Skip to Main content Skip to Navigation

Design and Optimisation Methods for Structures produced by means of Additive Layer Manufacturing processes

Abstract : The recent development of Additive Layer Manufacturing (ALM) technologies has made possible new opportunities in terms of design. Complicated shapes and topologies, resulting from dedicated optimisation processes or by the designer decisions, are nowadays attainable. Generally, a Topology Optimisation (TO) step is considered when dealing with ALM structures and today this task is facilitated by commercial software packages, like Altair OptiStruct or Simulia TOSCA. Nevertheless, the freedom granted by ALM is only apparent and there are still major issues hindering a full and widespread exploitation of this technology.The first important shortcoming comes from the integration of the result of a TO calculation into a suitable CAD environment. The optimised geometry is available only in a discretised form, i.e. in terms of Finite Elements (FE), which are retained into the computational domain at the end of the TO analysis. Therefore, the boundary of the optimised geometry is not described by a geometrical entity, hence the resulting topology is not compatible with CAD software that constitutes the natural environment for the designer. A time consuming CAD-reconstruction phase is needed and the designer is obliged to make a considerable amount of arbitrary decisions. Consequently, often the resulting CAD-compatible topology does not meet the optimisation constraints.The second major restriction is related to ALM specific technological requirements that should be integrated directly within the optimisation problem formulation and not later: considering ALM specificity only as post-treatment of the TO task would imply so deep modifications of the component that the optimised configuration would be completely overturned.This PhD thesis proposes a general methodology to overcome the aforementioned drawbacks. An innovative TO algorithm has been developed: it aims at providing a topology description based on purely geometric, intrinsically CAD-compliant entities. In this framework, NURBS and B-Spline geometric entities have been naturally considered and FE analyses are used only to evaluate the physical responses for the problem at hand. In particular, a NURBS/B-Spline geometric entity of dimension D+1 is used to solve the TO problem of dimension D. The D+1 coordinate of the NURBS/B-Spline entity is related to a pseudo-density field that is affected to the generic element stiffness matrix; according to the classical penalisation scheme employed in density-based TO methods.The effectiveness of this approach has been tested on some 2D and 3D benchmarks, taken from literature. The use of NURBS entities in the TO formulation significantly speeds up the CAD reconstruction phase for 2D structures and exhibits a great potential for 3D TO problems. Further, it is proven that geometrical constraints, like minimum and maximum length scales, can be effectively and consistently handled by means of the proposed approach. Moreover, special geometric constraints (not available in commercial tools), e.g. on the local curvature radius of the boundary, can be formulated thanks to the NURBS formulation as well. The robustness of the proposed methodology has been tested by taking into account other mechanical quantities of outstanding interest in engineering, such as buckling loads and natural frequencies.Finally, in spite of the intrinsic CAD-compliant nature of the NURBS-based TO algorithm, some support tools have been developed in order to perform the curve and surface fitting in a very general framework. The automatic curve fitting has been completely developed and an original algorithm is developed for choosing the best values of the NURBS curve parameters, both discrete and continuous. The fundamentals of the method are also discussed for the more complicated surface fitting problem and ideas/suggestions for further researches are provided.
Complete list of metadatas

Cited literature [188 references]  Display  Hide  Download
Contributor : Abes Star :  Contact
Submitted on : Friday, March 15, 2019 - 3:37:14 PM
Last modification on : Monday, March 30, 2020 - 8:46:35 AM


Version validated by the jury (STAR)


  • HAL Id : tel-02069224, version 1


Giulio Costa. Design and Optimisation Methods for Structures produced by means of Additive Layer Manufacturing processes. Chemical and Process Engineering. Ecole nationale supérieure d'arts et métiers - ENSAM, 2018. English. ⟨NNT : 2018ENAM0035⟩. ⟨tel-02069224⟩



Record views


Files downloads