Spontaneous decoherence in large Rydberg systems - PASTEL - Thèses en ligne de ParisTech Accéder directement au contenu
Thèse Année : 2018

Spontaneous decoherence in large Rydberg systems

Décohérence spontanée dans les grands ensembles d'atomes de Rydberg

Résumé

Quantum simulation consists in engineering well-controlled artificial systems that are ruled by the idealized models proposed by the theorists. Such toy models can be produced with individual atoms, where laser beams control individual atomic states and interatomic interactions. In particular, exciting atoms into a highly excited state (called a Rydberg state) allows to control individual atoms and taylor interatomic interactions with light. In this thesis, we investigate experimentally two different types of Rydberg-based quantum simulators and identify some possible limitations.At the Joint Quantum Institute, we observe the decoherence of an ensemble of up to 40000 Rydberg atoms arranged in a cubic geometry. Starting from the atoms prepared in a well-defined Rydberg state, we show that the spontaneous apparition of population in nearby Rydberg states leads to an avalanche process. We identify the origin of the mechanism as stimulated emission induced by black-body radiation followed by a diffusion induced by the resonant dipole-dipole interaction. We describe our observations with a steady-state mean-field analysis. We then study the dynamics of the phenomenon and measure its typical timescales. Since decoherence is overall negative for quantum simulation, we propose several solutions to mitigate the effect. Among them, we discuss the possibility to work at cryogenic temperatures, thus suppressing the black-body induced avalanche.In the experiment at Laboratoire Charles Fabry (Institut d'Optique), we analyze the limitation of a quantum simulator based on 2 and 3 dimensional arrays of up to 70 atoms trapped in optical tweezers and excited to Rydberg states. The current system is limited by the lifetime of the atomic structure. We show that working at cryogenic temperatures could allow to increase the size of the system up to N=300 atoms. In this context, we start a new experiment based on a 4K cryostat. We present the early stage of the new apparatus and some study concerning the optomechanical components to be placed inside the cryostat.
La simulation quantique consiste à réaliser expérimentalement des systèmes artificiels équivalent à des modèles proposés par les théoriciens. Pour réaliser ces systèmes, il est possible d'utiliser des atomes dont les états individuels et les interactions sont contrôlés par la lumière. En particulier, une fois excités dans un état de haute énergie (appelé état de Rydberg), les atomes peuvent être contrôlés individuellement et leurs interactions façonnées arbitrairement par des faisceaux laser. Cette thèse s'intéresse à deux types de simulateurs quantiques à base d'atomes de Rydberg, et en particulier à leurs potentielles limitations.Dans l'expérience du Joint Quantum Institute (USA), nous observons la décohérence dans une structure cubique contenant jusqu'à 40000 atomes. A partir d'atomes préparés dans un état de Rydberg bien défini, nous constatons l'apparition spontanée d'états de Rydberg voisins et le déclenchement d'un phénomène d'avalanche. Nous montrons que ce mécanisme émane de l'émission stimulée produite par le rayonnement du corps noir. Ce phénomène s'accompagne d'une diffusion induite par des interactions de type dipole-dipole résonant. Nous complétons ces observations avec un modèle de champ moyen en état stationnaire. Dans un second temps, l'étude de la dynamique du problème nous permet de mesurer les échelles de temps caractéristiques. La décohérence étant globalement néfaste pour la simulation quantique, nous proposons plusieurs solutions pour en atténuer les effets. Nous évaluons notamment la possibilité de travailler dans un environnement cryogénique, lequel permettrait de réduire le rayonnement du corps noir.Dans l'expérience du Laboratoire Charles Fabry à l'Institut d'Optique (France), nous analysons les limites d'un simulateur quantique générant des structures bi- et tridimensionnelles allant jusqu'à 70 atomes de Rydberg piégés individuellement dans des pinces optiques. Le système actuel étant limité par le temps de vie des structures, nous montrons que l'utilisation d'un cryostat permettrait d'atteindre des tailles de structures jusqu'à 300 atomes. Nous présentons les premiers pas d'une nouvelle expérience utilisant un cryostat à 4K, et en particulier les études amont pour le développement de composants optomécaniques placés sous vide et à froid.
Fichier principal
Vignette du fichier
80735_MAGNAN_2018_archivage.pdf (46.18 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02084130 , version 1 (29-03-2019)

Identifiants

  • HAL Id : tel-02084130 , version 1

Citer

Eric Magnan. Spontaneous decoherence in large Rydberg systems. Optics [physics.optics]. Université Paris Saclay (COmUE), 2018. English. ⟨NNT : 2018SACLO008⟩. ⟨tel-02084130⟩
223 Consultations
138 Téléchargements

Partager

Gmail Facebook X LinkedIn More