du modèle SPH multiphasique proposé dans ce travail.
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In this chapter, the robustness, accuracy and applicability of our multiphase model is
demonstrated via a several benchmarks. The validation of the efficiency of the developed
multiphase diffusive term Dδ−MSPH is performed using the two stratified hydrostatics New-
tonian fluid layers benchmark. The applicability on simulation of single phase of granular
materials dynamics is demonstrated via the benchmarks of Bingham fluid dambreak and
spreading of granular material pile on horizontal surface. Whereas for the simulation of the
water-soil interactions problems, the submarine and subaerial landslides benchmarks are
devoted. A suspended water sediment model is nested in our multiphase model to capture
well the erosion phenomena. A simulation of a dambreak flows over erodible sediment bed
benchmark is used for the demonstration of the efficiency of the added suspended water
sediment model. Finally, a demonstrative benchmark of multi-physics phenomena (Subaerial
landslide generated impulsive wave, flooding and scouring erosion) related to the soil-water
interaction is proposed to show the capabilities of the newly proposed multiphase SPH model.

8.1 Two phases hydrostatic stratified column

The purpose of this test is to show the ability of multiphase diffusive terms Dδ−MSPH of
the present work comparing with Dδ−SPH of equation (5.27) ( applied with the procedure as
in [108]) to reduce and smooth the oscillations of the computational pressure in the context
of multiphase WCSPH. A two-dimensional (2D) tank of 0.6[m] long and 0.45[m] high is full
with two stratified immiscible fluids (see figure 8.1). The upper fluid layer is considered as
the lighter one with a density ρ1 = 1000[kg/m3], while the lower layer is the heavier fluid
with a density ρ2 = 2000[kg/m3]. The upper and lower fluids behave as Newtonian with
a constant viscosity of µ1 = 0.02[Pa.s] and µ2 = 0.001[Pa.s], respectively. Both fluids are
subjected to a vertical gravity acceleration of −9.81[m/s2].

We investigate the stability and convergence of the pressure field using our developed
diffusive term Dδ−MSPH and the classical one Dδ−SPH applied separately on each fluid phase
as in [108]. A resolution of 59×20 particles is chosen for this test case. The reference speeds
of sound for the lighter and heavier fluids are chosen c01 = 20 [m/s] and c02 = 14.14 [m/s]
in order to obtain the same reference pressure pr = ρ1c2

01
= ρ2c2

02
= 4×105 [Pa].

Figure 8.2 shows the time evolution of the pressure calculated at three different points
P1, Pint and P2 (placed at locations as indicated in figure 8.1). Pressures at measurement
points are approximated using the Shepard filter [305]). Thus, for the point P1 the pressure is
computed as
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Figure 8.1 – Geometrical details of two phases hydrostatic stratified column configuration.
P1 = (0.3,0.5), Pint = (0.3,0.2), P2 = (0.3,0.1) are the pressure measurement points located
at the center of the layer of the fluid 1, the interface between the two fluids and the center of
the fluid layer 2, respectively.

p(P1) =

n

∑
i

Vi piW (P1 − ri)

n

∑
i

ViW (P1 − ri)

(8.1)

We observe that the calculated pressures at different points stabilize to approximate
the hydrostatic pressure values after the time t = 2.5[s] when the multiphase diffusive term
Dδ−MSPH is used as is shown in figure 8.2 (a).

In the case of classical diffusive term Dδ−SPH the pressures remain relatively instable
during all simulation period (7[s]) and present an important error specially at the interface
between the fluid phases (as shown in figure 8.3 (b)). The pressure errors are generated
accordingly to the instability of the interface between the phases as shown in the figure 8.3
(b). In figure 8.3 (a) it is observed the stability of the interface between the fluid phases and
the smoothness of pressure distribution at later time after the stabilization (at t = 7[s]) when
the formulation Dδ−MSPH is used.

In order to analyze the results without taking into account the effect of the pressure
filtration due to the use of Shepard filter (8.1), the pressure distribution on each particle is
plotted against the analytical hydrostatics ones at the time t = 7[s]. This is shown in figure
8.4. It is observed that computed pressures using the multiphase diffusive term Dδ−MSPH are
in good agreement with the analytical values for both fluid layers and the interface between
them (see figure 8.4 (a)). When the Dδ−SPH model is used, pressure results do not match
with the analytical ones specially at the interface, where we observe important differences
(see Figure8.4 (b)).
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From this test, we can conclude that the use of Dδ−MSPH diffusive terms in the context
of the WCSPH method enhances significantly the stability and smoothness of computed
pressure for the fluid phases.
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Figure 8.2 – Time evolution of pressure at the points P1, Pint and P2 plotted against the
analytical hydrostatic values represented in solid lines. The left figure represents the pressure
results using the multiphase diffusive term Dδ−MSPH of present work. The right figure
represents the pressure results using the classical diffusive term Dδ−SPH independently in
each fluid phase.
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Figure 8.3 – Fluid phases distribution and hydrostatic pressure representation at t = 7[s].
The gray color is chosen for the phase 1 and the black for the phase 2). The colored part
shows the hydrostatic pressure field. Figure (a) shows the results using the multiphase
diffusive term Dδ−MSPH presented in this work, whereas figure (b) shows the results using
the classical diffusive term Dδ−SPH . Notice the smooth distribution obtained with the
proposed methodology.
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Figure 8.4 – Computed pressure values at all particles for all fluid phases at time t = 7[s]
plotted against the analytical hydrostatic pressure (solid black line). On the left it is shown
the pressure computed using the multiphase diffusive term Dδ−MSPH presented in this work.
On the right, the results using the classical diffusive term Dδ−SPH .

8.2 Bingham fluid dam-break

This example is investigated in order to show that the proposed SPH model with the RBPMC-
αµ constitutive law (equation (5.23)) can accurately deal with Bingham materials (non-
frictional materials: with φ = 0 and c = τy) in simulation problems in the context of Non-
Newtonian free surface flow simulations.

The dam-break benchmark proposed by Komatina and Jovanovic [175] was reproduced
numerically in this work. This benchmark was already investigated by other authors [352,
145] using SPH method.

A rectangular column of a single fluid with a height of H = 0.1[m] and length of L = 2[m]

is confined between two fixed walls (at the left side and at the bottom) and a moving wall
at the right side. The moving wall is removed and the fluid starts to flow under the effect
of gravity g = 9.81[m/s2] (see figure 8.5 ). The fluid is considered as a water–clay mixture
with a volume concentration of Cv = 27.4%. The bulk density of the water–clay mixture is
ρcw = 1200kg/m3, and the fluid is considered as a Bingham Plastic. The plastic viscosity and
the yielding shear stress area are estimated according to [175] as µcw = 0.621exp(0.173Cv)≈
0.07 [Pa.s] and τy = 0.002exp(0.342Cv)≈ 25[Pa], respectively.

A distribution of 400× 20 particles is used to discretize the rectangular fluid column.
The speed of sound is (c0 = 10u0 ≈ 14 [m/s] ) with u0 a reference velocity that is calculated
following Torricelli’s law (u0 =

√
2Hg). Two values of the regularization parameter αµ =

{100,1000} are tested to investigate their influence on results.
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In figure 8.6 the time-evolution of dimensionless front position (XF/H = (x−L)/H) is
plotted for the present SPH model using two values of control parameter αµ = {100,1000},
the incompressible non-Newtonian SPH model (INNSPH) of Xenakis et al [352], and
the experimental results of Komatina and Jovanovic [175]. A good agreement between
the present SPH formulation, the INNSPH model [352] and the experimental results are
observed. In the case of the proposed method, the best results are obtained when a control
parameter αµ = 1000 is employed. It is also observed that the flow tends to stabilize at
a rigid form (the so-called "freeze-point") with increasing time, since the shear stress at
every computational particle do not exceed the yield stress τy. In figure 8.7 the results for
the particle positions using the present SPH model with αµ = 10000 at five different time
steps t = {0.1,0.3,0.6,1,2}[s] are presented. Fluid particles are colored with the hydrostatic
pressure field. These results are used for a comparison between the free surfaces obtained
with the present SPH model with αµ = 1000, the INNSPH model [352], and the control
volume finite element method (CVFEM) of [352] at two different time instants t = {0.6,2}[s]
. This comparison is presented in figure 8.8. The free surface obtained by the proposed
WCSPH approach is between those of INNSPH and CVFEM.
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Figure 8.5 – Bingham fluid dam-break configuration.

8.3 Spreading of granular pile on horizontal plan

In order to show the efficiency of the proposed SPH model including the RPBMC-
αµ rheology for the simulation of cohesionless granular flow problems, the experimental
benchmark proposed by [183] is reproduced. In this benchmark, a heap of dry granular
material (glass beads ) of length L and height of H (aspect ratio a = H

L ) spreads on an
horizontal roughness plane. The granular heap is initially blocked between a fixed glass
wall at the left side a movable gate at the right side and a fixed rough wall at the bottom.
The channel and the granular heap have the same uniform width (W = 0.045[m]) (see figure
8.9). The granular heap has a mass of 470[g], a height of 61[mm] (H ≈ 61[mm]) and a
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Figure 8.6 – Time-evolution of dimensionless Bingham dam-break front position (XF/H =
(xF −L)/H). We compare the results obtained using the proposed method with a plastic
viscosity (µ = 0.07) and coefficients αmu = 100 (dotted line) αmu = 1000 (dashed line), with
INNSPH(Incompressible Non-Newtonian SPH) [352] (solid line) and with the experimental
results of Komatina and Jovanovic [175] (small triangles).
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Figure 8.7 – Bingham dam-break flow at times t = 0.1,0.3,0.6,1,2[s]. The particles are
colored with pressure values. The Y-axis is scaled by a factor of 5 for the sake of clarity.

length of 102[mm] ( L = 102[mm])( aspect ratio of a = 0.6). Since L >>W the behavior of
three-dimensional granular flow can be considered as a two-dimensional one. Thus, in this
work we consider only a two-dimensional configuration.

The glass bead is considered as a granular material with a grain density of ρg =

2500[kg/m3], and angle of repose φr ≈ 22±0.5 deg (it is equivalent to an internal friction
angle φ ≈ φr ≈ 22±0.5 deg ). The bulk density is approximated as ρb ≈ 1673[kg/m3]. This
bulk density is calculated from the mass and volume of the granular heap by dividing the
mass by the volume of pile (ρb =

Mass
HLW ) [182, 183].
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Figure 8.8 – Comparison between the free surface profiles of the present SPH method with a
plastic viscosity (µ = 0.07) and αµ = 1000 (solid line), the INNSPH method [352] (dashed
line) and CVFEM [352] (dotted line) at times t = {0.6,2}[s]

In this work the dynamic plastic viscosity of the glass beads is set to µ = 0.1[Pa.s] follow-
ing [159]. Four values of control parameter of the RBPMC-αµ (αµ = {100,1000,2000,3000})
were used. The results of our simulaitons were compared with the experimental results of
[183].
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Figure 8.9 – Spreading of granular pile on horizontal plan: Schematics of the experimental
configuration [183].

The granular column is represented by 50× 30 particles ( the initial inter-particular
distance is δx = 0.002[m]). The reference speed of sound of the granular material is set to
c0 = 11[m/s] (reference pressure Pr = 202433[Pa]). A no-slip boundary condition is applied
on the horizontal wall (rough wall), while free-slip boundary condition is applied on the
vertical fixed wall.

In figure 8.10, the time evolution of the dimensionless front position (XF/H = (x−
L)/H) of the granular column is presented for the experimental and numerical results. A
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disagreement between the numerical and experimental results is observed when the value
αµ = 100 is used. In this case, the numerical granular column continue to spread because
of the low viscosity value assigned by the RBPMC-αµ rheology model to the column
(µmax = 100µ = 10[Pa.s]). However, a very good agreement is observed when the value of
αµ is sufficiently higher (αµ = {1000,2000,3000}). The best results are obtained by using
αµ = 3000.
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µ = 0.1, α = 1000
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Figure 8.10 – Spreading of granular pile on horizontal plan: Time-evolution of the dimen-
sionless front position of the glass beads pile. We plot the results of the proposed numerical
method using αµ = 100 (dotted line), αµ = 1000 (dash-dot line), αµ = 2000 (dashed line)
and αµ = 3000 (solid line), and the experimental data of Lajeunesse et al [183] (small
triangles).

The shape evolution of the collapsing granular column profile for both experimental
and numerical results is shown in figure 8.11 at times t = {0,0.8,0.16, 0.24,0.32}[s]. A
value of 3000 of the control parameter (αµ = 3000) is used for the computation. The SPH
particles are colored with the magnitude of the velocity in order to show the dynamic and the
"freeze-point" of the collapsing column. The granular column stops spreading and takes the
trapezoidal shape at t = 0.32[s] for both numerical and experimental results. A very good
agreement is observed between the numerical and experimental granular column profiles at
different times. Nevertheless, a difference between the numerical and experimental granular
column profiles is remarked at earlier stage at t = 0.8[s]. This is may be due to the process of
moving the gate in the initial stage of the experiment that is not represented in the numerical
simulation.
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t = 0[s]

t = 0.08[s]

t = 0.16[s]

t = 0.24[s]

t = 0.32[s]
(a) (b)

Figure 8.11 – Spreading of granular pile on horizontal plan: Sequences of the position of
the granular material (glass beads) using the proposed SPH model with αµ = 3000 (a) and
experimental results of Lajeunesse et al [183] (b).
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8.4 Landslide-generated wave

A landslide, also known as slope failure, slumps or landslip is a big mass of ground driven
on a slope by gravity effort. Landslides can occur under-water (submarine) or upper-water
(Subaerial). The potential energy of land sliding in the water bodies (oceans, seas, lakes and
reservoirs) consequently generates an impulse wave that may potentially cause significant
disasters. Papua New Guinea in 1998 [323] and Lituya Bay- Alaska in 1958 [224] tsunamis
caused by a submarine and subaerial landslides, respectively, are demonstrations of the great
destructive potential of these phenomena.

Submarine land-slide-generated water wave

In this example, we investigate the capability of the proposed multiphase SPH model to
simulate water-land interactions related to submarine landslides. The land here is modeled
as a purely cohesional material (φ = 0, c = τy). Here we reproduce the experiment of
Rzadkiewicz et al [290, 289], and we compare our numerical results with those of [52]. This
experiment examines the water waves generated by the sliding of sand mass along a slope of
45deg . The dimensions of the channel are 2[m] high and 4[m] long. The initial profile of the
sand mass has a triangular shape with a cross-section of 0.65[m]×0.65[m]. The sand mass
has the same wide as the channel, so that the problem can be considered as two-dimensional.
The density and viscosity of the water are set to ρw = 1000[kg/m3] and µw = 0.001[Pa.s],
respectively. The bulk density of the sand is 1950[kg/m3] . The depth of the water is 1.6[m]

and the top of triangular sand mas is initially located below the surface water by 0.1[m].
Figure 8.12 gives more geometrical details about the submarine landslide configuration.

In the work of Rzadkiewicz et al [290] the rheological parameters were not measured
experimentally. They were chosen by numerical experience as τy = 1000[Pa] and µ = 0[Pa.s].
In this work we choose the same yielding stress, but a small value of plastic viscosity
(µ = 0.001[Pa.s]) is chosen instead of zero. The reason is the necessity of using a non-null
plastic viscosity in our rehological model RBPMC-αµ . The control parameter isαµ = 106.

The numerical simulations were carried out using a homogeneous resolution of 16819
particles (15916 particles for the water and 903 particles for the land mass ), with an initial
inter-particular spacing δx = 0.0015[m] similarly to the work of Capone et al [52].

The speed of sound is chosen equal to c0 = 55[m/s] for the water phase which leads to a
reference pressure of Pr = 3.025106[Pa]. The No-Slip boundary conditions are applied on all
the rigid boundaries.

The numerical results of particles distribution for both land mass (dark gray color) and
water (light grey color) are represented in the figure 8.13 at times t = 0.4[s] and t = 0.8[s].
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Figure 8.12 – Submarine land-slide-generated water wave: Geometrical details and setup of
the problem.

Figure 8.13 – Submarine land-slide-generated water wave: Particle distribution at times
t = 0.4[s] and t = 0.8[s].
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Figure 8.14 – Submarine land-slide-generated water wave: Comparison between the free
surfaces at t = 0.4[s] and t = 0.8[s] obtained with the proposed SPH model, the SPH model
of Capone et al. [52] and the experimental results of Rzadkiewicz et al [290, 289].

In the figure 8.14 the comparison between the water free-surface elevation at times
t = 0.4[s] and t = 0.8[s] is represented between the current SPH model, the SPH model of
Capone et al. [52] and the experiment of Rzadkiewicz et al [290, 289]. The SPH formulation
presented in [52] is based on a bi-viscosity rheological model [32] considered within the
artificial viscosity term presented by Monaghan [245]. Quantitatively, a good agreement
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between our SPH model, Capone SPH model and experiment results is observed. At time
t = 0.4[s] the results given by the SPH model of Capone et al. is closer to the experiment
than our current approach. However, for the time t = 0.8[s] our multiphase SPH model gives
more accurate results compared with the experimental results.

Sub-aerial land-slide-generated water wave

The purpose of this example is to investigate the efficiency of our multiphase SPH model
to simulate a Sub-aerial land-slide-generated water wave. The land mass is modeled using
a RBPMC-αµ rheology where purely frictional/cohesionless (c = 0) model is considered
(glass beads). Here, the experimental benchmark performed by Viroulet et al [342, 341] was
reproduced numerically (see figure 8.15).It consists on the study of the interactions between
the granular mass collapse and the water that generate impulse waves. A tank of 2.2[m] long,
0.4[m] high, and 0.20[m] wide includes an inclined plan at the left side with slop of 45deg
to allow slipping of the land mass (granular material). The tank is full initially with water
of depth of 0.15[m]. The land mass is blocked initially on the inclined plan and a vertical
movable gate where the bottom of the land mass is located at the level of the free surface
water (see figure 8.15). When the vertical gate is opened, the land impacts the surface water
at a low velocity, generating impulse waves propagating along the tank. The evolution of the
generated impulse waves and the granular flow shape are recorded experimentally with a high
speed camera. The amplitudes and the propagation of the generated wave are measured with
four resistive gauges located at four different distances 0.45,0.75,1.05, and 1.35[m] from
the vertical movable gate. The granular material used for the land mass is composed of glass
beads of density ρs = 2500[kg/m3] , porosity of n = 40%, frictional angle of φ = 23.3deg
and the mass of 3[kg] (it gives l = 0.2[m]).

When the grain of the granular material slides at low velocity into the water, it mix with
the water. Then, the bulk density is defined as a mix ρb = (1−n)ρs +nρw = 1900[kg/m3].
The density and dynamic viscosity of the water are taken as ρw = 1000[kg/m3] and µw =

0.001[Pa.s], respectively. The Plastic viscosity of the land is taken to be equal to the water
dynamic viscosity µ = µw = 0.001[Pa.s], and the control parameter is set to αµ = 3×107.

The simulation is performed with a resolution of 32306 particles (31225 particles for
the water and 1081 particles for the land mass), with initial spacing of δx = 0.003[m]. The
reference speed of sound for water is taken c0 = 17[m/s] (it gives a reference pressure
pressure of 2.89×105[Pa]). At tank walls and the inclined plan a no-slip boundary condition
is used for the computation.

In figure 8.16 , the elevation of the water free surface captured numerically and experi-
mentally at four different position of wave gauges (G1, G2, G3 and G4) is plotted. A good
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Figure 8.15 – Sub-aerial land-slide-generated water wave: Schematic view of the experimen-
tal setup and gerometrical details.

agreement between the numerical simulation and experimental results during a period of 2[s]
was observed. However, an amplitude shift between the numerical and experimental results
is also observed. This can be a consequence of the use of the bulk density of the land mass
that is fully mixed with water. However, very satisfactory results are observed concerning
the water wave frequencies.

Quantitatively, a satisfactory agreement is observed between the experimental and numer-
ical sliding granular mass into the water at three different time step t = {0.21,0.43,0.52}[s]
as is shown in figure 8.17. The water velocity field for the simulation and experimental
results using the particle image velocimetry technique (PIV) is also shown in the same figure.
At time t = 0.21[s], the impact of the land mass on the water and beginning of the generated
first wave are shown, Here, the elevated part of the water has a greater velocity and also we
observe that the water region closer to the landslide head has high velocity. for the times
t = 0.43[s] and t = 0.52[s], the slide starts to roll up creating a turbulent water region. Also
we observe the onset of the second generated wave accompanied by the propagation of the
first wave. The velocity is always greater at the more elevated part of the water the and
at vicinity of the land front head. The roll up of the land head is more important in the
experimental than in the numerical results. This issue is may be due to the low particle
resolution that is used to simulate the granular mass. However, very satisfactory results are
observed for the shape of the free surface water.
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Figure 8.16 – Sub-aerial land-slide-generated water wave: Elevation of the free surface at
each wave gauges G1,G2, G3 and G4. The black solid line denotes the numerical results,
while the dashed lines present the experimental results [342].

8.5 Dam-break flow over an erodible bed

This example aims to demonstrate the ability of our proposed model for the simulation of
the erosion phenomena. Here, the proposed SPH model including the RBPMC-αµ rheology
is coupled with a suspended sediment layer modeled as it is explained in section 5.2.1.

Spinewine’s [312] experiment of a dam-break induced sheet-flow is selected for this test.
A tank is divided in two parts by a movable gate. A sediment layer of fully saturated sand
material cover the lower part of the tank. There is a difference in the height of the sediment
bed at both sides of the gate of 10[cm]. At one side of the gate, a water layer is contained
over the sediment layer. When the movable gate is uplifted at very high speed, the water
flows downstream and erodes the sand bed creating the a change in topography. Figure 8.18
gives more details about the geometry and the setup of the problem.

The properties of the bed material (saturated sand) are summarized in Table 8.1.

For the simulations, the density and viscosity of the water were taken equal to ρw =

1000[kg/m3] and µw = 0.001[Pa.s]. The plastic viscosity of the saturated sand is chosen
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t = 0.21[s]

t = 0.43[s]

t = 0.52[s]

Figure 8.17 – Sub-aerial land-slide-generated water wave:Comparison between the numerical
(left) and experimental (right) results at the times t = {0.21,0.43,0.52}[s].

Material Specific grain density [kg/m3] Granular volumetric fraction [−] Bulk density [kg/m3] Friction angle [deg]
Sand 2680 0.53 1890.4 30

Table 8.1 – Properties of the sand material of the dam-break induced sheet-flow .

equal to that of the water µ = 0.001[Pa.s] and the control parameter of the rheological model
is taken as αµ = 106.

The particles resolution used for this problem is 66000 particles (36000 sediment particles
and 30000 water particles), with an initial inter-particular distance of 0.005[m]. The reference
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speed of sound of water is set to c0 = 30[m/s] which leads to a reference pressure of
Pr = 9×105[Pa].
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Figure 8.18 – Dam-break flow over an erodible bed: Geometrical details and setup of the
problem.

Figures 8.19 and 8.20 show the sequence of the simulated dambreak, and the comparison
with the experimental snapshots [312] at six different times t = {0.25,0.5,0.75,1,1.25,1.5}[s]
.

The water flow induces an erosion on the sediment bed. At the early stages, after removing
the movable gate, it is observed that the water wave is propagated on the downstream bed,
pikes up the particles material of bed and transports them. At late stages, the eroded particles
will be gradually deposited due to the decrease in water velocity, and thus the shear stress.

Comparing the free surface water, surface of eroded bed and the position of the front water
wave at three different times t = {0.25,0.75,1.25}[s] (see figure 8.21), a good agreement
between the numerical and experimental results is observed. However it is observed a small
discrepancy between the numerical and experimental results, that is maybe due to the effects
of the moving gate in the experiments that is absent in the numerical setup or to three
dimensional effects.

8.6 Multi-physics numerical benchmark : subaerial land-
slide, flooding and scouring erosion

In this section , a new demonstrative numerical benchmark includes three coupled natural
phenomena (Subaerial landslide, flooding and scouring erosion) is proposed in order to show
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t = 0.25[s]

t = 0.5[s]

t = 0.75[s]

Figure 8.19 – Dam-break flow over an erodible bed: Flow sequences at times t =
{0.25,0.5,0.75}[s]. The experimental results are on the left side (grey-scale image), the
magnitude of the velocity field is plotted on the right side and a plot with the position of the
different phases are centered below the previous plots for each time. The material phases are
colored in blue for water particles, in orange for the rigid bed particles and in green for the
suspended particles of the bed.

the capabilities and applicability of our proposed multiphase SPH model to simulate multi-
physics problems resulting from the water-soil interactions. Figure 8.22 shows a schematic
of three coupled phenomena. A rectangular mass of granular material (GM1) that has a
length L = 0.5[m] and hight H = 0.2[m] slides on slop of 45deg. This mass was initially
accelerated with a velocity of v0 = (

√
2,−

√
2)[m/s]. When the land impacts the water

surface, a water wave will be generated and propagates until run-up and over-topping the
dyke and subsequently floods on the other side of the dyke (on the bed of granular material
GM2). The impact of the water jet induced from the flooding wave involves a scouring behind
the dyke and erodes the bed granular material (GM2). We investigate the time evolution of
the height of the over-topping above the dyke (at gauge wave G2) as well as the wave height
in the left tank at wave gauge G1 and the maximum depth of scouring erosion behind the dyke
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t = 1[s]

t = 1.25[s]

t = 1.5[s]

Figure 8.20 – Dam-break flow over an erodible bed: Flow sequences at times t =
{1,1.25,1.5}[s]. The experimental results are on the left side (grey-scale image), the mag-
nitude of the velocity field is plotted on the right side and a plot with the position of the
different phases are centered below the previous plots for each time. The material phases are
colored in blue for water particles, in orange for the rigid bed particles and in green for the
suspended particles of the bed.

( at the right tank). The density and viscosity of the water is taken as ρw = 1000[kg/m3] and
µw = 0.001[Pa.s], respectively. The bulk proprieties of granular materials GM1 and GM2
are taken as ρGM1 = 1600[kg/m3], φGM1 = 43deg and ρGM2 = 1200[kg/m3], φGM2 = 30deg,
respectively. While, the plastic viscosity for the both granular materials GM1 and GM2 is
taken equal to the water dynamic viscosity µ = µw = 0.001[Pa.s] . The control parameter
αµ of our rheological model is taken equal to αµ = 6×106 for all granular materials.

This kind of numerical study can be very interesting for the design of the coastal protection
structures (dykes, seawalls, Bulkheads, Breakwaters ...) and their foundations, because their
damages are mainly caused by local scouring on the area behind them due to tsunami overflow
[313, 321].
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Figure 8.21 – Dam-break flow over an erodible bed: Water free surface and sediment surface
positions results using the proposed numerical model and compared with the experiments of
[312]

The numerical simulation is performed using an initial inter-particular spacing of δx =
0.01[m] that leads to a total of 9465 particles, with 5020 particles devoted for the water and
1190 , 3255 particles used for granular materials GM1 and GM2, respectively. The water
speed of sound is set equal c0 = 30[m/s] (it gives a reference pressure of Pr = 9×105[Pa] ).
A no-slip boundary condition is applied on all horizontal surfaces (in the left and right tanks
of figure 8.22). A free-slip condition is applied on the rest of surfaces (the slop, dyke and
vertical walls). The total simulation time is of 7[s].

Snapshots of the results of numerical simulation for this benchmark are presented in the
figures 8.23, 8.24, 8.25 and 8.26 at different times t = {0.3,0.56,1, 1.3,1.7,2, 2.5,3,5}[s].

Figures 8.23 and 8.24 present the position of different material phases during all the
period of the simulation. Water particles are colored in dark blue, whereas granular materials
particles GM1 and GM2 are colored in cyan and brown, respectively. Yellow particles
represent the particles of the granular material GM2 mixed with water (suspended particles).
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Figure 8.22 – Multi-physics numerical benchmark: Schematic view and geometrical details.

At t = 0.3[s], the impact of granular material GM1 on the surface water causes the formation
of the first generated water wave. It reaches its maximum height at t = 0.56[s]. At time
t = 1[s] the granular material GM1 stabilizes at rigid form (it reaches an effective viscosity
of µe f f = µmax = 6000[Pa.s]) and at the same time the maximum height of the over-topping
water is reached above the dyke structure. From this point the processes of dyke scour,
erosion of the granular material GM2, and water run-up over the slope occurs. In figure 8.23
this is shown at t = 1.3[s] and t = 1.7[s]. At t = 2[s], a second wave is originated when the
water flows downwards the slope. At the same time the granular material GM2 reaches its
maximum securing depth. At t = 2.5[s] the soil particles starts to sediment and to cover the
granular material (GM2). At t = 3[s] the second wave flow over-tops above the dyke. At
t = 5[s], the granular material GM2 reaches its rigid form (the maximum viscosity is reached
everywhere in GM2 except in the particles suspended in water) and the equilibrium is finally
recovered.

Figures 8.25 and 8.26 show the evolution of the particle velocity, and the change in the
behavior of the granular materials (switching from the rigid phase to the deformable phase
and viceversa). Water particles are colored with the magnitude of the velocity, whereas the
granular materials GM1 and GM2 are colored with the effective viscosity field (the Maximum
viscosity µmax = αµ µ = 60000[Pa.s] represents the rigid phase). The direction of the water
particles is represented by arrows.

Figure 8.27 shows the time evolution of the relative height of the generated waves. This
height is measured at the gauge G1 (located at x = 0.9[m] of the origin of the reference
system axis (see figure 8.22). The relative water height due to the over-toping flow above
the dyke is also measured at the wave gauge G2 (at x = 1.65[m] of the origin) during all the
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simulation period. In order to measure the erosion of the granular material GM2, figure 8.28
shows the time evolution of the maximum depth of the material bed GM2.

8.7 Conclusion

The robustness, accuracy and applicability of our multiphase model has been demon-
strated. The validation of the efficiency of the developed multiphase diffusive term was
performed using the benchmark of two stratified hydrostatics Newtonian fluid layers. The
applicability on simulation of granular materials dynamics has been demonstrated via the
benchmarks of Bingham fluid dambreak and spreading of granular material pile on horizontal
surface. Whereas for the simulation of the water-soil interactions problems, the submarine
and subaerial landslides benchmarks had been performed. A suspended water sediment model
was nested in our multiphase model to capture well the erosion phenomena. A simulation of
a dambreak flows over erodible sediment bed benchmark was used for the demonstration of
the efficiency of the added suspended water sediment model. Finally, the capabilities of the
newly proposed multiphase SPH model have been shown via a demonstrative benchmark
of multi-physics phenomena (Subaerial landslide generated impulsive wave, flooding and
scouring erosion) related to the soil-water interaction.
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t = 0.3[s]

t = 0.56[s]

t = 1[s]

t = 1.3[s]

t = 1.7[s]

Figure 8.23 – Multi-physics numerical benchmark: simulation sequence. The different
material phases are represented with different colors: Water is dark blue, the granular
material GM1 is cyan, the granular material GM2 is brown and yellow is the suspended layer.
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t = 2[s]

t = 2.5[s]

t = 3[s]

t = 5[s]

Figure 8.24 – Multi-physics numerical benchmark: simulation sequence. The different
material phases are represented with different colors: Water is dark blue, the granular
material GM1 is cyan, the granular material GM2 is brown and yellow is the suspended layer.
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t = 0.3[s]

t = 0.56[s]

t = 1[s]

t = 1.3[s]

t = 1.7[s]

Figure 8.25 – Multi-physics numerical benchmark: Simulation sequences. The particles
of soil material (GM1) and (GM2) are colored with the effective viscosity values. Water
particles are colored with the magnitude of the velocity and the flow direction is represented
by black arrows.
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t = 2[s]

t = 2.5[s]

t = 3[s]

t = 5[s]

Figure 8.26 – Multi-physics numerical benchmark: Simulation sequences. The particles
of soil material (GM1) and (GM2) are colored with the effective viscosity values. Water
particles are colored with the magnitude of the velocity and the flow direction is represented
by black arrows.
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Figure 8.27 – Multi-physics numerical benchmark: Evaluation of the impulsive wave height
for the left reservoir at x = 0.9[m] (G1 gauge) and height above the dyke (G2 gauge) at
x = 1.65[m].
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Figure 8.28 – Multi-physics numerical benchmark: Evaluation of maximum scouring depth
on the granular material bed due to the over-topping flow.





Chapter 9

Conclusion

Un solveur SPH (Smoothed Particle Hydrodynamics) faiblement compressible (WCSPH)
a été développé dans le cadre de cette thèse pour traiter les problèmes d’écoulement des
fluides multiphasiques incluant différentes complexités d’écoulement (confiné, à surface
libre, grande déformation, tension superficielle) et différents matériaux (fluides et sols). Une
parallélisation sur CPUs en utilisation le paradigme MPI (Message Passing Interface) avec
une technique de décomposition de domaine a été présentée dans l’annexe A. Des anciennes
et récentes avancées ont été discutées pour les algorithmes d’amélioration et des schémas
de discrétisation des enquêtions physiques régissant le mouvement des particules dans le
contexte de la méthode SPH. Un modèle SPH pour les écoulements multiphasiques a été pro-
posé. Ce modèle comprend une formulation de tension de surface qui satisfait les propriétés
tangentielles des contraintes de tension de surface et améliore la stabilité de la méthode
numérique. La stabilité numérique est améliorée grâce à l’utilisation d’un opérateur de
divergence consistant de premier ordre et une technique de d’amortissement (Damping) qui
réduit les parasites numériques causées par la transition des conditions initiales. Des modifi-
cations sont apportées à la méthode des conditions aux limites généralisés liées aux parois
solides pour étendre son application aux problèmes d’écoulement de fluide multiphasique. Le
modèle SPH d’interactions eau-sol a été développé en utilisant une approche multiphasique.
Ce modèle peut être utilisé pour simuler des sols (purement frictionnels et cohésifs), de l’eau
(ou tout autres fluides Newtoniens) et leurs problèmes d’interaction. Ceci est réalisé grâce
au modèle rhéologique RBPMC-αµ sensible à la pression. Un terme diffusif multiphasique
nommé ici Dδ−MSPH a également été développé pour amortir les oscillations de pression
dues à l’utilisation d’une équation d’état. La précision, la stabilité et l’applicabilité du
solveur SPH pour traiter les problèmes d’écoulement gravitationnel multiphasique, écoule-
ment multiphasique avec présence de tension de surface et d’interaction eau-sol ont été
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démontrées à travers une série de benchmarks. Ces benchmarks comprennent des cas-tests
analytiques, numériques et expérimentaux.
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9.1 Summary of Thesis Achievements

A weakly compressible smoothed particle hydrodynamics (WCSPH) solver has been
developed in this thesis to deal with multiphase fluid flow problems including different
complexities of flow (confined, free surface, large deformation, surface tension ) and na-
tures of materials (fluids and soils). This solver has been parallelized on CPUs (Central
processing unit) using MPI (Message Passing Interface) paradigm with a domain decompo-
sition technique as is shown in the appendix A. Past and recent advances in SPH method
for improvement algorithms and different discretization schemes of governing equations
are discussed. A consistent smoothed particle hydrodynamics model for multiphase flows
has been proposed. This model includes a surface tension formulation which ensures the
tangential properties of the tensor surface stress and improves the stability of the numerical
method. The numerical stability is improved through the use of a divergence operator with
first-order consistency and also with a damping technique that avoids the numerical issues
due to the transients on initial conditions. Modifications are brought on the generalized wall
boundary conditions to extends its application to multiphase fluid flow problems. Water-soil
interactions SPH model has been developed using a multiphase approach. This model can be
used to simulate soils ( purely frictional and cohesional), water (or any other Newtonian fluid)
and their interaction problems. This is done thanks to the RBPMC-αµ pressure-sensitive
rheology model. A multiphase diffusive term so-called herein Dδ−MSPH has been also devel-
oped to damp the pressure oscillations due to the use of equation of state in order to obtain
more accurate results with using of such as pressure-sensitive model. The accuracy, stability
and applicability of the proposed WCSPH solver to deal with gravitational multiphase fluid ,
interfacial multiphase fluid and water-soil interaction problems have been demonstrated via a
series of benchmarks. Theses benchmarks include analytical, numerical and experimental
test cases.

9.2 Applications

In this thesis, the applications cases have been classed under three category of tests:

The first category is devoted to the simulation of multiphase fluid flow evolved under
gravity forces. The examples addressed here are the evolution of the two-phase stratified fluid
layers and the Rayleigh-Taylor instability (RTI). The first example is not only performed to
examine the stabilization effect of the damping technique but also to validate the proposed
modifications on generalized wall boundary conditions when the two fluid phases meet the
solid boundaries. The second example was carried out to compare the results of the presented
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SPH multiphase model with the ones using Level-Set [128] and other SPH [238] models,
and also with the analytical approach presented in [187]. Furthermore, the example of two
rising bubbles through a water column is performed using a higher particle resolution.

The second category of test concerns the simulation of multiphase fluid flow with a
surface tension formulation for the case of two and three phases flows with the presence
of triple junction points. The examples addressed in this category are the square droplet
deformation [2] ,the spreading lens between two stratified fluid layers [39] [193], and the
capillary-viscous wave test [254, 151, 150, 149, 2]. Thereafter, high density and viscosity
ratio effects have been introduced. The rising of an air bubble through a water column and
through two stratified fluid layers are simulated.

The third category is devoted to validating multiphase WCSPH water-soil interaction
model, where several benchmarks have been used. The validation of the efficiency of
the developed multiphase diffusive term Dδ−MSPH was performed using the two stratified
hydrostatics Newtonian fluid layers benchmark. The applicability on simulation of single
phase of granular materials dynamics is demonstrated via the benchmarks of Bingham fluid
dambreak and spreading of granular material pile on horizontal surface. For the simulation of
the water-soil interactions problems, the submarine and subaerial landslides benchmarks are
devoted. A suspended water sediment model was nested in our multiphase model to capture
well the erosion phenomena. A simulation of a dambreak flows over erodible sediment bed
benchmark was used for the demonstration of the efficiency of the added suspended water
sediment model. Finally, a demonstrative benchmark of multi-physics phenomena (Subaerial
landslide generated impulsive wave, flooding and scouring erosion) related to the soil-water
interaction was proposed to show the capabilities of the newly proposed multiphase SPH
model.

9.3 Future Work

As perspectives, several works are envisaged to make our SPH code more consistent and
industrially exploitable such as:

— Extension of the following 2D code into 3D can achieve the simulations more complex
and realistic.

— Parallelization on GPUs (Graphics processing unit) can be also shown more advan-
tages in terms of computational cost and applications.

— Including the modeling of other physical natures such as a rigid bodies interact
with water, elastic and elasto-plastic models to the code can for the simulation of
multi-physics phenomena.
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— A specific treatment of the contact line can be added to the modified wall boundary
method to simulate the cases when the tension surface is nested at the interface
between the fluid phases that meets the wall.

— Using of incompressible and explicit incompressible smothered particle hydrodynam-
ics (ISPH and EISPH) schemes in the developed code can be a good purpose for
further investigation and comparison.
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Appendix A

Parallelization technique on CPU of our
SPH code

The parallelism of the SPH code on CPU is performed using the Domain decomposition
method. This method is based on the principle of division of the physical computational
domain Ω (in our case the fluid domain) into Nd subdomains Ωi which are initially load-

balanced Ω1 ≈ Ω2 ≈ ...≈ ΩNd and
Nd⋃
i=1

Ωi = Ω.

For a demonstration, we assume that the global domain is divided into 4 sub-domains
Ω = Ω1 ∪Ω2 ∪Ω3 ∪Ω4 .For each subdomain Ωi a process of rank Proci is designated to
handle its task of calculation. The physical domain is considered as a continuous medium,
meaning that the subdomains are dependent in term of physical computing properties. For
this reason, the MPI (Message Passing Interface) paradigm is used to exchange data between
subdomains. The Lagrangian movement of the fluid flow imposes the use of specific method.
This method must ensure a balanced partitioning of computation loads on each process. In
this work, an average position interface detection method was used. This method is based
on the calculation of the maximum particle position xmaxi that belongs to the x-axis of
the subdomain Ωi and the minimum particle position xmaxi+1 that belongs to the x-axis of
the subdomain Ωi+1 for each iteration. The new position of the interface is determined in
the middle of these positions (xmaxi,xmaxi+1) that can express as Ini =

xmaxi+xmaxi+1
2 A new

distribution of particles on the subdomains Ωi and Ωi+1 must be done in order that all the
particles which have an abscissa coordinate less than or equal to the interface position will be
transferred to subdomain Ωi , and the particles which have abscissa coordinate greater than
the same interface will be transferred to the ubdomain Ωi+1. The communication between
the processes using MPI paradigm is done in a way that the process of even rank send the
informations held in buffers zones to the odd rank process and they receive them from the odd
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processors. While the odd processes receive the information from the process of even rank
after they send to the process of odd rank. This strategy ensures sufficient buffer memory
to guarantee the continuity of communication as well as optimizing the performance of
parallelism.

Figure A.1 – Parallelization technique of SPH code on CPU using MPI library.

The parallelization technique was tested on the famous dam break benchmark [243, 72,
216] using different particle resolutions.

The following figure A.3 shows the time-evolution of work loads on four processors,
Work loads are computed using the number of particles in each processors divided by the total
number of particles. Along the time a very good load balancing was achieved through the
proposed parallelism technique. An imbalance of order less than 1% was observed from the
moment t

√
g
H = 6. This small imbalance is due to the sudden increase of the fluid velocity

caused by the impact of the wave shown at the moment t
√

g
H = 6.

The computing Cloud of the Institute of Research in Constructability of ESTP school
was used to perform calculations. The machine is equipped with 32 processors type Intel
Xeon Processor E7-4850 frequency 2 GHz and 24 MB cache memory, and has a RAM of 96
GB. In figure A.4, a Sub-linear evolution of the speed-up relative to the number of processors
was observed at 8192 particles. This sub-linearity is mainly due to the communication
time between the processors that exceeds the computational time on each one. from 25,088
particles the speed-up evolution with processors number becomes super-linear due to the
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√
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Figure A.2 – The time-evolution flows of particles loads on four processors for 20,000
particles.

ability of caches memories to store the data of the problem, and the speed of their access to
the processor.
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Figure A.3 – The time evolution of load percentage on four processors for 20,000 particles.

Figure A.4 – Speed-Up of parallel SPH code



Appendix B

Demonstration of the equivalence
between CSS and CSF formulations

In this Appendix we show the relation between CSS and CSF formulations. We first
recall the CSF formulation. Assuming that the surface tension coefficient σ (1−2) is constant
between two fluid phases (1 and 2), the expression of the force can be expressed as

FST(1−2) = σ
(1−2)

κ n δΣ (B.1)

In equation (B.1), κ , n and δΣ denote the curvature, the unit normal vector to the interface
(see figure 4.1) and the delta function, respectively. In the context of the SPH method,
equation (B.1) reads as

F
ST(1−2)
i =−σ

(1−2)
∇ ·ni ∇C (B.2)

where C is the color function that has a unit jump across the interface. It’s equal to 1 in one
particle fluid phase and 0 in its neighboring particle of other fluid phase.

Now, the Continuum Surface Stress (CSS) formulation reads

FST = ∇.Π (B.3)

Replacing the stress tensor Π by its formulation in the equation (B.3) we get:

FST = ∇.


σ ∥∇C∥I︸ ︷︷ ︸

(I)

−σ

(II)︷ ︸︸ ︷
∇C
∥∇C∥ ⊗∇C


 (B.4)
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The divergence of the first part (I) of the equation (B.4) can be modified as

∇.(∥∇C∥I) = ∇(∥∇C∥) =
(

∇C
∥∇C∥ .∇

)
∇C. (B.5)

Whereas the divergence of the second part (II) can be written as

∇.

(
∇C

∥∇C∥ ⊗∇C
)
= ∇.

(
∇C
∥∇C∥

)
∇C+

(
∇C

∥∇C∥ .∇
)

∇C. (B.6)

By subtracting the equation (B.6) from equation (B.5), we obtain the Continuum Stress
Surface Force formulation (CSF) (B.7):

FST =−σ∇.

(
∇C

∥∇C∥

)
∇C = σκ∇C. (B.7)

Where κ describes the interface curvature which is expressed as κ =−∇.n =−∇.
(

∇C
∥∇C∥

)
,

with .n is the unit normal vector to the interface.



Appendix C

The internal forces associated to the
surface stress tensor are tangent to the
interface ?

In this appendix, we show that the stress surface tension is tangential to the fluid interface.
We can write the surface tension as a volumetric force as follows:

FST = ∇ ·Π (C.1)

Where Π =
(

σ∥∇C∥I −σ
∇C

∥∇C∥ ⊗∇C
)

is the stress surface tensor.

This formulation allows the interpretation of the tension force as a internal body forces of the
continuum medium (as viscous tensor). So, we will investigate if these efforts are carried by
the tangent direction to the interface. For this reason we will applied the stress tensor Π on
an arbitrary vector f see figure C.1 :

Π · f = σ∥∇C∥( f − ( f .n)n) (C.2)

Π · f = σ∥∇C∥ ΞT · f (C.3)

Where ΞT is the projection operator on the tangent plane to the interface. Equation (C.3)
indicates that the internal forces associated to the surface stress tensor are tangent to the
interface.
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interface 

t
n

f Π
· f

Figure C.1 – Application of stress surface tensor Π on an arbitrary vector f . Where n and t
are the normal and tangential vectors on the interface, respectively.



Appendix D

Pseudo-code of SPH interfacial
multiphase model.

In this appendix, we summarize the proposed SPH model via a pseudo-code.
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/* Initialization */
The physical proprieties of the heavier phase must be assigned to all fluid phases;
The initial particles velocity and pressure are set to zero;
Set c0, pb,δ t, TD,Tend ;
while δ t ∗ it < Tend do

Search for each particle i ∈ Ω = Ω f ∪Ωs its particles neighbor j. /* linked list method is employed in this
work. Ω f and Ωs denote the fluid and solid particles, respectively. */

/* Damping process */
if δ t ∗ it < TD then

Compute ξD using Eq.4.35;
end
if it = ⌈ TD

δ t ⌉ then
Assign the real physical proprieties to each fluid phase;

end
for i ∈ Ωs do

Compute pw and vw using Eqs.5.50 and 5.48, respectively;
end
/* Prediction Step */
for i ∈ Ω f do

Compute ∇pi,Fi
Vis and Fi

ST using Eqs.5.51, 4.26 and 4.20, respectively;
ṽn+1

i = vi
n +δ t

(
1
ρi
(−∇pi +Fi

Vis +Fi
ST )n +ξDg

)
;

r̃n+1
i = ri

n +δ t vn
i ;

end
for i ∈ Ω do

/* In this loop, the predicted particle velocities and positions are used for the
calculation of Πi,pw and vw. */

if i ∈ Ω f and δ t ∗ it ≥ TD then
Compute Πi using Eq.4.16;

end
if i ∈ Ωs then

Compute pw, vw using Eqs 5.50 and 5.48, respectively;
end

end
/* Correction Step */
for i ∈ Ω f do

/* In this loop, the predicted particle velocities and positions are used for the
calculation of ∇pi,Fi

Vis and Fi
ST. */

Compute ∇pi,Fi
Vis and Fi

ST using Eqs.5.51, 4.26 and 4.20, respectively;
vi

n+1 = 1
2

{
vi

n + ṽn+1
i
}
+ δ t

2

(
1
ρi
(−∇pi +Fi

Vis +Fi
ST )n +ξDg

)
;

ri
n+1 = ri

n +δ t vn+1
i ;

end
for i ∈ Ω f do

/* In this loop, the predicted particle positions are used for the calculation of ρi and
thus pi. */

Compute ρi and pi using Eqs.4.8 and 5.2, respectively;
if δ t ∗ it ≥ TD then

Compute Πi using Eq.4.16;
end

end
it = it +1;
n = n+1;

end

Algorithm 1: Pseudo-code of SPH interfacial model.
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