Structure et mobilité ionique dans les matériaux d’électrolytes solides pour batteries tout-solide : cas du grenat Li7-3xAlxLa3Zr2O12 et des Nasicon Li1.15-2xMgxZr1.85Y0.15(PO4)3

Abstract : One of the issues for the development of all-solid-state batteries is to increase the ionic conductivity of solid electrolytes. The thesis work focuses on two types of materials as crystalline inorganic solid electrolytes: a Garnet Li7-3xAlxLa3Zr2O12 (LLAZO) and a Nasicon Li1.15-2xMgxZr1.85Y0.15(PO4)3 (LMZYPO). The objective of this study is to understand to what extent the conduction properties of the studied materials are impacted by structural modifications generated either by a particular treatment process, or by a modification of the chemical composition. Structural data acquired by X-ray diffraction (XRD) and Magic Angle Spinning (MAS) Nuclear Magnetic Resonance (NMR) were then crossed with ions dynamics data deduced from NMR measurements at variable temperature and electrochemical impedance spectroscopy (EIS).The powders were synthesized after optimizing thermal treatments using solid-solid or sol-gel methods. Spark Plasma Sintering (SPS) technique was used for the densification of the pellets used for ionic conductivity measurements by EIS.In the case of garnets LLAZO, the originality of our work is to have shown that a SPS sintering treatment, beyond the expected pellets densification, also generates structural modifications having direct consequences on the lithium ions mobility in the material and therefore on the ionic conductivity. A clear increase of the lithium ions microscopic dynamics after SPS sintering was indeed observed by variable temperature 7Li NMR measurements and the monitoring of the relaxation times.The second part of the study provides an exploratory work on the substitution of Li+ by Mg2+ in LMZYPO. We studied the ionic conduction properties of these mixed Li/Mg compounds, in parallel with a fine examination of the crystalline phases formed. We have showed in particular that the presence of Mg2+ favors the formation of the less conductive β’ (P21/n) and β (Pbna) phases, which explains the decrease of the ionic conductivity with the substitution level of Li+ by Mg2+ observed in these Nasicon type materials.Our work therefore highlights the crucial importance of structural effects on the conduction properties of ceramic solid electrolyte materials.
Complete list of metadatas

https://pastel.archives-ouvertes.fr/tel-02090541
Contributor : Abes Star <>
Submitted on : Thursday, April 4, 2019 - 7:01:09 PM
Last modification on : Friday, May 17, 2019 - 3:21:16 AM

File

71120_CASTILLO_2018_archivage....
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-02090541, version 1

Citation

Adriana Castillo. Structure et mobilité ionique dans les matériaux d’électrolytes solides pour batteries tout-solide : cas du grenat Li7-3xAlxLa3Zr2O12 et des Nasicon Li1.15-2xMgxZr1.85Y0.15(PO4)3. Matériaux. Université Paris-Saclay, 2018. Français. ⟨NNT : 2018SACLX107⟩. ⟨tel-02090541⟩

Share

Metrics

Record views

90

Files downloads

20