, Chapitre 1er : Dispositions générales relatives à la sécurité nucléaire, article l591-1.code de l'environnement, livre v : Prévention des pollutions, des risques et des nuisances, titre ix : La sécurité nucléaire et les installations nucléaires de base, 2012.

Z. A. Moschovidis and T. Mura, Two-ellipsoidal inhomogeneities by the equivalent inclusion method, Journal of Applied Mechanics, vol.42, p.1975

J. Abate and W. Whitt, A unified framework for numerically inverting laplace transforms, INFORMS Journal on Computing, vol.18, issue.4, p.45, 2006.

G. Abiar, Cinétique de dessiccation et déformations différées du béton (analyse et modé-lisation), p.11, 1986.

A. Aili, M. Vandamme, J. Torrenti, and B. Masson, Is long-term autogenous shrinkage a creep phenomenon induced by capillary effects due to self-desiccation?, vol.108, p.15, 2018.

G. E. Archie, The electrical resistivity log as an aid in determining some reservoir characteristics, Transactions of the American Institute of Mining and Metallurgical Engineers, vol.146, pp.54-62, 1942.

I. Avramov, The role of stress development and relaxation on crystal growth in glass, Journal of Non-Crystalline Solids, vol.353, issue.30, p.55, 2007.

M. Azenha, F. Magalhães, R. Faria, and A. Cunha, Measurement of concrete emodulus evolution since casting: A novel method based on ambient vibration, Cement and Concrete Research, vol.40, issue.7, p.40, 2010.

C. Badulescu, N. Lahellec, and P. Suquet, Field statistics in linear viscoelastic composites and polycrystals, vol.49, p.10, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01108248

J. Barthélémy, A. Giraud, F. Lavergne, and J. Sanahuja, The eshelby inclusion problem in ageing linear viscoelasticity, International Journal of Solids and Structures, vol.73, p.10, 0198.

B. Bary, C. Bourcier, and T. Helfer, Analytical and 3d numerical analysis of the thermoviscoelastic behavior of concrete-like materials including interfaces, Advances in Engineering Software, vol.112, p.64, 2017.

B. Bary, M. B. Haha, E. Adam, and P. , Numerical and analytical effective elastic properties of degraded cement pastes, Cement and Concrete Research, vol.39, issue.10, p.64, 2009.

C. Bazant and A. Walser, Creep and shrinkage in reactor containment shells, Journal of Structural Engineering, vol.101, issue.10, pp.2117-2131, 1975.

Z. Ba?ant, Viscoelasticity of solidifying porous material -concrete, p.10, 1977.

Z. Bazant, Viscoelasticity of solidifying porous material -concrete, CBI Forsk, issue.5, p.80, 1977.

Z. Bazant, Thermodynamics of solidifying or melting viscoelastic material, Journal of Engineering Mechanics -ASCE, vol.105, issue.6, p.53

Z. Bazant, Material models for structural creep analysis, p.86, 1988.

Z. P. Bazant, Viscoelasticity of solidifying porous material -concrete, ASCE J Eng Mech Div, vol.103, issue.6, pp.1049-1067, 1977.

Z. P. Bazant and J. C. Chern, Concrete creep at variable humidity: constitutive law and mechanism, Materials and Structures, vol.18, issue.1, p.11, 1985.

Z. P. Ba?ant, Numerical determination of long-range stress history from strain history in concrete, Matériaux et Constructions, vol.5, issue.3, p.58, 1972.

Z. P. Ba?ant, Prediction of concrete creep and shrinkage: past, present and future, Nuclear Engineering and Design, vol.203, issue.1, p.51, 2001.

Z. P. Ba?ant, A. A. Asghari, and J. Schmidt, Experimental study of creep of hardened portland cement paste at variable water content, Matériaux et Constructions, vol.9, issue.4, p.11, 1976.

Z. R. Ba?ant and G. ,

. Li, Comprehensive database on concrete creep and shrinkage, ACI Materials Journal, vol.105, issue.6, p.13, 2008.

F. Benboudjema, Modélisation des déformations différées du béton sous sollicitations biaxiales. Application aux enceintes de confinement de bâtiments réacteurs des centrales nucléaires, 2002.

O. Bernard, F. Ulm, and E. Lemarchand, A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials, Cement and Concrete Research, vol.33, issue.9, p.9, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00139284

J. J. Biernacki and T. Xie, An advanced single particle model for c3s and alite hydration: Single particle model for c3s hydration, Journal of the American Ceramic Society, vol.94, issue.7, pp.2037-2047, 2011.

S. Bishnoi and K. L. Scrivener, Studying nucleation and growth kinetics of alite hydration using ic, Cement and Concrete Research, vol.39, issue.10, p.201, 2009.

V. Blanc, L. Barbie, R. Largeiiton, and R. Masson, Homogenization of linear viscoelastic three phase media: Internal variable formulation versus full-field computation, Procedia Engineering, vol.10, p.10, 2011.

L. Boltzmann, Zur theorie der elastischen nachwirkung

. Physik, , pp.430-432

A. Boumiz, Mechanical properties of cement pastes and mortars at early ages evolution with time and degree of hydration, Advanced Cement Based Materials, vol.3, issue.3-4, p.40, 1996.

M. Briffaut, F. Benboudjema, J. Torrenti, and G. Nahas, Concrete early age basic creep: Experiments and test of rheological modelling approaches, Construction and Building Materials, vol.36, issue.36, p.60, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00860290

J. Brooks, 3 -dimensional stability and cracking processes in concrete, p.13, 2007.

J. J. Brooks, 30-year creep and shrinkage of concrete. Magazine of Concrete Research, vol.57, p.13, 2005.

P. W. Brown, J. Pommersheim, and G. Frohnsdorff, A kinetic model for the hydration of tricalcium silicate, Cement and Concrete Research, vol.15, issue.1, p.201, 1985.

R. D. Browne and R. Blundell, The influence of loading age and temperature on the long term creep behaviour of concrete in a sealed, moisture stable, state. Matériaux et Constructions, vol.2, p.12, 1969.

B. Budiansky, On the elastic moduli of some heterogeneous materials, Journal of the Mechanics and Physics of Solids, vol.13, issue.4, p.36, 1965.

J. W. Bullard, A determination of hydration mechanisms for tricalcium silicate using a kinetic cellular automaton model, Journal of the American Ceramic Society, vol.91, issue.7, pp.2088-2097, 2008.

J. W. Bullard and R. J. Flatt, New insights into the effect of calcium hydroxide precipitation on the kinetics of tricalcium silicate hydration, Journal of the American Ceramic Society, vol.93, issue.7, p.1894, 2010.

J. W. Bullard, H. M. Jennings, R. A. Livingston, A. Nonat, G. W. Scherer et al., Mechanisms of cement hydration, vol.41, pp.1208-1223, 2011.

J. Byfors, Plain concrete at early ages. Swedish Cement and Concrete Research Institute, p.40, 1980.

I. Carol and Z. K. , Ba ant. Viscoelasticity with aging caused by solidification of nonaging constituent, Journal of Engineering Mechanics, vol.119, issue.11, p.53, 1993.

P. P. Castañeda, New variational principles in plasticity and their application to composite materials, Journal of the Mechanics and Physics of Solids, vol.40, issue.8, pp.1757-1788, 1992.

W. Y. Yang, R. Huang, and I. Sue, Aggregate effect on elastic moduli of cementbased composite materials, Journal of Marine Science and Technologyc, vol.3, issue.1, pp.5-10, 1995.

L. Charpin, Y. L. Pape, E. Coustabeau, E. Toppani, G. Heinfling et al., A 12year edf study of concrete creep under uniaxial and biaxial loading, Cement and Concrete Research, vol.103, pp.140-159, 2018.

L. Charpin, Y. L. Pape, E. Coustabeau, B. Masson, and J. Montalvo, Edf study of 10-year concrete creep under unidirectional and biaxial loading: Evolution of the poisson coefficient under sealed and unsealed conditions

G. Constantinides and F. Ulm, The effect of two types of c-s-h on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling, Cement and Concrete Research, vol.34, issue.1, p.9, 2004.

C. W. Correns, Growth and dissolution of crystals under linear pressure, Discuss. Faraday Soc, vol.5, p.55, 1949.

U. J. Counto, The effect of the elastic modulus of the aggregate on the elastic modulus, creep and creep recovery of concrete, vol.16, pp.129-138, 1964.

. Bibliographie,

A. Courtois, J. Henault, A. Simon, Y. Beck, and J. Salin, La surveillance en exploitation des enceintes de confinement et des aéroréfrigérants à tirage naturel du parc nucléaire d'edf, Revue Générale Nucléaire, issue.2, pp.49-59, 2011.

O. Coussy, Mechanics of porous continua, 1995.

S. ,

S. T. For-creep and . Shrinkage, Measurement of time-dependent strains of concrete, Materials and Structures, vol.31, issue.8, pp.507-512, 1998.

S. ,

S. T. For-creep and . Shrinkage, Measurement of time-dependent strains of concrete, Materials and Structures, vol.31, issue.8, p.11, 1998.

T. Crochon, T. Schönherr, C. Li, and M. Lévesque, On finite-element implementation strategies of schapery-type constitutive theories, Mechanics of Time-Dependent Materials, vol.14, issue.4, p.10, 2010.

B. Delsaute, New approach for monitoring and modeling of the creep and shrinkage behaviour of cement pastes, mortars and concretes since setting time, p.133, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01565742

S. Diamond, The microstructure of cement paste and concrete--a visual primer. Cement and Concrete Composites, vol.26, p.25, 2004.

W. P. Dias, G. A. Khoury, and P. J. Sullivan,

, Roorkee University Research Journal, vol.12, pp.37-47, 1970.

C. F. Dunant, B. Bary, A. B. Giorla, C. Péniguel, J. Sanahuja et al., A critical comparison of several numerical methods for computing effective properties of highly heterogeneous materials, Advances in Engineering Software, vol.58, pp.1-12, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00804043

F. Dupray, Comportement du béton sous fort confinement : Étude en compression et en extension triaxiales à l'échelle mésoscopique

V. F. Dutra, S. Maghous, A. C. Filho, and A. R. Pacheco, A micromechanical approach to elastic and viscoelastic properties of fiber reinforced concrete, Cement and Concrete Research, vol.40, issue.3, pp.460-472, 2010.

Y. E. Assami, Homogenization of non-ageing linearly viscoelastic materials by the equivalent inclusion method : application to cementitious materials, p.46, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01235752

J. Escoda, Modélisation morphologique et micromécanique 3d de matériaux cimentaires, 2012.

J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, p.34, 1226.

J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, p.36, 1226.

R. J. Flatt, G. W. Scherer, and J. W. Bullard, Why alite stops hydrating below 80 relative humidity, Cement and Concrete Research, vol.41, issue.9, p.12, 2011.

A. Foucault, S. Michel-ponnelle, and E. Galenne, A new creep model for npp containment behaviour prediction, 2012.

E. Gal and R. Kryvoruk, Meso-scale analysis of frc using a two-step homogenization approach, Computational Fluid and Solid Mechanics, vol.89, issue.11, pp.921-929, 2011.

E. Galenne and B. Masson, A new mock-up for evaluation of the mechanical and leaktightness behaviour of npp containment building, Proc., CCSC 2012, 2012.

E. Galenne, S. Michel-ponnelle, J. Salin, G. Moreau, J. Sanahuja et al., The aim of computational methods for managing concrete structures in nuclear power plants, vol.1, pp.51-60, 2014.

E. J. Garboczi and J. G. Berryman, Elastic moduli of a material containing composite inclusions: effective medium theory and finite element computations, Mechanics of Materials, vol.33, issue.8, pp.455-470, 2001.

S. Garrault, E. Finot, E. Lesniewska, and A. Nonat, Study of c-s-h growth on c3s surface during its early hydration, Materials and Structures, vol.38, issue.4, p.221, 2005.

J. Garrigues, M¡ ecani ue es milieu# continus, p.33, 2001.

J. Gaver and D. P. , Observing stochastic processes, and approximate transform inversion, Operations Research, vol.14, issue.3, p.45, 1966.

J. R. Troxell and R. Davis, Long-time creep and shrinkage tests of plain and reinforced concrete, p.13, 1958.

M. P. Kommendant and D. Pirtz, Study of concrete properties for prestressed concrete reactor vessels, 1976.

P. Glover, What is the cementation exponent? a new interpretation, The Leading Edge, vol.28, issue.1, p.214, 2009.

P. W. Glover, Archie's law -a reappraisal, p.214, 2016.

J. Glucklich and O. Ishai, Creep mechanism in cement mortar, Journal Proceedings, vol.59, p.11, 1962.

K. S. Gopalakrishnan, A. M. Neville, and A. Ghali, Elastic and time-dependent effects of aggregate-matrix interaction, Matériaux et Construction, vol.3, issue.4, pp.225-236, 1970.

M. Gottapu and J. J. Biernacki, A multi-ionic continuum-based model for c3 s hydration, Journal of the American Ceramic Society, vol.98, issue.10, pp.3029-3041, 2015.

L. Granger, Comportement différé du béton dans les enceintes de centrales nucléaires : analyse et modélisation

Z. C. Grasley and D. A. Lange, Constitutive modeling of the aging viscoelastic properties of portland cement paste, Mechanics of Time-Dependent Materials, vol.11, issue.3, pp.175-198, 2007.

S. T. Gu, B. Bary, Q. C. He, and M. Q. Thai, Multiscale poro creep model for cement based materials, International Journal for Numerical and Analytical Methods in Geomechanics, vol.36, issue.18, pp.1932-1953, 2012.
DOI : 10.1002/nag.1080

URL : https://hal.archives-ouvertes.fr/hal-00833803

K. K. Rusch and H. Hilsdorf, Der einfluss des mineralogischen charakters der zuschlage auf das kriechen von beton, p.13, 1962.

T. Hansen, Theories of multi-phase materials applied to concrete, cement mortar and cement paste, pp.16-23, 1966.

Z. Hashin, Viscoelastic behavior of heterogeneous media, Journal of Applied Mechanics, vol.32, issue.3, pp.630-636, 1965.
DOI : 10.1115/1.3627270

Z. Hashin and S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials, Journal of the Mechanics and Physics of Solids, vol.11, issue.2, pp.127-140, 1963.

M. Hassan, B. Pichler, R. Reihsner, and C. Hellmich, Elastic and creep properties of young cement paste, as determined from hourly repeated minute-long quasistatic tests, Cement and Concrete Research, vol.82, p.60, 2016.

N. Herrmann, H. S. Müller, S. Michel-ponnelle, B. Masson, and M. Herve, The pace-1450 experiment -investigations regarding crack and leakage behaviour of a prestressed concrete containment, pp.1487-1495, 2018.

E. Herve and A. Zaoui, n-layered inclusion-based micromechanical modelling, International Journal of Engineering Science, vol.31, issue.1, pp.1-10, 1993.
DOI : 10.1016/0020-7225(93)90059-4

A. Hilaire, Étude des déformations différées des bétons en compression et en traction, du jeune au long terme : application aux enceintes de confinement, p.7, 2014.

A. Hilaire, F. Benboudjema, A. Darquennes, Y. Berthaud, and G. Nahas, Modeling basic creep in concrete at early-age under compressive and tensile loading, The International Conference on Structural Mechanics in Reactor Technology (SMiRT21), vol.269, pp.222-230, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01727359

R. Hill, A self-consistent mechanics of composite materials, Journal of the Mechanics and Physics of Solids, vol.13, issue.4, p.36, 1965.

T. J. Hirsch, Modulus of elasticity of concrete affected by elastic moduli of cement paste matrix and aggregate, vol.59, 1962.

T. Honorio, B. Bary, and F. Benboudjema, Multiscale estimation of ageing viscoelastic properties of cement-based materials: A combined analytical and numerical approach to estimate the behaviour at early age, Cement and Concrete Research, vol.85, p.23, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01695959

T. Honorio, B. Bary, J. Sanahuja, and F. Benboudjema, Effective properties of ncoated composite spheres assemblage in an ageing linear viscoelastic framework, International Journal of Solids and Structures, vol.124, p.63, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01896677

S. Huang, J. Sanahuja, L. Dormieux, B. Bary, E. Lemarchand et al., Double scale model of the aging creep of low density hydrates of cement paste, p.22

K. Ioannidou, K. J. Krakowiak, M. Bauchy, C. G. Hoover, E. Masoero et al., Mesoscale texture of cement hydrates, Proceedings of the National Academy of Sciences, vol.113, issue.8, p.73, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01455017

U. G. Michel and P. Suquet, Constitutive relations involving internal variables based on a micromechanical analysisc, p.10, 2002.

L. Jason and B. Masson, Comparison between continuous and localized methods to evaluate the flow rate through containment concrete structures, Nuclear Engineering and Design, vol.277, pp.146-153, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01221726

A. R. Jayapalan, M. L. Jue, K. E. Kurtis, and D. Viehland, Nanoparticles and apparent activation energy of portland cement, Journal of the American Ceramic Society, vol.97, issue.5, p.11, 2014.

M. Juenger, H. Lamour, P. Monteiro, E. Gartner, and G. Denbeaux, Direct observation of cement hydration by soft x-ray transmission microscopy, Journal of Materials Science Letters, vol.22, issue.19, pp.1335-1338, 2003.

P. Juilland, E. Gallucci, R. Flatt, and K. Scrivener, Dissolution theory applied to the induction period in alite hydration, Cement and Concrete Research, vol.40, issue.6, p.221, 2010.

H. Kada-benameur, E. Wirquin, and B. Duthoit, Determination of apparent activation energy of concrete by isothermal calorimetry. Cement and Concrete Research, vol.30, p.11, 2000.

D. M. Kirby and J. J. Biernacki, The effect of water-to-cement ratio on the hydration kinetics of tricalcium silicate cements: Testing the two-step hydration hypothesis, Cement and Concrete Research, vol.42, issue.8, pp.1147-1156, 2012.

A. Kumar, S. Bishnoi, and K. L. Scrivener, Modelling early age hydration kinetics of alite, Cement and Concrete Research, vol.42, issue.7, p.201, 2012.

N. Lahellec and P. Suquet, Effective response and field statistics in elasto-plastic and elasto-viscoplastic composites under radial and non-radial loadings, International Journal of Plasticity, vol.42, pp.1-30, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00753819

R. Largenton, J. Michel, and P. Suquet, Extension of the nonuniform transformation field analysis to linear viscoelastic composites in the presence of aging and swelling, Mechanics of Materials, vol.73, p.10, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00978984

F. D. Larrard, Structures granulaires et formulation des bétons, 2000.

F. Lavergne, Contribution to the study of the time-dependent strains of viscoelastic composite materials, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01300510

F. Lavergne, K. Sab, J. Sanahuja, M. Bornert, and C. Toulemonde, Investigation of the effect of aggregates' morphology on concrete creep properties by numerical simulations, vol.71, pp.14-28, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01134837

F. Lavergne, K. Sab, J. Sanahuja, M. Bornert, and C. Toulemonde, Homogenization schemes for aging linear viscoelastic matrix-inclusion composite materials with elongated inclusions, International Journal of Solids and Structures, vol.80, p.86, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01310904

Q. V. Le, F. Meftah, Q. He, and Y. L. Pape, Creep and relaxation functions of a heterogeneous viscoelastic porous medium using the mori-tanaka homogenization scheme and a discrete microscopic retardation spectrum, Mechanics of Time-Dependent Materials, vol.11, issue.3, p.43, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00833860

R. L. Roy, F. L. Maou, and J. M. Torrenti, Long term basic creep behavior of high performance concrete: data and modelling, Materials and Structures, vol.50, issue.1, p.251, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01430831

. Bibliographie,

R. L'hermite and M. Mamillan, Nouveaux résultats et récentes études sur le fluage du béton, Matériaux et Construction, vol.2, issue.1, p.12, 1969.

X. Li, Z. C. Grasley, J. W. Bullard, and E. J. Garboczi, Computing the time evolution of the apparent viscoelastic/viscoplastic poisson's ratio of hydrating cement paste. Cement and Concrete Composites, vol.56, p.23, 2015.

X. Li, Z. C. Grasley, E. J. Garboczi, and J. W. Bullard, Modeling the apparent and intrinsic viscoelastic relaxation of hydrating cement paste. Cement and Concrete Composites, vol.55, pp.322-330, 2015.

B. Lothenbach, K. Scrivener, and R. D. Hooton, Supplementary cementitious materials, Cement and Concrete Research, vol.41, issue.3, p.25, 2011.

B. Lothenbach and F. Winnefeld, Thermodynamic modelling of the hydration of portland cement, Cement and Concrete Research, vol.36, issue.2, p.25, 2006.

F. U. Luc-dormieux, Djimédo Kondo. Microporomechanics, p.29, 2006.

S. Maghous and G. J. Creus, Periodic homogenization in thermoviscoelasticity: case of multilayered media with ageing, International Journal of Solids and Structures, vol.40, issue.4, p.10, 2003.

L. Maia, M. Azenha, R. Faria, and J. Figueiras, Identification of the percolation threshold in cementitious pastes by monitoring the e-modulus evolution. Cement and Concrete Composites, vol.34, p.40, 2012.

L. Maia, M. Azenha, M. Geiker, and J. Figueiras, E-modulus evolution and its relation to solids formation of pastes from commercial cements, Cement and Concrete Research, vol.42, issue.7, p.40, 2012.

J. Mandel, Sur les corps viscoelastiques lineaires dont les proprietes dependent de lage. Comptes rendus hebdomadaires des séances de l'académie des sciences, vol.247, pp.175-178, 1958.

J. Mandel, Cours de mécanique des milieux continus, p.44, 1966.

E. Masoero, J. J. Thomas, and H. M. Jennings, A reaction zone hypothesis for the effects of particle size and water-to-cement ratio on the early hydration kinetics of c3s

, Journal of the American Ceramic Society, vol.97, issue.3, p.201, 2014.

B. Masson, La durée de fonctionnement des enceintes de confinement, Revue Générale Nucléaire, issue.3, pp.64-68, 2015.

R. Masson, R. Brenner, and O. Castelnau, Incremental homogenization approach for ageing viscoelastic polycrystals, Comptes Rendus Mécanique, vol.340, p.57, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01205563

J. Mazars, F. Hamon, and S. Grange, A new 3d damage model for concrete under monotonic, cyclic and dynamic loadings, Materials and Structures, vol.48, issue.11, pp.3779-3793, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01753975

J. C. Michel and P. Suquet, Nonuniform transformation field analysis, International Journal of Solids and Structures, vol.40, issue.25, p.10, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00088331

V. Monchiet and G. Bonnet, A polarization based fft iterative scheme for computing the effective properties of elastic composites with arbitrary contrast, International Journal for Numerical Methods in Engineering, vol.89, issue.11, p.10, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00687816

P. J. Monteiro, A note on the hirsch model, Cement and Concrete Research, vol.21, issue.5, pp.947-950, 1991.

T. Mori and K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, vol.21, issue.5, pp.571-574, 1973.

H. Moulinec and F. Silva, Comparison of three accelerated fft based schemes for computing the mechanical response of composite materials, International Journal for Numerical Methods in Engineering, vol.97, issue.13, p.10, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00787089

H. Moulinec and P. Suquet, A numerical method for computing the overall response of nonlinear composites with complex microstructure, Computer Methods in Applied Mechanics and Engineering, vol.157, issue.1, pp.69-94, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01282728

J. C. Nadeau, A multiscale model for effective moduli of concrete incorporating itz water-cement ratio gradients, aggregate size distributions, and entrapped voids, Cement and Concrete Research, vol.33, issue.1, pp.103-113, 2003.

A. Neville, Properties of concrete, p.13, 2011.

A. M. Neville, W. H. Dilger, and J. J. Brooks, Creep of plain and structural concrete. 1983. Includes bibliographical references and indexes, p.13

T. T. Nguyen, B. Bary, and T. De-larrard, Coupled carbonation-rust formationdamage modeling and simulation of steel corrosion in 3d mesoscale reinforced concrete, vol.74, p.64, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01738407

J. D. Peter-atkins, Atkins' physical chemistry, 2002.

B. Pichler and C. Hellmich, Upscaling quasi-brittle strength of cement paste and mortar: A multi-scale engineering mechanics model, Cement and Concrete Research, vol.41, issue.5, p.41, 2011.

B. Pichler, C. Hellmich, and J. Eberhardsteiner, Spherical and acicular representation of hydrates in a micromechanical model for cement paste: prediction of early-age elasticity and strength, Acta Mechanica, vol.203, issue.3, pp.137-162, 2009.

B. Pichler, C. Hellmich, J. Eberhardsteiner, J. Wasserbauer, P. Termkhajornkit et al., Effect of gel-space ratio and microstructure on strength of hydrating cementitious materials: An engineering micromechanics approach, vol.45, p.41, 2013.

B. Pichler, M. Shahidi, and C. Hellmich, Interfacial micromechanics assessment of classical rheological models. i: Single interface size and viscosity, Journal of Engineering Mechanics, vol.142, issue.3, p.51, 2016.

S. E. Pihlajavaara, A review of some of the main results of a research on the ageing phenomena of concrete: Effect of moisture conditions on strength, shrinkage and creep of mature concrete, Cement and Concrete Research, vol.4, issue.5, p.11, 1974.

T. Powers and T. Brownyard, Studies of the physical properties of hardened portland cement paste, 1948.

S. Prasannan and Z. K. , Ba ant. Solidification theory for concrete creep. i: Formulation, Journal of Engineering Mechanics, vol.115, issue.8, p.53, 1989.

S. Problem and C. Vuik, Some historical notes about the stefan problem, p.202, 1994.

O. C. Vu, R. Brenner, and H. Moulinec, Une methode incrementale pour l'homogeneisation viscelastique lineaire de polycristaux, p.10, 2011.

J. Ricaud and R. Masson, Effective properties of linear viscoelastic heterogeneous media: Internal variables formulation and extension to ageing behaviours, International Journal of Solids and Structures, vol.46, issue.7, p.57, 2009.

I. G. Richardson, The nature of the hydration products in hardened cement pastes. Cement and Concrete Composites, vol.22, p.25, 2000.

F. Riesz, B. Sz, and . Nagy, Functional analysis, p.159, 1990.

, Rilem draft recommendation: Tc-242-mdc multi-decade creep and shrinkage of concrete: material model and structural analysis: Model b4 for creep, drying shrinkage and autogenous shrinkage of normal and high-strength concretes with multi-decade applicability, Materials and Structures, vol.48, issue.4, p.11, 2015.

P. Rossi, N. Godart, J. L. Robert, J. P. Gervais, and D. Bruhat, Investigation of the basic creep of concrete by acoustic emission, Materials and Structures, vol.27, issue.9, p.510, 1994.

. Bibliographie,

P. Rossi, J. Tailhan, F. L. Maou, L. Gaillet, and E. Martin, Basic creep behavior of concretes investigation of the physical mechanisms by using acoustic emission, Cement and Concrete Research, vol.42, issue.1, pp.61-73, 2012.

Y. Rougier, C. Stolz, and A. Zaoui, Représentation spectrale en viscoélasticité linéaire des matériaux hétérogènes. Comptes Rendus de l'Academie des, Sciences Serie II, vol.316, pp.1517-1522, 1993.

R. L. Roy, Déformations instantanées et différées des bétons à hautes performances, 1996.

J. Salençon, Viscoélasticité pour le calcul des structures, p.151, 2009.

D. L. , .. P. Sanahuja, J. , and C. Toulemonde, Modélisation micro-macro du fluage propre du béton, vol.43, p.22, 2009.

J. Sanahuja, Efficient homogenization of ageing creep of random media: Application to solidifying cementitious materials

J. Sanahuja, Effective behaviour of ageing linear viscoelastic composites: Homogenization approach, International Journal of Solids and Structures, vol.50, issue.19, pp.2846-2856, 2013.

J. Sanahuja, Homogenization of solidifying random porous media: Application to ageing creep of cementitious materials, 2015.

J. Sanahuja and M. D. Ciaccio, From micromechanisms to mechanical behaviour: An application to the ageing creep of a cement paste, CONCREEP 2015: Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures -Proceedings of the 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures, pp.1024-1027, 2015.

J. Sanahuja and L. Dormieux, Creep of a c-s-h gel: a micromechanical approach, vol.82, p.51, 2010.

J. Sanahuja, L. Dormieux, and G. Chanvillard, Modelling elasticity of a hydrating cement paste, Cement and Concrete Research, vol.37, issue.10, pp.1427-1439, 2007.

J. Sanahuja, L. Dormieux, and G. Chanvillard, A reply to the discussion "does c-s-h particle shape matter?" f.-j. ulm and h. jennings of the paper "modelling 241 BIBLIOGRAPHIE elasticity of a hydrating cement paste, vol.38, p.41, 2007.

J. Sanahuja and S. Huang, Mean-field homogenization of time-evolving microstructures with viscoelastic phases: Application to a simplified micromechanical model of hydrating cement paste, Journal of Nanomechanics and Micromechanics, vol.7, issue.1, p.4016011, 2017.

J. Sanahuja, S. Huang, L. Dormieux, B. Bary, and E. Lemarchand, Relating microstructure development to ageing creep: application to vercors concrete

J. Sanahuja, S. Huang, L. Dormieux, B. Bary, E. Lemarchand et al., Porous materials undergoing time-dependent phase transformations: Effective ageing viscoelasticity, p.85

J. Sanahuja, N. Tran, L. Charpin, and L. Petit, Material properties prediction for long term operation of nuclear power plants civil engineering structures: challenges at edf, p.12, 2016.

C. L. Sanahuja, J. Tran, N. , and P. L. ,

, Vi(ca)2t v2 : can a concrete material properties simulation code be both physics-based and engineer-friendly, 2016.

R. Schapery, Approximate methods of transform inversion for viscoelastic stress analysis. 2, 01 1962

S. Scheiner and C. Hellmich, Continuum microviscoelasticity model for aging basic creep of early-age concrete, Journal of Engineering Mechanics, vol.135, issue.4, p.58, 2009.

G. W. Scherer, Crystallization in pores, Cement and Concrete Research, vol.29, issue.8, p.55, 1999.

G. W. Scherer, Stress from crystallization of salt, Cement and Concrete Research, vol.34, issue.9, p.55, 2004.

A. Sellier, L. Lacarrière, S. Multon, T. Vidal, and X. Bourbon, Nonlinear basic creep and drying creep modeling, 2012.

M. Shahidi, B. Pichler, and C. Hellmich, Viscous interfaces as source for material creep: A continuum micromechanics approach, European Journal of Mechanics -A/Solids, vol.45, p.51, 2014.

L. Stefan, F. Benboudjema, J. Torrenti, and B. Bissonnette, Prediction of elastic properties of cement pastes at early ages, Computational Materials Science, vol.47, issue.3, p.27, 2010.

H. Stehfest, Algorithm 368: Numerical inversion of laplace transforms

. Commun,

, , vol.13, pp.47-49, 1970.

H. Stehfest, Algorithm 368: Numerical inversion of laplace transforms

, Communications of the ACM, vol.13, issue.1, p.45, 1970.

A. F. Stock, D. J. Hannantt, and R. I. Williams, The effect of aggregate concentration upon the strength and modulus of elasticity of concrete, vol.31, pp.225-234, 1979.

E. Stora and Q. , He and B. Bary. Influence of inclusion shapes on the effective linear elastic properties of hardened cement pastes, Cement and Concrete Research, vol.36, issue.7, p.41, 2006.

A. Subhashini, P. C. , and C. A. , Science, Avinashi Road. A new approach on denoising for 1d, 2d and 3d images based on discrete wavelet transformation and thresholding, International Journal of Advanced Research in Computer Science, vol.9, issue.1, pp.708-710, 2018.

Z. Sun, G. Ye, and S. Shah, Microstructure and early-age properties of portland cement paste -effects of connectivity of solid phases, ACI Materials Journal, vol.102, issue.2, p.40, 2005.

P. Sémété, B. Février, Y. L. Pape, J. Delorme, J. Sanahuja et al., Concrete desorption isotherms and permeability determination: effects of the sample geometry, European Journal of Environmental and Civil Engineering, vol.21, issue.1, pp.42-62, 2017.

B. T. Tamtsia and J. J. Beaudoin, Basic creep of hardened cement paste a re-examination of the role of water, Cement and Concrete Research, vol.30, issue.9, p.52, 2000.

B. T. Tamtsia, J. J. Beaudoin, and J. Marchand, The early age short-term creep of hardening cement paste: load-induced hydration effects. Cement and Concrete Composites, vol.26, p.251, 2004.

J. Taplin, A method for following the hydration reaction in portland cement paste, Aust. J. Appl. Sci, vol.10, issue.3, p.40, 1959.

P. Termkhajornkit, Q. H. Vu, R. Barbarulo, S. Daronnat, and G. , Chanvillard. Dependence of compressive strength on phase assemblage in cement pastes: Beyond gel-space ratio -experimental evidence and micromechanical modeling, Cement and Concrete Research, vol.56, p.41, 2014.

J. M. Torrenti and F. Benboudjema, Mechanical threshold of cementitious materials at early age. Materials and Structures, vol.38, p.42, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00023122

. Bibliographie,

N. W. Tschoegl, C. A. Tschoegl, and S. O. Service, Phenomenological theory of linear viscoelastic behavior : An introduction, p.153, 1989.

F. Ulm, F. L. Maou, and C. Boulay, Creep and shrinkage coupling: New review of some evidence, REVUE FRANCAISE DE GENIE CIVIL, vol.3, pp.21-38, 1999.

A. Ulrik-nilsen and P. J. Monteiro, Concrete: A three phase material, Cement and Concrete Research, vol.23, issue.1, pp.147-151, 1993.

M. Vandamme and F. ,

. Ulm, Nanoindentation investigation of creep properties of calcium silicate hydrates, Cement and Concrete Research, vol.52, pp.38-52, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00840477

K. Velez, S. Maximilien, D. Damidot, G. Fantozzi, and F. Sorrentino, Determination by nanoindentation of elastic modulus and hardness of pure constituents of portland cement clinker, Cement and Concrete Research, vol.31, issue.4, p.39, 0197.

K. Velez and F. Sorrentino, Characterization of cementitious materials by nanoindentation, Kurdowski Symp. on Science of Cement and Concrete, p.39, 2001.

V. Volterra, Sopra le funzioni che dipendono da altre funzioni, p.57

V. Volterra, Theory of functionals and of integral and integro-differential equations, p.57, 2005.

Q. H. Vu, R. Brenner, O. Castelnau, H. Moulinec, and P. Suquet, A self-consistent estimate for linear viscoelastic polycrystals with internal variables inferred from the collocation method. Modelling and Simulation in, Materials Science and Engineering, vol.20, issue.2, p.24003, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00718324

V. Waller, Relations entre composition des bétons, exothermie en cours de prise et ré-sistance en compression, p.11, 2000.

E. Wiechert, Ueber elastische nachwirkung, inaugural-dissertation ... am 19. februar 1889 ... vertheidigt von emil wiechert

E. Wiechert, Gesetze der elastischen nachwirkung für constante temperatur, Annalen der Physik, vol.286, issue.10, p.153, 1893.

F. H. Wittman, Creep and shrinkage in concrete structures, 1982.

F. H. Wittmann, Creep and shrinkage mechanisms, p.51, 1982.

T. Xie and J. J. Biernacki, The origins and evolution of cement hydration models, Computers and Concrete, vol.8, issue.6, p.201, 2011.

M. P. Yssorche-cubaynes and J. Ollivier, La microfissuration d'autodessiccation et la durabilité des bhp et bthp. Materials and Structures, vol.32, p.12, 1999.

A. Zaoui, Continuum micromechanics: Survey, Journal of Engineering Mechanics, vol.128, issue.8, p.29, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00111366

P. Zdenllk, Theory of creep and shrinkage in 'concrete structures: A ·precis of recent developments, p.86

Q. Zhang, R. L. Roy, M. Vandamme, and B. Zuber, Long-term creep properties of cementitious materials: Comparing microindentation testing with macroscopic uniaxial compressive testing, Cement and Concrete Research, vol.58, pp.89-98, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00955330

X. Zhang, Y. Yang, and C. K. Ong, A novel way of estimation of the apparent activation energy of cement hydration using microwave technique, Journal of Materials Science, vol.34, issue.13, p.11, 1999.

V. ?milauer and Z. P. Ba?ant, Identification of viscoelastic c-s-h behavior in mature cement paste by fft-based homogenization method, Cement and Concrete Research, vol.40, issue.2, pp.197-207, 2010.

, Liste des tableaux 2

, 38 2.2 Material and Kinetics Parameters Used in Applications

, Material parameters used in the application

, Material parameters used in the application (stresses are normalized by the

, Young's modulus E 0 of the initial solid phase, and times are normalized by the characteristic ageing time ? )

, by the referenced Young's modulus E 0 , and times are normalized by the characteristic ageing time ? )

, Denomination of the experiments described and their acronyms, p.102

, Average porosity of the samples of cement paste

, Average porosity of the samples of mortar

. .. , Average porosity of the samples of the VeRCoRs concrete, p.105

, Compressive strengths of the cement paste samples at the age of loading=1 day, vol.115

, Compressive strengths of the cement paste samples at the age of loading=3 days, vol.116

, Compressive strengths of the cement paste samples at the age of loading=7 days, vol.116

, Compressive strengths of the cement paste samples at the age of loading=28 days, vol.117

, Compressive strengths of the cement paste samples at the age of loading=90 days, vol.117

, Compressive strengths of the VeRCoRs concrete samples at the age of loading=7 days

, Compressive strengths of the VeRCoRs concrete samples at the age of loading=28 days

, Compressive strengths of the VeRCoRs concrete samples at the age of loading=90 days

, 16 weighing for the different experiments

, Mass evolution for each material and age of loading

. Liste and . Tableaux, Constant mechanical properties of materials at different scales for the VeRCoRs concrete

, Identified parameters at the scale of cement paste

, Identified parameters at the scale of mortar

, Identified parameters at the scale of the VeRCoRs concrete, p.185

. .. C-?-s-?-h-gel, 191 12.2 Mechanical parameters (stiffness and viscosities) for each phase, p.193

, E : Young's modulus, ? : Poisson's ratio, ? : Maxwell characteristic time of sliding sheets), Morphological and mechanical input data (? : aspect-ratio, ? : porosity

, Material Properties of Multi-Ionic Single Particle Model

, 11 (a) Volume fraction evolution of the solid phases (f _s_continue and f _s_discr) in a small mixture REV (blue : discrete volume fraction evolution ; green : continuous volume fraction evolution) ; (b) Relaxation functions (red curves) and elastic moduli (blue : discrete volume fraction evolution ; green : continuous volume fraction evolution) of a small mixture, Equilibrium Constants and Material Properties That Were Fixed in the MultiIonic

, fraction evolution of the small mixture phases (f _sm_continue and f _sm_discr) in the "Low density" hydrates REV (blue : discrete volume fraction evolution ; green : continuous volume fraction evolution) ; (b) Volume fraction evolution of the solid phases in the "Low density" hydrates REV ; (c) Relaxation functions (red curves) and elastic moduli (blue : discrete volume fraction evolution ; green : continuous volume fraction evolution) of outer hydrates, vol.6, p.83

, Mix design of cement paste

, Mix design of the VeRCoRs concrete

, 92 8.6 Photos of the parallelepipedic metal molds (4cm × 4cm × 16cm) (Left : empty molds ; Right : molds during the manufacture of specimens)

.. .. Hobart,

. .. , Equipment to measure the density of manufactured material, p.96

, Equipment to carry out the Marsh Cone Fluidity (EN445) Lab Test, p.97

. .. , Equipment to carry out the Aerometer test (1 liter), p.98

. .. Manual-water-pump,

, Timeline of tests on Bench 1 and Bench

, Timeline of tests on Bench 3 and Bench 4

, Timeline of tests on Bench 5 and Bench 6

, A sample used for the porosity measurements

. .. , Sawing equipment of cement paste and mortar specimens, p.107

, Instrumentation stand with the mounting brackets

, Scope of delivery for Glue X60 (SG)

, Re-sealing the windows with the X60 glue

, Left : upper plate (with the ball joint at the back)

, Small size NDC specimen completely sealed

, Compressive strength test on cement paste on the MTS press of the laboratory, vol.115

. .. Cea-lecba, Compressive strength test on the VeRCoRs concrete at, p.116

, Evolution of the Young's modulus of the samples of cement paste, p.119

. .. , Evolution of the Young's modulus of the samples of mortar, p.119

, Evolution of the Young's modulus of the samples of the VeRCoRs concrete, p.120

, Autogenous shrinkage and creep specimens on a big test bench, p.120

, Screw/nut system used to adjust the range of the displacement sensors, p.121

, 20 Final configuration of a small NDS specimen

, Example : temperature evolution of the environment of the creep experiment (the VeRCoRs concrete with the age of loading = 90 days)

. .. , Example : longitudinal displacement evolution of the specimen (Left : under load period, Right : unload period, mortar with the age of loading = 7 days), p.133

, Example : comparison of the evolution of the temperature as a function of the real time and as a function of the reference temperature (the VeRCoRs concrete with the age of loading = 90 days)

, Right : the total strain of the creep and the basic creep, mortar with the age of loading = 7 days), Example : strain evolution of the specimen (Left : the shrinkage strain

. .. , Example : strain/stress evolution of the specimen (Left : under load period, Right : recovery period, mortar with the age of loading = 7 days), p.136

, Example : Comparison of the strain/stress evolution with and without the correction of time, the VeRCoRs concrete with the age of loading = 90 days), p.137

, Compliance evolution : loading age effect (t0 = age at the end of loading ramp), p.138

, Flowchart of the Nonlinear Least Squares Optimization

. .. , Response of a stress ramp followed by a constraint stress load : experimental result (dotted line) and analytical result (continuous line), p.148

, Example : evolution of E(t 0 ) as functions of t 0 , scale of VeRCoRs concrete, p.149

, Example : evolution of C(t 0 ) as functions of t 0 , scale of VeRCoRs concrete, p.149

, Example : evolution of ? (t 0 ) as functions of t 0 , scale of VeRCoRs concrete, p.150

, Example : evolution of the basic creep compliance and comparison of the modeling results with the experimental results, scale of VeRCoRs concrete, t 0 = 7 days

, Example : evolution of the basic creep compliance and comparison of the modeling results with the experimental results, scale of VeRCoRs concrete, t 0 = 28 days

, Example : Effective uniaxial compliance [157] functions of mortar (w/c = 0.525), plotted for age of loading t 0 =28 days. Comparison between the experimental results on mortar (2 dotted lines) and the upscaling using the Mori-Tanaka homogenization scheme (green continuous line based on the parameters as functions of t 0, Example : evolution of the basic creep compliance and comparison of the modeling results with the experimental results, scale of VeRCoRs concrete, t 0 = 90 days

. .. Maxwell-wiechert-model, 13 Example : Effective uniaxial compliance [157] functions of mortar (w/c = 0.525) based on the generalized Maxwell model, plotted for age of loading t 0 =90 days. Comparison between the experimental results on mortar (2 dotted lines) and the upscaling using the Mori-Tanaka homogenization scheme

. .. , 161 11.16 Example : Basic creep compliance evolution of the specimen. Left : logarithmic function result, Flowchart of the Nonlinear Least Squares Optimization

. .. , 18 Example : evolution of C(t 0 ) as function of t 0 , cement paste scale, Example : evolution of E(t 0 ) as function of t 0 , cement paste scale, vol.163, p.167

, Example : evolution of the basic creep compliance and comparison of the modeling results with the experimental results, p.168

, 169 11.24 Example : evolution of C(t 0 ) of the two creep test benches as functions of t 0 , cement paste scale, Example : evolution of E(t 0 ) of the two creep test benches as functions of t 0 , cement paste scale

, Example : evolution of ? (t 0 ) of the two creep test benches as functions of t 0 , cement paste scale

, Evolution of displacement measured by the 3 LVDT displacement sensors installed on the Bench 2 for the creep experiment at cement paste scale with the age of loading t 0 = 90 days

, 175 11.30 Example : evolution of the basic creep compliance and comparison of the modeling results with the experimental results, mortar scale, Difference between the initial tangent modulus and the secant modulus, vol.176

, Example : evolution of the basic creep compliance and comparison of the modeling results with the experimental results, mortar scale, t 0 = 90 days, p.177

, Example : evolution of the basic creep compliance and comparison of the modeling results with the experimental results, mortar scale, t 0 = 365 days, p.177

, Example : evolution of E(t 0 ) of the Creep test as functions of t 0 with comparison of two methods to identify the experimental value E(t 0 ), scale of mortar, p.178

, Example : evolution of E(t 0 ) of the two creep test benches as functions of t 0 , the VeRCoRs concrete scale

, Example : evolution of C(t 0 ) of the two creep test benches as functions of t 0 , the VeRCoRs concrete scale

, Example : evolution of ? (t 0 ) of the two creep test benches as functions of t 0 , the VeRCoRs concrete scale

, Evolution of loaded force, of temperature and of displacement measured by the 3 LVDT displacement sensors installed on the Bench 2 for the creep experiment at the scale of the VeRCoRs concrete with the age of loading t 0 = 28 days, p.180

, Example : evolution of ? (t 0 ) of the two creep test benches as functions of t 0 , the VeRCoRs concrete scale

, Example : evolution of E(t 0 ) of the Creep test as functions of t 0 with comparison of simple compression test results and of two methods to identify the experimental value E(t 0 ), scale of the VeRCoRs concrete

, Uniaxial creep compliance rate for cement paste samples loaded at different ages. Dots are experimental data. Lines are obtained from hybrid models of creep for C(t 0 )

, Uniaxial creep compliance rate for mortar samples loaded at different ages. Dots are experimental data. Lines are obtained from hybrid models of creep for C(t 0 ), p.183

, Uniaxial creep compliance rate for the VeRCoRs concrete samples loaded at different ages. Dots are experimental data. Lines are obtained from hybrid models of creep for C(t 0 )

]. .. , 193 12.3 Comparisons between ageing creep compliance modeling results and basic creep experimental results

, Multiscale morphological model of cement paste (schematic 2D representation of 3D model)

, Snapshots at hydration degrees ? = 0, 0.4, 0.7 of time-dependent morphological models of hydrating cement paste (schematic 2D representation of 3D model)

, Progressive transformation of anhydrous to inner products and densification of outer products due to precipitation of hydrates (AIO, anhydrous-inner-outer) is considered

, Uniaxial creep compliance of C-S-H gel (non ageing linear viscoelastic), anhydrous and aggregates (both elastic)

, Uniaxial basic creep compliance of cement paste of the VeRCoRs concrete for loadings at t 0 = 1, 3, 7, 28, 90 days, as a function of time. Blue line : modelled using the anhydrous-inner-outer (AIO) morphology at the paste scale. Cyan line : experimental data from EDF described in the Part II

. .. , Illustration of the REV in one-dimensional spherical coordinate system, p.205

. .. , Normalized position of the interface S(t), function of time, p.209

, Normalized concentration of the ion at the interface ? interf ace (t), function of time, vol.209

, Comparison of the time and the normalized concentration of the ion at the interface ? as functions of ?