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R�esum�e

La m�ethode Smoothed Particle Hydrodynamics (SPH) est une m�ethode la-
grangienne, sans maillage d�evelopp�ee initialement pour des simulations de
ph�enom�enes astrophysiques. Depuis, elle a connu de nombreuses applications,
notamment pour la simulation des �ecoulements des 
uides. Contrairement
aux m�ethodes utilisant un maillage, la m�ethode SPH peut g�erer de mani�ere
naturelle et sans traitement sp�eci�que les simulations des �ecoulements �a sur-
face libre et multiphasiques avec interface subissant de grandes d�eformations.
Dans cette th�ese, une mod�elisation SPH des �ecoulements des 
uides multi-
phasiques a �et�e r�ealis�ee en tenant compte de di��erentes complexit�es (�ecoulements
�a surface libre et multiphasiques interfacials) et de natures d'ecoulement (si-
mulation des 
uides, des sols et les deux en interactions). Un mod�ele SPH fai-
blement compressible (WCSPH) a �et�e propos�e pour simuler les �ecoulements
des 
uides multiphasiques avec interface comprenant plus de deux phases
de 
uide. Ce mod�ele inclut le d�eveloppement d'une nouvelle formulation de
force de tension de surface en utilisant un op�erateur SPH consistant de pre-
mier ordre. Une modi�cation de condition g�en�eralis�ee aux parois solides a
�et�e apport�ee pour qu'elle soit appliqu�ee sur les �ecoulements des 
uides mul-
tiphasiques avec des rapports de densit�e et de viscosit�e �elev�es. Une nouvelle
loi de comportement d�ependant de la pression nomm�ee RBMC -� � (Regula-
rized Bingham Mohr Coulomb o�u � � est un param�etre libre) a �egalement �et�e
d�evelopp�ee. Cette loi peut simuler les 
uides (Newtonien, Binghamien), les
sols (coh�esif, frictionnel) et les deux en interactions. La loi pr�ec�edente �etant
sensible �a la pression, une extension du terme di�usif� -SPH a �et�e faite
pour le cas des �ecoulements des 
uides multiphasiques a�n de r�eduire les
oscillations de pression �a haute fr�equence qui sont dues �a l'utilisation d'une
�equation d'�etat. La validation et l'application des mod�eles d�evelopp�es dans
cette th�ese sont montr�ees �a travers plusieurs cas tests de di�cult�e croissante.





Abstract

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian gridless method developed

initially to simulate astrophysical phenomena, and since it has been known for a large number

of applications, especially for �uid �ow simulations. Contrary to the grid-based method, the

SPH method can handle free surface and interfacial �uid �ow simulation including large

deformations naturally and without the need for any speci�c treatment. In this thesis a

SPH modeling of multiphase �uid �ows has been achieved with consideration of different

complexities ( free surface and interfacial �uid �ows) and natures (simulation of �uids,

soil and both in interactions). A consistent weakly compressible SPH model (WCSPH)

has been proposed to simulate interfacial multiphase �uid �ows with more than two �uid

phases. This model includes a new expression of the surface tension force using a �rst order

consistency SPH operator. A modi�cation to the well known generalized wall boundary

condition have been brought in order to be applied to multiphase �uid �ow with large density

and viscosity ratios. A new pressure-based constitutive law named RBMC-am (Regularized

Bingham Mohr Coulomb witham is free parameter) has been developed in this thesis. This

model can simulate �uids (Newtonian, Binghamton), soils (cohesive, frictional) and both

in interactions. Because the previous model is pressure sensitive, an extension ofd -SPH

diffusive term has been proposed for multiphase �uid �ows to overcome the hight frequency

pressure oscillations due to the determination of pressure from an equation of state. The

validation and application of the developed models have been shown in this thesis through

several test-cases of increasing dif�culty.
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Chapter 1

Introduction

Le présent travail porte sur la modélisation et la simulation des écoulements de �uides

multiphasiques de différentes complexités et natures. Les complexités comprennent la

simulation des écoulements des �uides multiphasiques con�nés, à surface libre, à grande

déformation, avec présence d'interface et/ou avec des rapports de densité et de viscosité

élevés, tandis que pour les natures, différentes lois de comportement (Newtonien et / ou

non Newtonien) sont utilisées pour dé�nir le comportement des �uides. En utilisant le code

développé dans le cadre de cette thèse, une gamme d'applications peut être simulée a�n de

servir les domaines de recherche et de l'ingénierie. Parmi ces applications, nous pouvons

citer par exemple:

� En ingénierie offshore, notamment pour les dispositifs de séparation pétrole-eau, la

compréhension de la dynamique des bulles de pétrole (�uide multiphasique avec

présence d'interface) à travers la simulation numérique a une grande importance

pour l'exploitation et le traitement des ressources pétrolières [109, 129, 358].

� La simulation des écoulements granulaires (un �uide non Newtonien qui s'écoule

sous un critère spéci�que) peut être réalisé en utilisant le code développé. La

compréhension des écoulements granulaires peut avoir des directes applications

dans l'industrie telles que la simulation de poudres et de granules, ainsi que pour

les problèmes géophysiques, tels que la simulation de glissements de terrain [113],

l'avalanche de roches [354] et de la neige [285]. La simulation de ces risques naturels

peut aider à comprendre comment nous devrions procéder dans l'avenir pour atténuer

les pertes humaines et matérielles. La catastrophe de Shenzhen est un bon exemple

d'un aléa naturel causé par un glissement de terrain. Cette catastrophe naturelle a

eu lieu à Shenzhen, Guangdong, dans le sud-est de la Chine, le 20 décembre 2015,

77personnes ont été tués et33bâtiments ont été enterrés ou endommagés [113]. La

�gure 1.1 décrit les séquences avant et après cet aléa.
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� Les problèmes d'interaction eau-sol (écoulement de �uide multiphase sous différentes

natures) sont plus compliqués par rapport aux exemples précédents, car ils in-

cluent deux natures physiques différentes (�uide et structure). La compréhension

du phénomène d'interaction eau-sol joue un rôle important dans l'évaluation et

l'atténuation de nombreux problèmes environnementaux et géotechniques, tels que

l'érosion du sol, l'érosion autour des structures offshore, les vagues de tsunamis

générées par les glissements de terrain, etc. L'exemple du tsunami Lituya Bay

(Gilbert Inlet-Alaska en1958) causé par un glissement de terrain subaérien est l'un

des tsunamis les plus importants dans les temps modernes, et la modélisation de

l'interaction entre l'eau et le sol peut être très utile pour comprendre son mécanisme.

La �gure 1.2 présente le scénario du tsunami de Lituya Bay et montre les différentes

dimensions de Gilbert Inlet et de l'espace terrestre détruit.
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1.1 Motivation and Objectives

The present work deals with the modeling and the simulation of multiphase �uid �ows

under various complexities and natures. Complexities include the simulation of con�ned,

free surface, large deformation and/or interfacial multiphase �uid �ows with high density

and viscosity ratios, whereas for the natures, different constitutive laws ( Newtonian and/or

Non-Newtonian ) are used to de�ne the �uid or the �uid-like mass behavior. Using the

developed code in the framework of this thesis, a range of applications can be simulated in

order to serve range of research and engineering �elds. Among these applications we can

cite for instance:

� In offshore engineering, especially for oil-water separation devices, the understand-

ing of oil bubbles dynamics (interfacial multiphase �uid) through the numerical

simulation has a great importance for exploitation and processing of oil resources

[109, 129, 358].

� The simulation of granular �ows (a non-Newtonian �uid that yields under a speci�c

criterion ) can be done using the developed code. The understanding of the granular

�ows can have an obvious applications in industry such as for the simulation of

powders and granules, and in geophysical problems, such as for the simulation of

landslides [113], rock avalanche [354] and snow avalanche [285]. The simulation of

these natural hazards can help to understand how we should proceed in the future to

mitigate losses in human life and material. The Shenzhen-landslide is a good example

of a natural disaster caused by a landslide. This natural disaster occurred in Shenzhen,

Guangdong,Southeast China in December 20, 2015, where77 people were killed

and33buildings were buried or damaged [113]. Figure 1.1 illustrates the sequences

before and after this disaster.

Figure 1.1 – Shenzhen, Guangdong,Southeast China before (December 18, 2015) and after
(December 21, 2015) the landslide (taken from [113]).

� The Water-Soil interaction problems (multiphase �uid �ows under different natures)

which are more complicated than previous examples since it includes two different
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physics natures (Fluid and structure). The understanding of water-soil interaction

phenomenon plays an important role in the assessment and mitigation of many

environmental and geotechnical problems, such as soil erosion, scouring around

offshore structures, landslide-generated tsunamis waves ... and so on. The example

of Lituya Bay tsunami ( Gilbert Inlet-Alaska in1958) caused by subaerial landslide

is the one of the largest known tsunami in modern times [110], and modeling of

water-soil interactions can be a very useful way to understand its mechanism. Figure

1.2 presents the Lituya Bay tsunami scenario and shows the different dimensions of

Gilbert Inlet and destroyed land space.

Figure 1.2 – Lituya Bay tsunami: Gilbert Inlet illustration showing landslide dimensions,
impact site and tsunami runup to 524 m on spur ridge directly opposite to landslide im-
pact. Direction of view is north and the front of Lituya Glacier is set to 1958 post-slide
position.(taken from [110])

1.2 Thesis outline

The following PhD thesis is structured as follows. In Chapter 2, a state of the art on

the smoothed particle hydrodynamics method (SPH) is given, underlining in particular an

overview of mesh-based and meshless numerical methods and the principal basics and

applications of SPH method. Chapter 3 discusses the �uid governing equations and different

methods of SPH discretization. The Chapter 4 is devoted to modeling multiphase interfacial

�uid �ows including our original contribution regarding the surface tension formulation and

conditions initialization via the damping technique. In chapter 5, the modeling of water-soil

interactions using a SPH multiphase approach is presented. The validation and application of

the developed SPH multiphase model, SPH interfacial multiphase model and SPH water-soil

interactions model are shown through Chapter 6 , Chapter 7 and Chapter 8, respectively.
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1.3 Contributions

The contributions of the present thesis can be summarized in the following points:

— Past and recent advances in SPH method improvement algorithms are presented;

— Different SPH discretization techniques of governing equations are discussed;

— A consistent SPH model was proposed to deal with interfacial multiphase �uid �ow

simulations;

— Robust non-conservative surface tension formulation that respects its tangential

character to deal with two and more interfacial �uid phases is developed;

— A modi�cation of the generalized wall boundary conditions proposed in [4] is pre-

sented to allow its use for the simulation of wall-bounded multiphase �uid �ows

— Validation of the proposed SPH model via the application on several challenging test

cases of multiphase �uid �ows;

— Experimental veri�cation of applicability and accuracy of the proposed SPH interfa-

cial multiphase model is done;

— A weakly compressible multiphase smoothed particle hydrodynamics model was

developed to deal with Water-Soil interaction problems.

— A Regularized Bingham Plastic/Mohr-Coulomb (RBPMC-am) constitutive law was

developed to model soil, water and both in interaction;

— Development of a new multiphase diffusive termD d� MSPH to reduce the pressure

oscillations in the context of Weakly compressible SPH;

— Validation of the SPH multiphase water-soil interactions model through several

benchmarks .

1.4 Publications

1.4.1 Journals

— Abdelkader Krimi , Mehdi Rezoug , So�ane Khelladi , Xesús Nogueira ,Michael

Deligant , Luis Ramírez, “Smoothed Particle Hydrodynamics : A consistent model

for interfacial multiphase �uid �ow simulations”, Submitted to the Journal of Com-

putational physics., 2016.

— Abdelkader Krimi , So�ane Khelladi, Xesús Nogueira, Michael Deligant, Riadh

Ata, Mehdi Rezoug, “Multiphase Smoothed Particle Hydrodynamics approach for

modeling Soil-Water interactions”, Submitted to the Advances in Water Resources,

2017.
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— Luis Ramírez, Xesús Nogueira, So�ane Khelladi , Abdelkader Krimi, Ignasi Colomi-

nas, “A very accurate Arbitrary Lagrangian-Eulerian meshless method for Computa-

tional Aeroacoustics”, Submitted to Computer Methods in Applied Mechanics and

Engineering , 2017.

— Abdelkader Krimi , So�ane Khelladi, Xesús Nogueira, “An overview on Smoothed

Particle Hydrodynamics method and applications on �uids, structures and both in

interactions problems”, to be submitted to the Annual Review of Fluid Mechanics,

2017.

1.4.2 Conferences

— Abdelkader Krimi, Mehdi Rezoug, So�ane Khelladi, Michaël Deligant,"Fast and

accurate algorithm for modeling complex free surface �ows", The11th International

Conference for Mesoscopic Methods in Engineering and Science. July 14-18, 2014.

New York.

— Abdelkader Krimi, Mehdi Rezoug, So�ane Khelladi, Michaël Deligant,"A Lagrangian

parallel technique on CPU for smoothed particle hydrodynamics method", SimRace,

Conference on numerical methods and High Performance Computing for industrial

�uid �ows. December 8-10, 2015. Paris.

— Abdelkader Krimi , So�ane Khelladi, Riadh Ata, Xesús Nogueira, Michael Deligant,

Mehdi Rezoug, "A Multiphase SPH Approach to Model Soil-Water interactions",14th

U.S. National Congress on Computational Mechanics July 17-20, 2017, Montreal,

Quebec, Canada.



Chapter 2

State of the art

Dans ce chapitre, un état de l'art est fait sur les différentes méthodes numériques utilisant

un maillage ou sans maillage pour mettre en évidence la méthode SPH. Les principes de

base des formulations de la méthode SPH sont aussi abordés. Nous avons présenté quelques

codes de calcul parallèle Open Source exploitant la méthode SPH. Des différents exemples

d'applications sur des problématiques liées au �uide, structure et les deux en interaction

sont extraits de la littérature pour montrer le grand intérêt que la méthode SPH a connu

dans le domaine de recherche et de l'ingénierie.
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In this chapter, a state of the art is achieved on the different grid-based and gridless

numerical methods in order to highlight the SPH method. The basic principles of the

formulations of the SPH method are also discussed. We have presented some open source

parallel codes exploiting the SPH method. Examples of applications on problems related to

�uid , structure and both in interactions are extracted from the literature to show the large

interest that SPH method has experienced in the �eld of research and engineering.

2.1 Numerical simulation

Computational simulations or in other words numerical simulations using computers plays

an important role for solving many practical problems in both engineering and science. A

numerical simulation converts important aspects of a physical phenomenon into mathematical

equations written in a discrete form, transfers the problem to computer in order to solve it,

and inspects phenomena virtually following the requirements of the analysts. The advances in

numerical analysis, coupled with the increasing power of computers, have greatly expanded

the scope of numerical simulation.

Numerical simulation can be considered as a powerful tool for scienti�c investigation. It

can reduce the expensive, time-consuming and in situ or in laboratory experiments. Numerical

tools present advantages compared with classical experimental methods. It can provide

complete information that is generally dif�cult to obtain through other means. Computational

simulations play a principal role in providing a validation for theories, offers additional

information on experimental results and helps in the interpretation or even the discovery

of new phenomena. However, computational simulations are strongly interconnected to

physical models and theoretical predictions as it is shown in �gure 2.1 .

Figure 2.1 – Relation between the numerical simulations, theories and experiments.

Generally, numerical simulation techniques should follow a similar �ow-chart as schemat-

ically shown in �gure 2.2. Starting from the observed physical phenomena with a focus on
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the aspects that need to be investigated, simpli�ed mathematical models are established under

some assumptions in the form of governing equations with proper limit conditions (initial

conditions and boundary conditions). The governing equations are explicitly dependent of

the nature of physical phenomena targeted for the investigation and can take several forms

as: partial differential equations (PDE), ordinary differential equations (ODE), integration

equations and so on.

In order to solve numerically the governing equations, the geometry of the problem that

will be treated needs to be represented by interconnected discrete components. The domain

discretization techniques may be different from a method to another. The step of domain

discretization is followed by numerical discretization that provides means to obtain discrete

representation of continuous forms of governing equations which correspond to the domain

discretization technique. The last step is to translate the discrete form of governing equations

into a computer code. The complete procedure of numerical simulation is summarized in

�gure 2.2.

Figure 2.2 – Procedure of numerical simulation.

2.2 Grid based numerical methods

Grid based numerical methods adopt a computational domain which is composed of

nodes, where the �eld of physical variables are evaluated, and their relations are prede�ned

by a speci�c topography of nodal connectivity (mesh). The mesh cell size and the mesh

patterns are the principal factors that de�ne the accuracy of the numerical approximation.

There are two fundamental descriptions in grid based methods: the Eulerian description
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Lagrangian approach Eulerian approach
The absence of convective term in the gov-
erning equation facilitate the numerical
treatment phase.

The convective term should be handled in
the simulation.

The ease of tracking the time-history of the
physical variables at any point of material.

The dif�culty of tracking the time-history
of the physical variables at �xed point of
material.

The ease of mesh adaption to complex and
irregular geometries and description of ma-
terial interfaces and moving boundaries.

A bad adaption of the mesh to complex ge-
ometries and dif�culty in the determination
of material interfaces and representation of
moving boundaries.

The grid is needed only within the contin-
uum.

the grid should be large enough in order to
cover also the part of the space where the
continuum can be moved.

A poor numerical accuracy due to the mesh
distortion is presented when large deforma-
tion is occurring to the continuum.

The large deformation occurred to the con-
tinuum does not cause neither the mesh dis-
tortion nor infect the accuracy.

An expensive adaptive mesh algorithm is
needed to overcome the previous problems.

No adaptive mesh numerical accuracy is
needed.

Table 2.1 – Comparison of Lagrangian and Eulerian approaches (advantages and drawbacks).

and the Lagrangian description. The Eulerian description is a spatial description. Here the

computational grid is assumed to be �xed on the physical space; the volume and shape of

mesh cells remain unchanged during all the period of the computation while the materials

are �owing across the mesh. The mass �ux across mesh cell faces is simulated to compute

the distribution of physical quantities in the problem domain. The �nite difference method

(FDM) is the typical example to represent the Eulerian description [164, 138, 350]. The

Lagrangian description is a material description. Contrary to the Eulerian description, the

grid is attached on the material and moves with it in the entire process of the computation.

Here, there is no mass �ux between adjacent cells because of the transportation of the mass

with the movement of the mesh cells. The well-known and widely used method is the

Finite Element Method (FEM )[361, 64]. Both description have advantages and suffer from

drawbacks that are principally summarized in the table 2.1 .

In order to strengthen the advantages of Eulerian and Lagrangian approaches and avoid

their drawbacks, combined approaches has been developed. The Coupled Eulerian La-

grangian (CEL) [213] and the Arbitrary Lagrange Eulerian (ALE) [26, 140, 24] methods are

the most known methods belonging to this approach. However, the grid based methods are

not well suited for situations where large deformations, moving material interfaces, large

inhomogeneities, deformable boundaries and/or free surfaces are presented in the simulation
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case. In the �gure 2.3, the Lagrangian, Eulerian and Combined approaches are schematically

illustrated.

Figure 2.3 – Representation of Lagrangian, Eulerian and combined approaches of falling
drop water. They are classed from the left to the right of the �gure, respectively. This �gure
is reproduced from [59].

2.3 Meshfree numerical methods

For the purpose of avoiding all problems related to the connectivity between the nodes,

another class of numerical methods so-called Meshfree methods was developed. The basic

idea of the meshfree methods is to discretize the continuum into a set of nodes without

presence of any connectivity between these nodes. This property makes treatment of large

deformation problems, and representation of the free and moving interfaces an easier task

while keeping a reasonable computational effort. When the nodes represent a massive

element (particle) of the material domain and carrying its physical properties, the methods

are so-called “meshfree particle methods (MPMs)” [198] (see �gure 2.4). This kind of

methods follows in general a Lagrangian approach.

The Meshfree Particle Methods (MPMs) include: lattice gas Cellular Automata (CA)

[351, 167], Dissipative Particle Dynamics (DPD) [143, 96], Particle-in-Cell (PIC) [131, 132],

Marker-and-Cell (MAC) [132], Fluid-In-Cell (FLIC) [114], Particle-Particle (PP), Particle-

Mesh (PM), Particle-Particle-Mesh (P^M) [142], Moving Particle Semi-implicit (MPS) [176],

Smoothed Particle Hydrodynamics (SPH) [210, 240] and other various meshfree particle

methods. It is shown by Shao and Shao [301] and Souto-Iglesias et al [311] that the two last

cited methods MPS and SPH are closely equivalent.
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Figure 2.4 – Mesh free particle representation of the falling drop water.

2.4 Smoothed Particle Hydrodynamics (SPH) method

In this thesis, one of the most ef�cient and robust meshfree particle methods is highlighted.

This method is called Smoothed particle hydrodynamics (SPH). It is a Lagrangian method for

the numerical approximations of the governing equations solutions that works by replacing

of continuum material with a set of particles in interaction. Generally, this method can be

seen via two different points of view [245]:

� From the mathematicians point of view, the particles are considered as interpolation

points from which properties of the continuum material can be approximated.

� From the physicists point of view, the SPH particles are also a continuum material

particles that can be treated like any other material system.

The smoothed Particle Hydrodynamics (SPH) method was originally formulated by Lucy

[210] and Gingold and Monaghan [118] for astrophysical applications. Since this seminal

work, it has been successfully applied to a vast range of problems. These include astrophysical

problems: galaxies formation and claps [249, 310] , dusty gas dynamics[232, 259] , stars

and steller collisions [242, 27, 282] ; Hydrodynamics and compressible �ow problems : dam

break [243, 72, 303] , dam spillway [292, 189] �sh pass [104] , multiphase �ow [254, 151] ,

spersonic �ow [102, 274] , shock waves [235, 265] , detonation and explosion [201, 202] ;

Bioengineering problems: swemming bodies [136, 168, 68] , micro�uidics [139, 11] , heart

valves [298], blood �ows [22, 250] ; heat transfer problems: [67, 348], structure problems;

[66, 124, 137]; multi-physics problems[6, 332, 331], and many other applications.
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2.5 Basics of SPH method

2.5.1 Kernel approximation

The highlight of the SPH method is related to its ability to represent numerical approxima-

tions for functions and their spatial derivatives without need to any topological connectivity

between nodes (mesh).

Let us consider the suf�ciently regular function �eldf , de�ned on the n-dimensional

domainWand its border¶W. The �led f may be de�ned at the position vectorr i ( f (r i))

from the following convolution product:

f (r i) =
Z

W

d(r i � r j ) f (r j )drn
j (2.1)

Wheredrn
j is the elementary volume located at the positionr j , and termd(r i � r j ) denotes

the Dirac or the delta function. Because the delta function is not regular ( it lacks continuity

and differentiability properties), it is replaced in the context of SPH method by an alternative

well behaved functionW called smoothing kernel function or simply kernel. Thus, the

integral approximation in term of smoothing kernel functionW reads as:

f (r i) �
Z

W(kh)

W(r i � r j ;h) f (r j )drn
j (2.2)

Where,h represents the smoothing length, and it is usually de�ned as constant value

proportional to the initial inter-particle distanceDx0 [186]. The smoothing lengthh can be

chosen variable for each individual particle in order to enhance the accuracy of SPH method.

For more details about the variation ofh, we advice the reader to refer to [242, 135].

In SPH, the kernel function is de�ned over a compact support of radius equal tokhwhere

the particle of positionr i interacts only with neighboring particlesr j . Therefore, the global

domainWis restricted to the compact support domainW(kh) which subsequently reduces the

computation time. The constantk depends on the choice of the smoothing kernel function.

More details are shown in �gure 2.5.

The smoothing kernel functionW should ful�ll some properties [200]. The most general

ones are summarized below :

— The smoothing functionW should be a good approximation tof the Dirac delta

functiond ash �! 0

— The smoothing functionW should decrease monotonously from the positionr i .
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Figure 2.5 – Geometrical details of basics principles of SPH method.Wis global domain
that represent the continuum.W is the kernel function,W(kh) is the support compact ofW
centered atr i . r j are the neighboring particles ofr i within the support domainW(kh) .Dx0 is
the initial inter-particles distance.

— The smoothing functionW should be a spherically-symmetric even function:W(r i �

r j ;h) = W(r j � r i ;h) = W(r i j ;h). Here, ther i j denotes the distance between the

position vectorsr i andr j (r i j = kr i � r jk).

The gradient of kernelW is expressed as :Ñr iW(r i � r j ;h) = ¶W(r;h)
¶r

r i � r j
r =

� Ñr jW(r j � r i ;h)

WhereÑ is the nabla operator (gradient).

— The smoothing functionW should have a compact supportW(kh): W(r;h) = 0 for

r � kh

— The smoothing functionW should satisfy the normalization condition:
R

W(kh)
W(r i � r j ;h)dr j = 1

— The smoothing functionW should be positive within the compact support area:

W(r i � r j ;h) � 0 for r < kh

— The smoothing kernel functionW should be suf�ciently smooth (differentiable).

2.5.2 Choice of the smoothing kernel function

The smoothing kernel function can be represented in a general form as :

W(r i j ;h) = W(r;h) =
hn

hn Q
� r

h

�
=

hn

hn Q(q) (2.3)

Wheren is the number of space dimension,Q is function of dimensionless distanceq = r
h,

andhn is constant depends of the choice of kernel function and the space dimensionn. The

letterr denotes the variable distance bestrewn tow points (r = r i j = kr i � r jk ). In literature,
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a several kernel functions which satisfy the list of conditions discussed above are treated in

the context of SPH method. Some of the most frequently used kernel function are discussed

as follows:

— The Gaussian kernel introduced by Gingold and Monaghan [118]. It is the simplest

kernel whose spatial derivative is in�nitely smooth and therefore exhibits good ac-

curacy and stability properties especially for disordered particles (smoother kernel

functions result generally in more stable SPH formulations [319, 253]). However, it

lacks of a compact support (It never goes to zero theoretically), and it is computa-

tionally very expensive. Gaussian Kernel function follows the form of equation 2.3

where the functionQ(q) reads as

Q(q) = e� q2
(2.4)

With the constantsh1 = 1p
p , h2 = 1

p and h3 = 1
p

p
p for 1, 2 and 3 dimensions,

respectively.

— The B-spline kernel function or cubic spline kernel function [248]. It is the most

commonly used kernel since it has a small compact support and resembles a Gaussian

function. However, it is less stable than smoother kernels. The functionQ(q) is

expressed as follows

Q(q) =

8
>>><

>>>:

1� 3
2q2 + 3

4q3 0 � q < 1
1
4(2� q)3 1 � q < 2

0 q � 2

(2.5)

With the constantsh1 = 2
3, h2 = 10

7p andh3 = 10
p for 1, 2 and 3 dimensions, respec-

tively.

— The Quartic and Quintic kernel functions are introduced by Morris [252, 253]. These

kernels are higher order functions and have the advantage of smoother derivatives

which more closely approximate the Gaussian kernel function and they are more

stable. The functionsQ(q) are expressed for the Quartic and Quintic Kernel functions,

respectively as:

Q(q) of Quartic kernel function:
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Q(q) =

8
>>>>><

>>>>>:

(2:5� q)4 � 5(1:5� q)4 + 10(0:5� q)4 0 � q < 0:5

(2:5� q)4 � 5(1:5� q)4 0:5 � q < 1:5

(2:5� q)4 1:5 � q < 2:5

0 q � 2:5

(2.6)

With h1 = 1
24, h2 = 96

1199p andh3 = 1
20p for 1, 2 and 3 dimensions, respectively.

Q(q) of Quintic kernel function:

Q(q) =

8
>>>>><

>>>>>:

(3� q)5 � 6(2� q)5 + 15(1� q)5 0 � q < 1

(3� q)5 � 6(2� q)5 1 � q < 2

(3� q)5 2 � q < 3

0 q � 3

(2.7)

With h1 = 1
120, h2 = 7

478p andh3 = 1
120p for 1, 2 and 3 dimensions, respectively.

— The Quartic smoothing function introduced by Liu et al [200]. This function ful�lls

the normalization condition, and has a common compact support with its �rst deriva-

tive. The Quartic kernel gives better results than cubic kernel function (equation (2.5))

since it has only one piece [200, 199]. The functionQ(q) reads as

Q(q) =

8
<

:
� 5

32q4 + 19
24q3 � 9

8q2 + 2
3 0 � q < 2

0 q � 0
(2.8)

With h1 = 1, h2 = 15
7p andh3 = 315

208p for 1, 2 and 3 dimensions, respectively.

— The kernels of Wendland [347] are also often used. It is recommended by Robinson

and Monaghan [286] since it reduces the SPH tensile instability [51]. SomeQ(q)

functions of Wendland kernels are expressed as follows:

Q(q) WendlandC2:

Q(q) = ( 1�
q
2

)4(2q+ 1) (2.9)

With h2 = 7
4p andh3 = 21

16p for 2 and 3 dimensions, respectively.

Q(q) WendlandC4:

Q(q) = ( 1�
q
2

)6(
35
12

q2 + 3q+ 1) (2.10)

With h2 = 9
4p andh3 = 495

256p for 2 and 3 dimensions, respectively.

Q(q) WendlandC6:
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Q(q) = ( 1�
q
2

)8(4q3 +
25
4

q2 + 4q+ 1) (2.11)

With h2 = 39
14p andh3 = 1365

512p for 2 and 3 dimensions, respectively.

2.5.3 Kernel approximation of a function derivatives

When substituting gradient of the function �eldÑ f in kernel approximation formulation

(2.2), the following is obtained:

Ñ f (r i) �
Z

W(kh)

Ñ f (r j ) W(r;h) drn
j (2.12)

By applying the divergence theorem (Gauss theorem) in (2.12), it becomes:

Ñ f (r i) � �
Z

W(kh)

f (r j ) Ñr jW(r;h) drn
j +

Z

¶W(kh)

f (r j ) W(r;h) n¶W drn� 1
j (2.13)

The second integral on the right-hand side of the equation (2.13) is evaluated on the

surface elementsdrn� 1
j of the border¶W(kh) of the domainW(kh). The vectorn¶W is unit

outward vector normal to¶W(kh). As it is mentioned before among the list of conditions that

the smoothing kernel function should satisfy, the domainW(kh) must be a support compact.

in other words, the kernel value is equal to zero on the border¶W(kh) inside the continuum

domain. Therefore, the second integral of the formation (2.13) will vanish. When the border

of kernel support¶W(kh) intersects the border of continuum global domain¶W, the second

integral of the formation (2.13) may be evaluated following [104, 192].

Because ofÑr iW(r i � r j ;h) = � Ñr jW(r j � r i ;h) the formulation (2.13) can read as:

Ñ f (r i) �
Z

W(kh)

f (r j ) Ñr iW(r;h) drn
j (2.14)

Or simply:

Ñ f (r i) �
Z

W(kh)

f (r j ) ÑW(r;h) drn
j (2.15)

2.5.4 Accuracy of kernel approximation

The second order Taylor expansion of the functionf (r j ) around ofr i can read as
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f (r j ) = f (r i) + ( r j � r i) � Ñ f (r i) + O(h2) (2.16)

When the Taylor expansion (2.16 ) is introduced in the right hand side of kernel approxi-

mation of equation (2.2)

Z

W(kh)

f (r j )W(r;h) drn
j =

Z

W(kh)

�
f (r i) + ( r j � r i) � Ñ f (r i) + O(h2)

	
W(r;h) drn

j

= f (r i)
Z

W(kh)

W(r;h) drn
j

+ Ñ f (r i) �
Z

W(kh)

(r j � r i)W(r;h) drn
j + O(h2)

(2.17)

From the mathematical development (2.17), it is clear that the kernel formulation of

equation ( 2.2) is a second-order accurate approximation if :

Z

W(kh)

W(r;h) drn
j = 1 (2.18)

and

Z

W(kh)

(r i � r j ) W(r;h) drn
j = 0 (2.19)

It is possible to obtain a higher order accuracy (kth order) when all moments ofW (until

thekth momentMk) equal to zero [207, 23, 87, 88].

Mk =
Z

W(kh)

(r i � r j )k W(r;h) drn
j = 0 (2.20)

If the Taylor expansion (2.16) is introduced in (2.15), the fowling expression is obtained
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Z

W(kh)

f (r j ) ÑW(r;h) drn
j =

Z

W(kh)

�
f (r i) + ( r j � r i) � Ñ f (r i) + O(h2)

	
ÑW(r;h) drn

j

= f (r i)
Z

W(kh)

ÑW(r;h) drn
j

+ Ñ f (r i) �
Z

W(kh)

(r j � r i) 
 ÑW(r;h) drn
j + O(h2)

(2.21)

As it is concluded before for order of accuracy of the kernel approximation, and from

the mathematical development (2.21), it is obvious that the gradient kernel approximation is

second order accuracy if the following identities are satis�ed

Z

W(kh)

ÑW(r;h) drn
j = 0 (2.22)

and Z

W(kh)

(r j � r i) 
 ÑW(r;h) drn
j = I (2.23)

WhereI is the identity tensor.

2.5.5 Particle approximation

In SPH, the computational domain (continuum) is represented by a set of particles

carrying all the generic variables (density, pressure, velocity ...). These particles are in

interaction within a range controlled by the smoothing kernel function support called here

W(kh) (see �gure 2.5 for more details ). The integrals under their continuous forms can be

approximated with a summation applied on the �nite number of neighboring particles with

volumeVj . This process is the so-called particle approximation [112, 198, 200]. Therefore,

the discrete form of the integral kernel approximation of the functionf at positionr i (equation

(2.2)) is obtained by using the surrounding particlesr j (the neighboring particles within the

support domain ofW centered atr i ) and can read as :

f (r i) �
nb

å
j

f (r j )Wi jVj (2.24)
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Where,nb is the number of particlesj in the neighborhood of the particlei, the volume

Vj of particle j is de�ned asVj = mj
r j

, with mj andr j the mass and the density of the particle

j, respectively. The notationWi j denotesWi j = W(r i j ;h) = W(r i � r j ;h).

With some mathematical manipulation, the discrete form of kernel approximation of the

continuous gradient of the function �eldf can also be estimated as:

Ñ f (r i) �
nb

å
j

f (r j ) ÑWi j Vj (2.25)

Alternative expressions for the gradient of the �eld functionf can be obtained by

considering the following two identities [242]:

Ñ f =
1
r

f Ñ(r f ) � f Ñr g (2.26)

Ñ f = r
�

Ñ
�

f
r

�
�

f
r 2Ñr

�
(2.27)

By substituting the equations (2.26) and (2.27) into the equation (2.25), the following

paired particles forms of gradient function are obtained respectively

Ñ f (r i) �
1
r i

nb

å
j

mj
�

f (r j ) � f (r i)
�

ÑWi j (2.28)

Ñ f (r i) � r i

nb

å
j

mj

 
f (r j )
r 2

j
+

f (r i)
r 2

i

!

ÑWi j (2.29)

The equation (2.28) has a asymmetric form (as seen when particlesi and j swap places).

This formulation has the advantage over (2.25) since it returns exactly the derivative of a

constant function (this formulation is called zeroth order consistencyC0), while the equation

(2.29) has an symmetric form which it obeys the propriety of “the action is minus of the

reaction”, thus, the conservative form is ful�lled whose use is favored in the discretization of

the momentum equation [239]. Note, the divergence can be approximated using the same

formulations as the gradient (2.28) and (2.29). The second order derivative of the �eld

function f can be approximated by differentiating the equation (2.24 ) a twice :

Df (r i) = Ñ2 f (r i) = Ñ � Ñ f (r i) �
nb

å
j

f (r j )Ñ
2Wi jVj (2.30)

This expression suffer from a lot of issues such as its strong sensitivity to the particle

disorder and need and also it can results a large errors at low particle resolution, especially
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when the employed kernel function is a low-order [43, 255].To deal with this issues, a useful

approach was proposed by Monaghan [231] in the context of heat conduction treatment, This

approch reads as :

Df (r i) � 2
nb

å
j

f (r i) � f (r j )
kr i � r jk2 (r i � r j ) � ÑWi jVj (2.31)

This expression results from a hybrid combination between a �nite difference derivative

and a �rst-order SPH derivative. This formulation is also used by many researchers to

discretize the second-order derivative [255, 67, 325] .

2.6 Performance optimization and open source codes of

SPH method

One of the major problems presented in the use of smoothed particle hydrodynamics is

its high cost in terms of computational time. This problem is communally found in all

lagrangian methods for a many reasons. We can quote for instance, the cost of mathematical

and physical proprieties calculations on each particle which is based on the interpolation

with a considerable number of surrounding particles. Furthermore, the motion of particle

involved the updating of search for new list of surrounding particles in each time step hold

on each particle, unlike in the Eulerian methods, the connectivity of the nodes is known in

advance and doesn't require any updating according to time. And also, the high number of

iterations needed to simulate a given physical time. The last drawback is generally due to

the explicitness of the integration scheme which requires a very small time step in order to

preserve the numerical stability.

With performance growth presented in hardware architectures of the recent computers, a

several contributions in the literature were done to make the SPH method cost-effective.

In the context of shared memory architecture on both GPU and CPU, large parallelization

techniques for WCSPH were developed in the literature thanks to the explicitness and

independence of calculation tasks hold on each individual particle. For instance, in the

framework of Dualphysics project : open source SPH solver [79], which is based on the

Monaghan discretization scheme [242], a parallelism implementation both on GPU and CPU

was progress in several works. Firstly it was implemented on a single GPU using the CUDA

language [78]. This approach was limited for millions of particles due to the limitation of the

device memory used in GPU cards. To deal with this problem, a multi-GPUs parallelization

technique using massage passing interface "MPI" paradigm is used to communicate between
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several devices memories of Nvidia CUDA cards [335]. But this approach was not optimized

regarding the �xed technique of interface communication between the memory devices of

GPUs cards that causes a high computational time due to the amount of data transfer and

its maladjusted with the particle motion that causing later a loss in load balancing. In the

reference [90] an enhancement of the last method was done to optimize the communications

between memory by sharing the particles between GPUs memory devices following the

kinematic of particles �ow. Later in reference [89] an optimized strategy was described which

based on the keeping of the calculation tasks maximum as possible in GPU to minimize the

CPU-GPU data transfer. In the last reference a multi-threading parallelization technique on

CPU using the OpenCL library was proposed. Another free SPH Solver Parallel on GPU

so-called AQUAgpusph was recently developed [53] to be widely supported in various cards

architecture (Nvidia, AMD, IBM, Intel, etc...) thanks to OpenCL computing language which

is not possible for CUDA language that works only on NVIDIA Cards technology.

Josephine is a parallel SPH code on CPU used to simulate free surface �ow in open basin

[60] using Colagrossi and Landrini [72] and Ferrari et al. [105] approaches. The principal of

parallelism method used in the context of Josephine is based on a vertical decomposition

domain with updating the interface separating between processes which de�ne the buffer

exchange zone to fellow the kinetic of �ow in order to guarantee a good load balancing

between the processors by using a single way zone interaction based on the QuickSelect

algorithm to determine the abscissa dividing the particles of interaction zone into tow subset.

2.7 Applications

Nowadays, SPH methods have gained a wide interest for application in research and

engineering. Herein, some of its applications are addressed such as in �uid, structure and

interactions.

2.7.1 Fluid applications

The dam break �ow problem is one of the most known benchmarks used in the SPH

framework [243, 36, 72, 204, 288, 339, 77, 105, 216]. It includes all the complexity that

makes SPH a particularly well suited method for its simulation such as the presence of the

free surface and its large deformation. Figure 2.6 shows the simulation sequences of the

dam break realized by Marrone et al [216] in the context of diffusive schemed-SPH. The
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comparison of pressure results with available experimental data made by Buchner [44] are

presented in �gure 2.7.

Figure 2.6 – Snapshots of the evolution of the dam-break �ow against a vertical wall
(Marrone et al [216]).

Lid-driven cavity �ow has been widely used as a benchmarking test to validate numerical

models in the context of con�ned �uid �ow. For SPH applications, we can refer to [188,

357, 85, 5, 192]. We show via the Figure 2.8 the results obtained by Leroy et al [192] using

incompressible SPH (ISPH) scheme with uni�ed semi-analytical wall boundary conditions

(USAW) compared with the Finite volume results (FV). While in �gure 2.9 a comparison

of the velocity pro�les between the ISPH-USAW [192] , SPH with the multiple boundary

tangent method (SPH-MBT) [357], �nites volumes , and the results of Ghia et al [116].

For multiphase �uid �ows applications, the most popular investigated test is the Rayleigh–Taylor

instability problem [80, 150, 128, 149, 238, 297, 58]. In �gure 2.10 the positions of the SPH

particles at dimensionless time5 is taken form the work of Monaghan and Ra�ee [238]. The

results obtained are similar to that of Cummins and Rudman [80] and Grenier et al [128].

�gure 2.11 show the ariation of the highest point of the low-density �uid for different particle

resolutions compared with Layzer theory [307].

Many other applications can be quoted such as in aerodynamics [218] (see �gure 2.12),

bubbly �ow and coalescence in framework of SPH interfacial multiphase method [129, 358],

simulation with a high particle resolution (more than109 particles) for large wave interacting

with an off-shore oil rig platform [90] and so on.
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Figure 2.7 – Dam-break �ow against a vertical wall. Comparison between the pressure loads
measured experimentally by Buchner [44] and predicted by the numerical model at probes
P1 (top panel) andP2 (bottom panel). Results are shown for three different space resolutions.
(Marrone et al [216]).

2.7.2 Structure applications

The SPH method can be applied successfully to different problems behavior, such as

elastic, plastic, and elasto-plastic behaviors.

Oscillating plate [124, 277, 359] and collision of two rubber rings [124, 206, 314] are

two typical tests for simulation of elastic deformation of structure. �gures 2.16 and 2.17

show the simulation sequences of the oscillating plate and the collision of two rubber rings,

respectively. The convergence of SPH elastic model can be shown through the �gure 2.18

that represents the time evolution of the vertical position of a point on the end of the plate for

different resolution. all these �gures are taken form the work of Gray and Monaghan [124].

The geomaterials can be considered as purely plastic materials. The SPH method offers a

good advantage for the simulation of this kind of material via a Non-Newtonian �uid model

that yields under a certain criterion ( such as Mohr-Coulomb [227, 75] or Drucker–Prager
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Figure 2.8 – Lid-driven cavity for ReynoldsRe = 1000: comparison of the results obtained
after convergence with ISPH-USAW (left) and with FV (right). (Leroy et al [192])

Figure 2.9 – Lid-driven cavity forRe = 100. Comparison of the velocity pro�les inx+ = 1=2
andz+ = 1=2 between ISPH-USAW, Incompressible SPH with the multiple boundary tangent
(ISPH-MBT) [357], ,FV and the result sof Ghia et al [116]. (Leroy et al [192])
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Figure 2.10 – The positions of the SPH particles at the dimensionless time5 using150� 300
particles. The blue particles assign the light �uid.(Monaghan and Ra�ee [238])

Figure 2.11 – The time evolution of the highest point of the low-density �uid. The Layzer
theory is shown by the continuous blue line. The small open circles the results for50� 100
particles. Red line hows the results for75� 150 particles and green the results for the
simulation with 150� 300 particles.(Monaghan and Ra�ee [238])

[93] yield criteria). This model is so-called visco-plastic model. A lot of applications of

this method for the simulation of the �ow behavior of granular materials can be found

in the literature [13, 52, 153, 320]. Also the elasto-plastic constitutive models have also

demonstrated that are suitable for simulation of granular materials [46, 49, 57, 260]. Figures

2.19 and 2.20 show the equilibrium state of 2D sediment dam break and the collapse of

cylindrical sand column simulated using visco-plastic and elasto-plastic models, respectively.

Douillet-Grellier et al [92] use Drucker-Prager and Grady-Kipp [28, 29] in the context of
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Figure 2.12 – WCSPH simulation of inviscid �ow around a circular cylinder forRe = 2400.
Comparison of the predicted vorticity �eld between SPH (left) and Finite difference Navier-
Stokes Solver (right) [74]. (Marrone et al [218])

Figure 2.13 – Bubbly �ow in a simpli�ed closed oil-water separator. Density �elds are
shown at different times.(Grenier et al [129])

elasto-plastic SPH model to simulate the failure in uniaxial compression of gypsum samples

that contain an angled �aw (see �gure 2.21).

2.7.3 Fluid structure interactions

The deformation of an elastic plate subjected to time-dependent water pressure is a

well-known benchmark proposed by Antoci et al [6] to validate the interaction between the
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Figure 2.14 – The SPH snapshots of the oblique coalescence at some characteristic time
instants (top); the experimental snapshots in Brereton and and Korotney [42] (middle); the
velocity �eld around the bubbles (bottom). (Zhang et al [358])

Figure 2.15 – Different instantst = f 2:2;3:2;10g[s] of the simulation of a large wave
interacting with an off-shore oil rig platform using 109 Particles. (Dominguez et al [90])

�uid and elastic structures codes [6, 144, 277]. Figures 2.22 and 2.23 show comparative
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Figure 2.16 – Simulation sequences of the elastic plate oscillation. (Gray and Monaghan
[124])

results between SPH and experimental tests for simulation sequences and the time-evolution

of the horizontal and vertical displacements of the plate free end .

There is also another benchmark for modeling a breaking dam on hypoelastic baf�e [277]

compared with Particle Finite Element Method (PFEM) [157] that can be also used for the

validation of �uid-elastic structures interactions codes. Figure 2.24 shows a comparison of

simulation sequences of dam break interaction with hypoelastic baf�e between two numerical

method Particle Finite Element (PFE) and Smoothed Particle hydrodynamics methods (SPH)

[277].

For �uid and land interactions, a classical simple example of numerical modeling of

submarine landslide generated waves [275, 52, 353] can be used for the validation of SPH

codes thanks to its available experimental data (Rzadkiewicz et al [290]). Figure 2.25 shows

the position of �uid and land particles at the timest = 0[s] andt = 0:8[s], from the left to the

right, respectively (Capone et al [52]). In the �gure 2.26 comparison curves of the water free

surface obtained with SPH method [52] and experimental data [290].

For �uid and rigid body interactions, a very good synthetic test case was proposed by

Canelas et al [50] in order to simulate the impact of a violent water wave over a real geometry

of container terminal of the Sines port (it is a big infrastructure on the Portuguese coast) to

explore the possibilities of SPH method regarding complex, industrial scales. �gure 2.27

shows four selected sequences of this application.
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Figure 2.17 – Simulation sequences of the collision between two elastic rings . (Gray and
Monaghan [124])

Figure 2.18 – Convergence study of the oscillating plate test case using three particle
resolutions withn = f 10;20;30g particles towards the direction of the plate thickness . (Gray
and Monaghan [124])
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Figure 2.19 – The sediment dam break comparison between: (a) the experimental data of
Bui et al [46], (b) Fourtakas and Rogers [108] results obatained via the visco-plastic model
(c) comparison of the experimental pro�le and yielded surface of the sediment Bui et al.[46]
and the Fourtakas and Rogers [108] model at the equilibrium state (t=0.64s) . (Fourtakas and
Rogers [108])

Figure 2.20 – Equilibrium state of collapse of a cylindrical sand column. The particles are
colored with accumulative equivalent plastic strain. (a) side view; (b) isometric view. (Chen
and Qiu [57])
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Figure 2.21 – Failure in uniaxial compression of gypsum sample with an angled �aw. The
top �gure shows the initial state of sample, while the bottom �gures show the SPH crack
simulation with considering several �aw angles.(Douillet-Grellier et al [92])
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Figure 2.22 – Comparison between frames from the experiment and images of SPH particle
positions [6] every 0:04s from t = 0[s] (a) until t = 0:4[s] (k). (Antoci et al [6])

Figure 2.23 – Horizontal and vertical displacements of the free end of the plate. (Antoci et
al [6])
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Figure 2.24 – Comparison between Particle Finite Element Method (PFEM) [157] results
and SPH [277] simulations for dam break on a hypoelastic baf�e. (Ra�ee and Thiagarajan
[277] )

Figure 2.25 – Submarine landslide simulation: the left image represents the initial particles
position of the land and the water (att = 0[s]), wile the right image is att = 0:8[s]. (Capone
et al [52])
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Figure 2.26 – Elevation of the water free surface at timet = 0:8[8]: comparaison between
SPH [52] results and experimental data by Rzadkiewicz et al [290] . (Capone et al [52])

t = 0[s] t = 14[s]

t = 18[s] t = 60[s]

Figure 2.27 – Simulation of the impact of a violent water wave over Sines container terminal
at timest = f 0;14;18;60g[s]. (Canelas et al [50])





Chapter 3

SPH : Numerical development and

governing equations discretization

Dans ce chapitre nous abordons les principales équations régissant le comportement d'un

milieu continu (�uide et structure). Différentes formulations de discrétisation SPH extraits

de la littérature sont discutées. Les principales méthodes utilisées pour la détermination de

la pression a�n de fermer le système des équations physique sont introduits. Nous donnons

un aperçu théorique sur les différentes stratégies et méthodes de simulation des écoulements

multiphasiques ainsi que les différentes formes de force de tension de surface utilisées dans

le contexte de la méthode SPH. Les différentes stratégies de couplage multiphysiques entre le

�uide et la structure sont brièvement discutées. Les méthodes de correction et amélioration

de précision et stabilité de la méthode SPH sont présentées. La modélisation de différentes

conditions aux limites, les schémas d'intégration en temps ainsi que les critères de stabilité

dans le cadre de la méthode SPH sont aussi abordés.
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In this chapter we present the governing equation describing the behaviour of a continuous

medium (�uid and structure). Various SPH discretization formulations extracted from the

literature are discussed. The main methods used to determine the pressure in order to close the

governing equations system are introduced. We provide a theoretical overview of the different

strategies and methods of multiphase �ow simulation as well as the different forms of surface

tension force used in the context of the SPH method. The different multiphysics coupling

strategies between �uid and structure are given. Methods for correcting and improving the

accuracy and stability of the SPH method are discussed. The modeling of different boundary

conditions, time integration schemes and stability criteria in the framework of the SPH

method are also presented.

3.1 Governing equations

Among the wide range of applications that can be dealt by the SPH method, we highlight

in this work the physical phenomena generated from �uid, solid and their interactions. When

the �uid and solid behave under isothermal conditions, their evolution can be described

completely by the continuity, the momentum conservation and displacement equations.

These equations are represented in Lagrangian form as follows:

8
>>><

>>>:

dr
dt = � r Ñ � v
dv
dt = 1

r Ñ� s + Fs+ Fb

dr
dt = v

(3.1)

whered(:)
dt = ¶(:)

¶t + v� Ñ(:) represents the Lagrangian derivative (material derivative).Ñ is the

nabla operator,r ;v; r;Fs andFb represent density, velocity vector, position vector, surface

force vector and volumetric body force vector respectively. The surface and body forces

can represent for instance the surface tension force, gravity force, electrical force and etc

[150, 254, 278] . s is the Cauchy stress tensor. For more details about the development of

conservation equations of the system (3.1), we advise the reader to refer to [221, 283, 119]

The Cauchy stress tensors can be decomposed into two parts, the isotropic part(� pI)

and deviatoric part(t ):

s = � pI + t (3.2)

With p andI denote the hydrostatic pressure (also called mean stress for solid mechanics

with p = � 1
ntr(s ), wheren is number of space dimensions andtr is the notation of trace
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of square matrix) and the identity tensor, respectively. The notation of the deviatoric tensor

(t ) is related to any continuum material, for the �uid material it can be called also viscous

stress tensor. The deviatoric is often writing as a function of the rate of strain tensorD. This

relation is called constitutive law.

By substituting the equation (3.2) into the momentum equation of the system (3.1), it

becomes

dv
dt

= �
Ñp
r

+
Ñ� t

r
+ Fs+ Fb (3.3)

When the inertial forces are dominant over the viscous ones in the �uid material, it will

be treated as inviscid or ideal �uid where the viscous forces are neglected in the computation

(t = 0). For the Newtonian �uid �ow, the stress tensor can not be neglected, and it is linearly

proportional to the rate of strain tensor with a constant coef�cient, the so-called dynamic

viscosity(m) [20, 269]. Thus, the viscous stress tensor (deviatoric tensor) for the Newtonian

�uid �ow can be expressed as

t = mD (3.4)

WhereD denotes the rate of strain tensor and it is de�ned asD = Ñv+ ( Ñv)T , with Ñv

represents the velocity gradient tensor, and the superscriptT is the transpose tensor symbol.

For incompressible Newtonian �uid, sinceÑ � v = 0, the divergence of the viscous tensor

Ñ � t further reduces to

t = mÑ2v (3.5)

WhereÑ2 = Ñ� Ñ = D is the Laplacian operator.

All �uids that do not obey equation (3.4) are regrouped under one category so-called

non-Newtonian [360, 124, 145, 61, 165]. The �gure shows the three categories of non-

Newtonian �uids classi�cation: The purely viscous time- independent, time-dependent �uids

and viscoelastic �uids [165].

The �uid belongs to the purely viscous time-dependent category, when the shear stress is

a function only of the rate of strain but in different manner than described in equation (3.4).

Figure 3.2 shows different models of viscous time-independent non-Newtonian �uids.

The pseudoplastic (shear thinning) [34] and dilatant (shear thickening) [17] models have

their shear stress depend in a nonlinear way only on the shear rate. for both models, no

initial stress is required to initiate yielding. The macromolecular and concentrated solids

suspension �uids are examples of pseudoplastic and dilatant �uids, respectively [267].
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The Bingham plastic model [33] (also called viscoplastic model) is one of the simplest

and more commonly used among the viscous time-dependent category of �uids. In this

model, when the yield stress limit (t y) is exceeded, the material behaves as Newtonian �uid.

Otherwise, it behaves as a rigid body. The constitutive law for a Bingham Plastic can be

written in tensorial form as

8
<

:

t =
n

t y

kDkF
+ m

o
D kt kF � t y

D = 0 kt kF < t y

(3.6)

The notationk:kF refers to Frobenius norm (see equations (5.8) and (5.9) ). In equation

(5.7) the yielding criterion of soil materials is de�ned using the Von Mises criterion [226].

kDkF =
�

1
2

D : D
� 1

2

(3.7)

kt kF =
�

1
2

t : t
� 1

2

(3.8)

The formulation (5.7) can be written under a smooth form to avoid the numerical dif�cul-

ties resulting from its discontinuous form. The exponential model [270] and the Bercovier

and Engelman (BE) model [30] are used for instance to deal with this.

The typical example of Bingham plastic model is the toothpaste, which will not �ow out

only when certain stress is applied on the tube [281].

Under the Herschel–Bulkley model (also called a nonlinear viscoplastic model) [76], the

�uid behaves exactly as with Bingham plastic model but after exceeding the yield stress

they following the pseudoplastic model instead of the Newtonian one. Mud �ow can be

considered as a Herschel–Bulkley �uid [152].

The time-dependent �uids have a hysteresis loop which depends on the time-dependent

rate at which the shear stress is applied. The pseudoplastic time-dependent �uid (thixotropic)

[257] and the dilatant time-dependent �uid (rheopectic) are two models belonging to this

category (see �gure 3.2). The waxy crude oil [329] and Bentonite clay suspension [267] are

the examples of thixotropic and rheopectic �uids, respectively .

Viscoelastic �uids [276], as can be understood from their name, they possess both viscous

and elastic properties. The egg white and polymer melts are examples of Viscoelastic �uids

[281].

For the study of the elastic dynamic behavior of any solid structure, the constitutive

equation based on Hooke's formulation corrected by by Jaumann rate [163] can be used

[124]. It reads as
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Figure 3.1 – Classi�cation of �uids.(Roproduced from Johnson [165])

Figure 3.2 – Flow curves of shear stress as a function of shear rate for time-dependent
�uids.(Roproduced from Johnson [165])

Figure 3.3 – Flow curves of shear stress as a function of shear rate for time-independent
�uids.(Roproduced from Johnson [165])

dt
dt

= G
�

D �
1
3

tr(D)I
�

+ tw + wt (3.9)
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WhereG is the shear modulus. For the isotropic materials, the shear modulusG can be

written as a function of the Young's modulusE, the Poisson's ration and the bulk modulus

K [184].

G =
E

2(1+ n)
=

3K(1� 2n)
2(1+ n)

(3.10)

The tensorw denotes the rotation-rate tensor that can be expressed as

w =
1
2

�
Ñv� (Ñv)T �

(3.11)

The notationtr(D) presents the trace of the square matrixD.

There are other alternative laws for the time derivative of the deviatoric stress that can be

used in the context of elastic behavior modeling as those proposed by Ellero et al [95] for

studying viscoelastic �ows.

Modeling of solid mechanics equations using SPH method has been largely employed

thanks to the meshless nature of the method. It was �rstely carried out by Libersky and

Petschek [194] to simulate the fracture process in brittle solids. After that, it was be extended

by Randles and Libersky [279] and then Gray and Monaghan [124] to be applied on the

elastic dynamics. The commonly used model for the study of plastic behavior of solids in the

context of SPH model is the Drucker-Prager model [93]. It was used �rstly by Bui et al [46]

to study soil collapse and slope stability. Since that, it has been used in other applications, for

instance: the study of the failure due to compression in a Brazilian test [86, 272], modeling

large soil deformation [45, 47, 57, 260], and the study of the failure in uniaxial compression

of gypsum samples [92]. For more details about the model, we refer the reader to consult the

references [46, 92].

3.2 Determination of pressure

The system of equations (3.1) is open, and should be closed by the determination of

pressure variable. Three principal approaches are commonly used for the pressure determina-

tion in the SPH method: Weakly compressible smoothed particle hydrodynamics (WCSPH),

Truly incompressible smoothed particle hydrodynamics (ISPH), and explicit incompressible

smoothed particle hydrodynamics (EISPH).
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3.2.1 Weakly Compressible Smoothed Particle Hydrodynamics

In weakly compressible smoothed particle hydrodynamics (WCSPH) approach, the

determination of pressure is done by using an explicit equation of state (EOS) that relates

the pressure with particle densityr and arti�cial speed of soundc0. The most commonly

used EOS in the framework of WCSPH is the MacDonald [211] equation. It is also largely

known as Tait equation of state in SPH community, This application is stated incorrect by

Monaghan in [234]. The MacDonald equation of state is expressed as

p = pr

��
r
r 0

� g

� 1
�

+ pb (3.12)

wherer 0, pr andpb denote the reference density, the reference pressure and background

pressure, respectively. The reference density is related to the reference speed of soundc0 by

the following equation

pr =
r 0c2

0

g
(3.13)

the parameterg is generally set constant and equal7 . In some references theg = 1:4 is

also used to simulate the air material [72, 128, 129, 358]. It is stated by Morris in [255] , that

when the density �uctuations increases, small errors in density correspond to increasingly

larger errors in pressure. Therefore, for lower Reynolds numbers, more accurate pressure

estimates are obtained using SPH ifg = 1, since errors in density and pressure remain

proportional. The linear equation of state (wheng = 1) is used in lot of references such as

[254, 216].

The reference speed of soundc0 in the case of �uid �ow can be determined as [254, 308]

c2
0 � max

�
U2

0

dr
;
kgkL0

dr
;

me f fU0

r 0L0dr

�
(3.14)

WhereU0, L0, me f f ands are the reference velocity, reference length, and effective

dynamic viscosity (apparent viscosity), respectively. The termdr represent the ratio of

density variations about the initial density which is usually set equal to1% (dr = 0:01 )

[243].

For numerical problems involving single-phase free surface �uid �ows and also for

solid dynamics, the background pressure is generally set to zero(pb = 0). Furthermore, for

simulations of single or multiphase con�ned �uid �ows, the pressure is chosen as a positive

value suf�cient to guarantee the positivity of the calculated pressure �eld via the equation

of state in order to avoid the tensile instability [218]. Several formulation of background
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pressure are used in the literature such as: Marrone et al [218] use(pb = 3r 0U2
0 ) for con�ned

single �uid �ow, and Krimi et al [178] use(pb µ 0:05pr ) for the simulation of con�ned

multi-phase �ow.

In order to enhance the numerical stability of the multiphase �uid �ow simulations,

Colagrossi and Landrini [72] recommend the use a common reference pressure of all �uid

phase.

In the case of the simulation of solid deformation, the linear equation of state ( Equation

(3.12) withg = 1) is usually employed with a calculated arti�cial speed of sound using the

following equation [124, 6, 293]

c2
0 �

K
r 0

(3.15)

WhereK is the bulk modulus.

3.2.2 Incompressible Smoothed Particle Hydrodynamics

In Incompressible Smoothed Particle Hydrodynamics (ISPH) approach, the determination

of pressure is done by solving the Poisson's equation via the projection method. This

method is originally developed in the context of grid-based method by Chorin [62, 63],

and implemented by Cummins and Rudman [80] to deal with incompressible SPH �ow but

without a free surface. The free surface condition was introduced in incompressible SPH

model by Shao and Lo [303]. It has since been of great interest [302, 150, 355, 158]. In

ISPH, the continuity equation of the system (3.1) is simpli�ed to the divergence-free velocity

by taking into account that the density is a constant parameter. It reads as

Ñ� v = 0 (3.16)

The original incompressible smoothed particle projection method [80, 188] is referred

under the name of ISPH divergence-free velocity �eld (ISPH_DF method). Here, the density

and mass of particles are constant and their positionsrn
i are advected with velocityvn

i to an

intermediate positionsr �
i as follows

r �
i = rn

i + dt vn
i (3.17)

At the positionr �
i , An intermediate velocityv�

i is calculated based on all forces governing

the movement of particlei at the timen except the pressure ones

v�
i = vn

i + dt
�

Ñ � t
r

+ Fs+ Fb
�

(3.18)
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Determination of pressure at timen+ 1by solving the following pressure Poisson equation

(PPE) t

Ñ �
�

1
r

Ñpn+ 1
�

i
=

1
dt

Ñ � v�
i (3.19)

The velocity at the �nal time-stepn+ 1 (vn+ 1
i ) will result from the projection ofv�

i . Thus,

vn+ 1
i = v�

i �
dt
r

Ñpn+ 1
i (3.20)

The particle position at the �nal time-step is calculated by

rn+ 1
i = rn

i + dt

 
vn+ 1

i + vn
i

2

!

(3.21)

The ISPH_DF scheme provides accurate and smooth pressure �elds. However, it presents

instabilities since it leads to highly anisotropic particles arrangements [197]. This problem

can be avoided by using particle shifting algorithm as proposed by Xu et al [355] and

improved by Lind et al [197] or the one proposed by Fatehi and Manzari [100].

Two alternative methods have been developed to enhance the accuracy and stability of

the ISPH_DF method. The �rst method is referred as ISPH_DI (incompressible smoothed

particle hydrodynamics based on keeping density invariance) [303], this method is similar to

ISPH_DF for all steps except of the solving Poisson equation step. In ISPH_DI, the right

hand side of Pressure Poisson equation is expressed with relative density difference instead

of divergence of velocity in ISPH_DF. Therefore, the Pressure Poisson Equation can read as

Ñ�
�

1
r � Ñpn+ 1

�

i
=

r 0 � r �

r 0dt2 (3.22)

With r � is the intermediate particle density approximated through the continuity equation.

As it is stated by Xu et al [355], the ISPH_DI scheme presents more stable simulations

than with ISPH_DF one, but its accuracy is deteriorated. To bene�t from both schemes

ISPH_DF and ISPH_DI, Hu and Adams [150] proposed a combined a scheme which is

referred as ISPH_DFDI. This scheme requires two pressure Poisson equations to be solved,

and thus, computational cost becomes higher.

The main differences between weakly compressible smoothed particle hydrodynamics

(WCSPH) and the incompressible smoothed particle hydrodynamics (ISPH) methods can be

summarized by Table 3.1.
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WCSPH ISPH
Fully explicit nature of the scheme resolu-
tion

Semi-implicit nature of the scheme resolu-
tion

The pressure is calculated via an equation
of state

The pressure is calculated via solving the
Poisson equation

Suffer from a high frequency oscillations of
pressure

Stable and smooth pressure

Free surface �ow condition is maturely ful-
�lled

Imposition of free surface �ow is required

Easy to program More dif�cult to program than WCSPH
Small time step due to CFL condition re-
lated to the arti�cial speed of soundc0

More important time step

Shifting particle algorithm is not needed (It
presents good particles distribution)

Need for shifting algorithm in order to well
distribute

Table 3.1 – Comparison between WCSPH and ISPH schemes.

3.2.3 Explicit Incompressible Smoothed Particle Hydrodynamics

The explicit incompressible smoothed particle hydrodynamics method (EISPH), is �rstly

developed by Hosseini et al [145] for the simulation of non-Newtonian �uid �ow. It was

employed after in other works as in [277, 14, 15]. This method uses the projection method as

in ISPH [80] but relies on an explicit approximation of Poisson equation instead of solving it.

Therefore, this method reduces the pressure oscillations and reduce the computational effort

[82]. For more details about the formulations, we advise the reader to refer to [145, 82].

3.3 Discretization of governing equations

Generally, the asymmetric form of SPH �rst derivative ( Equation 2.28) is employed to

write the right hand side of the continuity equation of the system (3.1) (also called divergence

equation [245] ) in SPH discrete form. Thus, the discrete form at the particlei can be read as

dr i

dt
=

nb

å
j

mj vi j � ÑWi j (3.23)

and also

dr i

dt
= r i

nb

å
j

mj

r i
vi j � ÑWi j (3.24)

With vi j = vi � v j .
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Otherwise, the density can be also directly approximated via the basic SPH interpolation

( 2.24 ) applied on the densityr at the particlei. This summation form is expressed as

r i =
nb

å
j

mj

r j
r j Wi j =

nb

å
j

mj Wi j (3.25)

The discrete formulation of the continuity equation (3.23) can be seen as the he time

derivative version of the summation form (3.25) [245].

The advantage of the density summation formulation (3.25) over the formulations (3.23)

and 3.24 is that it conserves exactly the mass [242]. An alternative version of density sum-

mation formulation is presented by Hu et Adams [151] (equation (3.26) ) . This formulation

conserves exactly the mass as well as (3.25), and in addition it allows for density discon-

tinuities when the particlei interacts with the neighboring particlesj that present a large

particle-mass differences, for instance, it is well suited to dealing with multiphase �uid �ow

with large density ratio.

r i = mi

nb

å
j

Wi j (3.26)

The problem of the density summation formulations (3.25) and (3.26) is that it works

badly in cases of free surface �ows, because they can not reproduce a zero pressure in the

free surface particle. While, with the use of the density divergence equations (3.23) or (3.25)

the zero pressure in the free surface particle is reproduced naturally. The formulation (3.25)

is recommended for use over equation (3.23) when the problem concerns multiphase �uid

�ow with hight density ratio (� 2) [69, 245], because in the summation of the right hand

side of the equation (3.23) , the mass of neighboring particles affects the calculation, whereas

with the formulation (3.24) it is the volumes that affects it.

In order to achieve the conservation of momentum, one of the following symmetric

expression can be used for the calculation of divergence operator of the Cauchy stress tensor

s [242]

1
r i

Ñ� s i =
nb

å
j

mj

 
s i

r 2
i

+
s j

r 2
j

!

ÑWi j (3.27)

If the density varies signi�cantly, Monaghan [234] has recommended to use another

discrete symmetric form of Cauchy stress divergence [338]

1
r i

Ñ� s i =
nb

å
j

mj

r ir j

�
s i + s j

�
ÑWi j (3.28)
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With s i is expressed ass i = � pi I + t i .

An asymmetric expression can be used to discretize the divergence of Cauchy stress

tensor as it is used in [56, 279]

1
r i

Ñ� s i =
nb

å
j

mj

r ir j

�
s j � s i

�
ÑWi j (3.29)

The formulation is generally used with normalization technique of the kernel gradient

explained in the section 3.7 (equation (3.67)) [56, 279].

The three formulation of the Cauchy stress tensor divergenceÑ� s i are usually employed

in the context of solid mechanics, especially for modeling the elastic behavior where the

deviatoric partt is determined from time integration of a differential equation as equation

(3.9) or as used in [95]. For �uid dynamics applications, the form of momentum equation

(3.3) is preferred, where the gradient of pressure and the viscous tensor divergencet are

discretized separately in different ways.

The discretization of the pressure gradient follows the same three formulations [242, 338,

279]. Thus, they can be represented as

�
1
r i

Ñpi =

8
>>>><

>>>>:

� å nb
j mj

�
pi
r 2

i
+ p j

r 2
j

�
ÑWi j

� å nb
j

mj
r ir j

(pi + p j ) ÑWi j

� å nb
j

mj
r ir j

(p j � pi) ÑWi j

(3.30)

For the divergence of the viscous stress tensor. A hybrid formulation between the SPH

gradient approximation and �nite difference estimation of second derivative operator has

been proposed by Morris [255] :

1
r i

Ñ� t i =
nb

å
j

mj
(mi + mj )

r ir j

r i j � ÑWi j

r2
i j

vi j (3.31)

This formulation (3.31) conserves linear momentum exactly, while preserving angular

momentum approximately [19].

Violeau and Issa [339] have derived from the arti�cial viscosity term used in the the

work of Monaghan and Gingold [235] the following formulation for the approximation of

the divergence of viscous stress tensor

1
r i

Ñ� t i =
nb

å
j

mj
8

r i + r j

�
mi

r i
+

mj

r j

�
r i j � vi j

r2
i j + h 2

ÑWi j (3.32)
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Another formulation for the calculation of viscous stress tensor divergence was introduced

by Cleary [65] and can read as

1
r i

Ñ� t i =
nb

å
j

mj
x

r ir j

4mimj

mi + mj

r i j � vi j

r2
i j + h 2

ÑWi j (3.33)

The parameterx was set as4:96333through calibration against known solutions in a

Couette �ow. Basa et al have stated in [19] that this value ofx gives highly inaccurate

velocities for the simulation of Poiseuille �ow and the value ofx = 4:24 provides much

better results.

Note that the parameterh 2 is taken generally as small value (h 2 = ( 0:1h)2) to prevent

singularities (zero denominator) when two particles become too close.

For the multiphase �uid �ow applications, Hu et Adams [151] have proposed approxima-

tions of spatial derivatives with particle-averaged in which the neighboring particlesj of the

particlei only contribute to the summation by their speci�c volumes and not their masses.

This technique maintain exactly the mass conservation, and allows naturally for density

discontinuities across phase interfaces. Therefore, the pressure gradient can be expressed as

[151, 1]

�
1
r i

Ñpi = �
1
mi

nb

å
j

�
V2

i pi + V2
j p j

�
ÑWi j (3.34)

This expression is similar to the form of gradient pressure preferred by Monaghan

[242].This form conserves linear momentum exactly since exchanging of particle positionsi

and j within the sum results an opposite pressure force.

Another form of gradient pressure [2, 4]

�
1
r i

Ñpi = �
1
mi

nb

å
j

�
V2

i + V2
j
�

fpi j ÑWi j (3.35)

With fpi j is the density-weighted inter-particle averaged pressure [150]

fpi j =
r i p j + r j pi

r i + r j
(3.36)

This form fpi j (3.36) ensures that1r Ñp is continuous even when a discontinuity is present

in the density �eld.

While for the divergence of the viscous tensor is taken as
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1
r i

Ñ� t i =
1
mi

nb

å
j

�
V2

i + V2
j
�

fmi j
vi j

r i j

¶W
¶r i j

(3.37)

With fmi j is the inter-particle-averaged shear viscosity

fmi j =
2mimj

mi + mj
(3.38)

This form of the viscous force (3.37) conserves linear momentum. The angular conserva-

tion of momentum can be achieved using other formulations, for instance the one used by

Hu and Adam [148] which is extended for multiphase �ow applications by Krimi et al [178]

1
r i

Ñ� t i =
z
mi

nb

å
j

�
V2

i + V2
j
�

fmi j
vi j � r i j

r2
i j

ÑWi j (3.39)

Wherez = n+ 2, andn is the space dimension number.

Note that here the volume is calculated asVi = mi
r i

, with the massmi is taking as constant

during all simulation time, and the densityr i is computed using the summation formulation

(3.26).

Other principles of SPH discretization in the context of multiphase �ow can be found in

the literature. For instance, the work of Grenier et al [128] , derives the governing equations

following a Lagrangian variational principle that leads subsequently to an Hamiltonian

system of particles. This formulation permits to model �ows where both interfaces and a

free surface are present. The details of these formulations are not discussed here, but can be

found in [128, 127, 130, 129].

For modeling of Non-Newtonian �uids within the principle of Generalized Newtonian

Fluids (GNL) technique [33, 343], other form of divergence of viscous stress tensor (devia-

toric tensor) is usually found in literature [98, 352]

1
r i

Ñ� t i =
nb

å
j

mj

r j

mi + mj

r2
i j + h 2

�
vi j

�
r i j � ÑWi j

�
+ r i j

�
vi j � ÑWi j

�	
(3.40)

Krimi et al [177] have extended this formulation to be applied to the Non-Newtonian

multiphase �uid and/or �uid-like mass framework. It reads as

1
r i

Ñ� t i =
1
mi

nb

å
j

(
V2

i + V2
j

r2
i j

)
r imj + r j mi

r i + r j

�
vi j

�
r i j � ÑWi j

�
+ r i j

�
vi j � ÑWi j

�	
(3.41)
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3.4 Surface tension for multiphase �uids

As is stated by Monaghan [234], there are at least three ways to include the surface

tension within the SPH framework.

The �rst one, is to assume that the SPH particle are real physical particles and introduce

between them a forces in order to mimic the effects of surface tension [154, 324, 21, 262,

328].

The second way, the surface tension equations are modeled by including for SPH �ows

an extra energy term in the particle Lagrangian [236, 254].

The third way, is to use the surface tension force within transition region at the interface

between the �uid phases (see �gure 3.4 ) under well known forms : Continuum Surface

Force (CSF) form or Continuum Surface Stress (CSS) form.

Figure 3.4 – Transition region of surface tension.

The Continuum Surface Force (CSF) formulation [40] describes the pressure-jump

condition normal to the separation interface of the �uids. Assuming that the surface tension

coef�cient s (1� 2) is constant between two �uid phases (1 and2), the expression of the force

can be expressed as

FST(1� 2) = s (1� 2)k n dS (3.42)

In equation (3.42),k , n and dS denote the curvature, the unit normal vector to the

interface (see �gure 3.4) and the delta function, respectively. In the context of the SPH

method, equation (3.42) reads as

F
ST(1� 2)
i = � s (1� 2) Ñ� ni ÑC (3.43)
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whereC is the color function that has a unit jump across the interface. It's equal to1 in one

particle �uid phase and 0 in its neighboring particle of other �uid phase.

Other alternative tensorial formulation of surface tension so-called the Continuum Surface

Stress (CSS) [180] can be also used. It is equivalent to the CSF formulation given in equation

(3.43)

FST
i = Ñ� P i (3.44)

whereP i de�nes the immiscible mixture surface stress tensor of the particlei (capillary

pressure tensor). Assuming that the particlei belongs to thel �uid phase, then the mixture

surface stress can be expressed as

P i = å
k6= l

Pkl
i (3.45)

In equation (4.16),Pkl
i is the �uid surface stress tensor between phasesk andl , de�ned as

Pkl
i =

s kl

kÑCkl
i k

�
kÑCkl

i k2I � ÑCkl
i 
 ÑCkl

i

�
(3.46)

Moriss [254] employs both formulation (CSF) and (CSS) in the context of WCSPH, The

obtained results have been reasonable. Hu and Adams [151] used the CSS with introducing

modi�cation in order to have more statable results. Adami et al [2] use the CSF formulation by

using new accurate divergence approximation to compute the curvature with good precision.

Krimi et al [178] exploit the idea of Adami et al [2] and use it in the framework of CSS

surface tension to simulate accurately the �uid problems including more than two phases.

3.5 Rigid body-�uid interaction

We consider a system of �uid containing a �oating rigid body with center of massRand

the velocity atR is referred toV. The equation of motion of the center of mass of discretized

rigid body can be expressed as

M
dV
dt

=
nk

å
k

mk fk (3.47)

Wherek refer tokth rigid particle constituting the global rigid body. The forcefk is the

hydrodynamics force per unit mass acting on the boundary particlek, mk is mass of rigid

particlek andnk is total number of rigid body particle. The forcefk is expressed as
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fk =
nFPs

å
l

fkl (3.48)

Wherefkl is the force per unit mass exerted by the �uid particlel on the boundary particle

k [316, 284, 316]

The equation of rotation of rigid body can read as

I
dW
dt

=
nk

å
k

mk(rk � R) � fk (3.49)

WhereWdenotes angular velocity,I is the moment of inertia andrk is the position of the

rigid particlek. The mathematical notation� refers to cross product.

The values ofV andWare predicted by integrating the equations (3.47) and (3.49). The

rigid body boundary particles move as part of the rigid body, thus, the position of boundary

particlek is given by

drk

dt
= vk = V + W� (rk � R) (3.50)

The above described technique conserves both linear and angular momentum [237, 245].

Hashemi et al [133] use another approach for modeling body motion by employed surface

integration on pressure and viscosity forces applied on the body elements.

3.6 Fluid-structure coupling strategies

In SPH method two ways of coupling strategies between the �uid and structure are

possible: Weak coupling (also called partitioned) and strong coupling (also called monolithic)

strategies.

For weak coupling between �uid and structure, either of the materials does not depend

on the other, it can be analyzed �rst. Herein, the solution on each material will be done

separately. For instance, as in the work of Shi et al [306], the �uid is solved �rst using a

Navier-Stokes solver by considering that the structure is a rigid moving wall. Subsequently,

the structure is solved using the assigned constitutive equation taking into consideration

the storage forces applied on it by the �uid. The drawback of this technique is that it may

allow for inter-penetration between the particle of both materials which leads to use a very

time step for the simulation. This coupling strategy is largely employed to manage the

interactions between �uid and rigid bodies [237, 245, 133, 174, 316, 284, 316], where the

�uid considers the rigid body as a dynamic wall boundary, whereas for rigid bodies, their

movement is determined from the forces applied by the �uid through the equations of motion
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described in the section 3.5. The algorithms of coupling �uid-structure which are based on

the use of explicit imposition of continuity conditions on the interface between �uid and

structure (continuity of normal stress and velocity) may lead to a weak coupling because of

the necessity to advance the solution from one material to another as it is realized in [181].

In the case of strong coupling of �uid and structure, both are solved simultaneously. The

lagrangian nature of the SPH method allows this strategy to be the simplest for the application

and the more robust one. It works just by introducing the contribution of all particles to the

summation in the SPH discretized equations regardless of their nature. Here, the coupling

conditions on the interface would be naturally satis�ed [6, 277].Among the works achieved

in this context, we advice the reader to refer to [13, 52, 169, 299, 215, 108, 331, 345, 315].

The above description of �uid-structure coupling strategies concerns only the SPH-SPH

applications (�uid ans structure are modeled with SPH method). Several other numerical

method can also be coupled in the �uid structure interactions framework such as SPH-FEM

(SPH method for �uid and �nites elements method for structure ) [107, 356, 147, 209, 208].

This category of coupling is general classed as a weak (partitioned) because of the different

natures of the methods and solvers.

3.7 Improvement in SPH method

The improvement of accuracy, stability and consistency of smoothed particle hydro-

dynamics method (SPH) can be seen via two general directions [296]: By improving the

approximation of the kernel function with its derivatives and/or by recovering the SPH

particle approximation of the governing equations.

3.7.1 Improvement in kernel approximation

The improvement of the kernel approximation can enhance signi�cantly the SPH results

specially when (i) the support of kernel is truncated with the boundaries (free surface or solid

boundaries for instance), (ii) small number of particle are present within the kernel [67], (iii)

the particles are not uniformly distributed [245].

Shepard formulation

Shepard formulation or also called Shepard �lter [304] represents the simplest correction

of the kernel approximation of the functionf at the positionr i . It reads as
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f (r i) �
nb

å
j

f (r j )WS
i jVj (3.51)

With

WS
i j =

Wi j
nb

å
j
WS

i jVj

(3.52)

Note that, the using of Shepard formulation garantees the normalization condition even

when the kernel support is not full (truncated by the free surface and/or solid boundaries)

and presents0th order consistencyC0. The Shepard formulation is usually employed to

re-initialize the density in order to smooth pressure oscillations and stabilize the simulation

[81, 122, 196], and also it is used for the measurement of physical proprieties at any given

position [178].

damping technique

The imposition of initial conditions in the framework of the SPH method may cause

spurious high-frequency oscillations due to arti�cial sound waves propagating through the

simulation domain. Monaghan et al [247] proposed a damping technique applied during

a prede�ned time period to reduce Such artefacts. This damping technique smoothes the

particle distribution and otherwise accelerates particles. The damping timeTD de�nes the

time period during which the acceleration due to the body force is mitigated by the factor

xD(t). The factorxD(t) is de�ned as [4]

xD(t) =

8
<

:

�
sin

�
t

TD
� 0:5

�
p + 1

�
t 6 TD

1 t > TD

(3.53)

MLS kernel

The Moving Least Square kernel (MLS) is developed by Dilts [87] and Belytschko et

al [23]. It presents an approximation of �rst-order consistencyC1 or in other words, it can

reproduce exactly a linear function. The functionf can be approximated with MLS kernel at

positionr i as follows

f (r i) �
nb

å
j

f (r j )WMLS
i j Vj (3.54)
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WMLS
i j =

�
A� 1 � e

�
� b Wi j (3.55)

Assuming that the positionr has in 3D space as coordinatesrT = [ x y z], the vectore, the

vectorb and the matrixA are expressed as

8
>>>><

>>>>:

bT = [ 1; (x j � xi); (y j � yi); (zj � zi)]

eT = [ 1;0;0;0]

A =
nb

å
j

(b
 b)Wi jVj

(3.56)

The symbol
 represents the outer product.

The MLS approximation is used generally to smooth density in order to mitigate the

spurious oscillations in pressure in the context of weakly compressible �ow hypothesis

[72, 268]. Colagrossi and Landrini [72] state that it is enough to use the MLS method to

smooth the density only once for each 20 time iterations in order to make the computation

time cost effective.

Kernel correction technique [36, 35]

The kernel correction technique [36, 35] is similar to MLS method [87]. It is based on the

enforcement of a any linear �eld to be exactly evaluated through the kernel approximation

formulation. Therefore, the functionf (r i) is evaluated as

f (r i) �
nb

å
j

f (r j )WC
i j Vj (3.57)

with,

WC
i j = a (r i)

�
1+ b(r i) � (r i � r j )

�
Wi j (3.58)

Wherea (r i) andb(r i) are the scalar and vector functions evaluated at the positionr i,

respectively.

Assuming thatf (r i) is a linear function (f (r i) = f 0 + f 1r i). This function can be written

via the formulation (3.57) as follows

f (r i) = f 0 + f 1r i =
nb

å
j

�
f 0 + f 1r j

�
WC

i j Vj (3.59)

As f 0 andf 1 are arbitrary, the following relations (3.60) and (3.61) can be concluded

from (3.59) as
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nb

å
j

WC
i j Vj = 1 (3.60)

nb

å
j

�
r i � r j

�
WC

i j Vj = 0 (3.61)

By substituting the formulation (3.58) into the relations (3.60) and (3.61), the parameters

a (r i) andb(r i) can be evaluated explicitly after simple algebra as follows

b(r i) =

"
nb

å
j

�
r i � r j

�



�
r i � r j

�
Wi j Vj

#� 1 nb

å
j

�
r j � r i

�
Wi j Vj (3.62)

and,

a (r i) =
1

nb

å
j

�
1+ b(r i) � (r i � r j )

�
Wi j Vj

(3.63)

Gradient correction of the kernel function

A corrected form of kernel gradient of equation 2.28 is developed by Randles and

Libersky [279] and since it presented in [36, 338, 55]. This corrected gradient can improve

the accuracy of the asymmetric gradient formulation to the second order [264] and makes it

a �rst-order consistent [99]. The principal idea is to enforce the ful�llment of the condition

(2.23) to be satis�ed in the context of gradient with asymmetric form (2.28). The Corrected

gradient of the kernel function can be expressed as :

ÑWC
i j = L(r i) Ñ �Wi j (3.64)

with L(r i) is the normalization matrix expressed as the inverse of the discretized version

of the identity condition (2.23). It can read as

L(r i) =

 
nb

å
j

(r j � r i) 
 ÑW(r;h) Vj

! � 1

(3.65)

The corrected �rst-order consistent gradient operator of the functionf (r i) is expressed in

terms ofL(r i) as follows :

Ñ f (r i) � L(r i)
nb

å
j

f ji ÑWi jVj (3.66)
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With f ji = f (r j ) � f (r i).

The matrixL(r i) need to be �rstly constructed and then inverted. To avoid this additional

computational task , Adami et al [2] have proposed another simple explicit expression based

on the two identities presented in Español and Revenga [97]. This formulation can be

expressed as

ÑWC
i j = l(r i) ÑWi j (3.67)

Wherel (r i) is a scalar function and it is expressed as

l (r i) =
n

å nb
j (r j � r i) � ÑWi j Vj

(3.68)

With n is the number of spatial dimensions.

The corrected �rst-order consistent gradient operator of the functionf (r i) is expressed in

terms of the scalarl (r i) as follows :

Ñ f (r i) � l (r i)
nb

å
j

f ji ÑWi jVj (3.69)

Note that it is possible to use these gradients kernel correction (L(r i) and/orl (r i) ) into

the asymmetric form of the equation 2.28.

Correction of the SPH Laplacian operator

The SPH Laplacian approximation (2.31) is only zero-order consistent, and making it

higher order consistent via the kernel function correction is quite complex. Schwaiger [295]

proposed a method more consistent than the last one, and can achieve an approximation of

the second order consistency. Later on, Fatehi and Manzari [99] gave an new formulation

that grantee exactly a second-order consistency. this technique requires the computation of a

fourth-order tensor. This formulation of SPH Laplacian operator of the functionf (r i) is then

expressed as:

Ñ � Ñ f (r i) � Bi : [2
nb

å
j

Vj r i j 
 ÑWi j

 
fi j
r2
i j

�
r i j

r2
i j

� Ñ f (r i)

!

:] (3.70)

With Ñ f (r i) is the �rst order consistent gradient formulation given through the equation

(3.66), andBi = B(r i) is a fourth-order symmetric that can be determined from
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Bi :

(
nb

å
j

Vj
r i j

r2
i j


 r i j 
 r i j 
 ÑWi j

+

 
nb

å
j

Vj

r2
i j

r i j 
 r i j 
 ÑWi j

!

� Li �

 
nb

å
j

Vj r i j 
 r i j 
 ÑWi j

!)

= � I

(3.71)

With Li = L(r i) is the normalization matrix tensor given by the equation (3.65) . The

determination of the fourth order tensorBi is done through solving the system (3.71) which

makes this approach relatively expensive in terms of computation task.

3.7.2 Improvement by recovering the SPH particle approximation of

the governing equations

Ferrari's diffusive term

Ferrari et al [105] proposed a diffusive term inspired from Riemann-based SPH schemes

[338, 256, 25] by introducing the Rusanov �ux into the continuity equation. This term

improves the numerical stability of the SPH scheme without use of an arti�cial viscosity.

DFerr
i =

nb

å
j

mj

�
maxf c0i ;c0 j g

r j
(r j � r i)

�
ei j � ÑWi j (3.72)

Whereei j is the inter-particles unite vector that is expressed asei j =
r i j
r i j

.

Fatehi's diffusive term

Fatehi and Manzari [100] have been developed a diffusive term (DFat) to deal with non-

physical oscillations in the pressure. This term is associated with the checkerboard problem

[106] which is in the context of grid-based method. The use of this diffusive terms gives the

advantageous of no need for neither arti�cial viscosity nor arti�cial stress for garantee the

stability of SPH scheme [100].

DFat
i = � r idt

��
Ñ �

�
Ñp
r

��

i
�

�
Ñ �

Ñp
r

�

i

�
(3.73)

Where, �
Ñ �

�
Ñp
r

��

i
=

nb

å
j

Vj
�
ÑÑWi j

�
�

 �
Ñp
r

�

j
�

�
Ñp
r

�

i

!

(3.74)
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and

�
Ñ �

�
Ñp
r

��

i
= Bi :

(

2
nb

å
j

Vj r i j 
 ÑWi j

 
pi � p j

r2
i j r i j

�
r i j

r2
i j

�
�

Ñp
r

�

i

!)

(3.75)

Here,Bi denote the normalization matrix determined from solving of the system (3.71)

and WithLi = L(r i) is the normalization matrix tensor given by the equation (3.65). The

operation
D

Ñp
r

E

i
is the �rst order consistent gradient formulation of the quantity

�
p
r

�
given

through the equation (3.66).

d-SPH

d-SPH term is an arti�cial diffusive term used in the context of weakly compressible

SPH (WCSPH). It was �rst proposed by Molteni and Colagrossi [228], and has since been

improved by Antuono et al [10] to deal better with free surface �ow simulation, and then, it

was applied in several works such as [9, 7, 216–218]. This term (Dd� SPH) is added into the

right hand side of the continuity equation to reduce the spurious numerical high-frequency

oscillations from the pressure �eld. The diffusive termDd� SPH is expressed at the particlei

as

Dd� SPH
i = d hi c0

nb

å
j

Y i j ÑWi jVj (3.76)

The vectorY i j is written as

Y i j = 2
�
r i � r j

� r i j

r2
i j

�
�

hÑr i L
i + hÑr i L

j
	

(3.77)

The symbolhÑr i L
i denotes renormalized density gradient calculated through the equation

(3.66) .

The advantages and drawbacks of the using of the diffusive termDd� SPH into the SPH

scheme are discussed in the work of Antuono et al. [8].

XSPH correction

The XSPH [230] is a simple method method used to prevent particle inter-penetration and

to smooth the �ow �eld in order to avoid a highly disordered con�gurations where negative

pressures can be occurred. This is done by moving each particle with a velocity closer to the

average one within its support kernel. The XSPH method modify the displacement equation

of the governing equations system (3.1) as
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dr i

dt
= vi + eXSPH

nb

å
j

mj
v ji

r i j
Wi j (3.78)

Where the constanteXSPH is taken within the range of0 to 1. The commonly used value

of e is e = 0:5 [120, 293]. Liu and Liu [198] stated thate = 0:3 seems to be a good choice

in simulating incompressible �ows.r i j denotes the average density between the particlei

and j (r i j = r i+ r j
2 ).

Arti�cial viscosity

The arti�cial viscosity is an additional term added to the momentum equation in order

to improve the stability of numerical scheme. This term stops particles from approaching

each other when they are very close or in other words, it prevents the inter-penetration of

particles. This term was �rstly introduced by Lucy [210] and then improved by Monaghan

and Gingold [235] in order to ensure the linear and angular momentum conservation. The

viscous term, denoted byP i j is added to the pressure terms in SPH momentum equations to

give

dvi

dt
= �

nb

å
j

mj

 
pi

r 2
i

+
p j

r 2
j

+ P i j

!

ÑWi j (3.79)

Or more generally

dvi

dt
=

nb

å
j

mj

 
s i

r 2
i

+
s j

r 2
j

� P i j I

!

ÑWi j (3.80)

WhereI is the identity matrix andP i j is de�ned as

P i j = � a
hi j c0i j

r i j

 
vi j � r i j

r2
i j + h 2

!

(3.81)

Hereh 2 = ( 0:1h)2 is used to ensure a non-zero denominator, andr i j , hi j andc0i j denote

the averages of the density, the smoothing length and the speed of sound of the particlesi

and j, respectively.

This arti�cial viscosity can be translated into a physical viscosity [245] in order to

simulate viscous �ows [247, 327, 4]. Therfore, The relation that links the physical kinematic

viscosityn and the parameters of artii�al viscosity is given as

n =
1

2(n+ 2)
a hi j c0i j (3.82)
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Wheren represents the number of space dimensions.

It is found that the formulation of arti�cial viscosityP i j works well for shocks of

moderate strength [235]. However, when Mach number becomes very high, this formulation

will not serve the problem [245]. To deal with this problem, Monaghan [242] has added an

extra term to the arti�cial viscosity (3.81)

P i j =

8
<

:

� a c0i j F i j + bF 2
i j

r i j
vi j � r i j < 0

0 vi j � r i j � 0
(3.83)

WhereF i j is read as

F i j =
hi j vi j � r i j

r2
i j + h 2

(3.84)

Here,a andb are free parameters that depend on the problem to be simulated. Good

results have been obtained with the choice ofa = 1 andb = 2 [245]. This form is naturally

deduced by considering the aspects of the dissipative term in shock solutions based on

Riemann solvers [233]. It reads as

F i j = � K vsig
vi j � r i j

r i j r i j
(3.85)

With the parameterK = 0:5 and thevsig denotes signal velocity and it is de�ned as

vsig = c0i + c0 j � bvi j � ei j (3.86)

Whereei j =
r i j
r i j

andb = 4.

Tensile instability and its correction

The tensile instability can be de�ned in the context of SPH method as a numerical

artifact due to the attraction, clustering and clumping of the SPH particles. For WCSPH

�uid simulation, the clumping of particle may be caused by the negative pressure resulting

from the approximation of the equation of state [244, 255]. For the solid material simulation,

the behavior of SPH particles mimic the one of the physical atoms of the solid material.

Therefore, when the solid material is exposed to the compression, the SPH particles repel

each other. Whereas, when the solid material is exposed to tension, the SPH particles form

clumps which induce subsequently the tensile instability [255, 319]. Swegle et al [319]

have performed Von-Neumann analysis to investigate the stability of SPH method. They

concluded that the suf�cient condition for an unstable growth is
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W”s > 0 (3.87)

WhereW” is the second derivative of the kernel functionW or also represents the

slop of the �rst derivative of the kernelW0 , ands is particle stress that is by convention

negative(s < 0) in compression and positive in tension(s > 0). The �gure 3.5 summarizes

schematically the stability regimes in the case of cubic B-spline kernel function. When the

slope of the derivative of kernel function, the scheme is stable in tension and unstable in

compression, and vis-versa.

Figure 3.5 – Stability regimes for cubic spline kernel function.

several attempts have been made to remove the tensile instability using different ap-

proaches [55, 94, 280], the most successful one has been the arti�cial stress approach

[244, 124]. The idea behind the arti�cial stress approach is to include small repulsive force

between two neighboring particles when they are subjected to the attraction due to the tensile

state in order to avoid the clumping and clustering of particles. By applying this approach,

the momentum equation is modi�ed from the equation (3.80) to the following one

dvi

dt
=

nb

å
j

mj

 
s i

r 2
i

+
s j

r 2
j

� P i j I + f nAS
i j (Ri + Rj )

!

ÑWi j (3.88)

WherenAS is an exponent factor (is generally taken equal to 4) andfi j is de�ned as

fi j =
W(r i j ;h)
W(Dx0;h)

(3.89)
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WhereDx0 is the initial particles spacing. Assuming that computational problem is in 2D

with planar Cartesian coordinates(x;y), the components of the arti�cial stress tensorRare

given by the following transformation expressions

8
>>><

>>>:

Rxx = R0
xxcos2q + R0

yysin2q

Ryy = R0
xxsin2q + R0

yycos2q

Rxy = sinq cosq(R0
xx � R0

yy)

(3.90)

WhereR0
xx andR0

yy are the diagonal components of the stress tensorR0described in the

coordinates frame(x0;y0). The coordinates frame(x0;y0) are rotated with respect to(x;y) by

an angle ofq which is given as

tan2q =
2sxy

sxx � syy
(3.91)

By this rotation, the stress tensor in the rotated frame becomes a diagonal tensor. Here,

sxx, sxy andsyy denote the components of the Cauchy stress tensor wrote in the 2D original

frame(x;y). The diagonal componentR0
xx of the arti�cial stressR0frame is given by [124]

R0
xx =

8
<

:
� eAS

s 0
xx
r if s 0

xx > 0

0 otherwise
(3.92)

WhereeAS is a small parameter chosen as0 < eAS< 1. The same rule applies forR0
yy

with (xx) replaced by(yy). The components of the Cauchy stress tensors 0described in the

rotated frame(x0;y0) can be expressed in terms of those in the original frame (s ) as follows

8
<

:
s 0

xx = cos2qsxx+ 2cosq sinqsxy+ sin2qsyy

s 0
yy = sin2qsxx � 2cosq sinqsxy+ cos2qsyy

(3.93)

3.8 Search neighboring particles

It is necessary to know the neighbors of any given particlei in order to approximate at

that point the �eld of particle variables using SPH discretized formulations. The neighbors

of the particlei are de�ned as all the particlesj within the compact supportW(kh) centered

at that point. Since the connectivity between the computational particles does not exist, the

distribution of particles changes in time as the continuum material evolves in space. Thus,

the neighbors of all particlesi requires to be searched continuously at each time step. The

straightforward method to search the neighbors of any given particlei is to check its distance
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with all other particlesj and select those that have a distance less than or equal the radius

of chosen kernel function(kh), in other words:j is neighbor ofi only whenkr i � r jk� kh.

This searching method is so-called All-pair search [198]. This method has an algorithmic

complexity ofO(N2) which could be cost prohibitive in terms of computational time. Here

N denotes the total number of particles within the global domainW.

The most popular alternative method to search particle neighbors is the so-called linked

list method [229, 142]. This method is generally used when a constant smoothing lengthh

is employed for all particles. In this method a temporary regular grid (square for 2D and

cubic for 3D space) is overlaid on the problem domain. The size of grid cells is carefully

selected to match with the radius of used kernel functionkh. All particles are assigned to the

corresponding cell via a linked list. This method restricts the search of the neighborsj of the

particlei only in the surrounding cell of the particlei. This method is quite ef�cient in terms

of computational time since it can present an algorithmic complexity ofO(N) [111]. The

biggest dif�culty with this problem is when a variable smoothing lengthh is used [117].

When a variable smoothing length is employed; the tree-algorithms for searching neigh-

bors can be more ef�cient [111]. It works by creating ordered trees that correspond to the

particle positions. Subsequently, the structure of trees will be used to �nd the neighboring

particles. The complexity of this algorithm is of orderO(Nlog(N)) [135]. The operating

principle of this algorithm is discussed in more detail in [12, 18, 134, 214].

3.9 Boundary conditions

3.9.1 Wall boundary conditions

The repulsive force technique proposed by Monaghan [243] is based on the use of

Lennard-Jones forces between �uid particles and the walls. This technique is very simple

to implement, however it may generate large numerical oscillation in the solid boundary

[199, 205]. Later, softer version of repulsive force technique was developed by Rogers and

Dalrymple [287] for modeling of tsunami waves with SPH method.

The Ghost Particles technique was �rst proposed by Libersky et al [195] to re�ect

a symmetrical condition using the opposite velocity on the re�ecting image of particles.

Colagrossi and Landrini [72] have extended this technique to be applied on rigid boundary by

introducing into the ghost particles the density, pressure and velocity re�ections. Morris et al

[255] have proposed a technique to implement non-slip boundary conditions by introducing

a virtual velocity into the ghost particles. This condition provides full compact support near
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Figure 3.6 – The principle of linked list algorithm.

boundaries by using ghost particles. The drawback of this technique is presented in the

treatment of complex geometries of boundaries (for instance the corners ).

In the Dummy particles technique proposed by Takeda et al [322], �xed layers of particles

are placed in order to represent the solid boundary on the one hand, and �ll the compact

support near it on the other hand. Comparing with Ghost Particle technique, this one can

handle with complex geometrical shapes of boundaries. Issa et al [160] have extended this

technique to investegate the turbulence modeling in the framework of SPH method. Adami

et al [4] proposed a generalized formulations of the dummy particle technique by providing

an accurate pressure approximation on the boundaries particles based on local force balance.

Krimi et al [178] have extended this technique based on the work of Adami et al [4] to be

applied in the context of multiphase �uid �ow with different densities and viscosities.

The �xed Ghost Particles proposed by Marrone et al [216, 219], it is based on �xed

layers of ghost particles placed around the of the solid boundary. On these particles the �uid

properties are interpolated by using high order accuracy kernel function.

The coupled dynamic solid boundary treatment technique is introduced by [203], it

consists of the use of two types of virtual particles, repulsive particles and �xed particles to

represent the solid boundary in order to bene�t from the advantages of each technique. The
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repulsive particles are placed right on the solid boundary, whereas for the �xed particles are

placed outside the solid boundary area.

A semi analytical wall boundary condition was developed in 2D by Ferrand et al [104]

based on the works of Kulasegaram et al [179] and De Leffe et al [84]. In this method the

wall boundaries are discretized using boundary elements (segments and vertices ). This

technique consists of overcoming the completeness of the kernel support near boundaries

by computing surface integrals and using renormalization factor in the weakly compressible

SPH (WCSPH) discrete interpolation. Macia et al [212] and Leroy et al [192] use this method

in the context of incompressible SPH method (ISPH). Mayrhofer et [223, 222] extend this

method to 3D applications. A it is stated by Valizadeh and Monaghan [336] this method

gives a reasonable results, while it is dif�cult to be implemented and make the simulations

more time consuming.

Fatehi and Manzari [100] have proposed a new technique for modeling wall boundary

conditions with the use of one layers of solid particles, This condition is imposed in the

accurate calculation of pressure on the wall to prevent the penetration of the particles in the

wall. This technique performs well in situations of complex geometry. The method was

succe�y applied by Hashemi et al [133] in order to simulate the motion of rigid bodies in

Newtonian �uid �ows.

(a) (b)

(c) (d)

Figure 3.7 – Wall boundary conditions techniques: (a) repulsive force technique. (b) Ghost
Particles technique. (c) Dummy particles Fixed Ghost Particles techniques. (d) Coupled
dynamic boundary technique.
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3.9.2 In�ow and OutFlow boundary conditions

Generally, the in�ow and out�ow boundary conditions are modeled using two buffer areas

of particles placed alongside the inlets and outlets of the �uid domain [185, 146, 334, 101].

The width of the in�ow and/or out�ow buffer zones according to the �ow direction is taken

equal to or greater than the radius of support of the kernel function (� kh) in order to insure

the completeness of support kernel (see �gure 3.8).

As the particles within the in�ow buffer zone move toward the �uid domain under

prescribed velocities, they become �uid particle which evolve in accordance with the SPH

equations. At the same time when the in�ow particles enter the �uid domain, new alternative

in�ow particles are created in the in�ow zone in a periodic way. Moreover, only the in�ow

particles effects �uid particles and not vice-versa.

In a similar manner , when �uid particles leave the �uid domain, they become out�ow

particles in out�ow zone where the physical properties remained frozen in time except for

their positions. The out�ow particles will be deleted when they move out of out�ow zone.

Leroy et al [191] and Ferrand et al [103] have extended the uni�ed semi analytical

wall boundary condition method [104] to be applied in the open boundaries conditions

(in�ow/out�ow boundaries) in the framework of incompressible et weakly compressible SPH

(ISPH and WCSPH). Here, no buffer zones are required for modeling in�ow and out�ow

conditions. for more details about this method, we advise the reader to refer to [191, 103].

Figure 3.8 – In�ow and Out�ow open boundary conditions.
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3.9.3 Periodic boundary conditions

The periodic boundary condition is a classic open boundary condition in the �uid me-

chanics. This condition has a large range of applications in the context of SPH method as in

[255, 4]. Particles near to a periodic boundary interact with the particles close to the comple-

mentary open periodic boundary on the other side of the domain. Therefore, the information

is shared in both ways. Moreover, if a particle leaves the computational �uid domain through

a periodic boundary, the same particle is reintroduced at the complementary boundary. When

a support of kernel function of a particle is clipped by periodic open boundary, the SPH

interpolation at this particle is recover by the remainder part of its clipped support applied at

the complimentary open periodic boundary [121] (see �gure 3.9). It is also possible to do the

SPH interpolation by using buffer zones with a width equal to or greater than the radius of

support kernel(� kh) at the open periodic boundaries that contain a mirror of computational

�uid particles near of the complementary boundaries (see �gure 3.10).

Figure 3.9 – Open periodic boundary condition with clipped kernel support method.

3.9.4 Free surface condition

The treatment of a free surface boundary requires the application of the kinetic and

the dynamic boundary condition. The kinetic condition consists in ensuring that the initial

free surface particles remain on the boundary, This condition is naturally ful�lled for both

WCSPH and ISPH schemes, since the particles move according to their Lagrangian velocities

[340]. The dynamic condition consists in imposing of null-pressure(p= 0) at the free surface.

For WCSPH this condition is implicitly satis�ed due to use of equation of state [70, 71, 263].

Wherase for the ISPH scheme, the free surface particles should �rst be detected correctly
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Figure 3.10 – Open periodic boundary condition with buffer zones method.

and thus imposed a null-pressure condition. Several methods have been used in the literature

in order to detected the free surface particles. The traditional technique is done by evaluating

the particle intermediate densitiesr � , if the (r �
i < 0:99r 0) , then the particlei is at the free

surface [303, 300, 171, 172, 170, 13]. A similar volume based technique was proposed in

[295]. Other free surface detection technique was proposed in [188] based on the calculation

of the divergence of particle position which is compared subsequently to a threshold value

�xed accordingly to the number of space dimensionsn. A simple purely geometrical-based

technique was proposed in [16]. A more sophisticated and accurate free-surface detection

algorithm based on SPH interpolations is proposed by Marrone [220]. The implementation

of this algorithm does not require complex geometrical procedures.

3.10 Time integration algorithm

The SPH method transforms the physical continuum equations that are generally partial

differential equations (PDEs) into ordinary differential equations (ODEs). Therefore, any

time integration scheme of desired accuracy can be used. We can cite some algorithms

among the most popular ones used in SPH, for instance : Predictor-Corrector algorithm

[230]; velocity-Verlet algorithm [337, 4], Symplectic algorithm [245]; Leap-Frog algorithm

[202, 48]; Runge–Kutta algorithm [161, 72, 60].
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3.11 Stability conditions

In order to guarantee a stable SPH computation, several time-step criteria [242, 255, 80,

67] must be satis�ed.

The CFL time-step condition for ISPH and EISPH [82] methods

dt � 0:25
h

max(kvik)
(3.94)

The CFL time-step condition for WCSPH method

dt � 0:25
h

max(c0i ) + max(kvik)
(3.95)

When the arti�cial viscosity of equation (3.83) is taking into account, the time step will

be subjected to new condition given by Monaghan [230]

dt � 0:3min
hi

c0i + 1:2(a c0i + b maxf i j )
(3.96)

The viscous-diffusion condition

dt � 0:125
h2

max( mi
r 0i

)
(3.97)

The body force condition

dt � 0:25
�

h

kFbk

� 1=2

(3.98)

surface tension condition (in the case of interfacial multiphase SPH �uid �ow ) [40, 151]

dt � 0:25
�

min(r k; r l )h3

2ps k� l

� 1=2

(3.99)

Wheres k� l denotes the surface tension coef�cient between the �uid phasesk andl .

The �nal time-step is taking as the minimum of all time-steps based on the above

conditions.





Chapter 4

SPH : Modeling of interfacial multiphase

�uid �ows

Au cours des dernières décennies, la modélisation des écoulements de �uides multi-

phasiques a beaucoup intéressé les chercheurs, les scienti�ques et les ingénieurs, en raison

de sa large application dans le domaine industriel et dans la nature. Des modèles numériques

utilisant le maillage ou sans le maillage sont disponibles pour traiter des problèmes de

simulations des écoulements �uides multiphasiques via la discrétisation des équations de

Navier-Stokes. Dans le contexte de l'approche avec maillage, des techniques de capture ou

de suivi de l'interface entre les phases de �uide sont généralement requises. Les techniques

les plus courantes comprennent la méthode VOF (Volume Of Fluid) [141], la méthode LS

(level set) [266] et la méthode de suivi du front [261] [ 333]. Le principal inconvénient de

ces techniques est la dif�culté de prévoir l'évolution du mouvement de l'interface située

entres les phases de �uide. La mauvaise prédiction de l'évolution de cette interface va

causer par la suite une mauvaise approximation de sa courbure et son vecteur normal, ce qui

provoque explicitement des erreurs en termes de forces de tension de surface. L'utilisation

des algorithmes adaptés au raf�nement du maillage [31] permettent de minimiser ces erreurs.

Cependant, la génération d'une grande quantité de mailles conduit à un grand temps de

calcul. La méthode SPH (Smoothed Particle Hydrodynamics) est une méthode sans maillage

qui permet de gérer naturellement les interfaces entre les phases de �uide sans utiliser

des algorithmes spéci�ques. Cette méthode a été développée en 1977 pour réaliser des

simulations en astrophysiques [118] [ 210]. Plus tard, en 1988, elle a été appliquée à la

simulation des écoulements de �uides [241]. Depuis ce moment, la méthode SPH a reçu

beaucoup d'attention et de grandes améliorations ont été développées.

Dans le contexte de la méthode SPH, plusieurs formulations de tension de surface ont été

développées pour traiter les problèmes d'écoulement de �uides multiphasiques. La plupart
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d'entre elles sont basées sur la méthode Continuum Surface Force (CSF) développée par

Brackbill et al [40] ou avec sa variante, la méthode Continuum Stress Surface (CSS) [180].

Les méthodes CSF et CSS ont été initialement développées dans le cadre de methodes

numérique utilisant le maillage. Morris [254] a étendu ces formulations pour des applica-

tions aux méthodes sans maillage, notamment la méthode SPH. Cependant, Hu et Adams

ont rapporté dans [151] qu'une contribution de pression négative à la contrainte de ten-

sion de surface peut apparaître lorsque la formulation CSS est explicitement appliquée.

Cette contribution de pression négative pourrait causer des problèmes d'instabilité près

de l'interface des �uides, et ils ont proposé une modi�cation de la formulation CSS a�n

de l'éliminer. Par la suite, cette formulation a été appliquée à de nombreux cas de �uides

multiphasiques [150, 149, 128, 258]. Néanmoins, la formulation CSS ne remplit pas le

caractère tangentiel du tenseur des contraintes de surface (tenseur de la pression capillaire)

[127]. Une formulation alternative de la tension de surface pour SPH a été présentée dans

[154, 324, 326]. Cette formulation considère les particules SPH comme des vraies particules

�uides avec des forces attractives / répulsives imbriquées entre elles. La dé�nition de ces

forces pour reproduire les effets de la tension de surface a permis d'obtenir des résultats

prometteurs dans plusieurs cas de test impliquant des gouttes et des écoulements à travers

des milieux fracturés.

Dans ce travail, nous présentons une extension de la formulation de tension de surface

proposée par Adami et al [2] pour qu'elle soit applicable dans le cas de simulation de plus de

deux phases de �uide. Cette formulation est basée sur la méthode Continuum Stress Surface

(CSS) et présente trois majeurs avantages. Premièrement, elle améliore la stabilité en utilisant

une approximation consistante de premier ordre pour calculer l'opérateur de divergence.

Deuxièmement, la modi�cation proposée respecte le caractère tangentiel physique de la

tension de surface. Troisièmement, la formulation proposée béné�cie de tous les avantages

de la formulation d'Adami et al [2], et de plus, elle peut être appliquée à des simulations

avec plus de deux phases de �uide. Ces avantages font de notre formulation de tension de

surface une bonne alternative à celle proposée par Adams et Hu [151], qui est largement

utilisée dans le contexte de la méthode SPH [150, 149, 128, 258]. Malheureusement, et de

manière similaire à la formulation de [2], notre formulation ne conserve pas exactement

le moment. A�n de permettre l'application du modèle SPH développé pour des problèmes

d'écoulement multiphasique avec présence de paroi rigides, nous présentons également une

modi�cation des conditions aux limites des parois généralisées [4].

À la �n, nous présentons une extension de la technique d'amortissement numérique

(Damping) présentée dans [4] pour stabiliser la phase initiale transitoire de simulation

d'écoulement de �uide multiphase gravitationnelle.



101

In recent decades, modeling of multiphase �uid �ows has been attracted a large interest from

researchers, scientists and engineers, due to its large applications in natural and industrial

�elds. Numerical models in both Mesh-based and Meshless approaches are available to deal

with multiphase �uid �ows simulations problems via the discretization of Navier-Stokes

equations. In the context of grid-based approach techniques for capturing or tracking the

phase interface are usually required. The most common techniques include the VOF (Volume

Of Fluid) method [141], the LS (level set) method [266] and the front tracking method [261]

[333]. The main drawback of these techniques is the dif�culty in predicting the evolution of a

moving interface. The inaccurate prediction of the evolution of interface causes subsequently

a wrong approximation of its curvature and normal vector which explicitly causes errors

in terms of surface tension forces. The use of adaptive mesh re�nement algorithms [31]

can minimize these errors. However, the generation of a large amount of grid cells in these

methods leads to a large computational time. The Smoothed Particle Hydrodynamics (SPH)

method, is a meshless method that has the ability to deal with moving interfaces naturally,

without using any algorithm for interface tracking. This method was �rst developed in 1977

to treat astrophysical simulations [118] [210]. Later, in 1988 it was applied to the simulation

of �uid �ows [ 241]. Since then, the SPH method has received lots of attention and large

improvements have been developed.

In the context of SPH method, several surface tension formulations have been developed to

deal with multiphase �uid �ows problems. Most of them are based on the Continuum Surface

Force (CSF) method developed by Brackbill et al [40] or with its variant, the Continuum

Stress Surface (CSS) method [180]. CSF and CSS methods were initially developed for

mesh-based applications. Morris [254] extended these formulations to meshless applications

in the framework of the SPH method. However, Hu and Adams reported in [151] that a

negative pressure contribution to the surface stress may appear when the CSS formulation

is applied. This negative pressure contribution might cause instability problems near to the

�uids interface, and they proposed a modi�cation to the CSS formulation in order to eliminate

it. Afterwards, this formulation was applied to many multiphase �uid �ows applications

[150, 149, 128, 258]. However, the CSS formulation does not ful�ll the tangential character

of the surface stress tensor (capillary pressure tensor) [127]. An alternative formulation of

the surface tension for SPH was presented in [154, 324, 326]. This formulation consider

SPH particles as real �uid particles with attractive/repulsive forces among them. De�ning

these forces to reproduce the effects of surface tension has been obtained promising results

in several test cases involving drops and �ows through fractured media.

In this work, we present an extension of the surface tension formulation proposed by

Adami et al [2] to be applicable in the case of more than two �uid phases simulations.
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It is based on the Continuum Stress Surface formulation (CSS) and presents three major

advantages. First, it enhances the stability by using a �rst-order consistency approximation

to calculate the divergence operator. Second, the proposed modi�cation respects the physical

tangential character of the surface tension. Third, the proposed formulation bene�ts from all

the advantages of the formulation of Adami et al [2], and in addition, it can be applied to

simulations with more than two �uid phases. These advantages make our surface tension

formulation as a good alternative to the one proposed by Adams and Hu [151] which is widely

used in the context of SPH method [150, 149, 128, 258]. Unfortunately, and similarly to the

original formulation of [2], the formulation does not conserve exactly the total momentum.

In order to allow the application of the developed SPH method to multiphase �uid �ow wall-

bounded problems, we also present a modi�cation of generalized wall boundary conditions

[4] .

Finally, we present an extension of the damping technique presented in [4] to smooth the

initial transient phase of gravitational multiphase �uid �ow simulations.

4.1 Multiphase model

4.1.1 Governing equations

In this work we assume a weakly compressible viscous �uid �ow in isothermal condi-

tions. Under these hypothesis, the Navier-Stokes and displacement equations expressed in

Lagrangian form read as

8
>>><

>>>:

dr
dt = � r Ñ:v
dv
dt = 1

r

�
� Ñp+ FVis+ FST

�
+ g

dr
dt = v

(4.1)

where d(:)
dt represents the material derivative following an in�nitesimal �uid element.Ñ

is the nabla operator (gradient),r ; p;v; r andg represent density, pressure, velocity vector,

position vector, and the gravitational acceleration vector, respectively.FVis andFST denote

the viscous and surface tension forces, respectively.

The weakly compressible smoothed particle hydrodynamics approach (WCSPH) was used in

this work [243]. In order to close the system (4.1)it is required the use of an equation of state

(EOS) which explicitly de�nes the pressure from the density instead to solve the Poisson

equation. In this work the isothermal equation of state [254] is used which is expressed as
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p = pr

��
r
r 0

�
� 1

�
+ pb (4.2)

wherer 0, pr andpb denote the reference density, the reference pressure, and the background

pressure, respectively. For the linear constitutive equation of state given by equation(5.2) the

reference pressure is a function of the reference density and reference speed of soundc0

pr = r 0c2
0 (4.3)

The use of the physical speed of sound as a reference leads to a very small time step according

to the stability conditions explained in 4.1.4. It is then a common practice to use an arti�cial

speed of sound as a reference. Thus, following [254] and [308] the value ofc0 is determined

here as

c2
0 � max

�
U2

0

dr
;
kgkL0

dr
;

s
r 0L0dr

;
mU0

r 0L0dr

�
(4.4)

WhereU0, L0, mands are the reference velocity, reference length, dynamic viscosity and

surface tension coef�cient, respectively.d r denote the dimensionless density variation which

is set to 1% (dr = 0:01 ).

In the case of multiphase �uid �ows, the reference pressure is chosen to be identical for all

�uid phases, following [72]. Therefore, the speed of sound in each phase will be different in

such a way that the reference pressure for all �uid phases is conserved.

pr = pr1 = ::: = prNf
(4.5)

pr = r 01c
2
01

= ::: = r 0Nf
c2

0Nf
: (4.6)

where the subscriptNf denotes the number of �uid phases. This condition enhances the

numerical stability of the computations [72]. Hence, the choice of the arti�cial speed of

soundc0 is taken in such a way that both equations (5.4) and (5.6) are satis�ed in all �uid

phases.

For numerical problems involving single-phase free surface �uid �ows, the background pres-

sure is generally set to zero(pb = 0). Furthermore, for simulations of single or multiphase

con�ned �uid �ows, the pressure is chosen as a positive value suf�cient to guarantee the

positivity of the calculated pressure �eld via the equation of state in order to avoid the tensile

instability [218]. In this work, the numerical experiments show that the ideal background
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pressurepb is chosen as a function of the reference pressure and it is proportional to0:05pr

(i.e : pb µ 0:05pr ).

4.1.2 Discrete form of governing equations

The smoothed particle hydrodynamics is a meshless method. It discretizes the physical

space into many discrete elements, usually called particles, without any connectivity among

them. This method is based on the approximation of any physical scalar (or vector) �eld

using the convolution formulation. Numerically, it is performed by replacing the Dirac

delta function with a regular smooth function, which is called kernel. This function must

satisfy some conditions such as symmetry (even function), normalization, compactness of it

support, among others. We refer the interested reader to [200] for more details. The kernel

function used in this work is the quintic spline [253] de�ned in equation (4.7). This kernel

was selected since it prevents a high disorder in the particle distribution [? ]. The kernel

function depends on a parameterh, called the smoothing length, which de�nes the domain of

in�uence of the kernel function. In this work, the smoothing lengthh is a constant which

is chosen relative to the initial inter-particle distancedx0 (h = 1:33dx0). The initial particle

volume is taken asV0 = dx0
d, with d is the space dimension number. The mass of each

particlei of different �uid phases is chosen to be constant and equal tom= r 0PhaseV0 during

all the simulation time.

W(r;h) = ad

8
>>>>><

>>>>>:

(3� r
h)5 � 6(2� r

h)5 + 15(1� r
h)5 0 � r

h < 1

(3� r
h)5 � 6(2� r

h)5 1 � r
h < 2

(3� r
h)5 2 � r

h < 3

0 r
h � 3

(4.7)

wheread = 1
120h, ad = 7

478h2p andad = 3
359h3p for 1D, 2D and 3D cases, respectively.r is

the distance between two neighboring particlesi and j

Hu and Adams [151] developed a formulation that exactly guarantees mass conservation. In

this formulation, the continuity equation of the Navier-Stokes system (4.1), can be replaced

by the expression

r i = mi

nb

å
j
Wi j (4.8)
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wherer i andmi are the density and the mass of the particlei, respectively.Wi j = W(r i j ;h) is

the Kernel function,r i j = r i � r j is the distance between the particlei and its neighboursj.

The number of particles in the neighborhood of particlei is denoted asnb.

This formulation is widely used in SPH codes, and it works very well in the case of con�ned

�uid �ow simulations and allows the use of high values of the CFL number. However,

this formulation is very sensitive to the particle disorder. Small variations of the particle

positions cause high �uctuations in the particle density and thus in pressure, specially in the

case of gravitational �uid �ows. In practice, this problem can be alleviated by an adequate

redistribution and acceleration of the initial particle positions and velocities by using a

damping technique. This will be detailed in Section 4.1.5.

dvi

dt
=

1
r i

�
� Ñpi + Fi

Vis+ Fi
ST

�
+ gi (4.9)

Following [2], the acceleration of the particlei due to the gradient of pressure is approximated

as

1
r i

Ñpi =
1
mi

nb

å
j

�
V2

i + V2
j
�

fpi j ÑWi j (4.10)

WhereVi = mi
r i

is the volume of particlei. The term
�

ÑWi j = ¶W
¶r i j

ei j

�
is the gradient of the

kernel function, andei j =
r i j
r i j

=
r i � r j

r i j
is the unit inter-particle vector.

The termfpi j is de�ned to ensure the continuity of pressure even for the case of discontin-

uous density between �uid particles (for example, when they belongs to different phases).

Following [150] this term reads as

fpi j =
r j pi + r i p j

r i + r j
(4.11)

The acceleration due to the viscous forces can be expressed as in [2]

1
r i

Fi
Vis =

1
mi

nb

å
j

�
V2

i + V2
j
�

fmi j
vi j

r i j

¶W
¶r i j

(4.12)

Wherevi j = vi � v j is the relative velocity between the particlei and j. The termfmi j is the

inter-particle-averaged dynamic viscosity which is de�ned as

fmi j =
2mimj

mi + mj
(4.13)
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In equation (4.13),mi is the dynamic viscosity of the particlei.

This form of viscous acceleration conserves the linear momentum [2], and performs well in

the case of short-time simulations. In this work we have chosen an alternative formulation

[148] which conserves both angular and linear momentum in order to perform long-time

simulations. This alternative formulation reads as

1
r i

Fi
Vis =

z
mi

nb

å
j

�
V2

i + V2
j
�

fmi j
vi j r i j

r2
i j

ÑWi j (4.14)

Wherez = d+ 2, andd is the space dimension number.

The surface tension force:

In the case of a two-phase �uid, a Continuum Surface Force (CSF) formulation [40] may be

used to represent the surface tension force. This formulation describes the pressure-jump

condition normal to the separation interface of the �uids. However, if more than two phases

are present in the �ow, the explicit use of this formulation becomes impractical in the context

of SPH method.

Thus, an alternative formulation should be used in these cases. The Continuum Surface

Stress (CSS) [180] is a tensorial formulation of the surface tension force equivalent to the

CSF formulation given in equation (B.2). The CSS formulation can be expressed as a body

force applied through a transition region of �nite thickness. The size of this �nite thickness

is equal to the diameter of Kernel function (see �gure 4.1)

Using the CSS formulation, the surface tension force is de�ned as

FST
i = Ñ� P i (4.15)

whereP i de�nes the immiscible mixture surface stress tensor of the particlei (capillary

pressure tensor). Assuming that the particlei belongs to thel �uid phase, then the mixture

surface stress can be expressed as

P i = å
k6= l

Pkl
i (4.16)

In equation ( 4.16 )Pkl
i is the �uid surface stress tensor between phasesk andl , r is de�ned

as(r = r i j = kr i � r jk ).
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Figure 4.1 – Geometrical description of the principal parameter of surface tension formulation
in the case of two immiscible �uids1 and2: interface, transition region, normal vectorn.
The thickness of the transition region is equivalent to the diameter of the kernel function (6h
for the quintic kernel function).

Pkl
i =

s kl

kÑCkl
i k

�
kÑCkl

i k2I � ÑCkl
i 
 ÑCkl

i

�
(4.17)

By assuming that the particlei belongs to the phasel , the gradient of the color function at

the interface between two different phasesk andl (ÑCkl
i ) reads as [2]

ÑCkl
i =

1
Vi

nb

å
j

�
V2

i + V2
j
� fCkl

i j ÑWi j (4.18)

The inter-particle-averaged color functionfCkl
i j is de�ned as

fCkl
i j =

8
<

:

r i
r i+ r j

if the particle j belongs to thek �uid phase

0 Otherwise
(4.19)

The CSS formulation given by equations (4.16) and (4.17) is a variation of the CSF

formulation (see Appendix ( Demonstration of the equivalence between CSS and CSF

formulations)). In the CSS formulation, the interior efforts associated to the surface stress

tensorP are tangent to the interface, which is coherent with the propriety of surface tension

force (the details are presented in the Appendix ( The internal forces associated to the surface

stress tensor are tangent to the interface ?) )

Unfortunately, the direct application of the CSS formulation in the context of the SPH

method, could lead to numerical instabilities [254, 151, 2]. In this work , we present a
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modi�cation to the CSS formulation in order to improve the stability of the CSS formulation

in SPH methods. Based on the divergence formulation used in [2] for the calculation of

the curvature of the interface, we modify the computation of the divergence of the capillary

pressure tensor on equation (4.15). Thus, the modi�ed discrete form of equation (4.15) is

FST
i = d �

nb

å
j
VjP i j ÑWi j

nb

å
j
Vj r i j

¶W
¶r i j

(4.20)

where we de�ne the inter-particle surface stress tensor asP i j = P i � P j , d is the number of

space dimensions andr i j = kr i � r jk is the inter-particle distance. Note that this formulation

does not require a matrix inversion and gives a �rst-order consistency approximation to

reproduce exactly the divergence of any linear �eld.

Note that with this formulation, the surface tension force does not exactly conserve the

total momentum. However, It guarantees a good approximation even when a disordered

particles distribution is presented or the support of the kernel function is not full with particles

contained within the transition region. This force takes effect as a body one. This formulation

takes all advantageous of the formulation proposed in [2], and in addition it can be applicable

in the case of more than two-phases �uid �ows simulation problems.

4.1.3 Wall boundary conditions

In this work, we also present a modi�cation of the generalized wall boundary condition

method proposed by [4] to deal with multiphase �uid �ows. In this method, three layers

of dummy particles must be added in the normal direction to the wall interface (see �gure

5.4). The dummy particles are placed to represent the wall in such a way that it ensures the

completeness of the support of kernel function, in order to obtain an accurate integration

of the �eld variables near the wall interface. Free-slip or no-slip wall boundary conditions

can be applied using this method. The free-slip boundary condition is applied by omitting

the viscous interaction between the �uid particle with the adjacent dummy particles in the

calculation of �uid viscous forces (equation 4.14). In the case of no-slip wall boundary

condition, a virtual velocityvw is imposed to the wall-dummy particle interacting with the

�uid particle i in equation 4.14. This velocity is de�ned as

vw = 2vi � ṽi (4.21)
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wherevi is the prescribed velocity of wall particlei andṽi denotes the interpolation of the

smoothed velocity �eld of the �uid phase to the dummy particle position. The termnf refers

to the number of neighboring �uid particlesj of the wall particlei.

ṽi =

nf

å
j

v jWi j

nf

å
j
Wi j

(4.22)

The pressure in the dummy-wall particle is calculated from the neighboring �uid particlesj

according to [4]

pw =

nf

å
j

p jWw j + ( g� aw)
nf

å
j

r j rw jWw j

nf

å
j
Ww j

(4.23)

where the termaw represents a prescribed wall acceleration, if moving walls are present.

Figure 4.2 – Geometrical description of different parameters used in the generalized wall
Boundary condition. Figure based on that presented in [4]

The method proposed in [4] computes the density of the dummy particle via the equation

of state and is applicable for the case of single �uid with constant viscosity or in case of

multiphase inviscid �ows [235, 98, 273]. In the case of multiphase viscous �ows where

different viscosities are associated to each phase, this formulation becomes unusable because
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of the ambiguity in the choice of the viscosity for the wall-dummy particles. This is specially

noted when the neighboring particles belong to different �uid phases. Here we solve this

ambiguity by using a method based on the �uid particle mirror similarity. We assume that

each �uid particleconsidersall their wall-dummy neighbor particles as similar to it in terms

of density, viscosity and volume. Using this approach we need to modify equations (5.31),

(4.12) or (4.14) as follows

1
r i

Ñpi =
1
mi

nb

å
j

gP V
i j ÑWi j (4.24)

1
r i

Fi
Vis =

1
mi

nb

å
j

fmi j
V vi j

r i j

¶W
¶r i j

(4.25)

1
r i

Fi
Vis =

z
mi

nb

å
j

fmi j
V vi j r i j

r2
i j

ÑWi j (4.26)

WhereP V
i j andfmi j

V are de�ned as

gP V
i j =

8
<

:

�
V2

i + V2
j

�
r j pi+ r i p j

r i+ r j
if the particle j is a �uid particle

V2
i (pi + p j ) if the particle j is a wall particle

(4.27)

fmi j
V =

8
<

:

2
�
V2

i + V2
j

�
mi mj

mi+ mj
if the particle j is a �uid particle

2V2
i mi if the particle j is a wall particle

(4.28)

Note that the direct application of the proposed wall boundary conditions method can

present spurious currents when the interfaces between the �uid phases includes a surface

tension next to the wall boundaries. To deal with this issue, a special treatment as proposed

in [3] can be added to this method. However, this problem is not addressed here since it is

out of the scope of the present work.

4.1.4 Time integration

In this work a Predictor-Corrector scheme is proposed for time integration. An explicit Euler

method is used to predict the velocity (evi
n+ 1) and the position (er i

n+ 1) of the particlei.

The corrected velocity atn+ 1 (vi
n+ 1) is approximated by using the trapezoidal-rule,

using predicted parameters(e:)n+ 1 instead of the �nal ones(:)n+ 1. Note that, the density and

pressure at timen (r n; pn) and the predicted values of velocity and position(evn+ 1;ern+ 1)are
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used to predict the right hand-side of momentum equation
�

fdvi
dt

� n+ 1

. The �nal position

r i
n+ 1 is advected by the corrected velocity.

The following algorithm summarizes the prediction step.

8
<

:

evi
n+ 1 = vi

n + dt
�

dvi
dt

� n

er i
n+ 1 = r i

n + dt
�

dr i
dt

� n (4.29)

and the correction step is summarized as follows

8
>><

>>:

vi
n+ 1 = vi

n + dt
2

(
�

dvi
dt

� n
+

�
fdvi
dt

� n+ 1
)

= 1
2

n
vi

n + evi
n+ 1

o
+ dt

2

�
fdvi
dt

� n+ 1

r i
n+ 1 = r i

n + dtvi
n+ 1

(4.30)

The �nal density (at timen+ 1) is calculated asr n+ 1
i = mi å

nb
j W( er i j )n+ 1. Afterwards,

the �nal pressurepn+ 1 = p(r n+ 1) is calculated according to the equation of state (5.2),

pn+ 1 = p(r n+ 1).

The superscriptsn andn+ 1 refers to the time step, whereasff :g refers to the predicted

physical parameterf :g . For more details about the use of this scheme in the context of

interfacial multiphase SPH model please see the Appendix ( Pseudo-code of SPH interfacial

multiphase model).

To ensure the stability of the method, the time step (dt) must be chosen to ful�ll the kinetic,

viscous, body force and surface tension conditions [246] [41]

dt = CFL
h

max(c0i ) + max(kvik)
(4.31)

dt � 0:125
h2

max( mi
r 0i

)
(4.32)

dt � 0:25
�

h
kgk

� 1=2

(4.33)

dt � 0:25
�

min(r k; r l )h3

2ps k� l

� 1=2

(4.34)
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By using the density summation formulation (equation 4.8) with this time integration scheme,

the simulations were stable with CFL numbers equal to one. In the numerical simulations

presented here, a value ofCFL = 1 is employed.

4.1.5 Damping strategy for multiphase �uid �ow

In the framework of weakly compressible �uid �ows, the accuracy on the determination of

the pressure �eld using an equation of state depends on the density estimation. Here, the

density of the particles is updated using the equation (4.8). It becomes obvious that a good

estimation of the position of the particles is crucial to obtaining a good approximation of the

pressure.

In this work, an initial regular lattice distribution of particles is chosen to perform the

simulation. However, in the context of gravitational �uid �ow problems, the use of the

density summation formulation (equation (4.8)) to update density (and thus the pressure with

equation (5.2)) in a regular distribution particles may spoil the imposed initial hydrostatic

pressure and cause spurious high-frequency oscillations. In single �uid �ow formulations,

such artifacts can be reduced using a damping technique during the initial transient of

simulations [4, 247]. This damping smooths both the distribution and the velocity of the

particles to mitigate the oscillations. In fact, we introduce a mitigation factor (xD(t) � 1)

which acts as a multiplication factor on the body force in the momentum equation (4.9) as

well as in the wall pressure equation 5.50, to obtain a gradual introduction of the gravity

force. The mitigation factor is only activated during the timeTD (damping time), and is

de�ned as

xD(t) =

8
<

:

�
sin

�
t

TD
� 0:5

�
p + 1

�
t 6 TD

1 t > TD

(4.35)

Note that other expressions are possible instead of 4.35, as for example, the Hill equation

[115].

Unfortunately, these damping techniques [4, 247] are not applicable in the case of

the simulation involving gravitational multiphase �ows. This is due to the difference in

density between the �uid phases (buoyancy force), which generates a considerable motion

of the particles during the damping period. To extend the application of this technique to

gravitational multiphase �uid �ow simulations, a new strategy must be de�ned. In this work,

all the physical properties of all �uid phases (reference density, viscosity, mass ...) are set

to be equal to those of the heavier phase during the damping procedure, in order to avoid
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any motion due to the different properties between the phases. This technique allows the

particles to be slightly redistributed and accelerated in order to reach a good estimation of the

initial hydrostatic pressure and velocity. After the damping time, the real physical properties

must be assigned again to each phase, and the calculation procedure continues as usual. The

reader is referred to the Appendix ( Pseudo-code of SPH interfacial multiphase model) for

more details about the use of this technique in the case of interfacial multiphase �uid �ow

simulations.

4.2 Conclusion

In this work, a consistent smoothed particle hydrodynamics model for multiphase �ows

is proposed. The model includes a surface tension formulation which ensures the tangential

properties of the tensor surface stress and improves the stability of the numerical method.

The numerical stability is improved through the use of a divergence operator with �rst-order

consistency and also with a damping technique that avoids the numerical issues due to the

transients on initial conditions. A modi�cation of the generalized wall boundary conditions

that allows its use for the simulation of wall-bounded multiphase �uid �ows is also presented.





Chapter 5

SPH : Modeling of water-soil

interactions using a multiphase approach

L'analyse des interactions sol-eau joue un rôle important dans l'évaluation et l'atténuation

de nombreux problèmes environnementaux et géotechniques, tels que l'érosion des sols,

l'érosion des structures offshore, les tsunamis générés par les glissements de terrain et leurs

effets sur les structures adjacentes. La simulation numérique est considérée comme un outil

puissant pour l'analyse de ces problèmes. Les problèmes d'interaction sol-eau sont de nature

multi-composantes et se caractérisent généralement par des grandes déformations. Les

méthodes numériques utilisant le maillage (éléments �nis, volumes �nis ou différences �nies)

sont dif�cilement applicables à ces problèmes en raison de l'enroulement, de la torsion et de

la distorsion excessifs du maillage qui peuvent se produire.

Une autre méthode numérique dite la méthode Smoothed Particle Hydrodynamics (SPH)

est peut être utilisée. Cette méthode sans maillage est largement utilisée pour simuler des

problèmes à grandes déformation. La méthode SPH a été initialement développé en 1977

pour des applications astrophysiques [118] [ 210]. Plus tard, en 1988, elle a été appliquée

à la simulation des écoulements de �uide [241]. Depuis, la méthode SPH a été largement

utilisée et a connu beaucoup d'améliorations [234].

Dans le contexte de la méthode SPH, quatre approches sont généralement utilisées

dans la littérature pour modéliser les interactions sol-eau. Dans chacune de ces quatre

approches, l'écoulement �uide est modélisé en utilisant les équations de Navier-Stokes ou

alternativement les équations d'Euler avec une viscosité arti�cielle. La différence entre les

quatre approches repose sur la méthode utilisée pour la modélisation du sol.

Dans la première approche, le sol est considéré comme un solide rigide. Ceci est

généralement utilisé lorsque le sol est moins exposé à la déformation, et également lorsque

l'analyse se concentre uniquement sur le comportement de l'eau résultant du mouvement de
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masse du sol. Les vagues impulsives générées par le glissement de terrain est le phénomène

le plus modélisé en utilisant cette approche.

La deuxième approche est basée sur la modélisation du sol sous forme de �uide Newtonien

(le sol est considéré comme un �uide à très haute viscosité) à l'aide des équations de Navier-

Stokes. Cette approche peut donner des résultats acceptables seulement lorsqu'une valeur

précise de viscosité est utilisée pour le sol. Cependant, les résultats donnés par cette

approche ne sont pas très précis dans certains problèmes car aucune propriété physique du

sol n'est introduite dans le modèle. Schwaiger et al [294] ont utilisé cette approche pour

simuler le tsunami causé par glissement de terrain subaérien de 1958 à Lituya Bay (Alaska)

[225].

Dans la troisième approche, un modèle de comportement élasto-plastique est utilisé

pour décrire le sol. Le principal avantage de cette approche, comparée aux approches

précédentes mentionnées ci-dessus, est que les propriétés physiques du sol utilisées dans ce

modèle, comme le coef�cient de Poissonn, le module de YoungE, la cohésionc, l'angle de

frottement phi, sont réalistes. Cependant, le mouvement des particules de sol et d'eau est

résolu séparément en utilisant différents modèles SPH (modèle de Navier-Stokes pour l'eau

et un modèle de comportement élasto-plastique pour le sol) qui conduit à un couplage faible

entre le sol et l'eau. Un traitement spécial est nécessaire pour le couplage. Cette approche a

été appliquée à plusieurs problèmes géotechniques tels que les vagues d'eau générées par

un glissement de terrain [306], des simulations de la fouille par un jet d'eau sur un sol sec

et saturé, et l'érosion local sur des tumulus causée par un débordement d'eau provoqué par

un tsunami [315].

La dernière approche est basée sur l'utilisation d'un modèle de �uide non Newtonien.

Le sol est considéré comme une masse rigide au-dessous de certaine contrainte (appelée

contrainte critique de déformationt y). Cette contrainte peut être une valeur constante égale

à la cohésion du sol (t y = c) pour les matériaux non frictionnels (Binghamiens / matériaux

purement cohésifs) ou variable selon la pression, la cohésionc et l'angle de frottement (

modèle rhéologique dépendant de la pression). Dans ce dernier cas, le sol est modélisé à

l'aide de modèles de rupture plastique tels que les critères de Mohr-Coulomb [227] [ 75] ou

Drucker-Prager [93]. Dans cette approche, le sol est considéré comme purement plastique

avec une élasticité négligeable. L'avantage par rapport à tous les modèles précédents est le

couplage fort entre le sol et l'eau, sans aucun traitement spéci�que. Dans cette approche, les

équations de Navier-Stokes sont utilisées pour les phases de l'eau et du sol. Cette approche

a été utilisée pour simuler de nombreux problèmes géotechniques causés par les interactions

sol-eau. Nous recommandons le lecteur à consulter [13, 52] pour des applications dans le
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contexte de sol non frictionnel ( matériau Binghamien) et [169, 299, 215, 108, 331, 345, 315]

pour les applications qui se basent sur des modèles rhéologiques dépendant à la pression.

Dans ce travail, un modèle SPH faiblement compressible (WCSPH) a été développé pour

traiter des problèmes d'écoulement multiphasiques. Le modèle est également capable de

gérer les interactions sol-eau. Ici, le couplage entre le sol et l'eau est réalisé de manière

forte et naturelle. Nous proposons un nouveau modèle rhéologique régulier dépendant de la

pression, capable de simuler le comportement du sol (sol purement cohésif et frictionnel) et

de l'eau (ou de tout autre �uide Newtonien). Le modèle proposé est nommé RBPMC -am, il

est basé sur une loi de comportement Binghamien plastique régularisée incluant le critère

de rupture de Mohr-Coulomb. Ce modèle dépend d'un paramètre constant positif (am), qui

régularise le modèle ainsi qu'il permet de contrôler le pas de temps de la simulation.

De plus, nous proposons une version modi�ée du terme diffusif arti�ciel (Dd� SPH) in-

troduit dans [10] dans le contexte d'hypothèses d'écoulement faiblement compressible,

pour atténuer les oscillations numériques à haute fréquence (parasitiques). Cette mod-

i�cation ( Dd� MSPH) nous permet d'étendre la formulationDd� SPH à des problèmes des

écoulements multiphasiques avec une loi de comportement incluant le critère de rupture de

Mohr-Coulomb.
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The analysis of soil-water interactions plays an important role for the assessment and

mitigation of many environmental and geotechnical problems, such as soil erosion, scouring

around offshore structures, landslide-generated tsunamis and their effect on reservoirs and

adjacent structures ... and so on. Numerical simulation is considered as a powerful tool for

the analysis of these problems. soil-water interaction problems are of a multi-component

nature, and they are generally characterized by large deformations. Mesh-based numerical

methods (Finite element, Finite Volume or Finite Difference ) are hardly applicable in these

problems due to the excessive winding, twisting and distortion of the mesh that may happen.

An alternative numerical method is the Smoothed Particle Hydrodynamics method (SPH).

This meshless method is widely used to deal with the simulation of large deformation

problems. SPH was �rst developed in 1977 for astrophysical applications [118] [210]. Later,

in 1988 it was applied to the simulation of �uid �ows [241]. Since then, the SPH method

was widely used and got lots of improvement [234].

In the context of SPH method, four approaches are generally used in the literature to

model soil-water interactions. In all of these four approaches, the water �ow is modeled

using Navier-Stokes equations or, alternatively, Euler equations with an arti�cial viscosity.

The difference between the four approaches relies on the method used for soil modeling.

In the �rst approach, the soil is considered as a rigid solid. This is used generally when

the soil is less exposed to the deformation, and also when the analysis is focused only on the

water behavior resulting from the soil mass motion. The landslide generated impulsive water

wave is the most modeled phenomenon using this approach [275, 346, 13] .

The second approach is based on the modeling of the soil as a Newtonian �uid (the soil

is considered as a �uid with a very high viscosity ) using Navier-Stokes equations. This

approach can give acceptable results only when an appropriate Newtonian viscosity is used

for the soil. However, the results given by this approach are not very accurate in some

problems because no physical proprieties of soil is introduced to the model. Schwaiger et

al [294] used this approach to simulate the 1958 subaerial landslide Tsunami at Lituya Bay

(Alaska) [225].

In the third approach, an elasto-plastic constitutive model is used to describe the soil

behavior. The main advantage of this approach, compared with the previous approaches

mentioned above, is that the physical properties of soil used in the model, such as Poisson

coef�cient n, Young modulusE, Cohesionc, angle of frictionf , are realistic. However, the

motion of soil and water particles is solved separately using different SPH models (Navier-

Stokes model for Water and an elasto-plastic constitutive model for soil) which leads to a

weak coupling between the soil and water. A special treatment is needed for the coupling.

This approach was applied on several geotechnical problems such as, the landslides generated
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water wave [306], simulations of excavation by a water jet on dry and saturated soil [48]

[344], and local scouring on rubble mound due to tsunami over�ow [315].

Finally, the last approach is based on the use of a Non-Newtonian �uid model. The soil is

considered as a rigid mass under certain stress (called yield stresst y). The yield stress can be

a constant value equal to the cohesion of soilt y = c for non-frictional materials (Bingham/

purely cohesional materials) or it can be variable depending on pressure, cohesionc and angle

of friction (pressure-dependent rheology model). In the latter case, the soil is modeled using

plastic strength models such as Mohr-Coulomb [227] [75] or Drucker–Prager [93] yield

criteria. In this approach, the soil is considered as purely plastic with negligible elasticity.

The advantage compared with all the previous models is the strong coupling between soil

and water, without the need of any special treatment for the coupling. In this approach, the

Navier Stokes equations are used for both water and soil phases. This approach has been

used to simulate many geotechnical problems caused by soil-water interactions. We refer

the reader to [13, 52] for applications in the context of non-frictional soil (Bingham soil)and

to [169, 299, 215, 108, 331, 345, 315] for applications of the pressure-dependent rheology

model.

In this work, a weakly compressible smoothed particle hydrodynamics (WCSPH) model

for multiphase problems was developed. The model is also able to deal with soil-water

interactions. Here, the coupling between the soil and water is achieved with a strong and

natural manner. We propose a new regularized pressure-dependent rheology model that is

capable of mimicing the behavior of soil (purely cohesive, and frictional soil) and water

(or any other Newtonian �uid). The proposed model, named RBPMC-am, is based on a

Regularized Bingham Plastic constitutive law including Mohr-Coulomb failure criterion.

This model depends on a positive constant parameter (am), that regularizes the model and

allows us to obtain greater time steps in the simulation.

Moreover, we propose a modi�ed version of the arti�cial diffusive term (Dd� SPH) in-

troduced in [10] in the context of weakly compressible �ow hypothesis, for the mitigation

of spurious numerical high-frequency oscillations. This modi�cation (Dd� MSPH) allows us

to extend theDd� SPH formulation to multiphase problems with constitutive law including

Mohr-Coulomb failure criterion.

5.1 Governing equations and physical model

In this work, the soil material is assumed to be a �uid-like mass. The motion of soil and

�uid phases are modeled using Navier-Stokes equations. It is assumed that the �uid phase is
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weakly compressible, viscous and �ow in isothermal conditions. With this assumptions, the

Navier-Stokes and displacement equations can be written in a Lagrangian framework as

8
>>>>>>><

>>>>>>>:

dr
dt = � r Ñ:v

dv
dt = 1

r

0

B
@� Ñp+ Ñ� t| {z }

Ñ�s = Ñ�(� pI+ t )

1

C
A + g

dr
dt = v

(5.1)

where d(:)
dt represents the Lagrangian derivative.Ñ is the nabla operator,r ; p;v; r andg

represent density, pressure, velocity vector, position vector, and the gravitational acceleration

vector, respectively.s is the Cauchy stress tensor andt is known as the deviatoric part of

the Cauchy stress tensor (for any continuum material) or also called the viscous tensor (for

�uids).

Under the weakly-compressible hypothesis, an explicit equation of state (EOS) is used to

compute the pressure from the density. In this work we use the isothermal equation of state

proposed in [254]

p = pr

��
r
r 0

�
� 1

�
(5.2)

wherer 0 andpr denote the reference density and the reference pressure, respectively. The

reference density is related to the reference speed of soundc0 by the following equation

pr = r 0c2
0 (5.3)

The reference speed of soundc0 can be determined as [254, 309]

c2
0 � max

�
U2

0

dr
;
kgkL0

dr
;

me f fU0

r 0L0dr

�
(5.4)

WhereU0, L0, me f f ands are the reference velocity, reference length, and effective dynamic

viscosity (apparent viscosity), respectively. The termdr represent the ratio of density

variation. In this work we set this value to 1% (dr = 0:01 ).

In the case of multiphase �uid �ows, the reference speeds of sound are chosen to ful�ll

the equality of reference pressures for each �uid phase

pr = pr1 = ::: = prNf
(5.5)
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pr = r 01c
2
01

= ::: = r 0Nf
c2

0Nf
: (5.6)

where the subscriptNf denotes the number of �uid phases. This condition enhances the

numerical stability of the computations [73].

The hypothesis of non-Newtonian �uids [360, 61] to model the behavior of geomaterials

(soil, land, sediment, ...) is commonly accepted. A non-Newtonian �uid can withstand to

deformation and remains rigid until a certain value of shear stress (called the yield stress

(t y)) is reached. When this value is reached, these materials begin to �ow.

The Bingham plastic model [33] is one of the simplest and more commonly used Non-

Newtonian model. In this model, when the yield stress limit (t y) is exceeded, the material

behaves as Newtonian �uid. Otherwise, it behaves as a rigid body. The constitutive law for a

Bingham Plastic can be written in tensorial form as

8
<

:

t =
n

t y

kDkF
+ m

o
D kt kF � t y

D = 0 kt kF < t y

(5.7)

WhereD is the rate of strain tensor andmis the dynamic plastic viscosity which de�nes the

viscosity of the �uid-like material (soil) after yielding.

The rate of strain tensor is de�ned asD = Ñv+( Ñv)T , whereÑv denotes the velocity gradient

tensor, and the superscriptT denotes its transpose tensor.

The notationk:kF refers to Frobenius norm. In equation (5.7) the yielding criterion of

soil materials is de�ned using the Von Mises criterion [226].Therefore, the quantitieskDkF

andkt kF can be expressed as follows

kDkF =
�

1
2

D : D
� 1

2

(5.8)

kt kF =
�

1
2

t : t
� 1

2

(5.9)

The discontinuity in the expression of the Bingham Plastic constitutive model (5.7) leads

to considerable numerical dif�culties; hence, smooth models are usually preferred and several

different approaches have been used. For instance we cite the exponential model [270] and

the Bercovier and Engelman (BE) model [30].

The Bingham model can be regularized using a control parameter (er > 0) for the approx-

imation of the discontinuous model. The resulting model is similar to the one developed in

[30].
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t =

8
<

:
t yq

kDk2
F + e2

r

+ m

9
=

;
D (5.10)

Whener = 0 in equation (5.10) withkDkF 6= 0, we return to the original constitutive

model (5.7). For this reason, the parameterer must be chosen suf�ciently small to insure the

convergence between the regularized and original Bingham plastic models.

In the framework of Generalized Newtonian Fluids (GNL) [33, 343], the viscous stress

tensort is given by the following constitutive equation:

t = me f f(kDkF )D (5.11)

Whereme f f is the effective viscosity.

From the equations (5.10) and (5.11) the effective viscosity can be expressed as:

me f f(kDkF ) =
t yq

kDk2
F + e2

r

+ m (5.12)

The choice of a stable simulation time step is related to the maximum value that the

effective viscosity can reach in the rigid part of the material during the simulation period (see

the viscous stability condition in section 5.2.3, equation (5.59)). The direct use of the model

(5.10) or even the exponential [270] or the BE [30] models can greatly restrict the simulation

time step.

In order to solve this problem, we propose a new regularized constitutive law that allows

previously the choice and the control of the computational time step. Let us suppose that

the maximum effective viscosity presented in the rigid region can be expressed linearly in

terms of the yielding viscosity (plastic viscosity)masmax(me f f) = amm, with am a positive

constant.

It is obvious that the maximum value ofme f f is reached in the undeformable regions

(kDkF ! 0).Therefore, from equation (5.12) the regularization parameterer of the equation

(5.10) results iner = t y
(am� 1)m. Hence, we get

t =

8
<

:
m(am� 1)t yq �

m(am� 1)kDkF
� 2 + t 2

y

+ m

9
=

;
D (5.13)

In �gure 5.1, the regularized Bingham constitutive model (5.13) with different values

of the constantam = f 10;20;100;1000g is plotted and compared with the discontinuous

Bingham plastic model (5.7). We can clearly observe that the proposed regularized Bingham
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plastic model converges to the original discontinuous model (5.7) when the constantam is

suf�ciently large.

Figure 5.1 – Proposed Regularized Bingham Plastic Model (RBPM) witham =
f 10;20;100;1000g and original Bingham Plastic Model (BPM) (solid line).

The regularized Bingham plastic model presented in this work (equation (5.13)) can be

considered as the smooth version of the discontinuous bilinear model presented by Hosseini

[145].

5.1.1 Determination of the yield stress

Now, the yield stresst y must be determined in order to close the model. At continuum

level, the geomaterials are generally described using pressure-dependent yield criteria where

the Von Mises criterion [226] cannot be satisfyingly represented because it does not include

the pressure in its formulation. The Mohr-Coulomb [227] [75] or the Drucker-Prager [93]

strength criteria are the most widely used for pressure sensitive materials. The difference

between these criteria is that the Drucker-Prager criteria includes all the principal stresses

(Three principal stresses in 3D space and two in 2D space) similarly to Von-Mises criterion,

whereas the Mohr-Coulomb criterion includes only two principal stress (the maximum and

minimum principal stress, similarly to Tresca criterion). Note that Mohr-Coulomb and

Drucker-Prager criteria are identical in a two dimensional space.

The Mohr-Coulomb criterion is based on a linear failure envelope which combines the

normal and shear stresses(s ; t ) on the failure plane by the relation

t = c� s tanf (5.14)
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Wherec andf denote the cohesion and the angle of internal friction ( equivalent to the

repose angle) of the material. Both parameters represent the physical proprieties of materials.

Figure 5.2 – Mohr-Coulomb yield criterionn. The Mohr circle is based on the principal
stressess1 ands2. The onset of yielding is occurring when the Mohr circle is tangent to the
failure envelope.

The materials governed by the Mohr-Coulomb criterion for any given stress state fails

(yields) when the Mohr's circle is tangent to the failure envelope (�gure 5.2). By using

trigonometric relations, an alternative form of the relation in terms of principal stresses can

be expressed as

s1 � s2

2
= �

s1 + s2

2
sinf + ccosf (5.15)

The second invariantJ2 of the deviatoric stress tensor and the hydrostatic pressurep

(negative mean stress) can be expressed in terms of principal stresses in two dimensions

space as

J2 =
1
2

t : t

=
1
2

tr
�
t 2�

=
1
2

tr

 �
s �

I1
2

I
� 2

!

=
1
2

�
tr(s 2) �

I2
1
2

�

=
1
4

(s1 � s2)2

(5.16)

The notationtr(A) presents the trace of the square matrixA. The termss1 ands2

denote by convention the biggest and smallest principal stresses of the Cauchy stress tensor
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s (s1 > s2), respectively. WhileI1 represents its �rst invariant that can be written in a

two-dimensional space as

I1 = s1 + s2 (5.17)

The hydrostatic pressurep can be expressed in terms of the �rst invariantI1 or principal

stresses as

p = �
I1
2

= �
s1 + s2

2
(5.18)

Therefore, the Mohr-Coulomb criterion envelope can also be written in terms of hydro-

static pressurep and the second invariantJ2 as

p
J2 = psinf + ccosf (5.19)

As explained previously, the Bingham Plastic material starts to yield under the Von Mises

criterion when

kt kF =
p

J2 = t y (5.20)

Hence, from the equations (5.20) and (5.19), the yielding stresst y of a material which yields

under the Mohr-Coulomb criterion can be expressed as

t y = psinf + ccosf (5.21)

Summarizing the previous developments, in this work the geomaterials have a Bingham

Plastic behavior and yield under the Mohr-Coulomb criterion. This leads to a regularized

constitutive law that we name RBPMC-am

t =

8
<

:
m(am� 1) ( psinf + ccosf )

q �
m(am� 1)kDkF

� 2 + ( psinf + ccosf )2
+ m

9
=

;
D (5.22)

The use of the equation of state to determine the pressure from the density can lead to a

negative pressure. For this reason an alternative positive pressuref pg+ = maxf 0; pg is used

instead ofp. Thus, the RBPMC-am model (5.23) reads as

t =

8
<

:
m(am� 1) ( f pg+ sinf + ccosf )

q �
m(am� 1)kDkF

� 2 + ( f pg+ sinf + ccosf )2
+ m

9
=

;
D (5.23)

The present RBPMC-am constitutive law (equation (5.23)) can be specialized to other

rheological models by changing the following parameters:
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— Newtonian �uid (water, ...): set(c = f = 0) in equation (5.23) and use the Newtonian

dynamic viscosity instead ofm;

— Cohesionless or purely frictional materials: setc = 0 in equation (5.23) ;

— Bingham �uid (non-frictional/purely cohesional materials): use the value of yielding

stresst y as material cohesionc (t y = c) and set the frictional angle to zero (f = 0).

In this way, only the presented RBPMC-am constitutive model is used to describe all �uid

and/or �uid-like materials involved in the test cases presented here. Note that the �exibility

of our formulation makes very easy its implementation in existing codes.

In some previous works [159, 251], the yielding stress of purely frictional materials is

generally taken ast y = ptanf which is equivalent to the presented model for small values of

frictional anglef . However, for greater values off this formulation becomes impractical

and can distort the simulation results [91]. Note that this problem is avoided with the use of

the formulation given by equation (5.23).

The effective viscosity can be expressed in term of pressure, cohesion, and frictional

angle as

me f f(kDkF ) =
m(am� 1) ( f pg+ sinf + ccosf )

q �
m(am� 1)kDkF

� 2 + ( f pg+ sinf + ccosf )2
+ m (5.24)

For the simulation of the granular materials the dynamic plastic viscosity can be calculated

using them(I) rheology method [166] , as it is considered in [54, 159]. It is shown in the

work of Ionescu et al [159] that the choice of constant value of the plastic viscosity does not

change much the results if it is within the good interval comparing with those obtained from

value of them(I) rheology [166]. In this work the plastic viscosity is chosen to be a constant

value.

In the case of the modeling soil-water interactions ,the plastic viscosity is set equal to the

viscosity of the water [291].

5.2 Discrete form of governing equations

We use as in previous chapter the quintic spline kernel function [253] to perform the

SPH approximation of physical �eld. This kernel function prevents a high disorder in the

particle distribution. The smoothing lengthh is chosen constant and relative to the initial

inter-particle distancedx0 (h = 1:33dx0) as in previous chapter.

In this work, the discrete form of the continuity equation of system (5.1) is expressed as
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dr i

dt
= r i

nb

å
j

Vjvi j ÑWi j = r i

nb

å
j

mj

r j
vi j ÑWi j (5.25)

WhereVi = mi
r i

is the volume of particlei. The term
�

ÑWi j = ¶W
¶r i j

ei j

�
is the gradient of the

kernel function, andei j =
r i j
r i j

=
r i � r j

r i j
is the unit inter-particle vector. The initial particle

volume is taken asV0 = dx0
d, with d is the space dimension number. The mass of each

particlei of different �uid phases is chosen to be constant and equal tom= r 0PhaseV0 during

all the simulation time.

This formulation is accurate for the case of more than one �uid phase and specially with

large density ratios as is reported in [69, 246].

In the context of a weakly compressible �ow hypothesis, the determination of the hy-

drostatic pressure via the equation of state can originate numerical artifacts,in the form of

spurious numerical high-frequency oscillations in the pressure �eld. This is specially critical

when the Mohr-Coulomb criterion is used. In order to mitigate this, Molteni and Colagrossi

[228] proposed the addition of an arti�cial diffusive termD d� SPH to the right hand side of

the continuity equation (5.25), resulting in

dr i

dt
= r i

nb

å
j

mj

r j
vi j ÑWi j + D d� SPH

i (5.26)

with

D d� SPH
i = dhic0

nb

å
j

Y i j ÑWi jVj (5.27)

andY i j is de�ned as

Y i j = 2
�
r i � r j

� r i j

r2
i j

(5.28)

Unfortunately, the use ofD d� SPH method with equation (5.27)for multiphase �uid �ows

can generate important numerical issues at the interface between the phases. These issues

are principally caused by the repulsive forces generated by the difference in density between

the phases. In order to alleviate these problems, Fourtakas and Rogers [108] proposed to use

theD d� SPH formulation in the �uid phase and sediment phase independently. That is,only

particles belonging to the same �uid phase are considered in the computation ofD d� SPH.

However, this strategy does not completely solve the numerical issues, specially in the case

of simulations that present a low motion.
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In this work, we propose a modi�ed version of theD d� SPH term , that is able to deal with

single and multiphase �uid applications. The principal idea is to assume that all particlesj

neighbors of the particlei are part of the same phase asi (that is, they have the same density

referencer 0i ), but they also conserve their original particle density ratiobr j = r j
r 0j

(see �gure

5.3 ). Applying this assumption on the equation (5.28), we get:

Y MSPH
i j = 2

�
br i � br j

�
r 0i

r i j

r2
i j

(5.29)

Then, the multiphase diffusive term can be written as

D d� MSPH
i = d hi c0

nb

å
j

Y MSPH
i j ÑWi jVj (5.30)

The value of the dimensionless parameterd is chosen as (d = 0:1). This value is used in

this work for all examples.

Note that the formulation of multiphase diffusive term of equation (5.30) returns the

classical form (equation (5.27)) in single �uid phase problems.

Figure 5.3 – The illustration of the hypothesis taken to calculate the diffusive term for
multiphase �uid �ow (D d� MSPH

i ) .

Using the modi�ed formulation in equation equation (5.26), the value of the density,

and thus of the pressure are signi�cantly improved as demonstrated later via the example of

Section 8.1.

The acceleration of the particlei due to the gradient of pressure is approximated following

[2] as

1
r i

Ñpi =
1
mi

nb

å
j

�
V2

i + V2
j
�

fpi j ÑWi j (5.31)
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The termfpi j is de�ned to ensure the continuity of pressure even for the case of discontin-

uous density between �uid particles (for example, when they belongs to different phases).

Following [150] this term reads as

fpi j =
r j pi + r i p j

r i + r j
(5.32)

Using the same idea for the approximation of the divergence of the viscous tensor

(deviatoric tensor) we obtain

Ñ � t i =
1
Vi

nb

å
j

�
V2

i + V2
j
�

ft i j ÑWi j (5.33)

where the inter-particle viscous tensorft i j is de�ned as

ft i j =
r i t j + r j t i

r i + r j
(5.34)

The Taylor expansion of any quantityA around the positionr i can be expressed as

A(r j ) = A(r i) + ÑA(r i)( r j � r i) + O(r2
i j ) (5.35)

and ,

ÑA(r i) �
A(r i) � A(r j )

r2
i j

(r i � r j ) � ÑA(r j ) (5.36)

The rate of strain stress tensor is expressed in terms of the velocity gradient asD =

Ñv+ ( Ñv)T . Using equation (5.36) we conclude that

D(r i) � D(r j ) � D (5.37)

Equation (5.33) can be expressed using the equations (5.11) and (5.37) as follows:

Ñ � t i =
1
Vi

nb

å
j

�
V2

i + V2
j
� r ime f f j

D j + r j me f fi Di

r i + r j
ÑWi j

=
1
Vi

nb

å
j

�
V2

i + V2
j
� r ime f f j

+ r j me f fi

r i + r j
D ÑWi j

(5.38)
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The term
�
D ÑWi j

�
can be simpli�ed as :

D ÑWi j = ( Ñv+ ( Ñv)T)ÑWi j

=
1
r2
i j

�
vi j 
 r i j

�
ÑWi j +

1
r2
i j

�
r i j 
 vi j

�
ÑWi j

=
1
r2
i j

�
vi j

�
r i j � ÑWi j

�
+ r i j

�
vi j � ÑWi j

�	
(5.39)

where
 denotes the outer product.

Finally, the divergence operator of the viscous tensor reads as

Ñ� t i =
1
Vi

nb

å
j

(
V2

i + V2
j

r2
i j

)
r ime f f j

+ r j me f fi

r i + r j

�
vi j

�
r i j � ÑWi j

�
+ r i j

�
vi j � ÑWi j

�	
(5.40)

This obtained formulation is similar to that presented in [98, 352].

The effective viscosity is calculated using the equation (5.24). Assuming that the velocity

vector in two-dimensional space isv = [ u w]T , the Frobenius norm of the rate strainkDkF

can be expressed as

kDkF =

vu
u
t 2

 �
¶u
¶x

� 2

+
�

¶w
¶y

� 2
!

+
�

¶u
¶y

+
¶w
¶y

� 2

(5.41)

In this work, the formulation developed by Adami and al [2] is adopted to approximate

the space derivative of the velocity components. This formulation achieves a �rst order

consistency approximation without the need for matrix inversion operations, contrary to the

alternative version of Randles and Libersky [279]. The velocity components derivatives are

expressed in 2D space as

D
Ñu

E
=

�
¶u
¶x

¶u
¶y

� T

= 2
å nb

j Vj (ui � u j )ÑWi j

å nb
j Vj r i j

¶W
¶r i j

(5.42)

D
Ñw

E
=

�
¶w
¶x

¶w
¶y

� T

= 2
å nb

j Vj (wi � w j )ÑWi j

å nb
j Vj r i j

¶W
¶r i j

(5.43)

The notation
D

:
E

denotes the �rst order consistency approximation of the quantityf :g.
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5.2.1 Modeling of the water suspended sediment

When water �ows at a suf�cient large velocity over a surface of sediment bed (soil), the

sediment particles are picked up and transported on the surface, to be deposited again when

the velocity of �ow diminishes. This erosion process occurs when the shear stress generated

by the frictional force of water �owing over the sediment overcomes the forces acting on the

sediment grains (gravity, pressure, and viscosity forces). The simulation of this suspended

load of sediment bed is not explicitly modeled using our immiscible multiphase SPH model

detailed above. To deal with this problem, a transitional layer between the soil and water

represented as a mixture phase are nested on the soil surface. The particles within this layer

are treated as soil but with an altered mixture viscous proprieties. The easiest way to model

this layer is to consider it as a Newtonian �uid. A simple relation is used to calculate the

particle viscosity within the suspended sediment phase (nmix) [123, 299]

nmix =
nlq

1+ cs
r s
r l

(5.44)

In equation (5.44),nl denotes the kinematic viscosity of the liquid (water) phase, whereas

cs, r s andr l present the volume fraction of the sediment phase, the density of sediment and

liquid (water), respectively. Therefore, the dynamic viscosity of the mixture can be expressed

as

mmix =
ml (r scs+ ( 1� cs)r l )

r l

q
1+ cs

r s
r l

(5.45)

The volume fraction of the particle sedimenti within the mixture phasecsi can be

estimated as:

csi =
å nb

j ksWi j

å nb
j Wi j

(5.46)

WhereWi j = W(r i j ;h) andks denotes the sediment particle indicator

ks =

8
<

:
0 if j is a particle of the liquid phase

1 if j is a particle of the sediment phase
(5.47)

Note that the mixture viscositymmix given by equation (5.45) is applied on the sediment

particles of the mixture phase (suspended sediment load) when the sediment volumetric

fractioncs < 1. Otherwise, the viscosity of sediment particles is modeling using RBPMC-am

rheology explained above.
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5.2.2 Wall boundary conditions

In this work, the rigid wall boundary condition method proposed by Krimi et al [178] is used.

This method is presented as the modi�ed version of generalized wall boundary condition

method [4] to be well adapted with multiphase �uid �ows. In this method, three layers of

dummy particles must be added in the normal direction to the wall interface (see �gure 5.4).

The Free-slip or no-slip wall boundary conditions can be applied using this method. The

free-slip boundary condition is applied by simply omitting the viscous interaction between

the �uid particle with the adjacent dummy particles in the calculation of �uid viscous forces

(equation (5.33)). In the case of no-slip wall boundary condition, a virtual velocityvw is

imposed to the wall-dummy particle interacting with the �uid particlei in equation (5.33).

This velocity is de�ned as

vw = 2vi � ṽi (5.48)

wherevi is the prescribed velocity of wall particlei andṽi denotes the interpolation of the

smoothed velocity �eld of the �uid phase to the dummy particle position. The termnf refers

to the of neighboring �uid particlesj of the wall particlei.

ṽi =

nf

å
j

v jWi j

nf

å
j
Wi j

(5.49)

The pressure in the dummy-wall particle is calculated from the neighboring �uid particlesj

according to [4]

pw =

nf

å
j

p jWw j + ( g� aw)
nf

å
j

r j rw jWw j

nf

å
j
Ww j

(5.50)

where the termaw represents a prescribed wall acceleration, if moving walls are present.

This method is based on the �uid particle mirror similarity, in other words it assumes that

each �uid particleconsidersall their wall-dummy neighbor particles as similar to it in terms

of density, viscosity and volume. Using this approach we need to modify equations (5.31),

and (5.33) as follows
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Figure 5.4 – Geometrical description of different parameters used in the generalized wall
Boundary condition. Figure based on that presented in [4]

1
r i

Ñpi =
1
mi

nb

å
j

gP V
i j ÑWi j (5.51)

Ñ � t i =
1
Vi

nb

å
j

]me f fi j
V

r2
i j

�
vi j

�
r i j � ÑWi j

�
+ r i j

�
vi j � ÑWi j

�	
(5.52)

WhereP V
i j and ]me f fi j

V are de�ned as

gP V
i j =

8
<

:

�
V2

i + V2
j

�
r j pi+ r i p j

r i+ r j
if the particle j is a �uid particle

V2
i (pi + p j ) if the particle j is a wall particle

(5.53)

]me f fi j
V =

8
<

:

�
V2

i + V2
j

� r j me f fi + r i me f f j
r i+ r j

if the particle j is a �uid particle

2 V2
i me f fi if the particle j is a wall particle

(5.54)

5.2.3 Time integration

In this work a Predictor-Corrector scheme proposed by Krimi et al [178] is used for time

integration. This scheme uses an explicit Euler method to predict the velocity (evi
n+ 1) and the

position (er i
n+ 1) of the particlei.

Subsequently, the predicted velocities and positions are used to compute the �nal velocity

at n+ 1 of the particlei (vi
n+ 1), by using an implicit trapezoidal-rule to enhance its accuracy.
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The positionr i
n+ 1 is advected by the corrected velocityvi

n+ 1. The density used for the

velocity correction is the one approximated at the time stepn. Finally, the density at time

n+ 1 (r n+ 1) is computed from the predicted particles velocities (evn+ 1) and positions (ern+ 1)

and also the density at previous timen (r n) using equation (5.26).

The following algorithm summarizes the prediction step.

8
<

:

evi
n+ 1 = vi

n + dt
�

dvi
dt

� n

er i
n+ 1 = r i

n + dt
�

dr i
dt

� n (5.55)

and the correction step is summarized as follows

8
>>>>>>><

>>>>>>>:

vi
n+ 1 = 1

2

n
vi

n + evi
n+ 1

o
+ dt

2

�
fdvi
dt

� n+ 1

r i
n+ 1 = r i

n + dtvi
n+ 1

r n+ 1
i = r n

i + dt
�

r n
i å nb

j
mj
r n

j
evi

n+ 1ÑW(er i
n+ 1) + D d� MSPH

i (r n;er i
n+ 1)

�

(5.56)

The superscriptsn andn+ 1 refers to the time step, whereasff :g refers to the predicted

physical parameterf :g. Note that the term
�

devi
dt

� n+ 1
is computed using the predicted velocity

evi
n+ 1 and the density of the previous time stepr n. This scheme is second order accurate as

in [4, 243].

To ensure the stability of the method, the time step (dt) must be chosen to ful�ll, the kinetic,

the body force, and viscous conditions [245] [40]

dt � 0:25
h

maxf c0i + kvikg
(5.57)

dt � 0:25
�

h
kgk

� 1=2

(5.58)

dt � Cm
h2

maxf ne f fg
= Cm

r 0h2

amm
(5.59)

In previous works [352, 145, 303, 255], other authors assign the value ofCm = 0:1 in

order to keep the simulation stable. In the present work, we have used the valueCm = 0:2

, that preserves the stability and accuracy of the simulation when the viscous condition is
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dominated. Thus, the use of the proposed formulation allows us the choice of adt two times

bigger than in previous SPH formulations.

The choice of the value of the positive constantam depends on the applied efforts for

each case. We select a value ofam as small as possible keeping the stability.

Note that the use of a very large value of the control parameteram leads to a more

accurate approximation of the rigid part of the soil, which is characterized by a maximum

viscositymmax (mmax = amm). However, this large value ofam leads to the use of a very

small time step following the condition (5.59). Because of this, a good compromise for the

value ofam must be found for each problem.

5.3 Conclusion

In this work, a weakly compressible multiphase Smoothed Particle Hydrostatic (SPH)

model was developed in order to simulate soil , water (or any Newtonian �uid) and their

interaction problems. A RBPMC-am pressure-sensitive rheology model is proposed to model

Newtonian �uids, purely frictional and cohesional (Binghamian) soils at the same time.

Because of the developed rheology model is pressure-sensitive, a multiphase diffusive term

calledDd� MSPH is developed in order to damp the pressure oscillations due to the use of

equation of state.





Chapter 6

Validation and application of SPH

multiphase model

Ce chapitre est consacré à la démonstration de la capacité du modèle SPH présenté

dans ce travail pour simuler des écoulements multiphasiques sous l'effet de gravité tout

en négligeant la tension de surface. Les exemples abordés ici sont, l'évolution de deux

phases de �uide strati�ées et l'instabilité de Rayleigh-Taylor. Le premier exemple n'est

pas seulement fait pour examiner l'effet de stabilisation de la technique d'amortissement

numerique (Damping), mais aussi pour valider les modi�cations proposées sur les conditions

aux limites généralisées liées aux parois rigides lorsque les phases de �uide se rencontrent à

la paroi. Le second exemple est fait pour comparer les résultats du modèle SPH multiphasique

avec ceux utilisant la méthode Level-Set [128] et d'autres modèles SPH [238], ainsi qu'avec

l'approche analytique présentée dans [187]. À la �n, nous présentons l'exemple de deux

bulles montantes à travers une colonne d'eau en utilisant une résolution de particules plus

élevée par rapport aux exemples précédents.
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This chapter is devoted to demonstrating the ability of the presented SPH model for

the simulation of multiphase �ows under gravity effects neglecting surface tension. The

examples addressed here are the evolution of the two-phase strati�ed �uid layers and the

Rayleigh-Taylor instability (RTI). The �rst example is not only performed to examine the

stabilization effect of the damping technique but also to validate the proposed modi�cations

on generalized wall boundary conditions when the two �uid phases meet the solid boundaries.

The second example, is done to compare the results of the presented SPH multiphase model

with the ones using Level-Set [128] and other SPH [238] models, and also with the analytical

approach presented in [187]. Finally, we present the example of two rising bubbles through a

water column using a higher particle resolution than in the previous examples.

6.1 Vertical �uid column: Hydrostatic pressure condition

In this test, we set three con�gurations of two strati�ed �uid layers which have the same

dimensions ([0;L]� [0;2L] (see �gure 6.1) with different density ratior 2
r 1

= 1; r 2
r 1

= 2 and r 2
r 1

=

4 [190]. Each test case is investigated using three different particle resolutionsf 24� 49;49�

99;99� 199g. The subscripts 1 and 2 denote the upper and the lower �uids, respectively.

Figure 6.1 – Geometrical details of the initial con�guration of vertical �uid column: The
�gure on the left describes the setup of the problem for the hydrostatic pressure condition.
On the right, we show the initial state for the Rayleigh–Taylor instability test.

The half-length of the column is chosen asL = 1 [m], the interface between two �uids is

located at the middle of the column (at height equals toL). The initial particle distribution is

a regular lattice for each of the three resolutions considered. The density of the lighter �uid

is r 1 = 1 [kg=m3] . The dynamic viscosity is chosen constant asm1 = m2 = 0:1 [Pas:s] for all

phases in all the con�gurations. The vertical �uid column is assumed to be under the action
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of an unit gravity (g = ( 0; � 1) [m=s2]) . The reference speeds of sound are chosen according

to the condition discussed in Section 4.1.2, resulting in the values ofc01 = 10 [m=s] for all

con�gurations andc02 = f 20;14:142;10g [m=s] for the con�gurations ofr 2
r 1

= 1; r 2
r 1

= 2 and
r 2
r 1

= 4, respectively. The background pressure is chosen as (pb = 0:05pr = 5 [Pa]). The

no-slip boundary condition is applied at all boundaries.

In order to show the ef�ciency of the damping technique to reach quickly the equilibrium

state, the three con�gurations are tested with and without the damping technique for the

coarsest particle resolution24� 49. The value of the damping period is chosen asTD = 1 [s].

Figure 6.2 shows the effect of the damping technique on the simulation results for the pressure

for the three con�gurations. We can see clearly that using the damping technique leads to

lower amplitude of the pressure oscillations and to a faster convergence to the stabilized

hydrostatic value. It is also observed that for the highest density ratio, the pressure has an

important amplitude of oscillation.In this case, using the damping technique reduces the

amplitude of the oscillations, but they are still important. This is principally due to the change

of the physical parameters of the lighter �uid after the damping time. This change creates the

jump in density, viscosity and mass and thus the pressure. Despite that, it converges faster

and presents less oscillations than in the case of the simulation without using of the damping

technique. A remedy to further reduce the oscillations is to increase the damping time (TD).

In the case of unit density ratio the oscillations of the pressure are very limited and reachs

the stabilized value of the hydrostatic pressure very quickly.

After the stabilization of the pressure �eld using the damping technique, we compare the

obtained pressure pro�les using the present SPH model with the analytical ones for different

density ratios and different particle resolutions (see �gure 6.3). The numerical results agree

well with the analytical ones.

In �gure 6.4, we show the particle distribution and hydrostatic pressure at equilibrium for the

three particle resolutions for ther 2
r 1

= 4 case. Pressure isolines are plotted in order to check

the hydrostatic pressure levels obtained with the tree different resolutions. It is observed

that the same pressure levels are reached for all the particle resolutions. This indicates the

convergence of the presented numerical model for the simulation of gravitational multiphase

�uid �ows. Note that the background pressurepb = 5 [Pa] is included in the range of

computed pressure variation.

From the results presented in �gures 6.3 and 6.4 we can also conclude that the proposed

modi�cations to the generalized wall boundary conditions method [4] (see section 4.1.3)



140 Validation and application of SPH multiphase model

r 2
r 1

= 1 r 2
r 1

= 2

r 2
r 1

= 4

Figure 6.2 – Time-evolution of pressure at the point(0:5;0:5) (upper curves) and(0:5;1:5)
(lower curves) with (Dotted line with small circle) and without (dotted line with small square)
the damping technique. The solid lines represent the stabilized pressure, and the dashed line
presents the background pressure.

give good results. In order to perform an additional analysis of the ef�ciency of this method,

the same example was investigated under high density and viscosity ratios. The density

ratio was chosen to be equalr 2
r 1

= 100, with r 2 = 100[kg=m3] andr 1 = 1[kg=m3]. While the

viscosity ratio is taken asm2
m1

= 10, with m1 = 0:01[Pa:s] andm2 = 0:1[Pa:s]. The reference

speed of sound of the �uid phase2 is set toc02 = 10[m=s] and c01 = 100[m=s] for the

phase1 that give a reference pressure ofpr = 104[Pa]. The background pressure is taken as

pb = 0:05pr = 500[Pa]. The simulation was performed using49� 99particles, a damping

period ofTD = 1[s] and no-slip condition is applied on all wall boundaries.

After the damping period (TD = 1[s]) the hydrostatic pressure �eld oscillates until it

reaches the stabilized values at timet = 18[s] as it is shown in the �gure 6.5. When the

pressure �eld stabilizes, we perform a comparison between the numerical and analytical

hydrostatic pressure pro�les taken from the centerline of the vertical �uid column. The

results are shown in �gure 6.6. A very satisfactory agreement is observed between the

pressure results obtained with the present approach and analytical results. Figure 6.7 shows
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(a) (b)

(c) (d)

Figure 6.3 – Hydrostatic pressure variationDp = p� pmin for the three different density
ratios r 2

r 1
. Below, we plot a zoom of the selected zones(a) (b) (c) (d).

the vertical �uid column particles distribution at stabilized state. The �uid particles are

colored with phases (gray for the �uid2 and black for the �uid1) in order to show that the

interface between the two �uid phases that meet the vertical wall boundaries is stable. As it

is shown in the center of the �gure 6.7, there are spurious currents which present a maximum
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24� 49 49� 99 99� 199
p

Figure 6.4 – The �uid column particles colored with normalized hydrostatic pressure for
the density ratior 2

r 1
= 4 with the three particle resolutions24� 49 (left), 49� 99 (center),

99� 199 (right). It is also shown the pressure isolines in the range 3:5 to 8[Pa].

Figure 6.5 – Time-evolution of pressure at the point(0:5;0:5) (upper curves) and(0:5;1:5)
(lower curves) after the damping period for the for the density and viscosity ratios ofr 2

r 1
= 100

and m2
m1

= 10 . The solid lines represent the stabilized pressure, and the dashed line presents
the background pressure.

velocity magnitude of orderO(10� 3). A smooth hydrostatic pressure �eld is observed via

the right side of �gure 6.7.
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(a) (b)

Figure 6.6 – Hydrostatic pressure variationDp = p� pmin for the density and viscosity ratios
of r 2

r 1
= 100 andm2

m1
= 10. On the right we plot a zoom of the selected zone.

Figure 6.7 – The �uid column particles for the density and viscosity ratios ofr 2
r 1

= 100and
m2
m1

= 10. The left �gure represents the �uid particles colored with phase color (gray color for
�uid 2, black color for �uid 1). The �gure of the center show the velocity magnitude of every
�uid particle. The right �gure represents the �uid and wall particles colored with hydrostatic
pressure �led.

6.2 Rayleigh–Taylor instability

The Rayleigh-Taylor instability (RTI) is a widely used benchmark [80, 150, 128, 238] to

test the accuracy of numerical methods for multiphase gravity �ows. The Rayleigh–Taylor

instability, occurs at an interface between two �uids of different densities when the lighter

�uid pushes the heavier �uid. This phenomenon occurs in a multitude of physical (salt domes,

weather inversions, etc) and industrial applications.
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In this work a Rayleigh-Taylor with sinusoidal asymmetric interface perturbation is studied.

The computational domain is[0;L] � [0;2L] with L = 1 [m]. The computational domain is

divided in two sub-domains by a sinusoidal interfacey(x) = 1� 0:15sin(2px) (see �gure

6.1). The lower sub-domain is occupied by the lighter �uid (referred as phase1) which

has a densityr 1 = 1 [kg=m3], while the upper sub-domain is occupied by the heavier �uid

(referred as phase2) with densityr 2 = 1:8 [kg=m3]. The Reynolds number is de�ned here as

Re =
p

kgkL3

n , and a value ofRe = 420is chosen. In the previous de�nition,kgk = 1[m=s2]

is the modulus of the gravity acceleration vector, andn = n1 = n2 = 0:0024[m2=s] is the

kinematic viscosity which is chosen to be equal and constant for both �uids phases.

The particles have an initial regular lattice distribution. The RTI test is solved with three

different particles resolutionsf 49� 99;99� 199;133� 267g . The reference speeds of sound

are taken asf c01;c02g = f 13:41;10g [m=s], for the lighter and heavier �uids, respectively.

The reference pressure is chosen equal to9 [Pa]. The no-slip boundary condition is applied

on all solid boundaries.

In �gure 6.8 we compare three different particle resolutions at three different timest = 1 [s],

t = 3 [s], t = 5 [s] . Quantitatively, it's shown that the three particle resolutions are able to

simulate substantially the same phenomena of RTI. Nevertheless, at the low resolution49� 99

the roll-up of the small structures at the mushroom-shaped head are not well reproduced. For

the �ner resolutions, all the small structure phenomena due to the development and roll-up of

the mushroom-shaped heads are captured. The two �ner resolutions (99� 199and150� 300

) are very similar to each other in terms of the shape of the instability.

We also performed a comparison between the RTI interfaces reproduced with the proposed

SPH model and two different numerical methods. In �gure 6.9, we compare the results at

time t = 5 [s] with the resolution of150� 300particles with those of a Level-set method

[128] and another SPH model [238]. There are some differences between the SPH method

[238] and the method presented here. For instance in [238] a Wendland kernel function

[347] and time-integration of continuity equation for the density are used instead of the

quintic spline kernel 4.7 and summation-based density 4.8 used in the presented SPH method,

respectively. The present SPH model can reproduce the RTI interface in good agreement

with the other numerical models which have more resolution (Level-Set: a grid of312� 624

cells, and SPH model[238]:150� 300particles). Globally, the RTI interface reproduced with

the proposed SPH approach is closer to that reproduced with the SPH model of [238]. This

is probably due to the same nature of both models. We note, however that in some places

the interface with the proposed SPH method is closer to that obtained by the Level-set one

[128]. These results are only of a qualitative nature. Monaghan et al [238] prefer to examine
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49� 99

99� 199

150� 300

Figure 6.8 – Rayleigh–Taylor instability at three different timest = 1 [s] (left column),
t = 3 [s] (center column),t = 5 [s] (right column) after the damping period, and three
different resolutions:49� 99 particles (top),99� 199 particles (middle) and150� 300
particles (bottom).

the convergence by comparing the time evolution of the position of theY� coordinate of the

highest particle of the lighter �uid (phase1) with that obtained from the Layzer's theory

[187, 83]. Thus, the highest point of the phase1 �uid for the three particle resolutions
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f 49� 99;99� 199;150� 300g is plotted in �gure 6.10 together with the curve obtained

using the Layzer's theory. The results are in good agreement with the Layzer theory. Note

that the the Layzer theory is for a periodic domain, while the results are obtained from the

simulation in a rectangular rigid domain with no-slip boundaries. This fact may explain some

of the deviations of the numerical results from the theoretical line.

Figure 6.9 – Comparison between the �uid interfaces of the present work and the references.
The left �gure compares the �uid interface of present SPH model with that of SPH model
developed by Monaghan et al [238].The right �gure compares the �uid interface of the
present SPH method with that of Level-Set method [128].

6.3 Interaction of two rising bubbles through a �uid col-

umn

In this last test case we solve a case based on the one presented in [128]. Two bubbles are

initially set close to each other and rise through a �uid column. The upper bubble is larger

than the lower one. The smaller bubble has a radiusR= 0:1 [m]. The geometrical setup of

the problem is based on the radius of the smaller bubble and is detailed in �gure 6.11. The

physical parameters for the setup of this problem are given in Table 6.1 , respectively.

We use here a discretization of 500� 750 particles.
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Figure 6.10 – Time-evolution for the highest point (Ymax) of the lighter �uid. Dotted line
with small open triangles shows the results for the simulation with99� 199particles, the
small open square for49� 99 particles and the small open circles for150� 300particles.
Layzer's theory curve is represented by the continuous solid line.

r 1 [kg=m3] r 2 [kg=m3] m1 [Pa:s] m2 [Pa:s] s [N=m] kgk [m=s2] Re Eo
r 1
r 2

m1
m2

1000 100 0.156 0.078 0 2.9 1794 ¥ 10 2

Table 6.1 – Setup for the interaction of two rising bubbles through a �uid column test case.

With Reynolds numberRe = r 1vcLc
m1

and Eötvös numberEo = r 1v2
cLc

s .

The reference speeds of soundf c01;c02g = f 9:32;29;47g [m=s] are chosen for �uid water

column and the �uid of the two bubbles, respectively. The simulation is damped for a period

of TD = 0:25 [s]. Left and right boundaries are set as free-Slip boundaries, whereas no-slip

boundary conditions are set at top and bottom boundaries. The results for pressure variation
fDp = p� pmin , velocity magnitude of the �uid column and of the bubble are presented in

�gures 6.12 and 6.13.

During the evolution process of the two rising bubbles, the upper bubble covers the lower

one. This generates more efforts over the lower bubble. Due to this forces, the lower bubble

deforms. This deformation generates two �uid ejections that go thinner as the rising process

continues. Finally, the two bubbles merge but this state is not stable and they split in two

parts.

6.4 Conclusion

The accuracy, stability and applicability of the proposed SPH model to deal with gravita-

tional multiphase �uid problems were shown. Using the proposed damping technique leads
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Figure 6.11 – Interaction of two rising bubbles through a �uid column: Geometrical setup.

to lower amplitude of the pressure oscillations. The modi�cations brought in this work to

the generalized wall boundary conditions [4] for the multiphase applications is shown its

ef�ciency to simulate gravitational multiphase �uid �ow with high density ratio.
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Figure 6.12 – Interaction of two rising bubbles through a �uid column First and second
images columns represent the pressure and magnitude velocity, respectively. The third
column presents the magnitude velocity with particle direction vector of isolated bubble. The
simulations are presented in order at the timest = f 0;0:25;0:5g [s].
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Figure 6.13 – Two rising bubbles through a �uid column. First and second images columns
represent the pressure and magnitude velocity, respectively. The third column presents the
magnitude velocity with particle direction vector of isolated bubble. The simulations are
presented in order at the timest = f 0:75;1g [s].



Chapter 7

Validation and application of SPH

interfacial multiphase model

Ce chapitre est dédié à l'étude de la consistance et la convergence de la formulation

non-conservatrice de la force de tension de surface proposée dans ce travail, dans le cas

d'écoulement diphasique (deux phases) et triphasique (trois phases) avec présence de points

de jonction triple. Ceci est fait par le bais da la comparaison avec des solutions analytiques

disponibles. Les exemples abordés dans cette catégorie sont, la déformation d'une gouttelette

carrée [2], l'étalement d'une goute placée entre deux couches de �uide strati�ées [39] [ 193],

et le test d'onde capillaire-visqueuse [254, 151, 150, 149, 2]. Par la suite, nous examinons

l'effet des rapports de densité et de viscosité élevés. La montée d'une bulle d'air à travers

une colonne d'eau de'un seul �uide et de deux couches de �uide strati�ées est étudiée. Les

résultats sont comparés à ceux obtenus avec d'autres méthodes numériques (Volume-Of-Fluid

[155], Level-Set [318]) et aussi avec des résultats expérimentaux [37].
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This chapter is dedicated to investigating the consistency and the convergence of the

non-conservative formulation for the surface tension force proposed in this work, for the case

of two and three phase �ows with presence of triple junction points. This is done through the

comparison with available analytical solutions. The examples addressed in this category are

the square droplet deformation [2] ,the spreading lens between two strati�ed �uid layers [39]

[193], and the capillary-viscous wave test [254, 151, 150, 149, 2]. Thereafter, we introduce

high density and viscosity ratios effects. The rising of an air bubble trough a water column

and through two strati�ed �uid layers are investigated. The results obtained with the new

method are compared to those obtained with other numerical methods (Volume-Of-Fluid

[155], Level-Set [318]) and also with experimental results [37].

The simulations of the bubble rising behavior can be characterized by the Reynolds and

the Eötvös dimensionless numbers [155] and also the density and viscosity ratio( r 1
r 2

; m1
m2

).

The Reynolds numberRe gives the ratio of inertial to viscous effects and is expressed as

Re =
r 1vcLc

m1
: (7.1)

While the Eötvös numberEo compares buoyancy effects to capillary ones :

Eo =
r 1v2

cLc

s
: (7.2)

The subscripts1 and2 refer to the heavier and lighter �uid, respectively. The characteristic

velocity is de�ned asvc =
p

2Rkgk andLc = 2R refers to the characteristic length.R is

initial radius of the bubble andkgk is the magnitude of the gravity acceleration vector.

7.1 Square droplet deformation

In this �rst test case, the SPH method with CSS model of the surface tension force is applied

to the simulation of the deformation of a square droplet under the action of the surface tension

force. This example has already been investigated by Adami et al [2] using a SPH method

with CSF model. The square droplet is de�ned by an edge lengthld = 0:6 [m] units. It is

placed on the center of an square box with sidesLs = 1 [m]. The �uid within the square

droplet is referred as phase1 whereas the �uid outside the droplet is referred as phase2 (see

fgure 7.1). The densities of the each �uid phases are chosen asr 1 = r 2 = 1 [Kg=m3] and

the dynamic viscosity is taken asm1 = m2 = 0:2 [Pa:s]. The surface tension coef�cient is

s 1� 2 = 1 [N=m].
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Dimensions Initial state Equilibrium state

Figure 7.1 – The evolution of square droplet under the surface tension effort : The left
�gure describes the geometrical details. The middle �gure shows the initial �uid particles
at (t = 0 [s]) for the particle resolutionls40. The right �gure describes droplet in equilibrium
state after its evolution for the particle resolutionls

40.

We investigate the evolution of the square droplet deformation using three different number

of particles: ls
40, ls

80 and ls
160. The smoothing length is chosen equal toh = 1:33dx0. The

reference speed of sound is set to (c0 = 10 [m=s]) for all resolutions. A positive background

pressure is taken as (pb = 5 [Pa]). A non-slip boundary condition is applied on all sides of

the square box.

The evolution of the kinetic energy of the particles inside the droplet (Ek = 1
2å

id

midkvidk2

whereid refers to the droplet particles) is plotted in �gure 7.2. The deformation of the square

droplet starts at the corners because of a local high surface tension due to the high curvature

at corners. This effect is re�ected by the peak in the kinetic energy which evolves until the

stabilization in a value close to zero for all resolutions.

Figure 7.2 – Time evolution of droplet kinetic energy for particle resolutionsls
40, ls

80 and ls
160.

At the stabilized state (equilibrium state) the particles are at rest, and the square droplet is

totally transformed in a circular droplet. Under the �uid incompressibility hypothesis, both
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phases must conserve their volumes (areas in 2D) during all the evolution process. Thus,

the equalitypR2 = l2d holds for for the square droplet, and therefore the equilibrium radius

is R= ldp
p � 0:338 [m]. From Laplace's law, the pressure of the �uid particles inside the

droplet (phase1) must be higher than that of the surrounding particles (phase2), and the

jump of pressure between the two phases must satisfy the condition

Dp =
s 1� 2

R
� 2:954[Pa] (7.3)

Figure 7.3 – Surface tension forces orientation (on the left) and magnitude of the velocity
(on the right) of droplet at equilibrium state for the particle resolutionls

40.

The surface tension forces orientation and the magnitude of the velocity are shown in

�gure 7.3. We observe that the surface tension force has a radial direction, oriented towards

the center of droplet. This orientation corresponds to the direction of normal vectors to the

interface between the �uid phases (see the left side of the �gure 7.3 ). On the right side of the

�gure 7.3 the magnitude velocity of every particle is represented. The velocity magnitude

is in the order ofO(10� 3). When forces due to this spurious effect are comparable to other

physical forces such as viscous, gravitational, and surface tension forces, errors will be

greater.

In �gure 7.4 we show the cut of pressure �eld atY = 0 (X-axis) obtained in the simulations

and also the analytical pressure predicted by Laplace's law. It is observed a good agreement

between the numerical results and the theoretical pressure. These results show that the SPH

method with the CSS non-conservative surface tension model is able to represent correctly

the equilibrium state of this two phase �ow problem.

When a low viscosity ofm1 = m2 = 0:001[Pa:s] is used (small viscous forces) to simulate

the square droplet deformation test case, the pressure pro�le at the equilibrium state is less
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Figure 7.4 – Square droplet test case.The left �gure plots the normalized pressure (p� p2
p1� p2

)
at the �nal stabilized state. The �gure on the right plots a cut of the pressure �eld atY = 0
obtained by the numerical method and the theoretical solution for different particle resolutions

ls
160,

ls
80 and ls

40.

accurate. This is because in this case viscosity forces are comparable with the forces due

to the parasitic currents (see �gures 7.5 and 7.6). Note however that the circular shape

of droplet is well approximated. Parasitic currents are a numerical artifact suffered for

numerical approaches of the surface tension based on the use of CSF or CSS formulations.

The elimination of this effect is not addressed here. For more details about parasitic currents

artifact and their elimination, please refer to [271, 330, 162].

Figure 7.5 – Square droplet test case using low viscosity (m1 = m2 = 0:001[Pa:s]) for the
particle resolution ofls80 . Particles colored with �uid phases (left). Magnitude velocity �eld
(right).

Three density ratiosr 2
r 1

= f 1;10;1000g are investigated in order to show the in�uence

of the variation of density ratios on the obtained pressure results. In �gure 7.7, the pressure

pro�les atY = 0 are plotted for three selected density ratios. Despite the obtained results of

pressure are not as accurate as for the case of density ratior 2
r 1

= 1, we observe relatively a

good agreement with the analytical solution for the density ratios ofr 2
r 1

= 10and r 2
r 1

= 1000.
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Figure 7.6 – A cut of the pressure �eld atY = 0 obtained by the theoretical solution and the
numerical method and numerical method with viscositym1 = m2 = 0:2[Pa:s] (dotted line with
small circles) andm1 = m2 = 0:001[Pa:s] (dotted line with small triangles) for the particle
resolution of ls

80.

Figure 7.7 – A cut of the pressure �eld atY = 0 obtained by the theoretical solution and
the numerical method and numerical method with viscositym1 = m2 = 0:2[Pa:s] and three
density ratiosr 2

r 1
= f 1;10;1000g for the particle resolution ofls80.

7.2 Spreading lens between two strati�ed layers

This example aims to test if the presented SPH model can deal with triple junction points

problems [193]. Thus, the classical test of the spreading of a lens between two strati�ed

�uid layers is investigated. A circular lens of radius1
6 [m] is placed at the center of a square

box with length sides (lb = 1 [m]). The square box contains two different �uid phases in an

strati�ed arrangement. These �uid phases are respectively referred as �uid phases1 (the

phase at the top of the strati�cation) and2 (the phase at the lower part of the strati�cation

arrangement) whereas the lens is referred as phase3. Due to the effect of the surface tension,
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the lens evolves until an equilibrium state (see �gure 7.8). The contact angles at the triple

junction point follows the Young's relation

sinq1

s 2� 3 =
sinq2

s 1� 3 =
sinq3

s 1� 2 (7.4)

Figure 7.8 – Schematical representation of contact angles at a triple junction point.

Fluid densities are set as (r 1 = r 2 = r 3 = 1 [Kg=m3]) for the three �uid phases. The dynamic

viscosities are identical for the three �uid phases (m1 = m2 = m3 = 0:5 [Pas:s]). The interfacial

surface tension applied on all �uids interfaces is (s 1� 2 = s 2� 3 = s 1� 3 = 5 [N=m]), in order

to obtain a symmetric lens. The analytic solution is obtained from Laplace's law and Young's

relation. The theoretical value of the pressure jump between phases (Dp) is obtained in 2D

case from equation (7.5). The shape of the half lens ( symmetric with respect to theX axis)

at equilibrium state is assumed to be a circular segment with following parameters (see �gure

7.8): The distance between the two triple junction points (ed), the contact angles of theith

phase (qi), the sagitta (the distance from the center of the arc to the center of its base) of the

segment (eh), the radius of the curvature of the interface between the phasesi and j (Ri j ) (in

�gure 7.8, we represent the curvature between the upper �uid of the strati�cation (1) and the

�uid of the lens (3) ).

Dp = pi � p j =
s i� j

Ri j
(7.5)

At the equilibrium state the lens areaA, the distance between triple junction pointsed, and the

contact anglesqi can be expressed follows the relation [173]
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ed =
�

1
8A

�
2(p � q1) � sin((p � q1))

sin2(p � q1)
+

2(p � q2) � sin((p � q2))

sin2(p � q2)

�� � 1
2

� 0:4617[m]

(7.6)

Note that in this test case, the surface tension coef�cients are taken identical. Then, the

Young's relation (equation (7.4)) reads asq1 = q2 = q3 = 2p
3 .

Geometrical consideration leads to the following results

R31 = R32 =
ed

2sinq3
2

� 0:2665[m] (7.7)

eh = R32

�
1� cos

q3

2

�
� 0:1333[m] (7.8)

All the particles are initially at rest. The no-slip boundary condition is applied on the upper

and lower boundaries. On the left and right boundaries a periodic boundary condition is

applied. The reference speed of sound and the background pressure are taken as ((c0 =

55 [m=s]) andpb = 150[Pa]) ).

The time evolution of kinetic energy for three different resolutionslb
40, lb

80 and lb
160 is plotted in

the �gure 7.9. The kinetic energy converges to approximate zero and reaches the equilibrium

state. As it is observed, the magnitude of the velocity decreases considerably (order of

O(10� 2); see �gure 7.10 ) at later time for the three particle resolutions. This indicates that

the parasitic currents do not create a serious effect on the obtained results.

Figure 7.9 – Spreading lens between two strati�ed layers: Time-evolution of kinetic energy
for three different particle resolutions.
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Figure 7.10 shows the pressure �eld, the particle distribution of three phases strati�cation

arrangement and magnitude of velocity �led at the equilibrium state. The initial circular

shape of the lens evolved to an elliptical shape at the equilibrium state. The pressure jump

pro�le along X = 0 andY = 0 lines are plotted with the analytical solution obtained from

equation (7.5), which givesDp = p3 � p1 = p3 � p2 � 18:7591[Pa]. Quantitatively a good

agreement between the numerical solution and analytical one is observed for both pressure

pro�les (along theX = 0 andY = 0 lines). A pressure instability appears near the triple

junctions points (following theX axis) for both resolutions (see �gure 7.11). This instability

tend to disappear with increasing of resolution ( The instability in low resolution is more

marked than in higher one). Note that for a higher particle resolution, the SPH numerical

solution becomes closer to the analytical one in terms of pressure and geometrical details of

lens which guarantees thereafter the convergence of the proposed SPH interfacial multiphase

model to deal with a triple junction points problems.

Figure 7.10 – Spreading lens between two strati�ed layers: pressure �eld (left), particle
distribution of three-phases strati�cation arrangement (middle) and magnitude velocity �led
(right).

Figure 7.11 – Spreading lens between two strati�ed layers: pressure jump pro�le along
Y = 0 (left) andX = 0 (right) lines.

The wettability of a �uid phase in contact with other two phases can occur either partially

or totally, depending on the surface tensions between the three �uid interfaces. The degree
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of wettability can be determined by the spreading parameterSp [349]. If the spreading

parameter is positive the �uid of this phase will spread completely on the interface between

the other phases (total spreading). Here, in order to check if the proposed method reproduces

accurately this phenomenon, we consider two different con�gurations following the work

presented in [39].

We de�ne the spreading parameter for the lens (Sp3) and the upper �uid (Sp1) phases as

follows

Sp3 = s 1� 2 � (s 1� 3 + s 2� 3) (7.9)

Sp1 = s 2� 3 � (s 1� 2 + s 1� 3) (7.10)

The �rst con�guration of the problem is de�ned by choosing the values of interfacial surface

tensions as
�

s 1� 2;s 1� 3;s 2� 3
	

= f 3;1;1g [N=m] (Sp3 = 1 [N=m] > 0). This choice leads

to the total spreading of the lens phase 3 on the interface phases 1-2

For the second con�guration, the values of interfacial surface tensions are chosen as
�

s 1� 2;s 1� 3;s 2� 3
	

= f 1;1;3g [N=m] (Sp1 = 1 [N=m] > 0). This choice leads to the total

spreading of the upper �uid phase 1 on the interface phases 2-3.

In �gure 7.12 we show the evolution of the spreading until the equilibrium state is reached

for the two con�gurations considered. In both cases, the triple points disappear and the

equilibrium interfaces are plane in the �rst case and spherical in the second simulation case.

The results obtained are in agreement with those obtained in [39].

(a)

(b)

Figure 7.12 – Total spreading evolution of the �uid lens for the con�gurations : a)�
s 1� 2;s 1� 3;s 2� 3

	
= f 3;1;1g [N=m] and b)

�
s 1� 2;s 1� 3;s 2� 3

	
= f 1;1;3g [N=m].
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7.3 Capillary-viscous wave

In this example, the dynamic test case involving a liquid-droplet oscillation in a liquid

phase under the action of capillary forces is investigated. This test was already simulated

in the SPH framework in several works such as [254, 151, 150, 149, 2]. The liquid-droplet

(referenced with ad subscript) has a radius ofR= 0:1875[m] and is surrounded with another

liquid phase (referenced with al subscript). Both �uids are placed at the center of a square

box of sizeLx = Ly = 1[m]. The densities and dynamic viscosities of the droplet and its

surrounding �uid are considered the same and equal tor d = r l = 1[Kg=m3], md = ml =

0:05[Pa:s], respectively. The surface tension coef�cient between the two phases is set as unity

(s d� l = 1[N=m]). A divergence-free initial velocity �eld is assigned to all �uid particles and

it reads as

vx = v0
x
r0

�
1�

y2

r0r

�
e� r

r0 (7.11)

vy = � v0
y
r0

�
1�

x2

r0r

�
e� r

r0 (7.12)

Wherer denotes the distance between the particle position(x;y) and the droplet center.

Termsv0 andr0 are the characteristic velocity and distance, and are taken asv0 = 10[m=s] and

r0 = 0:05[m]. We study the convergence properties using three different number of particles

900, 3600, 14400particles. The reference speed of sound is chosen equal toc0 = 10[m=s] for

both �uid phases under all resolutions. A positive background pressure is set as (pb = 5 [Pa]).

A no-slip boundary condition is applied on the square box sides.

Figure 7.13 shows droplet particles positions att = f 0:0;0:08;0:16;0:26g[s], under the

resolution of 14400 particles ( about the same resolution used by Morris et al [254] ). A good

agreement is observed comparing with Morris et al [254] and also with Adami et al results

(see �gure 6 in [254] ). Comparing these results with those of [254], it is observed that the

present SPH model provides a more regular particle distribution and an smoother interface,

with the consideration that the initial distribution of the particles are different.

Figure 7.14 shows the time evolution of the center of mass position of the upper right-

quarter section of the droplet with different resolutions. It is observed that with increasing

resolution the difference in results becomes less signi�cant (the results with resolutions3600

and 14400 particles are very close comparing with the lowest resolution of 900 particles).
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t = 0:0[s] t = 0:08[s]

t = 0:16[s] t = 0:26[s]

Figure 7.13 – Droplet oscillation : droplet particle positions att = f 0:0;0:08;0:16;0:26g[s].

Figure 7.14 – Convergence test of droplet oscillation: Center of mass position of the upper
right-quarter section of the droplet.
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7.4 Single bubble rising through a vertical column of wa-

ter

The purpose of this test is to show the ef�ciency of the present SPH model to simulate a two

phase interfacial �uid �ow with low and high density ratios. These tests are taken from the

work of Hysing et al [155]. A single bubble rising in a vertical column due to gravity effect.

The initial bubble position and dimensions of the vertical column are described related to the

bubble radiusR (see �gure 7.15). The physical variables and parameters are summarized at

Table 7.1 as Case 1.

Figure 7.15 – Single bubble rising through a vertical column of water. Geometrical details of
the initial setup. On the left it is schematically described the low-density ratio con�guration
(Case 1)[155] (R= 0:25 [m]) and on the right it is described the setup for the high-density
ratio con�guration (Case 2) [317](R= 0:025[m]).

This test is done with two different particle resolutions66� 133and133� 267. The damping

technique is applied here withTD = 1. The reference speeds of sound for the two phases are

set tof c01;c02g = f 5:7;18g [m=s]. No-slip boundary conditions are applied on the upper and

lower solid boundaries, while free-slip boundary conditions are applied on the left and right

boundaries.

The position of the gravity centerGCy of the bubble and its vertical velocityvGC are computed

as follows

GCy =
å iNbyi

Nb
: (7.13)

vGC =
å iNbvyi

Nb
: (7.14)
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Nb denotes the number of particles in the bubble, andyi is theY coordinate of the particle

i which belongs to the particle set of the bubble. The termvyi denotes the vertical component

of the velocity of the particlei.

In �gure 7.16 we compare our results for the time evolution of the vertical position of the

gravity center of the rising bubble and its vertical velocity with the ones obtained in [155]

using the VOF method. Basically, a good agreement is found between our SPH numerical

results and those of reference [155], even tough a slight difference for the position of the

gravity center is detected, and some oscillations are observed around the VOF velocity curve.

However, the overall SPH results are in good agreement with the reference ones.

In �gure 7.17, we also compare the shape and position of the bubble interfaces at time

t = 3 [s]. We observe a perfect agreement in this case.

Figure 7.16 – Single bubble rising through a vertical column of water. Case 1: Time evolution
of the position of the gravity center (left) and vertical velocity (right) of the rising bubble for
different number of particles. The solid line represents the results obtained by VOF method
[156].

Figure 7.18 shows the pressure and the magnitude velocity of the water column for two

different particle resolutions at two different timest = 1 [s] andt = 2 [s]. Moreover, in �gure

7.19 we show the direction of the velocity vector of the particles inside the bubble for the

previous two resolutions at timet = 1 [s]. The results obtained for both particle resolutions

are very similar, indicating the convergence of the numerical model.

Now we address the same case with a higher density ratio [317, 73, 128]. In this case,

during the rising motion, the bubble undergoes a large deformation that subsequently splits it

into three parts. The initial setup is presented in �gure 6.1 and the physical variables and

parameters for this test case are summarized at Table 7.1 as the Case 2.
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Figure 7.17 – Single bubble rising through a vertical column of water. Case 1: Comparison
between the bubble interfaces at timet = 3 [s]: 66� 133SPH (Small triangles),133� 267
SPH (Small circles). Dashed line represent the interface obtained with the VOF method
[155].

In this test we use a discretization of240� 400particles. The reference speeds of sound

aref c01;c02g = f 7;221:35g [m=s]. The damping technique is used here with (TD = 0:05 [s]).

The boundary conditions are the same than for Case 1 of this section.

Figure 7.20 shows the velocity and relative pressure (fDp = p� pmin) of the column of water

at the dimensionless timet
p

kgk=R= 3:6. The bubble is strongly deformed and it is split

in three parts during its evolution. The evolution of the bubble is presented in �gure 7.21

at nine different instants. The particles inside the bubble are colored with the magnitude

of the velocity. In �gure 7.22 we compare the results obtained with the SPH method with

those obtained using a Level-Set method [318]. The results of the SPH and Level-Set

methods are in good agreement. During the rising process, the bubble deforms and takes

a horseshoe shape. After that, the extremities roll-up until they undergo a big deformation

which subsequently splits the bubble to form other small ones. The main difference between

the results is that near to the symmetric axis the bubble obtained using the present SPH

method is thicker than the one obtained by the level-Set method. The results for the width of

the bubble remains in very good agreement during all the simulation period for both methods.

We observe that in the Level-set solution the bubble splits in several very small bubbles that

are not predicted by the present SPH method. Thereafter, these smaller bubbles disappear

gradually from the Level-Set simulation.
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t = 1 [s] t = 3 [s]

Figure 7.18 – Single bubble rising through a vertical column of water. Case 1: Pressure
(top) and velocity (bottom) �elds at timest = 1 [s] andt = 3 [s] for two different particle
resolutions, 66� 133 (left) and 133� 267(right).

Case r 1 [kg=m3] r 2 [kg=m3] m1 [Pa:s] m2 [Pa:s] s [N=m] kgk [m=s2] Re Eo
r 1
r 2

m1
m2

1 1000 100 10 1 24.5 0.98 35 10 10 10
2 1000 1 0.035 0.0045 0.1226 9.81 1000 285.63 1000 7.77

Table 7.1 – Setup for Case 1 and Case 2 tests.

7.5 Gas bubble rising through two strati�ed �uid layers

This test example describes the behavior of a rising gas bubble through two strati�ed �uid

layers (see �gure 7.23 ). The gas bubble can cross the interface between layers with or
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Figure 7.19 – Single bubble rising through a vertical column of water. Case 1: Direction
of the velocity vector of the particles inside the bubble att = 1 colored with magnitude
velocity. On the left, results for66� 133particles, and on the right we plot the results for the
133� 267 particles case.

Figure 7.20 – Single bubble rising through a vertical column of water. Case 2: Relative
pressure (fDp = p � pmin) and magnitude of the velocity of the column of water at the
dimensionless timet

p
kgk=R= 3:6

without entrainment of the heavier �uid into the lighter, or it could even remain trapped in

it. Greene et al [125, 126] suggest a criterion on the bubble volume to predict this behavior

based on a macroscopic balance between surface tension forces and buoyancy forces. Thus,

if the bubble volume is greater than a critical volumeVc (Vb > Vc), the bubble will penetrate

the interface layer and it will eventually entrain into the heavier �uid, otherwise the bubble

will be trapped between the interface layers. The critical volume is calculated as follows

Vc =

 
2p( 3

4p )1=3s 2� 3

(r 3 � r 1)kgk

! 3
2

(7.15)
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Figure 7.21 – Single bubble rising through a vertical column of water. Case 2: Evolution of
the bubble at nine different instants. The Bubble is colored with velocity magnitude �eld.

In equation (7.15) the subscript(or superscript for surface tension)1 corresponds to the lower

�uid, 2 refers to the bubble, and 3 refers to the upper �uid.

This problem is very challenging from the numerical point of view since it involves high

density and viscosity ratios and the presence of triple point junctions. The setup of the

problem presented here is taken from [37]. The density and dynamic viscosity of �uid

1 (95%glycerin + water) arer 1 = 1244[kg=m3] , m1 = 550:1� 10� 3 [Pa:s], in the case of

the buble (�uid 2) the chosen values are those of the air:r 2 = 1:205 [kg=m3] andm2 =

5� 10� 3 [Pa:s].Note that the value of air bubble viscosity is chosen greater than the real

one and equalm2 = 5� 10� 3 [Pa:s] instead the use of the real gas viscosity with an arti�cial

one to guarantee the stability of the algorithm [245] . Finally, for the �uid 3 (47V500

oil), the values arer 3 = 965: and m3 = 530:7 � 10� 3 [Pa:s] . The surface tensions are

s 1� 2 = 45:1613� 10� 3 [N=m];s 1� 3 = 21� 10� 3 [N=m];s 2� 3 = 28� 10� 3 [N=m] , and

the speeds of sound are taken asf c01;c02;c03g = f 3:7;118:88;4:2g [m=s]. The radius of the
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Figure 7.22 – Single bubble rising through a vertical column of water. Case 2: Evolution of
the bubble at nine different instants. Results obtained with the present SPH method (blue
circles) and with a Level-Set approach [318] (black diamonds).

air bubble isR= 3:5� 10� 3 [m]. These data correspond to a Reynolds numberRe � 4:15

and Eötvös numberEo � 13:24. For the simulation, a regular lattice with50� 166particles

is employed. No-slip boundary conditions are applied on the top and bottom boundaries,

and periodic boundary conditions are applied on the left and right edges of the domain. The

dimensions of computational domain are detailed in �gure7.23. The damping technique is

used withTD = 0:05 [s].

The critical volume is computed using equation (7.15) which givesVc � 3:92� 10� 8 [m3].

This implies a critical radius ofRc � 0:021[m]. In this example, the initial radius of air bubble

R= 0:0035[m] is greater than the critical one which logically involves that theVc < VBubble.

With this values, the air bubble penetrates the interface �uid layers [38].

In �gure 7.24 we show the numerical results for the relative hydrostatic pressure �eld
fDp = p� pmin, the magnitude of the velocity �eld and the distribution of the three different

phases in different instants. The dimensionless interval between two images is taken equal to



170 Validation and application of SPH interfacial multiphase model

Figure 7.23 – Gas bubble rising through two strati�ed �uid layers. Geometrical details of the
problem setup.

Dt
p

kgk=R= 4:3 [37]. In �gure 7.25 we compare the numerical results with the experimental

images obtained in [37]. The numerical results are in good agreement with the experimental

ones. The differences between the numerical and experimental sequences are maybe due to

uncertainties in the initial conditions of the experimental test and possibly to any 3D effect.

7.6 Conclusion

A series of numerical tests have been devoted in order to the validation of the accuracy

and convergence of the surface tension formulation and achievement of the high ratio of

density and viscosity of multiphase �uid �ows. The obtained results are very satisfactory

which demonstrate the consistency, stability and applicability of our proposed SPH interfacial

multiphase �uids model including high density and viscosity ratios and triple junction points.
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t+ = 4:3 t+ = 8:6 t+ = 4:3 t+ = 8:6 t+ = 4:3 t+ = 8:6

t+ = 12:9 t+ = 17:2 t+ = 12:9 t+ = 17:2 t+ = 12:9 t+ = 17:2

t+ = 21:5 t+ = 25:8 t+ = 21:5 t+ = 25:8 t+ = 21:5 t+ = 25:8

Figure 7.24 – Gas bubble rising through two strati�ed �uid layers. Starting from the left, �rst
and second columns show the relative hydrostatic pressure �eldfDp = p� pmin for different
normalized timest+ = t

p
kgk=R. Third and fourth columns present the magnitude of the

velocity �eld. The last two columns show the �uid phases distribution.
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Figure 7.25 – Gas bubble rising through two strati�ed �uid layers. On the top, we show the
experimental sequence taken from [37]. On the bottom we plot the results obtained using the
proposed SPH method. The dimensionless interval between two images is taken equal to
Dt

p
kgk=R= 4:3



Chapter 8

Validation and application of SPH

water-soil interactions model

Dans ce chapitre, la robustesse, la précision et l'applicabilité de notre modèle multi-

phasique sont démontrées via plusieurs benchmarks. La validation de l'ef�cacité du terme

diffusif multiphasique développéDd� MSPH est montré en utilisant l'exemple d'une colonne

de deux couches de �uide Newtonien strati�ées en repos. L'applicabilité pour la simulation

dynamique des matériaux granulaires est démontrée via les benchmarks de l'effondrement

d'une colonne de �uide Binghamien et l'étalement d'une pile de matériau granulaire sur une

surface horizontale. Tandis que pour la simulation des problèmes d'interactions eau-sol, les

exemples de glissements de terrain sous-marins et subaériens sont consacrés. Un modèle

de sédiments en suspension dans l'eau est imbriqué dans notre modèle SPH multiphasique

pour bien capter les phénomènes d'érosion. Une simulation d'un écoulement de rupture

de barrage sur un banc de sédiments érodables est utilisée pour démontrer l'ef�cacité du

modèle de sédiment en suspension dans l'eau. À la �n, un benchmark démonstratif des

phénomènes multiphysiques ( le glissement de terrain subaérien générant des vagues d'eau

impulsives, inondation et érosion) lié à l'interaction sol-eau est proposé pour montrer la

capacité du modèle SPH multiphasique proposé dans ce travail.



174 Validation and application of SPH water-soil interactions model

In this chapter, the robustness, accuracy and applicability of our multiphase model is

demonstrated via a several benchmarks. The validation of the ef�ciency of the developed

multiphase diffusive termDd� MSPH is performed using the two strati�ed hydrostatics New-

tonian �uid layers benchmark. The applicability on simulation of single phase of granular

materials dynamics is demonstrated via the benchmarks of Bingham �uid dambreak and

spreading of granular material pile on horizontal surface. Whereas for the simulation of the

water-soil interactions problems, the submarine and subaerial landslides benchmarks are

devoted. A suspended water sediment model is nested in our multiphase model to capture

well the erosion phenomena. A simulation of a dambreak �ows over erodible sediment bed

benchmark is used for the demonstration of the ef�ciency of the added suspended water

sediment model. Finally, a demonstrative benchmark of multi-physics phenomena (Subaerial

landslide generated impulsive wave, �ooding and scouring erosion) related to the soil-water

interaction is proposed to show the capabilities of the newly proposed multiphase SPH model.

8.1 Two phases hydrostatic strati�ed column

The purpose of this test is to show the ability of multiphase diffusive termsD d� MSPH of

the present work comparing withD d� SPH of equation (5.27) ( applied with the procedure as

in [108]) to reduce and smooth the oscillations of the computational pressure in the context

of multiphase WCSPH. A two-dimensional (2D) tank of0:6[m] long and0:45[m] high is full

with two strati�ed immiscible �uids (see �gure 8.1). The upper �uid layer is considered as

the lighter one with a densityr 1 = 1000[kg=m3], while the lower layer is the heavier �uid

with a densityr 2 = 2000[kg=m3]. The upper and lower �uids behave as Newtonian with

a constant viscosity ofm1 = 0:02[Pa:s] andm2 = 0:001[Pa:s], respectively. Both �uids are

subjected to a vertical gravity acceleration of� 9:81[m=s2].

We investigate the stability and convergence of the pressure �eld using our developed

diffusive termD d� MSPH and the classical oneD d� SPH applied separately on each �uid phase

as in [108]. A resolution of59� 20particles is chosen for this test case. The reference speeds

of sound for the lighter and heavier �uids are chosenc01 = 20 [m=s] andc02 = 14:14 [m=s]

in order to obtain the same reference pressurepr = r 1c2
01

= r 2c2
02

= 4� 105 [Pa].

Figure 8.2 shows the time evolution of the pressure calculated at three different points

P1, Pint andP2 (placed at locations as indicated in �gure 8.1). Pressures at measurement

points are approximated using the Shepard �lter [305]). Thus, for the pointP1 the pressure is

computed as
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Figure 8.1 – Geometrical details of two phases hydrostatic strati�ed column con�guration.
P1 = ( 0:3;0:5), Pint = ( 0:3;0:2), P2 = ( 0:3;0:1) are the pressure measurement points located
at the center of the layer of the �uid1, the interface between the two �uids and the center of
the �uid layer 2, respectively.

p(P1) =

n

å
i

Vi piW(P1 � r i)

n

å
i

ViW(P1 � r i)
(8.1)

We observe that the calculated pressures at different points stabilize to approximate

the hydrostatic pressure values after the timet = 2:5[s] when the multiphase diffusive term

D d� MSPH is used as is shown in �gure 8.2(a).

In the case of classical diffusive termD d� SPH the pressures remain relatively instable

during all simulation period (7[s]) and present an important error specially at the interface

between the �uid phases (as shown in �gure 8.3(b)). The pressure errors are generated

accordingly to the instability of the interface between the phases as shown in the �gure 8.3

(b). In �gure 8.3 (a) it is observed the stability of the interface between the �uid phases and

the smoothness of pressure distribution at later time after the stabilization (att = 7[s]) when

the formulationD d� MSPH is used.

In order to analyze the results without taking into account the effect of the pressure

�ltration due to the use of Shepard �lter (8.1), the pressure distribution on each particle is

plotted against the analytical hydrostatics ones at the timet = 7[s]. This is shown in �gure

8.4. It is observed that computed pressures using the multiphase diffusive termD d� MSPH are

in good agreement with the analytical values for both �uid layers and the interface between

them (see �gure 8.4(a)). When theD d� SPH model is used, pressure results do not match

with the analytical ones specially at the interface, where we observe important differences

(see Figure8.4(b)).
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From this test, we can conclude that the use ofD d� MSPH diffusive terms in the context

of the WCSPH method enhances signi�cantly the stability and smoothness of computed

pressure for the �uid phases.

(a) (b)

Figure 8.2 – Time evolution of pressure at the pointsP1, Pint andP2 plotted against the
analytical hydrostatic values represented in solid lines. The left �gure represents the pressure
results using the multiphase diffusive termD d� MSPH of present work. The right �gure
represents the pressure results using the classical diffusive termD d� SPH independently in
each �uid phase.

D d� MSPH D d� SPH

(a) (b)

Figure 8.3 – Fluid phases distribution and hydrostatic pressure representation att = 7[s].
The gray color is chosen for the phase1 and the black for the phase2). The colored part
shows the hydrostatic pressure �eld. Figure(a) shows the results using the multiphase
diffusive termD d� MSPH presented in this work, whereas �gure(b) shows the results using
the classical diffusive termD d� SPH. Notice the smooth distribution obtained with the
proposed methodology.
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(a) (b)

Figure 8.4 – Computed pressure values at all particles for all �uid phases at timet = 7[s]
plotted against the analytical hydrostatic pressure (solid black line). On the left it is shown
the pressure computed using the multiphase diffusive termD d� MSPH presented in this work.
On the right, the results using the classical diffusive termD d� SPH.

8.2 Bingham �uid dam-break

This example is investigated in order to show that the proposed SPH model with the RBPMC-

am constitutive law (equation (5.23)) can accurately deal with Bingham materials (non-

frictional materials: withf = 0 andc = t y) in simulation problems in the context of Non-

Newtonian free surface �ow simulations.

The dam-break benchmark proposed by Komatina and Jovanovic [175] was reproduced

numerically in this work. This benchmark was already investigated by other authors [352,

145] using SPH method.

A rectangular column of a single �uid with a height ofH = 0:1[m] and length ofL = 2[m]

is con�ned between two �xed walls (at the left side and at the bottom) and a moving wall

at the right side. The moving wall is removed and the �uid starts to �ow under the effect

of gravityg = 9:81[m=s2] (see �gure 8.5 ). The �uid is considered as a water–clay mixture

with a volume concentration ofCv = 27:4%. The bulk density of the water–clay mixture is

r cw = 1200kg=m3, and the �uid is considered as a Bingham Plastic. The plastic viscosity and

the yielding shear stress area are estimated according to [175] asmcw = 0:621exp(0:173Cv) �

0:07 [Pa:s] andt y = 0:002exp(0:342Cv) � 25[Pa], respectively.

A distribution of400� 20 particles is used to discretize the rectangular �uid column.

The speed of sound is (c0 = 10u0 � 14 [m=s] ) with u0 a reference velocity that is calculated

following Torricelli's law (u0 =
p

2Hg). Two values of the regularization parameteram =

f 100;1000g are tested to investigate their in�uence on results.
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In �gure 8.6 the time-evolution of dimensionless front position (XF=H = ( x� L)=H) is

plotted for the present SPH model using two values of control parameteram = f 100;1000g,

the incompressible non-Newtonian SPH model (INNSPH) of Xenakis et al [352], and

the experimental results of Komatina and Jovanovic [175]. A good agreement between

the present SPH formulation, the INNSPH model [352] and the experimental results are

observed. In the case of the proposed method, the best results are obtained when a control

parameteram = 1000is employed. It is also observed that the �ow tends to stabilize at

a rigid form (the so-called "freeze-point") with increasing time, since the shear stress at

every computational particle do not exceed the yield stresst y. In �gure 8.7 the results for

the particle positions using the present SPH model witham = 10000at �ve different time

stepst = f 0:1;0:3;0:6;1;2g[s] are presented. Fluid particles are colored with the hydrostatic

pressure �eld. These results are used for a comparison between the free surfaces obtained

with the present SPH model witham = 1000, the INNSPH model [352], and the control

volume �nite element method (CVFEM) of [352] at two different time instantst = f 0:6;2g[s]

. This comparison is presented in �gure 8.8. The free surface obtained by the proposed

WCSPH approach is between those of INNSPH and CVFEM.

Figure 8.5 – Bingham �uid dam-break con�guration.

8.3 Spreading of granular pile on horizontal plan

In order to show the ef�ciency of the proposed SPH model including the RPBMC-

am rheology for the simulation of cohesionless granular �ow problems, the experimental

benchmark proposed by [183] is reproduced. In this benchmark, a heap of dry granular

material (glass beads ) of lengthL and height ofH (aspect ratioa = H
L ) spreads on an

horizontal roughness plane. The granular heap is initially blocked between a �xed glass

wall at the left side a movable gate at the right side and a �xed rough wall at the bottom.

The channel and the granular heap have the same uniform width (W = 0:045[m]) (see �gure

8.9). The granular heap has a mass of470[g], a height of61[mm] (H � 61[mm]) and a
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Figure 8.6 – Time-evolution of dimensionless Bingham dam-break front position (XF=H =
(xF � L)=H). We compare the results obtained using the proposed method with a plastic
viscosity (m= 0:07) and coef�cientsamu = 100(dotted line)amu = 1000(dashed line), with
INNSPH(Incompressible Non-Newtonian SPH) [352] (solid line) and with the experimental
results of Komatina and Jovanovic [175] (small triangles).

t = 0:1 [s] t = 0:3 [s]

t = 0:6 [s] t = 1 [s]

t = 2 [s]

Figure 8.7 – Bingham dam-break �ow at timest = 0:1;0:3;0:6;1;2[s]. The particles are
colored with pressure values. The Y-axis is scaled by a factor of 5 for the sake of clarity.

length of102[mm] ( L = 102[mm])( aspect ratio ofa = 0:6). SinceL >> W the behavior of

three-dimensional granular �ow can be considered as a two-dimensional one. Thus, in this

work we consider only a two-dimensional con�guration.

The glass bead is considered as a granular material with a grain density ofr g =

2500[kg=m3], and angle of reposef r � 22� 0:5deg(it is equivalent to an internal friction

anglef � f r � 22� 0:5deg). The bulk density is approximated asr b � 1673[kg=m3]. This

bulk density is calculated from the mass and volume of the granular heap by dividing the

mass by the volume of pile (r b = Mass
HLW ) [182, 183].



180 Validation and application of SPH water-soil interactions model

t = 0:6 [s] t = 2 [s]

Figure 8.8 – Comparison between the free surface pro�les of the present SPH method with a
plastic viscosity (m= 0:07) andam = 1000(solid line), the INNSPH method [352] (dashed
line) and CVFEM [352] (dotted line) at timest = f 0:6;2g[s]

In this work the dynamic plastic viscosity of the glass beads is set tom= 0:1[Pa:s] follow-

ing [159]. Four values of control parameter of the RBPMC-am (am= f 100;1000;2000;3000g)

were used. The results of our simulaitons were compared with the experimental results of

[183].

Figure 8.9 – Spreading of granular pile on horizontal plan: Schematics of the experimental
con�guration [183].

The granular column is represented by50� 30 particles ( the initial inter-particular

distance isdx = 0:002[m]). The reference speed of sound of the granular material is set to

c0 = 11[m=s] (reference pressurePr = 202433[Pa]). A no-slip boundary condition is applied

on the horizontal wall (rough wall), while free-slip boundary condition is applied on the

vertical �xed wall.

In �gure 8.10, the time evolution of the dimensionless front position (XF=H = ( x �

L)=H) of the granular column is presented for the experimental and numerical results. A
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disagreement between the numerical and experimental results is observed when the value

am = 100is used. In this case, the numerical granular column continue to spread because

of the low viscosity value assigned by the RBPMC-am rheology model to the column

(mmax= 100m= 10[Pa:s]). However, a very good agreement is observed when the value of

am is suf�ciently higher (am = f 1000;2000;3000g). The best results are obtained by using

am = 3000.

Figure 8.10 – Spreading of granular pile on horizontal plan: Time-evolution of the dimen-
sionless front position of the glass beads pile. We plot the results of the proposed numerical
method usingam = 100(dotted line),am = 1000(dash-dot line),am = 2000(dashed line)
andam = 3000 (solid line), and the experimental data of Lajeunesse et al [183] (small
triangles).

The shape evolution of the collapsing granular column pro�le for both experimental

and numerical results is shown in �gure 8.11 at timest = f 0;0:8;0:16; 0:24;0:32g[s]. A

value of 3000 of the control parameter (am = 3000) is used for the computation. The SPH

particles are colored with the magnitude of the velocity in order to show the dynamic and the

"freeze-point" of the collapsing column. The granular column stops spreading and takes the

trapezoidal shape att = 0:32[s] for both numerical and experimental results. A very good

agreement is observed between the numerical and experimental granular column pro�les at

different times. Nevertheless, a difference between the numerical and experimental granular

column pro�les is remarked at earlier stage att = 0:8[s]. This is may be due to the process of

moving the gate in the initial stage of the experiment that is not represented in the numerical

simulation.
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t = 0[s]

t = 0:08[s]

t = 0:16[s]

t = 0:24[s]

t = 0:32[s]
(a) (b)

Figure 8.11 – Spreading of granular pile on horizontal plan: Sequences of the position of
the granular material (glass beads) using the proposed SPH model witham = 3000(a) and
experimental results of Lajeunesse et al [183](b).
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8.4 Landslide-generated wave

A landslide, also known as slope failure, slumps or landslip is a big mass of ground driven

on a slope by gravity effort. Landslides can occur under-water (submarine) or upper-water

(Subaerial). The potential energy of land sliding in the water bodies (oceans, seas, lakes and

reservoirs) consequently generates an impulse wave that may potentially cause signi�cant

disasters. Papua New Guinea in 1998 [323] and Lituya Bay- Alaska in 1958 [224] tsunamis

caused by a submarine and subaerial landslides, respectively, are demonstrations of the great

destructive potential of these phenomena.

Submarine land-slide-generated water wave

In this example, we investigate the capability of the proposed multiphase SPH model to

simulate water-land interactions related to submarine landslides. The land here is modeled

as a purely cohesional material (f = 0, c = t y). Here we reproduce the experiment of

Rzadkiewicz et al [290, 289], and we compare our numerical results with those of [52]. This

experiment examines the water waves generated by the sliding of sand mass along a slope of

45deg. The dimensions of the channel are2[m] high and4[m] long. The initial pro�le of the

sand mass has a triangular shape with a cross-section of0:65[m] � 0:65[m]. The sand mass

has the same wide as the channel, so that the problem can be considered as two-dimensional.

The density and viscosity of the water are set tor w = 1000[kg=m3] andmw = 0:001[Pa:s],

respectively. The bulk density of the sand is1950[kg=m3] . The depth of the water is1:6[m]

and the top of triangular sand mas is initially located below the surface water by0:1[m].

Figure 8.12 gives more geometrical details about the submarine landslide con�guration.

In the work of Rzadkiewicz et al [290] the rheological parameters were not measured

experimentally. They were chosen by numerical experience ast y = 1000[Pa] andm= 0[Pa:s].

In this work we choose the same yielding stress, but a small value of plastic viscosity

(m= 0:001[Pa:s]) is chosen instead of zero. The reason is the necessity of using a non-null

plastic viscosity in our rehological model RBPMC-am. The control parameter isam = 106.

The numerical simulations were carried out using a homogeneous resolution of16819

particles (15916particles for the water and903particles for the land mass ), with an initial

inter-particular spacingdx = 0:0015[m] similarly to the work of Capone et al [52].

The speed of sound is chosen equal toc0 = 55[m=s] for the water phase which leads to a

reference pressure ofPr = 3:025106[Pa]. The No-Slip boundary conditions are applied on all

the rigid boundaries.

The numerical results of particles distribution for both land mass (dark gray color) and

water (light grey color) are represented in the �gure 8.13 at timest = 0:4[s] andt = 0:8[s].
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Figure 8.12 – Submarine land-slide-generated water wave: Geometrical details and setup of
the problem.

Figure 8.13 – Submarine land-slide-generated water wave: Particle distribution at times
t = 0:4[s] andt = 0:8[s].

Figure 8.14 – Submarine land-slide-generated water wave: Comparison between the free
surfaces att = 0:4[s] andt = 0:8[s] obtained with the proposed SPH model, the SPH model
of Capone et al. [52] and the experimental results of Rzadkiewicz et al [290, 289].

In the �gure 8.14 the comparison between the water free-surface elevation at times

t = 0:4[s] andt = 0:8[s] is represented between the current SPH model, the SPH model of

Capone et al. [52] and the experiment of Rzadkiewicz et al [290, 289]. The SPH formulation

presented in [52] is based on a bi-viscosity rheological model [32] considered within the

arti�cial viscosity term presented by Monaghan [245]. Quantitatively, a good agreement
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between our SPH model, Capone SPH model and experiment results is observed. At time

t = 0:4[s] the results given by the SPH model of Capone et al. is closer to the experiment

than our current approach. However, for the timet = 0:8[s] our multiphase SPH model gives

more accurate results compared with the experimental results.

Sub-aerial land-slide-generated water wave

The purpose of this example is to investigate the ef�ciency of our multiphase SPH model

to simulate a Sub-aerial land-slide-generated water wave. The land mass is modeled using

a RBPMC-am rheology where purely frictional/cohesionless (c = 0) model is considered

(glass beads). Here, the experimental benchmark performed by Viroulet et al [342, 341] was

reproduced numerically (see �gure 8.15).It consists on the study of the interactions between

the granular mass collapse and the water that generate impulse waves. A tank of2:2[m] long,

0:4[m] high, and0:20[m] wide includes an inclined plan at the left side with slop of45deg

to allow slipping of the land mass (granular material). The tank is full initially with water

of depth of0:15[m]. The land mass is blocked initially on the inclined plan and a vertical

movable gate where the bottom of the land mass is located at the level of the free surface

water (see �gure 8.15). When the vertical gate is opened, the land impacts the surface water

at a low velocity, generating impulse waves propagating along the tank. The evolution of the

generated impulse waves and the granular �ow shape are recorded experimentally with a high

speed camera. The amplitudes and the propagation of the generated wave are measured with

four resistive gauges located at four different distances0:45;0:75;1:05; and1:35[m] from

the vertical movable gate. The granular material used for the land mass is composed of glass

beads of densityr s = 2500[kg=m3] , porosity ofn = 40%, frictional angle off = 23:3deg

and the mass of 3[kg] (it givesl = 0:2[m]).

When the grain of the granular material slides at low velocity into the water, it mix with

the water. Then, the bulk density is de�ned as a mixr b = ( 1� n)r s+ nr w = 1900[kg=m3].

The density and dynamic viscosity of the water are taken asr w = 1000[kg=m3] andmw =

0:001[Pa:s], respectively. The Plastic viscosity of the land is taken to be equal to the water

dynamic viscositym= mw = 0:001[Pa:s], and the control parameter is set toam = 3� 107.

The simulation is performed with a resolution of 32306 particles (31225 particles for

the water and 1081 particles for the land mass), with initial spacing ofdx = 0:003[m]. The

reference speed of sound for water is takenc0 = 17[m=s] (it gives a reference pressure

pressure of2:89� 105[Pa]). At tank walls and the inclined plan a no-slip boundary condition

is used for the computation.

In �gure 8.16 , the elevation of the water free surface captured numerically and experi-

mentally at four different position of wave gauges (G1, G2, G3 andG4) is plotted. A good
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Figure 8.15 – Sub-aerial land-slide-generated water wave: Schematic view of the experimen-
tal setup and gerometrical details.

agreement between the numerical simulation and experimental results during a period of2[s]

was observed. However, an amplitude shift between the numerical and experimental results

is also observed. This can be a consequence of the use of the bulk density of the land mass

that is fully mixed with water. However, very satisfactory results are observed concerning

the water wave frequencies.

Quantitatively, a satisfactory agreement is observed between the experimental and numer-

ical sliding granular mass into the water at three different time stept = f 0:21;0:43;0:52g[s]

as is shown in �gure 8.17. The water velocity �eld for the simulation and experimental

results using the particle image velocimetry technique (PIV) is also shown in the same �gure.

At time t = 0:21[s], the impact of the land mass on the water and beginning of the generated

�rst wave are shown, Here, the elevated part of the water has a greater velocity and also we

observe that the water region closer to the landslide head has high velocity. for the times

t = 0:43[s] andt = 0:52[s], the slide starts to roll up creating a turbulent water region. Also

we observe the onset of the second generated wave accompanied by the propagation of the

�rst wave. The velocity is always greater at the more elevated part of the water the and

at vicinity of the land front head. The roll up of the land head is more important in the

experimental than in the numerical results. This issue is may be due to the low particle

resolution that is used to simulate the granular mass. However, very satisfactory results are

observed for the shape of the free surface water.
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G1 G2

G3 G4

Figure 8.16 – Sub-aerial land-slide-generated water wave: Elevation of the free surface at
each wave gaugesG1,G2, G3 andG4. The black solid line denotes the numerical results,
while the dashed lines present the experimental results [342].

8.5 Dam-break �ow over an erodible bed

This example aims to demonstrate the ability of our proposed model for the simulation of

the erosion phenomena. Here, the proposed SPH model including the RBPMC-am rheology

is coupled with a suspended sediment layer modeled as it is explained in section 5.2.1.

Spinewine's [312] experiment of a dam-break induced sheet-�ow is selected for this test.

A tank is divided in two parts by a movable gate. A sediment layer of fully saturated sand

material cover the lower part of the tank. There is a difference in the height of the sediment

bed at both sides of the gate of10[cm]. At one side of the gate, a water layer is contained

over the sediment layer. When the movable gate is uplifted at very high speed, the water

�ows downstream and erodes the sand bed creating the a change in topography. Figure 8.18

gives more details about the geometry and the setup of the problem.

The properties of the bed material (saturated sand) are summarized in Table 8.1.

For the simulations, the density and viscosity of the water were taken equal tor w =

1000[kg=m3] andmw = 0:001[Pa:s]. The plastic viscosity of the saturated sand is chosen
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t = 0:21[s]

t = 0:43[s]

t = 0:52[s]

Figure 8.17 – Sub-aerial land-slide-generated water wave:Comparison between the numerical
(left) and experimental (right) results at the timest = f 0:21;0:43;0:52g[s].

Material Speci�c grain density[kg=m3] Granular volumetric fraction[� ] Bulk density[kg=m3] Friction angle[deg]
Sand 2680 0.53 1890.4 30

Table 8.1 – Properties of the sand material of the dam-break induced sheet-�ow .

equal to that of the waterm= 0:001[Pa:s] and the control parameter of the rheological model

is taken asam = 106.

The particles resolution used for this problem is 66000 particles (36000 sediment particles

and 30000 water particles), with an initial inter-particular distance of0:005[m]. The reference
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speed of sound of water is set toc0 = 30[m=s] which leads to a reference pressure of

Pr = 9� 105[Pa].

Figure 8.18 – Dam-break �ow over an erodible bed: Geometrical details and setup of the
problem.

Figures 8.19 and 8.20 show the sequence of the simulated dambreak, and the comparison

with the experimental snapshots [312] at six different timest = f 0:25;0:5;0:75;1;1:25;1:5g[s]

.

The water �ow induces an erosion on the sediment bed. At the early stages, after removing

the movable gate, it is observed that the water wave is propagated on the downstream bed,

pikes up the particles material of bed and transports them. At late stages, the eroded particles

will be gradually deposited due to the decrease in water velocity, and thus the shear stress.

Comparing the free surface water, surface of eroded bed and the position of the front water

wave at three different timest = f 0:25;0:75;1:25g[s] (see �gure 8.21), a good agreement

between the numerical and experimental results is observed. However it is observed a small

discrepancy between the numerical and experimental results, that is maybe due to the effects

of the moving gate in the experiments that is absent in the numerical setup or to three

dimensional effects.

8.6 Multi-physics numerical benchmark : subaerial land-

slide, �ooding and scouring erosion

In this section , a new demonstrative numerical benchmark includes three coupled natural

phenomena (Subaerial landslide, �ooding and scouring erosion) is proposed in order to show
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t = 0:25[s]

t = 0:5[s]

t = 0:75[s]

Figure 8.19 – Dam-break �ow over an erodible bed: Flow sequences at timest =
f 0:25;0:5;0:75g[s]. The experimental results are on the left side (grey-scale image), the
magnitude of the velocity �eld is plotted on the right side and a plot with the position of the
different phases are centered below the previous plots for each time. The material phases are
colored in blue for water particles, in orange for the rigid bed particles and in green for the
suspended particles of the bed.

the capabilities and applicability of our proposed multiphase SPH model to simulate multi-

physics problems resulting from the water-soil interactions. Figure 8.22 shows a schematic

of three coupled phenomena. A rectangular mass of granular material (GM1) that has a

lengthL = 0:5[m] and hightH = 0:2[m] slides on slop of45deg. This mass was initially

accelerated with a velocity ofv0 = (
p

2; �
p

2)[m=s]. When the land impacts the water

surface, a water wave will be generated and propagates until run-up and over-topping the

dyke and subsequently �oods on the other side of the dyke (on the bed of granular material

GM2). The impact of the water jet induced from the �ooding wave involves a scouring behind

the dyke and erodes the bed granular material (GM2). We investigate the time evolution of

the height of the over-topping above the dyke (at gauge waveG2) as well as the wave height

in the left tank at wave gaugeG1 and the maximum depth of scouring erosion behind the dyke
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t = 1[s]

t = 1:25[s]

t = 1:5[s]

Figure 8.20 – Dam-break �ow over an erodible bed: Flow sequences at timest =
f 1;1:25;1:5g[s]. The experimental results are on the left side (grey-scale image), the mag-
nitude of the velocity �eld is plotted on the right side and a plot with the position of the
different phases are centered below the previous plots for each time. The material phases are
colored in blue for water particles, in orange for the rigid bed particles and in green for the
suspended particles of the bed.

( at the right tank). The density and viscosity of the water is taken asr w = 1000[kg=m3] and

mw = 0:001[Pa:s], respectively. The bulk proprieties of granular materialsGM1 andGM2

are taken asr GM1 = 1600[kg=m3], f GM1 = 43degandr GM2 = 1200[kg=m3], f GM2 = 30deg,

respectively. While, the plastic viscosity for the both granular materialsGM1 andGM2 is

taken equal to the water dynamic viscositym= mw = 0:001[Pa:s] . The control parameter

am of our rheological model is taken equal toam = 6� 106 for all granular materials.

This kind of numerical study can be very interesting for the design of the coastal protection

structures (dykes, seawalls, Bulkheads, Breakwaters ...) and their foundations, because their

damages are mainly caused by local scouring on the area behind them due to tsunami over�ow

[313, 321].
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t = 0:25[s] t = 0:75[s]

t = 1:25[s]

Figure 8.21 – Dam-break �ow over an erodible bed: Water free surface and sediment surface
positions results using the proposed numerical model and compared with the experiments of
[312]

The numerical simulation is performed using an initial inter-particular spacing ofdx =

0:01[m] that leads to a total of 9465 particles, with5020particles devoted for the water and

1190 , 3255 particles used for granular materialsGM1 andGM2, respectively. The water

speed of sound is set equalc0 = 30[m=s] (it gives a reference pressure ofPr = 9� 105[Pa] ).

A no-slip boundary condition is applied on all horizontal surfaces (in the left and right tanks

of �gure 8.22). A free-slip condition is applied on the rest of surfaces (the slop, dyke and

vertical walls). The total simulation time is of 7[s].

Snapshots of the results of numerical simulation for this benchmark are presented in the

�gures 8.23, 8.24, 8.25 and 8.26 at different timest = f 0:3;0:56;1; 1:3;1:7;2; 2:5;3;5g[s].

Figures 8.23 and 8.24 present the position of different material phases during all the

period of the simulation. Water particles are colored in dark blue, whereas granular materials

particlesGM1 andGM2 are colored in cyan and brown, respectively. Yellow particles

represent the particles of the granular materialGM2 mixed with water (suspended particles).
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Figure 8.22 – Multi-physics numerical benchmark: Schematic view and geometrical details.

At t = 0:3[s], the impact of granular materialGM1 on the surface water causes the formation

of the �rst generated water wave. It reaches its maximum height att = 0:56[s]. At time

t = 1[s] the granular materialGM1 stabilizes at rigid form (it reaches an effective viscosity

of me f f = mmax= 6000[Pa:s]) and at the same time the maximum height of the over-topping

water is reached above the dyke structure. From this point the processes of dyke scour,

erosion of the granular materialGM2, and water run-up over the slope occurs. In �gure 8.23

this is shown att = 1:3[s] andt = 1:7[s]. At t = 2[s], a second wave is originated when the

water �ows downwards the slope. At the same time the granular materialGM2 reaches its

maximum securing depth. Att = 2:5[s] the soil particles starts to sediment and to cover the

granular material (GM2). At t = 3[s] the second wave �ow over-tops above the dyke. At

t = 5[s], the granular materialGM2 reaches its rigid form (the maximum viscosity is reached

everywhere inGM2 except in the particles suspended in water) and the equilibrium is �nally

recovered.

Figures 8.25 and 8.26 show the evolution of the particle velocity, and the change in the

behavior of the granular materials (switching from the rigid phase to the deformable phase

and viceversa). Water particles are colored with the magnitude of the velocity, whereas the

granular materialsGM1 andGM2 are colored with the effective viscosity �eld (the Maximum

viscositymmax= amm= 60000[Pa:s] represents the rigid phase). The direction of the water

particles is represented by arrows.

Figure 8.27 shows the time evolution of the relative height of the generated waves. This

height is measured at the gaugeG1 (located atx = 0:9[m] of the origin of the reference

system axis (see �gure 8.22). The relative water height due to the over-toping �ow above

the dyke is also measured at the wave gaugeG2 (at x = 1:65[m] of the origin) during all the
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simulation period. In order to measure the erosion of the granular materialGM2, �gure 8.28

shows the time evolution of the maximum depth of the material bedGM2.

8.7 Conclusion

The robustness, accuracy and applicability of our multiphase model has been demon-

strated. The validation of the ef�ciency of the developed multiphase diffusive term was

performed using the benchmark of two strati�ed hydrostatics Newtonian �uid layers. The

applicability on simulation of granular materials dynamics has been demonstrated via the

benchmarks of Bingham �uid dambreak and spreading of granular material pile on horizontal

surface. Whereas for the simulation of the water-soil interactions problems, the submarine

and subaerial landslides benchmarks had been performed. A suspended water sediment model

was nested in our multiphase model to capture well the erosion phenomena. A simulation of

a dambreak �ows over erodible sediment bed benchmark was used for the demonstration of

the ef�ciency of the added suspended water sediment model. Finally, the capabilities of the

newly proposed multiphase SPH model have been shown via a demonstrative benchmark

of multi-physics phenomena (Subaerial landslide generated impulsive wave, �ooding and

scouring erosion) related to the soil-water interaction.
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t = 0:3[s]

t = 0:56[s]

t = 1[s]

t = 1:3[s]

t = 1:7[s]

Figure 8.23 – Multi-physics numerical benchmark: simulation sequence. The different
material phases are represented with different colors: Water is dark blue, the granular
materialGM1 is cyan, the granular materialGM2 is brown and yellow is the suspended layer.
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t = 2[s]

t = 2:5[s]

t = 3[s]

t = 5[s]

Figure 8.24 – Multi-physics numerical benchmark: simulation sequence. The different
material phases are represented with different colors: Water is dark blue, the granular
materialGM1 is cyan, the granular materialGM2 is brown and yellow is the suspended layer.
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t = 0:3[s]

t = 0:56[s]

t = 1[s]

t = 1:3[s]

t = 1:7[s]

Figure 8.25 – Multi-physics numerical benchmark: Simulation sequences. The particles
of soil material (GM1) and (GM2) are colored with the effective viscosity values. Water
particles are colored with the magnitude of the velocity and the �ow direction is represented
by black arrows.
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t = 2[s]

t = 2:5[s]

t = 3[s]

t = 5[s]

Figure 8.26 – Multi-physics numerical benchmark: Simulation sequences. The particles
of soil material (GM1) and (GM2) are colored with the effective viscosity values. Water
particles are colored with the magnitude of the velocity and the �ow direction is represented
by black arrows.
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G1 G2

Figure 8.27 – Multi-physics numerical benchmark: Evaluation of the impulsive wave height
for the left reservoir atx = 0:9[m] (G1 gauge) and height above the dyke (G2 gauge) at
x = 1:65[m].

Figure 8.28 – Multi-physics numerical benchmark: Evaluation of maximum scouring depth
on the granular material bed due to the over-topping �ow.





Chapter 9

Conclusion

Un solveur SPH (Smoothed Particle Hydrodynamics) faiblement compressible (WCSPH)

a été développé dans le cadre de cette thèse pour traiter les problèmes d'écoulement des

�uides multiphasiques incluant différentes complexités d'écoulement (con�né, à surface

libre, grande déformation, tension super�cielle) et différents matériaux (�uides et sols). Une

parallélisation sur CPUs en utilisation le paradigme MPI (Message Passing Interface) avec

une technique de décomposition de domaine a été présentée dans l'annexe A. Des anciennes

et récentes avancées ont été discutées pour les algorithmes d'amélioration et des schémas

de discrétisation des enquêtions physiques régissant le mouvement des particules dans le

contexte de la méthode SPH. Un modèle SPH pour les écoulements multiphasiques a été pro-

posé. Ce modèle comprend une formulation de tension de surface qui satisfait les propriétés

tangentielles des contraintes de tension de surface et améliore la stabilité de la méthode

numérique. La stabilité numérique est améliorée grâce à l'utilisation d'un opérateur de

divergence consistant de premier ordre et une technique de d'amortissement (Damping) qui

réduit les parasites numériques causées par la transition des conditions initiales. Des modi�-

cations sont apportées à la méthode des conditions aux limites généralisés liées aux parois

solides pour étendre son application aux problèmes d'écoulement de �uide multiphasique. Le

modèle SPH d'interactions eau-sol a été développé en utilisant une approche multiphasique.

Ce modèle peut être utilisé pour simuler des sols (purement frictionnels et cohésifs), de l'eau

(ou tout autres �uides Newtoniens) et leurs problèmes d'interaction. Ceci est réalisé grâce

au modèle rhéologique RBPMC-am sensible à la pression. Un terme diffusif multiphasique

nommé iciDd� MSPH a également été développé pour amortir les oscillations de pression

dues à l'utilisation d'une équation d'état. La précision, la stabilité et l'applicabilité du

solveur SPH pour traiter les problèmes d'écoulement gravitationnel multiphasique, écoule-

ment multiphasique avec présence de tension de surface et d'interaction eau-sol ont été
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démontrées à travers une série de benchmarks. Ces benchmarks comprennent des cas-tests

analytiques, numériques et expérimentaux.
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9.1 Summary of Thesis Achievements

A weakly compressible smoothed particle hydrodynamics (WCSPH) solver has been

developed in this thesis to deal with multiphase �uid �ow problems including different

complexities of �ow (con�ned, free surface, large deformation, surface tension ) and na-

tures of materials (�uids and soils). This solver has been parallelized on CPUs (Central

processing unit) using MPI (Message Passing Interface) paradigm with a domain decompo-

sition technique as is shown in the appendix A. Past and recent advances in SPH method

for improvement algorithms and different discretization schemes of governing equations

are discussed. A consistent smoothed particle hydrodynamics model for multiphase �ows

has been proposed. This model includes a surface tension formulation which ensures the

tangential properties of the tensor surface stress and improves the stability of the numerical

method. The numerical stability is improved through the use of a divergence operator with

�rst-order consistency and also with a damping technique that avoids the numerical issues

due to the transients on initial conditions. Modi�cations are brought on the generalized wall

boundary conditions to extends its application to multiphase �uid �ow problems. Water-soil

interactions SPH model has been developed using a multiphase approach. This model can be

used to simulate soils ( purely frictional and cohesional), water (or any other Newtonian �uid)

and their interaction problems. This is done thanks to the RBPMC-am pressure-sensitive

rheology model. A multiphase diffusive term so-called hereinDd� MSPH has been also devel-

oped to damp the pressure oscillations due to the use of equation of state in order to obtain

more accurate results with using of such as pressure-sensitive model. The accuracy, stability

and applicability of the proposed WCSPH solver to deal with gravitational multiphase �uid ,

interfacial multiphase �uid and water-soil interaction problems have been demonstrated via a

series of benchmarks. Theses benchmarks include analytical, numerical and experimental

test cases.

9.2 Applications

In this thesis, the applications cases have been classed under three category of tests:

The �rst category is devoted to the simulation of multiphase �uid �ow evolved under

gravity forces. The examples addressed here are the evolution of the two-phase strati�ed �uid

layers and the Rayleigh-Taylor instability (RTI). The �rst example is not only performed to

examine the stabilization effect of the damping technique but also to validate the proposed

modi�cations on generalized wall boundary conditions when the two �uid phases meet the

solid boundaries. The second example was carried out to compare the results of the presented
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SPH multiphase model with the ones using Level-Set [128] and other SPH [238] models,

and also with the analytical approach presented in [187]. Furthermore, the example of two

rising bubbles through a water column is performed using a higher particle resolution.

The second category of test concerns the simulation of multiphase �uid �ow with a

surface tension formulation for the case of two and three phases �ows with the presence

of triple junction points. The examples addressed in this category are the square droplet

deformation [2] ,the spreading lens between two strati�ed �uid layers [39] [193], and the

capillary-viscous wave test [254, 151, 150, 149, 2]. Thereafter, high density and viscosity

ratio effects have been introduced. The rising of an air bubble through a water column and

through two strati�ed �uid layers are simulated.

The third category is devoted to validating multiphase WCSPH water-soil interaction

model, where several benchmarks have been used. The validation of the ef�ciency of

the developed multiphase diffusive termDd� MSPH was performed using the two strati�ed

hydrostatics Newtonian �uid layers benchmark. The applicability on simulation of single

phase of granular materials dynamics is demonstrated via the benchmarks of Bingham �uid

dambreak and spreading of granular material pile on horizontal surface. For the simulation of

the water-soil interactions problems, the submarine and subaerial landslides benchmarks are

devoted. A suspended water sediment model was nested in our multiphase model to capture

well the erosion phenomena. A simulation of a dambreak �ows over erodible sediment bed

benchmark was used for the demonstration of the ef�ciency of the added suspended water

sediment model. Finally, a demonstrative benchmark of multi-physics phenomena (Subaerial

landslide generated impulsive wave, �ooding and scouring erosion) related to the soil-water

interaction was proposed to show the capabilities of the newly proposed multiphase SPH

model.

9.3 Future Work

As perspectives, several works are envisaged to make our SPH code more consistent and

industrially exploitable such as:

— Extension of the following 2D code into 3D can achieve the simulations more complex

and realistic.

— Parallelization on GPUs (Graphics processing unit) can be also shown more advan-

tages in terms of computational cost and applications.

— Including the modeling of other physical natures such as a rigid bodies interact

with water, elastic and elasto-plastic models to the code can for the simulation of

multi-physics phenomena.



9.3 Future Work 205

— A speci�c treatment of the contact line can be added to the modi�ed wall boundary

method to simulate the cases when the tension surface is nested at the interface

between the �uid phases that meets the wall.

— Using of incompressible and explicit incompressible smothered particle hydrodynam-

ics (ISPH and EISPH) schemes in the developed code can be a good purpose for

further investigation and comparison.
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Appendix A

Parallelization technique on CPU of our

SPH code

The parallelism of the SPH code on CPU is performed using the Domain decomposition

method. This method is based on the principle of division of the physical computational

domainW(in our case the �uid domain) intoNd subdomainsWi which are initially load-

balancedW1 � W2 � ::: � WNd and
NdS

i= 1
Wi = W.

For a demonstration, we assume that the global domain is divided into4 sub-domains

W= W1 [ W2 [ W3 [ W4 .For each subdomainWi a process of rankProci is designated to

handle its task of calculation. The physical domain is considered as a continuous medium,

meaning that the subdomains are dependent in term of physical computing properties. For

this reason, the MPI (Message Passing Interface) paradigm is used to exchange data between

subdomains. The Lagrangian movement of the �uid �ow imposes the use of speci�c method.

This method must ensure a balanced partitioning of computation loads on each process. In

this work, an average position interface detection method was used. This method is based

on the calculation of the maximum particle positionxmaxi that belongs to the x-axis of

the subdomainWi and the minimum particle positionxmaxi+ 1 that belongs to the x-axis of

the subdomainWi+ 1 for each iteration. The new position of the interface is determined in

the middle of these positions(xmaxi;xmaxi+ 1) that can express asIni = xmaxi+ xmaxi+ 1
2 A new

distribution of particles on the subdomainsWi andWi+ 1 must be done in order that all the

particles which have an abscissa coordinate less than or equal to the interface position will be

transferred to subdomainWi , and the particles which have abscissa coordinate greater than

the same interface will be transferred to the ubdomainWi+ 1. The communication between

the processes using MPI paradigm is done in a way that the process of even rank send the

informations held in buffers zones to the odd rank process and they receive them from the odd
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processors. While the odd processes receive the information from the process of even rank

after they send to the process of odd rank. This strategy ensures suf�cient buffer memory

to guarantee the continuity of communication as well as optimizing the performance of

parallelism.

Figure A.1 – Parallelization technique of SPH code on CPU using MPI library.

The parallelization technique was tested on the famous dam break benchmark [243, 72,

216] using different particle resolutions.

The following �gure A.3 shows the time-evolution of work loads on four processors,

Work loads are computed using the number of particles in each processors divided by the total

number of particles. Along the time a very good load balancing was achieved through the

proposed parallelism technique. An imbalance of order less than 1% was observed from the

momentt
q

g
H = 6. This small imbalance is due to the sudden increase of the �uid velocity

caused by the impact of the wave shown at the momentt
q

g
H = 6.

The computing Cloud of the Institute of Research in Constructability of ESTP school

was used to perform calculations. The machine is equipped with 32 processors type Intel

Xeon Processor E7-4850 frequency 2 GHz and 24 MB cache memory, and has a RAM of 96

GB. In �gure A.4, a Sub-linear evolution of the speed-up relative to the number of processors

was observed at 8192 particles. This sub-linearity is mainly due to the communication

time between the processors that exceeds the computational time on each one. from 25,088

particles the speed-up evolution with processors number becomes super-linear due to the
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Figure A.2 – The time-evolution �ows of particles loads on four processors for 20,000
particles.

ability of caches memories to store the data of the problem, and the speed of their access to

the processor.
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Figure A.3 – The time evolution of load percentage on four processors for 20,000 particles.

Figure A.4 – Speed-Up of parallel SPH code



Appendix B

Demonstration of the equivalence

between CSS and CSF formulations

In this Appendix we show the relation between CSS and CSF formulations. We �rst

recall the CSF formulation. Assuming that the surface tension coef�cients (1� 2) is constant

between two �uid phases (1 and 2), the expression of the force can be expressed as

FST(1� 2) = s (1� 2)k n dS (B.1)

In equation (B.1),k , n anddS denote the curvature, the unit normal vector to the interface

(see �gure 4.1) and the delta function, respectively. In the context of the SPH method,

equation (B.1) reads as

F
ST(1� 2)
i = � s (1� 2) Ñ� ni ÑC (B.2)

whereC is the color function that has a unit jump across the interface. It's equal to1 in one

particle �uid phase and 0 in its neighboring particle of other �uid phase.

Now, the Continuum Surface Stress (CSS) formulation reads

FST = Ñ:P (B.3)

Replacing the stress tensorP by its formulation in the equation (B.3) we get:

FST = Ñ:

0

B
B
B
@

s kÑCkI
| {z }

(I )

� s

(II )
z }| {

ÑC
kÑCk


 ÑC

1

C
C
C
A

(B.4)
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The divergence of the �rst part(I ) of the equation (B.4) can be modi�ed as

Ñ:(kÑCkI) = Ñ(kÑCk) =
�

ÑC
kÑCk

:Ñ
�

ÑC: (B.5)

Whereas the divergence of the second part(II ) can be written as

Ñ:
�

ÑC
kÑCk


 ÑC
�

= Ñ:
�

ÑC
kÑCk

�
ÑC+

�
ÑC

kÑCk
:Ñ

�
ÑC: (B.6)

By subtracting the equation (B.6) from equation (B.5), we obtain the Continuum Stress

Surface Force formulation (CSF) (B.7):

FST = � s Ñ:
�

ÑC
kÑCk

�
ÑC = sk ÑC: (B.7)

Wherek describes the interface curvature which is expressed ask = � Ñ:n = � Ñ:
�

ÑC
kÑCk

�
,

with :n is the unit normal vector to the interface.



Appendix C

The internal forces associated to the

surface stress tensor are tangent to the

interface ?

In this appendix, we show that the stress surface tension is tangential to the �uid interface.

We can write the surface tension as a volumetric force as follows:

FST = Ñ� P (C.1)

WhereP =
�

s kÑCkI � s ÑC
kÑCk


 ÑC
�

is the stress surface tensor.

This formulation allows the interpretation of the tension force as a internal body forces of the

continuum medium (as viscous tensor). So, we will investigate if these efforts are carried by

the tangent direction to the interface. For this reason we will applied the stress tensorP on

an arbitrary vectorf see �gure C.1 :

P � f = s kÑCk( f � ( f :n) n) (C.2)

P � f = s kÑCk XT � f (C.3)

WhereXT is the projection operator on the tangent plane to the interface. Equation (C.3)

indicates that the internal forces associated to the surface stress tensor are tangent to the

interface.
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Figure C.1 – Application of stress surface tensorP on an arbitrary vectorf . Wheren andt
are the normal and tangential vectors on the interface, respectively.



Appendix D

Pseudo-code of SPH interfacial

multiphase model.

In this appendix, we summarize the proposed SPH model via a pseudo-code.
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/* Initialization */
The physical proprieties of the heavier phase must be assigned to all �uid phases;
The initial particles velocity and pressure are set to zero;
Setc0, pb,dt, TD,Tend;
while dt � it < Tend do

Search for each particlei 2 W= Wf [ Ws its particles neighborj. /* linked list method is employed in this
work. Wf and Ws denote the fluid and solid particles, respectively. */

/* Damping process */
if dt � it < TD then

ComputexD using Eq.4.35;
end
if it = dTD

dt e then
Assign the real physical proprieties to each �uid phase;

end
for i 2 Ws do

Computepw andvw using Eqs.5.50 and 5.48, respectively;
end
/* Prediction Step */
for i 2 Wf do

ComputeÑpi ;Fi
Vis andFi

ST using Eqs.5.51, 4.26 and 4.20, respectively;

evn+ 1
i = vi

n + dt
�

1
r i

(� Ñpi + Fi
Vis+ Fi

ST)n + xDg
�

;

ern+ 1
i = r i

n + dt vn
i ;

end
for i 2 Wdo

/* In this loop, the predicted particle velocities and positions are used for the
calculation of P i , pw and vw. */

if i 2 Wf anddt � it � TD then
ComputeP i using Eq.4.16;

end
if i 2 Ws then

Computepw, vw using Eqs 5.50 and 5.48, respectively;
end

end
/* Correction Step */
for i 2 Wf do

/* In this loop, the predicted particle velocities and positions are used for the
calculation of Ñpi ;Fi

Vis and Fi
ST. */

ComputeÑpi ;Fi
Vis andFi

ST using Eqs.5.51, 4.26 and 4.20, respectively;

vi
n+ 1 = 1

2

�
vi

n + evn+ 1
i

	
+ dt

2

�
1
r i

(� Ñpi + Fi
Vis+ Fi

ST)n + xDg
�

;

r i
n+ 1 = r i

n + dt vn+ 1
i ;

end
for i 2 Wf do

/* In this loop, the predicted particle positions are used for the calculation of r i and
thus pi . */

Computer i andpi using Eqs.4.8 and 5.2, respectively;
if dt � it � TD then

ComputeP i using Eq.4.16;
end

end
it = it + 1;
n = n+ 1;

end

Algorithm 1: Pseudo-code of SPH interfacial model.
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