, Relative H 1 -error e k pµq for some time nodes k € K tr and M 121. Top left: pod 10 ¡2

B. Almroth, P. Stern, and F. Brogan, Automatic choice of global shape functions in structural analysis, Aiaa Journal, vol.16, issue.5, pp.525-528, 1978.

M. S. Andersen, J. Dahl, and L. Vandenberghe, Cvxopt: A python package for convex optimization, 2008.

J. Argaud, B. Bouriquet, F. De-caso, H. Gong, Y. Maday et al., Sensor placement in nuclear reactors based on the generalized empirical interpolation method, J. Comput. Phys, vol.363, pp.354-370, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01522987

M. Balajewicz, D. Amsallem, and C. Farhat, Projection-based model reduction for contact problems, Internat. J. Numer. Methods Engrg, vol.106, issue.8, pp.644-663, 2016.

M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations, C. R. Math. Acad. Sci, vol.339, issue.9, pp.667-672, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00021702

A. Barrett and G. Reddien, On the reduced basis method, Z. Angew. Math. Mech, vol.75, issue.7, pp.543-549, 1995.

M. Baudin, A. Dutfoy, B. Iooss, and A. Popelin, Openturns: An industrial software for uncertainty quantification in simulation, 2015.

A. Benaceur, V. Ehrlacher, A. Ern, and S. Meunier, A Progressive Reduced Basis/Empirical Interpolation Method for Nonlinear Parabolic Problems, SIAM J. Sci. Comput, vol.40, issue.5, pp.2930-2955, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01599304

M. Berveiller, Eléments finis stochastiques: approches intrusive et non intrusive pour des analyses de fiabilité, 2005.

P. Binev, A. Cohen, W. Dahmen, R. Devore, G. Petrova et al., Convergence rates for greedy algorithms in reduced basis methods, SIAM J. Math. Anal, vol.43, issue.3, pp.1457-1472, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00767082

G. Blatman, Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis, 2009.
URL : https://hal.archives-ouvertes.fr/tel-00440197

A. Buffa, Y. Maday, A. T. Patera, C. Prud'homme, and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis method, ESAIM Math. Model. Numer. Anal, vol.46, issue.3, pp.595-603, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00659314

F. Casenave, A. Ern, and T. Lelì, Accurate and online-efficient evaluation of the a posteriori error bound in the reduced basis method, ESAIM Math. Model. Numer. Anal, vol.48, issue.1, pp.207-229, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00761735

S. Chaturantabut and D. C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput, vol.32, issue.5, pp.2737-2764, 2010.

P. Chen and C. Schwab, Sparse-grid, reduced-basis Bayesian inversion, Comput. Methods Appl. Mech. Engrg, vol.297, pp.84-115, 2015.

Y. Chen, J. S. Hesthaven, Y. Maday, and J. Rodríguez, Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2D Maxwell's problem, M2AN Math. Model. Numer. Anal, vol.43, issue.6, pp.1099-1116, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00976057

C. Daversin and C. Prud'homme, Simultaneous empirical interpolation and reduced basis method for non-linear problems, C. R. Math. Acad. Sci, vol.353, issue.12, pp.1105-1109, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219063

M. Drohmann, B. Haasdonk, and M. Ohlberger, Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation, SIAM J. Sci. Comput, vol.34, issue.2, pp.937-969, 2012.

F. Electricité-de, Finite element code aster , analysis of structures and thermomechanics for studies and research. Open source on www.code-aster.org, 1989.

A. Ern and J. Guermond, Theory and practice of finite elements, Applied Mathematical Sciences, vol.159, 2004.

J. Fauque, I. Ramì, and D. Ryckelynck, Hybrid hyper-reduced modeling for contact mechanics problems, Internat. J. Numer. Methods Engrg, vol.115, issue.1, pp.117-139, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01853252

S. Fu?ík, A. Kratochvíl, and J. Ne?as, Ka?anov-Galerkin method and its application. Acta Universitatis Carolinae, Mathematica et Physica, vol.15, issue.1, pp.31-33, 1974.

M. A. Grepl, Certified reduced basis methods for nonaffine linear time-varying and nonlinear parabolic partial differential equations, Math. Models Methods Appl. Sci, vol.22, issue.3, p.40, 2012.

M. A. Grepl, Y. Maday, N. C. Nguyen, and A. T. Patera, Efficient reducedbasis treatment of nonaffine and nonlinear partial differential equations, M2AN Math. Model. Numer. Anal, vol.41, issue.3, pp.575-605, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00112154

M. Gubisch and S. Volkwein, Chapter 1: Proper orthogonal decomposition for linear-quadratic optimal control, Model Reduction and Approximation, pp.3-63

B. Haasdonk, Convergence rates of the POD-greedy method, ESAIM Math. Model. Numer. Anal, vol.47, issue.3, pp.859-873, 2013.

B. Haasdonk, J. Salomon, and B. Wohlmuth, A reduced basis method for parametrized variational inequalities, SIAM J. Numer. Anal, vol.50, issue.5, pp.2656-2676, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00595597

F. Hecht, New developments in freefem++, 2012.

H. Hertz, Uber die berührung fester elastischer körper, Journal für die reine und angewandte Mathematik, vol.1882, issue.92, pp.156-171, 1882.

J. S. Hesthaven, G. Rozza, and B. Stamm, Certified reduced basis methods for parametrized partial differential equations, BCAM Basque Center for Applied Mathematics, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01223456

M. Hinze and S. Volkwein, Proper orthogonal decomposition surrogate models for nonlinear dynamical systems: error estimates and suboptimal control, Dimension reduction of large-scale systems, vol.45, pp.261-306, 2005.

K. C. Hoang, P. Kerfriden, B. C. Khoo, and S. P. Bordas, An efficient goaloriented sampling strategy using reduced basis method for parametrized elastodynamic problems, Numer. Methods Partial Differential Equations, vol.31, issue.2, pp.575-608, 2015.

D. B. Huynh, D. J. Knezevic, Y. Chen, J. S. Hesthaven, and A. T. Patera, A natural-norm successive constraint method for inf-sup lower bounds, Comput. Methods Appl. Mech. Engrg, vol.199, pp.1963-1975, 2010.

D. B. Huynh, G. Rozza, S. Sen, and A. T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and infsup stability constants, C. R. Math. Acad. Sci, vol.345, issue.8, pp.473-478, 2007.

K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math, vol.90, issue.1, pp.117-148, 2001.

D. D. Lee and H. S. Seung, Algorithms for non-negative matrix factorization, Proceedings of the 13th International Conference on Neural Information Processing Systems, NIPS'00, pp.535-541, 2000.

L. Machiels, Y. Maday, I. B. Oliveira, A. T. Patera, and D. V. Rovas, Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems, C. R. Acad. Sci. Paris Sér. I Math, vol.331, issue.2, pp.153-158, 2000.

Y. Maday and O. Mula, A generalized empirical interpolation method: application of reduced basis techniques to data assimilation, Analysis and numerics of partial differential equations, pp.221-235, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00812913

Y. Maday, N. C. Nguyen, A. T. Patera, and G. S. Pau, A general multipurpose interpolation procedure: the magic points, Commun. Pure Appl. Anal, vol.8, issue.1, pp.383-404, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00174797

Y. Maday, A. T. Patera, J. D. Penn, and M. Yano, A parameterized-background data-weak approach to variational data assimilation: formulation, analysis, and application to acoustics, Internat. J. Numer. Methods Engrg, vol.102, issue.5, pp.933-965, 2015.

A. Manzoni and F. Negri, Heuristic strategies for the approximation of stability factors in quadratically nonlinear parametrized PDEs, Adv. Comput. Math, vol.41, issue.5, pp.1255-1288, 2015.

S. Meunier, J. Ferrari, J. Rit, D. Hersant, and J. P. Mathieu, On the influence of flows in clearances for thermal shocks in a globe valve, p.2017

, Pressure Vessels and Piping Conference, pp.2-02, 2017.

F. Negri, A. Manzoni, and G. Rozza, Reduced basis approximation of parametrized optimal flow control problems for the Stokes equations, Comput. Math. Appl, vol.69, issue.4, pp.319-336, 2015.

B. Noble and J. W. Daniel, Applied Linear Algebra, 1988.

A. Noor and J. Peters, Reduced basis technique for nonlinear analysis of structures, Aiaa journal, vol.18, issue.4, pp.455-462, 1980.

C. Prud'homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday et al., Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods, Journal of Fluids Engineering, vol.124, issue.1, pp.70-80, 2001.

C. Prud'homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday et al., Reduced-basis output bound methods for parametrized partial differential equations, Proceedings SMA Symposium, 2002.

A. Quarteroni, A. Manzoni, and F. Negri, Reduced basis methods for partial differential equations. La Matematica per il 3+2, 2016.

D. V. Rovas, L. Machiels, and Y. Maday, Reduced-basis output bound methods for parabolic problems, IMA J. Numer. Anal, vol.26, issue.3, pp.423-445, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00112600

T. Taddei, An adaptive parametrized-background data-weak approach to variational data assimilation, ESAIM Math. Model. Numer. Anal, vol.51, issue.5, pp.1827-1858, 2017.

T. Taddei and A. Patera, A localization strategy for data assimilation; application to state estimation and parameter estimation, SIAM J. Sci. Comput, vol.40, issue.2, pp.611-636, 2018.

K. Urban and B. Wieland, Affine decompositions of parametric stochastic processes for application within reduced basis methods, IFAC Proceedings Volumes, vol.45, pp.716-721, 2012.

K. Veroy and A. T. Patera, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds, Internat. J. Numer. Methods Fluids, vol.47, issue.8-9, pp.773-788, 2005.