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Resune

La methode Smoothed Particle Hydrodynamics (SPH) est une nethode la-
grangienne, sans maillage ceveloppee initialement pour des simulations de
phenonrenes astrophysiques. Depuis, elle a connu de nombreuses applications,
notamment pour la simulation des ecoulements des uides. Contrairement
aux nmethodes utilisant un maillage, la nethode SPH peut gerer de manere
naturelle et sans traitement speci que les simulations desecoulementsa sur-
face libre et multiphasiques avec interface subissant de grandes deformations.
Dans cette these, une moctlisation SPH desecoulements des uides multi-
phasiques aet ealise en tenant compte de dierentes complexies g€coulements
a surface libre et multiphasiques interfacials) et de natures d'ecoulement (si-
mulation des uides, des sols et les deux en interactions). Un mocele SPH fai-
blement compressible (WCSPH) aet propo® pour simuler lesecoulements
des uides multiphasiques avec interface comprenant plus de deux phases
de uide. Ce moctle inclut le ceveloppement d'une nouvelle formulation de
force de tension de surface en utilisant un operateur SPH consistant de pre-
mier ordre. Une modi cation de condition gererali'e aux parois solides a
et apporee pour qu'elle soit appligwee sur lesecoulements des uides mul-
tiphasiques avec des rapports de densie et de viscosieelews. Une nouvelle
loi de comportement cependant de la pression nommee RBMC - (Regula-
rized Bingham Mohr Coulomb ai  est un paranetre libre) aegalementet
ceveloppee. Cette loi peut simuler les uides (Newtonien, Binghamien), les
sols (colesif, frictionnel) et les deux en interactions. La loi peedente etant
sensible a la pression, une extension du terme diusif -SPH a et faite
pour le cas desecoulements des uides multiphasiques an de eduire les
oscillations de pressiona haute fequence qui sont duesa l'utilisation d'une
equation detat. La validation et I'application des moctles ceveloppes dans
cette these sont monteesa travers plusieurs cas tests de di cule croissante.






Abstract

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian gridless method developed
initially to simulate astrophysical phenomena, and since it has been known for a large number
of applications, especially for uid ow simulations. Contrary to the grid-based method, the
SPH method can handle free surface and interfacial uid ow simulation including large
deformations naturally and without the need for any speci c treatment. In this thesis a
SPH modeling of multiphase uid ows has been achieved with consideration of different
complexities ( free surface and interfacial uid ows) and natures (simulation of uids,
soil and both in interactions). A consistent weakly compressible SPH model (WCSPH)
has been proposed to simulate interfacial multiphase uid ows with more than two uid
phases. This model includes a new expression of the surface tension force using a rst order
consistency SPH operator. A modi cation to the well known generalized wall boundary
condition have been brought in order to be applied to multiphase uid ow with large density
and viscosity ratios. A new pressure-based constitutive law named RB8NM&egularized
Bingham Mohr Coulomb witla, is free parameter) has been developed in this thesis. This
model can simulate uids (Newtonian, Binghamton), soils (cohesive, frictional) and both
in interactions. Because the previous model is pressure sensitive, an extersicdRd
diffusive term has been proposed for multiphase uid ows to overcome the hight frequency
pressure oscillations due to the determination of pressure from an equation of state. The
validation and application of the developed models have been shown in this thesis through
several test-cases of increasing dif culty.
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Chapter 1
Introduction

Le présent travail porte sur la modélisation et la simulation des écoulements de uides
multiphasiques de différentes complexités et natures. Les complexités comprennent la
simulation des écoulements des uides multiphasiques con nés, a surface libre, a grande
déformation, avec présence d'interface et/ou avec des rapports de densité et de viscosité
élevés, tandis que pour les natures, différentes lois de comportement (Newtonien et / ou
non Newtonien) sont utilisées pour dé nir le comportement des uides. En utilisant le code
développé dans le cadre de cette these, une gamme d'applications peut étre simulée a n de
servir les domaines de recherche et de l'ingénierie. Parmi ces applications, nous pouvons
citer par exemple:

En ingénierie offshore, notamment pour les dispositifs de séparation pétrole-eau, la
compréhension de la dynamique des bulles de pétrole (uide multiphasique avec
présence d'interface) a travers la simulation numérique a une grande importance
pour I'exploitation et le traitement des ressources pétroliéres [109, 129,.358]

La simulation des écoulements granulaires (un uide non Newtonien qui s'écoule
SOus un critere spéci que) peut étre réalisé en utilisant le code développé. La
compréhension des écoulements granulaires peut avoir des directes applications
dans l'industrie telles que la simulation de poudres et de granules, ainsi que pour
les problemes géophysiques, tels que la simulation de glissements de t&frgin [
I'avalanche de rochesi54] et de la neige P85. La simulation de ces risques naturels

peut aider a comprendre comment nous devrions procéder dans I'avenir pour atténuer
les pertes humaines et matérielles. La catastrophe de Shenzhen est un bon exemple
d'un aléa naturel causé par un glissement de terrain. Cette catastrophe naturelle a
eu lieu a Shenzhen, Guangdong, dans le sud-est de la Chine, le 20 décembre 2015,
77 personnes ont été tués3d batiments ont été enterrés ou endommad4as]| La

gure 1.1 décrit les séquences avant et aprées cet aléa.



28

Introduction

Les problemes d'interaction eau-sol (écoulement de uide multiphase sous différentes
natures) sont plus compliqués par rapport aux exemples précédents, car ils in-
cluent deux natures physiques différentes (uide et structure). La compréhension
du phénomene d'interaction eau-sol joue un réle important dans I'évaluation et
l'atténuation de nombreux problemes environnementaux et géotechniques, tels que
I'érosion du sol, I'érosion autour des structures offshore, les vagues de tsunamis
générées par les glissements de terrain, etc. L'exemple du tsunami Lituya Bay
(Gilbert Inlet-Alaska er1958) causé par un glissement de terrain subaérien est I'un
des tsunamis les plus importants dans les temps modernes, et la modélisation de
I'interaction entre I'eau et le sol peut étre trés utile pour comprendre son mécanisme.
La gure 1.2 présente le scénario du tsunami de Lituya Bay et montre les différentes
dimensions de Gilbert Inlet et de I'espace terrestre détruit.
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1.1 Motivation and Objectives

The present work deals with the modeling and the simulation of multiphase uid ows
under various complexities and natures. Complexities include the simulation of con ned,
free surface, large deformation and/or interfacial multiphase uid ows with high density
and viscosity ratios, whereas for the natures, different constitutive laws ( Newtonian and/or
Non-Newtonian ) are used to de ne the uid or the uid-like mass behavior. Using the
developed code in the framework of this thesis, a range of applications can be simulated in
order to serve range of research and engineering elds. Among these applications we can
cite for instance:

In offshore engineering, especially for oil-water separation devices, the understand-
ing of oil bubbles dynamics (interfacial multiphase uid) through the numerical
simulation has a great importance for exploitation and processing of oil resources
[109, 129, 358].

The simulation of granular ows (a non-Newtonian uid that yields under a speci c
criterion ) can be done using the developed code. The understanding of the granular
ows can have an obvious applications in industry such as for the simulation of
powders and granules, and in geophysical problems, such as for the simulation of
landslides 113, rock avalanche354 and snow avalanche&85. The simulation of

these natural hazards can help to understand how we should proceed in the future to
mitigate losses in human life and material. The Shenzhen-landslide is a good example
of a natural disaster caused by a landslide. This natural disaster occurred in Shenzhen,
Guangdong,Southeast China in December 20, 2015, wit¥gpeople were killed
and33 buildings were buried or damagetil[d. Figure 1.1 illustrates the sequences
before and after this disaster.

Figure 1.1 — Shenzhen, Guangdong,Southeast China before (December 18, 2015) and after
(December 21, 2015) the landslide (taken from [113]).

The Water-Solil interaction problems (multiphase uid ows under different natures)
which are more complicated than previous examples since it includes two different
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physics natures (Fluid and structure). The understanding of water-soil interaction
phenomenon plays an important role in the assessment and mitigation of many
environmental and geotechnical problems, such as soil erosion, scouring around
offshore structures, landslide-generated tsunamis waves ... and so on. The example
of Lituya Bay tsunami ( Gilbert Inlet-Alaska ih958 caused by subaerial landslide

is the one of the largest known tsunami in modern timeg)] and modeling of
water-soil interactions can be a very useful way to understand its mechanism. Figure
1.2 presents the Lituya Bay tsunami scenario and shows the different dimensions of
Gilbert Inlet and destroyed land space.

Figure 1.2 — Lituya Bay tsunami: Gilbert Inlet illustration showing landslide dimensions,
impact site and tsunami runup to 524 m on spur ridge directly opposite to landslide im-
pact. Direction of view is north and the front of Lituya Glacier is set to 1958 post-slide
position.(taken from [110])

1.2 Thesis outline

The following PhD thesis is structured as follows. In Chapter 2, a state of the art on
the smoothed particle hydrodynamics method (SPH) is given, underlining in particular an
overview of mesh-based and meshless numerical methods and the principal basics and
applications of SPH method. Chapter 3 discusses the uid governing equations and different
methods of SPH discretization. The Chapter 4 is devoted to modeling multiphase interfacial
uid ows including our original contribution regarding the surface tension formulation and
conditions initialization via the damping technique. In chapter 5, the modeling of water-soll
interactions using a SPH multiphase approach is presented. The validation and application of
the developed SPH multiphase model, SPH interfacial multiphase model and SPH water-soil
interactions model are shown through Chapter 6 , Chapter 7 and Chapter 8, respectively.
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1.3 Contributions

The contributions of the present thesis can be summarized in the following points:

— Past and recent advances in SPH method improvement algorithms are presented;

— Different SPH discretization techniques of governing equations are discussed;

— A consistent SPH model was proposed to deal with interfacial multiphase uid ow
simulations;

— Robust non-conservative surface tension formulation that respects its tangential
character to deal with two and more interfacial uid phases is developed;

— A modi cation of the generalized wall boundary conditions proposedijnd pre-
sented to allow its use for the simulation of wall-bounded multiphase uid ows

— Validation of the proposed SPH model via the application on several challenging test
cases of multiphase uid ows;

— Experimental veri cation of applicability and accuracy of the proposed SPH interfa-
cial multiphase model is done;

— A weakly compressible multiphase smoothed particle hydrodynamics model was
developed to deal with Water-Soil interaction problems.

— A Regularized Bingham Plastic/Mohr-Coulomb (RBPMG) constitutive law was
developed to model soil, water and both in interaction;

— Development of a new multiphase diffusive tetfd MSPH to reduce the pressure
oscillations in the context of Weakly compressible SPH;

— Validation of the SPH multiphase water-soil interactions model through several
benchmarks .

1.4 Publications

1.4.1 Journals

— Abdelkader Krimi , Mehdi Rezoug , So ane Khelladi , Xesus Nogueira ,Michael
Deligant , Luis Ramirez, “Smoothed Particle Hydrodynamics : A consistent model
for interfacial multiphase uid ow simulations”, Submitted to the Journal of Com-
putational physics., 2016.

— Abdelkader Krimi , So ane Khelladi, Xesus Nogueira, Michael Deligant, Riadh
Ata, Mehdi Rezoug, “Multiphase Smoothed Particle Hydrodynamics approach for
modeling Soil-Water interactions”, Submitted to the Advances in Water Resources,
2017.
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— Luis Ramirez, Xesus Nogueira, So ane Khelladi , Abdelkader Krimi, Ignasi Colomi-
nas, “A very accurate Arbitrary Lagrangian-Eulerian meshless method for Computa-
tional Aeroacoustics”, Submitted to Computer Methods in Applied Mechanics and
Engineering , 2017.

— Abdelkader Krimi, So ane Khelladi, Xesus Nogueira, “An overview on Smoothed
Particle Hydrodynamics method and applications on uids, structures and both in
interactions problems”, to be submitted to the Annual Review of Fluid Mechanics,
2017.

1.4.2 Conferences

— Abdelkader Krimi, Mehdi Rezoug, So ane Khelladi, Michaél Deligant,"Fast and
accurate algorithm for modeling complex free surface ows", Th® International
Conference for Mesoscopic Methods in Engineering and Science. July 14-18, 2014.
New York.

— Abdelkader Krimi, Mehdi Rezoug, So ane Khelladi, Michaél Deligant,"A Lagrangian
parallel technique on CPU for smoothed particle hydrodynamics method", SimRace,
Conference on numerical methods and High Performance Computing for industrial
uid ows. December 8-10, 2015. Paris.

— Abdelkader Krimi , So ane Khelladi, Riadh Ata, Xesus Nogueira, Michael Deligant,
Mehdi Rezoug, "A Multiphase SPH Approach to Model Soil-Water interactidé",

U.S. National Congress on Computational Mechanics July 17-20, 2017, Montreal,
Quebec, Canada.



Chapter 2

State of the art

Dans ce chapitre, un état de I'art est fait sur les difféerentes méthodes numériques utilisant
un maillage ou sans maillage pour mettre en évidence la méthode SPH. Les principes de
base des formulations de la méthode SPH sont aussi abordés. Nous avons présenté quelques
codes de calcul paralléle Open Source exploitant la méthode SPH. Des différents exemples
d'applications sur des problématiques liees au uide, structure et les deux en interaction
sont extraits de la littérature pour montrer le grand intérét que la méthode SPH a connu
dans le domaine de recherche et de l'ingénierie.
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In this chapter, a state of the art is achieved on the different grid-based and gridless
numerical methods in order to highlight the SPH method. The basic principles of the
formulations of the SPH method are also discussed. We have presented some open source
parallel codes exploiting the SPH method. Examples of applications on problems related to
uid , structure and both in interactions are extracted from the literature to show the large
interest that SPH method has experienced in the eld of research and engineering.

2.1 Numerical simulation

Computational simulations or in other words numerical simulations using computers plays
an important role for solving many practical problems in both engineering and science. A
numerical simulation converts important aspects of a physical phenomenon into mathematical
equations written in a discrete form, transfers the problem to computer in order to solve it,
and inspects phenomena virtually following the requirements of the analysts. The advances in
numerical analysis, coupled with the increasing power of computers, have greatly expanded
the scope of numerical simulation.

Numerical simulation can be considered as a powerful tool for scienti ¢ investigation. It
can reduce the expensive, time-consuming and in situ or in laboratory experiments. Numerical
tools present advantages compared with classical experimental methods. It can provide
complete information that is generally dif cult to obtain through other means. Computational
simulations play a principal role in providing a validation for theories, offers additional
information on experimental results and helps in the interpretation or even the discovery
of new phenomena. However, computational simulations are strongly interconnected to
physical models and theoretical predictions as it is shown in gure 2.1 .

Figure 2.1 — Relation between the numerical simulations, theories and experiments.

Generally, numerical simulation techniques should follow a similar ow-chart as schemat-
ically shown in gure 2.2. Starting from the observed physical phenomena with a focus on
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the aspects that need to be investigated, simpli ed mathematical models are established under
some assumptions in the form of governing equations with proper limit conditions (initial
conditions and boundary conditions). The governing equations are explicitly dependent of
the nature of physical phenomena targeted for the investigation and can take several forms
as: partial differential equations (PDE), ordinary differential equations (ODE), integration
equations and so on.

In order to solve numerically the governing equations, the geometry of the problem that
will be treated needs to be represented by interconnected discrete components. The domain
discretization techniques may be different from a method to another. The step of domain
discretization is followed by numerical discretization that provides means to obtain discrete
representation of continuous forms of governing equations which correspond to the domain
discretization technique. The last step is to translate the discrete form of governing equations
into a computer code. The complete procedure of numerical simulation is summarized in
gure 2.2.

Figure 2.2 — Procedure of numerical simulation.

2.2 Grid based numerical methods

Grid based numerical methods adopt a computational domain which is composed of
nodes, where the eld of physical variables are evaluated, and their relations are prede ned
by a speci c topography of nodal connectivity (mesh). The mesh cell size and the mesh
patterns are the principal factors that de ne the accuracy of the numerical approximation.
There are two fundamental descriptions in grid based methods: the Eulerian description
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Lagrangian approach Eulerian approach

The absence of convective term in the gpoWHhe convective term should be handled
erning equation facilitate the numericathe simulation.

treatment phase.
The ease of tracking the time-history of thdhe dif culty of tracking the time-history
physical variables at any point of material.of the physical variables at xed point @
material.
The ease of mesh adaption to complex amklbad adaption of the mesh to complex ge-
irregular geometries and description of ma@ametries and dif culty in the determination
terial interfaces and moving boundaries.| of material interfaces and representation of
moving boundaries.
The grid is needed only within the continthe grid should be large enough in order to
uum. cover also the part of the space where the
continuum can be moved.
A poor numerical accuracy due to the meshihe large deformation occurred to the con-
distortion is presented when large deforménuum does not cause neither the mesh (dis-
tion is occurring to the continuum. tortion nor infect the accuracy.
An expensive adaptive mesh algorithm|islo adaptive mesh numerical accuracy| is
needed to overcome the previous problemseeded.

in

—

Table 2.1 — Comparison of Lagrangian and Eulerian approaches (advantages and drawbacks).

and the Lagrangian description. The Eulerian description is a spatial description. Here the
computational grid is assumed to be xed on the physical space; the volume and shape of
mesh cells remain unchanged during all the period of the computation while the materials
are owing across the mesh. The mass ux across mesh cell faces is simulated to compute
the distribution of physical quantities in the problem domain. The nite difference method
(FDM) is the typical example to represent the Eulerian descriptiéd, [L38 350. The
Lagrangian description is a material description. Contrary to the Eulerian description, the
grid is attached on the material and moves with it in the entire process of the computation.
Here, there is no mass ux between adjacent cells because of the transportation of the mass
with the movement of the mesh cells. The well-known and widely used method is the
Finite Element Method (FEM }61, 64]. Both description have advantages and suffer from
drawbacks that are principally summarized in the table 2.1 .

In order to strengthen the advantages of Eulerian and Lagrangian approaches and avoid
their drawbacks, combined approaches has been developed. The Coupled Eulerian La-
grangian (CEL) 213 and the Arbitrary Lagrange Eulerian (ALE}®, 140, 24] methods are
the most known methods belonging to this approach. However, the grid based methods are
not well suited for situations where large deformations, moving material interfaces, large
inhomogeneities, deformable boundaries and/or free surfaces are presented in the simulation
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case. In the gure 2.3, the Lagrangian, Eulerian and Combined approaches are schematically
illustrated.

Figure 2.3 — Representation of Lagrangian, Eulerian and combined approaches of falling
drop water. They are classed from the left to the right of the gure, respectively. This gure
is reproduced from [59].

2.3 Meshfree numerical methods

For the purpose of avoiding all problems related to the connectivity between the nodes,
another class of numerical methods so-called Meshfree methods was developed. The basic
idea of the meshfree methods is to discretize the continuum into a set of nodes without
presence of any connectivity between these nodes. This property makes treatment of large
deformation problems, and representation of the free and moving interfaces an easier task
while keeping a reasonable computational effort. When the nodes represent a massive
element (particle) of the material domain and carrying its physical properties, the methods
are so-called “meshfree particle methods (MPM99{ (see gure 2.4). This kind of
methods follows in general a Lagrangian approach.

The Meshfree Particle Methods (MPMSs) include: lattice gas Cellular Automata (CA)
[351, 167), Dissipative Particle Dynamics (DPD)43 96€], Particle-in-Cell (PIC) 131, 137,
Marker-and-Cell (MAC) 37, Fluid-In-Cell (FLIC) [114], Particle-Particle (PP), Particle-
Mesh (PM), Particle-Particle-Mesh (P*M)42], Moving Particle Semi-implicit (MPS)174,
Smoothed Particle Hydrodynamics (SPH)(, 240 and other various meshfree particle
methods. It is shown by Shao and Sha61]] and Souto-Iglesias et aB[L1] that the two last
cited methods MPS and SPH are closely equivalent.
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Figure 2.4 — Mesh free particle representation of the falling drop water.

2.4 Smoothed Particle Hydrodynamics (SPH) method

In this thesis, one of the most ef cient and robust meshfree particle methods is highlighted.
This method is called Smoothed particle hydrodynamics (SPH). It is a Lagrangian method for
the numerical approximations of the governing equations solutions that works by replacing
of continuum material with a set of particles in interaction. Generally, this method can be
seen via two different points of view [245]:

From the mathematicians point of view, the particles are considered as interpolation
points from which properties of the continuum material can be approximated.

From the physicists point of view, the SPH particles are also a continuum material
particles that can be treated like any other material system.

The smoothed Particle Hydrodynamics (SPH) method was originally formulated by Lucy
[210 and Gingold and Monaghari 1§ for astrophysical applications. Since this seminal
work, it has been successfully applied to a vast range of problems. These include astrophysical
problems: galaxies formation and clajelp, 31( , dusty gas dynamic8p2, 259 , stars
and steller collisionsd42, 27, 282 ; Hydrodynamics and compressible ow problems : dam
break p43 72,303, dam spillway P92 189 sh pass [L04] , multiphase ow [254, 15]],
spersonic ow [L02, 274, shock wavesZ35 269 , detonation and explosio2(1, 207 ;
Bioengineering problems: swemming bodi@8¢, 168 68] , micro uidics [ 139, 11] , heart
valves P99, blood ows [22, 25( ; heat transfer problems6}, 34§, structure problems;

[66, 124, 137]; multi-physics problems[6, 332, 331], and many other applications.
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2.5 Basics of SPH method

2.5.1 Kernel approximation

The highlight of the SPH method is related to its ability to represent numerical approxima-
tions for functions and their spatial derivatives without need to any topological connectivity
between nodes (mesh).

Let us consider the suf ciently regular function elfl, de ned on the n-dimensional
domainWand its bordeffW. The led f may be de ned at the position vectar(f(r;))
from the following convolution product:

Z
f(riy="d(ri rj)f(r)dr] (2.1)
W
Wheredrjf‘ is the elementary volume located at the positigrand termd(r;  rj) denotes

the Dirac or the delta function. Because the delta function is not regular (it lacks continuity
and differentiability properties), it is replaced in the context of SPH method by an alternative
well behaved functioW called smoothing kernel function or simply kernel. Thus, the
integral approximation in term of smoothing kernel functidrreads as:

Z
f(ry) W(ri  rj;h)f(rj)dr] (2.2)

Wkh)

Where,h represents the smoothing length, and it is usually de ned as constant value
proportional to the initial inter-particle distanBsg [186. The smoothing length can be
chosen variable for each individual particle in order to enhance the accuracy of SPH method.
For more details about the variationlgfwe advice the reader to refer to [242, 135].

In SPH, the kernel function is de ned over a compact support of radius eqiahdere
the particle of positiom; interacts only with neighboring particleg. Therefore, the global
domainWis restricted to the compact support doméikh) which subsequently reduces the
computation time. The constaktiepends on the choice of the smoothing kernel function.
More details are shown in gure 2.5.

The smoothing kernel functidv should ful Il some properties300. The most general
ones are summarized below :

— The smoothing functioWV should be a good approximation tof the Dirac delta
functiond ash! 0
— The smoothing functioklV should decrease monotonously from the position
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Figure 2.5 — Geometrical details of basics principles of SPH metbd global domain
that represent the continuum. is the kernel function\kh) is the support compact &¥
centered at;. rj are the neighboring particles nfwithin the support domaiMkh) .Dxg is
the initial inter-particles distance.

— The smoothing functiolV should be a spherically-symmetric even functigv(r;
ri;h) = W(r; ri;h) = W(rij;h). Here, therj; denotes the distance between the
position vectors; andr;j (rij = krj  rjk).
The gradient of kerneW is expressed as N,W(r; rj;h) = '”V\%(r”h) fi rrj =
Ner(l’j ri;h)
WhereN is the nabla operator (gradient).
— The smoothing functiokV should have a compact suppttkh): W(r;h) = 0 for
r kh
— The smoothing functiolV should satisfy the normalization condition:
W(ri rjhdrj=1

Wkh)
— The smoothing functioWW should be positive within the compact support area:

W(ri rj;h)  Oforr< kh
— The smoothing kernel functioW should be suf ciently smooth (differentiable).

2.5.2 Choice of the smoothing kernel function
The smoothing kernel function can be represented in a general form as :

h r_ hp

W(rijih) = Wrh = 1 Q + = 2 Q(d (2.3)

Wheren is the number of space dimensi@is function of dimensionless distange T,
andhp, is constant depends of the choice of kernel function and the space dimen3iba
letterr denotes the variable distance bestrewn tow pom#si; = kri rjk). In literature,
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a several kernel functions which satisfy the list of conditions discussed above are treated in
the context of SPH method. Some of the most frequently used kernel function are discussed
as follows:

— The Gaussian kernel introduced by Gingold and Monagha#f [ It is the simplest
kernel whose spatial derivative is in nitely smooth and therefore exhibits good ac-
curacy and stability properties especially for disordered particles (smoother kernel
functions result generally in more stable SPH formulaticii®] 253). However, it
lacks of a compact support (It never goes to zero theoretically), and it is computa-
tionally very expensive. Gaussian Kernel function follows the form of equation 2.3
where the functior)(q) reads as

Qa=e (2.4)

With the constant$i; = p%, h, = % andhs = 5&—5 for 1, 2 and 3 dimensions,
respectively.

— The B-spline kernel function or cubic spline kernel functi@d. It is the most
commonly used kernel since it has a small compact support and resembles a Gaussian
function. However, it is less stable than smoother kernels. The fun@ighis
expressed as follows

8
21 3?+3¢® 0 g<1
Q(a) = 5 12 9° 1 g<2 (2.5)

0 q 2

With the constantiy = 3, h, = %) andhz = 130 for 1, 2 and 3 dimensions, respec-
tively.

— The Quartic and Quintic kernel functions are introduced by Mo 253. These
kernels are higher order functions and have the advantage of smoother derivatives
which more closely approximate the Gaussian kernel function and they are more
stable. The function®(q) are expressed for the Quartic and Quintic Kernel functions,
respectively as:

Q(q) of Quatrtic kernel function:
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(25 q)* 515 o*+1005 g* 0 g<O05

VW AR 00

25 o* 515 g 05 gq< 15
o) = @ o' s 9 q 26)
(25 0) 1.5 g< 25
0 q 25

With hy = 4, ha = 1fgs andhg = o5 for 1, 2 and 3 dimensions, respectively.
Q(q) of Quintic kernel function:

8
§(3 @° 6(2 g°+151 °> 0 g<1

3 g)° 62 q)° 1 2
. © @ &2 9 < -
§ (3 0 2 <3
' 0 q 3

With hy = 35, h2 = ﬁ andhs = ﬁ for 1, 2 and 3 dimensions, respectively.
— The Quartic smoothing function introduced by Liu et&D()]. This function ful lls
the normalization condition, and has a common compact support with its rst deriva-
tive. The Quartic kernel gives better results than cubic kernel function (equation (2.5))
since it has only one piece [200, 199]. The funct@ft) reads as
8
Qo= PITAT sars 0 a<2
: 0 g O

2
(2.8)

Withhy= 1,h, = 2 > andhg = 2%18% for 1, 2 and 3 dimensions, respectively.
— The kernels of WendlancBEl'/] are also often used. It is recommended by Robinson
and Monaghan486 since it reduces the SPH tensile instabilii]. SomeQ(q)

functions of Wendland kernels are expressed as follows:

Q(q) WendlandC2:

QA=(1 29+ 2.9)

With h = % andhs = % for 2 and 3 dimensions, respectively.
Q(q) WendlandC4:

QA=(1 Do+ 39+ 1) (2.10)

With h, = % andhs = 2459655 for 2 and 3 dimensions, respectively.
Q(g) WendlandCé:
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Qa=(1 Dag’+ 2+ ag+ 1) (211)

With h, = % andhsz = %gg’for 2 and 3 dimensions, respectively.

2.5.3 Kernel approximation of a function derivatives

When substituting gradient of the function elf in kernel approximation formulation
(2.2), the following is obtained:
z
Nf(ri) Nf(rj) W(r;h) drf (2.12)
W(kh)
By applying the divergence theorem (Gauss theorem) in (2.12), it becomes:

Z Z
Nf(ri) f(rj) N, w(r;h) drf + f(rj) W(r;h) ngy dr] L (2.13)

Wkh) TW(kh)

The second integral on the right-hand side of the equation (2.13) is evaluated on the
surface elememdr? 1 of the bordeffW(kh) of the domainMkh). The vectomgyy is unit
outward vector normal t§Wkh). As it is mentioned before among the list of conditions that
the smoothing kernel function should satisfy, the doméjikh) must be a support compact.
in other words, the kernel value is equal to zero on the bdfikh) inside the continuum
domain. Therefore, the second integral of the formation (2.13) will vanish. When the border
of kernel supporf{Wkh) intersects the border of continuum global dom%i, the second
integral of the formation (2.13) may be evaluated following [104, 192].

Because ofl;, W(r; rish) = Ner(rj ri;h) the formulation (2.13) can read as:

Z
Rif(r;) F(rj) RW(r;h) o (2.14)
Wkh)
Or simply: 7
Nf(ri) f(rj) NW(r;h) dr? (2.15)
Wkh)

2.5.4 Accuracy of kernel approximation

The second order Taylor expansion of the functf¢n;) around ofr; can read as



44 State of the art

f(ri)= f(r)+(r; 1) Nf(r)+ O(h?) (2.16)

When the Taylor expansion (2.16 ) is introduced in the right hand side of kernel approxi-
mation of equation (2.2)

Z Z
f(rj)W(r;h) drj = f(riy+(rj ) Nf(r)+ Oh®) W(r;h) drf
WKkh) WKkh) 7
= f(ry) w(r;h) drf (2.17)
Wikh),
+ Nf(r) (rj ri)W(r;h) dr]+ O(h?)
WKkh)

From the mathematical development (2.17), it is clear that the kernel formulation of
equation ( 2.2) is a second-order accurate approximation if :

Z

W(r;h) dr" = (2.18)

Wkh)

and
Z
(ri ry) W(r;h)ydr=0 (2.19)
J ]
Wkh)

It is possible to obtain a higher order accurakyl prder) when all moments &% (until
the k™ momentM,) equal to zero [207, 23, 87, 88].

Z
My = (ri rp*w(rh)df=0 (2.20)
W(kh)

If the Taylor expansion (2.16) is introduced in (2.15), the fowling expression is obtained
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VA Z
f(rj) NW(r;h) drf! = f(ri)+(r; ) Nf(ri)+ O(h®) Rw(r;h) dr
WkH) LG
= f(ry) Nw(r;h) dr"! (2.21)
Wk,
+ Nf(r)) (rj 1) RW(r;h) dr'+ O(h?)
Wkh)

As it is concluded before for order of accuracy of the kernel approximation, and from
the mathematical development (2.21), it is obvious that the gradient kernel approximation is
second order accuracy if the following identities are satis ed

z
Nw(r;h) drf = 0 (2.22)
W(kh)
and 7
(rj 1) Nw(rh)dr!= (2.23)
W(kh)

Wherel is the identity tensor.

2.5.5 Particle approximation

In SPH, the computational domain (continuum) is represented by a set of particles
carrying all the generic variables (density, pressure, velocity ...). These particles are in
interaction within a range controlled by the smoothing kernel function support called here
Wkh) (see gure 2.5 for more details ). The integrals under their continuous forms can be
approximated with a summation applied on the nite number of neighboring particles with
volumeV;j. This process is the so-called particle approximatior?[ 198 20(. Therefore,
the discrete form of the integral kernel approximation of the functianpositionr; (equation
(2.2)) is obtained by using the surrounding particle@he neighboring particles within the
support domain déV centered at; ) and can read as :

f(r) @ forpw;y (2.24)
J
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Where,ny, is the number of particlegin the neighborhood of the particiethe volume
V;j of particle j is de ned asvj = rrn—J‘ with m; andr j the mass and the density of the particle
j, respectively. The notationj denotedM; = W(rjj;h) = W(ri rj;h).

With some mathematical manipulation, the discrete form of kernel approximation of the
continuous gradient of the function elél can also be estimated as:

- bp -
Nf(r) & f(rj) Rw; v, (2.25)
j
Alternative expressions for the gradient of the eld functibrcan be obtained by
considering the following two identities [242]:

Nf = %fﬁl(r f) fNrg (2.26)
Nf=r N f f Nr (2.27)
- r r2 '

By substituting the equations (2.26) and (2.27) into the equation (2.25), the following
paired particles forms of gradient function are obtained respectively

- 1 -
NTf(ri) I'_|a mj f(rj) f(ri) NW; (2.28)
J

[

n

Nf(r) riét_) m; y+ g NV\/” (2.29)
j j I
The equation (2.28) has a asymmetric form (as seen when partaibely swap places).

This formulation has the advantage over (2.25) since it returns exactly the derivative of a
constant function (this formulation is called zeroth order consist@ywhile the equation
(2.29) has an symmetric form which it obeys the propriety of “the action is minus of the
reaction”, thus, the conservative form is ful lled whose use is favored in the discretization of
the momentum equatio239. Note, the divergence can be approximated using the same
formulations as the gradient (2.28) and (2.29). The second order derivative of the eld
function f can be approximated by differentiating the equation (2.24 ) a twice :

Ny
Df(ri)= N2f(ri)= N Nf(ri) & f(rj)N?W,;V, (2.30)
J
This expression suffer from a lot of issues such as its strong sensitivity to the particle
disorder and need and also it can results a large errors at low particle resolution, especially
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when the employed kernel function is a low-ordég,[255.To deal with this issues, a useful
approach was proposed by Monaghag]] in the context of heat conduction treatment, This
approch reads as :

g f(ri) f(rj)

Df(ri) Za- Kr; I‘jk2
J

(ri rj) NV\/”'VJ' (2.31)

This expression results from a hybrid combination between a nite difference derivative
and a rst-order SPH derivative. This formulation is also used by many researchers to
discretize the second-order derivative [255, 67, 325] .

2.6 Performance optimization and open source codes of
SPH method

One of the major problems presented in the use of smoothed particle hydrodynamics is
its high cost in terms of computational time. This problem is communally found in all
lagrangian methods for a many reasons. We can quote for instance, the cost of mathematical
and physical proprieties calculations on each particle which is based on the interpolation
with a considerable number of surrounding particles. Furthermore, the motion of particle
involved the updating of search for new list of surrounding particles in each time step hold
on each particle, unlike in the Eulerian methods, the connectivity of the nodes is known in
advance and doesn't require any updating according to time. And also, the high number of
iterations needed to simulate a given physical time. The last drawback is generally due to
the explicitness of the integration scheme which requires a very small time step in order to
preserve the numerical stability.

With performance growth presented in hardware architectures of the recent computers, a
several contributions in the literature were done to make the SPH method cost-effective.
In the context of shared memory architecture on both GPU and CPU, large parallelization
techniques for WCSPH were developed in the literature thanks to the explicitness and
independence of calculation tasks hold on each individual particle. For instance, in the
framework of Dualphysics project : open source SPH solvé}, which is based on the
Monaghan discretization scheni&lf], a parallelism implementation both on GPU and CPU
was progress in several works. Firstly it was implemented on a single GPU using the CUDA
language Tg]. This approach was limited for millions of particles due to the limitation of the
device memory used in GPU cards. To deal with this problem, a multi-GPUs parallelization
technique using massage passing interface "MPI" paradigm is used to communicate between
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several devices memories of Nvidia CUDA card89. But this approach was not optimized
regarding the xed technique of interface communication between the memory devices of
GPUs cards that causes a high computational time due to the amount of data transfer and
its maladjusted with the particle motion that causing later a loss in load balancing. In the
reference 90] an enhancement of the last method was done to optimize the communications
between memory by sharing the particles between GPUs memory devices following the
kinematic of particles ow. Later in referenc89] an optimized strategy was described which
based on the keeping of the calculation tasks maximum as possible in GPU to minimize the
CPU-GPU data transfer. In the last reference a multi-threading parallelization technique on
CPU using the OpenCL library was proposed. Another free SPH Solver Parallel on GPU
so-called AQUAgpusph was recently developgd] to be widely supported in various cards
architecture (Nvidia, AMD, IBM, Intel, etc...) thanks to OpenCL computing language which

is not possible for CUDA language that works only on NVIDIA Cards technology.

Josephine is a parallel SPH code on CPU used to simulate free surface ow in open basin
[60] using Colagrossi and LandrintE] and Ferrari et al. 105 approaches. The principal of
parallelism method used in the context of Josephine is based on a vertical decomposition
domain with updating the interface separating between processes which de ne the buffer
exchange zone to fellow the kinetic of ow in order to guarantee a good load balancing
between the processors by using a single way zone interaction based on the QuickSelect
algorithm to determine the abscissa dividing the particles of interaction zone into tow subset.

2.7 Applications

Nowadays, SPH methods have gained a wide interest for application in research and
engineering. Herein, some of its applications are addressed such as in uid, structure and
interactions.

2.7.1 Fluid applications

The dam break ow problem is one of the most known benchmarks used in the SPH
framework R43 36, 72, 204, 288 339, 77, 105, 214. It includes all the complexity that
makes SPH a particularly well suited method for its simulation such as the presence of the
free surface and its large deformation. Figure 2.6 shows the simulation sequences of the
dam break realized by Marrone et alL[j in the context of diffusive schen#®-SPH. The
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comparison of pressure results with available experimental data made by Butfjree]
presented in gure 2.7.

Figure 2.6 — Snapshots of the evolution of the dam-break ow against a vertical wall
(Marrone et al [216]).

Lid-driven cavity ow has been widely used as a benchmarking test to validate numerical
models in the context of con ned uid ow. For SPH applications, we can referi8g
357, 85, 5, 192). We show via the Figure 2.8 the results obtained by Leroy et@f[using
incompressible SPH (ISPH) scheme with uni ed semi-analytical wall boundary conditions
(USAW) compared with the Finite volume results (FV). While in gure 2.9 a comparison
of the velocity pro les between the ISPH-USAWYJZ , SPH with the multiple boundary
tangent method (SPH-MBT) [357], nites volumes , and the results of Ghia et al [116].

For multiphase uid ows applications, the most popular investigated test is the Rayleigh—Taylor
instability problem 80, 150, 128 149, 238, 297, 5¢]. In gure 2.10 the positions of the SPH
particles at dimensionless tindds taken form the work of Monaghan and Ra €&3f. The
results obtained are similar to that of Cummins and RudrBé@hgnd Grenier et al]2g.
gure 2.11 show the ariation of the highest point of the low-density uid for different particle
resolutions compared with Layzer theory [307].

Many other applications can be quoted such as in aerodyna#ii€s(fee gure 2.12),
bubbly ow and coalescence in framework of SPH interfacial multiphase meth2® 59,
simulation with a high particle resolution (more thB@® particles) for large wave interacting
with an off-shore oil rig platform [90] and so on.
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Figure 2.7 — Dam-break ow against a vertical wall. Comparison between the pressure loads
measured experimentally by Buchné#] and predicted by the numerical model at probes

P, (top panel) and® (bottom panel). Results are shown for three different space resolutions.
(Marrone et al [216]).

2.7.2 Structure applications

The SPH method can be applied successfully to different problems behavior, such as
elastic, plastic, and elasto-plastic behaviors.

Oscillating plate 124, 277, 359 and collision of two rubber ringsip4, 206, 314 are
two typical tests for simulation of elastic deformation of structure. gures 2.16 and 2.17
show the simulation sequences of the oscillating plate and the collision of two rubber rings,
respectively. The convergence of SPH elastic model can be shown through the gure 2.18
that represents the time evolution of the vertical position of a point on the end of the plate for
different resolution. all these gures are taken form the work of Gray and Monaghan [124].

The geomaterials can be considered as purely plastic materials. The SPH method offers a
good advantage for the simulation of this kind of material via a Non-Newtonian uid model
that yields under a certain criterion ( such as Mohr-Coulo&#y,[75] or Drucker—Prager
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Figure 2.8 — Lid-driven cavity for Reynold®& = 1000 comparison of the results obtained
after convergence with ISPH-USAW (left) and with FV (right). (Leroy et al [192])

Figure 2.9 — Lid-driven cavity foRe = 100. Comparison of the velocity pro les ir" = 1=2
andz" = 1=2 between ISPH-USAW, Incompressible SPH with the multiple boundary tangent
(ISPH-MBT) [357], ,FV and the result sof Ghia et al [116]. (Leroy et al [192])
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Figure 2.10 — The positions of the SPH particles at the dimensionles&tisiag150 300
particles. The blue particles assign the light uid.(Monaghan and Ra ee [238])

Figure 2.11 — The time evolution of the highest point of the low-density uid. The Layzer
theory is shown by the continuous blue line. The small open circles the resuli8 fat00
particles. Red line hows the results f6% 150 particles and green the results for the
simulation with 150 300 particles.(Monaghan and Ra ee [238])

[93] yield criteria). This model is so-called visco-plastic model. A lot of applications of
this method for the simulation of the ow behavior of granular materials can be found
in the literature 13, 52, 153 32(. Also the elasto-plastic constitutive models have also
demonstrated that are suitable for simulation of granular mate#ié)glp, 57, 26(. Figures

2.19 and 2.20 show the equilibrium state of 2D sediment dam break and the collapse of
cylindrical sand column simulated using visco-plastic and elasto-plastic models, respectively.
Douillet-Grellier et al P2] use Drucker-Prager and Grady-Kippg 29 in the context of
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Figure 2.12 — WCSPH simulation of inviscid ow around a circular cylinderRge= 240Q
Comparison of the predicted vorticity eld between SPH (left) and Finite difference Navier-

Stokes Solver (right) [74]. (Marrone et al [218])

Figure 2.13 — Bubbly ow in a simpli ed closed oil-water separator. Density elds are
shown at different times.(Grenier et al [129])

elasto-plastic SPH model to simulate the failure in uniaxial compression of gypsum samples
that contain an angled aw (see gure 2.21).

2.7.3 Fluid structure interactions

The deformation of an elastic plate subjected to time-dependent water pressure is a
well-known benchmark proposed by Antoci et @ {o validate the interaction between the
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Figure 2.14 — The SPH snapshots of the oblique coalescence at some characteristic time
instants (top); the experimental snapshots in Brereton and and KoratAgyniddle); the
velocity eld around the bubbles (bottom). (Zhang et al [358])

Figure 2.15 — Different instants= f2:2;3:2;10g[s] of the simulation of a large wave
interacting with an off-shore oil rig platform usingAParticles. (Dominguez et al [90])

uid and elastic structures codes,[144, 277]. Figures 2.22 and 2.23 show comparative
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Figure 2.16 — Simulation sequences of the elastic plate oscillation. (Gray and Monaghan
[124])

results between SPH and experimental tests for simulation sequences and the time-evolution
of the horizontal and vertical displacements of the plate free end .

There is also another benchmark for modeling a breaking dam on hypoelastic bafle [
compared with Particle Finite Element Method (PFENS ] that can be also used for the
validation of uid-elastic structures interactions codes. Figure 2.24 shows a comparison of
simulation sequences of dam break interaction with hypoelastic baf e between two numerical
method Particle Finite Element (PFE) and Smoothed Particle hydrodynamics methods (SPH)
[277].

For uid and land interactions, a classical simple example of numerical modeling of
submarine landslide generated waves 52, 353 can be used for the validation of SPH
codes thanks to its available experimental data (Rzadkiewicz 29€)[ Figure 2.25 shows
the position of uid and land particles at the times 0O[s] andt = 0:8[s], from the left to the
right, respectively (Capone et &7]). In the gure 2.26 comparison curves of the water free
surface obtained with SPH method [52] and experimental data [290].

For uid and rigid body interactions, a very good synthetic test case was proposed by
Canelas et alf(] in order to simulate the impact of a violent water wave over a real geometry
of container terminal of the Sines port (it is a big infrastructure on the Portuguese coast) to
explore the possibilities of SPH method regarding complex, industrial scales. gure 2.27
shows four selected sequences of this application.
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Figure 2.17 — Simulation sequences of the collision between two elastic rings . (Gray and
Monaghan [124])

Figure 2.18 — Convergence study of the oscillating plate test case using three particle
resolutions witm = f 10; 20; 30g particles towards the direction of the plate thickness . (Gray
and Monaghan [124])
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Figure 2.19 — The sediment dam break comparison between: (a) the experimental data of
Bui et al [46], (b) Fourtakas and Rogers(q results obatained via the visco-plastic model

(c) comparison of the experimental pro le and yielded surface of the sediment Bui#]al.

and the Fourtakas and Roget$f model at the equilibrium state (t=0.64s) . (Fourtakas and

Rogers [108])

Figure 2.20 — Equilibrium state of collapse of a cylindrical sand column. The particles are
colored with accumulative equivalent plastic strain. (a) side view; (b) isometric view. (Chen

and Qiu [57])
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Figure 2.21 — Failure in uniaxial compression of gypsum sample with an angled aw. The
top gure shows the initial state of sample, while the bottom gures show the SPH crack
simulation with considering several aw angles.(Douillet-Grellier et al [92])
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Figure 2.22 — Comparison between frames from the experiment and images of SPH particle
positions [6] every @D4sfromt = Q[g] (a) untilt = 0:4[g] (k). (Antoci et al [6])

Figure 2.23 — Horizontal and vertical displacements of the free end of the plate. (Antoci et
al [6])
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Figure 2.24 — Comparison between Particle Finite Element Method (PFEM)fesults
and SPH 277] simulations for dam break on a hypoelastic baf e. (Ra ee and Thiagarajan
[277])

Figure 2.25 — Submarine landslide simulation: the left image represents the initial particles
position of the land and the water ¢at 0[s]), wile the right image is at= 0:8[s]. (Capone
et al [52])
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Figure 2.26 — Elevation of the water free surface at time0:8[8]: comparaison between
SPH [52] results and experimental data by Rzadkiewicz et al [290] . (Capone et al [52])

t= 0[g t= 14]

t= 19| t = 60fs]

Figure 2.27 — Simulation of the impact of a violent water wave over Sines container terminal
at timest = 10;14;18;60g[s]. (Canelas et al [50])






Chapter 3

SPH : Numerical development and
governing equations discretization

Dans ce chapitre nous abordons les principales équations régissant le comportement d'un
milieu continu (uide et structure). Différentes formulations de discrétisation SPH extraits
de la littérature sont discutées. Les principales méthodes utilisées pour la détermination de
la pression a n de fermer le systéme des équations physique sont introduits. Nous donnons
un apercu théorique sur les différentes stratégies et méthodes de simulation des écoulements
multiphasiques ainsi que les différentes formes de force de tension de surface utilisées dans
le contexte de la méthode SPH. Les différentes stratégies de couplage multiphysiques entre le
uide et la structure sont brievement discutées. Les méthodes de correction et amélioration
de précision et stabilité de la méthode SPH sont présentées. La modélisation de différentes
conditions aux limites, les schémas d'intégration en temps ainsi que les criteres de stabilité
dans le cadre de la méthode SPH sont aussi abordes.
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In this chapter we present the governing equation describing the behaviour of a continuous
medium (uid and structure). Various SPH discretization formulations extracted from the
literature are discussed. The main methods used to determine the pressure in order to close the
governing equations system are introduced. We provide a theoretical overview of the different
strategies and methods of multiphase ow simulation as well as the different forms of surface
tension force used in the context of the SPH method. The different multiphysics coupling
strategies between uid and structure are given. Methods for correcting and improving the
accuracy and stability of the SPH method are discussed. The modeling of different boundary
conditions, time integration schemes and stability criteria in the framework of the SPH
method are also presented.

3.1 Governing equations

Among the wide range of applications that can be dealt by the SPH method, we highlight
in this work the physical phenomena generated from uid, solid and their interactions. When
the uid and solid behave under isothermal conditions, their evolution can be described
completely by the continuity, the momentum conservation and displacement equations.
These equations are represented in Lagrangian form as follows:

%
;9

\'
rlN S + FS+ FP (3.1)

9=|°' a2 9,|Q-

I
<

Wheredét) = m+ v N(:) represents the Lagrangian derivative (material derivatiNe$.the

nabla operatorr, ‘v;r;FS andFP represent density, velocity vector, position vector, surface
force vector and volumetric body force vector respectively. The surface and body forces
can represent for instance the surface tension force, gravity force, electrical force and etc
[150, 254, 279 . s is the Cauchy stress tensor. For more details about the development of
conservation equations of the system (3.1), we advise the reader to refer to [221, 283, 119]

The Cauchy stress tensercan be decomposed into two parts, the isotropic pagl)
and deviatoric part ):

S= pl+t (3.2)

With p andl denote the hydrostatic pressure (also called mean stress for solid mechanics
with p= %tr(s), wheren is number of space dimensions ands the notation of trace
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of square matrix) and the identity tensor, respectively. The notation of the deviatoric tensor
(t) is related to any continuum material, for the uid material it can be called also viscous
stress tensor. The deviatoric is often writing as a function of the rate of strain @n3tis
relation is called constitutive law.

By substituting the equation (3.2) into the momentum equation of the system (3.1), it
becomes

+ ——+ FS+ FP (3.3)

When the inertial forces are dominant over the viscous ones in the uid material, it will
be treated as inviscid or ideal uid where the viscous forces are neglected in the computation
(t = 0). For the Newtonian uid ow, the stress tensor can not be neglected, and it is linearly
proportional to the rate of strain tensor with a constant coef cient, the so-called dynamic
viscosity(m) [20, 269. Thus, the viscous stress tensor (deviatoric tensor) for the Newtonian
uid ow can be expressed as

t=mD (3.4)

WhereD denotes the rate of strain tensor and it is de ne®as Kv+ ( Nv) T, with Rv
represents the velocity gradient tensor, and the super3cigthe transpose tensor symbol.
For incompressible Newtonian uid, sindé v= 0, the divergence of the viscous tensor
N t further reduces to

t = mN?v (3.5)

WhereN?= N N = Dis the Laplacian operator.

All uids that do not obey equation (3.4) are regrouped under one category so-called
non-Newtonian 360, 124, 145 61, 165. The gure shows the three categories of non-
Newtonian uids classi cation: The purely viscous time- independent, time-dependent uids
and viscoelastic uids [165].

The uid belongs to the purely viscous time-dependent category, when the shear stress is
a function only of the rate of strain but in different manner than described in equation (3.4).
Figure 3.2 shows different models of viscous time-independent non-Newtonian uids.

The pseudoplastic (shear thinnin@)y{ and dilatant (shear thickening) ] models have
their shear stress depend in a nonlinear way only on the shear rate. for both models, no
initial stress is required to initiate yielding. The macromolecular and concentrated solids
suspension uids are examples of pseudoplastic and dilatant uids, respectively [267].
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The Bingham plastic modeBp] (also called viscoplastic model) is one of the simplest
and more commonly used among the viscous time-dependent category of uids. In this
model, when the yield stress limit] is exceeded, the material behaves as Newtonian uid.
Otherwise, it behaves as a rigid body. The constitutive law for a Bingham Plastic can be
written in tensorial form as

E n o}
t = EDVTF+ m D ktkg ty (3.6)
D: O kt kF < ty

The notatiork:kg refers to Frobenius norm (see equations (5.8) and (5.9) ). In equation
(5.7) the yielding criterion of soil materials is de ned using the Von Mises criterion [226].

1
2

kDK = %D:D (3.7)
1
1 2

ktke= St :t (3.8)

The formulation (5.7) can be written under a smooth form to avoid the numerical dif cul-
ties resulting from its discontinuous form. The exponential mo#élj[and the Bercovier
and Engelman (BE) model [30] are used for instance to deal with this.

The typical example of Bingham plastic model is the toothpaste, which will not ow out
only when certain stress is applied on the tube [281].

Under the Herschel-Bulkley model (also called a nonlinear viscoplastic mad#|}te

uid behaves exactly as with Bingham plastic model but after exceeding the yield stress
they following the pseudoplastic model instead of the Newtonian one. Mud ow can be
considered as a Herschel-Bulkley uid [152].

The time-dependent uids have a hysteresis loop which depends on the time-dependent
rate at which the shear stress is applied. The pseudoplastic time-dependent uid (thixotropic)
[257] and the dilatant time-dependent uid (rheopectic) are two models belonging to this
category (see gure 3.2). The waxy crude d&P[9 and Bentonite clay suspensia?d/] are
the examples of thixotropic and rheopectic uids, respectively .

Viscoelastic uids 7€), as can be understood from their name, they possess both viscous
and elastic properties. The egg white and polymer melts are examples of Viscoelastic uids
[281].

For the study of the elastic dynamic behavior of any solid structure, the constitutive
equation based on Hooke's formulation corrected by by Jaumannl@idan be used
[124]. It reads as
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Figure 3.1 — Classi cation of uids.(Roproduced from Johnson [165])

Figure 3.2 — Flow curves of shear stress as a function of shear rate for time-dependent
uids.(Roproduced from Johnson [165])

Figure 3.3 — Flow curves of shear stress as a function of shear rate for time-independent
uids.(Roproduced from Johnson [165])

% =G D %tr(D)I + tw + wt (3.9)
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WhereG is the shear modulus. For the isotropic materials, the shear mo@udas be
written as a function of the Young's modul&s the Poisson's ratio and the bulk modulus
K [184].

E _ 3K(1 2n)

G= = 3.10
2(1+ n) 2(1+ n) ( )
The tensoiv denotes the rotation-rate tensor that can be expressed as
1< Sy T
w = > Nv  (Nv) (3.11)

The notatiortr(D) presents the trace of the square malrix

There are other alternative laws for the time derivative of the deviatoric stress that can be
used in the context of elastic behavior modeling as those proposed by Eller®@8tfak|
studying viscoelastic ows.

Modeling of solid mechanics equations using SPH method has been largely employed
thanks to the meshless nature of the method. It was rstely carried out by Libersky and
Petschek194] to simulate the fracture process in brittle solids. After that, it was be extended
by Randles and Libersky’[9 and then Gray and MonaghahZ4] to be applied on the
elastic dynamics. The commonly used model for the study of plastic behavior of solids in the
context of SPH model is the Drucker-Prager mo@é] [ It was used rstly by Bui et al 46]
to study soil collapse and slope stability. Since that, it has been used in other applications, for
instance: the study of the failure due to compression in a Braziliang6stT2, modeling
large soil deformatiord5, 47, 57, 26(], and the study of the failure in uniaxial compression
of gypsum sample®p]. For more details about the model, we refer the reader to consult the
references [46, 92].

3.2 Determination of pressure

The system of equations (3.1) is open, and should be closed by the determination of
pressure variable. Three principal approaches are commonly used for the pressure determina-
tion in the SPH method: Weakly compressible smoothed particle hydrodynamics (WCSPH),
Truly incompressible smoothed particle hydrodynamics (ISPH), and explicit incompressible
smoothed particle hydrodynamics (EISPH).
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3.2.1 Weakly Compressible Smoothed Particle Hydrodynamics

In weakly compressible smoothed particle hydrodynamics (WCSPH) approach, the
determination of pressure is done by using an explicit equation of state (EOS) that relates
the pressure with particle densityand arti cial speed of soundy. The most commonly
used EOS in the framework of WCSPH is the MacDona&ltl] equation. It is also largely
known as Tait equation of state in SPH community, This application is stated incorrect by
Monaghan in [234]. The MacDonald equation of state is expressed as

r 9
P=p 1 +po (3.12)
wherer o, pr and p, denote the reference density, the reference pressure and background
pressure, respectively. The reference density is related to the reference speed ahdyund
the following equation

pr=— (3.13)

the parameteg is generally set constant and equdalln some references tlyg= 1:4 is
also used to simulate the air material[ 128 129, 35§. It is stated by Morris in255 , that
when the density uctuations increases, small errors in density correspond to increasingly
larger errors in pressure. Therefore, for lower Reynolds numbers, more accurate pressure
estimates are obtained using SPHy¥ 1, since errors in density and pressure remain
proportional. The linear equation of state (whgen 1) is used in lot of references such as
[254, 216].
The reference speed of sougglin the case of uid ow can be determined as [254, 308]

UZ kgkL U
G ma i Ka

WhereUg, Lo, ms ands are the reference velocity, reference length, and effective
dynamic viscosity (apparent viscosity), respectively. The tdmrepresent the ratio of
density variations about the initial density which is usually set equatéddr = 0:01)
[243].

For numerical problems involving single-phase free surface uid ows and also for
solid dynamics, the background pressure is generally set tq pgro 0). Furthermore, for
simulations of single or multiphase con ned uid ows, the pressure is chosen as a positive
value suf cient to guarantee the positivity of the calculated pressure eld via the equation
of state in order to avoid the tensile instabililf. Several formulation of background

(3.14)
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pressure are used in the literature such as: Marrone 21Lgl{ise(pp = 3r OUOZ) for con ned
single uid ow, and Krimi et al [17§ use(pp 1 0:05p,) for the simulation of con ned
multi-phase ow.

In order to enhance the numerical stability of the multiphase uid ow simulations,
Colagrossi and Landrini’/] recommend the use a common reference pressure of all uid
phase.

In the case of the simulation of solid deformation, the linear equation of state ( Equation
(3.12) withg = 1) is usually employed with a calculated arti cial speed of sound using the
following equation [124, 6, 293]

z — (3.15)

WhereK is the bulk modulus.

3.2.2 Incompressible Smoothed Particle Hydrodynamics

In Incompressible Smoothed Particle Hydrodynamics (ISPH) approach, the determination
of pressure is done by solving the Poisson's equation via the projection method. This
method is originally developed in the context of grid-based method by Ch@zjr6p],
and implemented by Cummins and Rudmaé€ fto deal with incompressible SPH ow but
without a free surface. The free surface condition was introduced in incompressible SPH
model by Shao and LA&P3J. It has since been of great intere30p, 150, 355 15§. In
ISPH, the continuity equation of the system (3.1) is simpli ed to the divergence-free velocity
by taking into account that the density is a constant parameter. It reads as

N v=0 (3.16)

The original incompressible smoothed particle projection metB6diB] is referred
under the name of ISPH divergence-free velocity eld (ISPH_DF method). Here, the density
and mass of particles are constant and their positidase advected with velocity' to an
intermediate positions as follows

ro=r'+dtv (3.17)

At the positionr; , An intermediate velocity; is calculated based on all forces governing
the movement of particleat the timen except the pressure ones

v = V'+ dt Nt psypo (3.18)
r
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Determination of pressure at time 1 by solving the following pressure Poisson equation
(PPE) t

N v (3.19)

The velocity at the nal time-step+ 1 (V™ 1) will result from the projection oY . Thus,

dt
r

Vn+l: Vi

Npm ! (3.20)
The particle position at the nal time-step is calculated by

!
V-n+l+Vin

=Mt dt - 5 (3.21)

The ISPH_DF scheme provides accurate and smooth pressure elds. However, it presents
instabilities since it leads to highly anisotropic particles arrangemég@t.[This problem
can be avoided by using particle shifting algorithm as proposed by Xu ét§] and
improved by Lind et al [197] or the one proposed by Fatehi and Manzari [100].

Two alternative methods have been developed to enhance the accuracy and stability of
the ISPH_DF method. The rst method is referred as ISPH_DI (incompressible smoothed
particle hydrodynamics based on keeping density invariard&],[this method is similar to
ISPH_DF for all steps except of the solving Poisson equation step. In ISPH_DI, the right
hand side of Pressure Poisson equation is expressed with relative density difference instead
of divergence of velocity in ISPH_DF. Therefore, the Pressure Poisson Equation can read as

o ro r

N —N =
r P i rodt?

(3.22)

Withr is the intermediate particle density approximated through the continuity equation.

As it is stated by Xu et ald55, the ISPH_DI scheme presents more stable simulations
than with ISPH_DF one, but its accuracy is deteriorated. To bene t from both schemes
ISPH_DF and ISPH_DI, Hu and Adam$d( proposed a combined a scheme which is
referred as ISPH_DFDI. This scheme requires two pressure Poisson equations to be solved,
and thus, computational cost becomes higher.

The main differences between weakly compressible smoothed particle hydrodynamics
(WCSPH) and the incompressible smoothed particle hydrodynamics (ISPH) methods can be
summarized by Table 3.1.
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WCSPH ISPH
Fully explicit nature of the scheme resoluSemi-implicit nature of the scheme resolu-
tion tion
The pressure is calculated via an equatiorhe pressure is calculated via solving the
of state Poisson equation

Suffer from a high frequency oscillations ofStable and smooth pressure
pressure
Free surface ow condition is maturely ful-Imposition of free surface ow is required
lled
Easy to program More dif cult to program than WCSPH
Small time step due to CFL condition reMore important time step

lated to the arti cial speed of soure
Shifting particle algorithm is not needed (ItNeed for shifting algorithm in order to we
presents good particles distribution) distribute

Table 3.1 — Comparison between WCSPH and ISPH schemes.

3.2.3 Explicit Incompressible Smoothed Particle Hydrodynamics

The explicit incompressible smoothed particle hydrodynamics method (EISPH), is rstly
developed by Hosseini et @45 for the simulation of non-Newtonian uid ow. It was
employed after in other works as i{7, 14, 15]. This method uses the projection method as
in ISPH [80] but relies on an explicit approximation of Poisson equation instead of solving it.
Therefore, this method reduces the pressure oscillations and reduce the computational effort
[82]. For more details about the formulations, we advise the reader to refer to [145, 82].

3.3 Discretization of governing equations

Generally, the asymmetric form of SPH rst derivative ( Equation 2.28) is employed to
write the right hand side of the continuity equation of the system (3.1) (also called divergence
equation P45 ) in SPH discrete form. Thus, the discrete form at the particken be read as

dri -
o - amvij NW; (3.23)
j
and also
dr; T m; N
EI =ria r—’ Vij NW; (3.24)
i |

J
With vij = vi  vj.
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Otherwise, the density can be also directly approximated via the basic SPH interpolation
(2.24) applied on the densityat the particle. This summation form is expressed as
Mo m; fb
ri=a W =amw, (3.25)
i) j
The discrete formulation of the continuity equation (3.23) can be seen as the he time
derivative version of the summation form (3.25) [245].

The advantage of the density summation formulation (3.25) over the formulations (3.23)
and 3.24 is that it conserves exactly the m&sgs]. An alternative version of density sum-
mation formulation is presented by Hu et Adams]] (equation (3.26) ) . This formulation
conserves exactly the mass as well as (3.25), and in addition it allows for density discon-
tinuities when the particleinteracts with the neighboring particlgghat present a large
particle-mass differences, for instance, it is well suited to dealing with multiphase uid ow
with large density ratio.

Ny
ri=ma W (3.26)
j

The problem of the density summation formulations (3.25) and (3.26) is that it works
badly in cases of free surface ows, because they can not reproduce a zero pressure in the
free surface particle. While, with the use of the density divergence equations (3.23) or (3.25)
the zero pressure in the free surface particle is reproduced naturally. The formulation (3.25)
is recommended for use over equation (3.23) when the problem concerns multiphase uid
ow with hight density ratio ( 2) [69, 245, because in the summation of the right hand
side of the equation (3.23) , the mass of neighboring particles affects the calculation, whereas
with the formulation (3.24) it is the volumes that affects it.

In order to achieve the conservation of momentum, one of the following symmetric
expression can be used for the calculation of divergence operator of the Cauchy stress tensor
S [242]

!
n
EN Si = ébmj i+ Si NV\/” (3.27)

. 2 2

If the density varies signi cantly, Monagha34] has recommended to use another
discrete symmetric form of Cauchy stress divergence [338]
1. ® m

FN = a# Si+ S| NV\/” (3.28)
i j Tir
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With sj is expressed as = pil + t;.
An asymmetric expression can be used to discretize the divergence of Cauchy stress
tensor as it is used in [56, 279]
1g e <
CNsi=a s s Ay (3.29)
[IRALY
The formulation is generally used with normalization technique of the kernel gradient
explained in the section 3.7 (equation (3.67)) [56, 279].

The three formulation of the Cauchy stress tensor divergBineg are usually employed
in the context of solid mechanics, especially for modeling the elastic behavior where the
deviatoric part is determined from time integration of a differential equation as equation
(3.9) or as used irgp]. For uid dynamics applications, the form of momentum equation
(3.3) is preferred, where the gradient of pressure and the viscous tensor divergerce
discretized separately in different ways.

The discretization of the pressure gradient follows the same three formulatib®sSp8,
279]. Thus, they can be represented as

o N i Pj N
% &’ rp_|2+r_]2 NWj

1 J
[P Tg AT (ee) W (330
3 Tb rn:, (pj pi) NVVI]

For the divergence of the viscous stress tensor. A hybrid formulation between the SPH
gradient approximation and nite difference estimation of second derivative operator has
been proposed by Morris [255] :

1. (m+ m) rij NVVIJ

—N t; =
ri C-jl ] rir |

Vi (3:31)
'J

This formulation (3.31) conserves linear momentum exactly, while preserving angular
momentum approximately [19].

Violeau and Issad39 have derived from the arti cial viscosity term used in the the
work of Monaghan and Gingol®B9 the following formulation for the approximation of
the divergence of viscous stress tensor

=N ti=§m e 3 R 3.32
it a ritrg ooy r2en2 Y (3.32)



3.3 Discretization of governing equations 75

Another formulation for the calculation of viscous stress tensor divergence was introduced
by Cleary [65] and can read as

1. 2b X 4mrn lij Vij «
i=am Ry .
erirjm+rr]ri2j+h2 Wi (3:33)

j
The parametex was set a€.96333through calibration against known solutions in a
Couette ow. Basa et al have stated itd] that this value ofx gives highly inaccurate

velocities for the simulation of Poiseuille ow and the valuexof 4:24 provides much
better results.

Note that the parametér is taken generally as small value%= ( 0:1h)?) to prevent
singularities (zero denominator) when two particles become too close.

For the multiphase uid ow applications, Hu et Adam$41] have proposed approxima-
tions of spatial derivatives with particle-averaged in which the neighboring parjidethe
particlei only contribute to the summation by their speci ¢ volumes and not their masses.
This technique maintain exactly the mass conservation, and allows naturally for density
discontinuities across phase interfaces. Therefore, the pressure gradient can be expressed as
[151, 1]

1 ~ l gb 2 2 ~
—Npi= —a Vi"pi+V/pj NW; (3.34)
ri m
This expression is similar to the form of gradient pressure preferred by Monaghan
[242).This form conserves linear momentum exactly since exchanging of particle positions

and j within the sum results an opposite pressure force.

Another form of gradient pressure [2, 4]

1 g N
Np= —a ViZ+ V2 b N (3.35)
J

With fj is the density-weighted inter-particle averaged pressure [150]

ripj+ripi
r+ l’j

Bij = (3.36)

This form fjj (3.36) ensures théﬁlp Is continuous even when a discontinuity is present
in the density eld.

While for the divergence of the viscous tensor is taken as
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Np . .
5 veev2 i IW (3.37)
j

1. 1
N ti= = J
ri m rij 9rij

With fn; is the inter-particle-averaged shear viscosity
2m
fy = 0 (3.38)
m+ m
This form of the viscous force (3.37) conserves linear momentum. The angular conserva-

tion of momentum can be achieved using other formulations, for instance the one used by
Hu and Adam 4§ which is extended for multiphase ow applications by Krimi et al’g]

NV (3.39)

1. 2 Vij i
—N tj= — +V- n;
ri mi"ijl b a2

Wherez = n+ 2, andn is the space dimension number.

Note that here the volume is calculatedvas rr“—l with the massn is taking as constant
during all simulation time, and the densityis computed using the summation formulation

(3.26).

Other principles of SPH discretization in the context of multiphase ow can be found in
the literature. For instance, the work of Grenier etlald , derives the governing equations
following a Lagrangian variational principle that leads subsequently to an Hamiltonian
system of particles. This formulation permits to model ows where both interfaces and a
free surface are present. The details of these formulations are not discussed here, but can be
found in [128, 127, 130, 129].

For modeling of Non-Newtonian uids within the principle of Generalized Newtonian
Fluids (GNL) techniqued3, 343, other form of divergence of viscous stress tensor (devia-
toric tensor) is usually found in literature [98, 352]

1 i - -
FN ti=a— 55— Vij rij NWj +rij vij NW; (3.40)

Krimi et al [177] have extended this formulation to be applied to the Non-Newtonian
multiphase uid and/or uid-like mass framework. It reads as

( )
Np ViZ+ V2 Fim+rim
ri+r;

vij rij NWEG +rij v NW; (3.41)
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3.4 Surface tension for multiphase uids

As is stated by Monaghar234], there are at least three ways to include the surface
tension within the SPH framework.

The rst one, is to assume that the SPH patrticle are real physical particles and introduce
between them a forces in order to mimic the effects of surface tensieh324, 21, 262,
328].

The second way, the surface tension equations are modeled by including for SPH ows
an extra energy term in the particle Lagrangian [236, 254].

The third way, is to use the surface tension force within transition region at the interface
between the uid phases (see gure 3.4 ) under well known forms : Continuum Surface
Force (CSF) form or Continuum Surface Stress (CSS) form.

Figure 3.4 — Transition region of surface tension.

The Continuum Surface Force (CSF) formulatigii][describes the pressure-jump
condition normal to the separation interface of the uids. Assuming that the surface tension
coef cients 1 2 js constant between two uid phaseksgdnd?2), the expression of the force
can be expressed as

Fs-lzl 2) = S(l 2)k ndS (342)

In equation (3.42)k, n andds denote the curvature, the unit normal vector to the
interface (see gure 3.4) and the delta function, respectively. In the context of the SPH
method, equation (3.42) reads as

Fa= s@aRnRC (3.43)
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whereC is the color function that has a unit jump across the interface. It's equaitone
particle uid phase and 0 in its neighboring particle of other uid phase.

Other alternative tensorial formulation of surface tension so-called the Continuum Surface
Stress (CSS)8( can be also used. It is equivalent to the CSF formulation given in equation
(3.43)

FPT=RN P; (3.44)

whereP; de nes the immiscible mixture surface stress tensor of the paiiti@apillary
pressure tensor). Assuming that the partiddelongs to thé uid phase, then the mixture
surface stress can be expressed as

Pi= 4 PX (3.45)
k61

In equation (4.16)P !" is the uid surface stress tensor between ph&sasd|, de ned as

I
K S q~klL2r Rkl R~k
pK = RCTk kNCKKk?l  RcK  Rc (3.46)

Moriss [254 employs both formulation (CSF) and (CSS) in the context of WCSPH, The
obtained results have been reasonable. Hu and Adasifysed the CSS with introducing
modi cation in order to have more statable results. Adami e?plife the CSF formulation by
using new accurate divergence approximation to compute the curvature with good precision.
Krimi et al [178 exploit the idea of Adami et alZ] and use it in the framework of CSS
surface tension to simulate accurately the uid problems including more than two phases.

3.5 Rigid body- uid interaction

We consider a system of uid containing a oating rigid body with center of nRssd
the velocity atR is referred td/. The equation of motion of the center of mass of discretized
rigid body can be expressed as
N
md - a mefi (3.47)
dt k
Wherek refer tok!" rigid particle constituting the global rigid body. The foréeis the
hydrodynamics force per unit mass acting on the boundary pakiiohg is mass of rigid
particlek andny is total number of rigid body particle. The fordgis expressed as
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NEps

fic= a fu (3.48)
I

Wherefy is the force per unit mass exerted by the uid particten the boundary particle
k[316, 284, 316]
The equation of rotation of rigid body can read as
aw _ &

IE =a I’T]((I‘k R) fk (349)
k

WhereWdenotes angular velocity,is the moment of inertia ang is the position of the
rigid particlek. The mathematical notation refers to cross product.

The values oV andWare predicted by integrating the equations (3.47) and (3.49). The
rigid body boundary particles move as part of the rigid body, thus, the position of boundary
particlek is given by

dl’k
i w=V+W (rx R (3.50)

The above described technique conserves both linear and angular momgatiavy.
Hashemi et al133 use another approach for modeling body motion by employed surface
integration on pressure and viscosity forces applied on the body elements.

3.6 Fluid-structure coupling strategies

In SPH method two ways of coupling strategies between the uid and structure are
possible: Weak coupling (also called partitioned) and strong coupling (also called monolithic)
strategies.

For weak coupling between uid and structure, either of the materials does not depend
on the other, it can be analyzed rst. Herein, the solution on each material will be done
separately. For instance, as in the work of Shi e8aH], the uid is solved rst using a
Navier-Stokes solver by considering that the structure is a rigid moving wall. Subsequently,
the structure is solved using the assigned constitutive equation taking into consideration
the storage forces applied on it by the uid. The drawback of this technique is that it may
allow for inter-penetration between the particle of both materials which leads to use a very
time step for the simulation. This coupling strategy is largely employed to manage the
interactions between uid and rigid bodie®d7, 245 133 174, 316, 284, 314, where the
uid considers the rigid body as a dynamic wall boundary, whereas for rigid bodies, their
movement is determined from the forces applied by the uid through the equations of motion
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described in the section 3.5. The algorithms of coupling uid-structure which are based on
the use of explicit imposition of continuity conditions on the interface between uid and
structure (continuity of normal stress and velocity) may lead to a weak coupling because of
the necessity to advance the solution from one material to another as it is realized in [181].
In the case of strong coupling of uid and structure, both are solved simultaneously. The
lagrangian nature of the SPH method allows this strategy to be the simplest for the application
and the more robust one. It works just by introducing the contribution of all particles to the
summation in the SPH discretized equations regardless of their nature. Here, the coupling
conditions on the interface would be naturally satis éd377.Among the works achieved
in this context, we advice the reader to refer to [13, 52, 169, 299, 215, 108, 331, 345, 315].
The above description of uid-structure coupling strategies concerns only the SPH-SPH
applications (uid ans structure are modeled with SPH method). Several other numerical
method can also be coupled in the uid structure interactions framework such as SPH-FEM
(SPH method for uid and nites elements method for structur&(q, 356, 147, 209, 209.
This category of coupling is general classed as a weak (partitioned) because of the different
natures of the methods and solvers.

3.7 Improvementin SPH method

The improvement of accuracy, stability and consistency of smoothed particle hydro-
dynamics method (SPH) can be seen via two general directt®t By improving the
approximation of the kernel function with its derivatives and/or by recovering the SPH
particle approximation of the governing equations.

3.7.1 Improvement in kernel approximation

The improvement of the kernel approximation can enhance signi cantly the SPH results
specially when (i) the support of kernel is truncated with the boundaries (free surface or solid
boundaries for instance), (ii) small number of particle are present within the kémje(i[i)
the particles are not uniformly distributed [245].

Shepard formulation

Shepard formulation or also called Shepard It80f] represents the simplest correction
of the kernel approximation of the functidnat the positiorr;. It reads as



3.7 Improvement in SPH method 81

Ny
f(r) @ flrpwv, (3.51)
J
With
WS = an'i (3.52)
AWV

J

Note that, the using of Shepard formulation garantees the normalization condition even
when the kernel support is not full (truncated by the free surface and/or solid boundaries)
and present6'™" order consistencg®. The Shepard formulation is usually employed to
re-initialize the density in order to smooth pressure oscillations and stabilize the simulation
[81, 122 196, and also it is used for the measurement of physical proprieties at any given
position [178].

damping technique

The imposition of initial conditions in the framework of the SPH method may cause
spurious high-frequency oscillations due to arti cial sound waves propagating through the
simulation domain. Monaghan et &47] proposed a damping technique applied during
a prede ned time period to reduce Such artefacts. This damping technique smoothes the
particle distribution and otherwise accelerates particles. The dampinggime nes the
time period during which the acceleration due to the body force is mitigated by the factor
xp(t). The factorxp(t) is de ned as [4]

8
<

sin - 05 p+1 t6T
Xp(t) = . To g °

1 t>Tp

(3.53)

MLS kernel

The Moving Least Square kernel (MLS) is developed by Dig pnd Belytschko et
al [23]. It presents an approximation of rst-order consiste@yor in other words, it can
reproduce exactly a linear function. The functibean be approximated with MLS kernel at
positionr; as follows

f(ri) gbf(rj)vw?“sv; (3.54)
j
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wWMS= Al e bw; (3.55)

Assuming that the positionhas in 3D space as coordinatés= [ x y 7, the vectore, the
vectorb and the matridA are expressed as

8
2 b =[L(x; %)i(y; Wi(z )]
e’ =[1;0;0:0] (3.56)
3 2
. A= &b bWV
j
The symbol represents the outer product.
The MLS approximation is used generally to smooth density in order to mitigate the
spurious oscillations in pressure in the context of weakly compressible ow hypothesis
[72, 268. Colagrossi and Landrini7}/] state that it is enough to use the MLS method to

smooth the density only once for each 20 time iterations in order to make the computation
time cost effective.

Kernel correction technique [36, 35]

The kernel correction techniqu@g, 35] is similar to MLS method§7]. It is based on the
enforcement of a any linear eld to be exactly evaluated through the kernel approximation
formulation. Therefore, the functiof(r;) is evaluated as

f(r) g’f(r;)vw?vj (3.57)
j
with,
WE=a(n) 1+b(r) (i r) W (3.58)

Wherea (r;) andb(r;) are the scalar and vector functions evaluated at the posijtion
respectively.

Assuming thaf (r;) is a linear functionf((r;) = f o+ f 1rj). This function can be written
via the formulation (3.57) as follows

Ny
f(r)=fo+tfiri=§ fo+farj WSV, (3.59)
j
As f o andf 1 are arbitrary, the following relations (3.60) and (3.61) can be concluded
from (3.59) as
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Ny
awsvi=1 (3.60)
j

Ny
)

acri rj VV,? Vi=0 (3.61)
j
By substituting the formulation (3.58) into the relations (3.60) and (3.61), the parameters
a(ri) andb(rj) can be evaluated explicitly after simple algebra as follows

gb # 121)
b(rid=a ri r; ri rp W;V;ooa g on WY, (3.62)
j j
and,
1
a(r)= « (3.63)

a 1+b(r) (i r) WV
j

Gradient correction of the kernel function

A corrected form of kernel gradient of equation 2.28 is developed by Randles and
Libersky [279 and since it presented 8§, 338 55]. This corrected gradient can improve
the accuracy of the asymmetric gradient formulation to the second @é§rdnd makes it
a rst-order consistentd9]. The principal idea is to enforce the ful Iment of the condition
(2.23) to be satis ed in the context of gradient with asymmetric form (2.28). The Corrected
gradient of the kernel function can be expressed as :

NW§ = L(ri) N W (3.64)

with L(r;) is the normalization matrix expressed as the inverse of the discretized version
of the identity condition (2.23). It can read as

'

L(r;) = éqlb(rj ri)  NW(r;h) V; (3.65)
j

The corrected rst-order consistent gradient operator of the fundt{oy) is expressed in
terms ofL(r;) as follows :

Ny
Nf(ri) L(ri)a fjiNW;V; (3.66)
j
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With fj; = f(r;) f(rj).

The matrixL(r;) need to be rstly constructed and then inverted. To avoid this additional
computational task , Adami et &l have proposed another simple explicit expression based
on the two identities presented in Espafiol and Revefdg [This formulation can be
expressed as

N = 1(ri) R (3.67)
Wherel(r;) is a scalar function and it is expressed as

n
é?b(t’j ri) NVV.j Vi

I(ri) = (3.68)

With n is the number of spatial dimensions.

The corrected rst-order consistent gradient operator of the fundt{oy) is expressed in
terms of the scaldl(r;) as follows :

Nf(ri) |(ri)§_) fjiN\MjVj (3.69)
i

Note that it is possible to use these gradients kernel corredt{oy) @nd/orl(r;) ) into
the asymmetric form of the equation 2.28.

Correction of the SPH Laplacian operator

The SPH Laplacian approximation (2.31) is only zero-order consistent, and making it
higher order consistent via the kernel function correction is quite complex. Schwagr [
proposed a method more consistent than the last one, and can achieve an approximation of
the second order consistency. Later on, Fatehi and Mar@nmjfve an new formulation
that grantee exactly a second-order consistency. this technigue requires the computation of a
fourth-order tensor. This formulation of SPH Laplacian operator of the fundtign is then
expressed as:

!
SR . oy i T g .
N Nf(r;)) B; -[2<’:J_1erij NW; a % Nf(r) ] (3.70)

With Nf(r;) is the rst order consistent gradient formulation given through the equation
(3.66), andB; = B(rj) is a fourth-order symmetric that can be determined from
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Bi: aVj—> rij [rij NVVIJ
b ! ! 3.71
v ) . ) ) (3.71)
+ a_r?rij rij  NW; L; anrij Fij NV = |
I j
With L; = L(r;) is the normalization matrix tensor given by the equation (3.65) . The
determination of the fourth order tendgris done through solving the system (3.71) which

makes this approach relatively expensive in terms of computation task.

3.7.2 Improvement by recovering the SPH particle approximation of
the governing equations

Ferrari's diffusive term

Ferrari et al L0 proposed a diffusive term inspired from Riemann-based SPH schemes
[338 256, 25] by introducing the Rusanov ux into the continuity equation. This term
improves the numerical stability of the SPH scheme without use of an arti cial viscosity.

maxf Cg;; Co; g

— (rj ri) e Nw; (3.72)
J

n
D_Ferr — é m,
!
j
Whereg;j is the inter-particles unite vector that is expressee jas #

Fatehi's diffusive term

Fatehi and Manzaril[0(] have been developed a diffusive terBri{t) to deal with non-
physical oscillations in the pressure. This term is associated with the checkerboard problem
[10€ which is in the context of grid-based method. The use of this diffusive terms gives the
advantageous of no need for neither arti cial viscosity nor arti cial stress for garantee the

stability of SPH scheme [100].

2
]

DFt= ridt K r—p N r—p (3.73)
i i
Where, I
i o )
NP =&v RRw; P =P (3.74)
r G ro ro

4
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and

)
< Np e " PP rij Np
N — =B: 2V NW, —— - — 3.75
r o a, i ! rﬁm ri2j ro (3.75)
Here,B; denote the normalization matrix determined from solving of the system (3.71)
and Withy = £(rj) is the normalization matrix tensor given by the equation (3.65). The
operation r—p _is the rst order consistent gradient formulation of the quantiﬁl given

through the ethJation (3.66).

d-SPH

d-SPH term is an arti cial diffusive term used in the context of weakly compressible
SPH (WCSPH). It was rst proposed by Molteni and Colagro&&id, and has since been
improved by Antuono et all[0] to deal better with free surface ow simulation, and then, it
was applied in several works such as [9, 7, 216-218]. This tBm$FH) is added into the
right hand side of the continuity equation to reduce the spurious numerical high-frequency
oscillations from the pressure eld. The diffusive teBf SPHis expressed at the partidle
as

Ny

Df' SFM=d hicod YijNW;V; (3.76)

The vectorY j; is written as

rij ~ . ~
2

The symboh\r i |L denotes renormalized density gradient calculated through the equation
(3.66) .

The advantages and drawbacks of the using of the diffusive&rmH into the SPH
scheme are discussed in the work of Antuono et al. [8].

XSPH correction

The XSPH p3( is a simple method method used to prevent particle inter-penetration and
to smooth the ow eld in order to avoid a highly disordered con gurations where negative
pressures can be occurred. This is done by moving each particle with a velocity closer to the
average one within its support kernel. The XSPH method modify the displacement equation
of the governing equations system (3.1) as
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dr; D Vi
EI = Vi + exspHa mj% | (3.78)

j "

Where the constam spyis taken within the range @ to 1. The commonly used value
ofeise= 0:5[120, 293. Liu and Liu [199 stated that = 0:3 seems to be a good choice
in simulating incompressible ows’jj denotes the average density between the paiticle

ri+

andj (rij = “5H).

Arti cial viscosity

The arti cial viscosity is an additional term added to the momentum equation in order
to improve the stability of numerical scheme. This term stops particles from approaching
each other when they are very close or in other words, it prevents the inter-penetration of
particles. This term was rstly introduced by Lucg1( and then improved by Monaghan
and Gingold 235 in order to ensure the linear and angular momentum conservation. The
viscous term, denoted [ is added to the pressure terms in SPH momentum equations to
give

!
dv: Ny : Pi .
EIZ émj %+ I’_-12+ Pij  NW; (3.79)

J [ j

Or more generally
!
dvi @ Si  Sj -

EIZ émj r—|2+r—j2 Pijl  NW; (3.80)
i I J
Wherel is the identity matrix andP;j is de ned as

ahijtFH Vij Tij

Pii = —
J Fij I‘ﬁ+h2

(3.81)

Hereh? = ((0:1h)? is used to ensure a non-zero denominator,f@n¢h;; andcg, denote
the averages of the density, the smoothing length and the speed of sound of the particles
andj, respectively.

This arti cial viscosity can be translated into a physical viscosityq in order to
simulate viscous owsZ?47, 327, 4]. Therfore, The relation that links the physical kinematic
viscosityn and the parameters of artii al viscosity is given as

n= sy N (3.82)
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Wheren represents the number of space dimensions.

It is found that the formulation of arti cial viscosity?i; works well for shocks of
moderate strengtt?B5. However, when Mach number becomes very high, this formulation
will not serve the problemZ45. To deal with this problem, Monaghafi42 has added an
extra term to the arti cial viscosity (3.81)

g aty, Fij+bF
Py=. T Vij iy < 0
' 0 vij rij O

(3.83)

WhereFij is read as

_ hij iy 1

1% 7 he (3.84)

Here,a andb are free parameters that depend on the problem to be simulated. Good
results have been obtained with the choicaef 1 andb = 2[245. This form is naturally
deduced by considering the aspects of the dissipative term in shock solutions based on
Riemann solvers [233]. It reads as

Fii= K Vggal ! (3.85)
Iij Tij
With the parameteK = 0:5 and thevsjg denotes signal velocity and it is de ned as

Vsig= Cg + Co;  bVij & (3.86)
Wheregj = rr:—JJ andb = 4.

Tensile instability and its correction

The tensile instability can be de ned in the context of SPH method as a numerical
artifact due to the attraction, clustering and clumping of the SPH particles. For WCSPH
uid simulation, the clumping of particle may be caused by the negative pressure resulting
from the approximation of the equation of stad{, 255. For the solid material simulation,
the behavior of SPH particles mimic the one of the physical atoms of the solid material.
Therefore, when the solid material is exposed to the compression, the SPH particles repel
each other. Whereas, when the solid material is exposed to tension, the SPH patrticles form
clumps which induce subsequently the tensile instabiliy5] 319. Swegle et al 19
have performed Von-Neumann analysis to investigate the stability of SPH method. They
concluded that the suf cient condition for an unstable growth is
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W’s > 0 (3.87)

WhereW” is the second derivative of the kernel functidhor also represents the
slop of the rst derivative of the kern&/°, ands is particle stress that is by convention
negative(s < 0) in compression and positive in tensitg > 0). The gure 3.5 summarizes
schematically the stability regimes in the case of cubic B-spline kernel function. When the
slope of the derivative of kernel function, the scheme is stable in tension and unstable in
compression, and vis-versa.

Figure 3.5 — Stability regimes for cubic spline kernel function.

several attempts have been made to remove the tensile instability using different ap-
proaches 5, 94, 28(], the most successful one has been the arti cial stress approach
[244,124). The idea behind the arti cial stress approach is to include small repulsive force
between two neighboring particles when they are subjected to the attraction due to the tensile
state in order to avoid the clumping and clustering of particles. By applying this approach,
the momentum equation is modi ed from the equation (3.80) to the following one
|

d . nb . S ~
Vi o Si J Pljl + fi?AS(Ri+ RJ) NV\/IJ (388)

goam St
at j re r;

Wherenasis an exponent factor (is generally taken equal to 4) finis de ned as

¢ = W(rij; h)
i
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WhereDxg is the initial particles spacing. Assuming that computational problem is in 2D
with planar Cartesian coordinatésy), the components of the arti cial stress tensoare
given by the following transformation expressions

8
E Ra= Rcosq+ R) sirfq

Ry = RYsirfq + RS cofq (3.90)
* Rxy= sinq cosq (R ng)

WhereR, andRSy are the diagonal components of the stress teR8described in the
coordinates framé&C y9. The coordinates frame® y9 are rotated with respect {a;y) by
an angle ofy which is given as

2Sxy
tand = ——— 3.91
1= " (3.92)

By this rotation, the stress tensor in the rotated frame becomes a diagonal tensor. Here,
Sxx, Sxy andsyy denote the components of the Cauchy stress tensor wrote in the 2D original
frame(x;y). The diagonal componefr®, of the arti cial stressRframe is given by [124]

8 0
< s e 0
eas > if s >0
Re=. o7 X (3.92)
: 0 otherwise

Whereeasis a small parameter chosen@s eas< 1. The same rule applies f<§?$y
with (xx) replaced by(yy). The components of the Cauchy stress tessttescribed in the
rotated framéx®y9 can be expressed in terms of those in the original frasneé follows

8

< s9= cofqsyx+ 2009 SiNGSxy+ SIPqSyy (3.93)

+ sQ,= SinfQSyx  2C0 SiNQSxy+ COFqSyy

3.8 Search neighboring particles

It is necessary to know the neighbors of any given partiaieorder to approximate at
that point the eld of particle variables using SPH discretized formulations. The neighbors
of the particle are de ned as all the particlgswithin the compact suppow(kh) centered
at that point. Since the connectivity between the computational particles does not exist, the
distribution of particles changes in time as the continuum material evolves in space. Thus,
the neighbors of all particlasequires to be searched continuously at each time step. The
straightforward method to search the neighbors of any given parigk® check its distance
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with all other particleg and select those that have a distance less than or equal the radius
of chosen kernel functiotkh), in other words:j is neighbor of only whenkr; rjk kh.

This searching method is so-called All-pair seart®q. This method has an algorithmic
complexity ofO(N?) which could be cost prohibitive in terms of computational time. Here

N denotes the total number of particles within the global doridin

The most popular alternative method to search particle neighbors is the so-called linked
list method P29, 147. This method is generally used when a constant smoothing léngth
is employed for all particles. In this method a temporary regular grid (square for 2D and
cubic for 3D space) is overlaid on the problem domain. The size of grid cells is carefully
selected to match with the radius of used kernel fundtienAll particles are assigned to the
corresponding cell via a linked list. This method restricts the search of the neighbbtise
particlei only in the surrounding cell of the particieThis method is quite ef cient in terms
of computational time since it can present an algorithmic complexi®(df) [111]. The
biggest dif culty with this problem is when a variable smoothing lenlilk used [117].

When a variable smoothing length is employed; the tree-algorithms for searching neigh-
bors can be more ef cientl[L]]. It works by creating ordered trees that correspond to the
particle positions. Subsequently, the structure of trees will be used to nd the neighboring
particles. The complexity of this algorithm is of orde(Nlog(N)) [135. The operating
principle of this algorithm is discussed in more detail in [12, 18, 134, 214].

3.9 Boundary conditions

3.9.1 Wall boundary conditions

The repulsive force technique proposed by Monaglati[is based on the use of
Lennard-Jones forces between uid particles and the walls. This technique is very simple
to implement, however it may generate large numerical oscillation in the solid boundary
[199, 20Y. Later, softer version of repulsive force technique was developed by Rogers and
Dalrymple [287] for modeling of tsunami waves with SPH method.

The Ghost Particles technique was rst proposed by Libersky el @] [to re ect
a symmetrical condition using the opposite velocity on the re ecting image of particles.
Colagrossi and Landrini/2] have extended this technique to be applied on rigid boundary by
introducing into the ghost particles the density, pressure and velocity re ections. Morris et al
[259 have proposed a technique to implement non-slip boundary conditions by introducing
a virtual velocity into the ghost particles. This condition provides full compact support near
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Figure 3.6 — The principle of linked list algorithm.

boundaries by using ghost particles. The drawback of this technique is presented in the
treatment of complex geometries of boundaries (for instance the corners ).

In the Dummy particles technique proposed by Takeda €23][ xed layers of particles
are placed in order to represent the solid boundary on the one hand, and |l the compact
support near it on the other hand. Comparing with Ghost Particle technique, this one can
handle with complex geometrical shapes of boundaries. IssaEi@lHave extended this
technique to investegate the turbulence modeling in the framework of SPH method. Adami
et al [4] proposed a generalized formulations of the dummy particle technique by providing
an accurate pressure approximation on the boundaries particles based on local force balance.
Krimi et al [17§ have extended this technique based on the work of Adami €} & pe
applied in the context of multiphase uid ow with different densities and viscosities.

The xed Ghost Particles proposed by Marrone etZilg 219, it is based on xed
layers of ghost particles placed around the of the solid boundary. On these particles the uid
properties are interpolated by using high order accuracy kernel function.

The coupled dynamic solid boundary treatment technique is introduceddd; ft
consists of the use of two types of virtual particles, repulsive particles and xed particles to
represent the solid boundary in order to bene t from the advantages of each technique. The
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repulsive particles are placed right on the solid boundary, whereas for the xed particles are
placed outside the solid boundary area.

A semi analytical wall boundary condition was developed in 2D by Ferrand €04 [
based on the works of Kulasegaram etlalq and De Leffe et al$4]. In this method the
wall boundaries are discretized using boundary elements (segments and vertices ). This
technigue consists of overcoming the completeness of the kernel support near boundaries
by computing surface integrals and using renormalization factor in the weakly compressible
SPH (WCSPH) discrete interpolation. Macia et#lf] and Leroy et al 197 use this method
in the context of incompressible SPH method (ISPH). Mayrhofe? &%, [222 extend this
method to 3D applications. A it is stated by Valizadeh and Monaghaf this method
gives a reasonable results, while it is dif cult to be implemented and make the simulations
more time consuming.

Fatehi and Manzaril[0(] have proposed a new technique for modeling wall boundary
conditions with the use of one layers of solid particles, This condition is imposed in the
accurate calculation of pressure on the wall to prevent the penetration of the particles in the
wall. This technique performs well in situations of complex geometry. The method was
succe y applied by Hashemi et al B3 in order to simulate the motion of rigid bodies in
Newtonian uid ows.

(@) (b)

(€) (d)

Figure 3.7 — Wall boundary conditions techniques: (a) repulsive force technique. (b) Ghost
Particles technique. (c) Dummy particles Fixed Ghost Particles techniques. (d) Coupled
dynamic boundary technique.
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3.9.2 In ow and OutFlow boundary conditions

Generally, the in ow and out ow boundary conditions are modeled using two buffer areas
of particles placed alongside the inlets and outlets of the uid donigfh, [146, 334, 101].

The width of the in ow and/or out ow buffer zones according to the ow direction is taken
equal to or greater than the radius of support of the kernel functiddhy in order to insure
the completeness of support kernel (see gure 3.8).

As the particles within the in ow buffer zone move toward the uid domain under
prescribed velocities, they become uid particle which evolve in accordance with the SPH
equations. At the same time when the in ow particles enter the uid domain, new alternative
in ow particles are created in the in ow zone in a periodic way. Moreover, only the in ow
particles effects uid particles and not vice-versa.

In a similar manner , when uid particles leave the uid domain, they become out ow
particles in out ow zone where the physical properties remained frozen in time except for
their positions. The out ow particles will be deleted when they move out of out ow zone.

Leroy et al [L9]] and Ferrand et all03 have extended the uni ed semi analytical
wall boundary condition methodLp4] to be applied in the open boundaries conditions
(in ow/out ow boundaries) in the framework of incompressible et weakly compressible SPH
(ISPH and WCSPH). Here, no buffer zones are required for modeling in ow and out ow
conditions. for more details about this method, we advise the reader to refer to [191, 103].

Figure 3.8 — In ow and Out ow open boundary conditions.
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3.9.3 Periodic boundary conditions

The periodic boundary condition is a classic open boundary condition in the uid me-
chanics. This condition has a large range of applications in the context of SPH method as in
[255, 4]. Particles near to a periodic boundary interact with the particles close to the comple-
mentary open periodic boundary on the other side of the domain. Therefore, the information
is shared in both ways. Moreover, if a particle leaves the computational uid domain through
a periodic boundary, the same particle is reintroduced at the complementary boundary. When
a support of kernel function of a particle is clipped by periodic open boundary, the SPH
interpolation at this particle is recover by the remainder part of its clipped support applied at
the complimentary open periodic boundaiy[] (see gure 3.9). Itis also possible to do the
SPH interpolation by using buffer zones with a width equal to or greater than the radius of
support kerne(  kh) at the open periodic boundaries that contain a mirror of computational

uid particles near of the complementary boundaries (see gure 3.10).

Figure 3.9 — Open periodic boundary condition with clipped kernel support method.

3.9.4 Free surface condition

The treatment of a free surface boundary requires the application of the kinetic and
the dynamic boundary condition. The kinetic condition consists in ensuring that the initial
free surface particles remain on the boundary, This condition is naturally ful lled for both
WCSPH and ISPH schemes, since the particles move according to their Lagrangian velocities
[340. The dynamic condition consists in imposing of null-presgyre 0) at the free surface.

For WCSPH this condition is implicitly satis ed due to use of equation of stafe{1, 263.
Wherase for the ISPH scheme, the free surface particles should rst be detected correctly
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Figure 3.10 — Open periodic boundary condition with buffer zones method.

and thus imposed a null-pressure condition. Several methods have been used in the literature
in order to detected the free surface particles. The traditional technique is done by evaluating
the particle intermediate densities, if the (r; < 0:99r o) , then the particlé is at the free
surface B03, 300, 171, 172, 170, 13]. A similar volume based technique was proposed in
[295. Other free surface detection technique was proposetidf] pased on the calculation

of the divergence of particle position which is compared subsequently to a threshold value
xed accordingly to the number of space dimension#\ simple purely geometrical-based
technigue was proposed ihd]. A more sophisticated and accurate free-surface detection
algorithm based on SPH interpolations is proposed by Marrdad.[ The implementation

of this algorithm does not require complex geometrical procedures.

3.10 Time integration algorithm

The SPH method transforms the physical continuum equations that are generally partial
differential equations (PDES) into ordinary differential equations (ODES). Therefore, any
time integration scheme of desired accuracy can be used. We can cite some algorithms
among the most popular ones used in SPH, for instance : Predictor-Corrector algorithm
[230; velocity-Verlet algorithm B37, 4], Symplectic algorithm45]; Leap-Frog algorithm
[202, 48]; Runge—Kutta algorithm [161, 72, 60].
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3.11 Stability conditions

In order to guarantee a stable SPH computation, several time-step ctt&zj2 b5, 80,
67] must be satis ed.
The CFL time-step condition for ISPH and EISPH [82] methods

h
25 ———~ .94
dt O 5ma><(kvik) (3.94)
The CFL time-step condition for WCSPH method
h
dt 0:25 (3.95)

max(Co) + max(kvik)
When the arti cial viscosity of equation (3.83) is taking into account, the time step will
be subjected to new condition given by Monaghan [230]

h

dt 0:3minCOi_Ir T2(acy + bmaxip) (3.96)
The viscous-diffusion condition
h2
dt OﬂSW%) (3.97)
The body force condition
ho 12
dt 0:25 KEPK (3.98)

surface tension condition (in the case of interfacial multiphase SPH uid o%0) L571]
min(r;r)he

2
dt 025 2psk |

(3.99)

Wheres ¥ | denotes the surface tension coef cient between the uid phiasesl.
The nal time-step is taking as the minimum of all time-steps based on the above
conditions.






Chapter 4

SPH : Modeling of interfacial multiphase
uid ows

Au cours des dernieres décennies, la modélisation des écoulements de uides multi-
phasiques a beaucoup intéressé les chercheurs, les scienti ques et les ingénieurs, en raison
de sa large application dans le domaine industriel et dans la nature. Des modeéles numériques
utilisant le maillage ou sans le maillage sont disponibles pour traiter des problémes de
simulations des écoulements uides multiphasiques via la discrétisation des équations de
Navier-Stokes. Dans le contexte de I'approche avec maillage, des techniques de capture ou
de suivi de l'interface entre les phases de uide sont généralement requises. Les techniques
les plus courantes comprennent la méthode VOF (Volume Of Fliid],[la méthode LS
(level set) p66| et la méthode de suivi du fron2p1] [ 333. Le principal inconvénient de
ces techniques est la dif culté de prévoir I'évolution du mouvement de l'interface située
entres les phases de uide. La mauvaise prédiction de I'évolution de cette interface va
causer par la suite une mauvaise approximation de sa courbure et son vecteur normal, ce qui
provoque explicitement des erreurs en termes de forces de tension de surface. L'utilisation
des algorithmes adaptés au raf nement du maillagé] [permettent de minimiser ces erreurs.
Cependant, la génération d'une grande quantité de mailles conduit & un grand temps de
calcul. La méthode SPH (Smoothed Particle Hydrodynamics) est une méthode sans maillage
qui permet de gérer naturellement les interfaces entre les phases de uide sans utiliser
des algorithmes spéci ques. Cette méthode a été développée en 1977 pour réaliser des
simulations en astrophysique$1d [ 21(. Plus tard, en 1988, elle a été appliquée a la
simulation des écoulements de uideslifl]. Depuis ce moment, la méthode SPH a recu
beaucoup d'attention et de grandes améliorations ont été développées.

Dans le contexte de la méthode SPH, plusieurs formulations de tension de surface ont été
développées pour traiter les problemes d'écoulement de uides multiphasiques. La plupart
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d'entre elles sont basées sur la méthode Continuum Surface Force (CSF) développée par
Brackbill et al [40] ou avec sa variante, la méthode Continuum Stress Surface (CSS) [180].

Les méthodes CSF et CSS ont été initialement développées dans le cadre de methodes
numerique utilisant le maillage. Morris2p4] a étendu ces formulations pour des applica-
tions aux méthodes sans maillage, notamment la méthode SPH. Cependant, Hu et Adams
ont rapporté dans]51] qu'une contribution de pression négative a la contrainte de ten-
sion de surface peut apparaitre lorsque la formulation CSS est explicitement appliquée.
Cette contribution de pression négative pourrait causer des problemes d'instabilité pres
de l'interface des uides, et ils ont proposé une modi cation de la formulation CSS an
de I'éliminer. Par la suite, cette formulation a été appliquée a de nombreux cas de uides
multiphasiques 150, 149, 128 25§. Néanmoins, la formulation CSS ne remplit pas le
caractere tangentiel du tenseur des contraintes de surface (tenseur de la pression capillaire)
[127). Une formulation alternative de la tension de surface pour SPH a été présentée dans
[154, 324, 32§. Cette formulation considere les particules SPH comme des vraies particules

uides avec des forces attractives / répulsives imbriquées entre elles. La dé nition de ces
forces pour reproduire les effets de la tension de surface a permis d'obtenir des résultats
prometteurs dans plusieurs cas de test impliquant des gouttes et des eécoulements a travers
des milieux fracturés.

Dans ce travail, nous présentons une extension de la formulation de tension de surface
proposée par Adami et aP] pour qu'elle soit applicable dans le cas de simulation de plus de
deux phases de uide. Cette formulation est basée sur la méthode Continuum Stress Surface
(CSS) et présente trois majeurs avantages. Premiérement, elle améliore la stabilité en utilisant
une approximation consistante de premier ordre pour calculer I'opérateur de divergence.
Deuxiemement, la modi cation proposée respecte le caractére tangentiel physique de la
tension de surface. Troisiemement, la formulation proposée béné cie de tous les avantages
de la formulation d'Adami et al7], et de plus, elle peut étre appliquée a des simulations
avec plus de deux phases de uide. Ces avantages font de notre formulation de tension de
surface une bonne alternative a celle proposée par Adams el Hil), [qui est largement
utilisée dans le contexte de la méthode SRBE 149, 128, 25¢. Malheureusement, et de
maniéere similaire a la formulation de?], notre formulation ne conserve pas exactement
le moment. A n de permettre I'application du modéle SPH développé pour des problémes
d'écoulement multiphasique avec présence de paroi rigides, nous présentons également une
modi cation des conditions aux limites des parois généralisées [4].

A la n, nous présentons une extension de la technique d'amortissement numérique
(Damping) présentée dand][pour stabiliser la phase initiale transitoire de simulation
d'écoulement de uide multiphase gravitationnelle.
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In recent decades, modeling of multiphase uid ows has been attracted a large interest from
researchers, scientists and engineers, due to its large applications in natural and industrial
elds. Numerical models in both Mesh-based and Meshless approaches are available to deal
with multiphase uid ows simulations problems via the discretization of Navier-Stokes
equations. In the context of grid-based approach techniques for capturing or tracking the
phase interface are usually required. The most common techniques include the VOF (Molume
Of Fluid) method [41], the LS (level set) method®E€g and the front tracking metho@p1]

[333. The main drawback of these techniques is the dif culty in predicting the evolution of a
moving interface. The inaccurate prediction of the evolution of interface causes subsequently
a wrong approximation of its curvature and normal vector which explicitly causes errors
in terms of surface tension forces. The use of adaptive mesh re nement algori2ijns [
can minimize these errors. However, the generation of a large amount of grid cells in these
methods leads to a large computational time. The Smoothed Particle Hydrodynamics (SPH)
method, is a meshless method that has the ability to deal with moving interfaces naturally,
without using any algorithm for interface tracking. This method was rst developed in 1977
to treat astrophysical simulations1d [210. Later, in 1988 it was applied to the simulation

of uid ows [ 241]. Since then, the SPH method has received lots of attention and large
improvements have been developed.

In the context of SPH method, several surface tension formulations have been developed to
deal with multiphase uid ows problems. Most of them are based on the Continuum Surface
Force (CSF) method developed by Brackbill et4l][or with its variant, the Continuum
Stress Surface (CSS) methdB[]. CSF and CSS methods were initially developed for
mesh-based applications. Morrizg34] extended these formulations to meshless applications

in the framework of the SPH method. However, Hu and Adams reportetbifj fhat a
negative pressure contribution to the surface stress may appear when the CSS formulation
is applied. This negative pressure contribution might cause instability problems near to the
uids interface, and they proposed a modi cation to the CSS formulation in order to eliminate

it. Afterwards, this formulation was applied to many multiphase uid ows applications
[150 149 128 258. However, the CSS formulation does not ful Il the tangential character

of the surface stress tensor (capillary pressure tensdr).[An alternative formulation of

the surface tension for SPH was presentedLbivl] 324, 326. This formulation consider

SPH particles as real uid particles with attractive/repulsive forces among them. De ning
these forces to reproduce the effects of surface tension has been obtained promising results
in several test cases involving drops and ows through fractured media.

In this work, we present an extension of the surface tension formulation proposed by
Adami et al P] to be applicable in the case of more than two uid phases simulations.
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It is based on the Continuum Stress Surface formulation (CSS) and presents three major
advantages. First, it enhances the stability by using a rst-order consistency approximation
to calculate the divergence operator. Second, the proposed modi cation respects the physical
tangential character of the surface tension. Third, the proposed formulation bene ts from all
the advantages of the formulation of Adami et3| pnd in addition, it can be applied to
simulations with more than two uid phases. These advantages make our surface tension
formulation as a good alternative to the one proposed by Adams ant3uyhich is widely

used in the context of SPH methatb), 149, 128, 25§. Unfortunately, and similarly to the
original formulation of P], the formulation does not conserve exactly the total momentum.

In order to allow the application of the developed SPH method to multiphase uid ow wall-
bounded problems, we also present a modi cation of generalized wall boundary conditions

[4] .

Finally, we present an extension of the damping technique presentédangmooth the
initial transient phase of gravitational multiphase uid ow simulations.

4.1 Multiphase model

4.1.1 Governing equations

In this work we assume a weakly compressible viscous uid ow in isothermal condi-
tions. Under these hypothesis, the Navier-Stokes and displacement equations expressed in
Lagrangian form read as

8

%d_r:
dt

g%\/z 1 Np+ FVis+ FST + g (4.1)
dar —
$=V

where =~ d() represents the material derivative following an in nitesimal uid elemekt.

is the nabla operator (gradient), p; v;r andg represent density, pressure, velocity vector,
position vector, and the gravitational acceleration vector, respectﬁ"éili/andFST denote
the viscous and surface tension forces, respectively.

The weakly compressible smoothed particle hydrodynamics approach (WCSPH) was used in
this work [243. In order to close the system (4.1)it is required the use of an equation of state
(EOS) which explicitly de nes the pressure from the density instead to solve the Poisson
equation. In this work the isothermal equation of state [254] is used which is expressed as
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r
p=p — 1 +p (4.2)
ro
wherer o, pr andpy denote the reference density, the reference pressure, and the background
pressure, respectively. For the linear constitutive equation of state given by equation(5.2) the

reference pressure is a function of the reference density and reference speed ahsound

Pr = I oG (4.3)

The use of the physical speed of sound as a reference leads to a very small time step according
to the stability conditions explained in 4.1.4. It is then a common practice to use an arti cial
speed of sound as a reference. Thus, followizig]] and [30§ the value ofcg is determined

here as

U kgkLo., s mJo
max ——; ; ; 4.4
C% dr’ dr rolodr rolLodr 4.4
WhereUg, Lg, mands are the reference velocity, reference length, dynamic viscosity and
surface tension coef cient, respectivetyr denote the dimensionless density variation which

issetto 1% @r = 0:01).

In the case of multiphase uid ows, the reference pressure is chosen to be identical for all
uid phases, following [/ 2]. Therefore, the speed of sound in each phase will be different in
such a way that the reference pressure for all uid phases is conserved.

Pr=Pry = 3= Pry, (4.5)

Pr = r0,C5, = 111 = Toy Gy, - (4.6)

where the subscripgtls denotes the number of uid phases. This condition enhances the
numerical stability of the computationsZ]. Hence, the choice of the arti cial speed of
soundcy is taken in such a way that both equations (5.4) and (5.6) are satis ed in all uid
phases.

For numerical problems involving single-phase free surface uid ows, the background pres-
sure is generally set to ze(py, = 0). Furthermore, for simulations of single or multiphase

con ned uid ows, the pressure is chosen as a positive value suf cient to guarantee the
positivity of the calculated pressure eld via the equation of state in order to avoid the tensile
instability [21§]. In this work, the numerical experiments show that the ideal background
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pressurey is chosen as a function of the reference pressure and it is proportidhabig
(i.e : pp | 0:05p).

4.1.2 Discrete form of governing equations

The smoothed particle hydrodynamics is a meshless method. It discretizes the physical
space into many discrete elements, usually called particles, without any connectivity among
them. This method is based on the approximation of any physical scalar (or vector) eld
using the convolution formulation. Numerically, it is performed by replacing the Dirac
delta function with a regular smooth function, which is called kernel. This function must
satisfy some conditions such as symmetry (even function), normalization, compactness of it
support, among others. We refer the interested read@0t® for more details. The kernel
function used in this work is the quintic splin2g3 de ned in equation (4.7). This kernel

was selected since it prevents a high disorder in the particle distribtiti@nThe kernel
function depends on a paramekeicalled the smoothing length, which de nes the domain of

in uence of the kernel function. In this work, the smoothing lengtis a constant which

is chosen relative to the initial inter-particle distammbg (h = 1:33dxp). The initial particle
volume is taken a¥%p = dxod, with d is the space dimension number. The mass of each
particlei of different uid phases is chosen to be constant and equaid %or o, . Vo during

all the simulation time.

8
% (3 £)P° 62 [P+151 §)° 0 f<1
3 )Y g2 L) 1 <2
W(r;h) = agq (3 p7 82 ) n (4.7)
E (3 p)° 2 <3
' 0 F 3
_ 1 N _ 3 A
whereay = 15, ad = 7 andag = B for 1D, 2D and 3D cases, respectivelys

the distance between two neighboring particlead |

Hu and Adams151] developed a formulation that exactly guarantees mass conservation. In
this formulation, the continuity equation of the Navier-Stokes system (4.1), can be replaced
by the expression

Np

ri=maWw; (4.8)
]
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wherer j andm are the density and the mass of the particlespectivelyW; = W(rij; h) is
the Kernel functionrij = r; rj is the distance between the particknd its neighbours.
The number of particles in the neighborhood of partiagiedenoted asy,.

This formulation is widely used in SPH codes, and it works very well in the case of con ned
uid ow simulations and allows the use of high values of the CFL number. However,
this formulation is very sensitive to the particle disorder. Small variations of the particle
positions cause high uctuations in the particle density and thus in pressure, specially in the
case of gravitational uid ows. In practice, this problem can be alleviated by an adequate
redistribution and acceleration of the initial particle positions and velocities by using a

damping technique. This will be detailed in Section 4.1.5.

. 1 . )
dv; = Npi+ RS+ FST + g (4.9)
|

dt =
Following [2], the acceleration of the particlelue to the gradient of pressure is approximated
as

1 12 2, v2 & i
S NPE A VTV BN (4.10)
, .

J

WhereV, = ’r“‘—l is the volume of particlé. The term NVV{,- = %aj is the gradient of the
Fi _ I rj. . :
# = 'T]J is the unit inter-particle vector.
The termfyj is de ned to ensure the continuity of pressure even for the case of discontin-
uous density between uid particles (for example, when they belongs to different phases).

Following [150] this term reads as

kernel function, andj =

rjpit+ rip;

ij = 4.11
b= (4.11)
The acceleration due to the viscous forces can be expressed as in [2]
1 _vis. 12 vij TW
ZRVS= 3 V2+ V2 L _— 4.12
i majl itV mjrijﬂrij (4.12)

Wherevi; = v; v;j is the relative velocity between the particlendj. The termi; is the
inter-particle-averaged dynamic viscosity which is de ned as

2mm
M = 4.13
Y m+ m ( )
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In equation (4.13)m is the dynamic viscosity of the particlie

This form of viscous acceleration conserves the linear momeritjyjrarjd performs well in

the case of short-time simulations. In this work we have chosen an alternative formulation
[148 which conserves both angular and linear momentum in order to perform long-time
simulations. This alternative formulation reads as

1 m Vijfij
_.|:|V|s: ié Viz+ ij mjLZ'JNV\/Ij (4.14)
ri m ]

Wherez = d+ 2, andd is the space dimension number.

The surface tension force:

In the case of a two-phase uid, a Continuum Surface Force (CSF) formulatimiay be

used to represent the surface tension force. This formulation describes the pressure-jump
condition normal to the separation interface of the uids. However, if more than two phases
are present in the ow, the explicit use of this formulation becomes impractical in the context
of SPH method.

Thus, an alternative formulation should be used in these cases. The Continuum Surface
Stress (CSS)18( is a tensorial formulation of the surface tension force equivalent to the
CSF formulation given in equation (B.2). The CSS formulation can be expressed as a body
force applied through a transition region of nite thickness. The size of this nite thickness
is equal to the diameter of Kernel function (see gure 4.1)

Using the CSS formulation, the surface tension force is de ned as
F3T=N P; (4.15)

whereP; de nes the immiscible mixture surface stress tensor of the paiti@apillary
pressure tensor). Assuming that the partiddelongs to thé uid phase, then the mixture
surface stress can be expressed as

ké |

In equation ( 4.16 P}" is the uid surface stress tensor between phasasdl, r is de ned
as(r = rjj = kri rjk).
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Figure 4.1 — Geometrical description of the principal parameter of surface tension formulation
in the case of two immiscible uid4 and2: interface, transition region, normal vectar

The thickness of the transition region is equivalent to the diameter of the kernel furdtion (
for the quintic kernel function).

ki
K S Qek2 Rkl ekl
pK = KRICFK kNCKk?l  NcK KNc (4.17)
By assuming that the particidelongs to the phasethe gradient of the color function at
the interface between two different phakesndl| (NCik') reads as [2]

N 1 N
Nolf = & W vy &R Rw; (4.18)
J

The inter-particle-averaged color functiéiﬁI is de ned as

8

£ S f#; if the particlej belongs to thé uid phase (4.19)
Y1 0 Otherwise |

The CSS formulation given by equations (4.16) and (4.17) is a variation of the CSF
formulation (see Appendix ( Demonstration of the equivalence between CSS and CSF
formulations)). In the CSS formulation, the interior efforts associated to the surface stress
tensorP are tangent to the interface, which is coherent with the propriety of surface tension
force (the details are presented in the Appendix ( The internal forces associated to the surface
stress tensor are tangent to the interface ?) )

Unfortunately, the direct application of the CSS formulation in the context of the SPH
method, could lead to numerical instabilities}, 151, 2]. In this work , we present a
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modi cation to the CSS formulation in order to improve the stability of the CSS formulation
in SPH methods. Based on the divergence formulation use® fiof the calculation of

the curvature of the interface, we modify the computation of the divergence of the capillary
pressure tensor on equation (4.15). Thus, the modi ed discrete form of equation (4.15) is

Ay -
a ViPijNW;
ST_ j
FPi=d oo (4.20)
i U
where we de ne the inter-particle surface stress tens#ips P; P j, dis the number of
space dimensions amg = kr; rjkis the inter-particle distance. Note that this formulation
does not require a matrix inversion and gives a rst-order consistency approximation to

reproduce exactly the divergence of any linear eld.

Note that with this formulation, the surface tension force does not exactly conserve the
total momentum. However, It guarantees a good approximation even when a disordered
particles distribution is presented or the support of the kernel function is not full with particles
contained within the transition region. This force takes effect as a body one. This formulation
takes all advantageous of the formulation propose@Jirgind in addition it can be applicable
in the case of more than two-phases uid ows simulation problems.

4.1.3 Wall boundary conditions

In this work, we also present a modi cation of the generalized wall boundary condition
method proposed byl] to deal with multiphase uid ows. In this method, three layers

of dummy particles must be added in the normal direction to the wall interface (see gure
5.4). The dummy particles are placed to represent the wall in such a way that it ensures the
completeness of the support of kernel function, in order to obtain an accurate integration
of the eld variables near the wall interface. Free-slip or no-slip wall boundary conditions
can be applied using this method. The free-slip boundary condition is applied by omitting
the viscous interaction between the uid particle with the adjacent dummy particles in the
calculation of uid viscous forces (equation 4.14). In the case of no-slip wall boundary
condition, a virtual velocity, is imposed to the wall-dummy particle interacting with the

uid particle i in equation 4.14. This velocity is de ned as

Vw= 2V Vi (4.21)
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wherey; is the prescribed velocity of wall particlendv; denotes the interpolation of the
smoothed velocity eld of the uid phase to the dummy patrticle position. The tefmefers
to the number of neighboring uid particlgsof the wall particlei.

ng
a Vi
V= (4.22)
AW
j
The pressure in the dummy-wall particle is calculated from the neighboring uid pariicles

according to [4]

Ng N
é.ijNj"'(g aw)é_rerjWNj
Pw= — —— (4.23)

where the ternay,, represents a prescribed wall acceleration, if moving walls are present.

Figure 4.2 — Geometrical description of different parameters used in the generalized wall
Boundary condition. Figure based on that presented in [4]

The method proposed id] computes the density of the dummy particle via the equation

of state and is applicable for the case of single uid with constant viscosity or in case of
multiphase inviscid ows P35, 98, 273. In the case of multiphase viscous ows where
different viscosities are associated to each phase, this formulation becomes unusable because
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of the ambiguity in the choice of the viscosity for the wall-dummy particles. This is specially
noted when the neighboring particles belong to different uid phases. Here we solve this
ambiguity by using a method based on the uid particle mirror similarity. We assume that
each uid particleconsidersall their wall-dummy neighbor particles as similar to it in terms

of density, viscosity and volume. Using this approach we need to modify equations (5.31),
(4.12) or (4.14) as follows

Lip = igbﬁ VRV (4.24)
ri = maj L '
1 _vis_ 1@, vVijTW
ZRViS= — gy L —— 4.25
r maj‘ Y onij Tnij (4.25)
1 v Z . yViilii ~
=RYVe= =3 fyy =Ry 4.26
r i majfm fﬁ i ( )
WhereP |\1/ andl‘njv are de ned as
6y < 2+ V2 r'f’i'::—rr;p' if the particlej is a uid particle 427
o Viz(pi + pj) if the particlej is a wall particle
8
2 Ve+Ves ——L ifthe particlej is a uid particle
Y= 00 mem TEPREEE i (4.28)
: 2\/izm if the particlej is a wall particle

Note that the direct application of the proposed wall boundary conditions method can
present spurious currents when the interfaces between the uid phases includes a surface
tension next to the wall boundaries. To deal with this issue, a special treatment as proposed
in [3] can be added to this method. However, this problem is not addressed here since it is
out of the scope of the present work.

4.1.4 Time integration

In this work a Predictor-Corrector scheme is proposed for time integration. An explicit Euler
method is used to predict the velocig'{ 1) and the positiong™ 1) of the particlei.

The corrected velocity at+ 1 (vi"*1) is approximated by using the trapezoidal-rule,
using predicted parameteg™ ! instead of the nal one§:)™ 1. Note that, the density and
pressure at tima (r "; p") and the predicted values of velocity and posit{eff 1; €™ 1)are
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n+1
used to predict the right hand-side of momentum equati% . The nal position

ri" 1 is advected by the corrected velocity.

The following algorithm summarizes the prediction step.

8 . N
<an+l= V|n+ dt dd\:l
) T n (4.29)
. an"'l: r|n+ dt dc:'tl

and the correction step is summarized as follows

8 ( n 0 n+1
E + d dvj BV + 1 d BV
t I i -1 n n t i
Vin 1 Vin + | + 1 = Vi + Q + = =

. I,in+1: rin+ d'[Vin+1

(4.30)

The nal density (at timen+ 1) is calculated ars.i”+1 =m éij(rqaj)”*l. Afterwards,
the nal pressurep™?® = p(r 1) is calculated according to the equation of state (5.2),
pn+1 - p(r n+ 1).
The superscripta andn+ 1 refers to the time step, whereﬁ:g refers to the predicted
physical parametefr:.g . For more details about the use of this scheme in the context of
interfacial multiphase SPH model please see the Appendix ( Pseudo-code of SPH interfacial
multiphase model).

To ensure the stability of the method, the time sf) (nust be chosen to ful Il the kinetic,
viscous, body force and surface tension conditions [246] [41]

dt = CFLma>(coi)+hma>(kvik) (4.31)
2
dt 0:125W%) (4.32)
ho1=2
dt 025 | (4.33)
min(r cr)h® 7

dt 025 (4.34)
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By using the density summation formulation (equation 4.8) with this time integration scheme,
the simulations were stable with CFL numbers equal to one. In the numerical simulations
presented here, a value©FL = 1 is employed.

4.1.5 Damping strategy for multiphase uid ow

In the framework of weakly compressible uid ows, the accuracy on the determination of
the pressure eld using an equation of state depends on the density estimation. Here, the
density of the patrticles is updated using the equation (4.8). It becomes obvious that a good
estimation of the position of the particles is crucial to obtaining a good approximation of the
pressure.

In this work, an initial regular lattice distribution of particles is chosen to perform the
simulation. However, in the context of gravitational uid ow problems, the use of the
density summation formulation (equation (4.8)) to update density (and thus the pressure with
equation (5.2)) in a regular distribution particles may spoil the imposed initial hydrostatic
pressure and cause spurious high-frequency oscillations. In single uid ow formulations,
such artifacts can be reduced using a damping technique during the initial transient of
simulations {, 247]. This damping smooths both the distribution and the velocity of the
particles to mitigate the oscillations. In fact, we introduce a mitigation facis(t] 1)
which acts as a multiplication factor on the body force in the momentum equation (4.9) as
well as in the wall pressure equation 5.50, to obtain a gradual introduction of the gravity
force. The mitigation factor is only activated during the tiffge(damping time), and is
de ned as

8
S sin - 05 p+1l t6Tp

Xp(t) = . (4.35)
: 1 t>Tp

Note that other expressions are possible instead of 4.35, as for example, the Hill equation
[115].

Unfortunately, these damping techniquéds 247] are not applicable in the case of
the simulation involving gravitational multiphase ows. This is due to the difference in
density between the uid phases (buoyancy force), which generates a considerable motion
of the particles during the damping period. To extend the application of this technique to
gravitational multiphase uid ow simulations, a new strategy must be de ned. In this work,
all the physical properties of all uid phases (reference density, viscosity, mass ...) are set
to be equal to those of the heavier phase during the damping procedure, in order to avoid
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any motion due to the different properties between the phases. This technique allows the
particles to be slightly redistributed and accelerated in order to reach a good estimation of the
initial hydrostatic pressure and velocity. After the damping time, the real physical properties
must be assigned again to each phase, and the calculation procedure continues as usual. The
reader is referred to the Appendix ( Pseudo-code of SPH interfacial multiphase model) for
more details about the use of this technique in the case of interfacial multiphase uid ow
simulations.

4.2 Conclusion

In this work, a consistent smoothed particle hydrodynamics model for multiphase ows
is proposed. The model includes a surface tension formulation which ensures the tangential
properties of the tensor surface stress and improves the stability of the numerical method.
The numerical stability is improved through the use of a divergence operator with rst-order
consistency and also with a damping technique that avoids the numerical issues due to the
transients on initial conditions. A modi cation of the generalized wall boundary conditions
that allows its use for the simulation of wall-bounded multiphase uid ows is also presented.






Chapter 5

SPH : Modeling of water-soll
Interactions using a multiphase approach

L'analyse des interactions sol-eau joue un role important dans I'évaluation et I'atténuation
de nombreux problémes environnementaux et géotechniques, tels que I'érosion des sols,
I'érosion des structures offshore, les tsunamis générés par les glissements de terrain et leurs
effets sur les structures adjacentes. La simulation numérique est considérée comme un outil
puissant pour I'analyse de ces problémes. Les problemes d'interaction sol-eau sont de nature
multi-composantes et se caractérisent généralement par des grandes déformations. Les
méthodes numériques utilisant le maillage (éléments nis, volumes nis ou différences nies)
sont dif cilement applicables a ces problémes en raison de I'enroulement, de la torsion et de
la distorsion excessifs du maillage qui peuvent se produire.

Une autre méthode numérique dite la méthode Smoothed Particle Hydrodynamics (SPH)
est peut étre utilisée. Cette méthode sans maillage est largement utilisée pour simuler des
problémes a grandes déformation. La méthode SPH a été initialement développé en 1977
pour des applications astrophysiquéslf [ 210. Plus tard, en 1988, elle a été appliquée
a la simulation des écoulements de uid&ifl]. Depuis, la méthode SPH a été largement
utilisée et a connu beaucoup d'améliorations [234].

Dans le contexte de la méthode SPH, quatre approches sont généralement utilisées
dans la littérature pour modéliser les interactions sol-eau. Dans chacune de ces quatre
approches, I'écoulement uide est modélisé en utilisant les équations de Navier-Stokes ou
alternativement les équations d'Euler avec une viscosité arti cielle. La différence entre les
quatre approches repose sur la méthode utilisée pour la modélisation du sol.

Dans la premiére approche, le sol est considéré comme un solide rigide. Ceci est
généralement utilisé lorsque le sol est moins exposé a la déformation, et également lorsque
I'analyse se concentre uniqguement sur le comportement de I'eau résultant du mouvement de



116 SPH : Modeling of water-soil interactions using a multiphase approach

masse du sol. Les vagues impulsives générées par le glissement de terrain est le phénomeéne
le plus modélisé en utilisant cette approche.

La deuxiéme approche est basée sur la modélisation du sol sous forme de uide Newtonien
(le sol est considéré comme un uide a tres haute viscosité) a I'aide des équations de Navier-
Stokes. Cette approche peut donner des résultats acceptables seulement lorsqu'une valeur
précise de viscosité est utilisée pour le sol. Cependant, les résultats donnés par cette
approche ne sont pas trés précis dans certains problemes car aucune propriété physique du
sol n'est introduite dans le modéle. Schwaiger etZt4] ont utilisé cette approche pour
simuler le tsunami causé par glissement de terrain subaérien de 1958 a Lituya Bay (Alaska)
[225].

Dans la troisieme approche, un modele de comportement élasto-plastique est utilisé
pour décrire le sol. Le principal avantage de cette approche, comparée aux approches
précédentes mentionnées ci-dessus, est que les propriétés physiques du sol utilisées dans ce
modéele, comme le coef cient de Poissurie module de Young, la cohésiort, I'angle de
frottement phi, sont réalistes. Cependant, le mouvement des particules de sol et d'eau est
résolu séparément en utilisant différents modéles SPH (modéle de Navier-Stokes pour I'eau
et un modeéle de comportement élasto-plastique pour le sol) qui conduit & un couplage faible
entre le sol et I'eau. Un traitement spécial est nécessaire pour le couplage. Cette approche a
été appliquée a plusieurs problemes géotechniques tels que les vagues d'eau génerées par
un glissement de terrairBpg, des simulations de la fouille par un jet d'eau sur un sol sec
et saturé, et I'érosion local sur des tumulus causée par un débordement d'eau provoqué par
un tsunami [315].

La derniére approche est basée sur l'utilisation d'un modéle de uide non Newtonien.
Le sol est considéré comme une masse rigide au-dessous de certaine contrainte (appelée
contrainte critique de deformatiary). Cette contrainte peut étre une valeur constante égale
a la cohesion du sok(, = c) pour les matériaux non frictionnels (Binghamiens / matériaux
purement cohésifs) ou variable selon la pression, la cohésitri'angle de frottement (
modéle rhéologique dépendant de la pression). Dans ce dernier cas, le sol est modélisé a
I'aide de modéles de rupture plastique tels que les critéeres de Mohr-Couldgwp[[75] ou
Drucker-Prager P3]. Dans cette approche, le sol est considéré comme purement plastique
avec une élasticité négligeable. L'avantage par rapport a tous les modéles précédents est le
couplage fort entre le sol et I'eau, sans aucun traitement spéci que. Dans cette approche, les
eéquations de Navier-Stokes sont utilisées pour les phases de I'eau et du sol. Cette approche
a été utilisée pour simuler de nombreux problémes géotechniques causés par les interactions
sol-eau. Nous recommandons le lecteur a consultdr$2] pour des applications dans le
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contexte de sol non frictionnel ( matériau Binghamien)iétd 299 215 108 331, 345 315
pour les applications qui se basent sur des modeéles rhéologiques dépendant a la pression.
Dans ce travail, un modele SPH faiblement compressible (WCSPH) a été développé pour
traiter des problémes d'écoulement multiphasiques. Le modéle est également capable de
gérer les interactions sol-eau. Ici, le couplage entre le sol et I'eau est réalisé de maniere
forte et naturelle. Nous proposons un nouveau modeéle rhéologique régulier dépendant de la
pression, capable de simuler le comportement du sol (sol purement cohésif et frictionnel) et
de I'eau (ou de tout autre uide Newtonien). Le modele proposé est nommé RBEBMA -
est basé sur une loi de comportement Binghamien plastique régularisée incluant le critére
de rupture de Mohr-Coulomb. Ce modéle dépend d'un paramétre constant pmg)tifjUi
régularise le modele ainsi qu'il permet de contrdler le pas de temps de la simulation.
De plus, nous proposons une version modi ée du terme diffusif arti @&l £PH) in-
troduit dans [LO] dans le contexte d'hypotheses d'écoulement faiblement compressible,
pour atténuer les oscillations numériques a haute fréquence (parasitiques). Cette mod-
i cation (DY MSPH) nous permet d'étendre la formulatidd® SPH & des problémes des
écoulements multiphasiques avec une loi de comportement incluant le critere de rupture de
Mohr-Coulomb.
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The analysis of soil-water interactions plays an important role for the assessment and
mitigation of many environmental and geotechnical problems, such as soil erosion, scouring
around offshore structures, landslide-generated tsunamis and their effect on reservoirs and
adjacent structures ... and so on. Numerical simulation is considered as a powerful tool for
the analysis of these problems. soil-water interaction problems are of a multi-component
nature, and they are generally characterized by large deformations. Mesh-based numerical
methods (Finite element, Finite Volume or Finite Difference ) are hardly applicable in these
problems due to the excessive winding, twisting and distortion of the mesh that may happen.

An alternative numerical method is the Smoothed Particle Hydrodynamics method (SPH).
This meshless method is widely used to deal with the simulation of large deformation
problems. SPH was rst developed in 1977 for astrophysical applicatiotf§ [210. Later,
in 1988 it was applied to the simulation of uid owsfA1]. Since then, the SPH method
was widely used and got lots of improvement [234].

In the context of SPH method, four approaches are generally used in the literature to
model soil-water interactions. In all of these four approaches, the water ow is modeled
using Navier-Stokes equations or, alternatively, Euler equations with an arti cial viscosity.
The difference between the four approaches relies on the method used for soil modeling.

In the rst approach, the soil is considered as a rigid solid. This is used generally when
the soil is less exposed to the deformation, and also when the analysis is focused only on the
water behavior resulting from the soil mass motion. The landslide generated impulsive water
wave is the most modeled phenomenon using this approach [275, 346, 13] .

The second approach is based on the modeling of the soil as a Newtonian uid (the soll
is considered as a uid with a very high viscosity ) using Navier-Stokes equations. This
approach can give acceptable results only when an appropriate Newtonian viscosity is used
for the soil. However, the results given by this approach are not very accurate in some
problems because no physical proprieties of solil is introduced to the model. Schwaiger et
al [294] used this approach to simulate the 1958 subaerial landslide Tsunami at Lituya Bay
(Alaska) [225].

In the third approach, an elasto-plastic constitutive model is used to describe the soil
behavior. The main advantage of this approach, compared with the previous approaches
mentioned above, is that the physical properties of soil used in the model, such as Poisson
coef cient n, Young modulug€, Cohesiorct, angle of frictionf , are realistic. However, the
motion of soil and water particles is solved separately using different SPH models (Navier-
Stokes model for Water and an elasto-plastic constitutive model for soil) which leads to a
weak coupling between the soil and water. A special treatment is needed for the coupling.
This approach was applied on several geotechnical problems such as, the landslides generated
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water wave B0€|, simulations of excavation by a water jet on dry and saturated 4§l [
[344], and local scouring on rubble mound due to tsunami over ow [315].

Finally, the last approach is based on the use of a Non-Newtonian uid model. The soil is
considered as a rigid mass under certain stress (called yield sfjye$hie yield stress can be
a constant value equal to the cohesion of sp# c for non-frictional materials (Bingham/
purely cohesional materials) or it can be variable depending on pressure, cahastangle
of friction (pressure-dependent rheology model). In the latter case, the soil is modeled using
plastic strength models such as Mohr-Coulordb7 [75] or Drucker—Pragerd3] yield
criteria. In this approach, the soil is considered as purely plastic with negligible elasticity.
The advantage compared with all the previous models is the strong coupling between soil
and water, without the need of any special treatment for the coupling. In this approach, the
Navier Stokes equations are used for both water and soil phases. This approach has been
used to simulate many geotechnical problems caused by soil-water interactions. We refer
the reader to]3, 52] for applications in the context of non-frictional soil (Bingham soil)and
to [169 299 215 108, 331, 345 319 for applications of the pressure-dependent rheology
model.

In this work, a weakly compressible smoothed particle hydrodynamics (WCSPH) model
for multiphase problems was developed. The model is also able to deal with soil-water
interactions. Here, the coupling between the soil and water is achieved with a strong and
natural manner. We propose a new regularized pressure-dependent rheology model that is
capable of mimicing the behavior of soil (purely cohesive, and frictional soil) and water
(or any other Newtonian uid). The proposed model, named RBPM(is based on a
Regularized Bingham Plastic constitutive law including Mohr-Coulomb failure criterion.
This model depends on a positive constant paramatgy that regularizes the model and
allows us to obtain greater time steps in the simulation.

Moreover, we propose a modi ed version of the arti cial diffusive ter®f'( SPH) in-
troduced in [LJ] in the context of weakly compressible ow hypothesis, for the mitigation
of spurious numerical high-frequency oscillations. This modi catibd (MSPH) allows us
to extend theédd SPHformulation to multiphase problems with constitutive law including
Mohr-Coulomb failure criterion.

5.1 Governing equations and physical model

In this work, the soil material is assumed to be a uid-like mass. The motion of soil and
uid phases are modeled using Navier-Stokes equations. It is assumed that the uid phase is
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weakly compressible, viscous and ow in isothermal conditions. With this assumptions, the
Navier-Stokes and displacement equations can be written in a Lagrangian framework as

8
dar _ NE
%E— pR:v 1
avo_ 1 Y
=10 Rps K+ 6.
g Ns=N( pl+t)
. %:V

where% represents the Lagrangian derivatiVig.is the nabla operator,; p;v;r andg
represent density, pressure, velocity vector, position vector, and the gravitational acceleration
vector, respectivelys is the Cauchy stress tensor ans known as the deviatoric part of
the Cauchy stress tensor (for any continuum material) or also called the viscous tensor (for
uids).
Under the weakly-compressible hypothesis, an explicit equation of state (EOS) is used to

compute the pressure from the density. In this work we use the isothermal equation of state
proposed in [254]

P=pP 1 (5.2)
ro

wherer g andp, denote the reference density and the reference pressure, respectively. The
reference density is related to the reference speed of spumdthe following equation

pr = I’oC% (5.3)

The reference speed of souggican be determined as [254, 309]
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WhereUg, Lo, mx¢f ands are the reference velocity, reference length, and effective dynamic
viscosity (apparent viscosity), respectively. The tetmrepresent the ratio of density

variation. In this work we set this value to 1%r( = 0:01).

In the case of multiphase uid ows, the reference speeds of sound are chosen to ful |l
the equality of reference pressures for each uid phase

Pr=Pry = 3= Pry, (5.5)
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P =ro,Ch == roNfc%Nf: (5.6)

where the subscriptls denotes the number of uid phases. This condition enhances the
numerical stability of the computations [73].

The hypothesis of non-Newtonian uid8§0, 61] to model the behavior of geomaterials
(soil, land, sediment, ...) is commonly accepted. A non-Newtonian uid can withstand to
deformation and remains rigid until a certain value of shear stress (called the yield stress
(ty)) is reached. When this value is reached, these materials begin to ow.

The Bingham plastic modeBp] is one of the simplest and more commonly used Non-
Newtonian model. In this model, when the yield stress limy {s exceeded, the material
behaves as Newtonian uid. Otherwise, it behaves as a rigid body. The constitutive law for a
Bingham Plastic can be written in tensorial form as

g n . o}
t = H:VTF+ m D ktke ty 5.7)
D= O kt kF < ty

WhereD is the rate of strain tensor amdis the dynamic plastic viscosity which de nes the
viscosity of the uid-like material (soil) after yielding.

The rate of strain tensor is de ned Bs= Nv+( NV)T, whereNv denotes the velocity gradient
tensor, and the superscriptdenotes its transpose tensor.

The notatiork:kg refers to Frobenius norm. In equation (5.7) the yielding criterion of
soil materials is de ned using the Von Mises criteridi2f. Therefore, the quantitideDkg
andkt ke can be expressed as follows

T

kDke= 5D:D (5.8)
1 2

ktke= St:t (5.9)

The discontinuity in the expression of the Bingham Plastic constitutive model (5.7) leads
to considerable numerical dif culties; hence, smooth models are usually preferred and several
different approaches have been used. For instance we cite the exponential 2@6pah{l
the Bercovier and Engelman (BE) model [30].

The Bingham model can be regularized using a control paranepter() for the approx-
imation of the discontinuous model. The resulting model is similar to the one developed in
[30].
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8 9

< t =
t= g—Y——+m D (5.10)

kDkZ + &2

Whene = 0in equation (5.10) wittkDkg 6 0, we return to the original constitutive
model (5.7). For this reason, the parame&temust be chosen suf ciently small to insure the
convergence between the regularized and original Bingham plastic models.

In the framework of Generalized Newtonian Fluids (GNB}[343, the viscous stress
tensort is given by the following constitutive equation:

t = mys(KDkg)D (5.11)

Wherems ¢ is the effective viscosity.
From the equations (5.10) and (5.11) the effective viscosity can be expressed as:

M 1(KDKE) = G —2+ m (5.12)
kDkZ + €2
The choice of a stable simulation time step is related to the maximum value that the
effective viscosity can reach in the rigid part of the material during the simulation period (see
the viscous stability condition in section 5.2.3, equation (5.59)). The direct use of the model
(5.10) or even the exponentid@{( or the BE [30] models can greatly restrict the simulation
time step.

In order to solve this problem, we propose a new regularized constitutive law that allows
previously the choice and the control of the computational time step. Let us suppose that
the maximum effective viscosity presented in the rigid region can be expressed linearly in
terms of the yielding viscosity (plastic viscosity)asmax(nmff) = amm with ay, a positive
constant.

It is obvious that the maximum value ot is reached in the undeformable regions
(kDkg ! 0).Therefore, from equation (5.12) the regularization paranegtef the equation
(5.10) results irg, = (t—y Hence, we get

am 1ym’
8 9
< mam 1t =
t= ¢ m_—7Y +m D (5.13)

mam 1KDke “+t2

In gure 5.1, the regularized Bingham constitutive model (5.13) with different values
of the constanay, = f10;20;100 1000y is plotted and compared with the discontinuous
Bingham plastic model (5.7). We can clearly observe that the proposed regularized Bingham
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plastic model converges to the original discontinuous model (5.7) when the coagtent
suf ciently large.

Figure 5.1 — Proposed Regularized Bingham Plastic Model (RBPM) wih=
f10;20; 100 1000y and original Bingham Plastic Model (BPM) (solid line).

The regularized Bingham plastic model presented in this work (equation (5.13)) can be
considered as the smooth version of the discontinuous bilinear model presented by Hosseini
[145].

5.1.1 Determination of the yield stress

Now, the yield stres, must be determined in order to close the model. At continuum
level, the geomaterials are generally described using pressure-dependent yield criteria where
the Von Mises criterion426 cannot be satisfyingly represented because it does not include
the pressure in its formulation. The Mohr-Coulon®27] [ 75] or the Drucker-Prage9p]
strength criteria are the most widely used for pressure sensitive materials. The difference
between these criteria is that the Drucker-Prager criteria includes all the principal stresses
(Three principal stresses in 3D space and two in 2D space) similarly to Von-Mises criterion,
whereas the Mohr-Coulomb criterion includes only two principal stress (the maximum and
minimum principal stress, similarly to Tresca criterion). Note that Mohr-Coulomb and
Drucker-Prager criteria are identical in a two dimensional space.

The Mohr-Coulomb criterion is based on a linear failure envelope which combines the
normal and shear stresges t ) on the failure plane by the relation

t=c stanf (5.14)
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Wherec andf denote the cohesion and the angle of internal friction ( equivalent to the
repose angle) of the material. Both parameters represent the physical proprieties of materials.

Figure 5.2 — Mohr-Coulomb yield criterionn. The Mohr circle is based on the principal
stresses; ands»,. The onset of yielding is occurring when the Mohr circle is tangent to the
failure envelope.

The materials governed by the Mohr-Coulomb criterion for any given stress state fails
(yields) when the Mohr's circle is tangent to the failure envelope ( gure 5.2). By using
trigonometric relations, an alternative form of the relation in terms of principal stresses can
be expressed as

S1 S2_ Sit
2 2
The second invariank of the deviatoric stress tensor and the hydrostatic pregsure
(negative mean stress) can be expressed in terms of principal stresses in two dimensions
space as

stinf + ccosf (5.15)

1
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The notationtr(A) presents the trace of the square mafix The termss; ands»
denote by convention the biggest and smallest principal stresses of the Cauchy stress tensor



5.1 Governing equations and physical model 125

s (s1> s»2), respectively. Whild; represents its rst invariant that can be written in a
two-dimensional space as

l1=5s1+ 5S> (5.17)

The hydrostatic pressugecan be expressed in terms of the rst invarignor principal
stresses as
_ h S1+S2
P= 2 2
Therefore, the Mohr-Coulomb criterion envelope can also be written in terms of hydro-

static pressure and the second invariad as

(5.18)

pJ_Z: psinf + ccosf (5.19)

As explained previously, the Bingham Plastic material starts to yield under the Von Mises
criterion when
_ P
ktke =" Jo=ty (5.20)
Hence, from the equations (5.20) and (5.19), the yielding stiesfa material which yields
under the Mohr-Coulomb criterion can be expressed as

ty= psinf + ccosf (5.21)

Summarizing the previous developments, in this work the geomaterials have a Bingham
Plastic behavior and yield under the Mohr-Coulomb criterion. This leads to a regularized
constitutive law that we name RBPM&n,

t= g man 1) (psinf + ccosf) +m D (5.22)

m@am 1)kDkg 2+( psinf + ccosf )2

The use of the equation of state to determine the pressure from the density can lead to a
negative pressure. For this reason an alternative positive prégsgire= max 0; pg is used
instead ofp. Thus, the RBPMGx,, model (5.23) reads as
8 9

t= g m@am 1)(f pg+ sinf + ccosf ) +m D (5.23)

m@am 1)kDKe 2+(fpgs sinf + ccosf )2

The present RBPM@y, constitutive law (equation (5.23)) can be specialized to other
rheological models by changing the following parameters:
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— Newtonian uid (water, ...): setc= f = 0) in equation (5.23) and use the Newtonian

dynamic viscosity instead ofy

— Cohesionless or purely frictional materials: set 0 in equation (5.23) ;

— Bingham uid (non-frictional/purely cohesional materials): use the value of yielding

stresdy as material cohesion(ty = c) and set the frictional angle to zerb £ 0).

In this way, only the presented RBP Mg, constitutive model is used to describe all uid
and/or uid-like materials involved in the test cases presented here. Note that the exibility
of our formulation makes very easy its implementation in existing codes.

In some previous worksLp9, 251], the yielding stress of purely frictional materials is
generally taken a5, = ptanf which is equivalent to the presented model for small values of
frictional anglef . However, for greater values bfthis formulation becomes impractical
and can distort the simulation resulsl]. Note that this problem is avoided with the use of
the formulation given by equation (5.23).

The effective viscosity can be expressed in term of pressure, cohesion, and frictional
angle as

mer1(KDke) = g m@am 1)(f pg+ sinf + ccosf ) om (5.24)

m@am 1)kDke 2+(f pgs sinf + ccosf )?

For the simulation of the granular materials the dynamic plastic viscosity can be calculated
using them(l) rheology methodl66 , as it is considered ing4, 159. It is shown in the
work of lonescu et al]59 that the choice of constant value of the plastic viscosity does not
change much the results if it is within the good interval comparing with those obtained from
value of them(1) rheology [L66. In this work the plastic viscosity is chosen to be a constant
value.

In the case of the modeling soil-water interactions ,the plastic viscosity is set equal to the
viscosity of the water [291].

5.2 Discrete form of governing equations

We use as in previous chapter the quintic spline kernel funcfiéfi fo perform the
SPH approximation of physical eld. This kernel function prevents a high disorder in the
particle distribution. The smoothing lengthis chosen constant and relative to the initial
inter-particle distancdxg (h = 1:33dXg) as in previous chapter.

In this work, the discrete form of the continuity equation of system (5.1) is expressed as
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dr o o b mj o
o - ria ViviiNWg = ria r—jVijNV\/lj (5.25)
j j

WhereV, = M is the volume of particlé. The term NW; = IWg: is the gradient of the
ri p J rij J g

lij _ Ti Tj

I’ij - I’ij

kernel function, andj = Is the unit inter-particle vector. The initial particle

volume is taken a¥p = dxod, with d is the space dimension number. The mass of each
particlei of different uid phases is chosen to be constant and equai $or o, Vo during
all the simulation time.

This formulation is accurate for the case of more than one uid phase and specially with
large density ratios as is reported in [69, 246].

In the context of a weakly compressible ow hypothesis, the determination of the hy-
drostatic pressure via the equation of state can originate numerical artifacts,in the form of
spurious numerical high-frequency oscillations in the pressure eld. This is specially critical
when the Mohr-Coulomb criterion is used. In order to mitigate this, Molteni and Colagrossi
[22€ proposed the addition of an arti cial diffusive termd SPHto the right hand side of
the continuity equation (5.25), resulting in

. Np .
i _ 8 My + Dd SPH (5.26)
dt i I‘j
with
e,
DY SPH=dhicod ijNW,;V (5.27)
j
andYj is de ned as
_ rij
Yij=2ri rj ) (5.28)

Unfortunately, the use dd9 SPH method with equation (5.27)for multiphase uid ows
can generate important numerical issues at the interface between the phases. These issues
are principally caused by the repulsive forces generated by the difference in density between
the phases. In order to alleviate these problems, Fourtakas and Rbg@nsrpposed to use
theDd SPHformulation in the uid phase and sediment phase independently. That is,only
particles belonging to the same uid phase are considered in the computafivh 6f".
However, this strategy does not completely solve the numerical issues, specially in the case
of simulations that present a low motion.
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In this work, we propose a modi ed version of tbe! SPHterm | that is able to deal with
single and multiphase uid applications. The principal idea is to assume that all paiticles
neighbors of the particleare part of the same phaseidthat is, they have the same density
reference ), but they also conserve their original particle density rbtlo— (see gure
5.3). Applying this assumption on the equation (5.28), we get:

ri
YMSPH= 2 b by, g rlzj (5.29)
i
Then, the multiphase diffusive term can be written as

DY MSPH= ( h coa YMSPHNW Vi (5.30)

The value of the dimensionless parameies chosen asd = 0:1). This value is used in
this work for all examples.

Note that the formulation of multiphase diffusive term of equation (5.30) returns the
classical form (equation (5.27)) in single uid phase problems.

Figure 5.3 — The illustration of the hypothesis taken to calculate the diffusive term for
multiphase uid ow (DI MSPH)

Using the modi ed formulation in equation equation (5.26), the value of the density,
and thus of the pressure are signi cantly improved as demonstrated later via the example of
Section 8.1.

The acceleration of the particlielue to the gradient of pressure is approximated following
[2] as
rim

1
= —a V +V2 pleVVu (5.31)
m ]
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The termfyj is de ned to ensure the continuity of pressure even for the case of discontin-
uous density between uid particles (for example, when they belongs to different phases).
Following [150] this term reads as

ripit+ ripj
ri+tr;

pij = (5.32)

Using the same idea for the approximation of the divergence of the viscous tensor
(deviatoric tensor) we obtain

Nt.———a VZ+ V7 R (5.33)
I
j

where the inter-particle viscous tendgris de ned as

(5.34)

The Taylor expansion of any quantifyaround the position; can be expressed as
A(rj) = A(ri)+ NA(r)(rj i)+ O(rf) (5.35)

and ,

NA(r) M(. ri) NA(rj) (5.36)

i]

The rate of strain stress tensor is expressed in terms of the velocity gradient as
Rv+( Kv)T. Using equation (5.36) we conclude that

D(r) D(rj) D (5.37)

Equation (5.33) can be expressed using the equations (5.11) and (5.37) as follows:

- 1 rimees, Dj+rimeesDi .
N tj = _é VJZ | i~ J I NVVIJ
V J ri+tr;
19 o Vil + 1 jMerr, (5:38)
= 8 W+ J D Riw;
|
j

I‘i+l’j
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The term D NW.J- can be simplied as :

D R = (Riv+( Riv) ") Ry
1 - 1 N
2 T e T (5.39)
1

= ) Vij rij NWG +rij vij NW;
]

where denotes the outer product.

Finally, the divergence operator of the viscous tensor reads as

( )
B V2V rimete + 1My

1
\/ 2 . .
V.J- rg ri+r;

Nti:

vij rij NWG +rij v KW (5.40)

This obtained formulation is similar to that presented in [98, 352].

The effective viscosity is calculated using the equation (5.24). Assuming that the velocity
vector in two-dimensional spacevs: [uw]', the Frobenius norm of the rate str&iDkg
can be expressed as

MzJr ﬂ_Wz'Jr fu, ‘ﬂwz
X Ty ‘Hy Ty

i =

KDke = U 2 (5.41)

In this work, the formulation developed by Adami and 3lig adopted to approximate
the space derivative of the velocity components. This formulation achieves a rst order
consistency approximation without the need for matrix inversion operations, contrary to the
alternative version of Randles and Libersky f]. The velocity components derivatives are
expressed in 2D space as

D E ququ™__aPVi(u upRw

Nu = - — =2—"— (5.42)
x Ty AV 19

Rw = wiw = _ ’,E W)W (5.43)
Tx Ty : bVJrIJ'ﬂr

DE
The notation : denotes the rst order consistency approximation of the quahtgy
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5.2.1 Modeling of the water suspended sediment

When water ows at a suf cient large velocity over a surface of sediment bed (soil), the
sediment particles are picked up and transported on the surface, to be deposited again when
the velocity of ow diminishes. This erosion process occurs when the shear stress generated
by the frictional force of water owing over the sediment overcomes the forces acting on the
sediment grains (gravity, pressure, and viscosity forces). The simulation of this suspended
load of sediment bed is not explicitly modeled using our immiscible multiphase SPH model
detailed above. To deal with this problem, a transitional layer between the soil and water
represented as a mixture phase are nested on the soil surface. The particles within this layer
are treated as soil but with an altered mixture viscous proprieties. The easiest way to model
this layer is to consider it as a Newtonian uid. A simple relation is used to calculate the
particle viscosity within the suspended sediment phagg)([123, 299]

n

Nmix = q7r (5.44)
1+ csr—lS

In equation (5.44)n, denotes the kinematic viscosity of the liquid (water) phase, whereas
Cs, I'sandr present the volume fraction of the sediment phase, the density of sediment and
liquid (water), respectively. Therefore, the dynamic viscosity of the mixture can be expressed
as

m (rsc&?+(1 C)l 1)

r (5.45)
r 1+ Gy

Mhix =

The volume fraction of the particle sedimdntvithin the mixture phases can be
estimated as:

AT kW (5.46)
WhereW;; = W(rjj; h) andks denotes the sediment particle indicator
8
< P . . .
0 if jis a particle of the liquid phase
ks = J P quiep (5.47)

- 1 if j is a particle of the sediment phase

Note that the mixture viscositymix given by equation (5.45) is applied on the sediment
particles of the mixture phase (suspended sediment load) when the sediment volumetric
fractioncs < 1. Otherwise, the viscosity of sediment particles is modeling using RBRMC-
rheology explained above.
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5.2.2 Wall boundary conditions

In this work, the rigid wall boundary condition method proposed by Krimi ei@H is used.

This method is presented as the modi ed version of generalized wall boundary condition
method f] to be well adapted with multiphase uid ows. In this method, three layers of
dummy particles must be added in the normal direction to the wall interface (see gure 5.4).
The Free-slip or no-slip wall boundary conditions can be applied using this method. The
free-slip boundary condition is applied by simply omitting the viscous interaction between
the uid particle with the adjacent dummy particles in the calculation of uid viscous forces
(equation (5.33)). In the case of no-slip wall boundary condition, a virtual velogitg
imposed to the wall-dummy particle interacting with the uid particla equation (5.33).

This velocity is de ned as

V= 2Vi Vi (5.48)

wherey; is the prescribed velocity of wall particlendvV; denotes the interpolation of the
smoothed velocity eld of the uid phase to the dummy patrticle position. The tefmefers
to the of neighboring uid particleg of the wall particlei.

Nt
[e]
a viwi
N
I = n¢
o
a W
j

(5.49)

The pressure in the dummy-wall particle is calculated from the neighboring uid pariicles
according to [4]

N N
épj\/\Mj+(9 a\N)é.rerjWNj
Pw= - —— (5.50)

where the terna,, represents a prescribed wall acceleration, if moving walls are present.

This method is based on the uid particle mirror similarity, in other words it assumes that
each uid particleconsidersall their wall-dummy neighbor particles as similar to it in terms
of density, viscosity and volume. Using this approach we need to modify equations (5.31),
and (5.33) as follows
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Figure 5.4 — Geometrical description of different parameters used in the generalized wall
Boundary condition. Figure based on that presented in [4]

Np
1N - 12g MR (5.51)
ri m
Vv
. 1% tere, N -
N t;= \7|é r.2.J Vij rij NW +rij vij NW; (5.52)
I
WhereP |\1/ andr]q;ffijv are de ned as
6. < V2H VP rlrpi'::_rr'jpl if the particlej is a uid particle (5:53)
b Viz(pi + Pj) if the particlej is a wall particle
g V2 V2 rjmszi"'rirrbffj fth t lei | d t I
<+Ve —————1 jfthe particlej is a uid particle
V=, ) ren NRePeTeEl bart (5.54)
. 2Vizmeffi if the particlej is a wall particle

5.2.3 Time integration

In this work a Predictor-Corrector scheme proposed by Krimi et af[is used for time
integration. This scheme uses an explicit Euler method to predict the velacity)and the
position @™ 1) of the particlei.

Subsequently, the predicted velocities and positions are used to compute the nal velocity
atn+ 1 of the particld (vi"* 1), by using an implicit trapezoidal-rule to enhance its accuracy.
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The positionr;"* 1 is advected by the corrected velocit* 1. The density used for the
velocity correction is the one approximated at the time stefginally, the density at time
n+ 1 (r ™) is computed from the predicted particles velocitig® t) and positionse™ 1)
and also the density at previous timér ") using equation (5.26).

The following algorithm summarizes the prediction step.

8 . N
<gMl=yvh+dt G 5.55
S g™l=pnedr 9 (559
and the correction step is summarized as follows
8 n (0] BV' n+1
Surisg et e g
ntl— ..n N+ 1
gr. = ri"+ dty (5.56)

rin+1: rN+ dt riné?b ?—1%&”+1NW(an+1)+ Did MSPH(r n;an+1)
J

The superscripta andn+ 1 refers to the time step, Whereé:g refers to the predicted
n+1
physical parametdr.g. Note that the term % is computed using the predicted velocity

@™ 1 and the density of the previous time steh This scheme is second order accurate as

in[4, 243].
To ensure the stability of the method, the time s (hust be chosen to ful ll, the kinetic,
the body force, and viscous conditions [245] [40]

h
oL
dt 025 kg (5.57)
h 1=2
dt 025 | (5.58)
2 2
dt ", fo (5.59)

Co = c. 9
"maxnessg " amm

In previous works 352, 145 303 259, other authors assign the value@f = 0:1in
order to keep the simulation stable. In the present work, we have used the&yatue:2
, that preserves the stability and accuracy of the simulation when the viscous condition is
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dominated. Thus, the use of the proposed formulation allows us the choia#t dfva times
bigger than in previous SPH formulations.

The choice of the value of the positive constagtdepends on the applied efforts for
each case. We select a valueagf as small as possible keeping the stability.

Note that the use of a very large value of the control paranatdeads to a more
accurate approximation of the rigid part of the soil, which is characterized by a maximum
ViSCOSity Mhax (Mnhax= amm). However, this large value @&, leads to the use of a very
small time step following the condition (5.59). Because of this, a good compromise for the
value ofa, must be found for each problem.

5.3 Conclusion

In this work, a weakly compressible multiphase Smoothed Particle Hydrostatic (SPH)
model was developed in order to simulate soil , water (or any Newtonian uid) and their
interaction problems. A RBPM@r, pressure-sensitive rheology model is proposed to model
Newtonian uids, purely frictional and cohesional (Binghamian) soils at the same time.
Because of the developed rheology model is pressure-sensitive, a multiphase diffusive term
calledD? MSPH s developed in order to damp the pressure oscillations due to the use of
equation of state.






Chapter 6

Validation and application of SPH
multiphase model

Ce chapitre est consacré a la démonstration de la capacité du modéle SPH présenté
dans ce travail pour simuler des écoulements multiphasiques sous l'effet de gravité tout
en négligeant la tension de surface. Les exemples abordés ici sont, I'évolution de deux
phases de uide strati ées et l'instabilité de Rayleigh-Taylor. Le premier exemple n'est
pas seulement fait pour examiner I'effet de stabilisation de la technique d'amortissement
numerique (Damping), mais aussi pour valider les modi cations proposées sur les conditions
aux limites généralisées liées aux parois rigides lorsque les phases de uide se rencontrent a
la paroi. Le second exemple est fait pour comparer les résultats du modéle SPH multiphasique
avec ceux utilisant la méthode Level-SEX§ et d'autres modeles SPHB{, ainsi qu'avec
I'approche analytique présentée daris3[]. A la n, nous présentons I'exemple de deux
bulles montantes a travers une colonne d'eau en utilisant une résolution de particules plus
élevée par rapport aux exemples précédents.
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This chapter is devoted to demonstrating the ability of the presented SPH model for
the simulation of multiphase ows under gravity effects neglecting surface tension. The
examples addressed here are the evolution of the two-phase strati ed uid layers and the
Rayleigh-Taylor instability (RTI). The rst example is not only performed to examine the
stabilization effect of the damping technique but also to validate the proposed modi cations
on generalized wall boundary conditions when the two uid phases meet the solid boundaries.
The second example, is done to compare the results of the presented SPH multiphase model
with the ones using Level-Set?8 and other SPHZ38 models, and also with the analytical
approach presented i6§7]. Finally, we present the example of two rising bubbles through a
water column using a higher patrticle resolution than in the previous examples.

6.1 Vertical uid column: Hydrostatic pressure condition

In this test, we set three con gurations of two strati ed uid layers which have the same
dimensions[0;L] [0;2L] (see gure 6.1) with different density ratig = 1; {2 = 2and? =

4[190. Each test case is investigated using three different particle resolfi2dns49; 49
99,99 199. The subscripts 1 and 2 denote the upper and the lower uids, respectively.

Figure 6.1 — Geometrical details of the initial con guration of vertical uid column: The
gure on the left describes the setup of the problem for the hydrostatic pressure condition.
On the right, we show the initial state for the Rayleigh—Taylor instability test.

The half-length of the column is chosenlas 1 [m], the interface between two uids is
located at the middle of the column (at height equals)torhe initial particle distribution is

a regular lattice for each of the three resolutions considered. The density of the lighter uid
isrq= 1[kg=m®] . The dynamic viscosity is chosen constantas m = 0:1 [Pasg] for all
phases in all the con gurations. The vertical uid column is assumed to be under the action
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of an unit gravity g = (0; 1) [m=s?]) . The reference speeds of sound are chosen according
to the condition discussed in Section 4.1.2, resulting in the valueg ef 10 [m=s] for all
con gurations ancdcgo = f20;14:142,10g [m=s] for the con gurations oﬂ—i =1 :—i = 2and

{—'j = 4, respectively. The background pressure is chosemgas 0:05p; = 5[Pa]). The
no-slip boundary condition is applied at all boundaries.

In order to show the ef ciency of the damping technique to reach quickly the equilibrium
state, the three con gurations are tested with and without the damping technique for the
coarsest particle resolutid® 49. The value of the damping period is chosegs 1]

Figure 6.2 shows the effect of the damping technique on the simulation results for the pressure
for the three con gurations. We can see clearly that using the damping technique leads to
lower amplitude of the pressure oscillations and to a faster convergence to the stabilized
hydrostatic value. It is also observed that for the highest density ratio, the pressure has an
important amplitude of oscillation.In this case, using the damping technique reduces the
amplitude of the oscillations, but they are still important. This is principally due to the change
of the physical parameters of the lighter uid after the damping time. This change creates the
jump in density, viscosity and mass and thus the pressure. Despite that, it converges faster
and presents less oscillations than in the case of the simulation without using of the damping
technique. A remedy to further reduce the oscillations is to increase the dampingime (

In the case of unit density ratio the oscillations of the pressure are very limited and reachs
the stabilized value of the hydrostatic pressure very quickly.

After the stabilization of the pressure eld using the damping technique, we compare the
obtained pressure pro les using the present SPH model with the analytical ones for different
density ratios and different particle resolutions (see gure 6.3). The numerical results agree
well with the analytical ones.

In gure 6.4, we show the particle distribution and hydrostatic pressure at equilibrium for the
three particle resolutions for tf{éﬁ = 4 case. Pressure isolines are plotted in order to check
the hydrostatic pressure levels obtained with the tree different resolutions. It is observed
that the same pressure levels are reached for all the particle resolutions. This indicates the
convergence of the presented numerical model for the simulation of gravitational multiphase
uid ows. Note that the background pressum = 5 [P4] is included in the range of
computed pressure variation.

From the results presented in gures 6.3 and 6.4 we can also conclude that the proposed
modi cations to the generalized wall boundary conditions methyddee section 4.1.3)
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Figure 6.2 — Time-evolution of pressure at the pghb; 0:5) (upper curves) an(D:5; 1:5)

(lower curves) with (Dotted line with small circle) and without (dotted line with small square)

the damping technique. The solid lines represent the stabilized pressure, and the dashed line
presents the background pressure.

give good results. In order to perform an additional analysis of the ef ciency of this method,
the same example was investigated under high density and viscosity ratios. The density
ratio was chosen to be eqq;sgl = 100, with r , = 100kg=m3] andr 1 = 1[kg=m°]. While the
viscosity ratio is taken a% = 10, with m = 0:0Pas] andm = 0:1[Pas]. The reference
speed of sound of the uid phasgis set tocg, = 10[m=s] andcp, = 100ns] for the

phasel that give a reference pressuregf= 10*[Pa]. The background pressure is taken as

pp = 0:05p, = 50(JPa]. The simulation was performed usid§ 99 particles, a damping
period of Tp = 1[s] and no-slip condition is applied on all wall boundaries.

After the damping periodTp = 1[g]) the hydrostatic pressure eld oscillates until it
reaches the stabilized values at tibne 18] as it is shown in the gure 6.5. When the
pressure eld stabilizes, we perform a comparison between the numerical and analytical
hydrostatic pressure pro les taken from the centerline of the vertical uid column. The
results are shown in gure 6.6. A very satisfactory agreement is observed between the
pressure results obtained with the present approach and analytical results. Figure 6.7 shows
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(a) (b)

(0) (d)

Figure 6.3 — Hydrostatic pressure variatibp= p pmin for the three different density
ratios:—i. Below, we plot a zoom of the selected zoijas(b) (c) (d).

the vertical uid column particles distribution at stabilized state. The uid particles are
colored with phases (gray for the ui2land black for the uidl) in order to show that the
interface between the two uid phases that meet the vertical wall boundaries is stable. As it
is shown in the center of the gure 6.7, there are spurious currents which present a maximum
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24 49 49 99 99 199

Figure 6.4 — The uid column particles colored with normalized hydrostatic pressure for
the density ratic{—1 = 4 with the three particle resolutiorZl 49 (left), 49 99 (center),

99 199 (right). It is also shown the pressure isolines in the rang¢o38[Pa).

Figure 6.5 — Time-evolution of pressure at the pdn®; 0:5) (upper curves) an(D:5; 1:5)
(lower curves) after the damping period for the for the density and viscosity rat{éisoiloo

and2 = 10. The solid lines represent the stabilized pressure, and the dashed line presents
the background pressure.

velocity magnitude of orde®(10 3). A smooth hydrostatic pressure eld is observed via
the right side of gure 6.7.
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(a) (b)

Figure 6.6 — Hydrostatic pressure variatidp= p pmin for the density and viscosity ratios
of :—i = 100 and% = 10. On the right we plot a zoom of the selected zone.

Figure 6.7 — The uid column particles for the density and viscosity ratio{sfof 100and

™ = 10. The left gure represents the uid particles colored with phase color (gray color for
uid 2, black color for uid 1). The gure of the center show the velocity magnitude of every
uid particle. The right gure represents the uid and wall particles colored with hydrostatic

pressure led.

6.2 Rayleigh—Taylor instability

The Rayleigh-Taylor instability (RTI) is a widely used benchmdai®, [L50, 128 23§ to

test the accuracy of numerical methods for multiphase gravity ows. The Rayleigh—Taylor
instability, occurs at an interface between two uids of different densities when the lighter
uid pushes the heavier uid. This phenomenon occurs in a multitude of physical (salt domes,
weather inversions, etc) and industrial applications.
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In this work a Rayleigh-Taylor with sinusoidal asymmetric interface perturbation is studied.
The computational domain [§;L] [0;2L] with L = 1 [m]. The computational domain is
divided in two sub-domains by a sinusoidal interfgf® = 1 0:15sin(2px) (see gure

6.1). The lower sub-domain is occupied by the lighter uid (referred as phpasdich

has a density; = 1 [kg=m®], while the upper sub-domain is occupied by the heavier uid
(referlaadﬁphaéé with densityr , = 1:8 [kg=m?]. The Reynolds number is de ned here as
Re = kgk"3, and a value oRe = 420is chosen. In the previous de nitiokgk = 1[m=s?]

is the modulus of the gravity acceleration vector, arel n; = ny, = 0:0024[m?=g] is the

kinematic viscosity which is chosen to be equal and constant for both uids phases.

The particles have an initial regular lattice distribution. The RTI test is solved with three
different particles resolutiofs49 99,99 199133 267g. The reference speeds of sound
are taken a$cp1;coog = f13:41;10g [m=g], for the lighter and heavier uids, respectively.
The reference pressure is chosen equél[tes). The no-slip boundary condition is applied
on all solid boundaries.

In gure 6.8 we compare three different particle resolutions at three different timek|g],

t= 3[9,t= 5[g . Quantitatively, it's shown that the three particle resolutions are able to
simulate substantially the same phenomena of RTI. Nevertheless, at the low restfutidf

the roll-up of the small structures at the mushroom-shaped head are not well reproduced. For
the ner resolutions, all the small structure phenomena due to the development and roll-up of
the mushroom-shaped heads are captured. The two ner resolu@i®nsli®@9and150 300

) are very similar to each other in terms of the shape of the instability.

We also performed a comparison between the RTI interfaces reproduced with the proposed
SPH model and two different numerical methods. In gure 6.9, we compare the results at
timet = 5 [g] with the resolution ofl50 300 particles with those of a Level-set method
[128 and another SPH modetBg. There are some differences between the SPH method
[238 and the method presented here. For instanc¥d[a Wendland kernel function

[347] and time-integration of continuity equation for the density are used instead of the
quintic spline kernel 4.7 and summation-based density 4.8 used in the presented SPH method,
respectively. The present SPH model can reproduce the RTI interface in good agreement
with the other numerical models which have more resolution (Level-Set: a gBtidf 624

cells, and SPH modelBg:150 300particles). Globally, the RTI interface reproduced with

the proposed SPH approach is closer to that reproduced with the SPH mao#@fofThis

is probably due to the same nature of both models. We note, however that in some places
the interface with the proposed SPH method is closer to that obtained by the Level-set one
[12§. These results are only of a qualitative nature. Monaghan e6&] prefer to examine
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49 99

99 199

150 300

Figure 6.8 — Rayleigh—Taylor instability at three different times 1 [g] (left column),

t = 3 [g] (center column)t = 5 [g] (right column) after the damping period, and three
different resolutions49 99 particles (top),99 199 particles (middle) and50 300
particles (bottom).

the convergence by comparing the time evolution of the position of theoordinate of the
highest particle of the lighter uid (phasB with that obtained from the Layzer's theory
[187, 83]. Thus, the highest point of the pha%euid for the three particle resolutions
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f49 9999 199150 30Qyis plotted in gure 6.10 together with the curve obtained
using the Layzer's theory. The results are in good agreement with the Layzer theory. Note
that the the Layzer theory is for a periodic domain, while the results are obtained from the
simulation in a rectangular rigid domain with no-slip boundaries. This fact may explain some
of the deviations of the numerical results from the theoretical line.

Figure 6.9 — Comparison between the uid interfaces of the present work and the references.
The left gure compares the uid interface of present SPH model with that of SPH model
developed by Monaghan et &38.The right gure compares the uid interface of the
present SPH method with that of Level-Set method [128].

6.3 Interaction of two rising bubbles through a uid col-
umn

In this last test case we solve a case based on the one preserited.imfyvo bubbles are
initially set close to each other and rise through a uid column. The upper bubble is larger
than the lower one. The smaller bubble has a raRias0:1 [m]. The geometrical setup of
the problem is based on the radius of the smaller bubble and is detailed in gure 6.11. The
physical parameters for the setup of this problem are given in Table 6.1 , respectively.

We use here a discretization of 50050 patrticles.
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Figure 6.10 — Time-evolution for the highest poil,§,) of the lighter uid. Dotted line
with small open triangles shows the results for the simulation @8th 199 particles, the
small open square fa¥9 99 particles and the small open circles idd0 300 particles.
Layzer's theory curve is represented by the continuous solid line.

r1fkg=ne] | ro[kg=m’] | m [Pas] | mp[Pas] [ s [N=m] | kgk [7=s"] | Re | Eo
1000 100 0.156 | 0.078 0 29 | 1794] ¥

N33

Table 6.1 — Setup for the interaction of two rising bubbles through a uid column test case.
2
With Reynolds numbeRe = % and E6tvdos numbe, = rl‘;—°L°

The reference speeds of sourid; Coog = f9:32,29;47g [m=s] are chosen for uid water
column and the uid of the two bubbles, respectively. The simulation is damped for a period
of Tp = 0:25[g]. Left and right boundaries are set as free-Slip boundaries, whereas no-slip
boundary conditions are set at top and bottom boundaries. The results for pressure variation
Dp: P Pmin, Velocity magnitude of the uid column and of the bubble are presented in
gures 6.12 and 6.13.

During the evolution process of the two rising bubbles, the upper bubble covers the lower
one. This generates more efforts over the lower bubble. Due to this forces, the lower bubble
deforms. This deformation generates two uid ejections that go thinner as the rising process
continues. Finally, the two bubbles merge but this state is not stable and they split in two

parts.

6.4 Conclusion

The accuracy, stability and applicability of the proposed SPH model to deal with gravita-
tional multiphase uid problems were shown. Using the proposed damping technique leads



148 Validation and application of SPH multiphase model

Figure 6.11 — Interaction of two rising bubbles through a uid column: Geometrical setup.

to lower amplitude of the pressure oscillations. The modi cations brought in this work to
the generalized wall boundary conditior$ for the multiphase applications is shown its
ef ciency to simulate gravitational multiphase uid ow with high density ratio.
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Figure 6.12 — Interaction of two rising bubbles through a uid column First and second
images columns represent the pressure and magnitude velocity, respectively. The third
column presents the magnitude velocity with particle direction vector of isolated bubble. The
simulations are presented in order at the timmed 0; 0:25; 0:5g [S].
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Figure 6.13 — Two rising bubbles through a uid column. First and second images columns
represent the pressure and magnitude velocity, respectively. The third column presents the
magnitude velocity with particle direction vector of isolated bubble. The simulations are
presented in order at the times f0:75;1g[9].



Chapter 7

Validation and application of SPH
Interfacial multiphase model

Ce chapitre est dédié a I'étude de la consistance et la convergence de la formulation
non-conservatrice de la force de tension de surface proposée dans ce travail, dans le cas
d'écoulement diphasique (deux phases) et triphasique (trois phases) avec présence de points
de jonction triple. Ceci est fait par le bais da la comparaison avec des solutions analytiques
disponibles. Les exemples abordés dans cette catégorie sont, la déformation d'une gouttelette
carrée [2], I'étalement d'une goute placée entre deux couches de uide strati 865[[193,
et le test d'onde capillaire-visqueus2d4, 151, 150, 149, 2]. Par la suite, nous examinons
I'effet des rapports de densité et de viscosité élevés. La montée d'une bulle d'air a travers
une colonne d'eau de'un seul uide et de deux couches de uide strati ées est étudiée. Les
résultats sont comparés a ceux obtenus avec d'autres méthodes numériques (Volume-Of-Fluid
[155], Level-Set [318]) et aussi avec des résultats expérimentaux [37].
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This chapter is dedicated to investigating the consistency and the convergence of the
non-conservative formulation for the surface tension force proposed in this work, for the case
of two and three phase ows with presence of triple junction points. This is done through the
comparison with available analytical solutions. The examples addressed in this category are
the square droplet deformatio# [the spreading lens between two strati ed uid laye&9]

[193, and the capillary-viscous wave te&4, 151, 150 149 2]. Thereafter, we introduce

high density and viscosity ratios effects. The rising of an air bubble trough a water column
and through two strati ed uid layers are investigated. The results obtained with the new
method are compared to those obtained with other numerical methods (Volume-Of-Fluid
[155], Level-Set [318]) and also with experimental results [37].

The simulations of the bubble rising behavior can be characterized by the Reynolds and
the E6tvos dimensionless numbet$$ and also the density and viscosity ra(i%; %).
The Reynolds numbd® gives the ratio of inertial to viscous effects and is expressed as

rVele.
Re = m (7.2)
While the E6tvGs numbet, compares buoyancy effects to capillary ones :
£, = Mvele, (7.2)
S
The subscriptd and2 refer to the heavier and lighter uid, respectively. The characteristic
velocity is de ned asv\; = 2Rkgk andL. = 2R refers to the characteristic lengtR.is

initial radius of the bubble ankigk is the magnitude of the gravity acceleration vector.

7.1 Square droplet deformation

In this rst test case, the SPH method with CSS model of the surface tension force is applied
to the simulation of the deformation of a square droplet under the action of the surface tension
force. This example has already been investigated by Adami &t asjng a SPH method

with CSF model. The square droplet is de ned by an edge lehgth0:6 [m] units. Itis
placed on the center of an square box with sides 1 [m]. The uid within the square
droplet is referred as phagevhereas the uid outside the droplet is referred as plzasee

fgure 7.1). The densities of the each uid phases are chosenag » = 1 [Kg=m®] and

the dynamic viscosity is taken ag = np = 0:2 [Pa:s]. The surface tension coef cient is

sl 2= 1[N=m].



7.1 Square droplet deformation 153

Dimensions Initial state Equilibrium state

Figure 7.1 — The evolution of square droplet under the surface tension effort : The left
gure describes the geometrical details. The middle gure shows the initial uid particles
at ¢ = 0[g]) for the particle resolutioé%. The right gure describes droplet in equilibrium

state after its evolution for the particle resolutiﬁp

We investigate the evolution of the square droplet deformation using three different number
of particles: %, &5 and 15, The smoothing length is chosen equahte 1:33dx,. The
reference speed of sound is setdg£ 10[m=g]) for all resolutions. A positive background
pressure is taken apd= 5[Pa]). A non-slip boundary condition is applied on all sides of

the square box.

The evolution of the kinetic energy of the particles inside the droﬁhet:(%é_ midkvidk2

whereiq refers to the droplet particles) is plotted in gure 7.2. The deformatli((j)n of the square
droplet starts at the corners because of a local high surface tension due to the high curvature
at corners. This effect is re ected by the peak in the kinetic energy which evolves until the
stabilization in a value close to zero for all resolutions.

Figure 7.2 — Time evolution of droplet kinetic energy for particle resolut@%% and 1'—30.

At the stabilized state (equilibrium state) the particles are at rest, and the square droplet is
totally transformed in a circular droplet. Under the uid incompressibility hypothesis, both
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phases must conserve their volumes (areas in 2D) during all the evolution process. Thus,
the equalitypR? = I(2j holds for for the square droplet, and therefore the equilibrium radius
iSR= d% 0:338[m|. From Laplace's law, the pressure of the uid particles inside the
droplet (phasd) must be higher than that of the surrounding particles (pBasand the

jump of pressure between the two phases must satisfy the condition

sl 2

Dp= =~ 2954[Pd] (7.3)

Figure 7.3 — Surface tension forces orientation (on the left) and magnitude of the velocity
(on the right) of droplet at equilibrium state for the particle resoluﬁ%).n

The surface tension forces orientation and the magnitude of the velocity are shown in
gure 7.3. We observe that the surface tension force has a radial direction, oriented towards
the center of droplet. This orientation corresponds to the direction of normal vectors to the
interface between the uid phases (see the left side of the gure 7.3 ). On the right side of the
gure 7.3 the magnitude velocity of every patrticle is represented. The velocity magnitude
is in the order of0(10 ®). When forces due to this spurious effect are comparable to other
physical forces such as viscous, gravitational, and surface tension forces, errors will be
greater.

In gure 7.4 we show the cut of pressure elddt= 0 (X-axis) obtained in the simulations
and also the analytical pressure predicted by Laplace's law. It is observed a good agreement
between the numerical results and the theoretical pressure. These results show that the SPH
method with the CSS non-conservative surface tension model is able to represent correctly
the equilibrium state of this two phase ow problem.

When a low viscosity ofn = mp = 0:00Pas] is used (small viscous forces) to simulate
the square droplet deformation test case, the pressure pro le at the equilibrium state is less



7.1 Square droplet deformation 155

Figure 7.4 — Square droplet test case.The left gure plots the normalized preﬁ?b%eg(
at the nal stabilized state. The gure on the right plots a cut of the pressure eftd=a0
obtained by the numerical method and the theoretical solution for different particle resolutions

s s Is
180 80 andz-

accurate. This is because in this case viscosity forces are comparable with the forces due
to the parasitic currents (see gures 7.5 and 7.6). Note however that the circular shape
of droplet is well approximated. Parasitic currents are a numerical artifact suffered for
numerical approaches of the surface tension based on the use of CSF or CSS formulations.
The elimination of this effect is not addressed here. For more details about parasitic currents
artifact and their elimination, please refer to [271, 330, 162].

Figure 7.5 — Square droplet test case using low viscosky=(m = 0:001Pa:s]) for the
particle resolution o% . Particles colored with uid phases (left). Magnitude velocity eld

(right).

Three density ratio% = f1,10;100Qy are investigated in order to show the in uence
of the variation of density ratios on the obtained pressure results. In gure 7.7, the pressure
pro les atY = 0 are plotted for three selected density ratios. Despite the obtained results of
pressure are not as accurate as for the case of densitﬁra-’ci(l, we observe relatively a
good agreement with the analytical solution for the density ratidéi of 10andt2 = 100Q

r
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Figure 7.6 — A cut of the pressure eld #t= 0 obtained by the theoretical solution and the
numerical method and numerical method with viscosity np = 0:2[Pa:s] (dotted line with
small circles) andn = m = 0:001Pa:s] (dotted line with small triangles) for the particle
resolution ofg.

Figure 7.7 — A cut of the pressure eld #t= 0 obtained by the theoretical solution and
the numerical method and numerical method with viscasity mp = 0:2[Pa:s] and three
density ratios[—1 = f1;10; 1000y for the particle resolution og%.

7.2 Spreading lens between two strati ed layers

This example aims to test if the presented SPH model can deal with triple junction points
problems [93. Thus, the classical test of the spreading of a lens between two strati ed
uid layers is investigated. A circular lens of radi%s[m] is placed at the center of a square
box with length sidesl§ = 1 [m]). The square box contains two different uid phases in an
strati ed arrangement. These uid phases are respectively referred as uid phgtdes
phase at the top of the strati cation) a@dthe phase at the lower part of the strati cation
arrangement) whereas the lens is referred as pha3ae to the effect of the surface tension,
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the lens evolves until an equilibrium state (see gure 7.8). The contact angles at the triple
junction point follows the Young's relation

sings _ singz _ sings
s23 g13 gl2 (7.4)

Figure 7.8 — Schematical representation of contact angles at a triple junction point.

Fluid densities are set asy(= r, = r3= 1[Kg=m?]) for the three uid phases. The dynamic
viscosities are identical for the three uid phasas € m = ny = 0:5[Pass]). The interfacial
surface tension applied on all uids interfacesss'(2= s? 3= s! 3= 5[N=m]), in order

to obtain a symmetric lens. The analytic solution is obtained from Laplace's law and Young's
relation. The theoretical value of the pressure jump between phagess (Obtained in 2D

case from equation (7.5). The shape of the half lens ( symmetric with respectXattis)

at equilibrium state is assumed to be a circular segment with following parameters (see gure
7.8): The distance between the two triple junction poif}s the contact angles of th&

phase ¢;), the sagitta (the distance from the center of the arc to the center of its base) of the
segment®), the radius of the curvature of the interface between the phasetj (R;j) (in

gure 7.8, we represent the curvature between the upper uid of the strati cafipar{d the

uid of the lens (3) ).

sl |

Rij
At the equilibrium state the lens ar@athe distance between triple junction poisand the
contact angles; can be expressed follows the relation [173]

Dp=pi pj= (7.5)
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g= L AP ) sin((p qu) 2p d2) sin((p d2))

0:4617
BA SiP(p ) SiP(p ) m]

(7.6)

Note that in this test case, the surface tension coef cients are taken identical. Then, the
Young's relation (equation (7.4)) reads@s= 02 = g3 = %

Geometrical consideration leads to the following results

Re1= Rp= —0—  0:2665[n] 7.7)
2sin%
8= Ry 1 cosq—23 0:1333[n] (7.8)

All the particles are initially at rest. The no-slip boundary condition is applied on the upper
and lower boundaries. On the left and right boundaries a periodic boundary condition is
applied. The reference speed of sound and the background pressure are takgr as ((
55[mes]) andp, = 150[Pd)]) ).

The time evolution of kinetic energy for three different resolutiéﬁsé—% andl'—gO is plotted in

the gure 7.9. The kinetic energy converges to approximate zero and reaches the equilibrium
state. As it is observed, the magnitude of the velocity decreases considerably (order of
O(10 2); see gure 7.10) at later time for the three particle resolutions. This indicates that
the parasitic currents do not create a serious effect on the obtained results.

Figure 7.9 — Spreading lens between two strati ed layers: Time-evolution of kinetic energy
for three different particle resolutions.
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Figure 7.10 shows the pressure eld, the particle distribution of three phases strati cation
arrangement and magnitude of velocity led at the equilibrium state. The initial circular
shape of the lens evolved to an elliptical shape at the equilibrium state. The pressure jump
pro le along X = 0 andY = 0 lines are plotted with the analytical solution obtained from
equation (7.5), which giveBp= p3 p1= p3 p2 187591[Pa)l. Quantitatively a good
agreement between the numerical solution and analytical one is observed for both pressure
pro les (along theX = 0 andY = 0 lines). A pressure instability appears near the triple
junctions points (following th&X axis) for both resolutions (see gure 7.11). This instability

tend to disappear with increasing of resolution ( The instability in low resolution is more
marked than in higher one). Note that for a higher particle resolution, the SPH numerical
solution becomes closer to the analytical one in terms of pressure and geometrical details of
lens which guarantees thereafter the convergence of the proposed SPH interfacial multiphase
model to deal with a triple junction points problems.

Figure 7.10 — Spreading lens between two strati ed layers: pressure eld (left), particle
distribution of three-phases strati cation arrangement (middle) and magnitude velocity led

(right).

Figure 7.11 — Spreading lens between two strati ed layers: pressure jump pro le along
Y = 0 (left) andX = 0 (right) lines.

The wettability of a uid phase in contact with other two phases can occur either partially
or totally, depending on the surface tensions between the three uid interfaces. The degree
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of wettability can be determined by the spreading parantgi¢B49. If the spreading
parameter is positive the uid of this phase will spread completely on the interface between
the other phases (total spreading). Here, in order to check if the proposed method reproduces
accurately this phenomenon, we consider two different con gurations following the work
presented in [39].

We de ne the spreading parameter for the leSg;,X and the upper uid §,,) phases as
follows

Sp=st? (st3+s279 (7.9)

Sp=523% (st ?+st? (7.10)

The rst con guration of the problem is de ned by choosing the values of interfacial surface

tensionsass? ;s 352 3 =3;1;1g [N=m] (Sp, = 1 [N=m] > 0). This choice leads

to the total spreading of the lens phase 3 on the interface phases 1-2

For the second con guration, the values of interfacial surface tensions are chosen as
st 2,513,523 =11;1,3g [N=m] (S, = 1 [N=m] > 0). This choice leads to the total

spreading of the upper uid phase 1 on the interface phases 2-3.

In gure 7.12 we show the evolution of the spreading until the equilibrium state is reached

for the two con gurations considered. In both cases, the triple points disappear and the

equilibrium interfaces are plane in the rst case and spherical in the second simulation case.
The results obtained are in agreement with those obtained in [39].

(@)

(b)

Figure 7.12 — Total spreading evolution of the uid lens for the con gurations : a)
sl 2513523 =f3:1:1g[N=mlandb) st %;s! 352 3 =f1:1;:3g [N=m.
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7.3 Capillary-viscous wave

In this example, the dynamic test case involving a liquid-droplet oscillation in a liquid
phase under the action of capillary forces is investigated. This test was already simulated
in the SPH framework in several works such 254 151, 150, 149, 2]. The liquid-droplet
(referenced with @ subscript) has a radius &= 0:1879m] and is surrounded with another
liquid phase (referenced withlasubscript). Both uids are placed at the center of a square
box of sizeLx = Ly = 1[m]. The densities and dynamic viscosities of the droplet and its
surrounding uid are considered the same and equalits r; = 1[Kg=m®], my= m =
0:09Pasg], respectively. The surface tension coef cient between the two phases is set as unity
(s9 "= 1[N=m)]). A divergence-free initial velocity eld is assigned to all uid particles and
it reads as

2
X r
Vw=Vo— 1 ¥ e o (7.11)
o Ior
2
y X T
W= Vpog— 1 — e 7.12
y 0 o lorl ( )

Wherer denotes the distance between the particle posftipy) and the droplet center.
Termsvg andrg are the characteristic velocity and distance, and are takejFad O{m=s] and
ro= 0:09[m]. We study the convergence properties using three different number of particles
900 360Q 14400particles. The reference speed of sound is chosen eqo@ktd 0 [m=s] for
both uid phases under all resolutions. A positive background pressure is g& asy([Pal).
A no-slip boundary condition is applied on the square box sides.

Figure 7.13 shows droplet particles positions atf 0:0; 0:08; 0:16; 0:26g[s], under the
resolution of 14400 particles ( about the same resolution used by Morriszi4l)[ A good
agreement is observed comparing with Morris et&lf and also with Adami et al results
(see gure 6 in P54 ). Comparing these results with those @b, it is observed that the
present SPH model provides a more regular particle distribution and an smoother interface,
with the consideration that the initial distribution of the particles are different.

Figure 7.14 shows the time evolution of the center of mass position of the upper right-
guarter section of the droplet with different resolutions. It is observed that with increasing
resolution the difference in results becomes less signi cant (the results with resol3@60s
and 14400 particles are very close comparing with the lowest resolution of 900 particles).



162 Validation and application of SPH interfacial multiphase model

t= 0:0[g t = 0:08[g]

t= 0:16[9 t = 0:26[9
Figure 7.13 — Droplet oscillation : droplet particle positions atf 0:0; 0:08; 0:16; 0:269[s].

Figure 7.14 — Convergence test of droplet oscillation: Center of mass position of the upper
right-quarter section of the droplet.
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7.4 Single bubble rising through a vertical column of wa-
ter

The purpose of this test is to show the ef ciency of the present SPH model to simulate a two
phase interfacial uid ow with low and high density ratios. These tests are taken from the
work of Hysing et al L55. A single bubble rising in a vertical column due to gravity effect.
The initial bubble position and dimensions of the vertical column are described related to the
bubble radiu®k (see gure 7.15). The physical variables and parameters are summarized at
Table 7.1 as Case 1.

Figure 7.15 — Single bubble rising through a vertical column of water. Geometrical details of
the initial setup. On the left it is schematically described the low-density ratio con guration
(Case 1)[59 (R= 0:25[m]) and on the right it is described the setup for the high-density
ratio con guration (Case 2) [317R= 0:025[m]).

This test is done with two different particle resolutidd® 133and133 267. The damping
technique is applied here wifliy = 1. The reference speeds of sound for the two phases are
set tof g, ; Co,0 = f5:7;18g [m~s]. No-slip boundary conditions are applied on the upper and
lower solid boundaries, while free-slip boundary conditions are applied on the left and right
boundaries.

The position of the gravity cent&G, of the bubble and its vertical velocitic are computed
as follows

2 iNpy,.
GG, = a:\l yi. (7.13)
b

(7.14)
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Ny denotes the number of particles in the bubble, ansltheY coordinate of the particle
i which belongs to the particle set of the bubble. The tegnadenotes the vertical component
of the velocity of the particle.

In gure 7.16 we compare our results for the time evolution of the vertical position of the
gravity center of the rising bubble and its vertical velocity with the ones obtaineidbbj [
using the VOF method. Basically, a good agreement is found between our SPH numerical
results and those of referencsp, even tough a slight difference for the position of the
gravity center is detected, and some oscillations are observed around the VOF velocity curve.
However, the overall SPH results are in good agreement with the reference ones.

In gure 7.17, we also compare the shape and position of the bubble interfaces at time
t = 3[s]. We observe a perfect agreement in this case.

Figure 7.16 — Single bubble rising through a vertical column of water. Case 1: Time evolution
of the position of the gravity center (left) and vertical velocity (right) of the rising bubble for
different number of particles. The solid line represents the results obtained by VOF method
[156].

Figure 7.18 shows the pressure and the magnitude velocity of the water column for two
different particle resolutions at two different times 1 [s] andt = 2 [s]. Moreover, in gure
7.19 we show the direction of the velocity vector of the particles inside the bubble for the
previous two resolutions at tinte= 1 [s]. The results obtained for both particle resolutions
are very similar, indicating the convergence of the numerical model.

Now we address the same case with a higher density ratig 3, 12§. In this case,
during the rising motion, the bubble undergoes a large deformation that subsequently splits it
into three parts. The initial setup is presented in gure 6.1 and the physical variables and
parameters for this test case are summarized at Table 7.1 as the Case 2.
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Figure 7.17 — Single bubble rising through a vertical column of water. Case 1. Comparison
between the bubble interfaces at titnre 3[s]: 66 133SPH (Small triangles133 267

SPH (Small circles). Dashed line represent the interface obtained with the VOF method
[155].

In this test we use a discretization240 400 particles. The reference speeds of sound
aref cg,;Co,g= f7,221:35g [mFs]. The damping technique is used here witp € 0:05[g]).
The boundary conditions are the same than for Case 1 of this section.

Figure 7.20 shows the velocity and relative pressfmer( P Pmin) Of the column of water

at the dimensionless tinte kgk=R= 3:6. The bubble is strongly deformed and it is split

in three parts during its evolution. The evolution of the bubble is presented in gure 7.21
at nine different instants. The particles inside the bubble are colored with the magnitude
of the velocity. In gure 7.22 we compare the results obtained with the SPH method with
those obtained using a Level-Set meth8dq. The results of the SPH and Level-Set
methods are in good agreement. During the rising process, the bubble deforms and takes
a horseshoe shape. After that, the extremities roll-up until they undergo a big deformation
which subsequently splits the bubble to form other small ones. The main difference between
the results is that near to the symmetric axis the bubble obtained using the present SPH
method is thicker than the one obtained by the level-Set method. The results for the width of
the bubble remains in very good agreement during all the simulation period for both methods.
We observe that in the Level-set solution the bubble splits in several very small bubbles that
are not predicted by the present SPH method. Thereafter, these smaller bubbles disappear
gradually from the Level-Set simulation.
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t=1][s] t=3[s]

Figure 7.18 — Single bubble rising through a vertical column of water. Case 1: Pressure
(top) and velocity (bottom) elds at times= 1 [s] andt = 3 [s] for two different particle
resolutions, 66 133 (left) and 133 267(right).

Case| rq[kg=n?] | r [kg=m®] | m [Pass] | mp [Pas] [ s [N=m] [ kgk [M=s’] | Re Eo =l o
1 1000 100 10 1 245 0.98 35 10 10 | 10
2 1000 1 0.035 | 0.0045 | 0.1226 9.81 1000 | 285.63| 1000| 7.77

Table 7.1 — Setup for Case 1 and Case 2 tests.

7.5 Gas bubble rising through two strati ed uid layers

This test example describes the behavior of a rising gas bubble through two strati ed uid
layers (see gure 7.23 ). The gas bubble can cross the interface between layers with or
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Figure 7.19 — Single bubble rising through a vertical column of water. Case 1: Direction
of the velocity vector of the particles inside the bubblé atl colored with magnitude
velocity. On the left, results fd86 133 particles, and on the right we plot the results for the
133 267 particles case.

Figure 7.20 — Single bubble rising through a vertical column of water. Case 2: Relative
pressure f()p = p Pmin) and magnitude of the velocity of the column of water at the
dimensionless time kgk=R= 3:6

without entrainment of the heavier uid into the lighter, or it could even remain trapped in

it. Greene et al125, 126 suggest a criterion on the bubble volume to predict this behavior
based on a macroscopic balance between surface tension forces and buoyancy forces. Thus,
if the bubble volume is greater than a critical volumgVy, > V), the bubble will penetrate

the interface layer and it will eventually entrain into the heavier uid, otherwise the bubble

will be trapped between the interface layers. The critical volume is calculated as follows

I 3
2p(%)1:3$2 3 2
(rz rokgk

Ve = (7.15)
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tIO kgk=R= 2:8 tIo kgk=R= 3:2 tp kgk=R= 3:6
tIO kgk=R= 4.0 tIO kgk=R= 4:4 tp kgk=R= 4:8
tp kgk=R= 5:2 tp kgk=R= 5:6 tp kgk=R= 6:0

Figure 7.21 — Single bubble rising through a vertical column of water. Case 2: Evolution of
the bubble at nine different instants. The Bubble is colored with velocity magnitude eld.

In equation (7.15) the subscript(or superscript for surface tensionjresponds to the lower
uid, 2 refers to the bubble, and 3 refers to the upper uid.

This problem is very challenging from the numerical point of view since it involves high
density and viscosity ratios and the presence of triple point junctions. The setup of the
problem presented here is taken froBY]] The density and dynamic viscosity of uid

1 (95% glycerin + water) are 1 = 1244[kg=m°] , m = 5501 10 3[Pad in the case of

the buble (uid 2) the chosen values are those of the aig:= 1:205 [kg=m°] andnp =

5 10 3 [Pas].Note that the value of air bubble viscosity is chosen greater than the real
one and equaty = 5 10 °[Pas] instead the use of the real gas viscosity with an arti cial
one to guarantee the stability of the algorith&a§] . Finally, for the uid 3 (47V500

oil), the values ar@ 3 = 965 andmy = 5307 10 3 [Pa:s] . The surface tensions are
sl 2= 451613 10 3[N=m|;s! 3=21 10 3 [N=m];s2 3= 28 10 3[N=m], and

the speeds of sound are takerf ag;; Coo; Co3g = f 3:7;11888;4:2g [m=s]. The radius of the
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tp kgk=R= 2:8 tp kgk=R= 3:2 tp kgk=R= 3:6
tp kgk=R= 4.0 tp kgk=R= 4:4 tp kgk=R= 4:8
tp kgk=R= 5:2 tp kgk=R= 5:6 tp kgk=R= 6:0

Figure 7.22 — Single bubble rising through a vertical column of water. Case 2: Evolution of
the bubble at nine different instants. Results obtained with the present SPH method (blue
circles) and with a Level-Set approach [318] (black diamonds).

air bubble isR= 3:5 10 3[m]. These data correspond to a Reynolds nunifer 4:15

and EOtvos numbeE, 13:24. For the simulation, a regular lattice wii® 166 particles

is employed. No-slip boundary conditions are applied on the top and bottom boundaries,
and periodic boundary conditions are applied on the left and right edges of the domain. The
dimensions of computational domain are detailed in gure7.23. The damping technique is
used withTp = 0:05]g].

The critical volume is computed using equation (7.15) which gikes 3:92 10 8 [m?].

This implies a critical radius dR;  0:021[m]. In this example, the initial radius of air bubble

R= 0:0035[m] is greater than the critical one which logically involves thatWh& Vgypple

With this values, the air bubble penetrates the interface uid layers [38].

In gure 7.24 we show the numerical results for the relative hydrostatic pressure eld
bp = p Ppmin, the magnitude of the velocity eld and the distribution of the three different
phases in different instants. The dimensionless interval between two images is taken equal to
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Figure 7.23 — Gas bubble rising through two strati ed uid layers. Geometrical details of the
problem setup.

Dtp kgk=R= 4:3[37]. In gure 7.25 we compare the numerical results with the experimental
images obtained irg[7]. The numerical results are in good agreement with the experimental
ones. The differences between the numerical and experimental sequences are maybe due to
uncertainties in the initial conditions of the experimental test and possibly to any 3D effect.

7.6 Conclusion

A series of numerical tests have been devoted in order to the validation of the accuracy
and convergence of the surface tension formulation and achievement of the high ratio of
density and viscosity of multiphase uid ows. The obtained results are very satisfactory
which demonstrate the consistency, stability and applicability of our proposed SPH interfacial
multiphase uids model including high density and viscosity ratios and triple junction points.
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tt=43 t"'=86 t"=43 t'=86 tt=43 t"=286

th=129 t" =172 t" =129 t* =172 t" =129 t" =172

t" =215 t" =258 t" =215 t*=258 t"=215 t" =258

Figure 7.24 — Gas bubble rising through two strati ed uid layers. Starting from the left, rst

and second columns sBow the relative hydrostatic pressuré)pld P pmin for different
normalized times$* =t kgk=R. Third and fourth columns present the magnitude of the

velocity eld. The last two columns show the uid phases distribution.
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Figure 7.25 — Gas bubble rising through two strati ed uid layers. On the top, we show the
experimental sequence taken fro&Y]. On the bottom we plot the results obtained using the
perosed SPH method. The dimensionless interval between two images is taken equal to
Dt kgk=R= 4:3




Chapter 8

Validation and application of SPH
water-soll interactions model

Dans ce chapitre, la robustesse, la précision et I'applicabilité de notre modele multi-
phasique sont démontrées via plusieurs benchmarks. La validation de I'ef cacité du terme
diffusif multiphasique dévelop® MSPH est montré en utilisant I'exemple d'une colonne
de deux couches de uide Newtonien strati €es en repos. L'applicabilité pour la simulation
dynamique des matériaux granulaires est démontrée via les benchmarks de I'effondrement
d'une colonne de uide Binghamien et I'étalement d'une pile de matériau granulaire sur une
surface horizontale. Tandis que pour la simulation des problemes d'interactions eau-sol, les
exemples de glissements de terrain sous-marins et subaériens sont consacrés. Un modele
de sédiments en suspension dans l'eau est imbriqué dans notre modele SPH multiphasique
pour bien capter les phénoménes d'érosion. Une simulation d'un écoulement de rupture
de barrage sur un banc de sédiments érodables est utilisée pour démontrer |'ef cacité du
modéle de sédiment en suspension dans l'eau. A la n, un benchmark démonstratif des
phénomeénes multiphysiques ( le glissement de terrain subaérien générant des vagues d'eau
impulsives, inondation et érosion) lié a l'interaction sol-eau est proposé pour montrer la
capacité du modeéele SPH multiphasique proposé dans ce travail.
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In this chapter, the robustness, accuracy and applicability of our multiphase model is
demonstrated via a several benchmarks. The validation of the ef ciency of the developed
multiphase diffusive terdd MSPH is performed using the two strati ed hydrostatics New-
tonian uid layers benchmark. The applicability on simulation of single phase of granular
materials dynamics is demonstrated via the benchmarks of Bingham uid dambreak and
spreading of granular material pile on horizontal surface. Whereas for the simulation of the
water-soil interactions problems, the submarine and subaerial landslides benchmarks are
devoted. A suspended water sediment model is nested in our multiphase model to capture
well the erosion phenomena. A simulation of a dambreak ows over erodible sediment bed
benchmark is used for the demonstration of the ef ciency of the added suspended water
sediment model. Finally, a demonstrative benchmark of multi-physics phenomena (Subaerial
landslide generated impulsive wave, ooding and scouring erosion) related to the soil-water
interaction is proposed to show the capabilities of the newly proposed multiphase SPH model.

8.1 Two phases hydrostatic strati ed column

The purpose of this test is to show the ability of multiphase diffusive t@mhsMSPH of
the present work comparing with® SPH of equation (5.27) ( applied with the procedure as
in [10§) to reduce and smooth the oscillations of the computational pressure in the context
of multiphase WCSPH. A two-dimensional (2D) tank@6[m] long and0:45m] high is full
with two strati ed immiscible uids (see gure 8.1). The upper uid layer is considered as
the lighter one with a density; = 100gkg=m?], while the lower layer is the heavier uid
with a densityr , = 200qkg=m?]. The upper and lower uids behave as Newtonian with
a constant viscosity afy = 0:02[Pa:s] andm = 0:001[Pa:s|, respectively. Both uids are
subjected to a vertical gravity acceleration d:81[m=s?].

We investigate the stability and convergence of the pressure eld using our developed
diffusive termD 9 MSPHand the classical or2® SPHapplied separately on each uid phase
asin [LOg. Aresolution of59 20 particles is chosen for this test case. The reference speeds
of sound for the lighter and heavier uids are chosgn= 20 [m~s] andcp, = 14:14 [m=s]
in order to obtain the same reference presgure r1c§ = rocj, = 4 10° [Pal.

Figure 8.2 shows the time evolution of the pressure calculated at three different points
P1, Pnt andP, (placed at locations as indicated in gure 8.1). Pressures at measurement
points are approximated using the Shepard It&d9). Thus, for the poinf; the pressure is
computed as
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Figure 8.1 — Geometrical details of two phases hydrostatic strati ed column con guration.
PL=(0:3;0:5), Pt =(0:3;0:2), P, =(0:3;0:1) are the pressure measurement points located
at the center of the layer of the uitl, the interface between the two uids and the center of
the uid layer 2, respectively.

n
éVi PiW(PL 1)

P(P) = —; (8.1)
aVviw(Py i)

We observe that the calculated pressures at different points stabilize to approximate
the hydrostatic pressure values after the time2:5[s] when the multiphase diffusive term
Dd MSPHis ysed as is shown in gure 8(2).

In the case of classical diffusive terdf SPHthe pressures remain relatively instable
during all simulation periodq(s]) and present an important error specially at the interface
between the uid phases (as shown in gure §t8). The pressure errors are generated
accordingly to the instability of the interface between the phases as shown in the gure 8.3
(b). In gure 8.3 (a) itis observed the stability of the interface between the uid phases and
the smoothness of pressure distribution at later time after the stabilization (gt]) when
the formulationD 9 MSPH s ysed.

In order to analyze the results without taking into account the effect of the pressure
Itration due to the use of Shepard lter (8.1), the pressure distribution on each particle is
plotted against the analytical hydrostatics ones at thettim&[s]. This is shown in gure
8.4. Itis observed that computed pressures using the multiphase diffusiv® tert"H are
in good agreement with the analytical values for both uid layers and the interface between
them (see gure 8.4a)). When theD9 SPHmodel is used, pressure results do not match
with the analytical ones specially at the interface, where we observe important differences

(see Figure8.4b)).
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From this test, we can conclude that the us® 8f MSPH diffusive terms in the context
of the WCSPH method enhances signi cantly the stability and smoothness of computed
pressure for the uid phases.

€) (b)

Figure 8.2 — Time evolution of pressure at the poiatsP,: andP, plotted against the
analytical hydrostatic values represented in solid lines. The left gure represents the pressure
results using the multiphase diffusive tefrf! MSPH of present work. The right gure
represents the pressure results using the classical diffusive@ri¥’H independently in

each uid phase.

Dd MSPH Dd SPH

(a) (b)

Figure 8.3 — Fluid phases distribution and hydrostatic pressure representatmoryat.
The gray color is chosen for the phakand the black for the pha®. The colored part
shows the hydrostatic pressure eld. Figu@ shows the results using the multiphase
diffusive termD 9 MSPH presented in this work, whereas gugb) shows the results using
the classical diffusive terndd SPH. Notice the smooth distribution obtained with the

proposed methodology.
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(a) (b)

Figure 8.4 — Computed pressure values at all particles for all uid phases at inT¢s|
plotted against the analytical hydrostatic pressure (solid black line). On the left it is shown
the pressure computed using the multiphase diffusive 2fmMSPH presented in this work.

On the right, the results using the classical diffusive térfh SPH,

8.2 Bingham uid dam-break

This example is investigated in order to show that the proposed SPH model with the RBPMC-
am constitutive law (equation (5.23)) can accurately deal with Bingham materials (non-
frictional materials: withf = 0 andc = ty) in simulation problems in the context of Non-
Newtonian free surface ow simulations.

The dam-break benchmark proposed by Komatina and JovariotgtwWas reproduced
numerically in this work. This benchmark was already investigated by other augt#s [
145] using SPH method.

A rectangular column of a single uid with a height bf = 0:1[m] and length ot = 2[m]|
is con ned between two xed walls (at the left side and at the bottom) and a moving wall
at the right side. The moving wall is removed and the uid starts to ow under the effect
of gravityg= 9:81]m=s?] (see gure 8.5). The uid is considered as a water—clay mixture
with a volume concentration @, = 27:4%. The bulk density of the water—clay mixture is
rew= 120kg=m?, and the uid is considered as a Bingham Plastic. The plastic viscosity and
the yielding shear stress area are estimated accordiag $hdsmy = 0:621exf0:173C,)
0:07[Pas] andty = 0:002ex[0:342C,) 24Pa], respectively.

A distribution 0of400 20 particles is used to discretize the rectangular uid column.
The speed of sound isd{= 10uy  14[m=s] ) with up a reference velocity that is calculated
following Torricelli's law (up= = 2Hg). Two values of the regularization paramedgy=
f 100, 1000y are tested to investigate their in uence on results.
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In gure 8.6 the time-evolution of dimensionless front positiog€H = (x L)=H)is
plotted for the present SPH model using two values of control paramgterf 100, 1000y,
the incompressible non-Newtonian SPH model (INNSPH) of Xenakis €35,[ and
the experimental results of Komatina and Jovanoticg. A good agreement between
the present SPH formulation, the INNSPH mod&#7] and the experimental results are
observed. In the case of the proposed method, the best results are obtained when a control
parametea, = 1000is employed. It is also observed that the ow tends to stabilize at
a rigid form (the so-called "freeze-point") with increasing time, since the shear stress at
every computational particle do not exceed the yield strgsi gure 8.7 the results for
the particle positions using the present SPH model et 10000at ve different time
steps = f0:1;0:3;0:6; 1; 2g[s] are presented. Fluid particles are colored with the hydrostatic
pressure eld. These results are used for a comparison between the free surfaces obtained
with the present SPH model with, = 100Q the INNSPH model357, and the control
volume nite element method (CVFEM) oB8E7 at two different time instants= f 0:6; 2g[9]
. This comparison is presented in gure 8.8. The free surface obtained by the proposed
WCSPH approach is between those of INNSPH and CVFEM.

Figure 8.5 — Bingham uid dam-break con guration.

8.3 Spreading of granular pile on horizontal plan

In order to show the ef ciency of the proposed SPH model including the RPBMC-
am rheology for the simulation of cohesionless granular ow problems, the experimental
benchmark proposed by 33 is reproduced. In this benchmark, a heap of dry granular
material (glass beads ) of lengthand height ofH (aspect ratica= ") spreads on an
horizontal roughness plane. The granular heap is initially blocked between a xed glass
wall at the left side a movable gate at the right side and a xed rough wall at the bottom.
The channel and the granular heap have the same uniform WitithQ:049m]) (see gure
8.9). The granular heap has a masstéf[g], a height of61mn] (H 61mn]) and a
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Figure 8.6 — Time-evolution of dimensionless Bingham dam-break front poskiorH =

(xr L)=H). We compare the results obtained using the proposed method with a plastic
viscosity (n= 0:07) and coef cientsa,,= 100(dotted line)am,= 1000(dashed line), with
INNSPH(Incompressible Non-Newtonian SPBHH] (solid line) and with the experimental
results of Komatina and Jovanovic [175] (small triangles).

t=0:1][g t= 03[9
t=06][g t=1][9
t=2][9

Figure 8.7 — Bingham dam-break ow at times 0:1;0:3;0:6;1;2[s]. The particles are
colored with pressure values. The Y-axis is scaled by a factor of 5 for the sake of clarity.

length of10mm (L = 104mm)( aspect ratio o= 0:6). SincelL >> W the behavior of
three-dimensional granular ow can be considered as a two-dimensional one. Thus, in this
work we consider only a two-dimensional con guration.

The glass bead is considered as a granular material with a grain density=of
2500kg=mq], and angle of reposkr 22 %°deq (it is equivalent to an internal friction
anglef f, 22 %5deg). The bulk density is approximated ag  1673kg=m°]. This
bulk density is calculated from the mass and volume of the granular heap by dividing the

Mas

mass by the volume of pile = &%) [182, 183].
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t=06][g t=2][9

Figure 8.8 — Comparison between the free surface pro les of the present SPH method with a
plastic viscosity fn= 0:07) anday, = 1000(solid line), the INNSPH metho®p27 (dashed
line) and CVFEM [352] (dotted line) at times= f 0:6; 2g[s]

In this work the dynamic plastic viscosity of the glass beads is settd:1[Pas] follow-
ing [159. Four values of control parameter of the RBPMg{a= f 100, 1000 2000 300()
were used. The results of our simulaitons were compared with the experimental results of
[183].

Figure 8.9 — Spreading of granular pile on horizontal plan: Schematics of the experimental
con guration [183].

The granular column is represented & 30 particles ( the initial inter-particular
distance iy = 0:00m]). The reference speed of sound of the granular material is set to
Co = 11]m=g] (reference pressuf@ = 202433Pa]). A no-slip boundary condition is applied
on the horizontal wall (rough wall), while free-slip boundary condition is applied on the
vertical xed wall.

In gure 8.10, the time evolution of the dimensionless front positi¥asH = ( x
L)=H) of the granular column is presented for the experimental and numerical results. A
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disagreement between the numerical and experimental results is observed when the value
am= 100is used. In this case, the numerical granular column continue to spread because
of the low viscosity value assigned by the RBPMG-rheology model to the column
(Mnax= 100m= 1Q[Pas]). However, a very good agreement is observed when the value of
amis suf ciently higher @,= f 10002000 3000y). The best results are obtained by using

am= 3000.

Figure 8.10 — Spreading of granular pile on horizontal plan: Time-evolution of the dimen-
sionless front position of the glass beads pile. We plot the results of the proposed numerical
method usin@ = 100(dotted line),am= 1000(dash-dot line)a, = 2000(dashed line)
andan, = 3000 (solid line), and the experimental data of Lajeunesse et &d][(small
triangles).

The shape evolution of the collapsing granular column pro le for both experimental
and numerical results is shown in gure 8.11 at times f 0;0:8;0:16; 0:24;0:32g[s]. A
value of 3000 of the control parameter,{= 3000 is used for the computation. The SPH
particles are colored with the magnitude of the velocity in order to show the dynamic and the
"freeze-point” of the collapsing column. The granular column stops spreading and takes the
trapezoidal shape &t 0:32[s] for both numerical and experimental results. A very good
agreement is observed between the numerical and experimental granular column pro les at
different times. Nevertheless, a difference between the numerical and experimental granular
column pro les is remarked at earlier stage at 0:8[s]. This is may be due to the process of
moving the gate in the initial stage of the experiment that is not represented in the numerical
simulation.
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t= 0[]
t= 0:08s]
t= 0:16[s]
t= 0:24s]
t= 0:32s]
(a) (b)

Figure 8.11 — Spreading of granular pile on horizontal plan: Sequences of the position of
the granular material (glass beads) using the proposed SPH model 4tt8000(a) and
experimental results of Lajeunesse et al [183)]
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8.4 Landslide-generated wave

A landslide, also known as slope failure, slumps or landslip is a big mass of ground driven
on a slope by gravity effort. Landslides can occur under-water (submarine) or upper-water
(Subaerial). The potential energy of land sliding in the water bodies (oceans, seas, lakes and
reservoirs) consequently generates an impulse wave that may potentially cause signi cant
disasters. Papua New Guinea in 19983 and Lituya Bay- Alaska in 1958pP4] tsunamis
caused by a submarine and subaerial landslides, respectively, are demonstrations of the great
destructive potential of these phenomena.

Submarine land-slide-generated water wave

In this example, we investigate the capability of the proposed multiphase SPH model to
simulate water-land interactions related to submarine landslides. The land here is modeled
as a purely cohesional materidl € 0, c = ty). Here we reproduce the experiment of
Rzadkiewicz et al790, 289, and we compare our numerical results with thosesaf.[ This
experiment examines the water waves generated by the sliding of sand mass along a slope of
45deg. The dimensions of the channel &jen] high and4[m] long. The initial pro le of the
sand mass has a triangular shape with a cross-sectimf®im] 0:65m]. The sand mass
has the same wide as the channel, so that the problem can be considered as two-dimensional.
The density and viscosity of the water are seto= 100gkg=m?] andm, = 0:001[Pas],
respectively. The bulk density of the sand B5Qkg=m?] . The depth of the water i&6[m]
and the top of triangular sand mas is initially located below the surface wate:i .

Figure 8.12 gives more geometrical details about the submarine landslide con guration.

In the work of Rzadkiewicz et aPP( the rheological parameters were not measured
experimentally. They were chosen by numerical experientgasl00JPa] andm= O[Pas].

In this work we choose the same yielding stress, but a small value of plastic viscosity
(m= 0:00]Pasg]) is chosen instead of zero. The reason is the necessity of using a non-null
plastic viscosity in our rehological model RBPM&Gy. The control parameteras, = 10°.

The numerical simulations were carried out using a homogeneous resolufi68 1
particles (5916particles for the water an@03 particles for the land mass ), with an initial
inter-particular spacingx = 0:0019m| similarly to the work of Capone et al [52].

The speed of sound is chosen equatde 55 m=s] for the water phase which leads to a
reference pressure Bf = 3:0251F[Pa]. The No-Slip boundary conditions are applied on all
the rigid boundaries.

The numerical results of particles distribution for both land mass (dark gray color) and
water (light grey color) are represented in the gure 8.13 at titre9:4[s] andt = 0:8[g].
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Figure 8.12 — Submarine land-slide-generated water wave: Geometrical details and setup of
the problem.

Figure 8.13 — Submarine land-slide-generated water wave: Particle distribution at times
t = 0:4[s] andt = 0:8[g].

Figure 8.14 — Submarine land-slide-generated water wave: Comparison between the free
surfaces at = 0:4[s] andt = 0:8[s] obtained with the proposed SPH model, the SPH model
of Capone et al. [52] and the experimental results of Rzadkiewicz et al [290, 289].

In the gure 8.14 the comparison between the water free-surface elevation at times
t = 0:4[s] andt = 0:8[g] is represented between the current SPH model, the SPH model of
Capone et al.§2] and the experiment of Rzadkiewicz et ab0, 289. The SPH formulation
presented ing2] is based on a bi-viscosity rheological moda?] considered within the
arti cial viscosity term presented by Monagha®fy. Quantitatively, a good agreement
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between our SPH model, Capone SPH model and experiment results is observed. At time
t = 0:4]s] the results given by the SPH model of Capone et al. is closer to the experiment
than our current approach. However, for the tinye 0:8[s] our multiphase SPH model gives
more accurate results compared with the experimental results.

Sub-aerial land-slide-generated water wave

The purpose of this example is to investigate the ef ciency of our multiphase SPH model
to simulate a Sub-aerial land-slide-generated water wave. The land mass is modeled using
a RBPMCa, rheology where purely frictional/cohesionless=(0) model is considered
(glass beads). Here, the experimental benchmark performed by VirouleBdt?aBfi 1] was
reproduced numerically (see gure 8.15).1t consists on the study of the interactions between
the granular mass collapse and the water that generate impulse waves. A 2a2{knpfong,

0:4[m] high, and0:20[m] wide includes an inclined plan at the left side with sloglétdeg

to allow slipping of the land mass (granular material). The tank is full initially with water

of depth of0:19m|. The land mass is blocked initially on the inclined plan and a vertical
movable gate where the bottom of the land mass is located at the level of the free surface
water (see gure 8.15). When the vertical gate is opened, the land impacts the surface water
at a low velocity, generating impulse waves propagating along the tank. The evolution of the
generated impulse waves and the granular ow shape are recorded experimentally with a high
speed camera. The amplitudes and the propagation of the generated wave are measured with
four resistive gauges located at four different distaric4s; 0:75; 1:05; and 1:35[m] from

the vertical movable gate. The granular material used for the land mass is composed of glass
beads of densitys = 2500kg=m?] , porosity ofn = 40% frictional angle off = 23:3deg

and the mass of[Bg] (it gives| = 0:2[m]).

When the grain of the granular material slides at low velocity into the water, it mix with
the water. Then, the bulk density is de ned asampe (1 n)rs+ nry, = 1900kg=m?].

The density and dynamic viscosity of the water are taken,as 100qkg=m?] andmy, =
0:001Pa:g], respectively. The Plastic viscosity of the land is taken to be equal to the water
dynamic viscosityn= m, = 0:001[Pa:s], and the control parameter is setg= 3 10'.

The simulation is performed with a resolution of 32306 particles (31225 particles for
the water and 1081 particles for the land mass), with initial spacimxef 0:003m]. The
reference speed of sound for water is takgr 17[m=g] (it gives a reference pressure
pressure 02:89 10°[Pa]). At tank walls and the inclined plan a no-slip boundary condition
is used for the computation.

In gure 8.16 , the elevation of the water free surface captured numerically and experi-
mentally at four different position of wave gaug&s ( Gy, Gz andG,) is plotted. A good
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Figure 8.15 — Sub-aerial land-slide-generated water wave: Schematic view of the experimen-
tal setup and gerometrical details.

agreement between the numerical simulation and experimental results during a p&gd of

was observed. However, an amplitude shift between the numerical and experimental results
is also observed. This can be a consequence of the use of the bulk density of the land mass
that is fully mixed with water. However, very satisfactory results are observed concerning
the water wave frequencies.

Quantitatively, a satisfactory agreement is observed between the experimental and numer-
ical sliding granular mass into the water at three different timetstep0:21; 0:43; 0:52q[5]|
as is shown in gure 8.17. The water velocity eld for the simulation and experimental
results using the particle image velocimetry technique (P1V) is also shown in the same gure.
Attimet = 0:21]g], the impact of the land mass on the water and beginning of the generated
rst wave are shown, Here, the elevated part of the water has a greater velocity and also we
observe that the water region closer to the landslide head has high velocity. for the times
t = 0:43[s] andt = 0:52g], the slide starts to roll up creating a turbulent water region. Also
we observe the onset of the second generated wave accompanied by the propagation of the
rst wave. The velocity is always greater at the more elevated part of the water the and
at vicinity of the land front head. The roll up of the land head is more important in the
experimental than in the numerical results. This issue is may be due to the low particle
resolution that is used to simulate the granular mass. However, very satisfactory results are
observed for the shape of the free surface water.



8.5 Dam-break ow over an erodible bed 187

Gl GZ

Gz Gy

Figure 8.16 — Sub-aerial land-slide-generated water wave: Elevation of the free surface at
each wave gauges,,Gy, Gz andG,4. The black solid line denotes the numerical results,
while the dashed lines present the experimental results [342].

8.5 Dam-break ow over an erodible bed

This example aims to demonstrate the ability of our proposed model for the simulation of
the erosion phenomena. Here, the proposed SPH model including the RBRM@ology
is coupled with a suspended sediment layer modeled as it is explained in section 5.2.1.

Spinewine's B17 experiment of a dam-break induced sheet- ow is selected for this test.
Atank is divided in two parts by a movable gate. A sediment layer of fully saturated sand
material cover the lower part of the tank. There is a difference in the height of the sediment
bed at both sides of the gate f[cn]. At one side of the gate, a water layer is contained
over the sediment layer. When the movable gate is uplifted at very high speed, the water

ows downstream and erodes the sand bed creating the a change in topography. Figure 8.18
gives more details about the geometry and the setup of the problem.

The properties of the bed material (saturated sand) are summarized in Table 8.1.

For the simulations, the density and viscosity of the water were taken equgl+to
100qkg=m?] andm, = 0:001[Pa:s]. The plastic viscosity of the saturated sand is chosen
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t= 0:219
t= 0:439
t= 0:529

Figure 8.17 — Sub-aerial land-slide-generated water wave:Comparison between the numerical
(left) and experimental (right) results at the timtes f 0:21;0:43;0:52g[s].

Material | Speci ¢ grain densityfkg=m®] | Granular volumetric fractiop ] | Bulk density[kg=m?] | Friction angle[ded
Sand 2680 0.53 1890.4 30

Table 8.1 — Properties of the sand material of the dam-break induced sheet- ow .

equal to that of the waten= 0:001[Pa:s] and the control parameter of the rheological model
is taken aa = 10°.

The particles resolution used for this problem is 66000 particles (36000 sediment particles
and 30000 water particles), with an initial inter-particular distand@@®9m]. The reference
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speed of sound of water is set ¢g = 30[m=s] which leads to a reference pressure of
P =9 10°[Pd.

Figure 8.18 — Dam-break ow over an erodible bed: Geometrical details and setup of the
problem.

Figures 8.19 and 8.20 show the sequence of the simulated dambreak, and the comparison
with the experimental snapsho&l[] at six different timeg = f 0:25;0:5; 0:75; 1; 1:25; 1:5¢[s]

The water ow induces an erosion on the sediment bed. At the early stages, after removing
the movable gate, it is observed that the water wave is propagated on the downstream bed,
pikes up the particles material of bed and transports them. At late stages, the eroded particles
will be gradually deposited due to the decrease in water velocity, and thus the shear stress.

Comparing the free surface water, surface of eroded bed and the position of the front water
wave at three different timds= f 0:25;0:75;1:259[s] (see gure 8.21), a good agreement
between the numerical and experimental results is observed. However it is observed a small
discrepancy between the numerical and experimental results, that is maybe due to the effects
of the moving gate in the experiments that is absent in the numerical setup or to three
dimensional effects.

8.6 Multi-physics numerical benchmark : subaerial land-
slide, ooding and scouring erosion

In this section , a new demonstrative numerical benchmark includes three coupled natural
phenomena (Subaerial landslide, ooding and scouring erosion) is proposed in order to show
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t= 0:299
t= 0:5[g
t= 0799

Figure 8.19 — Dam-break ow over an erodible bed: Flow sequences at timres
f0:25;0:5;0:759[s]. The experimental results are on the left side (grey-scale image), the
magnitude of the velocity eld is plotted on the right side and a plot with the position of the
different phases are centered below the previous plots for each time. The material phases are
colored in blue for water particles, in orange for the rigid bed particles and in green for the
suspended particles of the bed.

the capabilities and applicability of our proposed multiphase SPH model to simulate multi-
physics problems resulting from the water-soil interactions. Figure 8.22 shows a schematic
of three coupled phenomena. A rectangular mass of granular mateNH)) (that has a
lengthL = 0:5[m] and hightH = 0:2[m] slides on slop o##5deg This mass was initially
accelerated with a velocity oh=( 2; = 2)[m=s]. When the land impacts the water
surface, a water wave will be generated and propagates until run-up and over-topping the
dyke and subsequently oods on the other side of the dyke (on the bed of granular material
GM2). The impact of the water jet induced from the ooding wave involves a scouring behind
the dyke and erodes the bed granular material (GM2). We investigate the time evolution of
the height of the over-topping above the dyke (at gauge @&@yeas well as the wave height

in the left tank at wave gaudg@; and the maximum depth of scouring erosion behind the dyke
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t= 19

t= 1299

t= 1:5[g

Figure 8.20 — Dam-break ow over an erodible bed: Flow sequences at times
f1;1:25; 1:59[s]. The experimental results are on the left side (grey-scale image), the mag-
nitude of the velocity eld is plotted on the right side and a plot with the position of the
different phases are centered below the previous plots for each time. The material phases are
colored in blue for water particles, in orange for the rigid bed particles and in green for the
suspended particles of the bed.

( at the right tank). The density and viscosity of the water is takan,as 100qkg=m?] and
my = 0:00]Pas], respectively. The bulk proprieties of granular materia1 andGM2
are taken asgu1 = 160Qkg=m?], f gm1 = 43degandr gvz = 1200kg=mq], f gm2 = 30deg
respectively. While, the plastic viscosity for the both granular mate@M4 andGM2 is
taken equal to the water dynamic viscosity my, = 0:001Pas] . The control parameter
am of our rheological model is taken equaldg,= 6 10° for all granular materials.

This kind of numerical study can be very interesting for the design of the coastal protection
structures (dykes, seawalls, Bulkheads, Breakwaters ...) and their foundations, because their
damages are mainly caused by local scouring on the area behind them due to tsunami over ow
[313, 321].
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t= 0:25 t= 0:759

t= 1:259)

Figure 8.21 — Dam-break ow over an erodible bed: Water free surface and sediment surface
positions results using the proposed numerical model and compared with the experiments of
[312]

The numerical simulation is performed using an initial inter-particular spacing of
0:01m] that leads to a total of 9465 particles, wifi20particles devoted for the water and
1190, 3255 particles used for granular materiaM1 andGM2, respectively. The water
speed of sound is set equ@l= 30[m=g] (it gives a reference pressureRf= 9 10°[Pd] ).

A no-slip boundary condition is applied on all horizontal surfaces (in the left and right tanks
of gure 8.22). A free-slip condition is applied on the rest of surfaces (the slop, dyke and
vertical walls). The total simulation time is ofd].

Snapshots of the results of numerical simulation for this benchmark are presented in the
gures 8.23, 8.24, 8.25 and 8.26 at different times f 0:3; 0:56; 1; 1:3;1:7; 2; 2:5; 3; 59][9].

Figures 8.23 and 8.24 present the position of different material phases during all the
period of the simulation. Water particles are colored in dark blue, whereas granular materials
particlesGM1 and GM2 are colored in cyan and brown, respectively. Yellow particles
represent the particles of the granular mate&m?2 mixed with water (suspended particles).



8.6 Multi-physics numerical benchmark : subaerial landslide, ooding and scouring@3osion

Figure 8.22 — Multi-physics numerical benchmark: Schematic view and geometrical details.

At t = 0:3[g], the impact of granular materi@M1 on the surface water causes the formation
of the rst generated water wave. It reaches its maximum heighta0:56[s]. At time

t = 1[s] the granular materidbM1 stabilizes at rigid form (it reaches an effective viscosity
of mf = Mpax= 600(Pas]) and at the same time the maximum height of the over-topping
water is reached above the dyke structure. From this point the processes of dyke scour,
erosion of the granular materi@M2, and water run-up over the slope occurs. In gure 8.23
this is shown at = 1:3[s] andt = 1:7[g]. Att = 2[s], a second wave is originated when the
water ows downwards the slope. At the same time the granular mateNt reaches its
maximum securing depth. At= 2:5[s] the soil particles starts to sediment and to cover the
granular materialGM2). Att = 3[s] the second wave ow over-tops above the dyke. At
t = 5[], the granular materigdbM2 reaches its rigid form (the maximum viscosity is reached
everywhere ifGM2 except in the particles suspended in water) and the equilibrium is nally
recovered.

Figures 8.25 and 8.26 show the evolution of the particle velocity, and the change in the
behavior of the granular materials (switching from the rigid phase to the deformable phase
and viceversa). Water particles are colored with the magnitude of the velocity, whereas the
granular material&M1 andGM2 are colored with the effective viscosity eld (the Maximum
viscositympnax= amm= 6000QPa:s| represents the rigid phase). The direction of the water
particles is represented by arrows.

Figure 8.27 shows the time evolution of the relative height of the generated waves. This
height is measured at the gau@e (located atx = 0:9[m] of the origin of the reference
system axis (see gure 8.22). The relative water height due to the over-toping ow above
the dyke is also measured at the wave gaigéatx = 1:65m] of the origin) during all the
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simulation period. In order to measure the erosion of the granular maB&via| gure 8.28
shows the time evolution of the maximum depth of the material®ii2.

8.7 Conclusion

The robustness, accuracy and applicability of our multiphase model has been demon-
strated. The validation of the ef ciency of the developed multiphase diffusive term was
performed using the benchmark of two strati ed hydrostatics Newtonian uid layers. The
applicability on simulation of granular materials dynamics has been demonstrated via the
benchmarks of Bingham uid dambreak and spreading of granular material pile on horizontal
surface. Whereas for the simulation of the water-soil interactions problems, the submarine
and subaerial landslides benchmarks had been performed. A suspended water sediment model
was nested in our multiphase model to capture well the erosion phenomena. A simulation of
a dambreak ows over erodible sediment bed benchmark was used for the demonstration of
the ef ciency of the added suspended water sediment model. Finally, the capabilities of the
newly proposed multiphase SPH model have been shown via a demonstrative benchmark
of multi-physics phenomena (Subaerial landslide generated impulsive wave, ooding and
scouring erosion) related to the soil-water interaction.
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t= 03[
t= 0:56[5]
t= 1[s
t= 1.3
t= 175

Figure 8.23 — Multi-physics numerical benchmark: simulation sequence. The different
material phases are represented with different colors: Water is dark blue, the granular
materialGML1 is cyan, the granular materi@M2 is brown and yellow is the suspended layer.
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t=2[g
t= 253
t= 3[g
t=9[s]

Figure 8.24 — Multi-physics numerical benchmark: simulation sequence. The different
material phases are represented with different colors: Water is dark blue, the granular
materialGML1 is cyan, the granular materi@M2 is brown and yellow is the suspended layer.
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t= 03[
t= 0:56]
t=1[s
t= 1:3[
t= 17

Figure 8.25 — Multi-physics numerical benchmark: Simulation sequences. The particles
of soil material GM1) and GM2) are colored with the effective viscosity values. Water
particles are colored with the magnitude of the velocity and the ow direction is represented
by black arrows.
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t= 2[g
t= 253
t= 3[
t= 5[

Figure 8.26 — Multi-physics numerical benchmark: Simulation sequences. The particles
of soil material GM1) and GM2) are colored with the effective viscosity values. Water
particles are colored with the magnitude of the velocity and the ow direction is represented
by black arrows.
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Gl GZ

Figure 8.27 — Multi-physics numerical benchmark: Evaluation of the impulsive wave height
for the left reservoir ak = 0:9[m| (G1 gauge) and height above the dyke (G2 gauge) at
x= 1:65[m.

Figure 8.28 — Multi-physics numerical benchmark: Evaluation of maximum scouring depth
on the granular material bed due to the over-topping ow.






Chapter 9
Conclusion

Un solveur SPH (Smoothed Particle Hydrodynamics) faiblement compressible (WCSPH)
a été développé dans le cadre de cette these pour traiter les problemes d'écoulement des
uides multiphasiques incluant différentes complexités d'écoulement (con né, a surface
libre, grande déformation, tension super cielle) et différents matériaux ( uides et sols). Une
parallélisation sur CPUs en utilisation le paradigme MPI (Message Passing Interface) avec
une technique de décomposition de domaine a été présentée dans lI'annexe A. Des anciennes
et récentes avancées ont été discutées pour les algorithmes d'amélioration et des schémas
de discrétisation des enquétions physiques régissant le mouvement des particules dans le
contexte de la méthode SPH. Un modéle SPH pour les écoulements multiphasiques a été pro-
posé. Ce modéle comprend une formulation de tension de surface qui satisfait les propriétés
tangentielles des contraintes de tension de surface et améliore la stabilité de la méthode
numérique. La stabilité numérique est améliorée grace a l'utilisation d'un opérateur de
divergence consistant de premier ordre et une technique de d'amortissement (Damping) qui
réduit les parasites numériques causées par la transition des conditions initiales. Des modi -
cations sont apportées a la méthode des conditions aux limites généralisés liées aux parois
solides pour étendre son application aux problémes d'écoulement de uide multiphasique. Le
modéle SPH d'interactions eau-sol a été développé en utilisant une approche multiphasique.
Ce modele peut étre utilisé pour simuler des sols (purement frictionnels et cohésifs), de I'eau
(ou tout autres uides Newtoniens) et leurs problemes d'interaction. Ceci est réalisé grace
au modele rhéologiqgue RBPM&, sensible a la pression. Un terme diffusif multiphasique
nommé iciD? MSPH 3 également été développé pour amortir les oscillations de pression
dues a l'utilisation d'une équation d'état. La précision, la stabilité et I'applicabilité du
solveur SPH pour traiter les problemes d'écoulement gravitationnel multiphasique, écoule-
ment multiphasique avec présence de tension de surface et d'interaction eau-sol ont été
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démontrées a travers une série de benchmarks. Ces benchmarks comprennent des cas-tests
analytiques, numériques et expérimentaux.
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9.1 Summary of Thesis Achievements

A weakly compressible smoothed particle hydrodynamics (WCSPH) solver has been
developed in this thesis to deal with multiphase uid ow problems including different
complexities of ow (con ned, free surface, large deformation, surface tension ) and na-
tures of materials (uids and soils). This solver has been parallelized on CPUs (Central
processing unit) using MPI (Message Passing Interface) paradigm with a domain decompo-
sition technique as is shown in the appendix A. Past and recent advances in SPH method
for improvement algorithms and different discretization schemes of governing equations
are discussed. A consistent smoothed particle hydrodynamics model for multiphase ows
has been proposed. This model includes a surface tension formulation which ensures the
tangential properties of the tensor surface stress and improves the stability of the numerical
method. The numerical stability is improved through the use of a divergence operator with
rst-order consistency and also with a damping technique that avoids the numerical issues
due to the transients on initial conditions. Modi cations are brought on the generalized wall
boundary conditions to extends its application to multiphase uid ow problems. Water-soll
interactions SPH model has been developed using a multiphase approach. This model can be
used to simulate soils ( purely frictional and cohesional), water (or any other Newtonian uid)
and their interaction problems. This is done thanks to the RBRIM@ressure-sensitive
rheology model. A multiphase diffusive term so-called hef@th MSPH has been also devel-
oped to damp the pressure oscillations due to the use of equation of state in order to obtain
more accurate results with using of such as pressure-sensitive model. The accuracy, stability
and applicability of the proposed WCSPH solver to deal with gravitational multiphase uid ,
interfacial multiphase uid and water-soil interaction problems have been demonstrated via a
series of benchmarks. Theses benchmarks include analytical, numerical and experimental
test cases.

9.2 Applications

In this thesis, the applications cases have been classed under three category of tests:

The rst category is devoted to the simulation of multiphase uid ow evolved under
gravity forces. The examples addressed here are the evolution of the two-phase strati ed uid
layers and the Rayleigh-Taylor instability (RTI). The rst example is not only performed to
examine the stabilization effect of the damping technique but also to validate the proposed
modi cations on generalized wall boundary conditions when the two uid phases meet the
solid boundaries. The second example was carried out to compare the results of the presented
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SPH multiphase model with the ones using Level-3&8] and other SPHJ38 models,
and also with the analytical approach presented &7]] Furthermore, the example of two
rising bubbles through a water column is performed using a higher particle resolution.

The second category of test concerns the simulation of multiphase uid ow with a
surface tension formulation for the case of two and three phases ows with the presence
of triple junction points. The examples addressed in this category are the square droplet
deformation P] ,the spreading lens between two strati ed uid layeB9[[193, and the
capillary-viscous wave teskb4, 151, 150, 149, 2]. Thereafter, high density and viscosity
ratio effects have been introduced. The rising of an air bubble through a water column and
through two strati ed uid layers are simulated.

The third category is devoted to validating multiphase WCSPH water-soil interaction
model, where several benchmarks have been used. The validation of the ef ciency of
the developed multiphase diffusive te®A MSPHwas performed using the two strati ed
hydrostatics Newtonian uid layers benchmark. The applicability on simulation of single
phase of granular materials dynamics is demonstrated via the benchmarks of Bingham uid
dambreak and spreading of granular material pile on horizontal surface. For the simulation of
the water-soil interactions problems, the submarine and subaerial landslides benchmarks are
devoted. A suspended water sediment model was nested in our multiphase model to capture
well the erosion phenomena. A simulation of a dambreak ows over erodible sediment bed
benchmark was used for the demonstration of the ef ciency of the added suspended water
sediment model. Finally, a demonstrative benchmark of multi-physics phenomena (Subaerial
landslide generated impulsive wave, ooding and scouring erosion) related to the soil-water
interaction was proposed to show the capabilities of the newly proposed multiphase SPH
model.

9.3 Future Work

As perspectives, several works are envisaged to make our SPH code more consistent and
industrially exploitable such as:

— Extension of the following 2D code into 3D can achieve the simulations more complex
and realistic.

— Parallelization on GPUs (Graphics processing unit) can be also shown more advan-
tages in terms of computational cost and applications.

— Including the modeling of other physical natures such as a rigid bodies interact
with water, elastic and elasto-plastic models to the code can for the simulation of
multi-physics phenomena.
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— A speci c treatment of the contact line can be added to the modi ed wall boundary
method to simulate the cases when the tension surface is nested at the interface
between the uid phases that meets the wall.

— Using of incompressible and explicit incompressible smothered particle hydrodynam-
ics (ISPH and EISPH) schemes in the developed code can be a good purpose for
further investigation and comparison.
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Appendix A

Parallelization technique on CPU of our
SPH code

The parallelism of the SPH code on CPU is performed using the Domain decomposition
method. This method is based on the principle of division of the physical computational
domainW (in our case the uid domain) intdld subdomaind\{ which are initially load-

balancedVy W, i W, and S W= W.
i=1

For a demonstration, we assume that the global domain is divided sub-domains
W= Wi [ Wo[ W5[ W, .For each subdomaMf a process of ranRrog is designated to
handle its task of calculation. The physical domain is considered as a continuous medium,
meaning that the subdomains are dependent in term of physical computing properties. For
this reason, the MPI (Message Passing Interface) paradigm is used to exchange data between
subdomains. The Lagrangian movement of the uid ow imposes the use of speci ¢ method.
This method must ensure a balanced partitioning of computation loads on each process. In
this work, an average position interface detection method was used. This method is based
on the calculation of the maximum particle positiomaxithat belongs to the x-axis of
the subdomaimf and the minimum particle positiog,axi+ 1 that belongs to the x-axis of
the subdomaiW\, ; for each iteration. The new position of the interface is determined in
the middle of these positionSmaxi; Xmaxi+ 1) that can express dg; = MQ‘W” A new
distribution of particles on the subdomaméandW.. ; must be done in order that all the
particles which have an abscissa coordinate less than or equal to the interface position will be
transferred to subdomalfyf , and the particles which have abscissa coordinate greater than
the same interface will be transferred to the ubdonvdin.. The communication between
the processes using MPI paradigm is done in a way that the process of even rank send the
informations held in buffers zones to the odd rank process and they receive them from the odd
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processors. While the odd processes receive the information from the process of even rank
after they send to the process of odd rank. This strategy ensures suf cient buffer memory
to guarantee the continuity of communication as well as optimizing the performance of
parallelism.

Figure A.1 — Parallelization technique of SPH code on CPU using MPI library.

The parallelization technique was tested on the famous dam break benciaiarks,
216] using different particle resolutions.

The following gure A.3 shows the time-evolution of work loads on four processors,
Work loads are computed using the number of particles in each processors divided by the total
number of particles. Along the time a very good load balancing was achieved through the
proposeqqurallelism technigue. An imbalance of order less than 1% was observed from the

momentt % = 6. This small imbalance is due to the sudden increase of the uid velocity
q_
caused by the impact of the wave shown at the momelﬁ = 6.

The computing Cloud of the Institute of Research in Constructability of ESTP school
was used to perform calculations. The machine is equipped with 32 processors type Intel
Xeon Processor E7-4850 frequency 2 GHz and 24 MB cache memory, and has a RAM of 96
GB. In gure A.4, a Sub-linear evolution of the speed-up relative to the number of processors
was observed at 8192 particles. This sub-linearity is mainly due to the communication
time between the processors that exceeds the computational time on each one. from 25,088
particles the speed-up evolution with processors number becomes super-linear due to the
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Figure A.2 — The time-evolution ows of particles loads on four processors for 20,000
particles.

ability of caches memories to store the data of the problem, and the speed of their access to
the processor.
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Figure A.3 — The time evolution of load percentage on four processors for 20,000 patrticles.

Figure A.4 — Speed-Up of parallel SPH code



Appendix B

Demonstration of the equivalence
between CSS and CSF formulations

In this Appendix we show the relation between CSS and CSF formulations. We rst
recall the CSF formulation. Assuming that the surface tension coef siéht? is constant
between two uid phases (1 and 2), the expression of the force can be expressed as

FST o= s 2k ngg (8.1)

In equation (B.1)k, n andds denote the curvature, the unit normal vector to the interface
(see gure 4.1) and the delta function, respectively. In the context of the SPH method,
equation (B.1) reads as

Fispl 2= s AR nNC (B.2)

whereC is the color function that has a unit jump across the interface. It's equaintone
particle uid phase and 0 in its neighboring particle of other uid phase.

Now, the Continuum Surface Stress (CSS) formulation reads

FST=N:P (B.3)

Replacing the stress tenddrby its formulation in the equation (B.3) we get:

(B.4)

Sy
FT=N %)MCK,[ ® kRICk kNCk §

M
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The divergence of the rst paft) of the equation (B.4) can be modi ed as
NC . -«
WCk'N NC: (B.5)

Whereas the divergence of the second pldjtcan be written as

N: (kRickl) = R (kRCk) =

- NCc . - NC NC .
o = . +  ——
N: KNCk Ne N KNCk N kKNCk NN
By subtracting the equation (B.6) from equation (B.5), we obtain the Continuum Stress
Surface Force formulation (CSF) (B.7):

(B.6)

. NC . -
ST — oD - :
F sN: KKK NC = sk NC: (B.7)
Wherek describes the interface curvature which is expresséd=as N:n= N ——kﬂgk ,

with :n is the unit normal vector to the interface.



Appendix C

The internal forces associated to the

surface stress tensor are tangent to the
Interface ?

In this appendix, we show that the stress surface tension is tangential to the uid interface.
We can write the surface tension as a volumetric force as follows:

FST=N P (C.1)

WhereP = skNCkl s ?H% NC is the stress surface tensor.

This formulation allows the interpretation of the tension force as a internal body forces of the
continuum medium (as viscous tensor). So, we will investigate if these efforts are carried by

the tangent direction to the interface. For this reason we will applied the stressBeasor
an arbitrary vectorf see gure C.1:

P f=skNCk(f (f:n)n) (C.2)

P f=skNCk Xt f (C.3)

WhereXr is the projection operator on the tangent plane to the interface. Equation (C.3)

indicates that the internal forces associated to the surface stress tensor are tangent to the
interface.
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Figure C.1 — Application of stress surface tenBoon an arbitrary vectof. Wheren andt
are the normal and tangential vectors on the interface, respectively.



Appendix D

Pseudo-code of SPH interfacial
multiphase model.

In this appendix, we summarize the proposed SPH model via a pseudo-code.
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Pseudo-code of SPH interfacial multiphase model.

/* Initialization

The physical proprieties of the heavier phase must be assigned to all uid phases;
The initial particles velocity and pressure are set to zero;

Setco, Po,dt, To, Tend:

while dt it < Tepgdo

end

Search for each particle2 W= Ws [ W its particles neighboy. /* linked list method is employed in this

work. W; and Ws denote the fluid and solid particles, respectively.

/* Damping process
if dt i < Tp then

| Computexp using Eq.4.35;
end
if it = dPethen

|  Assign the real physical proprieties to each uid phase;
end
for i 2 Ws do

| Computepy andvy, using Eqs.5.50 and 5.48, respectively;
end
/* Prediction Step
for i 2 Ws do
Computelip;; FiV® andF;ST using Egs.5.51, 4.26 and 4.20, respectively;
ein+1: Vin+ dt %( Npi"' FiViS+ FiST)n+ Xpg |
e l= N+ dtvh
end
for i 2 Wdo
/* In this loop, the predicted particle velocities and positions are used for the

calculation of Pi, pw and vy.

if i 2 W anddt i Tp then

| ComputeP; using Eq.4.16;
end
if i 2 Ws then

| Computepy, Vi using Egs 5.50 and 5.48, respectively;
end

end

/* Correction Step

for i 2 W do

/* In this loop, the predicted particle velocities and positions are used for the
calculation of  Npi;FV® and F;ST.

ComputeNipi; FiV's andF; ST using Egs.5.51, 4.26 and 4.20, respectively;

Vin+1: % vin_'_ﬁ,in+1 + d% %( Npi"' Fivis+ FiST)n+XDg :

r™l= e devity

end

for i 2 Wt do

/* In this loop, the predicted particle positions are used for the calculation of
thus p.

Computer; andp; using Egs.4.8 and 5.2, respectively;

if dt iy Tpthen

| ComputeP; using Eq.4.16;

end
end
it =i+ 1,
n=n+1;

*/

Algorithm 1: Pseudo-code of SPH interfacial model.

*

*

*/

*/

*/

*/

ri and
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