R. Karch, F. Neumann, M. Neumann, and W. Schreiner, A threedimensional model for arterial tree representation, generated by constrained constructive optimization, Computers in biology and medicine, vol.29, issue.1, pp.19-38, 1999.

A. Kamiya and T. Togawa, Optimal branching structure of the vascular tree, The Bulletin of mathematical biophysics, vol.34, issue.4, pp.431-438, 1972.

W. Schreiner and P. F. Buxbaum, Computer-optimization of vascular trees, Biomedical Engineering, vol.40, issue.5, pp.482-491, 1993.

M. Zamir and H. Chee, Branching characteristics of human coronary arteries, Canadian journal of physiology and pharmacology, vol.64, issue.6, pp.661-668, 1986.

M. Bernot, V. Caselles, and J. Morel, Optimal transportation networks: models and theory, vol.1955, 2009.

D. Cecil and . Murray, The physiological principle of minimum work i. the vascular system and the cost of blood volume, Proceedings of the National Academy of Sciences, vol.12, issue.3, pp.207-214, 1926.

S. Ghassan, C. A. Kassab, N. J. Rider, Y. Tang, and . Fung, Morphometry of pig coronary arterial trees, American Journal of Physiology-Heart and Circulatory Physiology, vol.265, issue.1, pp.350-365, 1993.

E. Morris, G. A. Weaver, D. Pantely, H. Bristow, and . Ladley, A quantitative study of the anatomy and distribution of coronary arteries in swine in comparison with other animals and man, Cardiovascular research, vol.20, issue.12, pp.907-917, 1986.

T. Wischgoll, J. S. Choy, and G. Kassab, Extraction of morphometry and branching angles of porcine coronary arterial tree from ct images, American Journal of PhysiologyHeart and Circulatory Physiology, vol.297, issue.5, pp.1949-1955, 2009.

S. Ghassan, E. Kassab, A. Pallencaoe, Y. Schatz, and . Fung, Longitudinal position matrix of the pig coronary vasculature and its hemodynamic implications, American Journal of Physiology-Heart and Circulatory Physiology, vol.273, issue.6, pp.2832-2842, 1997.

E. Vanbavel and J. A. Spaan, Branching patterns in the porcine coronary arterial tree. estimation of flow heterogeneity, Circulation research, vol.71, issue.5, pp.1200-1212, 1992.

A. Tanaka, H. Mori, E. Tanaka, Y. Minhaz-uddin-mohammed, T. Tanaka et al., Branching patterns of intramural coronary vessels determined by microangiography using synchrotron radiation, American Journal of Physiology-Heart and Circulatory Physiology, vol.276, issue.6, pp.2262-2267, 1999.

M. Zamir, Distributing and delivering vessels of the human heart, The Journal of general physiology, vol.91, issue.5, pp.725-735, 1988.

. Wing-huang, . Leung, L. Michael, E. Stadius, and . Alderman, Determinants of normal coronary artery dimensions in humans, Circulation, vol.84, issue.6, pp.2294-2306, 1991.

G. Jt-dodge, . Brown, L. Edward, H. Bolson, and . Dodge, Lumen diameter of normal human coronary arteries. influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation, Circulation, vol.86, issue.1, pp.232-246, 1992.

. Er-weibel, Morphometry of the human lung: the state of the art after two decades, Bulletin europeen de physiopathologie respiratoire, vol.15, issue.5, pp.999-1013, 1978.

N. Arthur and . Strahler, Hypsometric (area-altitude) analysis of erosional topography, vol.63, pp.1117-1142, 1952.

E. Robert and . Horton, Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology, Geological society of America bulletin, vol.56, issue.3, pp.275-370, 1945.

K. Horsfield, Pulmonary airways and blood vessels considered as confluent trees. The lung: scientific foundations, Philadelphia: Lippencott-Raven Publishers, pp.1073-1079, 1997.

D. Cecil and . Murray, The physiological principle of minimum work i. the vascular system and the cost of blood volume, Proceedings of the National Academy of Sciences, vol.12, issue.3, pp.207-214, 1926.

Y. Zhou, S. Ghassan, S. Kassab, and . Molloi, On the design of the coronary arterial tree: a generalization of murray's law, Physics in medicine and biology, vol.44, issue.12, p.2929, 1999.

. Pepijn-van-horssen, P. Jeroen, . Van-den-wijngaard, . Brandt, E. Imo et al., Perfusion territories subtended by penetrating coronary arteries increase in size and decrease in number toward the subendocardium, American Journal of Physiology-Heart and Circulatory Physiology, vol.306, issue.4, pp.496-504, 2014.

J. S. Choy, S. Ghassan, and . Kassab, Scaling of myocardial mass to flow and morphometry of coronary arteries, Journal of Applied Physiology, vol.104, issue.5, pp.1281-1286, 2008.

B. S. Lewis and . Gotsman, Relation between coronary artery size and left ventricular wall mass, British heart journal, vol.35, issue.11, p.1150, 1973.

C. H. Seiler, K. L. Kirkeeide, and . Gould, Basic structure-function relations of the epicardial coronary vascular tree. basis of quantitative coronary arteriography for diffuse coronary artery disease, Circulation, vol.85, issue.6, 1987.

. B-i-b-l-i-o-g-r-a-p-h-y, , vol.1

S. Abbara, P. Blanke, D. Christopher, M. Maroules, . Cheezum et al.,

, « SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: A report of the society of Cardiovascular Computed Tomography Guidelines Committee: Endorsed by the North American Society for Cardiovascular Imaging (NASCI), » In: Journal of cardiovascular computed tomography, vol.10, pp.435-449, 2016.

S. Achenbach, W. Moshage, D. Ropers, J. Nossen, and W. Daniel, « Value of electron-beam computed tomography for the noninvasive detection of high-grade coronaryartery stenoses and occlusions, New England Journal of Medicine, vol.339, pp.1964-1971, 1998.

, All About Heart Rate, American Heart Association, 2018.

N. Ayache, « Medical Imaging Informatics: Towards a Personalized Computational Patient, vol.1, p.8, 2016.

K. Oguz, . Baskurt, and . Herbert-j-meiselman, Blood rheology and hemodynamics. » In: Seminars in thrombosis and hemostasis, vol.29, pp.435-450, 2003.

B. James, . Bassingthwaighte, B. Richard, S. King, and . Roger, Fractal nature of regional myocardial blood flow heterogeneity, vol.65, pp.578-590, 1989.

G. Michael, J. L. Bateman, A. J. Quill, P. A. Hill, and . Iaizzo, Detailed Anatomical and Functional Features of the Cardiac Valves. » In: Handbook of Cardiac Anatomy, Physiology, and Devices, pp.115-135, 2015.

A. Daniel, J. B. Beard, and . Bassingthwaighte, « The fractal nature of myocardial blood flow emerges from a whole-organ model of arterial network, » In: Journal of vascular research, vol.37, pp.282-296, 2000.

M. Robert, M. Berne, and . Levy, Cardiovascular physiology, 1967.

. Pj-blanco, R. A. Ra-b-de-queiroz, and . Feijóo, « A computational approach to generate concurrent arterial networks in vascular territories, International journal for numerical methods in biomedical engineering, vol.29, pp.601-614, 2013.

. Dd-buss, M. Y. Hyde, and . Stovall, « Application of stereology to coronary microcirculation, In: Basic research in cardiology, vol.76, pp.411-415, 1981.

J. Rodrigo, A. Cerci, R. T. Arbab-zadeh, J. M. George, A. L. Miller et al., Aligning coronary anatomy and myocardial perfusion territories: an algorithm for the CORE320 multicenter study, » In: Circulation: Cardiovascular Imaging, vol.5, pp.587-595, 2012.

D. Manuel, . Cerqueira, J. Neil, V. Weissman, A. K. Dilsizian et al., « Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on, Clinical Cardiology of the American Heart Association. » In: Journal of the American Society of Echocardiography, vol.15, pp.463-467, 2002.

D. Chapelle, J. Gerbeau, and . Sainte-marie, « A poroelastic model valid in large strains with applications to perfusion in cardiac modeling, » In: Computational Mechanics, vol.46, pp.91-101, 2010.

J. S. Choy, S. Ghassan, and . Kassab, « Scaling of myocardial mass to flow and morphometry of coronary arteries, Journal of Applied Physiology, vol.104, pp.1281-1286, 2008.

F. Timothy, . Cootes, J. Christopher, . Taylor, H. David et al., « Active shape models-their training and application. » In: Computer vision and image understanding 61, vol.1, pp.38-59, 1995.

J. Simon, M. N. Crick, . Sheppard, Y. Siew, L. Ho et al., Anatomy of the pig heart: comparisons with normal human cardiac structure, » In: Journal of anatomy, vol.193, pp.105-119, 1998.

J. George and . Crystal, « Right Ventricular PerfusionPhysiology and Clinical Implications, » In: Anesthesiology: The Journal of the American Society of Anesthesiologists, vol.128, pp.202-218, 2018.

D. Carlo, A. Angelo, and . Quarteroni, « On the coupling of 1d and 3d diffusion-reaction equations: application to tissue perfusion problems, » In: Mathematical Models and Methods in Applied Sciences, vol.18, pp.1481-1504, 2008.

D. Carlo, P. Angelo, and . Zunino, « Robust numerical approximation of coupled Stokes' and Darcy's flows applied to vascular hemodynamics and biochemical transport, ESAIM: Mathematical Modelling and Numerical Analysis, vol.45, pp.447-476, 2011.

I. Danad, G. Pieter, H. J. Raijmakers, . Harms, W. Martijn et al., « Impact of anatomical and functional severity of coronary atherosclerotic plaques on the transmural perfusion gradient: a [15O] H2O PET study, European heart journal, vol.35, pp.2094-2105, 2014.

I. Danad, V. Uusitalo, T. Kero, A. Saraste, G. Pieter et al., « Quantitative assessment of myocardial perfusion in the detection of significant coronary artery disease: cutoff values and diagnostic accuracy of quantitative [15O] H2O PET imaging, Journal of the American College of Cardiology, vol.64, pp.1464-1475, 2014.

K. M. Ulrich and . Decking, « Spatial heterogeneity in the heart: recent insights and open questions, Physiology, vol.17, pp.246-250, 2002.

G. Jt-dodge, . Brown, L. Edward, H. Bolson, and . Dodge, « Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy or dilation, In: Circulation, vol.86, pp.232-246, 1992.

L. Torii, Use of PET-based boundary conditions in coronary artery blood flow computations to estimate clinically important hemodynamic indicators, World Conference of Biomechanics, 2018.

L. Tracy, C. A. Faber, E. V. Santana, J. Garcia, . Candellriera et al., « Three-dimensional fusion of coronary arteries with myocardial perfusion distributions: clinical validation, Journal of Nuclear Medicine, vol.45, pp.745-753, 2004.

F. Pedro, S. Ferreira, A. D. Nielles-vallespin, . Scott, P. J. Silva et al., Evaluation of the impact of strain correction on the orientation of cardiac diffusion tensors with in vivo and ex vivo porcine hearts, Magnetic resonance in medicine, vol.79, pp.2205-2215, 2018.

. Stephan-d-fihn, C. James, K. P. Blankenship, J. A. Alexander, J. G. Bittl et al., ACC/AHA/AATS/PCNA/SCAI/STS focused update of the guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines, and the American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons, Journal of the American College of Cardiology, vol.64, pp.1929-1949, 2014.

V. Fuster, Hurst's the heart, vol.1, 2004.

M. Georg, T. Preusser, and H. Hahn, Global Constructive Optimization of Vascular Systems. » In: (

A. Goyal, J. Lee, P. Lamata, J. Van-den-wijngaard, P. Van-horssen et al., « Model-based vasculature extraction from optical fluorescence cryomicrotome images, IEEE transactions on medical imaging, vol.32, pp.56-72, 2013.

L. Grady, « Random walks for image segmentation, IEEE transactions on pattern analysis and machine intelligence, vol.28, pp.1768-1783, 2006.

L. Grady, M. Schaap, A. Charles, C. Taylor, and . Jaquet, Systems and methods for predicting perfusion deficits from physiological, anatomical, and patient characteristics, p.733, 2016.

A. C. Guyton and . Hall, Textbook of Medical Physiology, 11thEdn. » In: Elsiever Saunders, pp.788-817, 2006.

J. Hendrik, P. Harms, S. Knaapen, R. De-haan, . Halbmeijer et al., « Automatic generation of absolute myocardial blood flow images using [15 O] H 2 O and a clinical PET/CT scanner. » In: European journal of nuclear medicine and molecular imaging, vol.38, pp.930-939, 2011.

S. Heinzer, T. Krucker, M. Stampanoni, R. Abela, E. P. Meyer et al., « Hierarchical microimaging for multiscale analysis of large vascular networks, Neuroimage, vol.32, issue.2, pp.626-636, 2006.

K. Horsfield, « Pulmonary airways and blood vessels considered as confluent trees, The lung: scientific foundations, pp.1073-1079, 1997.

. P-van-horssen, . Mgjtb-van-lier, E. Van-den-wijngaard, . Vanbavel, J. Hoefer et al., « Influence of segmented vessel size due to limited imaging resolution on coronary hyperemic flow prediction from arterial crown volume, In: American Journal of Physiology-Heart and Circulatory Physiology, vol.310, pp.839-846, 2016.

. Pepijn-van-horssen, P. Jeroen, . Van-den-wijngaard, . Brandt, E. Imo et al., « Perfusion territories subtended by penetrating coronary arteries increase in size and decrease in number toward the subendocardium, In: American Journal of Physiology-Heart and Circulatory Physiology, vol.306, pp.496-504, 2014.

E. Robert and . Horton, « Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology, In: Geological society of America bulletin, vol.56, pp.275-370, 1945.

T. Jacques-m-huyghe, . Arts, R. Dick-h-van-campen, and . Reneman, « Porous medium finite element model of the beating left ventricle, In: American Journal of PhysiologyHeart and Circulatory Physiology, vol.262, pp.1256-1267, 1992.

C. Eoin-r-hyde, J. Michler, . Lee, R. Andrew-n-cookson, . Chabiniok et al., « Parameterisation of multi-scale continuum perfusion models from discrete vascular networks, » In: Medical & biological engineering & computing, vol.51, pp.557-570, 2013.

A. N. Eoin-r-hyde, J. Cookson, C. Lee, A. Michler, T. Goyal et al., Multi-scale parameterisation of a myocardial perfusion model using wholeorgan arterial networks, Annals of biomedical engineering, vol.42, pp.797-811, 2014.

T. Izumi, M. Yamazoe, and A. Shibata, « Threedimensional characteristics of the intramyocardial microvasculature of hypertrophied human hearts, Journal of molecular and cellular cardiology, vol.16, pp.449-457, 1984.

C. Jaquet, M. Schaap, Y. Bai, L. Grady, and C. Taylor, Systems and methods for determining and visualizing a functional relationship between a vascular network and perfused tissue, p.512, 2016.

C. Jaquet, L. Najman, H. Talbot, J. Leo, M. Grady et al., « Generation of patient-specific cardiac vascular networks: a hybrid image-based and synthetic geometric model, IEEE Transactions on Biomedical Engineering, 2018.

C. Jaquet, L. Najman, H. Talbot, L. Grady, J. Hyung et al., « Hybrid image-based and synthetic geometric models for patientspecific simulation of coronary blood flow from the large arteries to the myocardium, » In: World Conference of Biomechanics, 2018.

M. Barbara, . Johnston, R. Peter, S. Johnston, D. Corney et al., « Non-Newtonian blood flow in human right coronary arteries: steady state simulations, » In: Journal of biomechanics, vol.37, pp.709-720, 2004.

B. Kaimovitz, Y. Lanir, and G. Kassab, Largescale 3-D geometric reconstruction of the porcine coronary arterial vasculature based on detailed anatomical data, » In: Annals of biomedical engineering, vol.33, pp.1517-1535, 2005.

B. Kaimovitz, Y. Huo, Y. Lanir, and G. Kassab, « Diameter asymmetry of porcine coronary arterial trees: structural and functional implications, » In: American Journal of Physiology-Heart and Circulatory Physiology, vol.294, pp.714-723, 2008.

F. Kajiya and M. Goto, « Integrative physiology of coronary microcirculation, The Japanese journal of physiology, vol.49, pp.229-241, 1999.

A. Kamiya and T. Togawa, « Optimal branching structure of the vascular tree, The Bulletin of mathematical biophysics, vol.34, pp.431-438, 1972.

R. Karch, F. Neumann, M. Neumann, and W. Schreiner, « A three-dimensional model for arterial tree representation, generated by constrained constructive optimization, Computers in biology and medicine, vol.29, pp.19-38, 1999.

R. Karch, F. Neumann, M. Neumann, and W. Schreiner, « Staged growth of optimized arterial model trees, Annals of biomedical engineering, vol.28, pp.495-511, 2000.

R. Karch, F. Neumann, K. Bruno, M. Podesser, P. Neumann et al., « Fractal properties of perfusion heterogeneity in optimized arterial trees: a model study, The Journal of general physiology, vol.122, pp.307-322, 2003.

S. Ghassan and . Kassab, Scaling laws of vascular trees: of form and function, In: American Journal of Physiology-Heart and Circulatory Physiology, vol.290, issue.2, pp.894-903, 2006.

S. Ghassan, J. Kassab, Y. Berkley, and . Fung, « Analysis of pig's coronary arterial blood flow with detailed anatomical data, Annals of biomedical engineering, vol.25, pp.204-217, 1997.

S. Ghassan, C. A. Kassab, N. J. Rider, Y. Tang, and . Fung, Morphometry of pig coronary arterial trees, vol.265, pp.350-365, 1993.

S. Ghassan, E. Kassab, A. Pallencaoe, Y. Schatz, and . Fung, « Longitudinal position matrix of the pig coronary vasculature and its hemodynamic implications, » In: American Journal of Physiology-Heart and Circulatory Physiology, vol.273, pp.2832-2842, 1997.

J. Keelan, M. L. Emma, J. P. Chung, and . Hague, « Simulated annealing approach to vascular structure with application to the coronary arteries, Open Science, vol.3, p.150431, 2016.

. Hj-kim, . Vignon-clementel, C. A. Coogan, . Figueroa, C. A. Jansen et al., « Patient-specific modeling of blood flow and pressure in human coronary arteries, Annals of biomedical engineering, vol.38, pp.3195-3209, 2010.

M. Kretowski, Y. Rolland, J. Bézy-wendling, and J. Coatrieux, « Physiologically based modeling of 3-D vascular networks and CT scan angiography, IEEE transactions on medical imaging, vol.22, pp.248-257, 2003.

J. Lee, A. Cookson, R. Chabiniok, S. Rivolo, E. Hyde et al., « Multiscale modelling of cardiac perfusion. » In: Modeling the heart and the circulatory system, pp.51-96, 2015.

. Wing-huang, . Leung, L. Michael, and E. Stadius, Alderman. « Determinants of normal coronary artery dimensions in humans, In: Circulation, vol.84, pp.2294-2306, 1991.

A. Ihor, . Lubashevsky, V. Vasil, and . Gafiychuk, Analysis of the optimality principles responsible for vascular network architectonics. » In: arXiv preprint adap-org/9909003, 1999.

S. Malkasian, L. Hubbard, B. Dertli, J. Kwon, and S. Molloi, « Quantification of vessel-specific coronary perfusion territories using minimum-cost path assignment and computed tomography angiography: Validation in a swine model, » In: Journal of Cardiovascular Computed Tomography, 2018.

J. Koen-s-matthys, J. Alastruey, . Peiró, W. Ashraf, P. Khir et al., « Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulations against in vitro measurements, » In: Journal of biomechanics, vol.40, pp.3476-3486, 2007.

P. Meier, H. Hemingway, A. J. Lansky, G. Knapp, B. Pitt et al., « The impact of the coronary collateral circulation on mortality: a meta-analysis, European heart journal, vol.33, pp.614-621, 2011.

N. Mittal, S. Zhou, C. Ung, S. Linares, G. S. Molloi et al., « A computer reconstruction of the entire coronary arterial tree based on detailed morphometric data, Annals of biomedical engineering, vol.33, pp.1015-1026, 2005.

N. Mittal, C. Zhou, S. Linares, . Ung, . Kaimovitz et al., « Analysis of blood flow in the entire coronary arterial tree, In: American journal of physiology-Heart and circulatory physiology, vol.289, pp.439-446, 2005.

D. Paul, D. Morris, . Soto, F. A. Jeroen, D. Feher et al., « Fast virtual fractional flow reserve based upon steady-state computational fluid dynamics analysis: results from the VIRTU-Fast study, JACC: Basic to Translational Science, vol.2, issue.4, pp.434-446, 2017.

M. Motwani, M. Motlagh, A. Gupta, S. Daniel, P. J. Berman et al., « Reasons and implications of agreements and disagreements between coronary flow reserve, fractional flow reserve, and myocardial perfusion imaging, Journal of Nuclear Cardiology, vol.25, pp.104-119, 2018.

D. Cecil and . Murray, « The physiological principle of minimum work: I. The vascular system and the cost of blood volume, In: Proceedings of the National Academy of Sciences, vol.12, issue.3, pp.207-214, 1926.

, American Heart Association Writing Group on Myocardial Segmentation et al. « Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on, Clinical Cardiology

, American Heart Association. » In: Circulation, vol.105, pp.539-542, 2002.

P. Neubert and P. Protzel, « Compact watershed and preemptive slic: On improving trade-offs of superpixel segmentation algorithms, » In: Pattern Recognition (ICPR), pp.996-1001, 2014.

S. Nielles-vallespin, Z. Khalique, P. F. Ferreira, R. De-silva, A. D. Scott et al., Assessment of myocardial microstructural dynamics by in vivo diffusion tensor cardiac magnetic resonance, Journal of the American College of Cardiology, vol.69, pp.661-676, 2017.

H. J. Nico, B. Pijls, K. De-bruyne, . Peels, H. Pepijn et al., « Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses, New England Journal of Medicine, vol.334, pp.1703-1708, 1996.

R. Axel, T. W. Pries, and . Secomb, Blood flow in microvascular networks. » In: Microcirculation, pp.3-36, 2008.

J. Reig, M. Jornet, and . Petit, « Coronary arterial territories of the left ventricle: extension and exclusivity, Surgical and Radiologic Anatomy, vol.16, pp.281-285, 1994.

S. Rivolo, L. Hadjilucas, M. Sinclair, J. Pepijn-van-horssen, . Van-den et al., Impact of coronary bifurcation morphology on wave propagation, vol.311, pp.855-870, 2016.

S. Sankaran, L. Grady, and C. Taylor, « Fast computation of hemodynamic sensitivity to lumen segmentation uncertainty, IEEE transactions on medical imaging, vol.34, pp.2562-2571, 2015.

S. Sankaran, H. J. Kim, G. Choi, and C. Taylor, Uncertainty quantification in coronary blood flow simulations: impact of geometry, boundary conditions and blood viscosity, » In: Journal of biomechanics, vol.49, pp.2540-2547, 2016.

W. Schaper, Collateral vessels reduce mortality, 2011.

W. Schreiner and P. F. Buxbaum, « Computeroptimization of vascular trees, Biomedical Engineering, vol.40, pp.482-491, 1993.

W. Schreiner, R. Karch, M. Neumann, F. Neumann, P. Szawlowski et al., « Optimized arterial trees supplying hollow organs, » In: Medical engineering & physics, vol.28, issue.5, pp.416-429, 2006.

C. Seiler, K. Richard-l-kirkeeide, and . Gould, « Basic structure-function relations of the epicardial coronary vascular tree. Basis of quantitative coronary arteriography for diffuse coronary artery disease, Circulation, vol.85, pp.1987-2003, 1992.

L. Stephanie, T. A. Sellers, R. Fonte, J. Grover, J. Mooney et al., Hypertrophic Cardiomyopathy (HCM): New insights into Coronary artery remodelling and ischemia from FFRCT, 2018.

J. Serra, Image analysis and mathematical morphology, v.1. English revised version, 1982.

D. Matthew, J. Sinclair, . Lee, N. Andrew, S. Cookson et al., Measurement and modeling of coronary blood flow. » In: Wiley Interdisciplinary Reviews: Systems Biology and Medicine, vol.7, pp.335-356, 2015.

. Np-smith, P. J. Pullan, and . Hunter, « Generation of an anatomically based geometric coronary model, In: Annals of biomedical engineering, vol.28, pp.14-25, 2000.

. Np-smith, P. Pullan, and . Hunter, « An anatomically based model of transient coronary blood flow in the heart, » In: SIAM Journal on Applied mathematics, vol.62, pp.990-1018, 2002.

J. C. Stettler, M. Niederer, and . Anliker, « Theoretical analysis of arterial hemodynamics including the influence of bifurcations, Annals of biomedical engineering, vol.9, pp.145-164, 1981.

N. Arthur and . Strahler, « Hypsometric (area-altitude) analysis of erosional topography, Geological Society of America Bulletin, vol.63, pp.1117-1142, 1952.

A. Tanaka, H. Mori, E. Tanaka, Y. Minhaz-uddin-mohammed, T. Tanaka et al., « Branching patterns of intramural coronary vessels determined by microangiography using synchrotron radiation, In: American Journal of Physiology-Heart and Circulatory Physiology, vol.276, pp.2262-2267, 1999.

. M-howatson-tawhai, P. J. Pullan, and . Hunter, « Generation of an anatomically based three-dimensional model of the conducting airways, Annals of biomedical engineering, vol.28, pp.793-802, 2000.

T. A. Ca-taylor, J. Fonte, and . Min, « CFD applied to cardiac CT for noninvasive quantification of FFR, » In: J. Am. Coll. Cardiology, 2013.

T. Traupe, S. Gloekler, S. F. De-marchi, S. Gerald, C. Werner et al., « Assessment of the human coronary collateral circulation. » In: Circulation 122, vol.12, pp.1210-1220, 2010.

S. Tu, E. Barbato, Z. Köszegi, J. Yang, Z. Sun et al., « Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count: a fast computer model to quantify the functional significance of moderately obstructed coronary arteries, JACC: Cardiovascular Interventions, vol.7, issue.7, pp.768-777, 2014.

. Van-horssen, . Van-den-wijngaard, . Brandt, J. Hoefer, M. Spaan et al., « Perfusion territories subtended by penetrating coronary arteries increase in size and decrease in number toward the subendocardium, » In: American Journal of Physiology-Heart and Circulatory Physiology, vol.306, pp.496-504, 2013.

E. Vanbavel and J. A. Spaan, « Branching patterns in the porcine coronary arterial tree, Circulation research, vol.71, pp.1200-1212, 1992.

A. Irene-e-vignon-clementel, K. E. Figueroa, C. Jansen, and . Taylor, Outflow boundary conditions for threedimensional finite element modeling of blood flow and pressure in arteries, In: Computer methods in applied mechanics and engineering, vol.195, pp.3776-3796, 2006.

E. Irene, C. Vignon, and . Taylor, « Outflow boundary conditions for one-dimensional finite element modeling of blood flow and pressure waves in arteries, In: Wave Motion, vol.39, pp.361-374, 2004.

H. Alfonso, R. Waller, . Blankstein, Y. Raymond, M. Kwong et al., « Myocardial blood flow quantification for evaluation of coronary artery disease by positron emission tomography, cardiac magnetic resonance imaging, and computed tomography, Current cardiology reports, vol.16, p.483, 2014.

E. Morris, G. A. Weaver, D. Pantely, H. Bristow, and . Ladley, « A quantitative study of the anatomy and distribution of coronary arteries in swine in comparison with other animals and man, Cardiovascular research, vol.20, pp.907-917, 1986.

. Webmd, Picture of the Heart, 2014.

N. Westerhof, J. Lankhaar, E. Berend, and . Westerhof, The arterial windkessel. » In: Medical & biological engineering & computing, vol.47, pp.131-141, 2009.

N. Westerhof and C. Boer, Regis R Lamberts, and Pieter Sipkema. « Cross-talk between cardiac muscle and coronary vasculature, Physiological Reviews, vol.86, issue.4, pp.1263-1308, 2006.

P. Jeroen, . Van-den-wijngaard, C. V. Janina, P. Schwarz, M. Van-horssen et al., « 3D Imaging of vascular networks for biophysical modeling of perfusion distribution within the heart, Journal of biomechanics, vol.46, pp.229-239, 2013.

K. Robert-f-wilson, . Wyche, V. Betsy, S. Christensen, D. D. Zimmer et al., « Effects of adenosine on human coronary arterial circulation, » In: Circulation, vol.82, pp.1595-1606, 1990.

T. Wischgoll, J. S. Choy, and G. Kassab, Extraction of morphometry and branching angles of porcine coronary arterial tree from CT images, In: American Journal of Physiology-Heart and Circulatory Physiology, vol.297, pp.1949-1955, 2009.

K. Wustmann, S. Zbinden, S. Windecker, B. Meier, and C. Seiler, « Is there functional collateral flow during vascular occlusion in angiographically normal coronary arteries?, Circulation, vol.107, pp.2213-2220, 2003.

M. Zamir, « Distributing and delivering vessels of the human heart, The Journal of general physiology, vol.91, pp.725-735, 1988.

Y. Zhou, S. Ghassan, S. Kassab, and . Molloi, « On the design of the coronary arterial tree: a generalization of Murray's law. » In, Physics in Medicine & Biology, vol.44, p.2929, 1999.