Skip to Main content Skip to Navigation
Theses

Algorithmic structure for geometric algebra operators and application to quadric surfaces

Résumé : L'algèbre géométrique est un outil permettant de représenter et manipuler les objets géométriques de manière générique, efficace et intuitive. A titre d'exemple, l'Algèbre Géométrique Conforme (CGA), permet de représenter des cercles, des sphères, des plans et des droites comme des objets algébriques. Les intersections entre ces objets sont incluses dans la même algèbre. Il est possible d'exprimer et de traiter des objets géométriques plus complexes comme des coniques, des surfaces quadriques en utilisant une extension de CGA. Cependant due à leur représentation requérant un espace vectoriel de haute dimension, les implantations de l'algèbre géométrique, actuellement disponible, n'autorisent pas une utilisation efficace de ces objets. Dans ce manuscrit, nous présentons tout d'abord une implantation de l'algèbre géométrique dédiée aux espaces vectoriels aussi bien basses que hautes dimensions. L'approche suivie est basée sur une solution hybride de code pré-calculé en vue d'une exécution rapide pour des espaces vectoriels de basses dimensions, ce qui est similaire aux approches de l'état de l'art. Pour des espaces vectoriels de haute dimension, nous proposons des méthodes de calculs ne nécessitant que peu de mémoire. Pour ces espaces, nous introduisons un formalisme récursif et prouvons que les algorithmes associés sont efficaces en termes de complexité de calcul et complexité de mémoire. Par ailleurs, des règles sont définies pour sélectionner la méthode la plus appropriée. Ces règles sont basées sur la dimension de l'espace vectoriel considéré. Nous montrons que l'implantation obtenue est bien adaptée pour les espaces vectoriels de hautes dimensions (espace vectoriel de dimension 15) et ceux de basses dimensions. La dernière partie est dédiée à une représentation efficace des surfaces quadriques en utilisant l'algèbre géométrique. Nous étudions un nouveau modèle en algèbre géométrique de l'espace vectoriel $mathbb{R}^{9,6}$ pour manipuler les surfaces quadriques. Dans ce modèle, une surface quadrique est construite par l'intermédiaire de neuf points. Nous montrerons que ce modèle permet non seulement de représenter de manière intuitive des surfaces quadriques mais aussi de construire des objets en utilisant les définitions de CGA. Nous présentons le calcul de l'intersection de surfaces quadriques, du vecteur normal, du plan tangent à une surface en un point de cette surface. Enfin, un modèle complet de traitement des surfaces quadriques est détaillé
Document type :
Theses
Complete list of metadatas

Cited literature [123 references]  Display  Hide  Download

https://pastel.archives-ouvertes.fr/tel-02085820
Contributor : Abes Star :  Contact
Submitted on : Sunday, March 31, 2019 - 7:15:27 PM
Last modification on : Wednesday, February 26, 2020 - 7:06:07 PM
Document(s) archivé(s) le : Monday, July 1, 2019 - 12:16:26 PM

File

TH2018PESC1142.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02085820, version 1

Collections

Citation

Stéphane Breuils. Algorithmic structure for geometric algebra operators and application to quadric surfaces. Operator Algebras [math.OA]. Université Paris-Est, 2018. English. ⟨NNT : 2018PESC1142⟩. ⟨tel-02085820⟩

Share

Metrics

Record views

231

Files downloads

559