E. J. Cussen, T. W. Yip, G. O'neill, and M. P. O'callaghan, A comparison of the transport properties of lithium-stuffed garnets and the conventional phases Li3Ln3Te2O12, J. Solid State Chem, vol.184, issue.2, pp.470-475, 2011.

M. Xu, M. S. Park, J. M. Lee, T. Y. Kim, Y. S. Park et al., Mechanisms of Li + transport in garnet-type cubic Li 3+xLa 3M 2O 12 (M = Te, Nb, Zr), Phys. Rev. B -Condens. Matter Mater. Phys, vol.85, issue.5, 2012.

V. Thangadurai, H. Kaack, and W. J. Weppner, Novel fast lithium ion conduction in garnettype Li5La3M2O12 (M = Nb, Ta), J. Am. Ceram. Soc, vol.86, issue.3, pp.437-440, 2003.
DOI : 10.1111/j.1151-2916.2003.tb03318.x

R. Murugan, V. Thangadurai, and W. Weppner, Fast lithium ion conduction in garnet-type Li7La 3Zr2O12, Angew. Chemie -Int. Ed, vol.46, issue.41, pp.7778-7781, 2007.
DOI : 10.1002/anie.200701144

V. Thangadurai, S. Narayanan, and D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review, Chem. Soc. Rev, vol.43, issue.13, p.4714, 2014.
DOI : 10.1039/c4cs00020j

M. P. O&apos;callaghan and E. J. Cussen, Lithium dimer formation in the Li-conducting garnets Li(5+x)Ba(x)La(3-x)Ta2O12 (0 < x < or =1.6), Chem. Commun. (Camb), vol.12, issue.20, pp.2048-2050, 2007.

H. Xie, J. A. Alonso, Y. Li, M. T. Fernández-díaz, and J. B. Goodenough, Lithium distribution in aluminum-free cubic Li7La 3Zr2O12, Chem. Mater, vol.23, issue.16, pp.3587-3589, 2011.
DOI : 10.1021/cm201671k

M. Xu, M. S. Park, J. M. Lee, T. Y. Kim, Y. S. Park et al., Mechanisms of Li + transport in garnet-type cubic Li 3+xLa 3M 2O 12 (M = Te, Nb, Zr), Phys. Rev. B -Condens. Matter Mater. Phys, vol.85, issue.5, pp.1-5, 2012.

M. P. O&apos;callaghan, D. R. Lynham, E. J. Cussen, and G. Z. Chen, Structure and ionic-transport properties of lithium-containing garnets Li3Ln3Te2O12, Chem. Mater, vol.18, issue.19, pp.4681-4689, 2006.

A. Gupta, Optimum lithium-ion conductivity in cubic Li7?xLa3Hf2?xTaxO12, J. Power Sources, vol.209, pp.184-188, 2012.

S. Ohta, T. Kobayashi, and T. Asaoka, High lithium ionic conductivity in the garnet-type oxide Li7-X La3(Zr2-X, NbX)O12 (X = 0-2), Journal of Power Sources, vol.196, issue.6, pp.3342-3345, 2011.

L. J. Miara, Effect of Rb and Ta doping on the ionic conductivity and stability of the garnet Li7+2x-y(La3-xRbx)(Zr 2-yTay)O12 Superionic conductor: A first principles investigation, Chem. Mater, vol.25, issue.15, pp.3048-3055, 2013.

S. Adams and R. P. Rao, Ion transport and phase transition in Li 7?x La 3 (Zr 2?x M x )O 12 (M = Ta 5+ , Nb 5+ , x = 0, 0.25), J. Mater. Chem, vol.22, issue.4, pp.1426-1434, 2012.

Y. Zhang, Regulation mechanism of bottleneck size on Li+migration activation energy in garnet-type Li7La3Zr2O12, Electrochim. Acta, vol.261, pp.137-142, 2018.

R. Murugan, W. Weppner, P. Schmid-beurmann, and V. Thangadurai, Structure and lithium ion conductivity of bismuth containing lithium garnets Li5La3Bi2O12 and Li6SrLa2Bi2O12, Mater. Sci. Eng. B, vol.143, issue.1-3, pp.14-20, 2007.

M. Matsui, Phase stability of a garnet-type lithium ion conductor Li7La3Zr2O12, Dalt. Trans, vol.43, issue.3, pp.1019-1024, 2014.

Y. Matsuda, Phase formation of a garnet-type lithium-ion conductor Li7?3xAlxLa3Zr2O12.pdf, 2015.

J. Awaka, A. Takashima, K. Kataoka, N. Kijima, Y. Idemoto et al., Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr 2O12, Chem. Lett, vol.40, issue.1, pp.60-62, 2011.

N. Bernstein, M. D. Johannes, and K. Hoang, Origin of the structural phase transition in Li7La3Zr2O 12, Phys. Rev. Lett, vol.109, issue.20, pp.2-6, 2012.

C. A. Geiger, Crystal chemistry and stability of 'Li7La 3Zr2O12' garnet: A fast lithium-ion conductor, Inorg. Chem, vol.50, issue.3, pp.1089-1097, 2011.

K. Meier, T. Laino, and A. Curioni, Solid-state electrolytes: Revealing the mechanisms of Li-Ion conduction in tetragonal and cubic LLZO by first-principles calculations, J. Phys. Chem. C, vol.118, issue.13, pp.6668-6679, 2014.

E. Rangasamy, J. Wolfenstine, and J. Sakamoto, The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li 7La 3Zr 2O 12, Solid State Ionics, vol.206, pp.28-32, 2012.

E. Rangasamy, J. Wolfenstine, J. Allen, and J. Sakamoto, The effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7?xLa3?xAxZr2O12 garnet-based ceramic electrolyte, J. Power Sources, vol.230, pp.261-266, 2013.

R. Jalem, Effects of gallium doping in garnet-type Li7La3Zr2O12 solid electrolytes, Chem. Mater, vol.27, issue.8, pp.2821-2831, 2015.

J. Lee, High lithium ion conductivity of Li7La3Zr2O12 synthesized by solid state reaction, Solid State Ionics, vol.258, pp.13-17, 2014.

D. Rettenwander, DFT Study of the Role of Al 3+ in the Fast Ion-Conductor Li 7-3 x Al 3+ x La 3 Zr 2 O 12 Garnet, Chem. Mater, vol.26, issue.8, pp.2617-2623, 2014.

H. Buschmann, Structure and dynamics of the fast lithium ion conductor 'Li7La3Zr2O12, Phys. Chem. Chem. Phys, vol.13, issue.43, p.19378, 2011.

A. Kuhn, J. Choi, L. Robben, F. Tietz, M. Wilkening et al., Li Ion Dynamics in AlDoped Garnet-Type Li 7 La 3 Zr 2 O 12 Crystallizing with Cubic Symmetry, Zeitschrift für Phys. Chemie, vol.226, issue.5-6, pp.525-537, 2012.

Y. Chen, E. Rangasamy, C. R. Cruz, C. Liang, and K. An, Origin of High Li+ Conduction in Doped Li7La3Zr2O12 Garnets, J. Mater. Chem. A, vol.3, issue.45, pp.22868-22876, 2015.

J. L. Allen, J. Wolfenstine, E. Rangasamy, and J. Sakamoto, Effect of substitution (Ta, Al, Ga) on the conductivity of Li 7La 3Zr 2O 12, J. Power Sources, vol.206, pp.315-319, 2012.

Y. Matsuda, Phase relation, structure and ionic conductivity of Li7-x-3yAlyLa3Zr2-xTaxO12, RSC Adv, vol.6, pp.78210-78218, 2016.

J. R. Rustad, The effect of Tetrahedral versus Octahedral network-Blocking Atom Substitutions on Lithium Ion Conduction in LLZO garnet, pp.1-23, 2016.

D. Rettenwander, Crystal chemistry of "Li7La3Zr2O12" garnet doped with Al, Ga, and Fe: a Références

P. J. Kumar, A novel low-temperature solid-state route for nanostructured cubic garnet Li7La3Zr2O12and its application to Li-ion battery, RSC Adv, vol.6, issue.67, pp.62656-62667, 2016.

H. El-shinawi, G. W. Paterson, D. A. Maclaren, E. J. Cussen, and S. A. Corr, Low-temperature densification of Al-doped Li7La3Zr2O12: a reliable and controllable synthesis of fast-ion conducting garnets, J. Mater. Chem. A, 2017.

M. Matsui, Phase stability of a garnet-type lithium ion conductor Li7La3Zr2O12, Dalt. Trans, vol.43, issue.3, pp.1019-1024, 2014.

C. A. Geiger, Crystal chemistry and stability of 'Li7La 3Zr2O12' garnet: A fast lithium-ion conductor, Inorg. Chem, vol.50, issue.3, pp.1089-1097, 2011.

Y. Matsuda, Phase formation of a garnet-type lithium-ion conductor Li7?3xAlxLa3Zr2O12, 2015.

C. Im, D. Park, H. Kim, and J. Lee, Al-incorporation into Li7La3Zr2O12 solid electrolyte keeping stabilized cubic phase for all-solid-state Li batteries, J. Energy Chem, vol.27, issue.5, pp.1501-1508, 2017.

M. Matsui, Phase transformation of the garnet structured lithium ion conductor: Li7La3Zr2O12, Solid State Ionics, vol.262, pp.155-159, 2014.

X. Zhang and J. W. Fergus, The fabrication of garnet-type Li7La3Zr2O12 solid electrolyte materials, ECS Trans, vol.72, 2016.

J. Awaka, A. Takashima, K. Kataoka, N. Kijima, Y. Idemoto et al., Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr 2O12, Chem. Lett, vol.40, issue.1, pp.60-62, 2011.

N. Janani, C. Deviannapoorani, L. Dhivya, and R. Murugan, Influence of sintering additives on densification and Li conductivity of Al doped Li 7 La 3 Zr 2 O 12 lithium garnet, RSC Adv, vol.4, issue.93, pp.51228-51238, 2014.

S. Uhlenbruck, Reactions of garnet-based solid-state lithium electrolytes with water -A depth-resolved study, Solid State Ionics, vol.320, pp.259-265, 2017.

K. B. Dermenci, E. Çekiç, and S. Turan, Al stabilized Li7La3Zr2O12 solid electrolytes for allsolid state Li-ion batteries, Int. J. Hydrogen Energy, vol.41, issue.23, pp.9860-9867, 2016.

E. Rangasamy, J. Wolfenstine, and J. Sakamoto, The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li 7La 3Zr 2O 12, Solid State Ionics, vol.206, pp.28-32, 2012.

Z. Hu, H. Liu, H. Ruan, R. Hu, Y. Su et al., High Li-ion conductivity of Al-doped Li7La3Zr2O12 synthesized by solid-state reaction, Ceram. Int, vol.42, issue.10, 2016.

H. Nemori, Stability of garnet-type solid electrolyte LixLa3A2 -yByO12 (A = Nb or Ta, B = Sc or Zr), Solid State Ionics, vol.282, pp.7-12, 2015.

W. Xia, Ionic Conductivity and Air Stability of Al-Doped Li7La3Zr2O12 Sintered in Alumina and Pt Crucibles, ACS Appl. Mater. Interfaces, vol.8, issue.8, pp.5335-5342, 2016.

L. Van-wüllen, T. Echelmeyer, H. Meyer, and D. Wilmer, The mechanism of Li-ion transport in the garnet Li5La3Nb2O12, Phys. Chem. Chem. Phys, vol.9, pp.3298-3303, 2007.

D. Rettenwander, DFT Study of the Role of Al 3+ in the Fast Ion-Conductor Li 7-3 x Al 3+ x La 3 Zr 2 O 12 Garnet, Chem. Mater, vol.26, issue.8, pp.2617-2623, 2014.

C. A. Geiger, Crystal chemistry and stability of 'Li7La 3Zr2O12' garnet: A fast lithium-ion conductor, Inorg. Chem, vol.50, issue.3, pp.1089-1097, 2011.

A. A. Hubaud, D. J. Schroeder, B. Key, B. J. Ingram, F. Dogan et al., Low temperature stabilization of cubic (Li7?xAlx/3)La3Zr2O12: role of aluminum during formation, J. Mater. Chem. A, vol.1, issue.31, p.8813, 2013.

Y. Zhang, F. Chen, R. Tu, Q. Shen, X. Zhang et al., Effect of lithium ion concentration on the microstructure evolution and its association with the ionic conductivity of cubic garnettype nominal Li7Al0.25La3Zr2O12 solid electrolytes, Solid State Ionics, vol.284, pp.53-60, 2016.

V. Thangadurai, S. Narayanan, and D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review, Chem. Soc. Rev, vol.43, issue.13, p.4714, 2014.

J. R. Rustad, The effect of Tetrahedral versus Octahedral network-Blocking Atom Substitutions on Lithium Ion Conduction in LLZO garnet, pp.1-23, 2016.

Y. Chen, E. Rangasamy, C. R. Cruz, C. Liang, and K. An, Origin of High Li+ Conduction in Doped Li7La3Zr2O12 Garnets, J. Mater. Chem. A, vol.3, issue.45, pp.22868-22876, 2015.

Z. Jian, Y. Hu, X. Ji, and W. Chen, NASICON-Structured Materials for Energy Storage, Adv. Mater, vol.29, issue.20, p.1601925, 2017.

M. Cretin, H. Khireddine, and P. Fabry, NASICON structure for alkaline ion recognition, Sensors Actuators B Chem, vol.43, issue.1-3, pp.224-229, 1997.

J. B. Goodenough, H. , .. Hong, and J. A. Kafalas, Fast Na+-ion transport in skeleton structures, Mater. Res. Bull, vol.11, issue.2, pp.203-220, 1976.

H. Hong, J. A. Kafalas, and M. Bayard, High Na+-ion conductivity in Na5YSi4O12, Mater. Res. Bull, vol.13, issue.8, pp.757-761, 1978.

H. Hong, Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors, Mater. Res. Bull, vol.13, issue.2, pp.117-124, 1978.

L. O. Hagman and P. Kierkegaard, The Crystal Structure of NaMe2

T. Me=ge and Z. , Acta Chemica Scandinavica, vol.22, pp.1822-1832, 1968.

J. Alamo, Chemistry and properties of solids with the [NZP] skeleton, Solid State Ionics, pp.547-561, 1993.

A. Rossbach, F. Tietz, and S. Grieshammer, Structural and transport properties of lithiumconducting NASICON materials, J. Power Sources, vol.391, pp.1-9, 2018.

M. Catti, S. Stramare, and R. Ibberson, Lithium location in NASICON-type Li+ conductors by neutron diffraction. I. Triclinic ??-LiZr2(PO4)3, Solid State Ionics, vol.123, issue.1-4, pp.173-180, 1999.

M. Catti and S. Stramare, Lithium location in NASICON-type Li+ conductors by neutron diffraction: II. Rhombohedral ?-LiZr2(PO4)3 at T=423 K, Solid State Ionics, pp.489-494, 2000.

M. Samiee, Divalent-doped Na3Zr2Si2PO12 natrium superionic conductor: Improving the ionic conductivity via simultaneously optimizing the phase and chemistry of the primary and secondary phases, J. Power Sources, vol.347, pp.229-237, 2017.

G. J. Redhammer, A single crystal X-ray and powder neutron diffraction study on NASICON-type Li1+xAlxTi2?x(PO4)3 (0 ? x ? 0.5) crystals: Implications on ionic conductivity, Solid State Sci, vol.60, pp.99-107, 2016.

M. Monchak, Lithium Diffusion Pathway in Li1.3Al0.3Ti1.7(PO4)3(LATP) Superionic Conductor, Inorg. Chem, vol.55, issue.6, pp.2941-2945, 2016.

G. J. Redhammer, A single crystal X-ray and powder neutron diffraction study on NASICON-type Li1+xAlxTi2?x(PO4)3 (0 ? x ? 0.5) crystals: Implications on ionic conductivity, Solid State Sci, vol.60, pp.99-107, 2016.

F. Sudreau, D. Petit, and J. P. Boilot, Dimorphism, phase transitions, and transport properties in LiZr2(PO4)3, J. Solid State Chem, vol.83, issue.1, pp.78-90, 1989.

F. Yvoire, M. Pintard-scrépel, E. Bretey, and M. De-la-rochère, Phase transitions and ionic conduction in 3D skeleton phosphates A3M2(PO4)3 : A = Li

M. Cr and F. , Solid State Ionics, vol.9, issue.10, pp.851-857, 1983.

H. Aono, N. Imanaka, and G. Ya-adachi, High Li+ Conducting Ceramics, Acc. Chem. Res, vol.27, issue.9, pp.265-270, 1994.
DOI : 10.1021/ar00045a002

J. E. Iglesias, J. Sanz, A. Martínez-juárez, and J. M. Rojo, Low-Temperature Triclinic Distortion in NASICON-Type LiSn2(PO4)3, J. Solid State Chem, vol.130, issue.2, pp.322-326, 1997.

J. Kuwano, N. Sato, M. Kato, and K. Takano, Ionic conductivity of LiM2(PO4)3 (M=Ti, Zr, Hf) and related compositions, Solid State Ionics, issue.1, pp.332-336, 1994.

R. Kahlaoui, K. Arbi, R. Jimenez, I. Sobrados, J. Sanz et al., Distribution and mobility of lithium in NASICON-type Li1-xTi2-xNbx(PO4)3(0 ? x ? 0.5) compounds, Mater. Res. Bull, vol.101, pp.146-154, 2017.

K. Arbi, J. M. Rojo, and J. Sanz, Lithium mobility in titanium based Nasicon Li1+xTi2-xAlx(PO4)3and LiTi2-xZrx(PO4)3materials followed by NMR and impedance spectroscopy, J. Eur. Ceram. Soc, vol.27, issue.13-15, pp.4215-4218, 2007.

K. Arbi, R. Jimenez, T. ?alkus, A. F. Orliukas, and J. Sanz, On the influence of the cation vacancy on lithium conductivity of Li1 + xRxTi2 -X(PO4)3Nasicon type materials, Solid State Ionics, vol.271, pp.28-33, 2015.

D. H. Kothari and D. K. Kanchan, Effect of doping of trivalent cations Ga3+, Sc3+, Y3+ in Li1.3Al0.3Ti1.7 (PO4)3 (LATP) system on Li+ ion conductivity, Phys. B Condens. Matter, vol.501, pp.90-94, 2016.

G. X. Wang, D. H. Bradhurst, S. X. Dou, and H. K. Liu, LiTi2(PO4)3 with NASICON-type structure as lithium-storage materials, J. Power Sources, vol.124, issue.1, pp.231-236, 2003.

C. Delmas, A. Nadiri, and J. L. Soubeyroux, The nasicon-type titanium phosphates Ati2(PO4)3 (A=Li, Na) as electrode materials, Solid State Ionics, vol.28, issue.30, pp.419-423, 1988.

Y. Li, M. Liu, K. Liu, and C. A. Wang, High Li+conduction in NASICON-type Li1+xYxZr2-x(PO4)3at room temperature, J. Power Sources, vol.240, pp.50-53, 2013.

H. Xu, S. Wang, H. Wilson, F. Zhao, and A. Manthiram, Y-Doped NASICON-type LiZr2(PO4)3Solid Electrolytes for Lithium-Metal Batteries, Chem. Mater, vol.29, issue.17, pp.7206-7212, 2017.

K. Nomura, S. Ikeda, K. Ito, and H. Einaga, Ionic conduction behavior in zirconium phosphate framework, Solid State Ionics, vol.61, issue.4, pp.293-301, 1993.

M. Catti, N. Morgante, and R. M. Ibberson, Order-Disorder and Mobility of Li+ in the ??-and ?-LiZr2(PO4)3 Ionic Conductors: A Neutron Diffraction Study, J. Solid State Chem, vol.152, issue.2, pp.340-347, 2000.

K. Arbi, M. Ayadi-trabelsi, and J. Sanz, Li mobility in triclinic and rhombohedral phases of the Nasicon-type compound LiZr2(PO4)3as deduced from NMR spectroscopy, J. Mater. Chem, vol.12, issue.10, pp.2985-2990, 2002.

M. Catti, A. Comotti, and S. D. Blas, High-temperature lithium mobility in ??-LiZr2(PO4)3 NASICON by neutron diffraction, Chem. Mater, vol.15, issue.8, pp.1628-1632, 2003.

H. Aono and E. Sugimoto, Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate, J Electrochem Soc, vol.137, issue.4, pp.1023-1027, 1990.

K. Kamali and T. R. Ravindran, Temperature and Pressure Dependent Phase Transitions of ??-LiZr 2 (PO 4 ) 3 Studied by Raman Spectroscopy, J. Phys. Chem. A, vol.120, issue.12, pp.1971-1977, 2016.

S. Ikeda, M. Takahashi, J. Ishikawa, and K. Ito, Solid electrolytes with multivalent cation conduction. 1. Conducting species in MgZrPO4system, Solid State Ionics, vol.23, issue.1-2, pp.125-129, 1987.

K. Nomura, S. Ikeda, K. Ito, and H. Einaga, Framework structure, phase transition and ionic conductivity of MgZr4(PO4)6and ZnZr4(PO4)6, J. Electroanal. Chem, vol.326, issue.1-2, pp.351-356, 1992.

V. I. Pet&apos;kov, V. S. Kurazhkovskaya, A. I. Orlova, and M. L. Spiridonova, Synthesis and crystal chemical characteristics of the structure of M 0.5Zr2(PO4)3 phosphates, Crystallogr. Reports, vol.47, issue.5, pp.736-743, 2002.

E. R. Gobechiya, M. V. Sukhanov, V. I. Pet&apos;kov, and Y. K. Kabalov, Crystal structure of the double magnesium zirconium orthophosphate at temperatures of 298 and 1023 K, Crystallogr. Reports, vol.53, issue.1, pp.53-59, 2008.

N. K. Anuar, S. B. Adnan, and N. S. Mohamed, Characterization of Mg0.5Zr2(PO4)3for potential use as electrolyte in solid state magnesium batteries, Ceram. Int, vol.40, issue.8, pp.13719-13727, 2014.

N. K. Anuar and N. S. Mohamed, Structural and electrical properties of novel Mg0.9+0.5y Zn0.4Al y Zr1.6?y (PO4)3 ceramic electrolytes synthesized via nitrate sol-gel method, J. SolGel Sci. Technol, vol.80, issue.2, pp.249-258, 2016.

N. Khairul-anuar and S. B. ,

M. Adnan, N. S. Jaafar, and . Mohamed, Studies on structural and electrical properties of Mg0. 5+y (Zr2-yFey) 2 (PO4) 3 ceramic electrolytes, Ionics (Kiel), vol.22, 2016.

Z. A. Halim, S. B. Adnan, F. M. Salleh, and N. S. Mohamed, Effects of Mg2+ interstitial ion on the properties of Mg0.5+x/2Si2-xAlx(PO4)3 ceramic electrolytes, J. Magnes. Alloy, vol.5, issue.4, pp.439-447, 2017.

V. Ramar, S. Kumar, S. R. Sivakkumar, and P. Balaya, NASICON-type La3+substituted LiZr2(PO4)3with improved ionic conductivity as solid electrolyte, Electrochim. Acta, vol.271, pp.120-126, 2018.
DOI : 10.1016/j.electacta.2018.03.115

C. V. Chandran, S. Pristat, E. Witt, F. Tietz, and P. Heitjans, Solid-State NMR Investigations on the Structure and Dynamics of the Ionic Conductor Li 1+ x Al x Ti 2-x, vol.120, pp.8436-8442, 2016.

Y. X. Xiang, G. Zheng, G. Zhong, D. Wang, R. Fu et al., Toward understanding of ion dynamics in highly conductive lithium ion conductors: Some perspectives by solid state NMR techniques, Solid State Ionics, vol.318, pp.19-26, 2017.

M. Forsyth, S. Wong, K. M. Nairn, A. S. Best, P. J. Newman et al., NMR studies of modified nasicon-like, lithium conducting solid electrolytes, Solid State Ionics, vol.124, issue.3, pp.213-219, 1999.

A. Cassel, B. Fleutot, M. Courty, V. Viallet, and M. Morcrette, Sol-gel synthesis and electrochemical properties extracted by phase inflection detection method of NASICON-type solid electrolytes LiZr2(PO4), Solid State Ionics, vol.309, pp.63-70, 2017.

E. Zhao, F. Ma, Y. Jin, and K. Kanamura, Pechini synthesis of high ionic conductivity Li1.3Al0.3Ti1.7 (PO4)3 solid electrolytes: The effect of dispersant, J. Alloys Compd, vol.680, pp.646-653, 2016.

M. Cabello, R. Alcántara, F. Nacimiento, P. Lavela, M. J. Aragón et al., Na3V2(PO4)3 as electrode material for rechargeable magnesium batteries: a case of sodium-magnesium hybrid battery, Electrochim. Acta, vol.246, pp.908-913, 2017.

M. P. Pechini, Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coating Method Using the Same to Form a Capacitor, 1967.

Y. Li, M. Liu, K. Liu, and C. A. Wang, High Li+conduction in NASICON-type Li1+xYxZr2-x(PO4)3at room temperature, J. Power Sources, vol.240, pp.50-53, 2013.

H. Xu, S. Wang, H. Wilson, F. Zhao, and A. Manthiram, Y-Doped NASICON-type LiZr2(PO4), p.3

, Electrolytes for Lithium-Metal Batteries, Chem. Mater, vol.29, issue.17, pp.7206-7212, 2017.

F. Sudreau, D. Petit, and J. P. Boilot, Dimorphism, phase transitions, and transport properties in LiZr2(PO4)3, J. Solid State Chem, vol.83, issue.1, pp.78-90, 1989.

F. Sudreau, D. Petit, and J. P. Boilot, Dimorphism, phase transitions, and transport properties in LiZr2(PO4)3, J. Solid State Chem, vol.83, issue.1, pp.78-90, 1989.

K. Arbi, M. Ayadi-trabelsi, and J. Sanz, Li mobility in triclinic and rhombohedral phases of the Nasicon-type compound LiZr2(PO4)3as deduced from NMR spectroscopy, J. Mater. Chem, vol.12, issue.10, pp.2985-2990, 2002.

K. Arbi, M. Tabellout, and J. Sanz, NMR and electric impedance study of lithium mobility in fast ion conductors LiTi2 ? xZrx(PO4)3 (0 ? x ? 2), Solid State Ionics, vol.180, issue.40, pp.1613-1619, 2010.

E. R. Losilla, Sodium mobility in the NASICON series Na(1+x)Zr(2-x)In(x)(PO4)3, Chem. Mater, vol.12, issue.8, pp.2134-2142, 2000.

K. Arbi, J. M. Rojo, and J. Sanz, Lithium mobility in titanium based Nasicon Li1+xTi2-xAlx(PO4)3and LiTi2-xZrx(PO4)3materials followed by NMR and impedance spectroscopy, J. Eur. Ceram. Soc, vol.27, issue.13-15, pp.4215-4218, 2007.

M. Sadiq, M. Abdennouri, N. Barka, M. Baalala, C. Lamonier et al., Influence of the Crystal Phase of Magnesium Phosphates Catalysts on the Skeletal Isomerization of 3,3-dimethylbut-1-ene, Can. Chem. Trans, vol.3, issue.2, pp.225-233, 2015.

S. Maron, N. Ollier, T. Gacoin, and G. Dantelle, Determination of paramagnetic concentrations inside a diamagnetic matrix using solid-state NMR, Phys. Chem. Chem. Phys, vol.19, issue.19, pp.12175-12184, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01622213

I. J. King, R. K. Harris, J. S. Evans, F. Fayon, and D. Massiot, A space group assignment of ZrP2O7 obtained by 31P solid state NMR, Chem. Commun, issue.18, pp.1766-1767, 2001.

W. Belam, D. , and X. , 31P,29Si MAS-NMR studies on the Li-NASICON Li3Zr2-ySi2-4yP1+4yO12(0 ? y ? 0.5) system, Sol-gel chemistry synthesis, vol.551, pp.267-273, 2013.

P. Maldonado-manso, M. C. Martín-sedeño, S. Bruque, J. Sanz, and E. R. Losilla, Unexpected cationic distribution in tetrahedral/octahedral sites in nominal Li1+xAlxGe2-x(PO4)3NASICON series, Solid State Ionics, vol.178, issue.1-2, pp.43-52, 2007.

C. V. Chandran, S. Pristat, E. Witt, F. Tietz, and P. Heitjans, Solid-State NMR Investigations on the Structure and Dynamics of the Ionic Conductor Li 1+ x Al x Ti 2-x, vol.120, pp.8436-8442, 2016.

H. Xu, S. Wang, H. Wilson, F. Zhao, and A. Manthiram, Y-Doped NASICON-type LiZr2(PO4)3Solid Electrolytes for Lithium-Metal Batteries, Chem. Mater, vol.29, issue.17, pp.7206-7212, 2017.

Y. Li, M. Liu, K. Liu, and C. A. Wang, High Li+conduction in NASICON-type Li1+xYxZr2-x(PO4)3at room temperature, J. Power Sources, vol.240, pp.50-53, 2013.

D. Le-diagramme, Nyquist de l'échantillon Mg100 (Figure 62) montre un seul demi-cercle duquel on en déduit une conductivité 1.3 10 -9 S.cm -1 à 21°C. La conductivité de ce Nasicon formé dans les phases ? et ?' déjà peu conductrices en Li [2] est donc extrêmement faible, Composés mixtes Li/Mg

, Figure 62) est complexe du fait de la présence de 2 porteurs de charges possibles (Li + et Mg 2+ ) et du grand nombre de phases en présence. Néanmoins, la conductivité ionique mesurée à température ambiante pour l'échantillon Li100 est supérieure de 5 ordres de grandeur à celle mesurée pour Mg100. On en déduit que la mobilité de Li + est très supérieure à celle de Mg 2+ et ce quelle que soit la phase considérée. Ainsi, les contributions respectives des phases contenant majoritairement des ions Li + et de celles contenant majoritairement des ions Mg 2+ sont probablement séparées dans le diagramme de, L'analyse des diagrammes de Nyquist des échantillons contenant du lithium et du magnésium, Mg25, Mg33, Mg50 et Mg75

, on observe systématiquement un demi-cercle aux hautes fréquences (noté A), une portion de demi-cercle aux moyennes fréquences (noté B) et dont la taille relative par rapport au demi-cercle A augmente avec la composition en Mg, et enfin une portion aux basses fréquences (notée C), Nous allons chercher à attribuer chacune de ces portions à une phase spécifique pour chaque échantillon

, nous avons mis en évidence la coexistence de phases Nasicon lithiées et magnésiées. Plus particulièrement pour les composés contenant majoritairement du lithium (Mg25 et Mg33), les résultats obtenus laissent clairement supposer que le lithium a formé deux phases ?'-Li et ?'-Li et que le magnésium a formé une phase ?'-Mg. Pour les composés contenant majoritairement du magnésium (Mg50 et Mg75), le lithium serait dans une phase ?'-Li et le magnésium dans des phases ?'-Mg et ?-Mg qui peuvent toutefois contenir une fraction minoritaire de lithium, La phase lithiée qui est présente dans les quatre échantillons mixtes est donc la phase ?'-Li

. Li and . Li, On peut donc suggérer que la contribution A correspond à la diffusion des Li + dans la phase ?'-Li. A noter toutefois que pour Mg25 et Mg33 il existe deux autre phases lithiées, les phases ?

, Ainsi il est possible que leurs contributions dans le diagramme de Nyquist de Mg25 et Mg33 soient des demi-cercles de plus petit diamètre (résistance plus faible) que la contribution de la phase

, Quant à la contribution B, il s'agit probablement de la contribution de la phase ?'-Mg et/ou ?-Mg qui contient aussi de façon très probable une petite proportion d'atomes de lithium comme précédemment discuté. La résistance de cette phase est impactée par la proportion d'atomes de Li ayant réussi à s'y insérer, et qui doit croitre avec la teneur globale en Li dans l'échantillon. En conséquence, comme la mobilité des ions Li + est plus élevée que celle des Mg 2+

, Enfin la contribution C peut être interprétée comme la contribution d'une phase de type ?'-Mg ou ?-Mg contenant exclusivement du magnésium et qui serait donc encore plus résistive que la contribution B; ou plus simplement comme l'impédance de l'interface pastille/or qui ne serait pas une capacité

H. Xu, S. Wang, H. Wilson, F. Zhao, and A. Manthiram, Y-Doped NASICON-type LiZr2(PO4)3Solid Electrolytes for Lithium-Metal Batteries, Chem. Mater, vol.29, issue.17, pp.7206-7212, 2017.

F. Sudreau, D. Petit, and J. P. Boilot, Dimorphism, phase transitions, and transport properties in LiZr2(PO4)3, Conductivité ionique, vol.83, pp.78-90, 1989.

, La conductivité ionique totale mesurée pour l'échantillon Li100 est de l'ordre de 10 -5 S.cm -1 , en accord avec les valeurs de la littérature, pp.10-19

, ce qui nous laisse penser que la mobilité du Li + est bien plus élevée que celle des Mg 2+ dans les structures de type Nasicon, et que donc c'est cet ion qui est le porteur de charges principal dans les composés mixtes Li/Mg. La charge plus élevée du cation Mg 2+ induit probablement de plus fortes interactions avec le réseau anionique, S.cm -1 )

. Dans-les-composés-mixtes-li-mg, on mesure une conductivité ionique intermédiaire entre celle de Li100 et celle de Mg100, qui décroit avec la teneur globale en magnésium. Cela s'explique par la formation de phases ? et ?' d'une part, moins conductrices que la phase ?, et également par la réduction du nombre de porteurs de charges plus mobiles

, Cette étude montre donc que la substitution de Li + par Mg 2+ dans Li1.15Y0.15Zr1.85(PO4)3 n'est à première vue pas bénéfique pour les propriétés de conduction de matériaux de type Nasicon puisque la stabilisation de la phase ? est perdue et que les ions Mg 2+ sont moins mobiles que les ions Li +