A. N. Pirri, Theory for laser simulation of hypervelocity impact, Physics of Fluids, vol.20, pp.221-228, 1977.

P. E. Nebolsine, Laser simulation of hypervelocity impact, AIAA 14th Aerospace Sciences Meeting, 1976.

, URL www.esa

A. Rossi, C. Pardini, L. Anselmo, A. Cordelli, and P. Farinella, Effects of the rorsat nak drops on the long term evolution of the space debris population, 48th International Astronautical Congress, p.6, 1997.

, URL www.whereisroadster.com, p.6

, Orbital Debris Quarterly News, vol.21, p.6, 2017.

, Space Debris Mitigation Guidelines. IADC, 2007.

M. Shan, J. Guo, and E. Gill, Review and comparison of active space debris capturing and removal methods, Progress in Aerospace Sciences, vol.80, pp.18-32, 2016.
DOI : 10.1016/j.paerosci.2015.11.001

C. R. Phipps, G. Albrecht, H. Friedman, D. Gavel, E. V. Georges et al., Orion : Clearing nearearth space debris using a 20 kw, 530 nm, earth-based, repetively pulsed laser, Laser and Particle Beams, vol.14, issue.8, pp.1-44, 1996.

, URL www.nasa.gov. (Cité pp.10 et 21)

B. G. Cour-palais and J. L. Crews, A multi-shock concept for spacecraft shielding, International Journal of Impact Engineering, vol.10, pp.135-146, 1990.

E. L. Christiansen, J. L. Crews, J. E. Williamsen, J. H. Robinson, and A. M. Nolen, Enhanced meteoroid and orbital debris shielding, International Journal of Impact Engineering, vol.17, pp.217-228, 1995.
DOI : 10.1016/0734-743x(95)99848-l

URL : https://zenodo.org/record/1258555/files/article.pdf

E. L. Christiansen, B. G. Cour-palais, and L. J. Friesen, Extra vehicular activity suit penetration resistance, International Journal of Impact Engineering, vol.23, p.113
DOI : 10.1016/s0734-743x(99)00067-6

R. P. Bernhard, E. L. Christiansen, J. Hyde, and J. L. Crews, Hypervelocity impact damage into space shuttle surfaces, International Journal of Impact Engineering, vol.17, p.11, 1995.
DOI : 10.1016/0734-743x(95)99835-f

R. C. Tennyson and C. Lamontagne, Hypervelocity impact damage to composites
DOI : 10.1016/s1359-835x(00)00029-4

, Composites (Part A : applied science and manufacturing), vol.31, pp.785-794, 2000.

, Columbia Accident Investigation Board, p.11, 2003.

B. G. Cour-palais, Hypervelocity impact in metals, glass and composites, International Journal of Impact Engineering, vol.5, p.11, 1987.
DOI : 10.1016/0734-743x(87)90040-6

A. Chadegani, K. A. Iyer, D. S. Mehoke, and R. C. Batra, Hypervelocity impact of a steel microsphere on fused silica sheets, International Journal of Impact Engineering, vol.80, pp.11-32, 2015.

H. Krag, M. Serrano, V. Braun, P. Kuchynka, M. Catania et al., A 1 cm space debris impact onto the sentinel-1a solar array, Acta Astronautica, vol.137, p.12, 2017.
DOI : 10.1016/j.actaastro.2017.05.010

M. Lambert, F. K. Schäfer, and T. Geyer, Impact damage on sandwich panels and multi-layer insulation, International Journal of Impact Engineering, vol.26, p.12, 2001.
DOI : 10.1016/s0734-743x(01)00108-7

P. Michel, Workshop of the ACO CHOCOLAS : Chocs et applications spatiales, pp.12-14, 2018.

R. M. Canup, Lunar-forming collisions with pre-impact rotation, Icarus, vol.196, pp.518-538, 2008.

J. Gattacceca, A. Lamali, P. Rochette, M. Boustie, and L. Berthe, The effects of explosive-driven shocks on the natural remanent megnetization and the magnetic properties of rocks, Physics of the Earth and planetary interiors, vol.162, p.13, 2007.

P. Rochette, L. Hood, G. Fillion, R. Ballou, and B. Ouladdiaf, Impact demagnetization by phase transition on mars, EOS Transactions, vol.84, p.13, 2003.

A. Tsuchiyama, M. Uesugi, T. Matsushima, T. Michikami, T. Kadono et al., Three-dimensional structure of hayabusa samples : origins and evolution of itokawa regolith, Science, vol.333, p.13, 2011.

P. Michel and A. Morbidelli, Review of the population of impactors and the impact cratering rate in the inner solar system, Meteoritics and Planetary Science, vol.42, p.13, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00388179

G. Neukum, B. König, and J. Arkani-hamed, A study of lunar impact crater size-distributions. The Moon, vol.12, p.14, 1975.

K. Zahnle and M. Low, The collision of jupiter and comet shoemaker-levy 9, Icarus, vol.108, p.14, 1994.

M. F. Hearn, M. J. Belton, W. A. Delamere, J. Kissel, K. P. Klaasen et al., Deep impact : Excavating comet tempel 1. Science, vol.310, p.14, 2005.

Z. Rosenberg, Y. Ashuach, Y. Yeshurun, and E. Dekel, On the main mechanisms for defeating ap projectiles, long rods and shaped charge jets, International Journal of Impact Engineering, vol.36, p.15, 2009.

F. Malaise, Réponse d'une céramique à l'impact d'un barreau à grande vitesse (1500 m/s). Croisement essais dynamiques -modélisation numérique, p.15, 1999.

M. A. Meyers, Dynamic Behavior of Materials

. Wiley, , vol.9780471582625, p.15, 1994.

M. J. Murphy, Shaped-charge penetration in concrete : a unified approach, p.15, 1983.

, URL www-lmj.cea.fr, p.16

Y. Michel, Phénomènes d'impact à haute vitesse sur cibles minces fragiles -Application au projet de laser Megaloule et la problématique des débris spatiaux, p.16, 2007.

Y. Michel, J. Chevalier, C. Durin, C. Espinosa, F. Malaise et al., Hypervelocity impacts on thin brittle targets : Experimental data and sph simulations, International Journal of Impact Engineering, vol.33, pp.27-33, 2006.

P. Pradel, Etude de la compaction dynamique de mousses polymères : expériences et modélisation, 2017.

D. C. Eder, A. E. Koniges, O. Landen, N. D. Masters, A. C. Fisher et al., Debris and shrapnel mitigation procedure for nif experiments, Journal of Physics : Conference Series, vol.112, p.16, 2008.

E. Schneider and F. Schäfer, Hypervelocity impact research -acceleration technology and applications, Advances in Space Research, vol.9, p.17, 2001.

T. F. Thornhill, L. Chhabildas, W. D. Reinhart, and D. L. Davidson, Particle launch to 19 km/s for micro-meteoroid simulation using enhanced three-stage light gas gun hypervelocity launcher techniques, International Journal of Impact Engineering, vol.33, pp.17-19, 2006.

N. Kawai, K. Tsurui, S. Hasegawa, and E. Sato, Single microparticle launching method using two-stage light-gas gun for simulating hypervelocity impacts of micrometeoroids and space debris, Review of scientific instruments, vol.81, p.18, 2010.

, URL www.thiot-ingenierie.com. (Cité pp, vol.18

B. Lexow, M. Wickert, K. Thoma, F. Schäfer, M. H. Poelchau et al., The extra-large light-gas gun of the fraunhofer emi : Applications for impact cratering research, Meteoritics and Planetary Science, vol.48, p.18, 2013.

S. Hasegawa, Y. Hamabe, A. Fujiwara, H. Yano, S. Sasaki et al., Microparticle in japan, International Journal of Impact Engineering, vol.26, p.19, 2001.

A. Shu, A. Collette, K. Drake, E. Grün, M. Horanyi et al., 3 mv hypervelocity dust accelerator at the colorado center for lunar dust and atmospheric studies, Review of scientific instruments, vol.83, p.19, 2012.

P. W. Keaton, G. C. Idzorek, L. J. Rowton, J. D. Seagrave, and G. L. , Stradling. A hypervelocity microparticle impacts laboratory with 100 km/s projectiles, International Journal of Impact Engineering, vol.10, p.19, 1990.

R. Roybal, C. Stein, C. Miglionico, and J. Shively, Laboratory simulation of hypervelocity debris, International Journal of Impact Engineering, vol.17, pp.707-718, 1995.

R. Verker, N. Eliaz, I. Gouzman, S. Eliezer, M. Fraenkel et al., The effect of simulated hypervelocity space debris on polymers, Acta Materialia, vol.52, p.19, 2004.

S. Takasawa, A. M. Nakamusra, T. Kadono, M. Arakawa, K. Dohi et al., Silicate dust size distribution from hypervelocity collisions : implication for dust production in debris disks, The Astrophysical Journal Letters, vol.39, p.19, 2011.

S. Watson and J. E. Field, Integrity of thin, laser-driven flyer plates, Journal of Applied Phisics, vol.88, p.19, 2000.

H. J. Melosh and G. S. Collins, Meteor crater formed by low-velocity impact, Nature, vol.434, p.20, 2005.

K. A. Holsapple and R. M. Schmidt, Point source solutions and coupling parameters in cratering mechanics, Journal of Geophysical Research, vol.92, pp.6350-6376, 1987.

K. A. Holsapple, The scaling of impact processes in planetary sciences, Annual Review of Earth Planetary Sciences, vol.21, pp.333-373, 1993.

R. M. Schmidt and K. R. Housen, Some recent advances in the scaling of impact and explosion cratering, International Journal of Impact Engineering, vol.5, p.30, 1987.

K. R. Housen and K. A. Holsapple, Ejecta from impact crater, Icarus, vol.211, pp.856-875, 2011.

T. D. Resseguier, Communication personnelle, p.21, 2017.

G. Seisson, Etude expérimentale et théorique de l'endommagement du graphite sous sollicitation dynamique -Application aux impacts hypervéloces

F. Hörz, M. Cintala, R. P. Bernhard, and T. H. See, Penetration experiments in aluminum and teflon targets of widely variable thickness, AIP Conference Proceedings, vol.310, pp.27-29, 1994.

C. Pontirolli, A. Rouquand, L. Daudeville, and J. Baroth, Soft projectile impacts analysis on thin reinforced concrete slabs : tests, modelling and simulation, European Journal of Environmental and Civil Engineering, vol.16, pp.26-32, 2012.

W. J. Cantwell and J. Morton, Impact perforation of carbon fibre reinforced plastic, Composites Science and Technology, vol.38, p.26, 1990.

S. Ryan, F. Schaefer, R. Destefanis, and M. Lambert, A ballistic limit equation for hypervelocity impacts on composite honeycom sandwich panel satellite structures

, Advances in Space Research, vol.41, p.26, 2008.

X. Huang, C. Yin, J. Huang, X. Wen, Z. Zhao et al., Hypervelocity impact of tib2-based composites as front bumpers for space shield applications, Materials and Design, vol.97, pp.26-27, 2016.

W. Herrmann and J. S. Wilbeck, Review of hypervelocity penetration theories, International Journal of Impact Engineering, vol.5, p.27, 1987.

W. Harrison, C. Loupias, P. Outrebon, and D. Turland, Experimental data and hydrocode calculations for hypervelocity impacts of stainless steel into aluminium in the 2-8 km/s range, International Journal of Impact Engineering, vol.17, pp.363-374, 1995.

H. Iglseder and E. Igenbergs, Crater morphology at impact velocities between 8 and 17 km/s, International Journal of Impact Engineering, vol.10, pp.27-28, 1990.

Y. Shanbing, S. Gengchen, and T. Qimgming, Experimental laws of cratering for hypervelocity impacts of spherical projectiles into thick target, International Journal of Impact Engineering, vol.15, pp.67-77, 1994.

E. A. Taylor, L. Kay, and N. R. Shrine, Hypervelocity impact on brittle materials of semi-infinite thickness : fracture morphology related to projectile diameter, Advances in Space Research, vol.20, p.29, 1997.

D. Koschny and E. Grün, Impact into ice-silicate mixtures : crater morphologies, volumes, depth-to-diameter ratios, and yield, Icarus, vol.154, pp.391-401, 2001.

S. Latunde-dada, C. Cheesman, D. Day, W. Harrison, and S. Price, Hypervelocity impacts into graphite, Journal of Physics : Conference Series, vol.286, p.12042, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00842145

Y. Tanabe, T. Saitoh, T. Akatsu, and A. Sawaoka, Crater formation of carbon materials by impact of a high velocity sphere, Carbon, vol.33, pp.1547-1552, 1995.

G. Seisson, D. Hébert, L. Hallo, J. Chevalier, F. Guillet et al., Boustie. Penetration and cratering experiments of graphite by 0.5-mm diameter steel spheres at various impact velocities, International Journal of Impact Engineering, vol.70, p.30, 2014.

G. Seisson, D. Hébert, I. Bertron, J. Chevalier, L. Hallo et al., Dynamic cratering of graphite : Experimental results and simulations, International Journal of Impact Engineering, vol.63, pp.32-92, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00980631

R. D. Hornung, A. M. Wissink, and S. R. Kohn, Managing complex data and geometry in parallel structured amr applications, Engineering with Computers

L. E. Senft and S. T. Stewart, Modeling impact cratering in layered surfaces, Journal of Geophysical Research, vol.112, p.32, 2007.

J. W. Swegle, D. L. Hicks, and S. W. Attaway, Smoothed particles hydrodynamics stability analysis, Journal of Computational Physics, vol.116, p.32, 1995.

T. D. Vuyst, R. Vignjevic, and J. C. Campbell, Coupling between meshless and finite element methods, International Journal of Impact Engineering, vol.31, p.33, 2005.

T. J. Holmquist and G. R. Johnson, A computational constitutive model for glass subjected to large strains, high strain rates and high pressures, Journal of Applied Mechanics, vol.78, pp.33-35, 2011.

G. R. Johnson and W. H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, 7th International Symposium on Ballistics, p.34, 2018.

D. J. Steinberg, S. G. Cochran, and M. W. Guinan, A constitutive model for metals applicable at high-strain rate, Journal of Applied Phisics, vol.51, pp.1498-1504, 1980.

J. N. Johnson, Dynamic fracture and spallation in ductile solids, Journal of Applied Physics, vol.52, p.35, 1981.

A. L. Gurson, Continuum theory of ductile rupture by void nucleation and growth : Part i -yield criteria and flow rules for porous ductile media, Journal of Engineering Materials and Technology, p.35, 1977.

G. R. Johnson and W. H. Cook, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engineering Fracture Mechanics, vol.21, p.35, 1985.

M. L. Wilkins, R. D. Streit, and J. E. Reaugh, Cumulative-strain-damage model of ductile fracture : simulation and prediction of engineering fracture tests, p.35, 1980.

G. R. Johnson and T. J. Holmquist, A computational constitutive model for brittle materials subjected to large strains, high strain rates and high pressures, p.35, 1992.

G. R. Johnson and T. J. Holmquist, An improved computational constitutive model for brittle materials, AIP Conference Proceedings, vol.309, p.35, 1994.

G. R. Johnson, T. J. Holmquist, and S. R. Beissel, Response of aluminum nitride (including a phase change) to large strains, high strain rates, and high pressures, Journal of Applied Physics, vol.94, p.35, 2003.

C. Denoual and F. Hild, A damage model for dynamic fragmentation of brittle solids, Computer Methods in Applied Mechanics and Engineering, vol.183, p.35, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00013966

P. Forquin and F. Hild, A probabilistic damage model of the dynamic fragmentation process in brittle materials, Advances in Applied Mechanics, vol.44, p.35, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00521184

B. Erzar, Ecaillage, cratérisation et comportement en traction dynamique de bétons sous impact : approches expérimentales et modélisation, p.36, 2010.

J. Thouvenin, Action d'onde de choc sur un solide poreux, Le journal de Physique, vol.27, p.36, 1966.
DOI : 10.1051/jphys:01966002703-4018300

URL : https://hal.archives-ouvertes.fr/jpa-00206385

P. J. Torvik, On the attenuation of diverging shock waves in a porous material, p.36, 1971.

W. Herrmann, Constitutive equation for dynamic compaction of ductile porous materials, Journal of Applied Physics, vol.40, p.36, 1969.

L. Seaman, R. E. Tokheim, and D. R. Curran, Computational representation of constitutive relation for porous material, pp.37-38, 1974.

J. Grün, R. Decoste, B. H. Ripin, and J. Gardner, Characteristics of ablation plasma from planar, laser-driven targets, Applied Physics Letters, p.41, 1981.

R. Dautray and J. Watteau, La fusion thermonucléaire inertielle par laser, Commissariat à l'Energie Atomique, p.41, 1993.

, Bibliographie 190

C. R. Phipps, T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne et al.,

X. F. Anderson, L. C. Corlis, H. S. Haynes, K. C. Steele, T. R. Spicochi et al., Impulse coupling to targets in vacuum by krf, hf and co2 single-pulse lasers, Journal of Applied Physics, vol.64, p.41, 1988.

L. Berthe, R. Fabbro, P. Peyre, and E. Bartnicki, Wavelength dependent of laser shock-wave generation in the water-confinement regime, Journal of Applied Physics, vol.85, p.43, 1999.

L. Tollier, R. Fabbro, and E. Bartnicki, Study of the laser-driven spallation process by the velocity interferometer system for any reflector interferometry technique. i. laser-shock characterization, Journal of Applied Physics, vol.83, pp.1224-1230, 1998.

J. Cuq-lelandais, M. Boustie, L. Berthe, T. De-resseguier, P. Combis et al.,

M. Colombier, A. Nivard, and . Claverie, Spallation generated by femtosecond laser driven shocks in thin metallic targets, Journal of Physics D : Applied Physics, vol.42, p.43, 2009.
URL : https://hal.archives-ouvertes.fr/ujm-00365878

A. Deom, D. D. De-lavergne, and D. L. Balageas, 6th International Conference on Erosion and Solid Impact, pp.47-48, 1983.

C. E. Swain, The effect of particle/shock layer interaction on reentry vehicle performance, AIAA 10th Thermophysics Conference, p.47, 1975.

J. Bibring, F. Cottet, M. Hallouin, Y. Langevin, and J. Romain, Simulation laser d'impacts de particules de très grande vitesse, Journal de Physique -Lettres, vol.44, p.47, 1983.
DOI : 10.1051/jphyslet:01983004405018900

URL : https://hal.archives-ouvertes.fr/jpa-00232179/file/ajp-jphyslet_1983_44_5_189_0.pdf

S. R. Borodziuk, J. L. Kostecki, and J. Marczak, Laser simulation of impact of particles and foil acceleration, Proceedings of SPIE : Laser Technology II, vol.859, p.48, 1987.

S. R. Borodziuk and J. L. Kostecki, Studies of hypervelocity impact problem by mean of laser-target experiments -a new approach, Laser and Particle Beam, vol.8, pp.241-245, 1990.

S. R. Borodziuk, A. Kasperczuk, and T. Pisarczyk, Application of laser simulation method for the analysis of crater formation experiment on pals laser, Czechoslovak Journal of Physics, vol.53, p.48, 2003.

B. Arad, S. Eliezer, I. Gilath, E. Moshe, and C. G. Simon, Laser simulation of hypervelocity impacts in space, Transactions on the Built Environment, vol.19, pp.431-440, 1996.

. Bibliographie,

K. Nagaki, T. Kadono, T. Sakaiya, T. Kondo, K. Kurosawa et al., Recovery of entire shocked samples in a range of pressure from 100gpa to hugoniot elastic limit. The Moon, vol.51, p.48, 2016.

L. M. Barker and R. E. Hollenbach, Laser interferometer for measuring high velocities of any reflecting surface, Journal of Applied Physics, vol.43, p.57, 1972.
DOI : 10.1063/1.1660986

O. T. Strand, D. R. Goosman, C. Martinez, T. L. Whitworth, and W. W. Kuhlow, Compact system for high-speed velocimetry using heterodyne techniques, Review od Scientific Instruments, vol.77, issue.083108, p.58, 2006.
DOI : 10.1063/1.2336749

M. L. Wilkins, Calculation of elastic-plastic flow, p.61, 1963.

M. L. Wilkins, Use of artificial viscosity in multidimensional fluid dynamic calculations, Journal of Computational Physics, vol.36, issue.80, p.61, 1980.

P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, Journal of Computational Physics, vol.54, p.61, 1984.

S. Bardy, Contrôle et optimisation du test d'adhérence par choc laser sur assemblages collés, pp.62-63, 2017.

B. Jodar, Damage and fragmentation of a porous graphite under high dynamic pressures, pp.63-102, 2014.

S. Bardy, B. Aubert, L. Berthe, P. Combis, D. Hebert et al., Numerical study of laser ablation on aluminum for shock-wave applications : development of a suitable model by comparison with recent experiments, Optical Engineering SPIE, vol.56, pp.63-102, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01494304

, URL www.poco.com, p.64

R. G. Sheppard, D. Morgan, D. M. Mathes, and D. J. Bray, Properties and characteristics of graphite for the EDM industry, pp.64-65, 2002.

, Bibliographie 192

D. Hebert, G. Seisson, J. Rullier, I. Bertron, J. Chevalier et al., Hypervelocity impacts into porous graphite : experiments and simulations, Philosophical Transactions of the Royal Society of London A : Mathematical, Physical and Engineering Sciences, vol.375, p.82, 2017.

B. Jodar, G. Seisson, D. Hebert, I. Bertron, M. Boustie et al., Enhancement of a dynamic porous model considering compression-release hysteresis behavior : application to graphite, Journal of Physics D : Applied Physics, vol.49, p.89, 2016.

C. , Approche probabiliste du comportement à l'impact du carbure de silicium : application aux blindages moyens, pp.91-92, 1998.

J. Wackerle, H. L. Stacy, and J. C. Dallman, Refractive index for shocked windows in interface velocimetry, Proceedings of SPIE, vol.0832, pp.111-159, 1988.
DOI : 10.1117/12.942211

V. V. Semak and A. Matsunawa, The role of recoil pressure in energy balance during laser material processing, Journal of Physics D : Applied Physics, vol.30, p.121, 1997.

B. Jodar, Comportement dynamique sous choc de verres métalliques massifs, p.178, 2018.