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Chapter 1

Introduction

Context

In many applications, estimating the current state of a dynamical system is crucial either to
build a controller or simply to obtain real time information on the system for decision-making
or surveillance. A common way of addressing this problem is to place some sensors on/in the
physical system and design an algorithm, calledobserver, whose role is to process the incomplete
and imperfect information provided by the sensors and thereby construct a reliable estimate of
the whole system state. Of course, such an algorithm can exist only if the measurements from
the sensor somehow contain enough information to determine uniquely the state of the system,
namely the system isobservable.

The number and quality of the sensors being often limited in practice due to cost and physical
constraints, the observer plays a decisive role in a lot of applications. Many e�orts have thus
been made in the scienti�c community to develop universal methods for the construction of
observers. Several conceptions of this object exist, but in this thesis, we mean by observer a
�nite-dimensional dynamical system fed with the measurements, and for which a function of
the state must converge in time to the true system state. Although very satisfactory solutions
are known for linear systems, nonlinear observer designs still su�er from a signi�cant lack of
generality. The very vast literature available on the subject consists of scattered results, each
making speci�c assumptions on the structure and observability of the system. In other words,
no uni�ed and systematic method exists for the design of observers for nonlinear systems.

Actually, observer design may be more or less straightforward depending on the coordinates
we choose to express the system dynamics. For instance, dynamics which seem nonlinear at �rst
sight could turn out to be linear in other coordinates. In particular, some speci�c structures,
called normal forms, have been identi�ed for allowing a direct and easier observer construction.
One may cite for instance the state-a�ne forms with their so-called Luenberger or Kalman ob-
servers, or the triangular forms associated to the celebrated high gain design. With this in mind,
most solutions available in the literature actually �t in the following three-step methodology :

1. look for a reversible change of coordinates transforming the dynamics of the given nonlinear
system into one of the identi�ed normal forms,

2. design an observer in those new coordinates,

3. deduce an estimate for the system state in the initial coordinates via inversion of the
transformation.

Of course in order to follow this method one need to know

I. a list of normal forms and their associated observers,

II. under which conditions and thanks to which invertible transformation one can rewrite a
dynamical system into one of those forms,



8 Chapter 1. Introduction

III. how to compute the inverse of this transformation.

When browsing the literature, one discover that the �rst two points have been extensively
studied, although not always under this terminology. In fact, they constitute the core of the
observer design problem and they are tightly linked since a particular form is of interest if it
admits observers (Point I.) and if a large category of systems can be transformed into that
form (Point II.). Therefore, Points I. and II. are often treated simultaneously. On the contrary,
very few results concern Point III., mainly because the observer problem is often considered
theoretically solved, once an invertible transformation into a normal form has been found.

Problems addressed in this thesis

Actually, in practice, inverting a nonlinear map is far from trivial. Most of the time, the system
and the normal form have di�erent dimensions, so that the transformation is at best an injective
immersion. Since its inverse is a priori de�ned only on a submanifold of the observer space, an
extension is often necessary. When an explicit expression for a global inverse is not available,
numerical inversion usually relies on the resolution of a minimization problem with a heavy
computation cost, which thus raises implementation issues. That is why the �rst goal of this
thesis was to develop a methodology to avoid the explicit inversion of the transformation, by
bringing the dynamics of the observer (designed in the normal form coordinates) back into the
initial system coordinates.

When I started my thesis, some preliminary results in that direction had already been ob-
tained in the case of autonomous systems, but some tools remained to be developed in order to
complete the theory and also to make the method implementable in practice. This kept us busy
for several months and at the end, we tried to extend our results to time-varying/controlled
systems. In doing so, we discovered that surprisingly, the limitation did not come from our
method of inversion, but rather from the scarcity of general observer design techniques available
for nonlinear controlled systems, namely from Points I.-II. rather than Point III.

In particular, we realized that, in the usual case where the derivatives of the input are
unknown, even the widely used high gain design, reputed to be general, had only been proved to
work under the assumptions that the system be observable for any input AND that its order of
di�erential observability be equal to the system dimension. In this particular case, the system can
indeed be transformed into a triangular normal form with Lipschitz nonlinearities appropriate for
the design of a high gain observer. Given the restrictive nature of this framework, we naturally
wondered if one of those two assumptions could be relaxed. Actually, the "observable for any
input" assumption is necessary to have a triangular form and cannot be altered. However, we
discovered that, interestingly, it was often possible to preserve the triangularity of the target
form when allowing the order of di�erential observability to be larger than the dimension of the
system, but that the Lipschitzness of the nonlinearities could be lost. This observation led us to
address the following two problems : �rst, what kind of observers can be used for a triangular
normal form with continuous (non-Lipschitz) nonlinearities, and second under which conditions
a system can be transformed into such a continuous triangular form.

Apart from the high gain paradigm, another general technique for nonlinear observer design
had recently been developed, inspired from Luenberger's initial approach to build observers for
linear systems. This so-called Kazantzis-Kravaris or Luenberger design consists in transforming
the system into a Hurwitz linear form (for which a trivial observer exists) via the resolution
of a partial di�erential equation (PDE). But this approach was only available for autonomous
systems and we thus tried to �gure out how it could be extended to controlled/time-varying
systems, namely how to transform this kind of system into a Hurwitz linear form.
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Thesis organization

Summing up, this thesis provides contributions to each of the three points mentioned above :

Contribution 1 observer design for a continuous triangular form (related to Point I.)

Contribution 2 characterization of controlled systems which can be transformed into a con-
tinuous triangular form (related to Point II.)

Contribution 3 characterization of controlled systems which can be transformed into a Hur-
witz linear form (related to Point II.)

Contribution 4 method to express the dynamics of the observer in the given coordinates to
avoid the inversion of the transformation (related to Point III.)

Instead of presenting the results in a chronological way, I thus found clearer to organize my
thesis along this three-step methodology and classify the contributions accordingly, namely in
three parts :

Part I Normal forms and their observers (with Contribution 1)

Part II Transformation into a normal form (with Contributions 2 and 3)

Part III Observer in given coordinates (with Contribution 4)

Since the topics of Part I and II have been extensively studied in the literature, detailed reviews
are provided in each of those parts, so that this thesis �nally gives a good overview of the state
of the art in terms of observer design for nonlinear systems.

On the other hand, I also had the opportunity to work on applications, in particular the
design of observers for permanent magnet synchronous motors (PMSM) without mechanical
information (sensorless) and with some unknown parameters. This led to the following contri-
butions :

Contribution 5 gradient observer for the estimation of the rotor position and magnet �ux of
a PMSM

Contribution 6 observability analysis and observer design for a PMSM with unknown rotor
position and unknown resistance.

This work was carried out in parallel to the rest and is detailed in a separate part :

Part IV Observers for PMSMs with unknown parameters (with Contributions 5 and 6).

Publications

The work presented in this thesis has resulted in the following publications :

- Journals

1. P. Bernard, L. Praly, V. Andrieu, Observers for a non-Lipschitz triangular form,
Automatica, Vol. 82, p301-313, 2017

2. P. Bernard, L. Praly, V. Andrieu, On the triangular normal form for uniformly ob-
servable controlled systems, Automatica, Vol. 85, p293-300, 2017.

3. P. Bernard, L. Praly, V. Andrieu, Expressing an observer in given coordinates by
augmenting and extending an injective immersion to a surjective di�eomorphism,
Submitted to SIAM

- Conferences
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1. P. Bernard, Luenberger observers for nonlinear controlled systems, Conference on
Decision and Control, 2017 (To appear)

2. P. Bernard, L. Praly, Robustness of rotor position observer for permanent magnet
synchronous motors with unknown magnet �ux, IFAC World Congress, 2017

3. P. Bernard, L. Praly, V. Andrieu, Non Lipschitz triangular normal form for uniformly
observable controlled systems, IFAC Symposium on Nonlinear Control Systems, 2016

4. P. Bernard, L. Praly, V. Andrieu, Tools for observers based on coordinate augmenta-
tion, Conference on Decision and Control, 2015



Introduction

Contexte

Dans beaucoup d'applications, l'estimation en temps réel de l'état d'un système dynamique est
cruciale, que ce soit pour la synthèse d'un contrôleur ou simplement pour la surveillance et la
prise de décision. Une façon usuelle de résoudre ce problème consiste à installer des capteurs
sur/dans le système physique et implémenter un algorithme, appeléobservateur, dont le rôle est
de traiter les informations partielles et imparfaites données par les capteurs, et d'en déduire une
estimation �able de l'état complet du système. Bien sûr, un tel algorithme ne peut exister que
si les mesures des capteurs contiennent assez d'informations pour déterminer de manière unique
l'état du système : le système est alors ditobservable.

Le nombre et la qualité des capteurs étant souvent limités en pratique en raison de contraintes
physiques et de coût, l'observateur est amené à jouer un rôle décisif dans beaucoup d'applications.
La communauté scienti�que s'est donc e�orcée de développer des méthodes aussi universelles
que possible pour la synthèse d'observateur. Plusieurs conceptions de cet objet existent, mais
dans cette thèse, le terme "observateur" désigne un système dynamique de dimension �nie,
prenant en entrée les mesures, et dont une fonction de l'état converge en temps vers l'état
réel du système. Alors que des solutions satisfaisantes existent pour les systèmes linéaires, les
synthèses d'observateurs non linéaires manquent cruellement de généralité. La littérature, par
ailleurs très fournie sur le sujet, se compose essentiellement de résultats épars, chacun faisant sa
propre hypothèse sur la structure et l'observabilité du système. Autrement dit, il n'existe pas
de méthode générale pour la synthèse d'observateur pour système non linéaires.

En fait, il se peut que la synthèse soit plus ou moins facile suivant les coordonnées que l'on
a choisies pour exprimer la dynamique du système. Par exemple, une dynamique qui paraît
non linéaire au premier abord pourrait s'avérer être linéaire dans d'autres coordonnées. Or,
des structures particulières, appeléesformes normales, ont été identi�ées comme permettant la
construction facile et directe d'un observateur. Parmi elles, les formes a�nes en l'état, avec
leurs observateurs de Luenberger ou de Kalman, ou les formes triangulaires, associées au célèbre
observateur grand gain. A partir de là, la plupart des solutions disponibles dans la littérature
s'inscrivent en fait dans une démarche à trois étapes que l'on peut résumer ainsi :

1. chercher un changement de coordonnées réversible qui transforme la dynamique du système
non linéaire donné dans l'une des formes normales connues,

2. synthétiser un observateur dans ces coordonnées,

3. en déduire une estimation de l'état du système dans les coordonnées initiales en inversant
la transformation.

Bien sûr, pour suivre cette méthode, il est nécessaire de connaître

I. une liste de formes normales et les observateurs associés,

II. sous quelles conditions et grâce à quelle transformation inversible il est possible de réécrire
un système dynamique sous l'une de ces formes,

III. comment calculer l'inverse de la transformation.
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Il s'avère que les deux premiers points ont beaucoup été étudiés dans la littérature (pas toujours
sous cette terminologie). En fait, ils constituent le coeur du problème de synthèse d'observateur
et ils sont fortement liés puisqu'une forme particulière n'a d'intérêt que si elle admet un obser-
vateur (Point I.) et si une large catégorie de systèmes peuvent être transformés en cette forme
(Point II.). Les Points I. et II. sont donc très souvent traités simultanément. Au contraire, très
peu de résultats concernent le Point III., principalement parce que le problème d'observateur est
souvent considéré comme résolu lorsque une transformation inversible dans une forme normale
a été trouvée, c'est-à-dire lorsque les Points I. et II. ont été traités.

Problèmes abordés dans cette thèse

En fait, en pratique, inverser une application non linéaire est loin d'être trivial. La plupart
du temps, le système et la forme normale ont des dimensions di�érentes, et la transforma-
tion est donc au mieux une immersion injective. Puisque son inverse n'est a priori dé�nie que
sur une sous-variété de l'espace où évolue l'observateur, une extension est souvent nécessaire.
En l'absence d'expression explicite et globale de l'inverse, l'inversion numérique repose sur la
résolution d'un problème de minimisation coûteux en calcul, ce qui soulève d'importants prob-
lèmes d'implémentation. C'est pourquoi le premier objectif de cette thèse était de développer
une méthode permettant d'éviter l'inversion explicite de la transformation, en ramenant la dy-
namique de l'observateur (écrite dans les coordonnées de la forme normale) dans les coordonnées
initiales du système.

Lorsque j'ai commencé ma thèse, des résultats préliminaires avaient déjà été obtenus dans
cette direction pour les systèmes autonomes, mais il restait à développer certains outils pour
compléter la théorie ainsi que pour la rendre implémentable en pratique. Ceci nous a occupés
quelques mois, jusqu'à ce que nous essayions d'étendre nos résultats aux systèmes instation-
naires/commandés. C'est alors que nous nous rendîmes compte avec surprise que les limitations
ne provenaient pas de notre méthode d'inversion, mais plutôt de la rareté des techniques générales
de synthèse d'observateurs existant pour les systèmes non linéaires commandés, c'est-à-dire des
Points I. et II. plutôt que du Point III.

En particulier, nous réalisâmes que, dans le cas usuel où les dérivées de l'entrée sont in-
connues, même la synthèse grand gain, si largement utilisée et réputée générale, ne s'applique
théoriquement qu'aux systèmes observables pour toute entrée dont l'ordre d'observabilité dif-
férentielle est égal à la dimension du système. Dans ce cas particulier en e�et, le système peut
être transformé en une forme normale triangulaire avec des non linéarités Lipschitz appropriées
à la synthèse d'un observateur grand gain. Vu le caractère restrictif de ce cadre, nous nous de-
mandâmes naturellement si l'une de ces deux hypothèses pouvait être relâchée. Pour ce qui est
de la première, l'observabilité "pour toute entrée" est nécessaire pour obtenir une forme trian-
gulaire et ne peut donc être modi�ée. Par contre, nous découvrîmes qu'il était souvent possible
de préserver la triangularité de la forme cible en autorisant l'ordre d'observabilité di�érentielle
à être supérieur à la dimension du système, mais que le caractère Lipschitz des non linéarités
pouvait alors être perdu. Cette observation nous amena naturellement à nous intéresser à deux
nouveaux problèmes : d'une part, quels types d'observateurs peuvent être utilisés pour une
forme triangulaire avec des non linéarités continues (non-Lipschitz), et d'autre part, sous quelles
conditions un système quelconque peut être transformé en une telle forme.

En face de la synthèse grand gain, une autre technique générale de synthèse d'observateurs
non linéaires avait été récemment développée, inspirée de l'approche initialement adoptée par
Luenberger pour la synthèse d'observateur de systèmes linéaires. Cette synthèse "de Kazantzis-
Kravaris" ou "de Luenberger", consiste à transformer le système en une forme linéaire Hurwitz
(pour laquelle un observateur trivial existe) via la résolution d'une équation aux dérivées par-
tielles (EDP). Mais cette approche étant disponible seulement pour les systèmes autonomes,
nous essayâmes de l'étendre aux systèmes instationnaires/commandés.
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Organisation de la thèse

En résumé, cette thèse contribue à chacun des trois points mentionnés plus haut :

Contribution 1 Synthèse d'observateurs pour une forme triangulaire continue (relié au Point
I.)

Contribution 2 Caractérisation des systèmes commandés pouvant être transformés en une
forme triangulaire continue (relié au Point II.)

Contribution 3 Caractérisation des systèmes commandés pouvant être transformés en une
forme linéaire Hurwitz (relié au Point II.)

Contribution 4 Méthode pour exprimer la dynamique de l'observateur directement dans les
coordonnées du système pour éviter l'inversion de la transformation (relié au Point III.)

Au lieu de présenter les résultats chronologiquement, j'ai ainsi trouvé plus clair d'organiser ma
thèse en suivant cette démarche à trois étapes, et donc de classi�er les contributions en trois
parties :

Partie I Formes normales et leurs observateurs (avec Contribution 1)

Partie II Transformation dans une forme normale (avec Contributions 2 et 3)

Partie III Expression de l'observateur dans les coordonnées du système (avec Contribution 4)

Les thèmes des Parties I. et II. ayant été intensivement étudiés dans la littérature, ce plan m'a
aussi permis de faire apparaître un bilan détaillé des résultats existant en début de ces deux
parties. Cette thèse donne donc �nalement une bonne vue d'ensemble de l'état de l'art en
matière d'observateur pour les systèmes non linéaires.

En�n, j'ai aussi eu l'opportunité de travailler sur des applications, en particulier sur la
synthèse d'observateurs pour moteurs synchrones à aimant permanent (MSAP) en l'absence
d'informations mécaniques (sensorless) et avec certains paramètres inconnus. Ce travail a mené
aux contributions suivantes :

Contribution 5 Observateur gradient pour l'estimation de la position du rotor et du �ux de
l'aimant dans un MSAP

Contribution 6 Analyse d'observabilité et synthèse d'observateur pour un MSAP dont la po-
sition du rotor et la résistance sont inconnues.

Ceci a été réalisé en parallèle et est donc détaillé dans une partie séparée et indépendante :

Partie IV Observateurs pour MSAPs aux paramètres inconnus (avec Contributions 5 et 6).

Publications

Les travaux présentés dans ce manuscrit ont fait l'objet des publications suivantes :

� Journaux internationaux avec comité de lecture

1. P. Bernard, L. Praly, V. Andrieu, Observers for a non-Lipschitz triangular form,
Automatica, Vol. 82, p301-313, 2017

2. P. Bernard, L. Praly, V. Andrieu, On the triangular normal form for uniformly ob-
servable controlled systems, Automatica, Vol. 85, p293-300, 2017.

3. P. Bernard, L. Praly, V. Andrieu, Expressing an observer in given coordinates by
augmenting and extending an injective immersion to a surjective di�eomorphism,
Soumis à SIAM.
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� Conférences internationales avec comité de lecture

1. P. Bernard, Luenberger observers for non linear controlled systems, Conference on
Decision and Control, 2017 (A paraître)

2. P. Bernard, L. Praly, Robustness of rotor position observer for permanent magnet
synchronous motors with unknown magnet �ux, IFAC World Congress, 2017

3. P. Bernard, L. Praly, V. Andrieu, Non Lipschitz triangular normal form for uniformly
observable controlled systems, IFAC Symposium on Nonlinear Control Systems, 2016

4. P. Bernard, L. Praly, V. Andrieu, Tools for observers based on coordinate augmenta-
tion, Conference on Decision and Control, 2015



Chapter 2

Nonlinear observability and observer
design problem

Chapitre 2 � Observabilité non-linéaire et synthèse d'observateur. Ce chapitre
présente brièvement la notion d'observabilité pour les systèmes non-linéaires commandés et intro-
duit le problème de la synthèse d'observateur. La méthode introduite en introduction consistant
à transformer le système dans une "forme normale" est formalisée et les notations utiles au reste
de la thèse sont introduites.
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This �rst chapter introduces the problem of observer design for nonlinear controlled systems
and presents some basic notions of observability which will be needed throughout the thesis.
The subject under discussion here is well-established and widely described in the literature. Our
aim is not to provide an exhaustive study on nonlinear observability and observer design, but
rather to situate our contribution and introduce the basic tools/notations needed in the rest of
this thesis.

2.1 Observation problem

We consider a general system of the form :

_x = f (x; u) ; y = h(x; u) (2.1)

with x the state in Rdx , u an input function with values in Rdu , y the output (or measurement)
with values in Rdy and f and h su�ciently many times continuously di�erentiable functions
de�ned on Rdx � Rdu . We denote

- X (x0; t0; t; u) the solution at time t of (2.1) with input u and passing throughx0 at time
t0. Most of the time, t0 is the initial time 0 and x0 the initial condition. In that case, we
simply write X (x0; t; u).
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- Y(x0; t0; t; u) the output at time t of System (2.1) with input u passing throughx0 at time
t0 i-e :

Y (x0; t0; t; u) = h(X (x0; t0; t; u); u(t)) :

To alleviate the notations when t0 = 0 , we simply note yx0 ;u , i-e

yx0 ;u (t) = h(X (x0; t; u); u(t)) :

Those notations are used to highlight the dependency of the output on the initial condition
(and the input). When this is unnecessary, we simply writey(t).

- X0 a subset of Rdx containing the initial conditions that we consider for System (2.1).
For any x0 in X0, we denote� + (x0; u) (resp � +

X (x0; u)) the maximal time of existence of
X (x0; �; u) in Rdx (resp in a setX ).

- U the set of all su�ciently many times di�erentiable inputs u : [0; + 1 ) ! Rdu which the
system can be submitted to.

- U a subset ofRdu containing all the values taken by the inputs u 2 U, i-e
[

u2U

u([0; + 1 )) � U :

More generally, for an integer m such that any u in U is m times di�erentiable, Um

denotes a subset ofRdu (m+1) containing the values taken by the inputs u in U and its �rst
m derivatives, i-e [

u2U

um ([0; + 1 )) � Um ;

with um = ( u; _u; : : : ; u(m) ).

The object of this thesis is to address the following problem :

Observation problem

For any input u in U, any initial condition x0 in X0, �nd an estimate x̂(t) of X (x0; t; u) based
on the only knowledge of the input and output up to time t, namely u[0;t ] and y[0;t ], and so
that x̂(t) asymptotically approachesX (x0; t; u), at least when x̂(t) is de�ned on [0; + 1 ).

Note that the solutions are de�ned from any points in Rdx , but we may choose to restrict
our attention to those starting from a subset X0 of Rdx (perhaps for physical reasons) and thus,
we are only interested in estimating those particular solutions. Otherwise, takeX0 = Rdx . As
for the causality constraint that only the past values of the input u[0;t ] can be used at timet,
this may be relaxed in the case where the whole trajectory ofu is known in advance, namely for
a time-varying system.

The continuous di�erentiability of f says that any solution to System (2.1) is uniquely
determined by its initial condition. Thus, the problem could be rephrased as : "given the input,
�nd the only possible initial condition which could have produced the given output up to time
t". Of course, this raises the question of uniqueness of the initial condition leading to a given
output trajectory, at least after a certain time. This is related to the notion of observability
which will be addressed later in this chapter. In any case, one could imagine simulating System
(2.1) simultaneously for a set of initial conditions x0 and progressively removing from the set
those producing an output trajectory Y (x0; t; u) "too far" from y(t) (with the notion of "far" to
be de�ned). However, this method presents several drawbacks : �rst, one need to have a fairly
precise idea of the initial condition to allow a trade o� between number of computations and
estimation precision, and second, it heavily relies on the model (2.1) which could be imperfect.
This path has nevertheless aroused a lot of research :
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- either through stochastic approaches, adding random processes to the dynamics (2.1) and to
the measurement, and following the probability distribution of the possible values of the state
([Jaz70])

- or in a deterministic way, adding unknown admissible bounded disturbances to the dynamics
(2.1) and to the measurement, and producing a "set-valued observer" or "interval observer"
such as in [GRHS00, LZA03].

But as far as we know, no viable solution exist for standard nonlinear systems.
Another natural approach is the resolution of the minimization problem ([Zim94])

x̂(t) = Argminx̂

Z t

0

�
�
�Y(x̂; t ; � ; u) � y(� )

�
�
�
2
d�

or rather with �nite memory

x̂(t) = Argminx̂

Z t

t � t

�
�
�Y(x̂; t ; � ; u) � y(� )

�
�
�
2
d� :

Along this path, a �rst idea would be to integrate backwards the di�erential equation (2.1)
for a lot of initial conditions x̂ at time t until t � t and select the "best" one, but this would
require a huge number of computations which would be impossible to carry out online and, as
before, it would rely too much on the model. Some methods have nonetheless been developed to
alleviate the number of computations and solve this optimization problem online, in spite of its
non-convexity and the presence of local minima (see [Ala07] for a survey of existing algorithms).

In this thesis, the path we follow is rather to look for a dynamical system using the current
value of the input and output and whose state is guaranteed to provide (at least asymptotically)
enough information to reconstruct the state of System (2.1). This dynamical system is called an
observer. A more rigorous mathematical de�nition is the following (a sketch is given in Figure
2.1).

De�nition 2.1.1.

An observer for System (2.1) initialized in X0 is a couple(F ; T ) where

- F : Rdz � Rdu � Rdy ! Rd� is continuous

- T is a family of continuous functions Tu : Rdz � [0; + 1 ) ! Rdx , indexed by u in U,
which respect the causality1 condition :

8~u : [0; + 1 ) ! Rdu ; 8t 2 [0; + 1 ) ; u[0;t ] = ~u[0;t ] =) T u(�; t) = T~u(�; t) :

- for any u in U, any z0 in Rdz and any x0 in X0 such that � + (x0; u) = + 1 , any2 solution
Z (z0; t; u; yx0 ;u ) to

_z = F (z; u; yx0 ;u ) (2.2)

initialized at z0 at time 0, with input u and yx0 ;u , exists on [0; + 1 ) and is such that

lim
t ! + 1

�
�
�X̂ ((x0; z0); t; u) � X (x0; t; u)

�
�
� = 0 (2.3)

with
X̂ ((x0; z0); t; u) = Tu (Z (z0; t; u; yx0 ;u ); t) :

1Again, this causality condition may be removed if the whole trajectory of u is explicitly known, for instance
in the case of a time-varying system where u(t) = t for all t .

2We say "any solution" because F being only continuous, there may be several solutions. This is not a
problem as long as any such solution veri�es the required convergence property.



18 Chapter 2. Nonlinear observability and observer design problem

In other words, X̂ ((x0; z0); t; u) is an estimate of the current state of System (2.1) and the
error made with this estimation asymptotically converges to 0 as time goes to the in�nity.

If Tu is the same for anyu in U and is de�ned on Rd� instead of Rd� � R, i-e is time-
independent, T is said stationary. In this case, T directly refers to this unique function and
we may simply say that

_z = F (z; u; y) ; x̂ = T (z)

is an observer for System (2.1) initialized inX0.
In particular, we say that the observer is in the given coordinatesif T is stationary and is

a projection function from Rdz to Rdx , namely X̂ ((x0; z0); t; u) can be read directly from dx

components ofZ (z0; t; u; yx0 ;u ). In the particular case wheredx = dz and T is the identity
function, we may omit to precise T .

Finally, when X0 = Rdx , i-e the convergence is achieved for any initial condition of the
system, we say "observer" without specifyingX0.

_x = f (x; u)
y = h(x; u) _z = F (z; u; y)

x̂ = Tu(z; t)

u

u

y

x̂
Plant

Observer

Figure 2.1: Observer : dynamical system estimating the state of a plant from the knowledge of
its output and input only.

Remark 1 We will see in Chapter 4 that it is sometimes useful to write the observer dynamics
(2.2) as a di�erential inclusion. In this case, F is a set-valued map and everything else remains
unchanged.

The time-dependence ofTu enables to cover the case where the knowledge of the input and/or
the output is used to build the estimate x̂ from the observer statez. For example, using the
output sometimes enables to reduce the dimension of the observer state (and thus alleviate the
computations). However, for those so-called reduced-order observers, the estimatêx depends
directly on y and is therefore a�ected by measurement noise. This kind of observer won't be
mentioned in this thesis. On the other hand, we will see that it is sometimes necessary to use the
input (either implicitly or explicitly) in Tu , but always keeping in mind the causality condition.

The advantage of having an observer in the given coordinates is that the estimate of the
system state can directly be read from the observer state. This spares the maybe-complicated
computation of Tu . Writing the dynamics of the observer in the given coordinates constitutes
one of the goals of this thesis, but we will see that unfortunately, it is not always possible, nor
easy.

Anyhow, the role of an observer is to estimate the system state based on the knowledge of
the input and output. This means that those signals somehow contain enough information to
determine uniquely the whole state of the system. This brings us to the notion of observability.

2.2 Observability and observer design for nonlinear systems

2.2.1 Some notions of observability

In order to have an observer, a detectability property must be satis�ed :
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Lemma 2.2.1.

Assume there exists an observer for System (2.1). Then, System (2.1) is detectable for anyu
in U, i-e for any u in U and for any (xa; xb) in X0 �X 0 such that � + (xa; u) = � + (xb; u) = + 1
and

yxa ;u (t) = yxb;u (t) 8t � 0 ;

we have
lim

t !1
jX (xa; t; u) � X (xb; t; u)j = 0 :

The property of detectability says that even if two di�erent initial conditions are not dis-
tinguishable with the output, the corresponding system solutions become close asymptotically
and thus we still get a "good" estimate no matter which we pick. This is a well-known nec-
essary condition which can be found for instance in [ABS13], and which admits the following
straight-forward proof.

Proof : Consider any u in U and any (xa ; xb) in X 2
0 such that � + (xa ; u) = � + (xb; u) = + 1 and yx a ;u =

yx b ;u . Take z0 in Rdz and pick a solution Z (z0 ; t ; u; yx a ;u ) of (2.2) with input yx a ;u . It is also a solution
to (2.2) with input yx b ;u . Therefore, by denoting X̂ (( xa ; z0); t ; u) = T (Z (z0 ; t ; u; yx a ;u ); u(t); yx a ;u (t)) ,
we have

lim
t !1

jX̂ (( xa ; z0); t ; u) � X (xa ; t ; u)j = 0

and
lim

t !1
jX̂ (( xa ; z0); t ; u) � X (xb; t ; u)j = 0 :

The conclusion follows. �

This means that detectability at least is necessary to be able to construct an observer.
Actually, we often ask for stronger observability properties such as :

De�nition 2.2.1.

Consider an open subsetS of Rdx . System 2.1 is

- distinguishableon S for some input u : R ! Rdu if
for all (xa; xb) in S � S ,

yxa ;u (t) = yxb;u (t) 8t 2 [0; minf � + (xa; u); � + (xb; u)g) =) xa = xb :

- instantaneously distinguishableon S for some input u : R ! Rdu if
for all (xa; xb) in S � S , for all t in (0; minf � + (xa; u); � + (xb; u)g)

yxa ;u (t) = yxb;u (t) 8t 2 [0; t) =) xa = xb :

- uniformly observableon S if
it is distinguishable on S for any input u : R ! Rdu (not only for u in U).

- uniformly instantaneously observableon S if
it is instantaneously distinguishable on S for any input u : R ! Rdu (not only for u in
U).

In particular, the notion of instantaneous distinguishability means that the state of the
system can be uniquely deduced from the output of the system as quickly as we want. In the
particular case where f , h and u are analytical, y is an analytical function of time ([Die60,
10.5.3]) and the notions of distinguishability and instantaneous distinguishability are equivalent
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because two analytical functions which are equal on an interval are necessarily equal on their
maximal interval of de�nition. Besides, for any x0, there exists tx0 such that

yx0 ;u (t) =
+ 1X

k=0

y(k)
x0 ;u (0)

k!
tk ; 8t 2 [0; tx0 ) ;

and distinguishability is thus closely related to the important notion of di�erential observability
which will be de�ned in Chapter 5 and which roughly says that the state of the system at a
speci�c time is uniquely determined by the value of the output and of its derivatives (up to a
certain order) at that time.

The notion of uniform observability could appear unnecessary at �rst sight because it seems
su�cient that the system be observable for any u in U, namely for any considered input, rather
than for any u : R ! Rdu . However, we will see that this (strong) observability property infers
some structural properties on the system which are useful for the design of certain observers.

In fact, more or less strong observability properties are needed depending on the observer
design method and on what is required from the observer (tunability, exponential convergence
etc). For example, it is shown in [ABS13], that for autonomous systems, instantaneous distin-
guishability is necessary to have a tunable observer, i-e an observer giving an arbitrarily small
error on the estimate in an arbitrarily short time.

2.2.2 Observer design

It is proved in [ABS13] that if there exists an observer (F ; T ) for an autonomous system

_x = f (x) ; y = h(x)

and a compact subset ofRdx � Rdz which is invariant by the dynamics (f; F ), then there exist
compact subsetsCx of Rdx and Cz of Rdz , and a closed set-valued mapT de�ned on Cx such that
the set

E = f (x; z) 2 Cx � C z : z 2 T(x)g

is invariant, attractive, and veri�es :

8(x; z) 2 E ; T (z; h(x)) = x :

In other words, the pair made of the system statex (following the dynamics f ) and the observer
state z (following the dynamics F ) converges necessarily to the graph of some set-valued mapT
and T is a left-inverse of this mapping. Note that this injectivity is of a peculiar kind since it is
conditional to the knowledge of the output, namely "x 7! T(x) is injective knowing h(x)". This
result justi�es the usual methodology of observer design for autonomous systems which consists
in transforming, via a function T, the system into a form for which an observer is available,
then design the observer in those new coordinates (i-e �ndF ), and �nally deduce an estimate
in the original coordinates via inversion of T (i-e �nd T ). Note that in practice, we look for a
single-valued mapT because it is simpler to manipulate than a set-valued map.

When considering a time-varying or controlled system, the same methodology can be used,
but two paths are possible :

- either we keep looking for a stationary transformation x 7! T(x) like for autonomous
systems

- or we look for a time-varying transformation (x; t ) 7! Tu(x; t ) which depends either explic-
itly or implicitly on the input u.

It is actually interesting to detail what we mean by explicitly/implicitly. In building a time-
varying transformation, two approaches exist, each attached to a di�erent vision of controlled
systems :



2.2. Observability and observer design for nonlinear systems 21

- either we consider, as in System (2.1), that only the current value of the input (or some-
times the extended input um = ( u; _u; : : : ; u(m) )) is necessary to determineTu(�; t) at time
t, i-e there exists a function ~T such that for any u in U, Tu(x; t ) = ~T(x; u(t)) .

- or we consider System (2.1) as a family of systems indexed byu in U, i-e

_x = f u(x) ; y = hu(x)

and we obtain a family of functions Tu , each depending on a whole functionu in U. In
this case, it is necessary to ensure thatTu(�; t) depends only on the past values ofu to
guarantee causality.

Along this thesis, we will encounter/develop methods from each of those categories. In any case,
here is a su�cient condition to build an observer for System (2.1) :

Theorem 2.2.1.

Consider an integerd� and continuous mapsF : Rd� � Rdu � Rdy ! Rd� , H : Rd� � Rdu ! Rdy

and F : Rd� � Rdu � Rdy ! Rd� such that

_̂� = F (�̂; u; ~y) (2.4)

is an observer for3
_� = F (�; u; H (�; u )) ; ~y = H (�; u ) (2.5)

i-e for any (�̂ 0; � 0) in (Rd� )2 and any u in U, any solution �̂( �̂ 0; t; u; ~y� 0 ;u ) of (2.4) and any
solution �( � 0; t; u) of (2.5) verify

lim
t ! + 1

�
�
� �̂( �̂ 0; t; u; ~y� 0 ;u ) � �( � 0; t; u)

�
�
� = 0 : (2.6)

Now suppose that for anyu in U, there exists a continuous functionTu : Rdx � R ! Rd� and
a subsetX of Rdx such that :

a) for any x0 in X0 such that � + (x0; u) = + 1 , X (x0; �; u) remains in X .

b) there exists a concaveK function � and a positive real numbert such that for all (xa; xb)
in X 2 and all t � t

jxa � xbj � �
�
jTu(xa; t) � Tu(xb; t)j

�
;

i-e x 7! Tu(x; t ) becomes injective onX , uniformly in time and in space, after a certain
time t.

c) Tu transforms System (2.1) into System (2.5), i-e for allx in X and all t in [0; + 1 )

L (f; 1)Tu(x; t ) = F (Tu(x; t ); u(t); h(x; u(t)) ; h(x; u(t)) = H (Tu(x; t ); u(t)) ; (2.7)

where L (f; 1)Tu is the Lie derivative of Tu along the extended vector �eld (f; 1), namely

L (f; 1)Tu(x; t ) = lim
h! 0

Tu(X (x; t ; t + h; u); t + h) � Tu(x; t )
h

d) Tu respects the causality condition

8~u : [0; + 1 ) ! Rdu ; 8t 2 [0; + 1 ) ; u[0;t ] = ~u[0;t ] =) Tu(�; t) = T~u(�; t) :

3The expression of the dynamics under the form F (�; u; H (�; u )) can appear strange and abusive at this
point because it is highly non unique and we should rather write F (�; u ). However, we will see in Part I how
speci�c structures of dynamics F (�; u; y ) allow the design of an observer (2.4).
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Then, for any u in U, there exists a function Tu : Rd� � [0; + 1 ) ! Rdx such that for each
t � t, � 7! Tu(�; t ) is uniformly continuous on Rd� and veri�es

Tu(Tu(x; t ); t) = x 8x 2 X :

Besides, denotingT the family of functions Tu for u in U, (F ; T ) is an observer for System
(2.1) initialized in X0.

Solving the partial di�erential equation (2.7) a priori gives a solution Tu depending on the
whole trajectory of u and rather situates this result in the last design category presented above.
But this formalism actually covers all three approaches and was chosen for its generality. In
fact, the dependence ofTu on u may vary, but what is crucial is that they all transform the
system into the same target form (2.5) for which an observer (2.4) is known.

Proof : Take u in U. For any t � t , x 7! Tu (x; t ) is injective on X , thus there exists a function
T � 1

u;t : Tu (X ; t ) ! X such that for all x in X , T � 1
u;t (Tu (x; t )) = x. Taking any ~u : [0; + 1 ) ! Rdu such

that u[0 ;t ] = ~u[0 ;t ] thus gives T � 1
u;t = T � 1

~u;t on Tu (X ; t ) = T~u (X ; t ) according to d). Besides, with b), for
all (� 1 ; � 2) in Tu (X ; t )2 ,

jT � 1
u;t (� 1) � T � 1

u;t (� 2)j � �
�

j� 1 � � 2 j
�

: (2.8)

Applying [McS34, Theorem 2] to each component of T � 1
u;t , there exist c > 0 and an extension4 of T � 1

u;t on
Rd � verifying (2.8) with �� = c� for all (� 1 ; � 2) in (Rd � )2 (i-e T � 1

u;t is uniformly continuous on Rd � ) and
such that T � 1

u;t = T � 1
~u;t on Rd � . De�ning T on Rd � � [0; + 1 ) as

Tu (�; t ) =

�
T � 1

u;t (� ) ; if t � t
0 ; otherwise

Tu veri�es the causality condition and we have for all t � t and all (x; � ) in X � Rd � ,

jTu (�; t ) � xj � ��
�

j� � Tu (x; t )j
�

: (2.9)

Now consider x0 in X0 such that � + (x0 ; u) = + 1 . Then, from a) and c), since X (x0 ; �; u) remains in X
and Tu (X (x0 ; �; u); t ) is a solution to (2.5) initialized at � 0 = Tu (x0 ; 0) and for all t , yx 0 ;u (t) = ~y� 0 ;u (t).
Thus, because of (2.6), for any �̂ 0 in Rd � and any solution �̂( �̂ 0 ; t ; u; yx 0 ;u ) of

_̂� = F (�̂; u; y x 0 ;u )

we have
lim

t ! + 1

�
�
� �̂( �̂ 0 ; t ; u; yx 0 ;u ) � Tu (X (x0 ; t ; u); t )

�
�
� = 0 :

If follows from (2.9) that

lim
t ! + 1

�
�
�X̂ (( x0 ; �̂ 0); t ; u) � X (x0 ; t ; u)

�
�
� = 0

with X̂ (( x0 ; �̂ 0); t ; u) = Tu (�̂( �̂ 0 ; t ; u; yx 0 ;u ); t ). Thus, (F ; T ) is an observer for System (2.1). �

Remark 2 Without the assumption of concavity of � , it is still possible to show that x 7!
Tu(x; t ) admits a continuous left-inverseTu de�ned on Rd� . But, as shown in [SL16, Example 4],
continuity of T is not enough to deduce the convergence of̂x from that of �̂ : uniform continuity 5

is necessary. Note that ifX is bounded, the concavity of � is no longer a constraint, since a
concave upper-approximation can always be obtained by saturation of� (see [McS34] for more
details).

Besides, if there exists a compact setC such that X is contained in C, it is enough to ensure
the existence of� for (xa; xb) in C2. As long as for all t, x 7! Tu(x; t ) is injective on C, then for
all t, there exists a concaveK function � t verifying the required inequality for all (xa; xb) in C2

4Denoting T � 1
u;t;j the j th component of T � 1

u;t , take T � 1
u;t;j (� ) = min ~� 2 Tu ( X ;t ) f T � 1

u;t;j ( ~� ) + � (j ~� � � j)g or equivalently
T � 1

u;t;j (� ) = min x 2X f x j + � (jTu (x; t ) � � j)g
5A function 
 is uniformly continuous if and only if lim n ! + 1 jxn � yn j = 0 implies lim n ! + 1 j
 (xn ) � 
 (yn )j = 0 .

This property is indeed needed in the context of observer design.
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(see Lemma A.3.2). Thus, only uniformity in time should be checked, namely that there exists
a concaveK function � greater than all the � t , in other words that x 7! T(x; t ) does not become
"less and less injective" with time. Of course, whenTu is time-independent, no such problem
exists and it is su�cient to have x 7! Tu(x) injective on C. This is made precise in the following
corollary.

Corollary 2.2.1.

Consider an integerd� and continuous mapsF : Rd� � Rdu � Rdy ! Rd� , H : Rd� � Rdu ! Rdy

and F : Rd� � Rdu � Rdy ! Rd� such that (2.4) is an observer for (2.5). Suppose there exists
a continuous function T : Rdx ! Rd� and a compact setC of Rdx such that :

- for any x0 in X0 such that � + (x0; u) = + 1 , X (x0; �; u) remains in C.

- x 7! T(x) is injective on C.

- T transforms System (2.1) into System (2.5) onC, i-e for all x in C, all u in U, all t in
[0; + 1 )

L f (�;u)T(x) = F (T(x); u(t); h(x; u(t)) ; h(x; u(t)) = H (T(x); u(t)) :

Then, there exists a uniformly continuous function T : Rd� ! Rdx such that

T (T(x)) = x 8x 2 C ;

and (F ; T ) is an observer for System (2.1) initialized inX0.

Proof : This is a direct consequence of Lemma A.3.2 and Theorem 2.2.1. �

2.3 Organization of the thesis

As illustrated in Figure 2.3, Theorem 2.2.1 shows that a possible strategy to design an
observer is to transform the system into a favorable form (2.5) for which an observer is known,
and then bring the estimate back into the initial coordinates by inverting the transformation.
This design procedure is widely used in the literature and raises three crucial questions :

1. what favorable forms (2.5) do we know and which observers are they associated to ?

2. how to transform a given nonlinear system into one of those forms ?

3. how to invert the transformation ?

The present thesis contributes to each of those questions and is thus organized accordingly,
dedicating one part to each of them. Since the �rst two have aroused a lot of research, detailed
literature reviews are provided in each case to help the reader situate our contributions. As for
the third one, it has not received a lot of attention as far as we know, although it constitutes a
recurrent problem in practice.

To those contributions, we add in a fourth part the results obtained in parallel concerning
observer design for permanent magnet synchronous motors with some unknown parameters.

Here is a more detailed account of the content of this thesis :
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Part II

Part I

Part III

Figure 2.2: Process of observer design suggested by Theorem 2.2.1 and organization of the thesis.

Part I : Normal forms and their observers. We start by making a list of system
structures (2.5) for which we know an observer (2.4). We call those favorable structuresnormal
forms. Chapter 3 reviews the normal forms existing in the literature and recalls their associated
observer : state-a�ne forms with Luenberger or Kalman observers and triangular forms with
high gain, homogeneous or mixed high gain-Kalman observers. Noticing that few observers exist
for non-Lipschitz triangular forms, we then �ll this gap in Chapter 4, by extending the use of
existing homogeneous observers to a broader class of Hölder triangular forms and proposing a
new observer for the "only continuous" triangular form.

Part II : Transformation into a normal form. We address the problem of transforming
a nonlinear system into one of the previously mentioned normal forms. In each case, su�cient
observability conditions on the system are given. A lot of results in this area already exist in
the literature and are recalled in Chapter 5. Then, we present in Chapters 6 and 7 our new
results concerning the transformation of nonlinear systems into continuous triangular forms and
Hurwitz forms.

Part III : Expression of the observer dynamics in the initial system coordinates.
Although the observer design problem seems solved with Part I and II according to Theorem
2.2.1, implementation issues may arise such as the computation of the inverseTu of the trans-
formation. That is why, we develop in Part III a novel methodology to avoid the inversion of Tu

by bringing the dynamics (2.4) back in the x-coordinates, i-e �nd _̂x and obtain an observerin
the given coordinatesas de�ned in De�nition 2.1.1. Although this process is quite common in
the case whereTu is a di�eomorphism, completeness of solutions is not always ensured and we
show how to solve this problem. Most importantly, we extend this method to the more complex
situation where Tu is only an injective immersion, i-e the dimension of the observer state is
larger than the one of the system state. This is done by adding some new coordinates to the
system.

Part IV : Observers for permanent magnet synchronous motors with unkown pa-
rameters. This part gathers results concerning observability and observer design for permanent
magnet synchronous motors when some parameters such as the magnet �ux or the resistance
are unknown. Simulations on real data are provided. This work was carried out in parallel and
this part is mostly independent from the rest of the thesis.
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Normal forms and their observers





Chapter 3

Quick review of existing normal
forms and their observers

Chapitre 3 � Formes normales existantes et leurs observateurs Ce chapitre présente les
principales formes normales observables qui existent dans la littérature et pour chacune d'entre
elles, rappelle la ou les observateurs associés. Deux principales catégories sont dissociées : d'une
part les formes a�nes en l'état pour lesquelles des observateurs de Luenberger ou de Kalman
sont utilisés, et d'autre part, les formes triangulaires auxquelles s'appliquent les observateurs de
type grand gain.
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In this chapter we consider systems of the form1

_� = F (�; u; y ) ; y = H (�; u ) (3.1)

with � the state in Rd� , u an input with values in U � Rdu , y the output with values in Rdy

and F (resp H ) a continuous function de�ned on Rd� � Rdu � Rdy (resp Rd� � Rdu ). We are
interested in �nding normal forms, namely speci�c expressions of the functionsF and H such
that an explicit observer for System (3.1) can be written in the given coordinates2, i-e the � -
coordinates. Indeed, an a priori knowledge of such forms is necessary to apply Theorem 2.2.1
and design an observer for a nonlinear system.

We do not claim to be exhaustive, neither about the list of normal forms nor about their
history. We select the most popular forms and associated observer, and endeavor to give the
most sensible references. Our goal is only to introduce some de�nitions and results which will
be of interest throughout this thesis, and give a starting point to the problem of observer design

1The notation F (�; u; y ) is somehow abusive becausey is not an input to the dynamics of � . We should rather
write F (�; u; H (�; u )) as in (2.5) but this latter notation is less straight-forward. We thus decided to keep the
former for clarity.

2see De�nition 2.1.1
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for nonlinear systems. Note that according to Theorem 2.2.1, we are only interested in global
observers with guaranteed convergence. This excludes for example the extended Kalman �lters,
obtained by linearizing the dynamics and the observation along the trajectory of the estimate
([Gel74]). Indeed, their convergence is only local in the sense that the estimate converges to
the true state if the initial error is not too large and the linearization does not present any
singularity ([BS15] and references therein).

Before giving the results of this chapter, we need the following de�nition.

De�nition 3.0.1.

The observability grammian of a linear system of the form

_� = A(� )� ; y = C(� )�

with input � and output y, is the function de�ned by :

� � (t0; t1) =
Z t1

t0

	 � (�; t 0)> C(� (� ))> C(� (� ))	 � (�; t 0) d�

where 	 � denotes the transition matrix3, namely the unique solution to :

@	 �

@�
(�; t ) = A(� (� ))	 � (�; t )

	 � (t; t ) = I :

3.1 State-a�ne normal forms

In this section, we consider a system with dynamics of the form :

_� = A(u; y) � + B (u; y) ; y = H (�; u ) (3.2)

where� is a vector ofRd� , A : Rdu � Rdy ! Rd� � d� , B : Rdu � Rdy ! Rd� and H : Rdu � Rdy ! Rdy

are continuous functions.

3.1.1 Constant linear part : Luenberger design

In this section, we consider the case whereA is constant, with two sub-cases :

- A is Hurwitz and H any continuous function

- A is any matrix but H is linear.

A Hurwitz : Luenberger's original form

We introduce the following de�nition :

De�nition 3.1.1.

We call Hurwitz form dynamics of the type:

_� = A � + B (u; y) ; y = H (�; u ) : (3.3)

where A is a Hurwitz matrix in Rd� � d� and B and H are continuous functions.

3See for instance [Che84]
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For a Hurwitz form, a trivial observer is made of a copy of the dynamics of the system :

Theorem 3.1.1.

The system
_̂� = A �̂ + B (u; y) (3.4)

is an observer for system (3.3).

Indeed, the error �̂ � � decays exponentially according to dynamics

�z {
�̂ � � = A(�̂ � � ) :

We have referred to this form as "Luenberger's original form" because originally in [Lue64],
Luenberger's methodology to build observers for linear systems was to look for an invertible
transformation which would map the linear system into a Hurwitz one, which admits a very
simple observer. We will study in Part II under which condition a standard nonlinear system
can be transformed into such a form, namely extend Luenberger's methodology to nonlinear
systems.

H linear : H (�; u ) = C� with C constant

We consider now a system of the form4

_� = A � + B (u; y) ; y = C � (3.5)

whereB is a continuous function. The following well-known result can be deduced from [Lue64]:

Theorem 3.1.2.

If the pair (A; C ) is observable, there exists a matrixK such that A � KC is Hurwitz. For
any such matrix K , the system

_̂� = A�̂ + B (u; y) + K (y � C�̂ ) (3.6)

is an observer for system (3.5).

As opposed to Theorem 3.1.1,A is not supposed Hurwitz but H is a linear function.

3.1.2 Time-varying linear part : Kalman design

We suppose in this section thatH is linear, but not necessarily constant namely

_� = A(u; y) � + B (u; y) ; y = C(u)� : (3.7)

The most famous observer used for this kind of system is the Kalman and Bucy's observer
presented in [KB61] for linear time-varying systems, i-e with A(t), B (t) and C(t) replacing
A(u; y), B (u; y) and C(u) respectively. Later, a "Kalman-like" design was proposed in [HM90,
BBH96] for the case whereA(u; y) = A(u). This design can be easily extended to System (3.7)
by considering(u; y) as an extended input. The di�erence with the time-varying case studied by
Kalman and Bucy in [KB61] is that every assumption must be veri�ed uniformly for any such

4 In [AK01], the authors propose an observer for a more general form _� = A � + B (u; y) + G� (H� ), y = C � ,
under certain conditions on � .
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extended input, namely for any input u and for any output function y coming from any initial
condition. To highlight this fact more rigorously, we denote

y� 0 ;u (t) = C(u(t)) �( � 0; t; u)

the output at time t of system (3.7) initialized at � 0 at time 0.

Theorem 3.1.3. [HM90, BBH96]

Assume the input u is such that
- for any � 0, t 7! A(u(t); y� 0 ;u (t)) is bounded by Amax ,
- for any � 0, the extended input � = ( u; y� 0 ;u ) is regularly persistent for the auxiliary dy-

namics
_� = A(u; y� 0 ;u )� ; y = C(u)� (3.8)

uniformly with respect to � 0, i-e there exist strictly positive numbers t0, t and � such that
for any � 0 and any time t � t0,

� � (t; t + t) � � I

where � � is the observability grammian (see De�nition 3.0.1) associated to System (3.8).
Then, for any 
 > 2Amax , there exist strictly positive numbers � 1 and � 2 such that the
matrix di�erential equation

_P = � 
P � PA(u; y) � A(u; y)> P + C(u)> C(u) (3.9)

initialized at P(t0) = P(t0)> > 0, admits a unique solution verifying for all t � t0,

P> (t) = P(t) ; � 1I � P(t) � � 2I :

Besides, the system
_̂� = A(u; y) �̂ + B (u; y) + K

�
y � C(u)�̂

�
(3.10)

with the gain
K = P � 1C(u)> (3.11)

is an observer for the state-a�ne system (3.7).

Remark 3

- It is important to note that K is time-varying and depends on the functionst 7! u(t) and
t 7! y� 0 ;u (t) and thus on � 0.

- The assumptions of boundedness ofA and regular persistence are mainly to ensure that
the solution to (3.9) is uniformly bounded from below and above, namely thatP (and thus
the gain K ) neither goes to 0 nor to in�nity.

- An equivalent way of writing (3.9) and (3.11) is with

_P = A(u; y)P + PA(u; y)> � PC(u)> C(u)P + 
P

K = P C(u)>

(i-e P is replaced byP � 1). This implementation does not require the computation of the
inverse ofP(t) at each step.

- Following Kalman and Bucy's original paper [KB61], the gain K can also be computed
with

_P(t) = A(u(t); y(t))P(t) + P(t)A(u(t); y(t))>
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� P(t)C(u(t))> R� 1(t)C(u(t))P(t) + D(t)Q(t)D (t)>

K (t) = P(t)C(u(t))> R� 1(t)

where R(t) (resp Q(t)) is a positive de�nite matrix representing the covariance at time t
of the noise which enters the measurement (resp the dynamics) andD(t) describes how
the noise enters the dynamics. In the case where those noises are independent white noise
processes, this observer solves the following optimal problem : given the values ofu and
y up to time t, �nd an estimate �̂ (t) of � (t) which minimizes the conditional expectation
E

�
j �̂ (t) � � (t)j2 j y[t0 ;t ]; u[t0 ;t ]

�
. In order to ensure asymptotic convergence of the observer,

according to [KB61, Theorem 4], the following assumptions are needed :
- boundedness ofA
- uniform complete observability of (A; C ) : this corresponds to the regular persistence

condition of Theorem 3.1.3 whenA and C depend on an inputu and A is bounded (see
[Kal60])

- uniform complete controllability of (A; D ) : this is the dual of uniform complete ob-
servability, namely uniform complete observability of (A> ; D > ) (see [Kal60])

- R and Q are uniformly lower and upper-bounded in time.

Only the �rst two assumptions depend on the system and they are the same as in Theorem
3.1.3 ; the other two must be satis�ed by an appropriate choice of the design parameters
R and Q.

3.2 Triangular normal forms

3.2.1 Nominal form : high-gain designs

Triangular forms became of interest when [GB81] related their structure to uniformly observable
systems, and when [Zei84] introduced the phase-variable form for di�erentially observable sys-
tems. The celebrated high gain observer proposed in [Tor89, EKNN89] for phase variable forms
and later in [BH91, GHO92] for triangular forms, have been extensively studied ever since. It
would be too long for the interest of this thesis to provide a thorough review of this literature,
but we refer the interested reader to [KP13] and the references therein for a detailed analysis of
the high gain design.

De�nition 3.2.1.

We call continuous triangular form dynamics of the form:
8
>>>>>>><

>>>>>>>:

_� 1 = � 2 + � 1(u; � 1)
...

_� i = � i +1 + � i (u; � 1; : : : ; � i )
...

_� m = � m (u; � )

; y = � 1 (3.12)

where for all i in f 1; :::; mg, � i is in Rdy , � = ( � 1; : : : ; � m ) is in Rd� , with d� = mdy ,
� i : Rdu � Rid y ! Rdy are continuous functions. In the particular case where only� m

is nonzero, we saycontinuous phase-variable form.
If now the functions � i (u; �) are globally Lipschitz on Rid y uniformly in u, namely there

exists a in R such that for all u in U, all (� a; � b) in (Rd� )2 and for all i in f 1; :::; mg

j� i (u; � 1a; : : : ; � ia ) � � i (u; � 1b; : : : ; � ib)j � a
iX

j =1

j� ja � � jb j ;

we sayLipschitz triangular form and Lipschitz phase-variable form.
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Lipschitz triangular form

The Lipschitz triangular form is well-known because it allows the design of a high gain observer
:

Theorem 3.2.1.

Suppose the functions� i (u; �) are globally Lipschitz on Rid y , uniformly in u. For any
(k1; :::; km ) in Rm such that the roots of the polynomial

sm + km sm� 1 + : : : + k2s + k1

have strictly negative real parts, there exists L � in R+ such that for any input function u
with values in U, for any L � L � , the system

8
>>>>><

>>>>>:

_̂� 1 = �̂ 2 + � 1(u; �̂ 1) � L k 1 (�̂ 1 � y)
_̂� 2 = �̂ 3 + � 2(u; �̂ 1; �̂ 2) � L 2 k2 (�̂ 1 � y)

...
_̂� m = � m (u; �̂ ) � L m km (�̂ 1 � y)

(3.13)

is an observer for the Lipschitz triangular form (3.12).

Actually, extensions of this high gain observer exist for more complex triangular forms, in
particular when each block does not have the same dimension, but extra assumptions on the
dependence of the function� i must be made to ensure convergence (see [BH91] or later [HBB10]
for instance). We omit these here because they are of no use for this thesis.

In any cases, the standard implementation of a high gain observer necessitates the global
Lipschitzness of the nonlinearities� i . In the case where they are only locally Lipschitz, it is
still possible to use observer (3.13) if the trajectories of the system evolve in a compact set, by
saturating � i outside this compact set (see Section 4.4). Otherwise, several researchers have
tried to adapt the high gain L online by "following" the Lipschitz constant of � i when it is
observable from the output ([PJ04, AP05, APA09, SP11] and references therein).

Unfortunately, when the nonlinearities are only continuous, we will see in the next Chapter
4 that the convergence of the high gain observer can be lost, but that, under speci�c Hölder-
like conditions, it still provides arbitrary small errors (by taking a su�ciently large gain). In
particular, it has been known for a long time, mostly in the context of dirty-derivatives and
output di�erentiation, that a high gain observer can provide an arbitrary small error for a
phase-variable form as long as� m is bounded ([Tor89] among many others).

Hölder continuous triangular form

Fortunately, moving to a generalization of high gain observers exploiting homogeneity makes it
possible to achieve convergence in the case of non-Lipschitz nonlinearities verifying some Hölder
conditions. It is at the beginning of the century that researchers started to consider homogeneous
observers with various motivations: exact di�erentiators ([Lev b, Lev03, Lev05]), domination as
a tool for designing stabilizing output feedback ([YL04], [Qia05], [QL06], [APA08] and references
therein (in particular [APA06])), ... The advantage of this type of observers is their ability to
face Hölder nonlinearities. In [Qia05], or in more general context in [APA08], the following
observer design is used :
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Theorem 3.2.2. [Qia05]

Consider a continuous triangular form (3.12). Assume there existsd0 in (� 1; 0] and a in R+

such that for all i in f 1; : : : ; mg, for all � a and � b in Rd� and u in U

j� i (u; � 1a; : : : ; � ia ) � � i (u; � 1b; : : : ; � ib)j � a
iX

j =1

j� ja � � jb j
r i +1

r j ; (3.14)

where r is a vector in Rm+1 , called weight vector, the components of which, called weights,
are de�ned by

r i = 1 � d0(m � i ) : (3.15)

There exist (k1; : : : ; km ) and L � � 1 such that for all L � L � , the system5

8
>>>>>>>><

>>>>>>>>:

_̂� 1 = �̂ 2 + � 1(u; �̂ 1) � L k 1

j
�̂ 1 � y

mr 2
r 1

_̂� 2 = �̂ 3 + � 2(u; �̂ 1; �̂ 2) � L 2 k2

j
�̂ 1 � y

mr 3
r 1

...
_̂� m = � m (u; �̂ ) � L m km

j
�̂ 1 � y

mr m +1
r 1

(3.16)

is an observer for the continuous triangular form (3.12).

d0 is called degree of the observer. Whend0 = 0 , all the weights r i are equal to 1, the
nonlinearities are Lipschitz and we recover the high gain observer (3.13). In that sense, we can
say that the homogeneous observer (3.16) is an extension of (3.13). Noticing that the Hölder
constraints (3.14) become less and less restrictive asd0 goes to� 1, it is interesting to wonder
what happens in the limit case whered0 = � 1. In that case, rm+1 = 0 , which makes the last

correction term of (3.16) equal to
j
�̂ 1 � y

m0
= sign (�̂ 1 � y). This function being discontinuous at

0, the system becomes a di�erential inclusion when de�ning the sign function as the set valued
map6 :

S(a) =

8
><

>:

f 1g if a > 0;
[� 1; 1] if a = 0 ;
f� 1g if a < 0:

(3.17)

Note that this set valued map is upper semi-continuous with nonempty, compact and convex val-
ues, namely it veri�es the usual basic conditions for existence of absolutely continuous solutions
for di�erential inclusions given in [Fil88, Smi01].

Actually, when d0 = � 1, we recover the same correction terms as in the exact di�erentiator
presented in [Lev b], where �nite-time convergence is established for a phase-variable form with
� m is bounded. Quite naturally, this boundedness condition on� m is exactly the condition we
obtain when taking d0 = � 1 in the Hölder constraint (3.14). Actually, we will show in the next
Chapter 4 that Theorem 3.2.2 still holds when allowing the degree to be� 1, i-e that the exact
di�erentiator presented in [Lev b] can also be used in presence of continuous nonlinearities on
every line, provided they verify the Hölder constraint (3.14) with d0 = � 1.

Note that a generalization of observer (3.16) was presented in [APA08] in the context of
"bi-limit" homogeneity, i-e for nonlinearities having two homogeneity degrees (around the origin
and around in�nity), namely

j� i (u; � 1a; : : : ; � ia ) � � i (u; � 1b; : : : ; � ib)j � a0

iX

j =1

j� ja � � jb j
r 0;i +1

r 0;j + a1

iX

j =1

j� ja � � jb j
r 1 ;i +1

r 1 ;j ;

5We denote the signed power function as baeb = sign (a) jajb, for b > 0.
6Writing c = bae0 will mean c 2 S(a).
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with
r0;i = 1 � d0(m � i ) ; r1 ;i = 1 � d1 (m � i )

and � 1 < d 0 � d1 < 1
m+1 . It would also be interesting to see if this design is still valid when

d0 = � 1.

Continuous triangular form ?

The only existing observer we are aware of able to cope with� no more than continuous is the
one presented in [BBD96]. Its dynamics are described by a di�erential inclusion7

_̂� 2 F (�̂; y; u )

where (�̂; y; u ) 7! F (�̂; y; u ) is a set valued map de�ned by : (v1; : : : ; vm ) is in F (�̂; y; u ) if there
exists ( ~� 2; :::; ~� m ) in Rm� 1 such that

v1 = ~� 2 + � 1(u; y)
~� 2 2 satM 2 (�̂ 2) � k1 S(y � �̂ 1)

...

vi = ~� i +1 + � i (u; y; ~� 2; : : : ; ~� i )
~� i +1 2 satM i +1 (�̂ i +1 ) � ki S(�̂ i � ~� i )

...

vm 2 � m (u; y; ~� 2; : : : ; ~� m ) � km S(�̂ m � ~� m )

where sat is the saturation function

sata(x) = max f minf x; ag; � ag (3.18)

and M i are known bounds for the solution. It can be shown that any absolutely continuous
solution gives in �nite time an estimate of � under the only assumption of boundedness of the
input and of the state trajectory. But the set valued map F above does not satisfy the usual
basic assumptions given in [Fil88, Smi01] (upper semi-continuous with non-empty, compact and
convex values). It follows that we are not guaranteed of existence of absolutely continuous
solutions nor of possible sequential compactness of such solutions and therefore of possibilities
of approximations of F .

That is why we dedicate the next Chapter 4 to the problem of designing observers for
the continuous triangular forms. In particular, we propose a novel cascade of homogeneous
observers whose convergence is established without requiring anything but the continuity of the
nonlinearities and boundedness of trajectories.

3.2.2 General form : High gain-Kalman design

A more general triangular form is the following :

De�nition 3.2.2.

7See Remark 1.
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We call general continuous triangular form dynamics of the form
8
>>>>>>><

>>>>>>>:

_� 1 = A1(u; y) � 2 + � 1(u; � 1)
...

_� i = A i (u; y) � i +1 + � i (u; � 1; : : : ; � i )
...

_� m = � m (u; � )

; y = C1(u)� 1 (3.19)

where for all i in f 1; : : : ; mg, � i is in RN i ,
P m

j =1 N j = d� , A i : Rdu � Rdy ! RN i � N i +1 ,

C1 : Rdu ! Rdy � N1 , and � i : Rdu � R
P i

j =1
N j ! RN i are continuous functions.

If besides the functions� i (u; �) are globally Lipschitz on Ri uniformly in u, then we will
say general Lipschitz triangular form.

Note that when the values of the functions A i are constant full-column rank matrices and
C1(u) is the identity function, this form covers the standard triangular form (3.12) if N i = N j for
all (i; j ), and also the forms studied in [BH91] or [HBB10]. In those cases, a high gain observer
is possible because the system is observable for any input and the functions� are triangular
and Lipschitz. When the dependence on the input and output is allowed inA i however, the
observability of the system depends on those signals and a high gain is no longer su�cient. In
fact, System (3.19) is a combination of both (3.2) and (3.12). It is thus quite natural to combine
both Kalman and high gain designs, as proposed in [Bes99] for the case whereN i = 1 for all i ,
and then in [BT07] for the general case.

In the following, we denote y� 0 ;u the output at time t of system (3.19) initialized at � 0 at
time 0, and

A(u; y) =

0

B
B
B
B
B
B
@

0 A1(u; y) 0 : : : 0
...

. . . . . .
...
0

Am� 1(u; y)
0 : : : 0

1

C
C
C
C
C
C
A

; C(u) = ( C1(u) ; 0 ; : : : ; 0)

�( u; � ) =

0

B
B
B
B
B
B
B
@

� 1(u; � 1)
...

� i (u; � 1; : : : ; � i )
...

� m (u; � 1; : : : ; � m )

1

C
C
C
C
C
C
C
A

; �( L ) =

0

B
B
B
B
B
B
B
B
@

L I N1 0 : : : 0

0
. . .

... L i I N i

...
. . . 0

0 : : : 0 L m I Nm

1

C
C
C
C
C
C
C
C
A

Theorem 3.2.3. [BT07]

Assume the input u is such that
a) For any � 0, t 7! A(u(t); y� 0 ;u (t)) is bounded by Amax ,
b) for any � 0, the extended input � = ( u; y� 0 ;u ) is locally regular for the dynamics

_� = A(u; y� 0 ;u )� ; y = C(u)� (3.20)

uniformly with respect to � 0, i-e there exist strictly positive real numbers � and L 0 such
that for any � , any L � L 0 and any t � 1

L ,

� �

�
t �

1
L

; t
�

� �L �( L ) � 2

where � � is the observability grammian (see De�nition 3.0.1) associated to System (3.20).



36 Chapter 3. Quick review of existing normal forms and their observers

c) the functions � i (u; �) are globally Lipschitz on R
P i

j =1
N j uniformly in u,

Then, there exists a strictly positive real gainL � such that for any L � L � and any 
 � 2Amax ,
there exist strictly positive real numbers � 1 and � 2 such that the matrix di�erential equation

_P = L
�
� 
P � A(u; y)> P � PA(u; y) + C(u)> C(u)

�

initialized at P(0) = P(0)> > 0 admits a unique solution verifying for all t

P(t)> = P(t) ; � 1I � P(t) � � 2I :

Besides, the system
_̂� = A(u; y) �̂ + �( u; �̂ ) + K

�
y � C(u)�̂

�
(3.21)

with gain
K = �( L )P � 1C(u)>

is an observer for the general Lipschitz triangular form (3.19).

As opposed to the classical Kalman observer (3.10), the input needs to be more than regularly
persistent, namely to be locally regular. This is because in a high gain design, observability at
arbitrarily short times is necessary. Note that in the case where the matricesA i are of dimension
one, [GK01, Lemma 2.1] shows that the gainK can be taken constant under the only condition
that there exists Amin and Amax such that for any � 0,

0 < A min < A i (u(t); y� 0 ;u (t)) < A max :

3.3 Conclusion

We have introduced in this chapter the main normal forms and their associated observer design
with guaranteed global convergence. They are summed up in Table 3.1.

Although the Lipschitz triangular form and its high gain observer have been widely studied,
its continuous version has received little attention. This is quite unfortunate because in Part II,
we will show that a large category of nonlinear systems can be transformed into this form, and
not in the Lipschitz one. Partial solutions exist nevertheless, such as the homogeneous observer
(3.16) when the nonlinearities verify some Hölder conditions. In the next Chapter 4, we show
that the use of this type of observer can be extended to a broader class of Hölder nonlinearities
and present a novel observer made of a cascade of homogeneous observers which requires only
continuity of the nonlinearities and boundedness of trajectories : we are thus going to �ll lines
6-7 of Table 3.1 which for now are empty.

Note that we concentrate our e�orts on the continuous triangular form (3.12) because it is
of special interest for Part II. But many of the techniques used in the following chapter should
also be applicable to the general continuous triangular form (3.19) (lines 9 of Table 3.1).
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Structure Observability
assumption

Observer design

State-a�ne
forms

H
nonlinear

A constant
Hurwitz

;
copy of the
dynamics

H linear
A and C constant (A; C ) observable Luenberger

A or C non
constant
A bounded

(u; y) regularly
persistent

Kalman

Triangular
forms

Nominal
(3.12)

� i Lipschitz ; High-gain

� i Hölder (3.14),
d0 2 (� 1; 0]

;
Homogeneous of

degreed0

� i Hölder (3.14),
d0 = � 1

? ?

� i continuous ? ?

General
(3.19)

� i Lipschitz
A i bounded

(u; y) locally
regular

High gain-Kalman

� i continuous
?

? ?

Table 3.1: Normal forms and their associated observer design





Chapter 4

Observers for the continuous
triangular form

Chapitre 4 � Observateurs pour la forme triangulaire continue. Dans ce chapitre,
nous montrons qu'en l'absence de caractère Lipschitz et sous une condition de type Hölder, le
grand gain usuel donne au mieux une convergence pratique, c'est -à-dire avec une erreur �nale
arbitrairement faible. Lorsque cette condition n'est pas satisfaite, nous proposons un nouvel ob-
servateur grand gain en cascade. Cependant, cette convergence pratique peut nécessiter l'emploi
de très grands gains, ce qui devient problématique en présence de bruit de mesure. Sous une
hypothèse un peu plus restrictive, nous montrons que des observateurs homogènes donnent par
contre une convergence asymptotique. Comme pour le grand gain, nous proposons une cascade
d'observateurs homogènes pour le cas où cette condition ne serait pas respectée. La convergence
asymptotique est alors prouvée sous la seule hypothèse de continuité. Dans un souci de complé-
tude, pour chaque observateur, des perturbations sur la dynamique et sur la mesure sont prises
en compte, et les résultats sont énoncés sous la forme stabilité entrée-sortie.
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In this chapter, we address the problem of designing observers for the continuous trian-
gular normal form (3.12). We will see in Chapter 6 that this form is useful for a certain category
of systems, namely those which are uniformly observable and di�erentially observable at an
order greater than the dimension of the system. Indeed, those systems may be transformed in
a triangular form but with nonlinearities which may not be locally Lipschitz.

The content of this chapter has been published in [BPA17a].
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In order to present results which are as complete as possible, we consider the continuous
triangular form (3.12), but unlike in the rest of this thesis, we add some disturbances on the
dynamics and on the measurement, namely1

8
>>>>>>><

>>>>>>>:

_� 1 = � 2 + � 1(u; � 1) + w1
...

_� i = � i +1 + � i (u; � 1; : : : ; � i ) + wi
...

_� d� = � d� (u; � ) + wd�

; y = � 1 + v (4.1)

where � is the state in Rd� , y is a measured output in R, � is a continuous function which is
not assumed to be locally Lipschitz and(v; w) are time-functions which verify the Caratheodory
conditions. w can model either a known or an unknown disturbance on the dynamics andv is
an unknown disturbance.

We show in Section 4.1 that the classical high gain observer may still be used when the
nonlinearities � i verify some Hölder-type condition. Nevertheless, the asymptotic convergence
is lost and only a convergence with an arbitrary small error remains.

On the other hand, according to Theorem 3.2.2, homogeneous observers enable to ensure
asymptotic convergence in presence of Hölder nonlinearities. In particular, the homogeneous
observer (3.16) with degreed0 in (� 1; 0] is built in [APA08] following a Lyapunov design. We
show in Section 4.2 that the same Lyapunov design can be extended to the case where the
degree of homogeneity isd0 = � 1. This is interesting since the Hölder constraints (3.14) on
the nonlinearities become less and less restrictive as the degree gets closer to� 1. It turns out
that we recover with this method the exact di�erentiator presented in [Lev b] and which is
de�ned by an homogeneous di�erential inclusion. As opposed to [Lev b] where convergence is
established only for a phase-variable form via a solution-based analysis, in our case, convergence
is guaranteed by construction for the triangular form since the Lyapunov design provides a strict
homogeneous Lyapunov function which allows the presence of homogeneous disturbances on the
dynamics. Actually, many e�orts have been made to get expressions of Lyapunov functions for
the output di�erentiator from [Lev b]. First limited to small dimensions (see [ORSM15]), it
was only recently achieved (simultaneously to our work) at any dimension in [CZM16]. This
approach is much harder since the authors look for a Lyapunov function for an already existing
observer (Lyapunov analysis), while in our work, the observer and the Lyapunov function are
built at the same time (Lyapunov design).

To face the unfortunate situation where the nonlinearities verify none of the above mentioned
Hölder type conditions, we propose novel observers made of a cascade of high gain observers
in Section 4.3.1 and of homogeneous observers in Section 4.3.2 of dimension less or equal to
d� (d� +1)

2 . We prove that the high gain version converges with an arbitrary small error, and the
homogeneous version converges asymptotically, all this without requiring anything but continuity
of the nonlinearities in the case where the system trajectories and the input are bounded.

All along this chapter, we sometimes use stronger assumptions than necessary in order to
simplify the presentation of our results. We signal them to the reader with a(. ) symbol as in
�the trajectories are complete (. )� . We discuss how they can be relaxed later in Section 4.4, in
particular when we restrict our attention to compact sets.

Finally, we illustrate our observers with an example in Section 4.5.

Notations

1To simplify the computations in this chapter, we consider the case dy = 1 , i-e each � i is of dimension 1, but
everything still holds for a block triangular form (3.12) with � i of dimension Rdy .
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For (� 1; : : : ; � i ) and (�̂ 1; : : : ; �̂ i ) (resp. (�̂ i 1; : : : ; �̂ ii )) in Ri , we denote

� i = ( � 1; : : : ; � i ) ; �̂ i = ( �̂ 1; : : : ; �̂ i ) ( resp. �̂ i = ( �̂ i 1; : : : ; �̂ ii ))
eij = �̂ ij � � j ; ej = �̂ j � � j ; ei = �̂ i � � i :

(4.2)

To simplify the presentation, we assume that the solutions to (4.1) are de�ned for all t � 0
(i.e. the trajectories are complete(. ) ). Besides, wanting to present the results in a uni�ed
and concise way, we will say that the function� veri�es the property H(�; a) or a positive real

number a, and a vector � in [0; 1]
d� ( d� +1)

2 , if :

Property H ( �; a) ( . )

For all i in f 1; : : : ; d� g, for all � a and � b in Rd� and u in U, we have2 :

j� i (u; � ia ) � � i (u; � ib)j � a
iX

j =1

j� ja � � jb j � ij : (4.3)

This property captures many possible contexts. In the case in which� ij > 0, it implies that
the function � is Hölder with power � ij . When the � ij = 0 , it simply implies that the function
� is bounded.

It is possible to employ the degree of freedom given in (4.1) by the time functionsw to
deal with the case in which the given function �( u; � ) doesn't satisfy H(a; � ). In this case, an
approximation procedure can be carried out to get a function�̂ satisfying H(a; � ) and selecting
w = �( u; � ) � �̂( u; � ) which is an unknown disturbance. The quality of the estimates obtained
from the observer will then depend on the quality of the approximation (i-e the norm of w).
This is what is done for example in [MV00] when dealing with locally Lipschitz approximations.
We will further discuss in Section 4.4 how to relax assumptionH(a; � ).

4.1 High gain observer ?

We consider in this section the standard high gain observer already presented in the previous
chapter 8

>>>>><

>>>>>:

_̂� 1 = �̂ 2 + � 1(u; �̂ 1) + ŵ1 � L k 1 (�̂ 1 � y)
_̂� 2 = �̂ 3 + � 2(u; �̂ 1; �̂ 2) + ŵ2 � L 2 k2 (�̂ 1 � y)

...
_̂� d�

= � d� (u; �̂ ) + ŵd� � L d� kd� (�̂ 1 � y)

(4.4)

whereL and the ki 's are gains to be tuned,y is the measurement. Theŵi are approximations of
the wi . In particular, when wi represents unknown disturbances, the correspondinĝwi is simply
set to 0. In the following, we denote

� w = ŵ � w :

When � satis�es the property H(�; a) with � ij = 1 for all 1 � j � i � d� , we recognize
the usual triangular Lipschitz property for which the nominal high-gain observer gives an input
to state stability (ISS) property with respect to the measurement disturbance v and dynamics
disturbance w. Speci�cally, we have the following well known result (see for instance [KP13] for
a proof).

2Actually � i can depend also on� i +1 to � m as long as (4.3) holds. It can also depend on time requiring
some uniform property (see Section 4.4).
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Theorem 4.1.1. Nominal high-gain

There exist real numbersk1; : : : ; kd� , L � , � , � and 
 such that,

a) for all functions � satisfying(. ) for all i and for all � ia and � ib in Ri

j� i (u; � ia ) � � i (u; � ib)j � a
iX

j =1

j� ja � � jb j + bi (4.5)

b) for all L � maxf aL � ; 1g,
c) for all locally bounded time function (u; v; w; ŵ), all (� 0; �̂ 0) in Rd� � Rd� ,
any solution �̂( �̂ 0; � 0; t; u; v; w; ŵ) of (4.4) veri�es, for all t0 and t such that t � t0 � 0, and
for all i in f 1; :::; d� g,

�
�
� �̂ i (t) � � i (t)

�
�
� � max

8
><

>:
L i � 1�

�
�
� �̂ i (t0) � � i (t0)

�
�
� e� �L (t � t0 ) ; 
 sup

1� j � m
s2 [t0 ;t ]

�
L i � 1 jv(s)j;

j� wj (s)j + bj

L j � i +1

�
9
>=

>;

(4.6)
where we have used the abbreviations�( t) = �( � 0; t; u; w) and �̂( t) = �̂( �̂ 0; � 0; t; u; v; w; ŵ).

Since the nominal high-gain observer gives asymptotic convergence for Lipschitz nonlineari-
ties, we may wonder what type of property is preserved when the nonlinearities are only Hölder.
In the following theorem, we show that the usual high-gain observer can provide an arbitrary
small error on the estimate provided the Hölder orders� ij satisfy the restrictions given in Table
4.1 or Equation (4.7).

j 1 2 : : : d� � 2 d� � 1 d�

i

1
d� � 2
d� � 1

2
d� � 3
d� � 2

d� � 3
d� � 2

... � ij >
...

...
. . .

d� � 2 1
2

1
2 : : : 1

2

d� � 1 0 0 : : : : : : 0

d� � d� j � 0 0 : : : : : : : : : 0

Table 4.1 : Hölder restrictions on � for arbitrarily small errors with a high gain observer.

Theorem 4.1.2.

Assume the function � veri�es H(�; a) for some (�; a) in [0; 1]
d� ( d� +1)

2 � R+ satisfying, for
1 � j � i

d� � i � 1
d� � i < � ij � 1 for i = 1 : : : ; d� � 1 ;

0 � � d� j � 1
(4.7)

Then, there exist real numbersk1; : : : ; kd� , such that, for all � > 0 we can �nd positive real
numbers � , � , 
 , and L � such that, for all L � L � , for all locally bounded time function
(u; v; w; ŵ) and all (� 0; �̂ 0) in Rd� � Rd� , any solution �̂( �̂ 0; � 0; t; u; v; w; ŵ) of (4.4) veri�es, for
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all t0 and t such that t � t0 � 0, and for all i in f 1; :::; d� g,

�
�
� �̂ i (t) � � i (t)

�
�
� � max

(

� ; L i � 1�
�
�
� �̂ i (t0) � � i (t0))

�
�
� e� �L (t � t0 ) ;


 sup
1� j � d�
s2 [t0 ;t ]

�
L i � 1 jv(s)j;

j� wj (s)j
L j � i +1

� )

where we have used the abbreviation�( t) = �( � 0; t; u; w) and �̂( t) = �̂( �̂ 0� 0; t; u; v; w; ŵ).

Comparing this inequality with (4.6), we have now the arbitrarily small non zero " in the right
hand side but this is obtained under the Hölder condition instead of the Lipschitz one.

Proof : With Young's inequality, we obtain from (4.3) that, for all � ij in R+ and all �̂ and � in Rd �

�
� � i (u; �̂ i ) � � i (u; � i )

�
� �

iX

j =1

aij j �̂ j � � j j + bij ; (4.8)

with aij and bij de�ned as
8
>><

>>:

aij = 0 ; bij = a ; if � ij = 0

aij = a
1

� ij � ij �
1

� ij
ij ; bij = 1� � ij

�

1
1 � � ij

ij

if 0 < � ij < 1

aij = a ; bij = 0 if � ij = 1

(4.9)

With (4.8), the assumptions of Theorem 4.1.1 are satis�ed with bi =
P i

j =1 bij . It gives k1 ; : : : ; kd � , L � ,
� , � and 
 and, if L > maxi � j f aij L � ; 1g, the solution satis�es the ISS inequality (4.6). The result will
follow if there exist L and � ij such that

L > max
i � j

f aij L � ; 1g ; max
i;j

jX

` =1


 bj` L i � j � 1 � � : (4.10)

At this point, we have to work with the expressions of aij and bj` given in (4.9). From (4.7), � ij can be
zero only if i = d� . And, when � d � ` = 0 , we get


 bd � ` L i � d � � 1 = 
 aL i � d � � 1 �

 a
L

Say that we pick � d � ` = 1 in this case. For all the other cases, we choose

� j` =
� 2j


�
(1 � � j` )L ( d � � j � 1)

� 1� � j`

;

to obtain from (4.9)


 bj` L i � j � 1 � �
1
j

1
2L d � � i :

So, with this selection of the � j` , the right inequality in (4.10) is satis�ed for L su�ciently large. Then,

according to (4.9), the aij are independent of L or proportional to L
( d � � i � 1)

1 � � ij
� ij . But with (4.7) we

have
0 < (d� � i � 1)

1 � � ij

� ij
< 1 :

This implies that aij
L tends to 0 asL tends to + 1 . We conclude that (4.10) holds if we pick L su�ciently

large. �

It is interesting to remark the weakness of the assumptions imposed on the last two compo-
nents of the function � . Indeed, (4.7) only imposes that� d� � 1 be Hölder without any restriction
on the order, and that � d� be bounded(. ).

We have shown with Theorem 4.1.2 that one can hope to obtain an arbitrarily small error
when taking the high gain L su�ciently large. In the next section, we show that actually
asymptotic convergence can be achieved when considering homogeneous observers.
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j 1 2 : : : d� � 2 d� � 1 d�

i

1
d� � 1

d�

2
d� � 2

d�

d� � 2
d� � 1

... � ij =
...

...
. . .

d� � 2 2
d�

2
d� � 1 : : : 2

3

d� � 1 1
d�

1
d� � 1 : : : : : : 1

2

d� 0 0 : : : : : : : : : 0

Table 4.2 : Hölder restrictions on � for a homogeneous observer withd0 = � 1.

4.2 Homogeneous observer

4.2.1 Main result

In this section, we consider the homogeneous observer (3.16) to which we add the estimation of
the perturbations ŵi :

8
>>>>>>>><

>>>>>>>>:

_̂� 1 = �̂ 2 + � 1(u; �̂ 1) + ŵ1 � L k 1

j
�̂ 1 � y

mr 2
r 1

_̂� 2 = �̂ 3 + � 2(u; �̂ 1; �̂ 2) + ŵ2 � L 2 k2

j
�̂ 1 � y

mr 3
r 1

...

_̂� d�
= � d� (u; �̂ ) + ŵd� � L d� kd�

j
�̂ 1 � y

mr d� +1

r 1

(4.11)

where r is the weight vector in Rd� +1 de�ned by

r i = 1 � d0(d� � i ) ; (4.12)

and where L and the ki 's are gains to be tuned,d0 the degree to be chosen in[� 1; 0]. We
have seen in Theorem 4.1.2 that the usual high-gain observer can provide an estimation with
an arbitrary small error provided the nonlinearity satis�es the property H(�; a) with the � ij

verifying (4.7). But since [APA08] (see Theorem 3.2.2), we know that asymptotic estimation
may be obtained with homogeneous correction terms and when considering nonlinearities which
satis�es H(�; a) with the � ij verifying

� ij =
1 � d0(d� � i � 1)

1 � d0(d� � j )
=

r i +1

r j
; 1 � j � i � d� : (4.13)

for somed0 in (� 1; 0]. As announced in the introduction, we want to extend this result to the
extreme case whered0 = � 1 i-e for nonlinearities satisfying H(�; a) with � ij given in Table 4.2.

Theorem 4.2.1.

Assume that there exist d0 in [� 1; 0] and a in R+ such that � satis�es H(�; a) with � veri-
fying (4.13) (. ) . There exist (k1; : : : ; kd� ), such that for all wd� > 0 there exist L � � 1 and
a positive constant 
 such that, for all L � L � there exists a classKL function � such that
for all locally bounded time function (u; v; w; ŵ), and all (� 0; �̂ 0) in Rd� � Rd� system (4.11)
admits absolutely continuous solutions�̂( �̂ 0; � 0; t; u; v; w; ŵ) de�ned on R+ and for any such
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solution the following implications hold for all t0 and t such that t � t0 � 0, and for all i in
f 1; :::; d� g :
If d0 > � 1 :

j�̂ i (t) � � i (t)j � max

8
<

:
� (j�̂( t0) � �( t0)j; t � t0) ;


 sup
1� j � i

s2 [t0 ;t ]

8
<

:
L i � 1jv(s)j

r i
r 1 ;

j� wj (s)j
r i

r j +1

L � ij

9
=

;

9
=

;
(4.14)

where � ij = ( j � i + 1) r 1
r j +1

, and we have used the abbreviation�( t) = �( � 0; t; u; w) and

�̂( t) = �̂( �̂ 0; � 0; t; u; v; w; ŵ).
Moreover, when d0 < 0 and v(t) = wj (t) = 0 for all t and j = 1 ; : : : ; d� , there exists t such
that �̂( t) = �( t) for all t � t .

If d0 = � 1 and j� wd� (t)j � wd� :

j�̂ i (t) � � i (t)j � max

8
<

:
� (j�̂( t0) � �( t0)j; t � t0) ;


 sup
1� j � i � 1
s2 [t0 ;t ]

8
<

:
L i � 1jv(s)j

r i
r 1 ;

j� wj (s)j
r i

r j +1

L � ij

9
=

;

9
=

;
(4.15)

where � ij , �( t) and �̂( t) are de�ned above.
Moreover, when v(t) = wj (t) = 0 for all t and j = 1 ; : : : ; d� , there exists t such that
�̂( t) = �( t) for all t � t .

Note that j is in f 1; : : : ; i g in (4.14) whereas it is in f 1; : : : ; i � 1g in (4.15).
The proof of Theorem 4.2.1 for the cased0 2 (� 1; 0] and without disturbances is given for

example in [APA08]. Actually [APA08] gives a Lyapunov design of a generalized version of
observer (4.11) with a recursive construction of both Lyapunov function and observer. Here we
are concerned with the cased0 = � 1. In this limit case, observer (4.11) is a di�erential inclusion
corresponding to the exact di�erentiator studied in [Lev b], where convergence is established
in the particular case in which � i = 0 for j = 1 ; : : : ; d� � 1 and � d� is bounded. We prove in
Lemma 4.2.2 that the Lyapunov design of [APA08] can be extended to this case. This allows us
to show that observer (4.11) still converges if, for eachi , � i is Hölder with order � ij equal to
the values given in Table 4.2, wherei is the index of � i and j is the index of ej . We also recover
the same bound in presence of a noisev as the one given in [Lev b]. Note that knowing the
convergence of the exact di�erentiator from [Lev b], we could also have deduced the existence
of such a Lyapunov function via a converse theorem as in [NYN04]. But with only existence,
quantifying of the e�ect of the disturbances is nearly impossible.

Finally, it is interesting to remark that in the case d0 = � 1, the ISS property between the
disturbance wd� and the estimation error is with restrictions as de�ned in [Tee96, De�nition 3.1].
If j� wd� (t)j � wd� and L is chosen su�ciently large, then asymptotic convergence is obtained.
However, nothing can be said whenj� wd� j > wd� . Moreover, it may be possible for a bounded
large disturbance to induce a norm of the estimation error which goes to in�nity. We believe that
this problem could be solved employing homogeneous in the bi-limit observer as in [APA08]. It
is shown to be doable in dimension 2 in [CZMF11].

Proof : The set-valued function e1 7! be1e0 = S(e1) de�ned in (3.17) is upper semi-continuous and has
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convex and compact values. Thus, according to [Fil88], there exist absolutely continuous solutions to
(4.11).

Let L = diag(1; L; :::; L d � � 1). The error e = �̂ � � produced by the observer (4.11) satis�es

_e 2 LA d � e + � + L L K(e1 + v) (4.16)

where Ad � is the shifting matrix of order d� ,

� = �( u; �̂ ) + ŵ � �( u; � ) � w ;

and K is the homogeneous correction term the components of which are de�ned as

(K(e1)) i = � ki be1e
r i +1

r 1

where (k1 ; : : : ; kd � ) are positive real number and r i is de�ned in (4.12). In the scaled error coordinates
" = L � 1e, those error dynamics read

1
L

_" 2 Ad � " + DL + K(" 1 + v) (4.17)

with DL = L � 1 � . With this mind, the proof consists in �nding an ISS homogeneous Lyapunov function
for the L independent auxiliary system

_�e 2 Ad � �e + K(�e1) (4.18)

with state �e in Rd � , then extending it to (4.17) by a robustness analysis, and �nally deducing the result
on (4.16).

Let V : Rd � ! R+ be the function de�ned as

V (�e) =

d � � 1X

i =1

Z ` i �ei

b�ei +1 e
r i

r i +1

�
b� e

d V � r i
r i � b �ei +1 e

d V � r i
r i +1

�
d� +

j �ed � jdV

dV
; (4.19)

where dV and ` i are positive real numbers such that dV > 2d� � 1. It is shown in [APA08, Theorem
3.1] that, in the case where d0 is in (� 1; 0], and by appropriately selecting the parameters ` i and ki ,
V is a strict C1 Lyapunov function for the auxiliary system (4.18) and is homogeneous of degree dV

with weight vector r . In fact, the same construction is still valid for the case d0 = � 1 as stated in the
following technical result, which is proved in the next subsection to ease the reading.

Lemma 4.2.1.

For all d0 in [� 1; 0], the function V de�ned in (4.19) is positive de�nite and there exist positive
real numbers k1 ; : : : kd � , `1 ; : : : ` d � , � , c� and cv such that for all �e in Rd � , �� in Rd � and �v in R the
following implication holds :

j �� i j � c� V (�e)
r i +1
d V ; 8i ; and j �vj � cv V (�e)

r 1
d V

=) 3 max
n @V

@�e
(�e)(Ad � �e + �� + K(�e1 + �v))

o
� � �V (�e)

d V + d 0
d V :

This Lemma says V is a ISS Lyapunov function for the auxiliary system (4.18). See [SW95, Proof of
Lemma 2.14] for instance. With this result in hand a robustness analysis can be carried out on a system
of the form (4.17).

Indeed, since � satis�es H (�; a), with (4.13) and r i +1
r j

� 1, we obtain, for all L � 1

jD L;i j �
a
L

iX

j =1

L
( j � 1)

r i +1
r j

� i +1
j" j j

r i +1
r j +

j� wi j
L i

;

�
a
L

iX

j =1

j" j j
r i +1

r j +
j� wi j

L i
;

�
c
L

V (" )
r i +1
d V +

j� wi j
L i

;

3Here the max is with respect to s in b�e1 + �ve0 = S(�e1 + �v) appearing in the d� th component of
K(�e1 + �v) when d0 = � 1.
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where c is a positive real number obtained from Lemma A.1.2 in Appendix A.1. With Lemma 4.2.1,
where �� i plays the role of DL;i , �v the role of v and �e the role of " , we obtain that, by picking L � su�ciently
large such that c

L � � c�
2 , we have, for all L > L � ,

( j� wi j
L i

�
c�

4
V (" )

r i +1
d V ; 8i

jvj � cv V (" )
r 1
d V

=)
1
L

max
n @V

@e
(" ) _"

o
� � �V (" )

d V + d 0
d V : (4.20)

Now, when evaluated along a solution, " gives rise to an absolutely continuous function t 7! " (t).
Similarly the function de�ned by t 7! � (t) = V (" (t)) is absolutely continuous. It follows that its time
derivative is de�ned for almost all t and, according to [Smi01, p174], (4.20) implies, for almost all t ,

( j� wi j
L i

�
c�

4
� (t)

r i +1
d V ; 8i

jvj � cv � (t )
r 1
d V

=)
1
L

_� (t) � � �� (t )
d V + d 0

d V : (4.21)

Here two cases have to be distinguished.

1.If d0 is in ] � 1; 0], with Lemma A.1.4 in Appendix A.1 (see also [SW95]), we get the existence of
a classKL function � V such that4

V (" (t)) � max
i 2f 1;:::;d � g

8
<

:
� V (V (" (0)) ; �Lt ); sup

s2 [0 ;t ]

8
<

:

�
4j� wi (s)j

L i c�

� d V
r i +1

;
jv(s)j

d V
r 1

cv

9
=

;

9
=

;
:

The result holds since with Lemma A.1.2 there exist a positive real number c1 such that
�
�
�

ei

L i � 1

�
�
� � c1V (� )

r i
d V :

Moreover, when v(t) = � wj (t) = bj = 0 for j = 1 ; : : : ; d� , (4.21) implies �nite time convergence
in the case in which d0 < 0.

2.If d0 = � 1, then r d � +1 = 0 . We chooseL � su�ciently large to satisfy

�wd �

(L � )d �
�

c�

4
:

We obtain that the �rst condition in (4.21) is satis�ed for i = d� when L � L � . With Lemma
A.1.4 in Appendix A.1 (see also [SW95]), the implication (4.21) implies the existence of a class
KL function � V such that4

V (" (t)) � max
i 2f 1;:::;d � � 1g

8
<

:
� V (V (" (0)) ; �Lt ); sup

s2 [0 ;t ]

8
<

:

�
4j� wi (s)j

L i c�

� d V
r i +1

;
jv(s)j

d V
r 1

cv

9
=

;

9
=

;
:

And the result holds as in the previous case.

�

4.2.2 Proof of Lemma 4.2.1

The proof is based on the following Lemma (4.2.2) which establishes that for a chain of integrator
it is possible to construct homogeneous correction terms which provide an observer and that it
is possible to construct a smooth strict homogeneous Lyapunov function.

Lemma 4.2.2.

For all d0 in [� 1; 0], the function V de�ned in (4.19) is positive de�nite and there exists
positive real numbersk1; : : : kd� , `1; : : : `d� , ~� such that for all �e in Rd� , the following holds :

max
�

@V
@�e

(�e)
�
Ad� �e+ K(�e1)

� �
� � ~�V (�e)

dV + d0
dV : (4.22)

4according to Lemma A.1.4, � V (s; t) = max f 0; s
� d 0
d V � tg

d V
� d 0
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Proof : [Cased0 = � 1 (see [APA08] otherwise)]

We denote E i = (�ei ; :::; �ed � ). Let dV be an integer such that dV > 2d� � 1 and the functions Ki recursively
de�ned by :

Kd � (�ed � ) = �
�

�ed �

� 0
= � S(�ed � ) ; Ki (�ei ) =

0

@ � b ` i �ei e
r i +1

r i

Ki +1

�
b̀ i �ei e

r i +1
r i

�

1

A :

Note that the j th component of Ki is homogeneous of degreer j +1 = d� � j and, for any �ei in R, the set
Ki (�ei ) can be expressed as

Ki (�ei ) = f ~Ki (�ei ; s) ; s 2 S(�ei )g ;

where ~Ki : R � [� 1; 1] ! R is a continuous (single valued) function.

Let Vd � (�ed � ) =
j �ed �

j d V

dV
and for all i in f 1; : : : ; d� � 1g, let also �Vi : R2 ! R and Vi : Rd � � i +1 ! R be the

functions de�ned by

�Vi (�; �ei +1 ) =

Z �

b�ei +1 e
r i

r i +1

bxe
d V � r i

r i � b �ei +1 e
d V � r i

r i +1 dx ;

Vi (E i ) =
iX

j = d � � 1

�Vj (` j �ej ; �ej +1 ) + Vd � (�ed � ) :

With these de�nitions, the Lyapunov function V de�ned in (4.19) is simply V (e) = V1(e) and the
homogeneous vector �eld K(�e1) = K1(�e1) with

ki = `
ri +1

r i
i `

r i +1
r i � 1
i � 1 ::: `

r i +1
r 2

2 `
r i +1

r 1
1 :

The proof of Proposition 4.2.2 is made iteratively from i = d� toward 1. At each step, we show that Vi

is positive de�nite and we look for a positive real number ` i , such that for all E i in Rd � � i +1

max
s2 S(�ei )

n @Vi
@Ei

(E i )(Ad � � i +1 E i + ~Ki (�ei ; s))
o

� � ci Vi (E i )
d V � 1

d V ; (4.23)

where ci is a positive real number. The lemma will be proved once we have shown that the former
inequality holds for i = 1 .

Step i = d� : At this step, Ed � = �ed � . Note that we have

max
s2 S(�ed �

)

�
@Vd �

@Ed �

(Ed � ) ~Kd � (�ed � ; s)

�
= �j Ed � jdV � 1 = � cd � Vd � (Ed � )

d V � 1
d V ;

with cd � = d
d V � 1

d V
V . Hence, equation (4.23) holds for i = d� .

Step i = j : Assume Vj +1 is positive de�nite and assume there exists (` j +1 ; : : : ; ` d � ) such that (4.23)

holds for j = i � 1. Note that the function x 7! bxe
d V � r j

r j � b �ei +1 e
d V � r j

r j +1 is strictly increasing, is zero

if and only if x = b�ej +1 e
r j

r j +1 , and therefore has the same sign asx � b �ej +1 e
r j

r j +1 . Thus, for any �ej +1

�xed in R, the function � 7! V j (�; �ej +1 ) is non negative and is zero only for v = b�ej +1 e
r j

r j +1 . Thus, �Vj

is positive and we have

Vj (E j ) = 0 ()

�
Vj +1 (E j +1 ) = 0

V j (` j �ej ; �ej +1 ) = 0
()

(
E j +1 = 0

` j �ej = b�ej +1 e
r j

r j +1 = 0

so that Vj is positive de�nite.

On another hand, let ~Vj (�; E j +1 ) = Vj +1 (E j +1 ) + �Vj (�; �ej +1 ) and let T1 be the function de�ned

T1(�; E j +1 ) = max
s2 S( � )

�
~T1(�; E j +1 ; s)

	

with ~T1 continuous and de�ned by

~T1(�; E j +1 ; s) =
@~Vj

@Ej +1
(E j +1 )(Ad � � i � 1E i +1 + ~Kj +1 (b� e

r j +1
r j ; s)) +

cj +1

2
~Vj (�; E j +1 )

d V � 1
d V :
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Let also T2 be the continuous real-valued function de�ned by

T2(v; E j +1 ) = �
@~Vj

@�
(�; E i +1 )(�ej +1 � b � e

r j +1
r j ) :

Note that T1 and T2 are homogeneous with weight r j for � and r i for �ei and degreedV � 1. Besides,
they verify the following two properties :

-for all E j +1 in Rd � � j , � in R

T2(�; E j +1 ) � 0

(since (b� e
r j +1

r j � �ej +1 ) and (b� e
d V � r j

r j � b �ej +1 e
d V � r j

r j +1 ) have the same sign)

-for all (�; E j +1 ) in Rd � � j +1 n f 0g, and s in S(� ), we have the implication

T2(�; E j +1 ) = 0 = ) ~T1(�; E j +1 ; s) < 0

since T2 is zero only when b� e
r j +1

r j = �ej +1 and

~T1(b�ej +1 e
r j +1

r j ; E j +1 ; s) =
@Vj +1

@Ej +1
(E j +1 )(An � i E j +1 + ~Kj +1 (�ej +1 ; s))

+
cj +1

2
Vj +1 (E j +1 )

d V � 1
d V � �

cj +1

2
Vj +1 (E j +1 )

d V � 1
d V ;

where we have employed (4.23) fori = j � 1.

Using Lemma A.1.3 in Appendix A.1, there exists ` j such that

T1(�; E j +1 ) � ` j T2(�; E j +1 ) � 0 ; 8 (�; E j +1 ) :

Finally, note that

max
s2 S(�ei )

�
@Vj
@Ej

(E j )(Am � j +1 E j + ~Kj (�ej ; s))

�
= T1(` j �ej ) � ` j T2(` j �ej ; E j +1 ) �

cj +1

2
Vj (E j )

d V � 1
d V

Hence, (4.23) holds for i = j . �

We are now ready to �nish the proof of Lemma 4.2.1. Let ~K(�e1; s) be the function de�ned as

�
~K(�e1; s)

�

i
= ( K(�e1)) i ; i 2 [1; d� � 1] ;

and,
�

~K(�e1; s)
�

d�
=

(
kd� s ; when d0 = � 1
(K(�e1))d�

; when d0 > � 1 :

~K is a continuous (single) real-valued function which satis�es for all �e1 in R

K(�e1) = f ~K(�e1; s) ; s 2 S(�e1)g :

Consider also the functions

~� (�e; ��; �v; s) =
@V
@�e

(�e)(Ad� �e+ �� + ~K(�e1 + �v; s)) +
~�
2

V (�e)
dV + d0

dV ;

and


 ( ��; v ) =
d�X

i =1

j �� i j
dV + d0

r i +1 + j�vj
dV + d0

r 1 :

With (4.22), we invoke Lemma A.1.3 to get the existence of a positive real numberc1 satisfying
for all s in S(�e1 + �v) :

@V
@�e

(�e)(Ad� �e+ �� + ~K(�e1 + �v; s)) � �
~�
2

V (�e)
dV + d0

dV + c1

d�X

i =1

��
dV + d0

r i +1
i + c1j �vj

dV + d0
r 1 :
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This can be rewritten,

@V
@�e

(�e)(Ad� �e+ �� + ~K(�e1 + v; s)) � �
~�

2(d� + 2)
V (�e)

dV + d0
dV

+
d�X

i =1

 

c1j �� i j
dV + d0

r i +1 �
~�

2(d� + 2)
V (�e)

dV + d0
dV

!

+ c1j �vj
dV + d0

r 1 �
~�

2(d� + 2)
V (�e)

dV + d0
dV :

Consequently, the result of Lemma 4.2.1 holds with� =
~�

2(d� +2) , c� = cv =
�

�
c1

� r 1
dV + d0 .

4.3 Cascade of observers

4.3.1 High gain cascade

According to Theorem 4.1.2, the classical high gain observer can provide an arbitrary small error
when the last nonlinearity is only bounded and when there is no disturbance. We exploit here
this observation by proposing the following cascaded high gain observer to deal with the case
where the functions � i do not satisfy (4.7):

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

_̂� 11 = ŵ1 � L 1 k11 (�̂ 11 � y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
_̂� 21 = �̂ 22 + � 1(u; �̂ 11) + ŵ1 � L 2 k21 (�̂ 21 � y)
_̂� 22 = ŵ2 � L 2

2 k22 (�̂ 21 � y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

_̂� d� 1 = �̂ d� 2 + � 1(u; �̂ (d� � 1)1) + ŵ1 � L d� kd� 1 (�̂ d� 1 � y)
_̂� d� 2 = �̂ d� 3 + � 2(u; �̂ (d� � 1)1; �̂ (d� � 1)2) + ŵ2 � L 2

d�
kd� 2 (�̂ d� 1 � y)

...
_̂� d� d�

= ŵd� � L
d�
d�

kd� d� (�̂ d� 1 � y)

(4.24)

with the gain kij chosen as in a classical high gain observer of dimensioni , ŵi are estimations ofwi

and L i are the high gains parameters to be chosen. It is important to notice that the arguments
of all the nonlinearities � j in block i come from the block i � 1 (thanks to triangularity) and
that � i is not present (because we saw that a bounded error is allowed on the last line of a high
gain observer).

Assuming the input function and the system solution are bounded, it is shown in the following
that estimation with an arbitrary small error can be achieved by the cascaded high-gain observer
(4.24).

Theorem 4.3.1.

Assume � is continuous. For any positive real numbers� and u, for any strictly posi-
tive real number � , there exist a choice of(k11; : : : ; kd� d� ) and of (L 1; : : : ; L d� ), a classKL
function � and two class K1 functions 
 1 and 
 2 such that, for all locally bounded time
function (u; v; w; ŵ), for all (� 0; �̂ 0) in Rd� � Rd� and for all t such that j�( � 0; s; u; w)j � � and
ju(s)j � u for all 0 � s � t, any solution

�
�̂ 1(�̂ 0; � 0; t; u; v; w; ŵ); :::; �̂ d� (�̂ 0; � 0; t; u; v; w; ŵ)

�
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of (4.24) veri�es, for all i in f 1; : : : ; d� g,

j�̂ i (t) � � i (t)j � max

8
<

:
" ; �

0

@
iX

j =1

j �̂ j � � j j; t

1

A ; sup
s2 [0;t ]

n

 1(jv(s)j); 
 2(j� w(s)j)

o
9
=

;

where �̂ i is the state of the i th block (see Notation (4.2)) and we have used the abbreviation
�̂ i (t) = �̂ i (�̂ 0; � 0; t; u; v; w; ŵ) and � i (t) = � i (� 0; t; u; w).

Proof : This result is nothing but a straightforward consequence of the fact that a cascade of ISS systems
is ISS.

Speci�cally the error system attached to the high gain observer in block i has state ei (see Notation
(4.2)) and input v and � i` de�ned as5

� i` =
�
� ` (u; �̂ ( i � 1) ) � � ` (u; � ( i � 1) )

�
+ [ ŵ` � w` ]

� ii = � � i +1 � � i (u; � i ) + ŵi � wi

with � d � +1 = 0 . With Theorem 4.1.1, we have the existence of ki 1 ; : : : ; k ii , � i , � i and 
 i such that we
have, for all L i � 1, all t � t i � 0, all j in f 1; : : : ; i g and with eij (t) denoting the j th error in the i th
block evaluated along the solution at time t,

jeij (t)j � max

8
<

:
L j � 1

i � i jei (t i )j e� � i L i ( t � t i ) ; 
 i sup
1 � ` � j

s2 [t i ;t ]

�
L j � 1

i jv(s)j;
j� i` (s)j

L ` � j +1
i

�
9
=

;
:

But according to Lemma A.2.1, the continuity of the � ` implies the existence of a function � of classK
such that, for all ` in f 1; : : : ; d� g and for all (� ( i � 1) ; �̂ ( i � 1) ; u) in Ri � 1 � Ri � 1 � U satisfying j� ( i � 1) j � �
and juj � u,

j� ` (u; �̂ ( i � 1) ) � � ` (u; � ( i � 1) )j � �
�
je( i � 1) j

�
:

This implies

j� i` (s)j � � (jei � 1(s)j) + j� w` (s)j ; ` = 1 ; : : : ; j � 1 ;

j� ii (s)j � � i +1 + � i + j� wi (s)j ;

where � i = max
j u j� u; j � i j� � j� i (u; � i )j and � i is a bound for j� i (�; s ; u; w)j (which is less than � ). Hence,

we have the existence ofci independent of L i such that

jei (t)j � ci max

(

L i � 1
i jei (t i )j e� � i L i ( t � t i ) ; sup

s2 [t i ;t ]
L i � 1

i jv(s)j ;

sup
s2 [t i ;t ]

� (jei � 1(s)j)
L 2� i

i

; sup
1� ` � i

s2 [t i ;t ]

j� w` (s)j

L ` � i +1
i

;
� i +1 + � i

L i

)

:

This makes precise what we wrote above that we have a cascade of ISS systems. Hence (see [Son89,
Prop. 7.2]), for each i in f 1; : : : ; mg, there exist a class KL function �� i and class K functions 
 vi and

 wi , each depending onL 1 to L i and such that we have, for all t � 0,

jei (t)j � max

(

�� i

�
max

j 2f 1;:::;i g
fj ej (0)jg; t

�
; $ i ; sup

s2 [0 ;t ]
f 
 vi (jv(s)j); 
 wi (j� w(s)j)g

)

:

where $ i is a positive real number de�ned by the sequences

$ 1 = c1
� 2 + � 1

L 1
; $ i = ci max

�
� i +1 + � i

L i
;

� ($ i � 1)
L 2� i

i

�
:

Then by picking L i � L �
i where L �

i is de�ned recursively as :

� d � = � ; � i = min

�
�; � � 1

�
� i +1

c i +1 L i � 2
i +1

��

L �
d �

=
cd � � d �

" d �

; L �
i =

ci [� i +1 + � i ]
" i

5We write � ` (u; � ( i � 1) ) although � ( i � 1) is the state of the previous block of dimension i � 1, which can be
larger than `. We should rather have introduced a symbol for the `-�rst coordinates of � ( i � 1) , but we thought
this would unnecessarily complexify the notations. Indeed, for the present proof, we only need to know that those
variables come from the previous block of dimension i � 1.
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we obtain $ i � � for all i , hence the result. �

Note that unlike for the previous observers, we cannot state the result with "there exists
(L �

1; : : : ; L �
d�

) such that for any (L 1; : : : ; L d� ) satisfying L i � L �
i for all i , [: : :]" becauseL �

i

depends on(L i +1 ; : : : ; L d� ) and not (L �
i +1 ; : : : ; L �

d�
).

This observer has the advantage of working without any assumption on the nonlinearities
besides their continuity. Note however that it requires the knowledge of a bound on the system
solution and on the input. Also we may not need to build d� blocks, since according to Theorem
4.1.2, we need to create a new block only for the indexesi where � i does not verify Property
H(�; a) for any a � 0 and with � satisfying (4.7). Unfortunately, as it appears from the proof
of Theorem 4.3.1, the choice of(L 1; :::; L d� ) can be complicated. Besides, only a convergence
with an arbitrary small error is obtained. It may thus be necessary to take very large gains
which is problematic in terms of peaking (see [Kha02, Section 14.5] for instance) and most
importantly in presence of noise (see Section 4.5). In the following section, we design a similar
cascade observer, but with homogeneous correction terms, and show that it enables to obtain
asymptotic convergence.

4.3.2 Homogeneous cascade

When we cannot �nd d0 in [� 1; 0] and a such that the nonlinearities satisfy H(�; a), with �
de�ned in (4.13), we may lose the convergence of observer (4.11), or the possibility of making
the �nal error arbitrarily small. In such a bad case, we can still take advantage of the fact that,
for � verifying (4.13) with d0 = � 1, H(�; a) does not impose any restriction besides boundedness
of the last functions � d� (see Table 4.2).

From the remark that observer (4.11)

1. can be used for the system
_� 1 = � 2 +  1(t)

...
_� k� 1 = � k +  k� 1(t)

_� k = ' k (t)

provided the functions  i are known and the function ' k is unknown but bounded, with
known bound.

2. gives estimates of the� i 's in �nite time,

we see that it can be used as a preliminary step to deal with the system

_� 1 = � 2 +  1(t)
...

_� k� 1 = � k +  k� 1(t)
_� k = � k+1 + � k (u; � 1; : : : ; � k )

_� k+1 = ' k+1 (u; � 1; : : : ; � k+1 )

Indeed, thanks to the above observer we know in �nite time the values of� 1; : : : ; � k , so that the
function � k (u; � 1; : : : ; � k ) becomes a known signal k (t).

From this, we can propose the following observer made of a cascade of homogeneous ob-
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servers :
8
>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>:

_̂� 11 2 ŵ1 � L 1 k11 S(�̂ 11 � y)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

_̂� 21 = �̂ 22 + � 1(u; �̂ 11) + ŵ1 � L 2 k21

j
�̂ 21 � y

m1
2

_̂� 22 2 ŵ2 � L 2
2 k22 S(�̂ 21 � y)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

_̂� d� 1 = �̂ d� 2 + � 1(u; �̂ 11) + ŵ1 � L d� kd� 1

j
�̂ d� 1 � y

md� � 1

d�

...
_̂� d� (d� � 1) = �̂ d� d� + � d� � 1(u; �̂ (d� � 1)1; : : : ; �̂ (d� � 1)(d� � 1)) + ŵd� � 1 � L

d� � 1
d�

kd� (d� � 1)

j
�̂ d� 1 � y

m1
d�

_̂� d� d� 2 ŵd� � L
d�
d�

kd� d� S(�̂ d� 1 � y)
(4.25)

where the kij and L i are positive real numbers to be tuned.
As a direct consequence of Theorem 4.2.1 and following the same steps as in the proof of

Theorem 4.3.1, we have

Theorem 4.3.2.

Assume � is continuous. For any positive real numbers� , u, w, we can �nd positive real
numbers kij and L �

i , two class K functions 
 1 and 
 2 and a classKL function � such that,
for all (L 1; : : : ; L d� ) verifying L i � L �

i , for all locally bounded time function (u; v; w; ŵ),
and all (� 0; �̂ 0) in Rd� � Rd� , the observer (4.25) admits absolutely continuous solutions�
�̂ 1(�̂ 0; � 0; t; u; v; w; ŵ); :::; �̂ d� (�̂ 0; � 0; t; u; v; w; ŵ)

�
which are de�ned on R+ and for any such

solution we have for all i in f 1; :::; d� g and for all t such that j�( � 0; s; u; w)j � � , ju(s)j � u
and j� w(s)j � w for all 0 � s � t:

j�̂ i (t) � � i (t)j � max
n

� (j� 0 � �̂ 0j; t); sup
1� j � i � 1
s2 [t0 ;t ]

f 
 1(jv(s)j); 
 2(j� wj (s)j)g
o

:

where �̂ i is the state of the i th block (see Notation (4.2)) and we have used the abbreviation
�̂ i (t) = �̂ i (�̂ 0; � 0; t; u; v; w; ŵ) and � i (t) = � i (� 0; t; u; w).
Moreover, whenv(t) = � wj = 0 , there exists t such that �̂ i (t) = � i (t) for all t � t .

Proof : This proof is very similar to that of Theorem 4.3.1 (but also much simpler). We give it all the
same for the sake of completeness. The error system attached to the homogeneous observer in blocki
has state ei and input v and � i` de�ned as

� i` =
�
�̂ ` (u; �̂ ( i � 1) ) � � ` (u; � ( i � 1) )

�
+ [ ŵ` � w` ]

� ii = � zi +1 � � i (u; � i ) + ŵi � wi

with zm +1 = 0 . � ii is bounded, thus Theorem 4.2.1 gives the existence ofki 1 ; : : : ; k ii , L �
i , � i , � i and 
 i

such that we have, for all L i � L �
i , all t � 0, all j in f 1; : : : ; i g and with eij (t) denoting the j th error in

the i th block evaluated along the solution at time t,

jeij (t)j � max

8
<

:
� i (jei (0)j ; t ) ; 
 i sup

1 � ` � j � 1
s2 [0 ;t ]

(

L j � 1 jv(s)j
r j
r 1 ;

j� i` (s)j
r j

r ` +1

L � j`

) 9
=

;
:

But the continuity of the � ` implies the existence of a function � of class K such that, for all ` in
f 1; : : : ; i g and for all (� ( i � 1) ; �̂ ( i � 1) ; u) in Ri � 1 � Ri � 1 � U satisfying j� ( i � 1) j � � and juj � u,

j� ` (u; �̂ ( i � 1) ) � � ` (u; � ( i � 1) )j � �
�
je( i � 1) j

�
:
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This implies
j� i` (s)j � � (jei � 1(s)j) + j� w` (s)j ; ` = 1 ; : : : ; j � 1 :

Hence, we have the existence of two classK functions 
 iv , 
 iw such that

jei (t)j � max

8
>><

>>:
� i (jei (0)j ; t ) ; sup

s2 [0 ;t ]

 iv (jv(s)j) ; sup

s2 [0 ;t ]

� (jei � 1(s)j)
L 2� i

i

; sup
1� ` � i � 1

s2 [0 ;t ]


 iv (j� w` (s)j)

9
>>=

>>;
:

Hence, by recursion, for each i in f 1; : : : ; d� g, there exist a class KL function �� i and class K functions

 vi and 
 wi , each depending onL 1 to L i and such that we have, for all t � 0,

jei (t)j � max

(

�� i

�
max

j 2f 1;:::;i g
fj ej (0)jg; t

�
; sup

s2 [0 ;t ]
f 
 vi (jv(s)j); 
 wi (j� w(s)j)g

)

:

�

Observer (4.25) is an extension of the cascaded high gain observer (4.24) presented in Section
4.3.1. The use of homogeneity enables here to obtain asymptotic convergence without demanding
anything but the knowledge of a bound on the input and on the system solution. A drawback of
a cascade of observers is that it gives an observer with dimensiond� (d� +1)

2 in general. However,
as seen in Section 4.3.1, it may be possible to reduce this dimension since, for each new block,
one may increase the dimension by more than one, when the corresponding added functions� i

satisfy H(�; a) for some� verifying (4.13) with d0 = � 1 and for somea.
Finally, note that the result of Theorem 4.3.2 does not mean that the observer is ISS with

respect to� w. Indeed, � w must be bounded to obtain this ISS-like inequality : the system is ISS
with restrictions. Again, we believe that this problem could be solved employing homogeneous
in the bi-limit observer as in [APA08].

4.4 Relaxing the assumptions marked with (. )

First, if System (4.1) is not complete, every ISS inequalities still holds for any solution�( � 0; t; u; w),
but only on [0; � + (� 0; u)[ where � + (� 0; u) is its maximal time of existence in Rd� .

The global aspect of boundedness, Hölder,H (�; a), . . . , can be relaxed as follows. LetU be
bounded and let M be a given compact set. We de�ne�̂ as6

�̂ i (u; � 1; :::; � i ) = sat� i
(� i (u; � 1; :::; � i )) (4.26)

where
� i = max

u2 U;� 2M
j� i (u; � 1; :::; � i )j :

Now consider any compact set ~M strictly contained 7 in M . We have �̂ = � on ~M , so that if
the system trajectories remain in ~M , the model (4.1) with �̂ replacing � is still valid. Besides,
according to Lemma A.2.2 in Appendix A.2, there exists~a such that (4.3) holds for �̂ for all
(� a; � b) in Rd� � ~M . Then, by taking �̂ instead of � in the observers, we can modify the
assumptions

- in Theorem 4.1.1, so that (4.5) holds only on the compact setM ;
- in Theorems 4.1.2 and 4.2.1, so that� veri�es H(�; a) only on the compact setM ;
- Theorems 4.3.1 and 4.3.2 remain unchanged.

In this case, the results hold for the particular system solutions�( � 0; t; u; w) which are in the
compact set ~M for t in [0; � +

~M
(� 0; u)) . Precisely, for these solutions, the bounds on̂� i (t) � � i (t)

given in these theorems hold for allt in [0; � +
~M

(� 0; u)) .

6The saturation function is de�ned on R by satM (x) = max f minf x; M g; � M g :
7By strictly contained, we mean that ~M is contained in the interior of M .
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Note also that if H (�; a) holds on a compact set, then for any~� such that ~� ij � � ij for
all (i; j ), there exists ~a such that H(~�; ~a) also holds on this compact set. It follows that the
constraints given by (4.13) or Table 4.2 in Theorem 4.2.1 can be relaxed to� ij � 1� d0 (d� � i � 1)

1� d0 (d� � j ) ,
and the less restrictive conditions one may ask for are obtained ford0 = � 1.

Finally, in Theorems 4.1.1, 4.1.2 and 4.2.1, it is possible to consider the case where� depends
also on time as long as any assumption made on� is satis�ed uniformly with respect to time.

4.5 Illustrative example

As an example, we consider the triangular normal form of dimension4 de�ned by
8
>>><

>>>:

_� 1 = � 2
_� 2 = � 3
_� 3 = � 4 + � 3(u; � 1; � 2; � 3)
_� 4 = � 4(u; � )

; y = � 1 ; (4.27)

where
� 3(u; � 1; � 2; � 3) = 5 uj� 3 + � 1j

4
5 b� 1e

1
5 ; � 4(u; � ) = 	( u;  (� ))

with 	 : Rdu � R3 ! R and  : R4 ! R3 continuous function de�ned by :

	( u;  ) =  1 � 2 1 5
3 +20 3

3 3
1 2

2 � 15 4
3 2

2 1+5  4
3 3

1 � 5 9
3 3

1 +  10
3  1+ u(� 20 3

3 2
1 2+5  4

3 2)

 (� ) =

0

B
B
@� 1 ; � 2 ;

0

@
(� 3 + � 1)� 1 +

h
(� 4 + � 2) + 3 j(� 3 + � 1) b� 1e

3
2 j

4
5 � 2

i
� 2

� 2
1 + � 2

2

1

A

1
5

1

C
C
A :

Those seemingly mysterious expressions do not make a lot of sense for now. We shall see how
they appear in an example in Chapter 6. In fact, they are given here for the sake of completeness
but only the expression of� 3 and the fact that � 4 is continuous matter here. We are interested
in estimating trajectories remaining in a given compact set which will be de�ned in Chapter 6.

The function � 3 is not Lipschitz at the points on the hyperplanes � 3 = � � 1 and � 1 = 0 . The
function � 4 is continuous and therefore bounded on any compact set. Besides, for̂� 3 and � 3 in
a compact set, andu bounded there exist8

j� 3(u; �̂ 1; �̂ 2; �̂ 3) � � 3(u; � 1; � 2; � 3)j � c1j �̂ 1 � � 1j
1
5 + c3j �̂ 3 � � 3j

4
5 :

This implies that � 3 is Hölder with order 1
5 .

Hence the nonlinearities � 3 and � 4 verify the conditions of Table 4.1. It follows that for
L su�ciently large, convergence with an arbitrary small error can be achieved with the high
gain observer (4.4). However,� 3 does not verify the conditions of Table 4.2. Thus, there is
no theoretical guarantee that the homogeneous observer (4.11) withd0 = � 1 will provide exact
convergence.

4.5.1 An observer of dimension 4 ?

We consider a solution to System (4.27) which regularly crosses the Lipschitzness singularities
� 3 = � � 1 or � 1 = 0 , as illustrated in Figure 4.1. In the following, we use the same noisy

8 Let �� 3(� 1 ; � 3 ; e1 ; e3) = j� 3 + e3 + � 1 + e1 j
4
5 b� 1 + e1e

1
5 � j � 3 + � 1 j

4
5 b� 1e

1
5 = j� 3 + � 1 j

4
5

�
b� 1 + e1e

1
5 � b � 1e

1
5

�
+

b� 1 + e1e
1
5

�
j� 3 + � 1 + e3 + e1 j

4
5 � j � 3 + � 1 j

4
5

�
. By Lemma A.1.5, we have

�
�
�b� 1 + e1e

1
5 � b � 1e

1
5

�
�
� � 2

4
5 je1 j

1
5 and

�
�
� j� 3 + � 1 + e3 + e1 j

4
5 � j � 3 + � 1 j

4
5

�
�
� � 2

1
5 (je3 j + je1 j)

4
5 � 2

1
5 (je3 j

4
5 + je1 j

4
5 ). Besides, j� 1 + e1 j

1
5 � j � 1 j

1
5 + je1 j

1
5 , so

that for � 1 and � 3 in compact sets, j�� 3(� 1 ; � 3 ; e1 ; e3)j � c1 je1 j
1
5 + c2 je3 j

4
5 + c3 je1 j

4
5 + c4 je1 j

1
5 je3 j

4
5 + c5 je1 j. By

Young's inequality, je1 j
1
5 je3 j

4
5 � 1

5 je1 j + 4
5 je3 j, and �nally, for e1 and e3 in compact sets, j�� 3(� 1 ; � 3 ; e1 ; e3)j �

~c1 je1 j
1
5 + ~c3 je3 j

4
5 .
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Figure 4.1: Trajectory of System (4.27), with initial condition � = (1 ; 1; � 1; � 1), with input
u = 5 sin(10 t) and with the noisy measurementy (�ltered gaussian noise with standard deviation
� = 0 :03 and 1st order �ltering parameter a = 50), used to test the observers.

measurementy, shown on Figure 4.1, in every simulation with noise.
We �rst implement a high gain observer of dimension 4, in the absence of noise, initialized

at �̂ = (0 :1; 0:1; � 0:1; � 0:1), and with the gains k1 = 14, k2 = 99, k3 = 408, k4 = 833. As
an illustration of Theorem 4.1.2, the convergence with an arbitrary small error is achieved and
is illustrated in Table 4.3. However, we observe that the decrease of the errors, especially for
e4, is very slow compared to the increase of the peaking and a very high gain is needed to
obtain "acceptable" �nal errors. In presence of noise, the tradeo� between �nal error and noise
ampli�cation becomes impossible : with the noisy measurement of Figure 4.1, the smallest
�nal error e4 is 200, achieved for L = 2 . Of course, there might exist a choice of the gains
ki giving better results. But overall a high gain observer may not be a systematic solution in
practice for non-Lipschitz triangular systems, especially when the solution regularly crosses the
Lipschitz-singularities.

L e1 e2 e3 e4 max jej
2 0.15 4 60 200 300
5 6: 10� 4 0.04 1.5 30 4000
8 5: 10� 5 4: 10� 3 0.25 7 1:5: 104

10 8: 10� 6 1: 10� 3 0.1 4 3:5: 104

15 1:5: 10� 6 3: 10� 4 0.03 2 1:2: 105

Table 4.3: Decrease of the �nal error (ei = �̂ i � � i ) with the gain L , with a high gain observer
and in the absence of noise. The last columns shows however that the peaking increases, i-e the
errors reach higher and higher values during the transient before converging.

Let us now implement an homogeneous observer of dimension4 with an explicit Euler method
with �xed measurement and integration steps equaling10� 5, and with the Matlab sign function.
The degree isd0 = � 1, and the gains are chosen according to [Lev05], i-ek1 = 5 , k2 = 8 :77,
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Figure 4.2: Convergence of an homogeneous observer with degree� 1 in the absence of noise
(ei = �̂ i � � i )

k3 = 4 :44, k4 = 1 :1. For a gain L = 3 , the convergence is achieved with a �nal error of
je4j = 8 : 10� 4, even though the Hölder restriction of Theorem 4.2.1 is a priori not satis�ed
around � 1 = 0 . The results are given in Figure 4.2. Unfortunately, the �nal errors are heavily
impacted in presence of noise, as illustrated in Table 4.4. This may also come from a lack of ISS
property. Notice that the ampli�cation of the noise by the gain L is not as rapid as expected
from the bound in Theorem 4.2.1. The �nal errors remain nonetheless too large, although, once
again, we did not optimize our choice of gainski .

L e1 e2 e3 e4

2.5 0.15 3.5 30 18
3 0.15 3 35 25
4 0.1 2 25 50
5 0.1 2 30 80
6 0.1 2 35 120

Table 4.4: Final errors given by a homogeneous observer of degree� 1 in presence of noise.

4.5.2 Cascaded observers

In the absence of noise, the cascaded observers presented in Sections 4.3.1 and 4.3.2 give similar
results to the corresponding observers in dimension 4, i-e arbitrary small asymptotic error and
�nite time convergence respectively. However, they seem to provide better accuracies in presence
of noise.

In the case of a high gain cascade observer, the errors, although smaller than in the high
gain observer of dimension 4, remain too large to consider it a viable solution. On the other
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hand, the homogeneous cascade observer :
8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

_̂� 11 = �̂ 12 � L 1 k11

j
�̂ 11 � y

m2
3

_̂� 12 = �̂ 13 � L 2
1 k12

j
�̂ 11 � y

m1
3

_̂� 13 2 � L 3
1 k13 S(�̂ 11 � y)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
_̂� 21 = �̂ 22 � L 2 k21

j
�̂ 21 � y

m3
4

_̂� 22 = �̂ 23 � L 2
2 k22

j
�̂ 21 � y

m1
2

_̂� 23 = �̂ 24 + sat(g3(�̂ 11; �̂ 12; �̂ 13))u � L 3
2 k23

j
�̂ 21 � y

m1
4

_̂� 24 2 � L 4
2 k24 S(�̂ 21 � y)

with the coe�cients k1j chosen, according to [Lev05], ask11 = 3 , k12 = 2 :6, k13 = 1 :1, and k2j

as above, and with the gainsL 1 = 2 :5 and L 2 = 3 , gives the following �nal errors :

e11 = 0 :05; e12 = 0 :4; e13 = 2 :5; e24 = 12

Comparing to Table 4.4, we see that implementing an intermediate homogeneous observer of
dimension 3 enables to obtain much better estimates of the �rst three states� i , which are then
used in the nonlinearity of the second block, thus giving a better estimate of� 4.

4.6 Conclusion

To summarize the most important ideas, we provide in Table 4.6 a synthetic comparison of the
four observers proposed in this chapter, in the case where the system trajectories and the input
are bounded.

We have shown the convergence with an arbitrary small error of the classical high gain
observer (4.4) in presence of nonlinearities verifying some Hölder-like condition. Also, for the case
when this Hölder condition is not veri�ed, we have proposed a novel cascaded high gain observer
(4.24). On the other hand, under slightly more restrictive Hölder-like conditions, we have made
a Lyapunov design of the homogeneous observer (4.11) and proved its asymptotic convergence
with the help of an explicit Lyapunov function. As for its cascaded version (4.25), asymptotic
convergence has been established under the only condition of continuity of the nonlinearities
and the fact that the trajectories (and input) are bounded. We conclude that a global observer
exists for the continuous triangular form (3.12).

Although it is an extremely important aspect, we have had no time to devote much attention
to the impact of disturbances on the behavior of the observers. Nevertheless, we have established
an ISS property with respect to dynamics and measurement noises. Our numerical experience
seems to indicate that it is very di�cult to tune the gains of both high gain and homogeneous
observers in presence of measurement noise, although it is slightly simpler for the latter since
smaller gains are su�cient to ensure convergence. Simulations on our example suggest that
the situation may be more favorable with the cascaded homogeneous observer. Anyway, the
presented results are still unsatisfactory in presence of noise, and the question of the construction
of robust observers for non-Lipschitz triangular forms remains unanswered. Our theoretical ISS
bounds being far too conservative, it would be necessary to carry out a �ner study if we wanted
to optimally tune the gains of the observers. It may also be appropriate to use on-line gain
adaptation techniques since large gains should be necessary only around the points where the
nonlinearities are not Lipschitz. About these two aspects, we refer the reader to the survey in
[KP13, Sections 3.2.2 and 3.2.3] and the references therein.
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Part II

Transformation into a normal form





Chapter 5

Review of existing transformations

Chapitre 5 � Bilan des transformations existantes. Tout au long de Partie I, nous avons
listé un certain nombre de formes normales pour lesquelles un observateur est connu. A�n
d'appliquer Théorème 2.2.1, il nous faut maintenant étudier comment transformer un système
non linéaire quelconque en l'une de ces formes. C'est l'objet de Partie II. Comme dans la
précédente, nous commencons par faire un rapide bilan des résultats existant dans la littérature
concernant ce problème en soulignant les points qui n'ont pas encore été étudiés. Ceci nous
permet de situer nos contributions qui seront ensuire détail lées dans les chapitres suivants.

Contents
5.1 Transformations into a state-a�ne normal forms . . . . . . . . . . . . . 64

5.1.1 Linearization by output injection . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.2 Transformation into Hurwitz form . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Transformations into triangular normal forms . . . . . . . . . . . . . . . 67
5.2.1 Lipschitz triangular form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.2 General Lipschitz triangular form . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Throughout Part I, we have given a list of normal forms and their associated observers.
We now have to study how a nonlinear system can be transformed into one of those forms to
apply Theorem 2.2.1. This is the object of Part II. Using the same methodology as in the
previous part, we start by reviewing the literature concerning this problem in order to highlight
along the way the points which have not been addressed yet, and we situate our contributions
which will be detailed in the next chapters.

More precisely, we consider a general nonlinear system of the form

_x = f (x; u) ; y = h(x; u) (5.1)

with x the state in Rdx , u an input function in U with values in U � Rdu , y the output in Rdy .
For each normal form presented in Part I of the form

_� = F (�; u; H (�; u )) ; y = H (�; u ) ; (5.2)

we look for su�cient conditions on System (5.1) for the existence of a subsetX and functions
Tu : X � [0; + 1 [! Rd� for each u in U which transforms System (5.1) into the normal form
(5.2) in the sense of Theorem 2.2.1, i-e for allx in X and all t in [0; + 1 )

L (f; 1)Tu(x; t ) = F (Tu(x; t ); u(t); h(x; u(t)) ; h(x; u(t)) = H (Tu(x; t ); u(t)) :

Indeed, according to Theorem 2.2.1 and Corollary 2.2.1, the observer design problem is then
solved for System (5.1) if the solutions of System (5.1) which are of interest remain inX and
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- either for any u in U, x 7! Tu(x; t ) becomes injective onX uniformly in space and in time
after a certain time ;

- or C = X is a compact set, and for anyu in U, Tu is a same stationary transformation T
injective on C.

5.1 Transformations into a state-a�ne normal forms

5.1.1 Linearization by output injection

Constant linear part

The problem of transforming a nonlinear system into a linear one of the form (3.5) i-e

_� = A � + B (u; ~y) ; ~y =  (y) = C � (5.3)

with the pair (A; C ) observable and : Rdy ! Rdy a possible change of output, has a very
long history. The �rst results appeared in [KI83, BZ83] for autonomous systems and were then
extended by [KR85] to multi-input multi-output systems. In those papers, the authors looked
for necessary and su�cient conditions on the functions f and h for the existence of a local
change of coordinates (and possibly change of output) which brings the system into the form
(5.3), which they called "observer form". [BRG89] then gave conditions for the existence of a
local (and global) immersion1 (instead of di�eomorphism) in the particular case of control a�ne
systems. A vast literature followed on the subject, either developing algebraic algorithms to
check the existence of a transformation or tools to explicitly �nd the transformation.

In [Jou03], the general problem of �nding an immersion (rather than a di�eomorphism)
which transforms a nonlinear system of the form (5.3) is addressed. If such a transformation
exists, the system is said linearizable by output injection. The following result is proved :

Theorem 5.1.1. [Jou03, Theorem 2.3]

A system of the form
_x = f (x; u) ; y = h(x)

is linearizable by output injection if and only if there exist a C+ 1 function T and a di�eo-
morphism  : Rdy ! Rdy transforming the system into the particular triangular form

8
>>>>>>><

>>>>>>>:

_� 1 = � 2 + � 1(u; � 1)
...

_� i = � i +1 + � i (u; � 1)
...

_� d� = � d� (u; � 1)

; ~y =  (y) = � 1 :

Thus, the linearization problem reduces to the existence of a transformation into this latter
observable form. Note that if besides this transformation is required to be injective (like in
our context of observer design), then the system is necessarily uniformly observable2. Actually,
the class of systems considered here is even strictly smaller because for a uniformly observable
system, the functions � i would be allowed to depend on� 1; : : : ; � i , and not only on � 1.

From this, it is possible to deduce :

1T : Rdx ! Rd � is an immersion if the rank of @T
@x is dx . Contrary to a di�eomorphism, this allows to take

d� � dx .
2See De�nition 2.2.1.
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Theorem 5.1.2. [Jou03, Theorem 2.6]

An autonomous system
_x = f (x) ; y = h(x)

is linearizable by output injection if and only if there exists a C1 function  , an integer d�

and d� C1 functions � 1, ..., � d� such that

L
d�
f

~h(x) = L
d� � 1
f � 1 � ~h + L

d� � 2
f � 2 � ~h + L f � d� � 1 � ~h + � d� � ~h

with ~h =  � h.

This is the so-called characteristic equation which extends the same notion for linear systems
and was introduced in [Kel87] originally with d� = dx . This partial di�erential equation (PDE)
is important in practice because several results show that the linearization of a controlled system
�rst necessitates the linearization of its uncontrolled parts or drift dynamics3 ([KR85, BRG89,
Jou03] among others). A �rst di�culty thus lies in solving this PDE, which does not always
admit solutions ([Jou03, BS04]).

Along the history of linearization, we must also mention some generalizations such as [Kel87],
where the function B is allowed to depend on the derivatives of the input and later on the
derivatives of the output in [GMP96, PG97], or [Gua02, RPN04] where it is proposed to use an
output-depending time-scale transformation.

We conclude that linearizing both the dynamics and the output function is very demanding
and requires some very restrictive conditions on the system. The existence of the transformation
is di�cult to check and involves quite tedious symbolic calculations which do not always provide
the transformation itself, and even when they do, its validity is often only local.

Time-varying linear part

In parallel, others allowed the linear part A to depend on the input/output, i-e looked for
conditions to transform the system in the state-a�ne form (3.7)

_� = A(u; y) � + B (u; y) ; y = C(u)� :

The �rst to address this problem were [Fli82, FK83] but without allowing output injection
in the dynamics, namely requiring A(u) and B (u). This led to the very restrictive �niteness
criterion of the observation space, which roughly says that the linear space containing the suc-
cessive derivatives of the output along any vector �eld of the type f (�; u) is �nite. Later,
[HK96, HC91, BB97] allowed A and B to depend on the output to broaden the class of con-
cerned systems. But it remains di�cult to characterize those systems because there are often
many possible ways to parametrize the system via the output. Besides, even when the trans-
formation exists and is known, the input must satisfy an extra excitation condition to allow the
design of a Kalman observer (see Chapter 3).

5.1.2 Transformation into Hurwitz form

In a completely independent line of research, some researchers have tried to reproduce Luen-
berger's original methodology presented in [Lue64] for linear systems on nonlinear systems. It
consists in �nding a transformation into a Hurwitz form (3.3)

_� = A � + B (u; y) ; y = H (�; u )

3Dynamics with u equal to a constant
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with A Hurwitz, for which a trivial observer (3.4) (made of a copy of the dynamics) exists. Note
that unlike in the previous section, this procedure is not a linearization of the system, since
the output function H can be any nonlinear function (see [KK98, Remark 4]). It is not even
necessary to know its expression since it is not needed in the observer. This crucial di�erence
leads to far less restrictive conditions on the system.

The extension to autonomous nonlinear systems of Luenberger's original methodology ([Lue64])
was proposed and analyzed in a general context by [Sho92]. It was rediscovered later by [KK98]
who gave a local analysis close to an equilibrium point under conditions relaxed later on in
[KX03]. The localness as well as most of the restrictive assumptions were then by-passed in
[AP06]. As noticed in [KX06] and [AP06], this nonlinear Luenberger observer is also strongly
related to the observer proposed in [KE03].

In [AP06], the authors investigate the possibility of transforming an autonomous system

_x = f (x) ; y = h(x)

into a Hurwitz autonomous form
_� = A � + B (y) :

This raises the question of �nding, for some integerd� , a continuous function T : Rdx ! Rd�

verifying
L f T(x) = A T (x) + B (h(x)) ; 8x 2 X (5.4)

with A some Hurwitz matrix of dimension d� and B : Rdy ! Rd� some continuous function.
The existence of such a transformation is shown for any Hurwitz matrixA and for some well-
chosen functionsB under the only assumption that the system is backward-complete4 in X
([AP06, Theorem 2]). Of course, this is not enough since, as we saw in the introduction, it is
required that T be uniformly injective on X to deduce from the estimate ofT(x) an estimate
of x. The authors show in [AP06, Theorem 3] that injectivity of T is achieved for almost any
diagonal complex Hurwitz matrix A of dimension5 (dx +1) dy on C and for any B verifying some
growth condition under the assumption that the system is backward S-distinguishable6 on X
for some open setS containing X , i-e for any (xa; xb) in X 2 such that xa 6= xb, there exists t in�
max

n
� �

S (xa); � �
S (xb)

o
; 0

i
such that yxa (t) 6= yxb(t).

In the case whereX is bounded, the result simpli�es into :

Theorem 5.1.3. [AP06]

Assume that X and S are open bounded subset ofRdx , such that cl (X ) is contained in S and
System (5.1) is backwardS-distinguishable on X . There exists a strictly positive number `
and a setR of zero Lebesgue measure inCdx +1 such that denoting 
 = f � 2 C : < (� ) < � `g,
for any (� 1; : : : ; � dx +1 ) in 
 dx +1 n R, there exists a function T : Rdx ! R(dx +1) � dy uniformly
injective on X and verifying (5.4) with

A =

0

B
B
B
B
B
B
B
@

~A
. . .

~A
. . .

~A

1

C
C
C
C
C
C
C
A

; B (y) =

0

B
B
B
B
B
B
B
@

~B
. . .

~B
. . .

~B

1

C
C
C
C
C
C
C
A

y

4Any solution exiting X in �nite time must cross the boundary of X . See [AP06, De�nition 1].
5Separating the real/imaginary parts, the observer is thus of dimension 2(dx + 1) dy on R.
6This notion is similar to the distinguishability de�ned in De�nition 2.2.1 but in negative time and with the

constraint that t occurs when both solutions are still in S.
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and

~A =

0

B
@

� 1
. . .

� dx +1

1

C
A ; ~B =

0

B
@

1
...
1

1

C
A :

Besides, ifX is backward-invariant, the function T is unique on X and de�ned by:

T(x) =
Z 0

�1
e� A� B (h(X (x; � ))) d� : (5.5)

We conclude from this result that it is possible to design an observer for an autonomous
nonlinear system under the weak assumption of backward-distinguishability. Note that with a
stronger assumption of strong di�erential observability7 of order m, and still in a bounded set,
it is also proved in [AP06, Theorem 4] that injectivity of (5.5) is ensured for any choice ofm
real strictly negative � i smaller that � ` with ` su�ciently large.

The di�culty lies in the computation of the function T, let alone its inverse. Even whenX
is bounded and backward-invariant, the use of its explicit expression (5.5) is not easy since it
necessitates to integrate backwards the di�erential equation at each time step. Several examples
will be given in Chapter 7 or Chapter 11 to show how the functionT can be computed without
relying on this formula. In particular, we will see in Chapter 7 how this task can sometimes be
made easier by allowingT to be time-varying.

The extension of this Luenberger methodology to controlled systems is not straight-forward.
First steps in this direction were made in [RZ13, Tru07] for linear time-varying systems, in
[Ham08] for nonlinear time-varying systems, and in [Eng07] for nonlinear controlled systems.
This is the object of Chapter 7.

5.2 Transformations into triangular normal forms

5.2.1 Lipschitz triangular form

The Lipschitz triangular form 8 (3.12)
8
>>>>>>><

>>>>>>>:

_� 1 = � 2 + � 1(~u; � 1)
...

_� i = � i +1 + � i (~u; � 1; : : : ; � i )
...

_� m = � m (~u; � )

; y = � 1

is well-known because it is associated to the classical high gain observer (3.13). The idea
of transforming a nonlinear system into a phase-variable form9 (i-e with � i = 0 except � m )
appeared in [Zei84]. For an autonomous system,

_x = f (x) ; y = h(x)

the function H m de�ned by the output and its m � 1 �rst derivatives, namely

H d� (x) = ( h(x); L f h(x); : : : ; L
d� � 1
f h(x)) ;

transforms the system into

_� 1 = � 2 ; : : : ; _� i = � i +1 ; : : : ; _� m = L m
f h(x) ; y = � 1 :

7See De�nition 5.2.2 in the autonomous case.
8 It is useful to denote here the input ~u because we will see that it can be for instance ~u = ( u; _u; •u; : : :).
9See De�nition 3.2.1.
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This is a Lipschitz phase-variable form if and only if there exists a function� m Lipschitz on Rd�

such that
8x 2 X ; L m

f h(x) = � m (H m (x)) ;

i-e the mth-derivative of the output can be expressed "in a Lipschitz way" in terms of itsm � 1
�rst derivatives. This is possible for example if X is bounded andH m is an injective immersion10

on some open setS containing cl (X ) (see Theorem 5.2.1 below for this result in the general
controlled case).

In the remaining of this section, we review the existing results in terms of transformation of
general controlled systems into a Lipschitz triangular form.

Time varying transformation

The �rst natural idea introduced in [Zei84] is to keep considering the transformation made of
the output and its m � 1 �rst derivatives, despite the presence of the input, and transform the
system into a phase-variable form in the same way as for autonomous systems. In order to
properly de�ne this transformation, we need the following de�nition.

De�nition 5.2.1.

Given an integer m, and using the notation

� m = ( � 0; : : : ; � m ) ;

we call dynamic extension of orderm of System (5.1) the extended dynamical system

_x = f (x; u (m+1) ) ; y = h(x) (5.6)

with input u(m+1) in Rdu , extended state x = ( x; � m ) in Rdx � Rdu (m+1) , extended vector
�eld f de�ned by

f (x; u (m+1) ) =
�
f (x; � 0) ; � 1 ; : : : ; � m ; u(m+1)

�

and extended measurement functionh de�ned by

h(x) = h(x; � 0) :

Note that for any solution x to System (5.1) with some input u, (x; um ) is solution to the
dynamic extension (5.6), with the notation um = ( u; _u; : : : ; u(m) ). While � m is an element of
Rdu (m+1) , um is a function de�ned on [0; + 1 ) such that um (s) = ( u(t); _u(t); :::; u(m) (t)) is in
Um � Rdu (m+1) . The successive time derivatives of the outputy are related to the Lie derivatives
of h along the vector �elds f , namely for any j � m and any (x0; t0) in X � [0; + 1 )

@j Y
@tj

(x0; t0; t; u) = L j
f
h(X (x0; t0; t; u); um (t)) :

We are now ready to de�ne the notion of di�erential observability.

De�nition 5.2.2.

Consider the function H m on Rdx � Rdu (m+1) de�ned by

H m (x; � m ) =
�
h(x; � m ) ; L f h(x; � m ) ; : : : ; L m� 1

f
h(x; � m )

�
: (5.7)

10 H m is injective and @H m
@x (x) has full-rank on X



5.2. Transformations into triangular normal forms 69

- weakly di�erentially observable of order m on S if for any � m in Um , the function
x 7! H m (x; � m ) is injective on S.

- strongly di�erentially observable of order m on S if for any � m in Um , x 7! H m (x; � m )
is an injective immersion onS.

The function H m (�; � m ) is equivalent to H m for autonomous systems since it is made of the
successive derivatives of the output, but it now depends on the input and its derivatives. The
notion of di�erential observability of order m thus means that when knowing the current input
and its derivatives, the current state is uniquely determined by the current output and its �rst
m � 1 derivatives. With this in hand, a straightforward extension of the stationary case along
the idea presented in [Zei84] is :

Theorem 5.2.1.

If Um is a compact subset ofRdu (m+1) and there exists an integerm and a subsetS of Rdx

such that System (5.1) is weakly (resp strongly) di�erentially observable of order m on S,
then, for any compact subsetC of S and any u in U, the function de�ned by

T(x; t ) = H m (x; um (t))

transforms System (5.1) into a continuous (resp Lipschitz) phase-variable form of dimension
d� = mdy on C and with input ~u = um . Besides,x 7! T(x; t ) is uniformly injective in space
and in time on C.

Proof : Assume �rst that the system is weakly di�erentially observable of order m, i-e for all � m in
Um , x 7! H m (x; � m ) is injective on C. According to Lemma A.3.5, it is uniformly injective in space and
in time on C and for any � m , it admits a uniformly continuous left inverse i-e there exists a function
H

� 1
m : Rd � � Rdu ( m +1) ! Rdx such that for all � m in Um and all x in C

x = H
� 1
m (H m (x; � m ); � m ) :

Now de�ne
� m (�; � m ) = L m

f h(H
� 1
m (�; � m ); � m ) :

T transforms System (5.1) into the continuous phase-variable form

8
>><

>>:

_� 1 = � 2

...
_� m � 1 = � m

_� m = � m (�; um (t))

Assume now the system is strongly observable. Still with Lemma A.3.5, � 7! H
� 1
m (�; � m ) can now be

taken Lipschitz on Rd � , with the same Lipschitz constant for all � m in Um . It follows that � 7! � m (�; � m )
is Lipschitz on any compact set of Rd � containing the compact set of interest H m (C � Um ), with the same
Lipschitz constant for all � m in Um . According to Kirszbraun-Valentine theorem [Kir34, Val45], it can
be extended to a Lipschitz function on Rd � with still the same Lipschitz constant. This new extended
function � 7! � m (�; � m ) is globally Lipschitz uniformly in � m and has not changed on H m (C � Um )
where the system solutions evolve, thus we have a Lipschitz phase-variable form. �

The assumptions given in Theorem 5.2.1 are su�cient to ensure the existence of the func-
tion � m in the phase-variable variable form. But they are not necessary. The possibility of
�nding such a function, namely to express L m

f
h (the mth derivative of the output) in terms of

h; L f h; : : : ; L m� 1
f

h (the output and its m � 1 �rst derivatives) and um (the input and its m �rst

derivatives) is thoroughly studied in [JG96] through the so-called "ACP(m) condition". We refer
the reader to [JG96] (or [GK01]) for a more complete analysis of those matters.
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Remark 4 Note that as we saw in Chapter 4, for a high gain design, it is not necessary to have
global Lipschitzness of the function� m with respect to � . It is su�cient to have

j� m (�; � m ) � � m (�̂; � m )j � aj� � �̂ j

for all �̂ in Rd� , all � m in Um and � in a compact set containingH m (C � Um ) where the system
solutions evolve. Thus, the Lipschitz extensions made in the proof of Theorem 5.2.1 are not
necessary in practice : as suggested in Chapter 4, it is su�cient to take11

� m (�; � m ) = satM (L m
f

h(H
� 1
m (�; � m ); � m )) (5.8)

where M is a bound for jL m
f

hj on C � Um and H
� 1
m is any locally Lipschitz function de�ned on

Rd� � Um which is a left-inverse of H m on H m (C � Um ). It follows that the only di�culty is
the computation of a globally de�ned left-inverse for H m , which is needed anyway to deduce an
estimate x̂ from �̂ (see [RM04]).

Stationary transformation

We have seen that under an appropriate injectivity assumption, the function made of the suc-
cessive derivatives of the output transforms the system into a Lipschitz phase-variable form.
The drawback of this design is that the transformation depends on the derivatives of the input,
which we may not have access to, in particular if we are not in an output feedback con�guration.
It turns out that under appropriate assumptions involving uniform observability, a control-a�ne
multi-input single-output system

_x = f (x) + g(x)u ; y = h(x) 2 R (5.9)

can be transformed into a Lipschitz triangular form (3.12) by a stationary transformation. This
famous result was �rst proved in [GB81] and then in a simpler way in [GHO92]. Before stating
the result, we need the following de�nition.

De�nition 5.2.3.

We call drift system of System (5.9) the dynamics with u � 0, namely

_x = f (x) ; y = h(x) :

Applying De�nition 5.2.2, we say that the drift system of System (5.9) is weakly (resp
strongly) di�erentially observable of order m on S if the function

H m (x) = ( h(x); L f h(x); : : : ; L m� 1
f h(x))

is injective (resp an injective immersion) onS.

Di�erential observability of the drift system is weaker than di�erential observability of the
system since it is only foru � 012. In order to obtain a triangular form, it is necessary to add
an assumption of uniform observability :

Theorem 5.2.2. [GB81, GHO92]

Assume that there exists an open subsetS of Rdx such that

11 The saturation function is de�ned by satM (s) = min f M; max f s; � M gg.
12 or any other constant value
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- System (5.9) is uniformly instantaneously observable13 on S ;

- The drift system of System (5.9) is strongly di�erentially observable of order dx on S.

Then, H dx de�ned by

H dx (x) = ( h(x); L f h(x); : : : ; L dx � 1
f h(x)) (5.10)

which is a di�eomorphism on S by assumption, transforms System (5.9) into a Lipschitz
triangular form (3.12) of dimension d� = dx on S.

Triangularity makes the form (3.12) instantaneously observable for any input. Since the
transformation H dx itself is independent from the input and injective, this observability property
must necessarily be veri�ed by the original System (5.9). Thus, the �rst assumption is necessary.
A usual case where this property is veri�ed is when there exists an orderp such that the system
is weakly di�erentially observable of order p.

It is crucial that the order of strong di�erential observability of the drift system be dx (the
dimension of the state) to ensure the Lipschitzness of the triangular form in order to use a high
gain observer. When this order is larger thandx , we will see in Chapter 6 that triangularity
is often preserved but the Lipschitzness is lost : the triangular form is only continuous and
observers from Chapter 4 must be used.

5.2.2 General Lipschitz triangular form

Consider a general multi-input single-output control-a�ne system

_x = f (x) + g(x)u ; y = h(x) + hu(x)u 2 R (5.11)

where g and hu are matrix �elds with values in Rdx � du and R1� du such that for any u =
(u1; :::; udu ) in Rdu ,

g(x)u =
duX

k=1

gk (x)uk ; hu(x)u =
duX

k=1

hu
k (x)uk

with gk vector �elds of Rdx and hu
k real-valued functions. We want to know under which condi-

tions this system can be transformed into a general Lipschitz triangular form (3.19)

8
>>>>>>><

>>>>>>>:

_� 1 = A1(u; y) � 2 + � 1(u; � 1)
...

_� i = A i (u; y) � i +1 + � i (u; � 1; : : : ; � i )
...

_� m = � m (u; � )

; y = C1(u)� 1

for which a Kalman-High gain observer (3.21) may exist14. Before stating the main result, we
need some de�nitions introduced in [HK77].

De�nition 5.2.4.

The observation spaceof System 5.11, denotedO, is the smallest real vector space such that

- x 7! h(x) and x 7! hu
k (x) for any k in f 1; : : : ; dug are in O ;

- O is stable under the Lie derivative along the vector �elds f , g1, ... , gdu , i-e for any

13 see De�nition 2.2.1.
14 An additional excitation condition on the input is needed, see Chapter 3.
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element � of O, L f � and L gk � for all k in f 1; : : : ; dug are in O.

We denotedO the codistribution of Rdx de�ned by

dO(x) =
n

d� (x) ; � 2 O
o

:

This leads to the following observability notion.

De�nition 5.2.5.

System 5.11 is said to satisfy theobservability rank condition at a point x in Rdx (resp on
S) if

dim(dO(x)) = dx (resp 8x 2 S) :

It is proved in [HK77] that the observability rank condition is su�cient to ensure the so-
called "local weak observability", which roughly means that any point can be instantaneously
distinguished from its neighbors via the output. In fact, this property is also necessary on a
dense subset ofX . We refer the interested reader to [HK77] for a more precise account of those
notions.

In [BT07], the authors relate the observability rank condition to the ability of transforming
(at least locally) a system into a general Lipschitz triangular form.

Theorem 5.2.3. [BT07]

If System (5.11) satis�es the observability rank condition at x0 then there exists a neigh-
borhood V of x0 and an injective immersion T on V which transforms System (5.11) into a
general Lipschitz triangular form (3.19) on V with the linear parts A i independent from the
output i-e A i (u; y) = A i (u).

This result is local because the rank condition is of local nature and does not say that we can
select the same immersionT around every point of X , let alone that this function is injective on
X . However, we give this result all the same because the idea of the construction of the function
T is the same whether we look for a global immersion or a local one. Here is the algorithm
presented in [BT07]:

1. Take T1(x) = ( h(x); hu
1(x); : : : ; hu

du
(x)) of dimension N1 = du + 1 .

2. SupposeT1; : : : ; T i have been constructed in the previous steps, of dimensionN1; : : : ; N i .
Pick among their N1+ :::+ N i di�erentials a maximum number � i of di�erentials d� 1; : : : ; d� � i

which generate a regular codistribution aroundx0, i-e there exists a neighborhood ofx0

where dim(spanf d� 1(x); : : : ; d� � i (x)g) is constant and equal to� i .

- if � i = dx stop ;

- otherwise build T i +1 with every functions L f T i
j and L gk T i

j , with j in f 1; : : : ; N i g and k
in f 1; : : : ; dug, except those whose di�erential already belongs tospanf d� 1(x); : : : ; d� � i (x)g
in a neighborhood ofx0.

Finally, denoting m the number of iterations, take T(x) = ( T1(x); : : : ; Tm (x)) .

The observability rank condition ensures that the algorithm stops at some time because com-
puting the successiveT i comes back to progressively generating allO which is of dimensiondx

around x0. Besides, it is shown in [BT07], that when the di�erential d� of some real valued
function � is such that, in a neighborhood ofx0, d� (x) belongs to spanf d� 1(x); : : : ; d� � i (x)g
with d� 1(x); : : : ; d� � i (x) independent, then � can be locally expressed in a Lipschitz way in
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terms of � 1; : : : ; � � i . Therefore, either the derivatives of the elements ofT i are in T i +1 or they
can be expressed in terms of the previousT1; : : : ; T i . It follows that for any i , there exist a
matrix A i (u) and a function � i (linear in u and with �( u; �) Lipschitz) such that

_z {
T i (x) = L f T i (x) +

duX

k=1

uk L gk T i (x) = A i (u)T i +1 (x) + � i (u; T 1(x); : : : ; T i (x)) ;

which gives the general triangular form (3.19).
Note that the transformation T thus obtained is a local immersion. If we are interested in

a global transformation, the same algorithm can be applied but everything must be checked
globally (and not in a neighborhood of x0) and we need to go on with this algorithm until
obtaining a global injective immersion. But there is no guarantee that this will be possible,
unless a stronger assumption is made. In particular, if the drift system (i-e with u � 0) is
strongly di�erentially observable of some order p, the algorithm provides a global injective
immersion in a maximum of p iterations. Beware however, that it still remains to check that the
functions � i exist globally. If this is not the case, it is always possible to put the corresponding
L f T i

j (x) or L gk T i
j (x) in T i +1 , but this is bound to considerably increase the dimension ofT (and

thus of the observer).
Finally, it is important to remark that this design enables to avoid the strong assumption

of uniform observability needed for the classical triangular form, by stu�ng the L gk T i
j (x) which

do not verify the triangularity constraint into the state. The �rst obvious setback is that it
often leads to observers of very large dimension. But mostly, unlike the classical Lipschitz
triangular form which admits a high gain observer without further assumption, the possibility
of observer design for the general Lipschitz triangular form is not automatically achieved as
seen in Chapter 3 : building the transformation is not enough, one need to check an additional
excitation condition on the input.

5.3 Conclusion

A lot of results exist in the literature concerning the characterization of systems which can
be transformed into a normal form and we have tried to give in this chapter as thorough an
account as possible. Those results are summed up in Table 5.1. However, some cases have not
been addressed yet. They are highlighted in the table with the sign? and will be studied in the
following chapters :

- Chapter 6 : transformation into a continuous triangular form. We study what becomes
of Theorem 5.2.2 when the system has an order of di�erential observability larger than
dx . We show that using the same transformation, triangularity may be preserved but not
its Lipschitzness, i-e the system may be transformed into a continuous triangular form,
instead of a Lipschitz triangular form.

- Chapter 7 : transformation of time-varying/controlled systems into a Hurwitz form. We
extend the results presented in Section 5.1.2 for autonomous systems to controlled sys-
tems. We show that similar results can be obtained under the assumption of backward
distinguishability in �nite time, or strong di�erential observability.
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Chapter 6

Transformation into a continuous
triangular form

Chapitre 6 � Transformation dans une forme triangulaire continue. Ce chapitre
étend le résultat présenté dans [GB81, GHO92] et rappelé dans Theorem 5.2.2, selon lequel tout
système instantanément uniformément observable et, pouru � 0, fortement di�érentiellemment
observable d'ordre sa dimensiondx , peut être transformé en une forme triangulaire Lipschitz
(3.12). En particulier, nous étudions le cas plus général où l'ordre d'observabilité di�érentielle est
quelconque, c'est-à-dire éventuellemment supérieur à la dimension du système. Nous montrons
que dans ce cas, la dynamique du système peut encore (au moins partiellemment) être décrite
par une forme triangulaire continue mais que cette forme n'est plus nécessairement Lipschitz.
Des conditions nécessaires et su�santes pour que le caractère Lipschitz soit assuré sont établies,
et en particulier un lien étroit avec l'observabilité in�nitésimale uniforme est mis en évidence.
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This chapter extends the result presented in [GB81, GHO92] and recalled in Theorem
5.2.2 which says that any uniformly instantaneously observable1 single-output control-a�ne
system whose drift system is strongly di�erentially observable2 of order its dimensiondx , can be
transformed into a Lipschitz triangular form (3.12). In particular, we investigate what happens
in the more general case where the drift system is weakly di�erentially observable of some order,
namely of an order larger or equal to the dimension of the system. We shall see that, in this
case, the system dynamics may still be described by a (partial) continuous triangular form
but with nonlinear functions � i which may not be locally Lipschitz. As we saw in Chapter 4,

1See De�nition 2.2.1
2See De�nition 5.2.3.
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this loss of Lipschitzness can prevent the use of a high gain observer, and we establish in this
chapter necessary and su�cient conditions on the system for the Lipschitzness to be ensured. In
particular, a tight link with uniform in�nitesimal observability is revealed. The results presented
in this chapter have been published in [BPA17b].

6.1 Presentation of the problem

As in Section 5.2.1, we consider a single-output control-a�ne system of the form :

_x = f (x) + g(x)u ; y = h(x) (6.1)

wherex is the state in Rdx , u is an input in Rdu , y is a measured output inR and the functions f ,
g and h are su�ciently many times di�erentiable. As in the previous chapter, we go on denoting

H i (x) = ( h(x); L f h(x); :::; L i � 1
f h(x)) 2 Ri : (6.2)

According to De�nition 5.2.3, we say that the drift system of System (6.1) is weakly (resp.
strongly) di�erentially observable of order m on S if H m is injective (resp. an injective immer-
sion) on S.

We are interested in solving :

Problem T

Given a compact subsetC of Rdx , under which condition do there exist integersT and d� ,
a continuous injective function T : C ! Rd� , and continuous functions ' d� : Rd� ! R and
gi : Ri (or Rd� ) ! Rdu such that T transforms System (6.1) into the up-to-T-triangular form

8
>>>>>>>>><

>>>>>>>>>:

_� 1 = � 2 + g1(� 1) u
...

_� T = � T+1 + gT (� 1; : : : ; � T ) u
_� T+1 = � T+2 + gT+1 (� ) u

...
_� d� = ' d� (� ) + gd� (� ) u

; y = x1 (6.3)

on C.

Becausegi depends only on� 1 to � i , for i � T, but potentially on all the components of �
for i > T, we call this particular form up-to-T-triangular normal form and T is called the order
of triangularity. When d� = T + 1 , we say full triangular normal form. When the functions ' d�

and gj are locally Lipschitz we say Lipschitz up-to-T-triangular normal form.
According to Theorem 5.2.2, in the case where System (6.1) is instantaneously uniformly

observable andH dx is a di�eomorphism on an open setS containing the given compact set,
T = H dx transforms the system onC into a full Lipschitz triangular normal form of dimension
d� = dx . However, in general, it is possible for the system not to be strongly di�erentially
observable of orderdx everywhere. This motivates our interest in the case where the drift
system is strongly di�erentially observable of order m > d x , i-e H m is an injective immersion
but not a di�eomorphism.

The speci�city of the triangular normal form (6.3) is not so much in its structure but more in
the dependence of its functionsgi and ' d� . Indeed, by choosingT = H d� , we obtain in general:

_z {
H d� (x) =

0

B
B
B
B
B
@

0 1 0 : : : 0...
. . . . . . . . .

......
. . . . . . 0

0 : : : : : : 0 1
0 : : : : : : : : : 0

1

C
C
C
C
C
A

H d� (x) +

0

B
B
B
B
B
@

0......
0

L
d�
f h(x)

1

C
C
C
C
C
A

+ L gH d� (x)u



6.2. Existence of gi satisfying (6.5) 77

But, to get (6.3), we need further the existence of functions' d� and gi satisfying, for i > T,

L
d�
f h(x) = ' d� (H d� (x)) ; L gL i � 1

f (x) = gi (H d� (x)) 8x 2 C (6.4)

and, for i � T,
L gL i � 1

f (x) = gi (h(x); : : : ; L i � 1
f h(x)) 8x 2 C : (6.5)

Let us illustrate via the following elementary example what can occur.

Example 6.1.1 Consider the system de�ned as
8
><

>:

_x1 = x2

_x2 = x3
3

_x3 = 1 + u
; y = x1

We get

H 3(x) =

0

B
@

h(x)
L f h(x)
L 2

f h(x)

1

C
A =

0

B
@

x1

x2

x3
3

1

C
A ; H 5(x) =

0

B
@

H 3(x)
L 3

f h(x)
L 4

f h(x)

1

C
A =

0

B
@

H 3(x)
3x2

3
6x3

1

C
A

HenceH 3 is a bijection and H 5 is an injective immersion onR3. So the drift system is weakly
di�erentially observable of order 3 on R3 and strongly di�erentially observable of order 5 on R3.
Also the function (x1; x2; x3) 7! (y; _y; •y) being injective for all u, it is uniformly instantaneously
observable onR3. From this we could be tempted to pick d� = 3 or 5 and the compact setC
arbitrary in R3. Unfortunately, if we choosed� = 3 , we must have

' 3(H 3(x)) = L 3
f h(x) = 3 x2

3 = 3( L 2
f h(x))2=3

and there is no locally Lipschitz function ' 3 satisfying (6.4) if the given compact setC contains
a point satisfying x3 = 0 . If we choosed� = 5 , we must have

g3(H 3(x)) = L gL 2
f h(x) = 3 x2

3 = L 3
f h(x) = 3( L 2

f h(x))2=3

and there is no locally Lipschitz function g3 satisfying (6.5) if the given compact setC contains
a point satisfying x3 = 0 . N

Following this example, we leave aside the Lipschitzness requirement for the time being, and
focus on the existence of continuous functions' d� and gi verifying (6.4) and (6.5). It turns out
that (6.4) is easily satis�ed as soon asH d� is injective :

Theorem 6.1.1.

Suppose the drift system of System (6.1) is weakly (resp. strongly) di�erentially observable
of order m on an open setS containing the given compact setC. For any d� � m, there exist
continuous (resp. Lipschitz) functions ' d� : Rd� ! R, gi : Rd� ! R satisfying (6.4).

Proof : There is nothing really new in this result. It is a direct consequence of the fact that a continuous
injective function, like H m , de�ned on a compact set admits a continuous left inverse de�ned on Rd �

(see Lemma A.3.3), and that when it is also an immersion, its left-inverse can be chosen Lipschitz on
Rd � (see Lemma A.3.5 or [RM04]). �

We conclude that the real di�culty lies in �nding triangular functions gi satisfying (6.5).

6.2 Existence of gi satisfying (6.5)

6.2.1 Main result

We will prove the following result :
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Theorem 6.2.1.

Suppose System (6.1) is uniformly instantaneously observable on an open setS containing
the given compact setC. Then,

- there exists a continuous functiong1 : R ! Rdu satisfying (6.5).

- if, for some i in f 2; : : : ; dxg, H 2; : : : ; H i de�ned in (6.2) are open maps, then, for all
j � i , there exists a continuous functiongj : Rj ! Rdu satisfying (6.5).

The rest of this section is dedicated to the proof of this result through a series of lemmas.
Note that, in the case where the drift system is strongly di�erentially observable of order dx , H i

is a submersion and thus open for alli � dx , and the result holds.
A �rst important thing to notice is that the following property must be satis�ed for the

identity (6.5) to be satis�ed (on S).

Property A ( i )

L gL i � 1
f h(xa) = L gL i � 1

f h(xb) 8(xa; xb) 2 S 2 : H i (xa) = H i (xb)

Actually the converse is true and is a direct consequence of Lemma A.3.3 :

Lemma 6.2.1.

If Property A(i ) is satis�ed with S containing the given compact setC, then there exists a
continuous function gi : Ri ! Rdu satisfying (6.5).

Property A(i ) being su�cient to obtain the existence of a function gi satisfying (6.5), we
study now under which conditions it holds. Clearly A (i ) is satis�ed for all i � m if H m is
injective. If we do not have this injectivity property the situation is more complex. To overcome
the di�culty we introduce the following property for 2 � i � dx + 1 .

Property B( i )

For any (xa; xb) in S2 such that xa 6= xb and H i (xa) = H i (xb) ; there exists a sequence
(xa;k ; xb;k) of points in S2 converging to (xa; xb) such that for all k, H i (xa;k ) = H i (xb;k) and
@H i � 1

@x
is full-rank at xa;k or xb;k.

As in this property, let xa 6= xb be such that H i (xa) = H i (xb). If @H i � 1
@x is full-rank at either

xa or xb, then we can take(xa;k ; xb;k) constant equal to (xa; xb). Thus, it is su�cient to check
B(i ) around points where neither @H i � 1

@x (xa) nor @H i � 1
@x (xb) is full-rank. But according to [GK01,

Theorem 4.1], the set of points where@H dx
@x is not full-rank is of codimension at least one for a

uniformly observable system. Thus, it is always possible to �nd pointsxa;k as close toxa as we
want such that @H i � 1

@x (xa;k ) is full-rank. The di�culty of B(i ) thus rather lies in ensuring that
we have alsoH i (xa;k ) = H i (xb;k).

In Section 6.2.2, we prove :

Lemma 6.2.2.

Suppose System (6.1) is uniformly instantaneously observable onS.

- Property A(1) is satis�ed.

- If, for some i in f 2; : : : ; dx + 1g, Property B(i ) holds and Property A(j ) is satis�ed for
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all j in f 1; : : : ; i � 1g, then Property A(i ) holds.

Thus, the �rst point in Theorem 6.2.1 is proved. Besides, a direct consequence of Lemmas
6.2.1 and 6.2.2 is that a su�cient condition to have the existence of the functions gi for i in
f 2; : : : ; dx + 1g is to have B(j ) for j in f 2; : : : ; i g. The following lemma �nishes the proof of
Theorem 6.2.1 by showing thatB(j ) is in fact satis�ed when H j is an open map.

Lemma 6.2.3.

Suppose that for somej in f 2; : : : ; dxg, H j is an open map onS. Then, B(j ) is satis�ed.

Proof : Take (xa ; xb) in S2 such that xa 6= xb and H j (xa ) = H j (xb) = y0 . Let � be the set of points
of S such that @H j

@x is not full-rank. According to Sard's theorem, H j (�) is of measure zero in Rj .
Now, take p > 0 and consider Bp (xa ) and Bp (xb) the open balls of radius 1

p centered at xa and xb

respectively. Since H j is open, H j (Bp (xa )) and H j (Bp (xb)) are open sets, both containing y0 . Thus,
H j (Bp (xa )) \ H j (Bp (xb)) is a non-empty open set. It follows that (H j (Bp (xa )) \ H j (Bp (xb))) n H j (�)
is non-empty and contains a point yp . We conclude that there exist (xa;p ; xb;p ) in Bp (xa ) � Bp (xb)
such that H j (xa;p ) = H j (xb;p ) = yp and @H j

@x (and thus @H j � 1
@x ) is full-rank at xa;p and xb;p . Besides

(xa;p ; xb;p ) converges to (xa ; xb), and B(j ) is satis�ed. �

Note that the assumption that H j is an open map is stronger thanB(j ) since it leads to the
full rank of @H j

@x , while, in B(j ), we only need the full-rank for @H j � 1
@x . We show in the following

example that the openness ofH j is not necessary.

Example 6.2.1 Consider the system de�ned as
8
><

>:

_x1 = x2

_x2 = x3
3x1

_x3 = 1 + u
; y = x1 (6.6)

On S =
�
x 2 R3 : x2

1 + x2
2 6= 0

	
, and whatever u is, the knowledge of the function t 7! y(t) =

X 1(x; t ) and therefore of its three �rst derivatives

_y = x2 ; •y = x3
3x1 ;

...y = 3x2
3x1(1 + u) + x3

3x2

gives usx1, x2 and x3. Thus, the system is uniformly instantaneously observable onS. Besides,
the function

H 4(x) =

0

B
B
B
@

x1

x2

x3
3x1

3x2
3x1 + x3

3x2

1

C
C
C
A

is injective on S, thus the system is weakly di�erentially observable of order 4 on S. Now,
although H 2 is trivially an open map on S, H 3 is not. Indeed, consider for instance the open
ball3 B 1

2
(0; x2; 0) in R3 for somex2 such that jx2j > 1

2 . B 1
2
(0; x2; 0) is contained inS. Suppose its

image by H 3 is an open set ofR3. It contains H 3(0; x2; 0) = (0 ; x2; 0) and thus ("; x 2; " ) for any
su�ciently small " . This means that there exist x in B 1

2
(0; x2; 0) such that ("; x 2; " ) = H 3(x), i-e

necessarilyx1 = " and x3 = 1 . But this point is not in B 1
2
(0; x2; 0), and we have a contradiction.

Therefore, H 3 is not open. However,B(3) trivially holds because H 2 is full-rank everywhere. N

6.2.2 Proof of Lemma 6.2.2

Lemma 6.2.2 is fundamental for the main result of this chapter. That is why we dedicate a
whole section to its proof. It is built in the same spirit as the one in [GHO92] but in a more

3B r (x) denotes the open ball centered at x and with radius r .
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detailed and complete way so that the reader can understand how the fact thatH d� is no longer
a di�eomorphism makes a great di�erence.

Assume the system is uniformly instantaneously observable onS. We �rst show that property
A(1) holds. Suppose there exists(x �

a; x �
b) in S2 and k in f 1; :::; dug such that x �

a 6= x �
b and

h(x �
a) = h(x �

b) ; L gk h(x �
a) 6= L gk h(x �

b) :

Then, the control law u with all its components zero except itskth one which is

uk = �
L f h(xa) � L f h(xb)

L gk h(xa) � L gk h(xb)
:

is de�ned on a neighborhood of(x �
a; x �

b). The corresponding solutionsX (x �
a; t; u) and X (x �

b; t; u)
are de�ned on some time interval [0; t) and satisfy

h(X (x �
a; t; u)) = h(X (x �

b; t; u)) 8t 2 [0; t) :

Sincex �
a is di�erent from x �

b, this contradicts the instantaneous observability. Thus A(1) holds.
Let now i in f 2; : : : ; dx + 1g be such that Property B(i ) holds and A(j ) is satis�ed for all j

in f 1; : : : ; i � 1g. To establish by contradiction that A (i ) holds, we assume this is not the case.
This means that there exists(x �

a;0; x �
b;0) in S2 and k in f 1; :::; dug such that H i (x �

a;0) = H i (x �
b;0)

but L gk L i � 1
f (x �

a;0) 6= L gk L i � 1
f (x �

b;0). This implies x �
a;0 6= x �

b;0. By continuity of L gk L i � 1
f and

according to B(i ), there exists x �
a (resp x �

b) in S su�ciently close to x �
a;0 (resp x �

b;0) satisfying
x �

a 6= x �
b ,

H i (x �
a) = H i (x �

b) ; L gk L i � 1
f (x �

a) 6= L gk L i � 1
f (x �

b) ;

and @H i � 1
@x is full-rank at x �

a or x �
b. Without loss of generality, we suppose it is full-rank at

x �
a. Thus, @H j

@x is full-rank at x �
a for all j < i � dx + 1 . We deduce that there exists an open

neighborhood Va of x �
a such that for all j < i , @H j

@x is full-rank on Va. Since A(j ) holds for all
j < i , according to Lemma A.3.4,H j (Va) is open for all j < i and there exist locally Lipschitz
functions gj : H j (Va) ! Rdu such that, for all x � in Va,

gj (H j (x � )) = L gL j � 1
f h(x � ) : (6.7)

Also, H j (x �
a) = H j (x �

b) implies that H j (x �
b) is in the open setH j (Va). Continuity of each H j

implies the existence of an open neighborhoodVb of x �
b such that H j (Vb) is contained in H j (Va)

for all j < i . Thus, for any x � in Vb, H j (x � ) is in H j (Va), and there existsx � in Va such that
H j (x � ) = H j (x � ). According to A(j ) this implies that L gL j � 1

f h(x � ) = L gL j � 1
f h(x � ) and with

(6.7),

L gL j � 1
f h(x � ) = L gL j � 1

f h(x � ) = gj (H j (x � )) = gj (H j (x � )) :

Therefore, (6.7) holds onVa and Vb.
Then, the control law u with all its components zero except itskth one which is

uk = �
L i

f h(xa) � L i
f h(xb)

L gk L i � 1
f h(xa) � L gk L i � 1

f h(xb)

is de�ned on a neighborhood of(x �
a; x �

b). The corresponding solutionsX (x �
a; t; u) and X (x �

b; t; u)
are de�ned on some time interval [0; t) where they remain in Va and Vb respectively. Let
Za(t) = H i (X (x �

a; t; u)) , Zb(t) = H i (X (x �
b; t; u)) and W (t) = Za(t) � Zb(t) on [0; t). Since, for
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all j < i , (6.7) holds on Va and Vb , (W; Za) is solution to the system :

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

_w1 = w2 + ( g1(� a;1) � g1(� a;1 � w1)) u
...

_wj = wj +1 + ( gj (� a;1; :::; � a;j ) � gj (� a;1 � w1; :::; � a;j � wj )) u
...

_wi = 0
_� a;1 = � 2 + g1(� a;1) u

...
_� a;j = � j +1 + gj (� a;1; :::; � a;j ) u

...
_� a;i = ~u

with initial condition (0; H i (x �
a)) , where ~u is the time derivative of Za;i (t). Note that the

function (0; Za) is also a solution to this system with the same initial condition. Since the
functions involved in this system are locally Lipschitz, it admits a unique solution. Hence, for
all t in [0; t[, W (t) = 0 , and thus Za(t) = Zb(t), which implies h(X (x �

a; t)) = h(X (x �
b; t)) . Since

x �
a is di�erent from x �

b, this contradicts the uniform observability. Thus A(i ) holds.

6.2.3 A solution to Problem T

With Theorems 6.1.1 and 6.2.1, we have the following solution to ProblemT.

Theorem 6.2.2.

Let S be an open set containing the given compact setC. Suppose

- System (6.1) is uniformly instantaneously observable onS

- the drift system of System (6.1) is weakly di�erentially observable of order m on S.

With selecting T = H m and d� = m, we have a solution to ProblemT if we pick either T = 1 ,
or T = i when H j is an open map for anyj in f 2; : : : ; i g with i � dx .

Remark 5

- As seen in Example 6.2.1, the openness of the functionsH j is su�cient but not necessary.
We may ask only for B(j ) for any j in f 2; : : : ; i g with i � dx + 1 . Besides, this weaker
assumption allows to obtain the existence ofgi up to the order dx + 1 .

- Consider the case whereB(j ) is satis�ed for all j � dx + 1 and m = dx + 2 . Then we have
T = dx + 1 and it is possible to obtain a full triangular form of dimension d� = T + 1 =
m = dx +2 . Actually, we still have a full triangular form if we choose d� > m . Indeed, H m

being injective, A (i ) is satis�ed for all i larger than m, thus there also exist continuous
functions gi : Ri ! Rdu satisfying (6.5) for all i � m. It follows that T can be taken larger
than dx + 1 and d� = T + 1 larger than m.

- If Problem T is solved with d� = T + 1 , we have a full triangular normal form of dimension
d� . But, at this point we know nothing about the regularity of the functions gi , besides
continuity. As we saw in Example 6.1.1, even the usual assumption of strong di�erential
observability is not su�cient to make it Lipschitz everywhere. As studied in Chapter 4,
this may impede the convergence of a high gain observer. That is why, in the next section,
we look for conditions under which the Lipschitzness is ensured.
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- As explained in Section 5.2.1, another way of solving ProblemT is to allow the transfor-
mation T to depend on the control u and its derivatives. In particular, if d� > T + 1 , a full
triangular form may still be obtained with T = ( H T ; ~T) where the components~Ti of ~T are
de�ned recursively as

~T1 = L T
f h ; ~Ti +1 = L f + gu ~Ti +

i � 2X

j =0

@~Ti

@u(j )
u(j +1)

until (if possible) the map x 7! T(x; u; _u; :::) becomes injective for all(u; _u; :::). The inter-
est of this approach is to ensure triangularity while reducing the order of di�erentiation of
u compared to Theorem 5.2.1.

Example 6.2.2 Coming back to Example 6.2.1, we have seen thatH 2 is open and thatH 3 is not
but B(3) is satis�ed. Besides, the system is weakly di�erentially observable of order 4. We deduce
that there exists a full-triangular form of order 4. Indeed, we haveL gh(x) = L gL f h(x) = 0 and

L gL 2
f h(x) = 3 x2

3x1 = 3( L 2
f h(x))

2
3 (h(x))

1
3

so that we can take
g1 = g2 = 0 ; g3(� 1; � 2; � 3) = 3 �

2
3
3 �

1
3
1 :

As for ' 4 and g4, they are obtained via inversion ofH 4 i-e for instance onR4nf (0; 0; � 3); � 3 2 Rg

H � 1
4 (� ) =

0

B
@� 1; � 2;

0

@(� 4 � 3�
2
3
3 �

1
3
1 )2 + � 2

3

� 2
1 + � 2

2

1

A

1
6
1

C
A :

6.3 Lipschitzness of the triangular form

6.3.1 A su�cient condition

We saw with Examples 6.1.1 and 6.2.1 that uniform instantaneous observability is not su�cient
for the functions gi to be Lipschitz. Nevertheless, we are going to show in this section that it

is su�cient except maybe around the image of points where
@H i

@x
is not full-rank ( x1 = 0 or

x3 = 0 in Example 6.2.1).

Consider the open setR i of points in S where
@H i

@x
has full rank. According to [Leb82,

Corollaire p68-69], if H i is an open map,R i is an open dense set. Anyway, assumeR dx \ C is
non empty. Then there exists "0 > 0 such that, for all " in (0; "0], the set

K i;" =
n

x 2 R i \ C ; d(x ; Rdx nR i ) � "
o

:

is non-empty and compact, and such that its points are (" )-away from singular points. The next
theorem shows that the functionsgi can be taken Lipschitz on the image ofK i;" , i-e everywhere
except arbitrary close to the image of points where the rank of the Jacobian ofH i drops.

Theorem 6.3.1.

Assume System (6.1) is uniformly instantaneously observable on an open setS containing
the compact set C. For all i in f 1; :::; dxg and for any " in (0; "0], there exists a Lipschitz
function gi : Ri ! Rdu satisfying (6.5) for all x in K i;" .

Proof : As noticed after the statement of Property B(i ), since
@H i

@x
has full rank in the open set R i ,

Property B(i ) holds on R i (i-e with R i replacing S in its statement). It follows from Lemma 6.2.2
that A (i ) is satis�ed on R i . Besides, according to Lemma A.3.4, H i (R i ) is open and there exists aC1
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function gi de�ned on H i (R i ) such that for all x in R i , gi (H i (x)) = L gL i � 1
f h(x). Now, K i;" being a

compact set contained in R i , and H i being continuous, H i (K i;" ) is a compact set contained in H i (R i ).
Thus, gi is Lipschitz on H i (K i;" ). According to [McS34], there exists a Lipschitz extension of gi to Ri

coinciding with gi on H i (K i;" ), and thus verifying (6.5) for all x in K i;" . �

For a strongly di�erentially observable system of order m = dx on S, the Jacobian of H i

for any i in f 1; :::; dxg has full rank on S. Thus, taking d� = T + 1 = m = dx a full Lipschitz
triangular form of dimension dx exists, i.e. we recover the result of Theorem 5.2.2.

Example 6.3.1 In Example 6.2.1, H 3 is full rank on S n fx 2 R3 j x1 = 0 or x3 = 0g. Thus,
according to Theorem 6.3.1, the only points whereg3 may not be Lipschitz, are the image of
points where x1 = 0 or x3 = 0 . Let us study more precisely what happens around those points.
Take xa = ( x1;a; x2;a; 0) in S. If there existed a locally Lipschitz function g3 verifying (6.5)
around xa, there would exist a > 0 such that for any xb = ( x1;b; x2;a; x3;b) su�ciently close to xa

with x1;b 6= 0 , j3x2
3;bj � ajx3

3;bj, which we know is impossible. Therefore, there does not exist a
function g3 which is Lipschitz around the image of points wherex3 = 0 . Let us now study what
happens elsewhere, namely on~S = S n fx 2 R3 jx3 = 0g. It turns out that, on any compact set
C of ~S, there exists4 a such that we have for all (xa; xb) in C2,

jx2
3;ax1;a � x2

3;bx1;bj � a(jx1;a � x1;bj + jx3
3;ax1;a � x3

3;bx1;bj)

Therefore, the continuous function g3 found earlier in Example 6.2.2 such that g3(H 3(x)) =
L gL 2

f (x) = 3 x2
3x1 on S (and thus on C) veri�es in fact

jg3(� a) � g3(� b)j � aj� a � � bj

on H 3(C) and can be extended to a Lipschitz function onR3 according to [McS34]. We conclude
that although H 3 does not have a full-rank Jacobian everywhere onC (singularities at x1 = 0 ),
it is possible to �nd a Lipschitz function g3 solution to our problem on this set. N

6.3.2 A necessary condition

We have just seen that the condition in Theorem 6.3.1 that the Jacobian ofH i be full-rank, is
su�cient but not necessary. In order to have locally Lipschitz functions gi satisfying (6.5), there
must exist for all x a strictly positive number a such that for all (xa; xb) in a neighborhood ofx,

jL gL i � 1
f h(xa) � L gL i � 1

f h(xb)j � a jH i (xa) � H i (xb)j : (6.8)

We have the following necessary condition :

Lemma 6.3.1.

Consider x in S such that (6.8) is satis�ed in a neighborhood of x. Then, for any non zero
vector v in Rdx , and any k in f 1; : : : ; dug, we have :

@H i

@x
(x) v = 0 )

@Lgk L i � 1
f h

@x
(x) v = 0 : (6.9)

4 If x1;a and x1;b are both zero, the inequality is trivial. Suppose jx1;a j > jx1;b j and denote � =
x 1;b
x 1;a

. If � < 0,

we have directly jx2
3;a � � x 2

3;b j � maxf x2
3;a ; x2

3;b gj1 � � j. If now � > 0, x2
3;a � � x 2

3;b =
( x 3

3;a � �
3
2 x 3

3;b )( x 3;a +
p

�x 3;b )

x 2
3;a +

p
�x 3;a x 3;b + �x 2

3;b

and thus jx2
3;a � � x 2

3;b j � 2
p

2p
x 2

3;a + �x 2
3;a

jx3
3;a � �

2
3 x3

3;b j. Besides, jx3
3;a � �

3
2 x3

3;b j = jx3
3;a � �x 3

3;b + � (1 �
p

� ) x3
3;b j �

jx3
3;a � �x 3

3;b j +
� j x 3

3;b j

1+
p

� j1 � � j which gives a on compact sets.
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Proof : Assume there exists a non-zero vectorv in Rdx such that
@H i

@x
(x) v = 0 . Choose r > 0 such

that Inequality (6.8) holds on B r (x), the ball centered at x and of radius r . Consider for any integer p
the vector xp in B r (x) de�ned by xp = x � 1

p
1

j v j v: This gives a sequence converging tox when p tends
to in�nity. We have

0 �
jL gk L i � 1

f h(x) � L gk L i � 1
f h(xp )j

jx � xp j
� a

jH i (x) � H i (xp )j
jx � xp j

(6.10)

But, H i ( x ) � H i ( x p )
j x � x p j tends to @H i

@x (x) v which by assumption is 0 . Similarly 1
j x � x p j (L gk L i � 1

f h(x) �

L gk L i � 1
f h(xp )) tends to

@Lgk L i � 1
f h

@x
(x) v which is also 0 according to (6.10). �

We conclude that whenH i does not have a full-rank Jacobian, it must satisfy condition (6.9)
to allow the existence of locally Lipschitz triangular functions gi . This condition is in fact about
uniform in�nitesimal observability.

De�nition 6.3.1.

See [GK01, De�nition I.2.1.3]. Consider the system lifted to the tangent bundle ([GK01,
page 10]) (

_x = f (x) + g(x)u
_v =

h
@f
@x(x) + @gu

@x(x)
i

v
;

(
y = h(x)
w = @h

@x(x)v
(6.11)

with v in Rdx and w in R and the solutions of which are denoted(X (x; t; u); V ((x; v); t; u)) .
System (6.1) is uniformly instantaneously in�nitesimally observable on S if, for any pair
(x; v) in S � Rdx n f 0g, any strictly positive number t, and any C1 function u de�ned on an

interval [0; t), there exists a time t < t such that
@h
@x

(X (x; t; u)) V ((x; v); t; u) 6= 0 and such

that X (x; s; u) 2 S for all s � t.

We have the following result.

Theorem 6.3.2.

Suppose that System (6.1) is strongly di�erentially observable of orderm (or at least that
H m is an immersion onS) and that Inequality (6.8) is veri�ed at least locally around any
point x in S for any i in f 1; : : : ; mg. Then the system is uniformly in�nitesimally observable
on S.

Proof : According to Lemma 6.3.1, we have (6.9). Now take x in S and a non-zero vector v and suppose
that there exists t > 0 such that for all t in [0; t), X (x; t ; u) is in S and w(t) = @h

@x(X (x; t ; u))V (( x; v ); t ; u) =
0. To simplify the notations, we denote X (t) = X (x; t ; u) and V (t) = V ((x; v ); t ; u). For all integer i , we
denote

wi (t) =
@Li � 1

f h

@x
(X (t))V (t) :

We note that for any function  : Rn ! R, we have

_z {
@ 
@x

(X (t))V (t) =
@Lf  

@x
(X (t))V (t) +

duX

k =1

uk
@Lgk  

@x
(X (t))V (t) :

We deduce for all integer i and all t in [0; t)

_wi (t) = wi +1 (t) +
duX

k =1

uk
@Lgk L i � 1

f h

@x
(X (t))V (t) :

Let us show by induction that wi (t) = 0 for all integer i and all t in [0; t). It is true for i = 1 by
assumption. Now, take an integer i > 1, and suppose wj (t) = 0 for all t in [0; t) and all j � i ,
i-e @H i

@x (X (x; t ; u))V (( x; v ); t ; u) = 0 for all t < t. In particular, _wi (t) = 0 for all t < t. Besides,
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according to (6.9),
@Lg k L i � 1

f
h

@x (X (x; t ; u))V (( x; v ); t ; u) = 0 for all k in f 1; : : : ; du g and for all t < t. Thus,
wi +1 (t) = 0 for all t < t. We conclude that wi is zero on [0; t [ for all i and in particular at time 0,
@H m

@x (x)v = ( w1(0); : : : ; wm (0)) = 0 . But H m is an immersion on S, thus, necessarily v = 0 and we have
a contradiction. �

Example 6.3.2 We go on with Example 6.2.1. The linearization of the dynamics (6.6) yields

8
><

>:

_v1 = v2

_v2 = x3
3v1 + 3x2

3x1v3

_v3 = 0
; w = v1 (6.12)

Consider x0 = ( x1; x2; 0) in S and v0 = (0 ; 0; v3) with v3 a nonzero real number. The solution
to (6.6)-(6.12) initialized at (x0; v0) and with a constant input u = � 1 is such that X (x0; t; u)
remains in S in [0; t) for some strictly positive t and w(t) = 0 for all t in [0; t). Since v0 is
nonzero, System (6.6) is not uniformly instantaneously in�nitesimally observable on S. But,
for System (6.6), H 7 is an immersion on S. We deduce from Theorem 6.3.2 that Inequality
(6.8) is not satis�ed for all i , i-e there does not exist Lipschitz triangular functions gi for all
i on S. This is consistent with the conclusion of Example 6.3.1. However, on~S, i-e when we
remove the points wherex3 = 0 , the system becomes uniformly instantaneously in�nitesimally
observable. Indeed, it can easily be checked that forx in ~S, w = _w = •w = w(3) = 0 , implies
necessarilyv = 0 . Unfortunately, from our results, we cannot infer from this that the functions
gi can be taken Lipschitz on ~S. Nevertheless, the conclusion of Example 6.3.1 is thatg3 can be
taken Lipschitz even around points with x1 = 0 . All this suggests a possible tighter link between
uniform instantaneous in�nitesimal observability and Lipschitzness of the triangular form. N

We conclude from this section that uniform instantaneous in�nitesimal observability is re-
quired to have the Lipschitzness of the functionsgi when they exist. However, we don't know if
it is su�cient yet.

6.4 Back to Example 4.5 in Chapter 4

Consider the system 8
><

>:

_x1 = x2

_x2 = � x1 + x5
3x1

_x3 = � x1x2 + u
; y = x1 : (6.13)

It would lead us too far from the main subject of this thesis to study here the solutions behavior
of this system. We note however that, whenu is zero, they evolve in the2-dimensional surface
f x 2 R3 : 3x2

1 + 3x2
2 + x6

3 = c6g. The equilibrium (0; 0; x3) being unstable at least forc > 1, we
can hope for the existence of solutions remaining in the compact set

Cr;� =
n

x 2 R3 : x2
1 + x2

2 � � ; 3x2
1 + 3x2

2 + x6
3 � r

o

for instance when u is a small periodic time function, except maybe for pairs of input u and
initial condition (x1; x2; x3) for which resonance could occur. An example is given in Figure 6.1.

On S =
�
x 2 R3 : x2

1 + x2
2 6= 0

	
, and whateveru is, the knowledge of the functiont 7! y(t) =

X 1(x; t ) and therefore of its three �rst derivatives

_y = x2

•y = � x1 + x5
3x1

...y = � x2 � 5x4
3x2

1x2 + x5
3x2 + 5x4

3x1u
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Figure 6.1: Solution of System (6.13) with initial condition x = (1 ; 1; 0) and input u =
5 sin(t=10).

gives us x1, x2 and x3. Thus, System (6.13) is uniformly instantaneously observable onS.
Besides, the function

H 4(x) =

0

B
B
B
@

x1

x2

� x1 + x5
3x1

� x2 � 5x4
3x2

1x2 + x5
3x2

1

C
C
C
A

is injective on S and admits the following left inverse, de�ned on
�
� 2 R4 : � 2

1 + � 2
2 6= 0

	
:

H � 1
4 (� ) =

0

B
B
B
B
B
@

� 1

� 2
0

@
(� 3+ � 1 )� 1+

h
(� 4+ � 2 )+3 j(� 3+ � 1 )b� 1e

3
2 j

4
5 � 2

i
� 2

� 2
1 + � 2

2

1

A

1
5

1

C
C
C
C
C
A

However, H 4 is not an immersion because of a singularity of its Jacobian atx3 = 0 . So the
drift system is weakly di�erentially observable of order 4 on S but not strongly. The reader
may check that it can be transformed into the continuous triangular normal form of dimension4
given by (4.27). The trajectory given in Figure 4.1 on which the observers presented in Section
4.5 have been tested are in fact the image byH 4 of the solution plotted in Figure 6.1.

6.5 Conclusion

Like for strongly di�erentially observable systems of order dx , uniform instantaneous observabil-
ity of systems whose drift system is weakly di�erentially observable systems of orderm > d x ,
may still imply the existence of an at least up-to-dx +1 -triangular normal form (6.3) of dimension
m. But



6.5. Conclusion 87

- we have shown this under the additional assumption that the functionsH i (x) = ( h(x); L f h(x); :::; L i � 1
f h(x))

are open maps. Actually it is su�cient that the properties B(2); : : : ; B(dx + 1) hold.

- the functions in the triangular form are possibly non Lipschitz, but only close to points
where the rank of the Jacobian ofH i changes. Anyhow, uniform in�nitesimal observability
is necessary to have Lipschitz functions.

- for a non Lipschitz triangular normal form, convergence of the regular high gain observer
may be lost, but, as we saw in Chapter 4, it is still possible to design asymptotic observers.

Although our result only gives a partial triangular form and with additional assumptions B(i ),
we have no counter example showing that uniform instantaneous observability is not su�cient
to have a full continuous triangular form. The crucial point would be to prove Lemma 6.2.2
under this weaker condition, which unfortunately we have not managed to do.





Chapter 7

Transformation into a Hurwitz form:
nonlinear Luenberger observers

Chapitre 7 � Transformation dans une forme Hurwitz : observateurs de Luen-
berger non linéaires. Dans ce chapitre, nous montrons comment la méthodologie de Luen-
berger s'applique à des systèmes non linéaires commandés, i-e nous étendons ce qui a été fait
dans [AP06] pour les systèmes autonomes. Cette méthode consiste à transformer le système en
une forme Hurwitz par la résolution d'une EDP. Si cette transformation est injective, un obser-
vateur s'ensuit immédiatement. Le problème se résume donc à l'existence (et au calcul) d'une
solution injective à une EDP. Nous montrons entre autres que cette EDP admet toujours des
solutions dépendant du temps dont l' injectivité est assurée si le système est fortement di�éren-
tiellement observable à un certain ordre et que les trajectoires sont bornées. Lorsque le système
est seulement distingable en temps rétrograde, nous montrons qu'au moins une des solutions est
injective pour presque tout choix de la matrice Hurwitz. Nous illustrons comment ces solutions
peuvent être calculées en pratique sur des exemples physiques. En�n, nous ajoutons un résultat
concernant la possibilité d'utiliser une transformation stationnaire malgré la présence d'entrées
dans le cas d'un système uniformément instantanément observable.
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Consider a general system of the form

_x = f (x; u) ; y = h(x; u) (7.1)

wherex is the state in Rdx , y the measurement inRdy , f and h su�ciently many times di�eren-
tiable functions and u : [0; + 1 ) ! Rdu in U, the set of considered inputs. Recall that we denote
X (x; t ; s; u) the value at time s of the solution to System (7.1) with input u, initialized at x at
time t, and Y(x; t ; s; u) the corresponding output function at time s.
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In this chapter, we investigate the possibility of transforming System (7.1) into a Hurwitz
form1

_� = A � + B y (7.2)

with A Hurwitz in Rd� � d� , B a vector in Rd� � dy , for some strictly positive integer d� , i-e for
eachu in U, �nd a transformation 2 T : Rdx � [0; + 1 ) ! Rd� such that for any x in X and any
time t in [0; + 1 ),

@T
@x

(x; t )f (x; u(t)) +
@T
@t

(x; t ) = A T (x; t ) + B h(x; u(t)) : (7.3)

Indeed, since the Hurwitz form (7.2) admits a trivial observer made of a copy of its dynamics,
according to Theorem 2.2.1, it is su�cient that T becomes injective uniformly in time and in
space at least after a certain time to obtain an observer for System (7.1).

We have seen in Chapter 5 that this problem has been solved in [AP06] for autonomous
systems. Our goal is to extend those results to controlled/time-varying systems. Exactly as
we saw for the high gain design in Section 5.2.1, two paths are possible : either we keep the
stationary transformation obtained for some constant value ofu (for instance the drift system
at u � 0) and hope the additional terms due to the presence ofu do not prevent convergence,
or we take a time-varying transformation taking into account (implicitly or explicitly) the input
u.

As far as we know, no result concerning this problem exists in the literature apart from
[Eng05, Eng07] which follows and extends [KE03]. The idea pursued in [Eng05] belongs to the
�rst path : the transformation is stationary and the input is seen as a disturbance which must
be small enough. Although the construction is extended in a cunning fashion to a larger class
of inputs, namely those which can be considered as output of a linear generator model with
small external input, this approach remains theoretic and restrictive. On the other hand, in
[Eng07], the author rather tries to use a time-varying transformation but its injectivity is proved
only under the so-called "�nite-complexity" assumption, originally introduced in [KE03] for
autonomous systems. Unfortunately, this property is very restrictive and hard to check. Besides,
no indication about the dimension d� is given and the transformation cannot be computed online
because it depends on the whole past trajectory of the output.

That is why, in this chapter, we endeavor to give results of existence and injectivity of
the transformation under more reasonable observability assumptions and keeping in mind the
practical implementation of this method. We start by exploring the path of a time-varying
transformation in Section 7.1. We show that the existence of the transformation itself is not a
problem. On the other hand, its injectivity can be ensured by observability assumptions, similar
to those presented in [AP06] for autonomous systems. Then, in Section 7.2, we show on practical
examples how an explicit expression for such a transformation can be computed. Finally, in Sec-
tion 7.3, we prove that, similarly to Theorem 5.2.2 for a high gain design, uniformly observable
input-a�ne systems whose drift system is strongly di�erentially observable of order dx , admit a
Luenberger-type observer built with a stationary transformation.

Notations

1. Sinceh (resp Y) takes values inRdy , we denotehi (resp Yi ) its i th-component.

2. For some integerm, which will be chosen later in the chapter, we consider the dynamic
extension of orderm introduced in De�nition 5.2.1 and use the corresponding notations :

1We could have considered a more general Hurwitz form _� = A � + B (y) with B any nonlinear function, but
taking B linear is su�cient to obtain satisfactory results.

2The function T depends onu in U and we should write Tu as in Theorem 2.2.1. But we drop this too heavy
notation in this chapter to ease the comprehension. What is important is that the target Hurwitz form (7.2),
namely d� , A and B , be the same for all u in U.
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um = ( u; _u; :::; u(m) ), � m = ( � 0; :::; � m ), �f the extended vector �eld

�f (x; � m ; u(m+1) ) =
�
f (x; � 0); � 1; : : : ; � m ; u(m+1)

�

and the extended measurement function

�hi (x; � m ) = hi (x; � 0) :

We recall the reader that while � m is an elementRdu (m+1) , um is a function de�ned on
[0; + 1 ) such that um (s) = ( u(s); _u(s); :::; u(m) (s)) is in Um � Rdu (m+1) for all s in [0; + 1 ).
For 1 � i � dy , the successive time derivatives ofYi are related to the Lie derivatives of
�hi along the vector �elds �f , namely for j � m

@j Yi

@sj
(x; t ; s; u) = L j

�f
�hi (X (x; t ; s; u); um (s)) :

7.1 Time-varying transformation

The existence of aC1 time-varying solution to PDE (7.3) is achieved thanks to the following
lemma :

Lemma 7.1.1.

Consider d� a strictly positive number, A a Hurwitz matrix in Rd� � d� , B a matrix in Rd� � dy ,
and u an input function in U. The function T0 de�ned on S � [0; + 1 ) by

T0(x; t ) =
Z t

0
eA(t � s)B Y (x; t ; s; u) ds (7.4)

is a C1 solution to PDE (7.3).

Proof : First, for any u in U, and any s in [0; + 1 ), (x; t ) 7! Y (x; t ; s; u) = h(X (x; t ; s; u); s) is C1 , thus
T 0 is C1 . Take x in S and t in [0; + 1 ). For any � in R,

X (X (x; t; t + � ; u); t + � ; s; u) = X (x; t ; s; u):

Therefore,

T 0(X (x; t ; t + � ; u); t + � ) =

Z t + �

0

eA ( t + � � s) Bh (X (x; t; s ; u); u(s))ds

= eA� T 0(x; t ) + eA�

Z t + �

t

eA ( t � s) B h (X (x; t ; s; u); u(s))ds

and

T 0(X (x; t ; t + � ; u); t + � ) � T 0(x; t )
�

=
eA� � I

�
T 0(x; t )

+
eA�

�

Z t + �

t

eA ( t � s) B h (X (x; t; s ; u); u(s))ds :

Making � tend to 0, we get PDE (7.3). �

Note that extending directly what is done in [KE03, AP06] would rather lead us to the
solution

T1 (x; t ) =
Z t

�1
eA(t � s)B Y (x; t ; s; u) ds :

The drawback is that some assumptions about the growth ofY have to be made to ensure
its continuity, unless Y is bounded backward in time. As for the C1 property, and even if
the solutions are bounded backward in time, it is achieved only if the eigenvalues ofA are
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su�ciently negative. In fact, it is not absolutely needed that the solution be C1, one could look
for continuous solutions to

L (f; 1)T(x; t ) = AT (x; t ) + Bh(x; u(t))

as de�ned in Theorem 2.2.1 instead of PDE (7.3). The major disadvantage of this solution
is rather that T1 is not easily computable since it depends on the values ofu on (�1 ; t].
Nevertheless, it may still be useful. For example, that is the solution chosen in [PPO08] for the
speci�c application of a permanent synchronous motor, where it is proved to be injective.

Unlike T1 , T0 depends only on the values of the inputu on [0; t]. Therefore, it is theoretically
computable online. However, for each couple(x; t ), one would need to integrate backwards the
dynamics (7.1) until time 0, which is quite heavy. If the input u is known in advance (for instance
u(t) = t) it can also be computed o�ine. We will see in Section 7.2 on practical examples how
we can �nd a solution to PDE (7.3) in practice, without relying on the expression T0.

We conclude that a C1 time-varying transformation into a Hurwitz form always exists, but
the core of the problem is to ensure its injectivity.

7.1.1 Injectivity with strong di�erential observability

Assumptions

There exists a subsetS of Rdx such that :

1. For any u in U, any x in S and any time t in [0; + 1 ), X (x; t ; s; u) is in S for all s in
[0; + 1 ).

2. The quantity

M f = sup
x 2 S
� 0 2 U

�
�
�
�
@f
@x

(x; � 0)
�
�
�
�

is �nite.

3. There exist dy integers (m1; : : : ; mdy ) such that the functions

H i (x; � m ) =
�
�hi (x; � m ); L �f

�hi (x; � m ); : : : ; L m i � 1
�f

�hi (x; � m )
�

(7.5)

de�ned on S � Rdu (m+1) with m = max i mi and 1 � i � dy verify :

- for all u in U, H i (�; um (0))) is Lipschitz on S.

- there exists L H such that the function

H (x; � m ) =
�
H1(x; � m ); : : : ; H i (x; � m ); : : : ; Hdy (x; � m )

�
(7.6)

veri�es for any (x1; x2) in S2 and any � m in Um

jx1 � x2j � L H jH (x1; � m ) � H (x2; � m )j

namely H is Lipschitz-injective on S, uniformly with respect to � m in Um .

4. For all 1 � i � dy , there exists L i such that for all (x1; x2) in S2 and for all � m in Um ,

jL m i
�f

�hi (x1; � m ) � L m i
�f

�hi (x2; � m )j � L i jx1 � x2j

namely L m i
�f

�hi (�; � m ) is Lipschitz on S, uniformly with respect to � m in Um .
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We have the following result.

Theorem 7.1.1.

Suppose Assumptions 1-2-3-4 are satis�ed. Consider Hurwitz matricesA i in Rm i � m i , with mi

de�ned in Assumption 3, and vectors B i in Rm i such that the pairs (A i ; B i ) are controllable.
There exists a strictly positive real number k such that for all k � k, for all input u in U,
there exists tk;u such that any C1 solution T to PDE (7.3) on S � [0; + 1 ) with

- d� =
P dy

i =1 mi

- A in Rd� � d� and B in Rd� � dy de�ned by

A =

0

B
B
B
B
B
B
B
@

kA1
. . .

kA i
. . .

kAdy

1

C
C
C
C
C
C
C
A

B =

0

B
B
B
B
B
B
B
@

B1
. . .

B i
. . .

Bdy

1

C
C
C
C
C
C
C
A

- T(�; 0) Lipschitz on S

is such that T(�; t) is injective on S for all t � tk;u , uniformly in time and in space. More
precisely, there exists a constantL k such that for any (x1; x2) in S2, any u in U and any time
t � tk;u

jx1 � x2j � L k jT(x1; t) � T(x2; t)j :

Besides, for anyt � tk;u , T(�; t) is an injective immersion onS.

Note that the additional assumption "T(�; 0) Lipschitz on S" is not very restrictive because
the solution T can usually be chosen arbitrarily at initial time 0 (see examples in Section 7.2).
In particular, the elementary solution T0 found in Lemma 1 is zero at time0 and thus clearly
veri�es this assumption.

Proof : Given the form of the matrices A and B , we have

T(x; t ) =
�
T1(x; t ); : : : ; Ti (x; t ); : : : ; Tdy (x; t )

�
(7.7)

with
@Ti
@x

(x; t )f (x; u (t)) +
@Ti
@t

(x; t ) = kA i Ti (x; t ) + B i hi (x; u (t)) : (7.8)

Take u in U, i in f 1; : : : ; dy g, x in S and t in [0; + 1 ). According to PDE (7.8), Ti satis�es for all s in
[0; + 1 ),

d
ds

Ti (X (x; t ; s; u); s) = kA i Ti (X (x; t ; s; u); s) + B i Yi (x; t ; s; u) :

Integrating between t and s, it follows that

Ti (X (x; t ; s; u); s) = ekA i ( s� t ) Ti (X (x; t ; t ; u); t )
| {z }

T i ( x;t )

+

Z s

t

ekA i ( s� � ) B i Yi (x; t ; � ; u)d�

and thus,

Ti (x; t ) = ekA i ( t � s) Ti (X (x; t ; s; u); s) +

Z t

s

ekA i ( t � � ) BYi (x; t ; � ; u)d� :

applying this inequality at s = 0 , we get

Ti (x; t ) = ekA i t Ti (X (x; t ; 0; u); 0) + T 0
i (x; t )

where T 0
i is such that T 0 de�ned in (7.4) is

T 0(x; t ) =
�
T 0

1 (x; t ); : : : ; T 0
i (x; t ); : : : ; T 0

dy (x; t )
�

:
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But after m i successive integration by parts in (7.4), we get,

T 0
i (x; t ) = � A � m i

i Ci K i H i (x; um (t))

+ A � m i
i ekA i t Ci K i H i (X (x; t ; 0; u); um (0)) +

1
km i

A � m i
i R i (x; t )

where K i = diag
�

1
k ; : : : ; 1

k m i

�
, Ci is the invertible controllability matrix

Ci = [ Am i � 1
i B i ; : : : ; A i B i ; B i ] ;

H i (x; � m ) is de�ned in (7.5), and R i is the remainder :

R i (x; t ) =

Z t

0

ekA i ( t � � ) B i L m i
�f

hi (X (x; t ; � ; u); um (� )) d�

We �nally deduce that

Ti (x; t ) = A � m i
i Ci K i

�
� H i (x; um (t)) + K � 1

i C � 1
i

�
ekA i t 	 i (X (x; t ; 0; u); 0) +

1
km i

R i (x; t )
��

with 	 i (x; t ) = Am i
i Ti (x; t ) + Ci K i H i (x; um (t)) :

Let us now considerx1 and x2 in S, and t in [0; + 1 ). We are interested in the quantity jT (x1 ; t )� T (x2 ; t )j,
and thus in jTi (x1 ; t ) � Ti (x2 ; t )j.

Thanks to Assumption 2, for any (x1 ; x2) in S, and (t; � ) in [0; + 1 )2 , we have (see for instance [RM82])

jX (x1 ; t ; � ; u) � X (x2 ; t ; � ; u)j � eM f j � � t j jx1 � x2 j : (7.9)

By assumption Ti (�; 0) and H i (�; um (0))) are Lipschitz on S, thus there exists L 	 i such that

j	 i (X (x1 ; t ; 0; u); 0) � 	 i (X (x2 ; t ; 0; u); 0)j � L 	 i eM f t jx1 � x2 j :

Then, A i being Hurwitz, there exists strictly positive numbers ai and 
 i (see [RM82]) such that for all
� in [0; t ] �

�ekA i ( t � s)
�
� � 
 i e� ka i ( t � s) : (7.10)

Using Assumption 4 and inequalities (7.9) and (7.10), we deduce that if k >
M f

ai
,

jR i (x1 ; t ) � R i (x2 ; t )j � L i jB i j
 i

Z t

0

e� ( ka i � M f )( t � � ) d� jx1 � x2 j �
L i jB i j
 i

kai � M f
jx1 � x2 j :

We �nally deduce that

jTi (x1 ; t ) � Ti (x2 ; t )j �j A � m i
i Ci K i j

�
j� H i j � j K � 1

i C � 1
i j

� �
�ekA i t

�
� j�	 i j +

1
km i

j� R i j
��

�
jA � m i

i Ci j
km i

�
j� H i j � km i jC � 1

i j 
 i L 	 i e� ( ka i � M f ) t jx1 � x2 j

�j C � 1
i j 
 i

L i jB i j
kai � M f

jx1 � x2 j

�

where � H i , �	 i and � R i denote the di�erence of the functions H i (�; um (t)) , 	 i (X (�; t ; 0; u); 0) and
R i (�; t ) respectively, evaluated at x1 and x2 . It follows (by norm equivalence), that there exists a
constant c such that

jT (x1 ; t ) � T (x2 ; t )j � c
min i (jA

� m i
i Ci j)

km

h
jH (x1 ; um (t)) � H (x2 ; um (t)) j

�

  
pX

i =1

km i 
 i jC
� 1
i j L 	 i

!

e� ( ka � M f ) t +

� P p
i =1 L i 
 i jC � 1

i jjB i j
�

ka � M f

!

jx1 � x2 j

#

� c
min i (jA

� m i
i Ci j)

km

�
1

L H
� c1 km e� ( ka � M f ) t � c2

1
ka � M f

�
jx1 � x2 j

where m a, c1 , c2 are constants independent from k and t de�ned by

m = max
i

m i ; a = min
i

ai ; c1 =
pX

i =1


 i jC
� 1
i j L 	 i ; c2 =

pX

i =1

L i 
 i jC
� 1
i jjB i j :

We deduce that for

k �
1
a

(M f + 4 c2L H ) ; t �
ln(4km c1L H )

ka � M f
;
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we have

jT (x1 ; t ) � T (x2 ; t )j � c
min i (jA

� m i
i Ci j)

km

1
2L H

jx1 � x2 j

i-e

jx1 � x2 j � 2L H
km

cmin i (jA
� m i
i Ci j)

jT (x1 ; t ) � T (x2 ; t )j (7.11)

and T(�; t ) is injective on S, uniformly in time. We conclude that the result holds with

k =
1
a

(M f + 4 c2L H ) ; L k = 2 L H
km

cmin i (jA
� m i
i Ci j)

; tk;u = max

�
ln(4km c1L H )

ka � M f
; 0

�

Since M f , L H and L i (and thus c2) are independent from u, k and L k are the same for all u in U, while
tk;u depends onu through L 	 i .

Now, take any x in S and t � tk;u . For any v and any h such that x + hv is in S, we have

L k jvj �
jT (x + hv; t ) � T (x; t )j

jhj

and by letting h go to 0, we get

L k jvj �
�
�
�
@T
@x

(x; t )v
�
�
� :

Hence, T (�; t ) is an immersion on S. �

Applying successively Lemma 7.1.1, Theorem 7.1.1 and Theorem 2.2.1, we conclude that
under Assumptions 2, 3, 4, it is possible to write an observer for system (7.1) by choosing any
(A i ; B i ) controllable and k su�ciently large.

Remark 6 It is important to note that k does not dependent onu, thanks to the fact that L H ,
M f and L i given by Assumptions 2-3-4 are the same for all� m in Um . However, the time tk;u

after which the solution becomes injective a priori depends onk and u. This is not a problem
in practice since we only want to be sure that fork su�ciently large, any solution will become
injective after a certain time. If we want this time tk;u to be uniform in u, the Lipschitz constants
of H i (�; um (0))) and of T(�; 0) must be the same for allu in U.

Remark 7 If we choosem = max i mi su�ciently large distinct strictly positive real numbers
� j , and take A i = � diag(� 1; : : : ; � m i ) and B i = (1 ; : : : ; 1)> , then, the PDEs to solve are simply

@T�;i
@x

(x; t )f (x; u(t)) +
@T�;i

@t
(x; t ) = � � T �;i (x; t ) + hi (x; u(t)) (7.12)

for each 1 � i � dy and � in f � 1; : : : ; � m i g. Then, one take

T(x; t ) =
�
T� 1 ;1; : : : ; T� m 1 ;1; : : : ; T� 1 ;dy ; : : : ; T� m dy

;dy

�
:

Remark 8 Under Assumption 3-4, the system could also be transformed into a Lipschitz phase-
variable form of dimensiondy � maxi mi �

P dy
i =1 mi according to Theorem 5.2.1 and a high gain

observer could be used. If we wanted to use onlymi derivatives for each input and obtain an
observer of same dimension

P dy
i =1 mi , eachL m i

f
h would have to satisfy an additional triangularity

assumption. But in any case, the crucial di�erence with the Luenberger observer presented in
this chapter is that the latter does not require the computation of the derivatives of the input
(see examples in Section 7.2).

In order to check the assumptions of Theorem 7.1.1 more easily in practical cases, we have
the following result :
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Lemma 7.1.2.

Assume that S is compact and there exist dy integers (m1; :::; mdy ) such that Um with
m = max i mi is compact and for any � m in Um , H (�; � m ) de�ned in (7.6) is an injective
immersion3 on S. Then, Assumptions 2, 3, 4 are satis�ed.

In other words, since the additional assumption "T(�; 0) Lipschitz on S" made in Theorem
7.1.1 is automatically veri�ed when S is compact, the result of Theorem 7.1.1 holds under the
only assumptions of Lemma 7.1.2 ifS satis�es Assumption 1.

Proof : First, S and Um being compact, Assumptions 2 and 4 are satis�ed. Besides, H i (�; um (0)) is
clearly Lipschitz on S. The only thing to prove is the uniform Lipschitz-injectivity of H , which follows
directly from Lemma A.3.5. �

7.1.2 Injectivity with backward distinguishability ?

In the previous section, we have shown that �nding an injective transformation into an Hurwitz
form was possible under a strong di�erential observability property, namely that the function
made of each output and a certain number of its derivatives was an injective immersion. We
investigate in this section if injectivity is still ensured when we have only a weak di�erential
observability or even only backward-distinguishability as in [AP06, Theorem 3] for autonomous
systems (recalled in Section 5.1.2).

Theorem 7.1.2.

Take u in U. Assume that for this input, System (7.1) is backward-distinguishable in time
tu on S, i-e for any t � tu and any (xa; xb) in S2,

Y (xa; t; s; u) = Y(xb; t; s; u) 8s 2 [t � tu ; t] =) xa = xb :

There exists a setR of zero-Lebesgue measure inCdx +1 such that for any (� 1; : : : ; � dx +1 ) in

 dx +1 nR with 
 = f � 2 C ; < (� ) < 0g, and any t � tu , the function T0 de�ned in (7.4) with

- d� = dy � (dx + 1)

- A in Rd� � d� and B in Rd� � dy de�ned by

A =

0

B
B
B
B
B
B
B
@

~A
. . .

~A
. . .

~A

1

C
C
C
C
C
C
C
A

; B =

0

B
B
B
B
B
B
B
@

~B
. . .

~B
. . .

~B

1

C
C
C
C
C
C
C
A

and

~A =

0

B
@

� 1
. . .

� dx +1

1

C
A ; ~B =

0

B
@

1
...
1

1

C
A :

is such that T0(�; t) is injective on S for t > tu .

Proof : Let us de�ne for � in C, the function T 0
� : S � R+ ! Cdy

T 0
� (x; t ) =

Z t

0

e� � ( t � s) Y (x; t ; s; u) ds : (7.13)

3H (�; � m ) is injective on S and @H
@x (x; � m ) is full-rank for any x in S
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Given the structure of A and B , and with a permutations of the components,

T 0(x; t ) =
�
T 0

� 1 (x; t ); : : : ; T 0
� d x +1

(x; t )
�

:

We need to prove that T 0 is injective for almost all (� 1 ; : : : ; � dx +1 ) in 
 dx +1 (in the sense of the Lebesgue
measure). For that, we de�ne the function

� T (xa ; xb; t; � ) = T 0
� (xa ; t ) � T 0

� (xb; t )

on � � 
 with
� = f (xa ; xb; t ) 2 S 2 � (tu ; + 1 ) : xa 6= xbg :

We are going to use the following lemma whose proof4 can be found in [AP06]:

Lemma 7.1.3. Coron's lemma

Let 
 and � be open sets ofC and R2dx +1 respectively. Let � T : � � 
 ! Cdy be a function which
is holomorphic in � for all x in � and C1 in x for all � in 
 . If for any (x; � ) in � � 
 such that

� T (x; � ) = 0 , there exists i in f 1; : : : ; dy g and k > 0 such that
@k � Ti

@�k
(x; � ) 6= 0 , then the set

R =
[

x 2 �

�
(� 1 ; : : : ; � dx +1 ) 2 
 dx +1 : � T (x; � 1) = : : : = � T (x; � dx +1 ) = 0

	

has zero Lebesgue measure inCdx +1 .

In our case, � T is clearly holomorphic in � and C1 in x. Since for every x in � , � 7! � T (x; � ) is
holomorphic on the connex set C, its zeros are isolated and admit a �nite multiplicity, unless it is
identically zero on C. In the latter case, we have in particular for any ! in R

Z + 1

�1

e� i!� g(� ) d� = 0

with g the function

g(� ) =

�
Y (xa ; t ; t � � ; u) � Y (xb; t ; t � � ; u) ; if � 2 [0; t ]
0 ; otherwise

which is in L 2 . Thus, the Fourier transform of g is identically zero and we deduce that necessarily

Y (xa ; t ; t � � ; u) � Y (xb; t ; t � � ; u) = 0

for almost all � in [0; t ] and thus for all � in [0; t ] by continuity. Since t � tu , it follows from the
backward-distinguishability that xa = xb but this is impossible because (xa ; xb; t ) is in � . We conclude
that � 7! � T (x; � ) is not identically zero on C and the assumptions of the lemma are satis�ed. Thus,
R has zero measure and for all(� 1 ; : : : ; � dx +1 ) in Cdx +1 n R, T 0 is injective on S, by de�nition of R . �

Remark 9 The function T proposed by Theorem 7.1.2 takes complex values. To remain in the
real frame, one should consider the transformation made of its real and imaginary parts, and
instead of implementing for eachi in f 1; : : : ; dyg and each lambda

_̂� �;i = � � �̂ � + yi

in C, one should implement

_̂� �;i =

 
�< (� ) �= (� )
= (� ) �< (� )

!

�̂ �;i +

 
yi

0

!

in R. Thus, the dimension of the observer is2 � dy � (dx + 1) in terms of real variables.

4More precisely, the result proved in [AP06] is for � open set of R2dx instead of R2dx +1 . But the proof turns
out to be still valid with R2dx +1 because the only constraint is that the dimension of � be strictly less than
2(d� + 1) .
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Remark 10 It should be noted that Theorem 7.1.2 gives for eachu in U a set R u of zero
measure in which not to choose the� i , but unfortunately, there is no guarantee that

[

u2U

R u is

also of zero-Lebesgue measure.

Remark 11 Unlike Theorem 7.1.1 which proved the injectivity of any solution T to PDE (7.3),
Theorem 7.1.2 proves only the injectivity of T0. Note though that as shown at the beginning of
the proof of Theorem 7.1.1, any solutionT writes

T(x; t ) = eAt T(X (x; t ; 0;u); 0) + T0(x; t )

with A Hurwitz, and thus tends to the injective function T0. We can thus expectT to become
injective after a certain time. In fact, a way of ensuring the injectivity is to take, if possible, a
solution T with the boundary condition

T(x; 0) = 0 8x 2 S ;

because in that case, necessarily,T = T0.

We conclude from this section that there always exists a time-varying solution to PDE (7.3)
which is injective under appropriate observability assumptions. It follows that the only remaining
problem to address is the computation of such a solution without relying on the expression (7.4).
This is done in the following section through practical examples.

7.2 Examples

7.2.1 Permanent Magnet Synchronous Motor (PMSM)

A �rst practical example which falls directly into the scope of this paper is the Luenberger
observer presented in [HMP12] for a PMSM. We reproduce here the minimal information needed
for comprehension, and we add the theoretical arguments which are not given in [HMP12]. The
system can be modeled by

_x = u � Ri ; y = jx � Li j2 � � 2 = 0 (7.14)

where x is in R2, the voltagesu and currents i are inputs in R2, the resistanceR, impedanceL
and �ux � are known scalar parameters and the measurementy is constantly zero. Heredy = 1 ,
so we can drop the subscripti . Since the dynamics are linear and the measurement quadratic
in x, one can look forT� of the form :

T� (x; t ) = jxj2 + a� (t)> x + b� (t)

where the dynamics ofa� and b� are to be chosen so thatT� is solution of PDE (7.12). We can
check that the dynamics

_a� = � � a � � 2(u � Ri ) + 2 Li
_b� = � � b � � a>

� (u � Ri ) + L 2ji j2 � � 2 (7.15)

make T� follow the dynamics
_� � = � �� � + y = � �� �

and a trivial solution is thus � � = 0 . Let us now check whether the assumptions of Theorem

7.1.1 are veri�ed. We suppose that i ,
_z{
i ,

•z{
i and u, _u are bounded, so that the statex also

remains bounded (sincey = 0 ). Choosing m = 3 , we have

H (x; u; i; _u;
_z{
i ;

•z{
i ) =

0

B
@

jx � Li j2 � � 2

2� > (x � Li )
2 _� > (x � Li ) + 2 � > �

1

C
A
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where we denote� = u � Ri + L
_z{
i . Thus, if we suppose besides that there existsc > 0 such

that the inputs verify j det(�; _� )j � c, every assumption of Lemma 7.1.2 is satis�ed. In fact, the
inputs happen to be such that5 det(� ; _� ) = w3� 2, where ! is the rotor angular velocity. We
conclude that all the conditions are veri�ed when the inputs and their derivatives are bounded
and the rotor angular velocity is away from zero.

Applying Theorem 7.1.1, it follows that for any three distinct and su�ciently large strictly
positive � j , the function

T(x; t ) = ( T� 1 (x; t ); T� 2 (x; t ); T� 3 (x; t ))

becomes injective after a certain time (once the �lters (7.15) have su�ciently converged). Imple-
menting (7.15) for each� j , one can obtain after a certain time an estimatex̂ of x(t) for instance
by :

x̂(t) = �

 
a� 1 (t)> � a� 3 (t)>

a� 2 (t)> � a� 3 (t)>

! � 1  
b� 1 (t) � b� 3 (t)
b� 2 (t) � b� 3 (t)

!

:

Note that for this system, a classical gradient observer of smaller dimension exists ([LHN+ 10,
MPH12]). The Luenberger observer proposed here o�ers the advantage of depending only on
�ltered versions of u and i , which can be useful in presence of signi�cant noise. On the other
hand, no high gain design would have been possible for this system without computing the
derivatives of i , which is not desirable in practice.

7.2.2 Non-holomic vehicle

Another appropriate example is the celebrated non-holomic vehicle with dynamics
8
><

>:

_x1 = u1 cos(x3)
_x2 = u1 sin(x3)
_x3 = u1u2

; y = ( x1; x2) (7.16)

where the inputs u1 and u2 correspond to the norm of vehicle velocity and the orientation of
the front steering wheels respectively. A wide literature already exists on this system, and our
goal here is only to show on another example how to solve PDE (7.12) for each component of
the measurement. The dynamics and measurements being linear inx1, x2, cos(x3), sin(x3),
it is quite natural to look for a function T linear in those quantities. Besides,x1 and x2 are
independent so we look forT�; 1 and T�; 2, associated to measurementx1 and x2 respectively, of
the form :

T�; 1(x; t ) = a� (t) x1 + b� (t) cos(x3) + c� (t) sin(x3)

T�; 2(x; t ) = ~a� (t) x2 + ~b� (t) cos(x3) + ~c� (t) sin(x3) :

By straightforward computations, we conclude that to satisfy PDE (7.12), we can take :

~a� = a� =
1
�

; ~b� = � c� ; ~c� = d�

_b� = � � b � � u1u2 c� �
1
�

u1

_c� = � � c � + u1u2 b� : (7.17)

Then, T�; 1 and T�; 2 are solutions of

_� �; 1 = � � � �; 1 + x1

_� �; 2 = � � � �; 2 + x2 (7.18)

5 � = � !

�
� sin �
cos�

�
, with � the motor angle, and ! = _� . See Chapter 12 for more information on this

system.
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respectively. Besides, computing the successive derivatives of the measurements(x1; x2), we can
see thatH1 and H2 are injective immersions at the orderm if at least u1 or one of its �rst m � 2
derivatives is nonzero. Therefore, if the state, the inputsu1, u2 and their derivatives remain in
compact sets, and if there exist an integerm � 2 and a real number c > 0 such that for all t
and all considered input u,

u1(t)2 + _u1(t)2 + ::: + u(m� 2)
1 (t)2 � c ;

then all the assumptions in Lemma 7.1.2 are veri�ed withm1 = m2 = m. Therefore, by choosing
m strictly positive distinct real numbers � j , the function

T(x; t ) = ( T� 1 ;1(x; t ); :::; T� m ;1(x; t ); T� 1 ;2(x; t ); :::; T� m ;2(x; t ))

becomes injective after a certain time. Implementing (7.17)� (7.18) for each� j , we thus get an
observer of dimension4m.

7.2.3 A time-varying transformation for an autonomous system ?

It was observed in [And05, Section 8.4] that it is sometimes useful to allow the transformation
to be time-varying even for an autonomous system. Only results concerning stationary transfor-
mations were available at the time, so that the framework of dynamic extensions had to be used.
This is no longer necessary thanks to Theorems 7.1.2 and 7.1.1. Indeed, consider for instance
the system (

_x1 = x3
2

_x2 = � x1
; y = x1 (7.19)

which admits bounded trajectories, the quantity x2
1 + x4

2 being constant along the trajectories.
This system is weakly di�erentially observable of order 2 on R2 since x 7! H 2(x) = ( x1; x3

2)
is injective on R2. It is thus a fortiori instantaneously backward-distinguishable and Theorem
5.1.3 holds. Applying Luenberger's methodology to this system would thus bring us to look for
a stationary transformation T� into

_� � = � � � � + x1 ; (7.20)

for which a possible solution is

T� (x) =
Z 0

�1
e� � Y(x; � )d� :

Although the injectivity of T = ( T� 1 ; T� 2 ; T� 3 ) is satis�ed for a generic choice of(� 1; � 2; � 3) in
f � 2 C : < (� ) > 0g3 according to Theorem 5.1.3, it is di�cult to compute numerically and as
far as we are concerned, we are not able to �nd an explicit expression.

Instead, it may be easier to look for a time-varying transformation and apply either Theorem
7.1.1 or 7.1.2. Given the structure of the dynamics, one can try to look for a transformation of
the form

T� (x; t ) = a� (t)x3
2 + b� (t)x2

2 + c� (t)x2 + d� (t)x1 + e� (t) : (7.21)

It veri�es the dynamics (7.20) if for instance

_a� = � � a � + d�

_b� = � � b � + 3a� y

_c� = � � c � + 2b� y
_d� = � � d � + 1

_e� = � � e � + c� y
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Using Remark 11 and applying Theorem 7.1.2, we know that, by initializing the �lters a� , b� ,
c� , d� and e� at 0 at time 0, x 7! (T� 1 (x; t ); T� 2 (x; t ); T� 3 (x; t )) is injective on R2 for t > 0 and
for a generic choice of(� 1; � 2; � 3) in f � 2 C : < (� ) > 0g3.

To reduce the dimension of the �lters, we can taked� (t) = 1
� and a� (t) = 1

� 2 . In that case
Theorem 7.1.2 cannot be properly applied becauseT� is not T0

� . However, we have found at
least in simulations that injectivity is preserved after a certain time as shown in Figure 7.1.

Figure 7.1: Nonlinear Luenberger observer for System (7.19) : dynamics (7.20) and transforma-
tions (7.21) (with d� (t) = 1

� and a� (t) = 1
� 2 ) for � 1 = 5 , � 2 = 6 , � 3 = 7 . The transformation is

inverted by searching numerically the common roots of two polynomials of order 3.

Note that since the system is strongly di�erentially observable of order 4 onS = f (x1; x2) 2
R2 : x2

1 + x2
2 6= 0g, i-e H 4 is an injective immersion on S, Theorem 7.1.1 also says that, for

any compact subsetC of S, by choosing 4 su�ciently large real strictly positive numbers � i ,
and for any initial conditions for the �lters, x 7! (T� 1 (x; t ); T� 2 (x; t ); T� 3 (x; t ); T� 4 (x; t )) becomes
injective on C after some time.

7.3 Stationary transformation ?

We have just seen that a time-varying transformation could be used for an autonomous system.
We investigate here the converse, i-e if a stationary transformation can be used for time-varying
systems. Consider a control-a�ne single-output system

_x = f (x) + g(x)u ; y = h(x) 2 R (7.22)

In the high gain framework, we saw with Theorem (5.2.2) that if System 7.22 is uniformly
instantaneously observable and its drift dynamics are di�erentially observable of orderdx , it
is possible to keep the stationary transformation associated to the drift autonomous system,
because the additional terms resulting from the presence of inputs are triangular and do not
prevent the convergence of the observer. It turns out that, inspired from [AP06, Theorem 5],
an equivalent result exists in the Luenberger framework.

Theorem 7.3.1.

Let � 1; : : : ; � dx be any distinct strictly positive real numbers, A the Hurwitz matrix
diag(� � 1; : : : ; � � dx ) in Rdx � dx , B the vector (1; :::; 1)> in Rdx and S an open subset ofRdx .
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Assume that System (7.22) is uniformly instantaneously observable6 on S and its drift system
is strongly di�erentially observable 7 of order dx on S. Then, for any positive real number u,
any bounded open subsetsX , X 0 and X 00of Rdx , and any C1 function � : Rdx ! R such
that

- cl (X ) � X 0 � cl (X 0) � X 00� cl (X 00) � S ,

- for any u in U, for all t in [0; + 1 ) and for all x0 in X0, ju(t)j � u and X (x0; t; u) is in
X ,

- � (x) =

(
1 ; if x 2 cl (X 0)
0 ; if x =2 X 00

there exists a strictly positive number k such that for any k > k :

- the function T : Rdx ! Rdx de�ned by

T(x) =
Z 0

�1
e� kA� B h( �X (x; � )) d�

where �X (x; � ) denotes the value at time� of the solution initialized at x at time 0 of
the modi�ed autonomous drift system

_x = � (x)f (x) ;

is a di�eomorphism on X 0 and is solution to the PDE associated to the drift dynamics

@T
@x

(x)f (x) = k A T (x) + B h(x) 8x 2 X 0 : (7.23)

- there exists a Lipschitz function ' de�ned on Rdx verifying

' (T(x)) =
@T
@x

(x)g(x) 8x 2 X 0 ; (7.24)

and such that, for any function T : Rdx ! Rdx verifying

T (T(x)) = x 8x 2 X 0 ;

the system
_̂� = k A �̂ + B y + ' (�̂ ) u ; x̂ = T (�̂ ) (7.25)

is an observer for System 7.22 initialized inX0.

Remark 12 The function ' is de�ned on the open setT(X 0) by (7.24). If the trajectories of
the observer state �̂ remain in this set, there is no need to extend its domain of de�nition to
the whole Rdx . Otherwise, the only constraint is that the global Lipschitz constant a of the
extension be such thatk min j� i j > au, to ensure the convergence of the observer. In the proof
below, it is proved that such extensions exist fork su�ciently large (this is not trivial because
a could a priori depend onk).

Otherwise, instead of extending' outside T(X 0), one could take

' (� ) =
@T
@x

(T (� ))g(T (� ))

6See De�nition 2.2.1.
7See De�nition 5.2.2.
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but the way T is de�ned outside T(X ) must be such that :

9� > 0 : 8k � k ; 8�̂ 2 Rdx ; 8x 2 X ; jT(x) � T(T (�̂ )) j � � jT(x) � �̂ j :

The constraint here is that � must be independent fromk. For instance, the function

T (� ) = Argminx2X 0jT(x) � � j

clearly works since
jT(x) � T(T (�̂ )) j � j T(x) � �̂ j + j�̂ � T(T (�̂ )) j

| {z }
�j �̂ � T (x)j

:

Another more regular candidate is the McShane extension

T (� ) = min
x2X 0

x + jT(x) � � j

which also veri�es the requirement.

Proof : According to [And14, Proposition 3.3], there exists k0 such that for all k � k0 , T is C1 and
veri�es PDE (7.23). Now let us prove that it is injective on cl (X 0) for k su�ciently large 8 . The drift
system being strongly di�erentially observable of order dx , the function

H dx (x) = ( h(x); L f h(x); : : : ; L dx
f (x))

is an injective immersion on cl (X 0) and by Lemma A.3.5, there exists L H > 0 such that for all (xa ; xb)2

in cl (X 0)2 ,
jH dx (xa ) � H dx (xb)j � L H jxa � xbj :

Besides, since�f = f on cl (X 0), after several integrations by parts, we obtain for all x in cl (X 0)

T (x) = A � dx C
�

� K H dx (x) +
1

kdx
R(x)

�
(7.26)

where K = diag
�

1
k ; :::; 1

k d x

�
, C is the invertible controllability matrix

C = [ Adx � 1B ::: AB B ] ;

and R the remainder

R(x) = C � 1

Z 0

�1

e� kA� B L dx
f ( �X (x; � )) d� :

This latter integral makes sense on cl (X 0) because :

-A being diagonal and denoting a = min i j� i j > 0, for all � 2 (�1 ; 0],
�
�e� kA�

�
� � eka� :

-By de�nition of the function � , for all x in cl (X 0), �X (x; � ) is in cl (X 0) for all � , i-e � 7!
L dx

f ( �X (x; � )) is bounded.

So now taking (xa ; xb) in cl (X 0)2 , and considering the di�erence jT (xa ) � T (xb)j, from (7.26), we obtain

jT (xa ) � T (xb)j �
jA � dx Cj

kdx
(jH dx (xa ) � H dx (xb)j � j R(xa ) � R(xb)j) ;

and if R is Lipschitz with Lipschitz constant L R , we get

jT (xa ) � T (xb)j �
jA � dx Cj

kdx
(L H � L R )jxa � xbj :

In order to deduce the injectivity of T , we also needL R < L H and we are going to prove that this is
true for k su�ciently large. To compute L R , let us �nd a bound of

�
� @R

@x (x)
�
� . By de�ning

c0 = max
x 2 cl ( X 0)

�
�
�
�
�
B

@Ldx
f h

@x
(x)

�
�
�
�
�

; � 1 = max
x 2 cl ( X 0)

�
�
�
@f
@x

(x)
�
�
� ;

8This proof is similar to that of [AP06, Theorem 4].
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we have for all � in (�1 ; 0] and all x in cl (X 0),

�
�
�
�
�
B

@Ldx
f h

@x
( �X (x; � ))

�
�
�
�
�

� c0 and9

�
�
�
�
@�X
@x

(x; � )

�
�
�
� � e� � 1 � : (7.27)

We conclude that for k > � 1
a , R is C1 and there exists a positive constant c1 such that for all x in cl (X 0),

�
�
�
@R
@x

(x)
�
�
� � j C � 1 j

Z 0

�1

�
�e� kA�

�
�

�
�
�
�
�
B

@Ldx
f h

@x
( �X (x; � ))

�
�
�
�
�

�
�
�
�
@�X
@x

(x; � )

�
�
�
� d� �

c1

ka � � 1
:

We �nally obtain
jT (xa ) � T (xb)j � L T jxa � xbj 8(xa ; xb) 2 cl (X 0)2 (7.28)

where

L T =
jA � dx Cj

kdx

�
L H �

c1

ka � � 1

�
;

and T is injective on cl (X 0) if k � k1 with

k1 = max
n

k0 ;
c1 + � 1L H

aL H

o
:

Moreover, taking x in X 0, any v in Rm and h su�ciently small for x + hv to be in X 0, it follows from
(7.28) that �

�
�
�
T(x + hv) � T (x)

h

�
�
�
� � L T jvj ;

and making h tend to zero, we get �
�
�
@T
@x

(x)v
�
�
� � L T jvj

and T is full-rank on X 0. So T is a di�eomorphism on X 0 for k � k1 .

Now, let us show that System (7.25) is an observer for System (7.22). Suppose for the time being that
we have shown that there exists a strictly positive number a such that for any k � k1 , there exists a
function ' such that (7.24) holds and

j' ( �̂ ) � ' (� )j � a j�̂ � � j 8(�̂; � ) 2 (Rdx )2 : (7.29)

Take u in U, x0 in X0 �̂ 0 in Rdx , and consider the solution X (x0 ; t ; u) of System (7.22) and any corre-
sponding solution �̂( �̂ 0 ; t ; u; yx 0 ) of System (7.25). Since X (x0 ; t ; u) remains in X by assumption, the
error e(t) = �̂( �̂ 0 ; t ; u; yx 0 ) � T (X (x0 ; t ; u)) veri�es

_e = kA e +
�
' ( �̂( �̂ 0 ; t ; u; yx 0 )) � ' (T (X (x0 ; t ; u))

�
u

and thus
_z {

e> e � � 2(ka � au) e> e :

De�ning k2 = max f k1 ; au
a g, we conclude that e asymptotically converges to 0 if k � k2 . Note that

for this conclusion to hold, it is crucial to have a independent from k. Now, consider an open set ~X
such that cl (X ) � ~X � cl ( ~X ) � X 0: Since T(X (x0 ; t ; u)) remains in T (X ) and cl (T (X )) = T(cl (X ))
is contained in the open set T ( ~X ), there exists a time t such that for all t � t , �̂( �̂ 0 ; t ; u; yx 0 ) is in
T ( ~X ). T = T � 1 is C1 on the compact set cl (T ( ~X )) and thus Lipschitz on that set. It follows that
X̂ (( x0 ; �̂ 0); t ; u) = T (�̂( �̂ 0 ; t ; u; yx 0 )) converges toX (x0 ; t ; u).

It remains to show the existence of the functions ' . Since System (7.22) is uniformly instantaneously
observable and its drift system is strongly di�erentially observable of order dx on S, we know since
[GB81] or with Theorem 6.3.1, that for all i in f 1; : : : ; dx g, there exists a Lipschitz function gi such that

L gL i � 1
f h(x) = gi (h(x); : : : ; L i � 1

f (x)) 8x 2 cl (X ) : (7.30)

Consider the function

' (x) =
@T
@x

(x)g(x)

= A � dx C

0

B
B
@� K

@H dx

@x
(x)g(x)

| {z }
' H ( x )

+
1

kdx

@R
@x

(x)g(x)
| {z }

' R ( x )

1

C
C
A :

9Because (� ) = @�X
@x (x; � ) follows the ODE d 

d� (� ) = @f
@x(

�X (x; � ))  (� ), and  (0) = I .
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Let us �rst study ' H . Notice that the i th-component of ' H is ' H;i =
1
k i

L gL i � 1
f h(x) and according to

(7.30), there exists L i such that

j' H;i (x̂) � ' H;i (x)j � L i

iX

j =1

�
�
�

1
k j

�
L j � 1

f (x̂) � L j � 1
f (x)

� �
�
� 8(x; x̂) 2 cl (X )2

and thus L such that

j' H (x̂) � ' H (x)j � L jK H dx (x̂) � K H dx (x)j 8(x; x̂) 2 cl (X )2 :

But using (7.26), we get

jK H dx (x̂) � K H dx (x)j � j Adx C � 1 jj T (x̂) � T (x)j +
1

kdx
jR(x̂) � R(x)j 8(x; x̂) 2 cl (X )2 :

We have seen that
jR(x̂) � R(x)j �

c1

ka � � 1
jx̂ � xj 8(x; x̂) 2 cl (X )2

and according to (7.28),

1
kdx

jR(x̂) � R(x)j �
c1

ka � � 1

L H � c1
ka � � 1

jAdx C � 1 jj T (x̂) � T (x)j 8(x; x̂) 2 cl (X )2 :

We �nally obtain, for any (x; x̂) in cl (X )2 and for any k � k1 ,

j' H (x̂) � ' H (x)j � L jAdx C � 1 j

�
1 +

c1
ka � � 1

L H � c1
ka � � 1

�
jT (x̂) � T (x)j

� L jAdx C � 1 j

�
1 +

c1

L H (k1a � � 1)

�
jT (x̂) � T (x)j :

Let us now study the term ' R (x). For (x; x̂) in cl (X )2 ,

' R (x̂) � ' R (x) =
1

kdx
C � 1

Z 0

�1

e� kA� B (D 1(x; x̂; � ) + D 2(x; x̂; � ) + D 3(x; x̂; � )) d�

where

D 1(x; x̂; � ) =

 
@Ldx

f h

@x
( �X (x; � )) �

@Ldx
f h

@x
( �X (x̂; � ))

!
@�X
@x

(x̂; � )g(x̂)

D 2(x; x̂; � ) =
@Ldx

f h

@x
( �X (x; � ))

�
@�X
@x

(x̂; � ) �
@�X
@x

(x; � )

�
g(x̂)

D 3(x; x̂; � ) =
@Ldx

f h

@x
( �X (x; � ))

@�X
@x

(x; � ) ( g(x̂) � g(x))

Assuming that L dx
f h is C2 and g is C1 , it follows from (7.27) and the fact that �X (x; � ) is in the compact

set cl (X 0) for all � in (�1 ; 0], that for all (x; x̂) in cl (X )2 and for all � in (�1 ; 0],

jD 1(x; x̂; � )j � c2e� 2� 1 � jx � x̂ j

jD 3(x; x̂; � )j � c3e� � 1 � jx � x̂ j :

As for D 2 , posing ' (� ) = @�X
@x (x̂; � ) � @�X

@x (x; � ), and di�erentiating ' with respect to time, we get

' (0) = 0 ; ' 0(� ) =
@f
@x

( �X (x̂; � )) ' (� ) +
� @f

@x
( �X (x̂; � )) �

@f
@x

( �X (x; � ))
� @�X

@x
(x; � ) : (7.31)

Since for all � in (�1 ; 0] and for all (x; x̂) in cl (X )2 ,

�
�
�
@f
@x

( �X (x̂; � ))
�
�
� � � 1 ;

�
�
�
�
@�X
@x

(x; � )

�
�
�
� � e� � 1 �

and �
�
�
@f
@x

( �X (x̂; � )) �
@f
@x

( �X (x; � ))
�
�
� � c4e� � 1 � jx � x̂ j ;

we obtain by solving (7.31) in negative time and taking the norm

jD 2(x̂; x; � )j �
�
c5e� � 1 � + c6e� 2� 1 �

�
jx � x̂ j � c7 e� 2� 1 � jx � x̂ j
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for all � in (�1 ; 0] and all (x; x̂) in cl (X )2 . Therefore, for all k � k1 ,

j' R (x̂) � ' R (x)j �
1

kdx

c8

ka � � 1
jx � x̂ j �

c9
ka � � 1

L H � c1
ka � � 1

jT (x) � T (x̂)j �
c9

L H (k1a � � 1)
jT (x) � T (x̂)j :

Finally, there exists a constant a such that for all k � k1 , and for all (x; x̂) in cl (X )2 ,

j' (x̂) � ' (x)j � a jT (x̂) � T (x)j : (7.32)

Consider now the function
' (� ) = ' (T � 1(� ))

de�ned on T(X 0). According to (7.32), ' is Lipschitz on T(X 0), and with Kirszbraun-Valentine Theorem
[Kir34, Val45], it admits a Lipschitz extension on Rdx with same Lipschitz constant a, i-e such that
(7.24) and (7.29) hold. This concludes the proof. �

7.4 Conclusion

We have shown how a Luenberger methodology can be applied to nonlinear controlled systems.
It is based on the resolution of a PDE, the solutions of which exist, transform the system into
a linear asymptotically stable one, and become injective after a certain time. This injectivity is
ensured if

- either the function made of the output and a certain number of its derivatives is Lipschitz-
injective : this is veri�ed when the system is strongly di�erentially observable and the
trajectories are bounded.

- or the system is backward-distinguishable (uniformly in time), but in this case, injectivity
is ensured for "almost all" choice of a diagonal complex matrixA (of su�ciently large
dimension) in the sense of the Lebesgue measure inC.

This methodology relies on �nding a time-varying solution to a PDE, which always exists but
may be di�cult to compute. We have shown on practical examples how this can be done by a
priori guessing its "structure".

Also, it is interesting to remember that as in the high gain paradigm, for uniformly instanta-
neously observable control-a�ne systems, we may use the stationary transformation associated
to the autonomous drift system when it is strongly di�erentially observable of order dx . The
result does not stand for higher orders of di�erential observability, since it relies on the existence
of Lipschitz functions gi such that gi (H i (x)) = L gL i � 1

f (x), and we have seen in Chapter 6 that
the Lipschitzness is lost when the drift system is di�erentially observable of higher order.
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Chapter 8

Motivation and problem statement

Chapitre 8 � Motivation et énoncé du problème. Les Parties I-II montrent que l'on peut
sous certaines conditions construire un observateur pour un système non linéaire en transfor-
mant sa dynamique en une forme favorable pour laquelle un observateur global est connu. Il
s'ensuit que la dynamique du système et celle de l'observateur ne sont pas exprimées dans les
mêmes coordonnées et évoluent même souvent dans des espaces de dimension di�érente. A�n
d'obtenir une estimée de l'état du système, il est alors nécessaire d'inverser la transformation.
Or, cette opération peut se révéler compliquée en pratique, notamment lorsqu'une expression
explicite de l'inverse n'est pas connue, car elle repose alors sur la résolution d'un problème de
minimisation couteux en calculs. C'est pour cette raison que nous avons développé une méthode
permettant de ramener la dynamique de l'observateur dans les coordonnées initiales du système
a�n d'éviter l'inversion de la transformation. Dans ce chapitre, nous motivons cette démarche à
l'aide d'exemples et donnons une première condition su�sante pour résoudre ce problème dans
le cas où la transformation est stationnaire. Les chapitres suivants 9-10-11 seront consacrés
à montrer comment remplir cette condition. De plus, la possible extension de ces résultats au
cas où la transformation est non-stationnaire sera étudiée dans le chapitre 11, principalement à
l'aide d'exemples tirés d'applications.
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Parts I-II have shown that it is possible, under certain conditions, to build an observer for
a nonlinear system by transforming its dynamics into a favorable form for which a global observer
is known. It follows that the dynamics of the system and of the observer are not expressed in
the same coordinates and often even evolve in spaces of di�erent dimensions. In order to obtain
an estimate for the system state or even sometimes write the observer dynamics, it is necessary
to invert the transformation. But this step can be di�cult in practice, mostly when an explicit
expression for the inverse is not available. Indeed, in this case, inversion usually relies on the
resolution of a minimization problem with a heavy computation cost. That is why we have
developed a methodology enabling to pull the dynamics of the observer back into the system
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coordinates in order to avoid the inversion of the transformation, namely design an observer
in the given coordinates1. In this chapter, we motivate and introduce this problem through
examples and give a �rst su�cient condition to solve this problem in the case of a stationary
transformation. The remaining chapters 9-10-11 will show how to satisfy this condition. Besides,
the possible extension of those results to the case where the transformation is time-varying will
be studied in Chapter 11 mainly through an example coming from an application. Note that we
have submitted most of the results presented in this part in [BPA15] and [BPAew].

8.1 Example

To motivate the problem we shall tackle in this part of the thesis, we consider a harmonic
oscillator with unknown frequency with dynamics

8
><

>:

_x1 = x2

_x2 = � x1x3

_x3 = 0
; y = x1 (8.1)

with state x = ( x1; x2; x3) in R2 � R> 0 and measurementy. We are interested in estimating
the state x of this system from the only knowledge of the functiont 7! y(t) = X 1(x; t ). This
problem has been widely studied in the literature ([HOD99, OPCTL02, Hou05, Hou12] among
many others) and our goal is not to produce yet another observer for this system but rather to
illustrate our methodology and the problems encountered throughout its implementation. This
example is indeed su�ciently simple in terms of computations, but su�ciently rich in terms of
underlying observability issues to be interesting throughout this part of the thesis.

For any solution with initial condition x1 = x2 = 0 , y does not give any information onx3.
We thus restrict our attention to solutions evolving in X of the type

X =
�

x 2 R3 : x2
1 + x2

2 2
�

1
r

; r
�

; x3 2]0; r [
�

; (8.2)

where r is some arbitrary strictly positive real number. This set is forward-invariant by (8.1).
Note also that System (8.1) is strongly di�erentially observable of order 4 on

S =
�
R2 n f (0; 0)g

�
� R+

containing X , namely H 4 de�ned by

H 4(x) =

0

B
B
B
@

h(x)
L f h(x)
L 2

f h(x)
L 3

f h(x)

1

C
C
C
A

=

0

B
B
B
@

x1

x2

� x1x3

� x2x3

1

C
C
C
A

is an injective immersion onS.

8.1.1 High-gain design

According to Theorem 5.2.1 and Remark 4, we know that� � de�ned by

� � (x) = H 4(x) = ( x1; x2; � x1x3; � x2x3) (8.3)

transforms System 8.1 into a phase-variable form of dimension 4 for which a high-gain observer
can be designed:

_̂� = F (�̂; y ) =

0

B
B
B
@

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

1

C
C
C
A

�̂ +

0

B
B
B
@

0
0
0

� 4(�̂ )

1

C
C
C
A

+

0

B
B
B
@

Lk 1

L 2k2

L 3k3

L 4k4

1

C
C
C
A

[y � �̂ 1] ; (8.4)

1See De�nition 2.1.1
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where � 4 is de�ned by2

� 4(� ) = satr 3 (L 4
f h(� (� )))

with � any locally Lipschitz function de�ned on R4 verifying

� (H 4(x)) = x 8x 2 X ;

r 3 may be replaced by any bound ofL 4
f h on X , and L is a su�ciently large strictly positive

number depending on the Lipschitz constant of� 4, namely on the choice of� and r . Wanting
to highlight the role of the computation of the left-inverse � , we get in fact a �raw� observer
with dynamics

_̂� = ' (�̂; x̂; y) =

0

B
B
B
@

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

1

C
C
C
A

�̂ +

0

B
B
B
@

0
0
0

satr 3 (x̂1x̂2
3)

1

C
C
C
A

+

0

B
B
B
@

`k1

`2k2

`3k3

`4k4

1

C
C
C
A

[y � �̂ 1] ; x̂ = � (�̂ ) : (8.5)

We deduce that the computation of the function � (whose existence is guaranteed by the theorem)
is crucial in the implementation of this observer, of course to deducêx from �̂ but also to de�ne
the dynamics of the observer itself.

Although in this example an explicit and global expression3 for � can easily be found due to
the simplicity of the transformation � � = H 4, it is not always the case in high gain designs for
more complex applications. To overcome this problem, we may go with solving an optimization
problem as

x̂ = � (�̂ ) = Argmin
x̂

�
�
� �̂ � � � (x̂)

�
�
�
2

:

8.1.2 Luenberger design

Instead of a high gain observer design as above, we may use a non linear Luenberger design. As
explained in Section 5.1.2, the idea is to �nd a transformation into a Hurwitz form of the type :

_� = A � + B y

with � in Rd� , A a Hurwitz matrix and (A; B ) a controllable pair. Indeed, this system admits
as global observer

_̂� = ' (�̂; y ) = A �̂ + B y : (8.6)

Since the dynamics (8.1) are linear in(x1; x2), we can look for a transformation depending
linearly in (x1; x2). Straightforward computations give :

� � (x) = � (A2 + x3I ) � 1[ABx 1 + Bx 2] : (8.7)

In particular, for a diagonal matrix A = diag(� � 1; : : : ; � � d� ) with � i > 0, and B = (1 ; : : : ; 1)> ,
this gives for i in f 1; : : : ; d� g :

� �
i (x) =

� i x1 � x2

� 2
i + x3

: (8.8)

It is shown in [PMI06] that � � is injective on S if d� � 4 for any distinct � i 's in (0; + 1 ). More
precisely, it is Lipschitz-injective on any compact subset ofS and therefore, � � is an injective
immersion4 on S. This is consistent with [AP06, Theorem 4] and the fact that the order of
strong di�erentiability of this system is 4.

2The saturation function is de�ned by satM (s) = min f M; max f s; � M gg.
3For instance, we can take � (� ) =

�
� 1 ; � 2 ; � � 1 � 3 + � 4 � 2

max f � 2
1 + � 2

2 ; 1
r 2 g

�
:

4 Indeed, consider any x in S and V an open neighborhood ofx such that cl (V) is contained in S. According
to the Lipschitz-injectivity of � � on cl (V), there exists a such that for all v in R3 and for all h in R such that

x + hv is in V, jvj � a j � � ( x + hv ) � � � ( x ) j
j h j and thus by taking h to zero, jvj � a

�
� @� �

@x (x)v
�
� which means that

@��

@x
(x)

is full-rank.
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Thus, since the trajectories of the system remain bounded, applying Corollary 2.2.1, there
exists an observer for System (8.1) which is given by (8.6) and any continuous function�
satisfying

� (� � (x)) = x 8x 2 X :

However, it is di�cult to �nd an explicit expression of such a function, thus for this design, we
would have to solve online :

x̂ = � (�̂ ) = Argmin
x̂

�
�
� �̂ � � � (x̂)

�
�
�
2

:

Note that a di�erence with the high gain observer above is that x̂ is not involved in (8.6), i.e.
the observer dynamics do not depend on� .

8.1.3 General idea

In the following, we propose a methodology to write the dynamics of the given observers (8.5)
and (8.6) directly in the x-coordinates5 in order to eliminate the minimization step. This has
been suggested by several researchers [DBGR92, MP03, AP13] in the case where the observer
state �̂ and the state estimate x̂ are related by a di�eomorphism. We remove this restriction
and complete the preliminary results presented in [AEP14].

In the example above, pulling the observer dynamics from the� -coordinates back to the
x-coordinates appears impossible sincex has dimension 3 whereas � has dimension 4. We
overcome this di�culty by adding one component, say w, to x. Then, the dynamics of (x̂; ŵ)
can be obtained as an image of those of� if we have a di�eomorphism (x; w) 7! � = � �

e (x; w)
�augmenting� the function x 7! � � (x) given in (8.3) or (8.7). We show in Chapter 9 that
this can be done by complementing a full column rank Jacobian into an invertible matrix.
Unfortunately, in doing so, the obtained di�eomorphism is rarely de�ned everywhere and we
have no guarantee that the trajectory in (x̂; ŵ) of the observer remains in the domain of de�nition
of the di�eomorphism. We show in Chapter 10 how this new problem can be overcome via a
di�eomorphism extension. The key point here is that the given observer dynamics (8.5) or (8.6)
remain unchanged. This di�ers from other techniques as proposed in [MP03, AP13], which
require extra assumptions such as convexity to preserve the convergence property.

8.2 Problem statement

8.2.1 Starting point

We consider a given system with dynamics :

_x = f (x; u) ; y = h(x; u) ; (8.9)

with x in Rdx , u a function in U with values in U � Rdu and y in Rdy . The observation problem
is to construct a dynamical system with input y and output x̂, supposed to be an estimate of
the system state x as long as the latter is in a speci�c set of interest denotedX � Rdx . As
starting point here, we assume this problem is (formally) already solved but with maybe some
implementation issues such as �nding an expression of� . More precisely,

Assumption O : Converging observer in the � -coordinates

There exist an open subsetS of Rdx , a subsetX of S, a C1 injective immersion � � : S ! Rd� ,

5We will also refer to the x-coordinates as the "given coordinates" because they are chosen by the user to
describe the model dynamics.
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and a set6 ' T of pairs ('; � ) of functions such that :

- � : Rd� ! Rdx is a left-inverse of� � on � � (X ), i-e

� (� � (x)) = x 8x 2 X (8.10)

- for any u in U and any x0 in X0 such that � + (x0; u) = + 1 , the solution X (x0; t; u) of
(8.9) remains in X for t in [0; + 1 ) .

- for any u in U, any x0 in X0 such that � + (x0; u) = + 1 , and any �̂ 0 in Rd� , any solution
(X (x0; t; u); �̂(( x0; �̂ 0); t; u)) of the cascade system :

_x = f (x; u) ; y = h(x; u) ; _̂� = ' (�̂; x̂; u; y ) ; x̂ = � (�̂ ) ; (8.11)

initialized at (x0; �̂ 0) and under the input u, is also de�ned on [0; + 1 ) and satis�es :

lim
t ! + 1

�
�
� �(( x0; �̂ 0); t; u) � � � (X (x0; t; u))

�
�
� = 0 : (8.12)

Remark 13

1. The convergence property given by (8.12) is in the observer state space only. Property
(8.10) is a necessary condition for this convergence to be transferred from the observer
state space to the system state space. But as we saw earlier, we may need the injectivity
of � � to be uniform in space, or equivalently� to be uniformly continuous on Rd� , in order
to conclude about a possible convergence in thex-coordinates. In that case, the couple
(F ; T ) de�ned by

F (�; u; y ) = ' (�; � (� ); u; y) ; T (� ) = � (� )

is an observer for System (8.9) initialized inX0. Note that as in Corollary 2.2.1, this is
achieved without further assumption in the case whereX is bounded.

2. The reason why we make' depend onx̂, instead of simply taking F (�; u; y ) as before, is
that most of the time, and especially in a high gain design (see (8.5)), when expressing
the dynamics of � � (x) as function of � to compute F , we replacex by � (� ). Since we want
here to avoid the computation of � , we make this dependence explicit in' .

3. The need for pairing ' and � comes from this dependence because it may imply to change
' whenever we change� . In the high-gain approach for instance, as in (8.5), whenX is
bounded, thanks to the gainL which can be chosen arbitrarily large,' can be paired with
any locally Lipschitz function � provided its values are saturated whenever they are used
as arguments of' . On another hand, if, as in (8.6), ' does not depend on̂x, then it can
be paired with any � .

Example 8.2.1 For System (8.1), X given in (8.2) being bounded, a set' T satisfying Assump-
tion O is made of pairs of

- a locally Lipschitz function � satisfying

x = � (x1; x2; � x1x3; � x2x3) 8x 2 X (8.13)

and the function ' de�ned in (8.5), with L adapted to the properties of � , if � � is de�ned
by (8.3) ;

6The symbol ' T is pronounced phitau.
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- or a continuous function � satisfying

x = �
�

� 1x1 � x2

� 2
1 + x3

;
� 2x1 � x2

� 2
2 + x3

;
� 3x1 � x2

� 2
3 + x3

;
� 4x1 � x2

� 2
4 + x3

�
8x 2 X (8.14)

and the function ' de�ned in (8.6) if � � is de�ned by (8.8). N

Although the problem of observer design seems already solved under AssumptionO, it can
be di�cult to �nd a left-inverse � of � � . In the following, we consider that the function � � and
the set ' T are given and we aim at avoiding the left-inversion of� � by expressing the observer
for x in the, maybe augmented,x-coordinates.

8.2.2 A su�cient condition allowing the expression of the observer in the
given x-coordinates

For the simpler case where the raw observer statê� has the same dimension as the system state
x, i.e. dx = d� , � � , in Assumption O, is a di�eomorphism on S and we can express the observer
in the given x-coordinates as :

_̂x =
�

@��

@x
(x̂)

� � 1

' (� � (x̂); x̂; u; y ) (8.15)

which requires a Jacobian inversion only. However, although, by assumption, the system trajec-
tories remain in S where the Jacobian is invertible, we have no guarantee the ones of the observer
do. Therefore, to obtain convergence and completeness of solutions, we must �nd means to en-
sure the estimatex̂ does not leave the setS, or equivalently that � � (x̂) remains in the image set
� � (S). Observing that this problem obviously disappears if this set is the whole spaceRd� , we
address this point by modifying � � �marginally� in order to get � � (S) = Rd� .

In the more complex situation whered� > d x , � � is only an injective immersion. In [AEP14],
it is proposed to augment the givenx-coordinates in Rdx with extra ones, sayw, in Rd� � dx and
correspondingly to augment the given injective immersion� � into a di�eomorphism � �

e : Sa !
Rd� , where Sa is an open subset ofRd� , which "augments"S, i-e its Cartesian projection on Rdx

is contained in S and contains cl (X ).
To help us �nd such an appropriate augmentation, we have the following su�cient condition.

Theorem 8.2.1.

Assume AssumptionO holds andX is bounded. Assume also the existence of an open subset
Sa of Rd� containing cl (X � f 0g) and of a di�eomorphism � �

e : Sa ! Rd� satisfying

� �
e (x; 0) = � � (x) 8x 2 X (8.16)

and

� �
e (Sa) = Rd� : (8.17)

and such that, with let � ex denoting the x-component of the inverse of� �
e , there exists a

function ' such that the pair ('; � ex) is in the set ' T given by Assumption O.
Under these conditions, for anyu in U and any x0 in X0 such that � + (x0; u) = + 1 , any

solution (X (x0; t; u); X̂ (x0; x̂0; ŵ0; t; u); Ŵ (x0; x̂0; ŵ0; t; u)) , with initial condition (x̂0; ŵ0) in
Sa, of the cascade of System (8.9) with the observer :

_z {"
x̂
ŵ

#

=
�

@��e
@(x̂; ŵ)

(x̂; ŵ)
� � 1

' (� �
e (x̂; ŵ); x̂; u; y ) (8.18)
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is also de�ned on [0; + 1 ) and satis�es :

lim
t ! + 1

�
�
�Ŵ (x0; x̂0; ŵ0; t; u)

�
�
� +

�
�
�X (x0; t; u) � X̂ (x0; x̂0; ŵ0; t; u)

�
�
� = 0 : (8.19)

In other words, System (8.18) is an observer in the given coordinates7 for System (8.9)
initialized in X0.

The key point in the observer (8.18) is that, instead of left-inverting the function � � via � as
in (8.10), we invert only a matrix, exactly as in (8.15).

Proof : Take u in U and (x0 ; (x̂0 ; ŵ0)) in X0 � S a such that � + (x0 ; u) = + 1 . X (x0 ; t ; u) remains in
X for t in [0; + 1 ) by assumption. Let [0; t [ be the right maximal interval of de�nition of the solution
(X (x0 ; t ); X̂ (x0 ; x̂0 ; ŵ0 ; t ; u); Ŵ (x0 ; x̂0 ; ŵ0 ; t ; u)) when considered with values in X � S a . Assume for the
time being t is �nite. Then, when t goes to t, either (X̂ (x0 ; x̂0 ; ŵ0 ; t ; u); Ŵ (x0 ; x̂0 ; ŵ0 ; t ; u)) goes to
in�nity or to the boundary of Sa . By construction t 7! �( t) := � �

e

�
X̂ (x̂0 ; ŵ0 ; t ; u); Ŵ (x̂0 ; ŵ0 ; t ; u)

�
is a

solution of (8.11) on [0; t [ with � = � ex . From assumption O and since('; � ex ) is in ' T, it can be extended
as a solution de�ned on [0; + 1 [ when considered with values in Rd � = � �

e (Sa ). This implies that �( t)
is well de�ned in Rd � . Since, with (8.17), the inverse � e of � �

e is a di�eomorphism de�ned on Rd � , we
obtain lim t ! t

�
X̂ (x̂0 ; ŵ0 ; t ; u); Ŵ (x̂0 ; ŵ0 ; t ; u)

�
= � e(�( t)) , which is an interior point of � e(Rd � ) = Sa .

This point being neither a boundary point nor at in�nity, we have a contradiction. It follows that t is
in�nite.

Finally, with assumption O, we have :

lim
t ! + 1

�
� � �

e

�
X̂ (x̂0 ; ŵ0 ; t ; u); Ŵ (x̂0 ; ŵ0 ; t ; u)

�
� � � (X (x0 ; t ; u))

�
� = 0 :

Since X (x0 ; t ; u) remains in X , � � (X (x0 ; t ; u)) equals � �
e (X (x0 ; t ; u); 0) and remains in the compact set

� � (cl (X )) . So there exists a compact subsetCof Rd � and a time tC such that � �
e

�
X̂ (x̂0 ; ŵ0 ; t ; u); Ŵ (x̂0 ; ŵ0 ; t ; u)

�

is in C for all t > t C. Since � �
e is a di�eomorphism, its inverse � e is Lipschitz on the compact set C. This

implies (8.19). �

With Theorem 8.2.1, we are left with �nding a di�eomorphism � �
e satisfying the conditions

listed in the statement :

� Equation (8.16) is about the fact that � �
e is an augmentation, with adding coordinates, of the

given injective immersion � � . It motivates the following problem.

Problem 1. Immersion augmentation into a di�eomorphism

Given a set X , an open subsetS of Rdx containing cl (X ), and an injective immersion
� � : S ! � � (S) � Rd� , the pair (� �

a ; Sa) is said to solve the problem of immersion augmen-
tation into a di�eomorphism if Sa is an open subset ofRd� containing cl (X � f 0g) and
� �

a : Sa ! � �
a (Sa) � Rd� is a di�eomorphism satisfying

� �
a (x; 0) = � � (x) 8x 2 X :

We will present in Chapter 9 conditions under which Problem 1 can be solved via comple-
menting a full column rank Jacobian of � � into an invertible matrix, i.e. via what we call
Jacobian complementation.

� The condition expressed in (8.17), is about the fact that � �
e is surjective onto Rd� . This

motivates us to introduce the surjective di�eomorphism extension problem

Problem 2. Surjective di�eomorphism extension

Given an open subsetSa of Rd� , a compact subsetK of Sa, and a di�eomorphism � �
a :

7See De�nition 2.1.1.
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extension problem if it satis�es

� �
e (Sa) = Rd� ; � �

e (x; w) = � �
a (x; w) 8(x; w) 2 K:

This Problem 2 will be addressed in Chapter 10.

When Assumption O holds andX is bounded, by successively solving Problem 1 and Problem
2 with cl (X �f 0g) � K � S a, we get a di�eomorphism � �

e guaranteed to satisfy all the conditions
of Theorem 8.2.1 except maybe the fact that the pair('; � ex) is in ' T. Fortunately, pairing a
function ' with a function � ex obtained from a left inverse of� �

e is not as di�cult as it seems, at
least for general purpose observer designs such as high gain observers or nonlinear Luenberger
observers. Indeed, we have already observed in point 3 of Remark 13 that if, as for Luenberger
observers, there is a pair('; � ) in the set ' T such that ' does not depend on� , then we can
associate this' to any � ex. Also, for high gain observers, we need only that� ex, used as argument
of ' , make it globally Lipschitz. This is obtained by modifying, if needed, this function outside
a compact set, as the saturation function does in (8.5). We conclude from all this that our
problem reduces to solving Problems 1 and 2.

Throughout Chapters 9-10, we will show how, step by step, we can express in thex-
coordinates the high gain observer for the harmonic oscillator with unknown frequency intro-
duced in Section 8.1.1. We will also show that our approach enables to ensure completeness of
solutions of the observer presented in [GHO92] for a bioreactor. The various di�culties we shall
encounter on this road will be discussed in Chapter 11. In particular, we shall see how they can
be overcome thanks to a better choice of� � and of the pair ('; � ) given by Assumption O. We
will also see that the same tools apply to the Luenberger observer presented in Section 8.1.2 for
the oscillator. Finally, we will show in Chapter 11 that this methodology can be extended to
the case where the transformation is time-varying through a very practical application related
to aircraft landing.



Chapter 9

Around Problem 1 : augmenting an
injective immersion into a
di�eomorphism

Chapitre 9 � Autour du Problème 1 : augmenter une immersion injective en un
di�éomorphisme. Une condition su�sante pour résoudre ce problème est de savoir compléter
continûment le Jacobien (de rang plein) de la fonction en une matrice inversible. En e�et,
lorsque ceci est possible, une formule explicite de l'augmentation en un di�éomorphisme est
proposée. Ce chapitre est donc consacré au problème de complémentation continue d'une matrice
rectangulaire de rang plein en une matrice carrée inversible. Plusieurs résultats sont donnés avec
dans chaque cas des formules explicites ou des algorithmes constructifs, et sont il lustrés grâce à
l'exemple de l'oscillateur à fréquence inconnue.

Contents
9.1 Submersion case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9.2 The ~P[d� ; dx ] problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.3 Wazewski's theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

In [AEP14], we �nd the following su�cient condition for the augmentation of an immersion
into a di�eomorphism.

Lemma 9.0.1. [AEP14]

Let X be a bounded set,S be an open subset ofRdx containing cl (X ), and � � : S ! � � (S) �
Rd� be an injective immersion. If there exists a bounded open set~S satisfying

cl (X ) � ~S � cl ( ~S) � S

and a C1 function 
 : S ! Rd� � (d� � dx ) the values of which ared� � (d� � dx ) matrices
satisfying :

det
�

@��

@x
(x) 
 (x)

�
6= 0 8x 2 cl ( ~S) ; (9.1)

then there exists a strictly positive real number " such that the following pair1 (� �
a ; Sa) solves

Problem 1
� �

a (x; w) = � � (x) + 
 (x) w ; Sa = ~S � B " (0) : (9.2)

1For a positive real number " and z0 in Rp , B " (z0) is the open ball centered at z0 and with radius " .
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In other words, an injective immersion � � can be augmented into a di�eomorphism� �
a if we

are able to �nd d� � dx columns 
 which are C1 in x and which complement the full column
rank Jacobian @��

@x(x) into an invertible matrix.

Proof : The fact that � �
a is an immersion for " small enough is established in [AEP14]. We now prove

it is injective. Let " 0 be a strictly positive real number such that the Jacobian of � �
a (x; w ) in (9.2) is

invertible for any (x; w ) in cl ( ~S � B " 0 (0)) . Since cl ( ~S � B " 0 (0)) is compact, not to contradict the
Implicit function Theorem, there exists a strictly positive real number � such that any two pairs (xa ; wa )
and (xb; wb) in cl ( ~S � B " 0 (0)) which satisfy

� �
a (xa ; wa ) = � �

a (xb; wb) ; (xa ; wa ) 6= ( xb; wb) (9.3)

satis�es also
jxa � xbj + jwa � wbj � � :

On another hand, since � � is continuous and injective on cl ( ~S) � S , it has an inverse which is uniformly
continuous on the compact set � � (cl ( ~S)) (see Lemma A.3.3). It follows that there exists a strictly
positive real number � such that

8 (xa ; xb) 2 cl ( ~S)2 : j� � (xa ) � � � (xb)j < � ; jxa � xbj <
�
2

:

But if (9.3) holds with wa and wb in B " (0) with " � " 0 , we have

� � 2" � j xa � xbj ; j� � (xa ) � � � (xb)j = j
 (xa )wa � 
 (xb)wbj � 2" sup
x 2 cl ( ~S )

j
 (x)j :

We have a contradiction for all " � min
n

3�
4 ; �

2" sup x 2 cl ( ~S ) j 
 ( x ) j

o
. So (9.3) cannot hold for such " 's, i.e.

� �
a is injective on ~S � B " (0). �

Remark 14 Complementing a d� � dx full-rank matrix into an invertible one is equivalent to
�nding d� � dx independent vectors orthogonal to that matrix. Precisely the existence of

satisfying (9.1) is equivalent to the existence of aC1 function ~
 : cl ( ~S) ! Rd� � (d� � dx ) the
values of which are full rank matrices satisfying :

~
 (x)> @��

@x
(x) = 0 8x 2 cl ( ~S) : (9.4)

Indeed, ~
 satisfying (9.4) satis�es also (9.1) since the following matrices are invertible
 

@��
@x(x)>

~
 (x)>

! �
@��

@x
(x) ~
 (x)

�
=

 
@��
@x(x)> @��

@x(x) 0
0 ~
 (x)> ~
 (x)

!

:

Conversely, given
 satisfying (9.1), ~
 de�ned by the identity below satis�es (9.4) and has full
column rank

~
 (x) =

"

I �
@��

@x
(x)

�
@��

@x
(x)> @��

@x
(x)

� � 1 @��

@x
(x)>

#


 (x) :

9.1 Submersion case

When � � (cl ( ~S)) is a level set of a submersion, we have the following complementation result
:

Theorem 9.1.1.

Let X be a bounded set,~S be a bounded open set andS be an open set satisfying

cl (X ) � ~S � cl ( ~S) � S :

Let also � � : S ! � � (S) � Rd� be an injective immersion. Assume there exists aC2 function
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F : Rd� ! Rd� � dx which is a submersion2 at least on a neighborhood of� � ( ~S) satisfying:

F (� � (x)) = 0 8x 2 ~S ; (9.5)

then, with the C1 function x 7! 
 (x) = @F
@�

T
(� � (x)) , the matrix in (9.1) is invertible for all x

in ~S and the pair (� �
a ; Sa) de�ned in (9.2) solves Problem 1.

Proof : For all x in cl ( ~S), @� �

@x (x) is right invertible and we have @F
@� (� � (x)) @� �

@x (x) = 0 . Thus, the

rows of @F
@� (� � (x)) are orthogonal to the column vectors of @� �

@x (x) and are independent since F is a

submersion. The Jacobian of � � can therefore be completed with @F
@�

T
(� � (x)) . The proof is completed

with Lemma 9.0.1. �

Remark 15 Since @��
@x is of constant rank dx on S, the existence of such a functionF is

guaranteed at least locally by the constant rank Theorem.

Example 9.1.1 (Continuation of Example 8.2.1) Elimination of the x̂ i in the 4 equations
given by the injective immersion � � de�ned in (8.3) leads to the function F (� ) = � 2� 3 � � 1� 4

satisfying (9.5). It follows that a candidate for complementing:

@��

@x
(x) =

0

B
B
B
@

1 0 0
0 1 0

� x3 0 � x1

0 � x3 � x2

1

C
C
C
A

(9.6)

is


 (x) =
@F
@�

(� � (x))> = ( x2x3; � x1x3; x2; � x1)> :

This vector is nothing but the column of the minors of the matrix (9.6). It gives as determinant
(x2x3)2 + ( x1x3)2 + x2

2 + x2
1 which is never zero onS.

Then, it follows from Lemma 9.0.1, that, for any bounded open set~S such that X � cl ( ~S) �
S the following function is a di�eomorphism on ~S � B � (0) for " su�ciently small

� �
a (x; w) = ( x1 + x2x3w; x2 � x1x3w; � x1x3 + x2w; � x2x3 � x1w) :

With picking � �
e = � �

a , (8.18) gives us the following observer written in the givenx-coordinates
augmented with w :

_z {0

B
B
B
@

x̂1

x̂3

x̂2

ŵ

1

C
C
C
A

=

0

B
B
B
@

1 x̂3ŵ x̂2ŵ x̂2x̂3

� x̂3ŵ 1 � x̂1ŵ � x̂1x̂3

� x̂3 ŵ � x̂1 x̂2

� ŵ � x̂3 � x̂2 � x̂1

1

C
C
C
A

� 1 2

6
6
6
4

0

B
B
B
@

x̂2 � x̂1x̂3ŵ
� x̂1x̂3 + x̂2ŵ
� x̂2x̂3 � x̂1ŵ
satr 3 (x̂1x̂2

3)

1

C
C
C
A

+

0

B
B
B
@

Lk 1

L 2k2

L 3k3

L 4k4

1

C
C
C
A

[y � x̂1]

3

7
7
7
5

(9.7)

Unfortunately the matrix to be inverted is non singular for (x̂; ŵ) in ~S � B " (0) only and we have
no guarantee that the trajectories of this observer remain in this set. This shows that a further
modi�cation transforming � �

a into � �
e is needed to make sure that� �

e
� 1(� ) belongs to this set

whatever � in R4. This is Problem 2. N

The drawback of this Jacobian complementation method is that it asks for the knowledge
of the function F . It would be better to simply have a universal formula relating the entries of
the columns to be added to those of@��

@x.

2F : Rd � ! Rn with d� � n is a submersion onV if @F
@� (� ) is full-rank for all � in V.
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9.2 The ~P[d� ; dx ] problem

Finding a universal formula for the Jacobian complementation problem amounts to solving the
following problem.

Problem ~P [d� ; dx ]

For a pair of integers (d� ; dx ) such that 0 < d x < d � , a C1 matrix function ~
 : Rm� n !
Rd� � (d� � dx ) solves the ~P[d� ; dx ] problem if for any d� � dx matrix T = ( Tij ) of rank dx , the

matrix
�

T ~
 (T)
�

is invertible.

As a consequence of a theorem due to Eckmann [Eck06, Ÿ1.7 p. 126] and Lemma 9.0.1, we
have

Theorem 9.2.1.

The ~P[d� ; dx ] problem is solvable by aC1 function ~
 if and only if the pair (d� ; dx ) is in one
of the following pairs

(� 2; d� � 1) or (4; 1) or (8; 1) : (9:8)

Moreover, for each of these pairs and for any bounded setX , any bounded open set~S and
any open setS satisfying

cl (X ) � ~S � cl ( ~S) � S � Rdx ;

and any injective immersion � � : S ! � � (S) � Rd� , the pair (� �
a ; Sa) de�ned in (9.2) with


 (x) = ~

�

@��a
@x(x)

�
solves Problem 1.

Proof : ["only if"] The following theorem is due to Eckmann.

Theorem 9.2.2. [Eck06]

For d� > d x , there exists a continuous function ~
 1 : Rd � � dx ! Rd � with non zero values and satisfying
~
 1(T )T

T = 0 for any d� � dx matrix T = ( T ij ) of rank dx if and only if (d� ; dx ) is in one of the following
pairs

(� 2; d� � 1) or (even; 1) or (7; 2) or (8; 3) (9:9)

With Remark 14, any pair (d� ; dx ) for which ~P[d� ; dx ] is solvable must be one in the list (9.9). The pair
(� 2; d� � 1) is in the list (9.8). For the pair (even; 1), we need to �nd d� � 1 vectors to complement the
given one into an invertible matrix. After normalizing the vector T so that it belongs to the unit sphere
Sd � � 1 and projecting each vector 
 i (T ) of 
 (T ) onto the orthogonal complement of T , this complementation
problem is equivalent to asking whether Sd � � 1 is parallelizable (since the 
 i (T ) will be a basis for the
tangent space at T for each T 2 Sd � � 1). It turns out that this problems admits solutions only for d� = 4
or d� = 8 (see [BM58]). So in the pairs (even; 1) only (4; 1) and (8; 1) are in the list (9.8).

Finally, since ~P[6; 1] has no solution, the pairs (7; 2) and (8; 3) cannot be in the list (9.8). Indeed, let T be

a full column rank (d� � 1) � (dx � 1) matrix.

�
T 0
0 1

�
is a full column rank d� � dx matrix. If if ~P [d� ; dx ]

has a solution, there exist a continuous (d� � 1) � (d� � dx ) matrix function ~
 and a continuous row

vector functions aT such that

�
~
 (T ) T 0
a(T )> 0 1

�
is invertible. This implies that

�
~
 (T ) T

�
is also invertible.

So if ~P [d� ; dx ] has a solution, ~P [d� � 1; dx � 1] must have one. �

2See Remark 14.
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Proof : ["if"] For (d� ; dx ) equal to (4; 1) or (8; 1) respectively, possible solutions are

~
 (T ) =

0

B
@

� T 2 T 3 T 4

T 1 � T 4 T 3

� T 4 � T 1 � T 2

T 3 T 2 � T 1

1

C
A ; ~
 (T ) =

0

B
B
B
B
B
B
B
B
@

T 2 T 3 T 4 T 5 T 6 T 7 T 8

� T 1 T 4 � T 3 T 6 � T 5 � T 8 T 7

� T 4 � T 1 T 2 T 7 T 8 � T 5 � T 6

T 3 � T 2 � T 1 T 8 � T 7 T 6 � T 5

� T 6 � T 7 � T 8 � T 1 T 2 T 3 T 4

T 5 � T 8 T 7 � T 2 � T 1 � T 4 T 3

T 8 T 5 � T 6 � T 3 T 4 � T 1 � T 2

� T 7 T 6 T 5 � T 4 � T 3 T 2 � T 1

1

C
C
C
C
C
C
C
C
A

where T j is the j th component of the vector T . For dx = d� � 1, we have the identity

det (T ~
 (T )) =
mX

j =1

~
 j (T ij ) M j;m (T ij )

where ~
 j is the j th component of the vector-valued function ~
 and the M j;m , being the cofactors of
(T ~
 (T )) computed along the last column, are polynomials in the given components T ij . At least one of
the M j;m is non-zero (because they are minors of dimensiondx of T which is full-rank). So it is su�cient
to take ~
 j (T ij ) = M j;m (T ij ). �

In the following example we show how by exploiting some structure we can reduce the
problem to one of these3 pairs.

Example 9.2.1 (Continuation of Example 9.1.1) In Example 9.1.1, we have complemented
the Jacobian (9.6) with the gradient of a submersion and observed that the components of this
gradient are actually cofactors. We now know that this is consistent with the casedx = d� � 1.
But we can also take advantage from the upper triangularity of the Jacobian (9.6) and com-
plement only the vector (� x1; � x2) by for instance (x2; � x1). The corresponding vector 
 is

 (x) = (0 ; 0; x2; � x1): Here again, with Lemma 9.0.1, we know that, for any bounded open set
~S such that cl (X ) � ~S � cl ( ~S) � S the function

� �
a (x; w) = ( x1 ; x2 ; � x1x3 + x2w ; � x2x3 � x1w)

is a di�eomorphism on ~S � B � (0). In fact, in this particular case " can be arbitrary since the
Jacobian of � �

a is full rank on ~S � Rd� � dx . With picking � �
e = � �

a , (8.18) gives us the following
observer :

_z {0

B
B
B
@

x̂1

x̂3

x̂2

ŵ

1

C
C
C
A

=

0

B
B
B
@

1 0 0 0
0 1 0 0

� x̂3 ŵ � x̂1 x̂2

� ŵ � x̂3 � x̂2 � x̂1

1

C
C
C
A

� 1 2

6
6
6
4

0

B
B
B
@

x̂2

� x̂1x̂3 + x̂2ŵ
� x̂2x̂3 � x̂1ŵ
satr 3 (x̂1x̂2

3)

1

C
C
C
A

+

0

B
B
B
@

Lk 1

L 2k2

L 3k3

L 4k4

1

C
C
C
A

[y � x̂1]

3

7
7
7
5

(9.10)

However, the singularity at x̂1 = x̂2 = 0 remains and equation (8.17) is still not satis�ed. N

Given the very small number of cases where a universal formula exists, we now look for a
more general solution to the Jacobian complementation problem.

9.3 Wazewski's theorem

Historically, the Jacobian complementation problem was �rst addressed by Wazewski in [Waz35].
His formulation was :

Wazewski's problem

Given a continuous function T : S � Rdx ! Rd� � dx , the values of which are full-rank
d� � dx matrices, look for a continuous function 
 : S ! Rd� � (d� � dx ) such that the ma-

trix
�

T(x) 
 (x)
�

is invertible for all x in S.



122
Chapter 9. Around Problem 1 : augmenting an injective immersion into a

diffeomorphism

The di�erence with the previous section, is that here, we look for a continuous function
 of
the argument x of T(x) instead of continuous functions ofT itself.

Wazewski established that this other version of the problem admits a far more general
solution :

Theorem 9.3.1. [Waz35, Theorems 1 and 3]

If S, equipped with the subspace topology ofRdx , is a contractible space, then Wazewski's
problem admits a solution. Besides, the function
 can be chosenC1 on S.

Proof : The reader is referred to [Eck06, page 127] or [Dug66, pages 406-407] and to [Waz35, Theorems
1 and 3] for the complete proof of existence of a continuous function 
 when S is contractible. We rather
detail here the constructive main points of the proof originally given by Wazewski in the particular case
where S is a parallelepiped, because it gives an insight on the explicit construction of 
 . It is based on
Remark 14, noting that, if we have the decomposition

T (x) =

�
A(x)
B (x)

�

with A(x) invertible on some given subset R of S, then


 (x) =

�
C(x)
D (x)

�

makes
�

T (x) 
 (x)
�

invertible on R if and only if D (x) is invertible on R and we have

C(x) = � (AT (x)) � 1B (x)T D (x) 8x 2 R : (9.11)

Thus, C is imposed by the choice ofD and choosing D invertible is enough to build 
 on R .

Also, if we already have a candidate �
A(x) C0(x)
B (x) D 0(x)

�

on a boundary @R of R and A(x) is invertible for all x in @R , then, necessarily, D 0(x) is invertible
and C0(x) = � (AT (x)) � 1B (x)T D 0(x) all x in @R . Thus, to extend the construction of a continuous
function 
 inside R from its knowledge on the boundary @R , it su�ces to pick D as any invertible matrix
satisfying D = D 0 on @R . Because we can propagate continuously
 from one boundary to the other,
Wazewski deduces from these two observations that, it is su�cient to partition the set S into adjacent
sets R i where a given d� � d� minor A i is invertible. This is possible since T is full-rank on S. When S
is a parallelepiped, he shows that there exists an ordering of the R i such that the continuity of each D i

can be successively ensured. We illustrate this construction in Example 9.3.1 below.

Finally, it remains to show how this continuous function 
 can be modi�ed into a smoother one giving
the same invertibility property. For this, we use a partition of unity. Let 
 i denote the i th column of

 . We start with modifying 
 1 into ~
 1 . Since T , 
 and the determinant are continuous, for any x in S,
there exists a strictly positive real number r x , such that, may be after changing 
 1 into � 
 1 ,

det
�

T (y) 
 1(x) 
 2:d � � dx (y)
�

> 0 ; 8y 2 B r x (x) ; (9.12)

where 
 i : j denotes the matrix composed of the i th to j th columns of 
 . The family of sets (B r x (x)) x 2S
is an open cover ofS. Therefore, by [Hir76, Theorem 2.1], there exists a subordinate C1 partition of
unity, i.e. there exist a family of C1 functions  x : S ! R� 0 such that

Supp( x ) � B r x (x) 8x 2 S ; (9.13)

f Supp( x )gx 2S is locally �nite ; (9.14)
X

x 2S

 x (y) = 1 8y 2 S : (9.15)

With this, we de�ne the function ~
 1 on S by

~
 1(y) =
X

x 2S

 x (y)
 1(x) :
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This function is well-de�ned and C1 on S because the sum is �nite at each point according to (9.14).
Using multi-linearity of the determinant, we have, for all y in S,

det
�

T (y) ~
 1(y) 
 2:d � � dx (y)
�

=
X

x 2S

 x (y) det
�

T (y) 
 1(x) 
 2:d � � dx (y)
�

:

Thanks to (9.14), at each point y in S, there is a �nite number of  x (y) which are not zero. Also, the
right hand side is the sum of non negative terms because of (9.12) and the non negativeness of the x ,
and one of these terms is strictly positive because of (9.12) and (9.15). Therefore, we can replace the
continuous function 
 1 by the C1 function ~
 1 as a �rst column of 
 . Then we follow exactly the same
procedure for 
 2 with this modi�ed 
 . By proceeding this way, one column after the other, we get our
result. �

The following corollary is a consequence of Lemma 9.0.1 and provides another answer to
Problem 1.

Corollary 9.3.1.

Let X be a bounded set,S be an open subset ofRdx containing cl (X ) and which, equipped
with the subspace topology ofRdx , is a contractible space. Let also� � : S ! � � (S) � Rd� be
an injective immersion. There exists aC1 function 
 such that, for any bounded open set~S
satisfying

cl (X ) � ~S � cl ( ~S) � S

we can �nd a strictly positive real number " such that the pair (� �
a ; Sa) de�ned in (9.2) solves

Problem 1.

Example 9.3.1 Consider the function

T(x) =

0

B
B
B
B
B
@

1 0 0
0 1 0

� x3 0 � x1

0 � x3 � x2
@}
@x1

x3
@}
@x2

x3 }

1

C
C
C
C
C
A

; } (x1; x2) = max
�

0;
1
r 2 � (x2

1 + x2
2)

� 4

:

T(x) has full rank 3 for any x in R3, since} (x1; x2) 6= 0 when x1 = x2 = 0 . To follow Wazewski's
construction, let � be a strictly positive real number and consider the following5 regions ofR3

(see Figure 9.1)

R 1 = ] � 1 ; � � ] � R2 ; R 2 = [ � �; � ] � [�; + 1 ] � R;

R 3 = [ � �; � ]2 � R ; R 4 = [ � �; � ] � [�1 ; � � ] � R ; R 5 = [ �; + 1 [� R2:

We select� su�ciently small in such a way that } is not 0 in R 3.

� �

� �

�

�

R 3

R 5

R 2

R 4

R 1

x1

x2

Figure 9.1: Projections of the regionsR i on R2.
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diffeomorphism

We start Wazewski's algorithm in R 3. Here, the invertible minor A is given by rows 1, 2
and 5 of T (full-rank lines of T) and B by rows 3 and 4. With picking D as the identity, C is
(AT ) � 1B according to (9.11). D gives rows3 and 4 of 
 and C gives rows1, 2 and 5 of 
 .
Then we move to the regionR 2. There the matrix A is given by rows 1, 2 and 4 of T, B by
rows 3 and 5. Also D , along the boundary betweenR 3 and R 2, is given by rows 3 and 5 of 

obtained in the previous step. We extrapolate this insideR 2 by keeping D constant in planes
x1 = constant. An expression forC and therefore for 
 follows.
We do exactly the same thing forR 4.
Then we move to the regionR 1. There the matrix A is given by rows1, 2 and 3 of T, B by rows
4 and 5. Also D , along the boundary betweenR 1 and R 2, between R 1 and R 3 and between
R 1 and R 4, is given by rows 4 and 5 of 
 obtained in the previous steps. We extrapolate this
inside R 1 by kipping D constant in planesx2 = constant. An expression forC and therefore for

 follows.
We do exactly the same thing forR 5.

Note that this construction produces a continuous 
 , but we could have extrapolatedD in
a smoother way to obtain 
 as smooth as necessary. N

Although Wazewski's method provides a more general answer to the problem of Jacobian
complementation than the few solvable ~P[d� ; dx ] problems, the explicit expressions of
 given in
Section 9.2 are preferred in practice (when the couple(d� ; dx ) is in the list (9.8)) to Wazewski's
costly computations.

We have given several methods to solve Problem 1, but to apply Theorem 8.2.1, we also need
to solve Problem 2.



Chapter 10

Around Problem 2 : image extension
of a di�eomorphism

Chapitre 10 � Autour du Problème 2 : extension d'image d'un di�éomorphisme.
Dans ce chapitre, nous étudions comment un di�éomorphisme peut être étendu pour que son
image couvre l'espaceRd� entier, c'est-à-dire pour qu'il devienne surjectif. Dans certains cas, la
construction de l'extension est explicite et est il lustrée à partir d'exemples. En particulier, nous
montrons que la résolution du Problème 2 garantie la complétude des solutions de l'observateur
présenté dans [GHO92] pour un bioréacteur.
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We study now how a di�eomorphism can be augmented to make its image be the whole set
Rd� , i.e. to make it surjective. In certain cases, the construction of the extension is explicit and is
illustrated on examples. In particular, we show that solving Problem 2 guarantees completeness
of solutions of the observer presented in [GHO92] for a bioreactor.

10.1 A su�cient condition

There is a rich literature reporting very advanced results on the di�eomorphism extension prob-
lem. In the following some of the techniques are inspired from [Hir76, Chapter 8] and [Mil65,
pages 2, 7 to 14 and 16 to 18](among others). Here we are interested in the particular aspect of
this topic which is the di�eomorphism image extension as described by Problem 2. A very �rst
necessary condition about this problem is in the following remark.

Remark 16 Since � �
e , obtained solving Problem 2, makes the setS di�eomorphic to Rd� , S

must be contractible.

One of the key technical property which will allow us to solve Problem 2 can be phrased as
follows.
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Property C

An open subsetE of Rd� is said to verify property C if there exist a C1 function � : Rd� ! R,
a bounded1 C1 vector �eld � , and a closed setK 0 contained in E such that:

1. E =
n

z 2 Rd� : � (z) < 0
o

2. K 0 is globally attractive for �

3. we have the following transversality property:

@�
@z

(z)� (z) < 0 8z 2 Rd� : � (z) = 0 :

The two main ingredients of this condition are the function � and the vector �eld � which,
both, have to satisfy the transversality property C.3. In the case where only the function� is
given satisfying C.1 and with no critical point on the boundary of E , its gradient could play
the role of � . But then for K 0 to be globally attractive we need at least to remove all the
possible critical points that � could have outsideK 0. This task is performed for example on
Morse functions in the proof of the h-Cobordism Theorem [Mil65]. We are in a much simpler
situation when � is given and makesE forward invariant.

Lemma 10.1.1.

Let E be a bounded open subset ofRd� , � be a boundedC1 vector �eld , and K 0 be a
compact set contained inE such that:

1. K 0 is globally asymptotically stable for �

2. E is forward invariant for � .

For any strictly positive real number d, there exists a bounded setE such that

cl (E ) � E � f z 2 Rd� ; inf
zE 2 E

jz � zE j � dg

and E veri�es Property C.

This Lemma roughly says that if E does not satisfy conditionsC.1 or C.3 but is forward
invariant for � , then Condition C is satis�ed by an arbitrarily close superset of E . Its proof is
given in Appendix B.1.

Our main result on the di�eomorphism image extension problem is:

Theorem 10.1.1.

Let Sa be an open subset ofRd� and � �
a : Sa ! Rd� be a di�eomorphism. If

a) either � �
a (Sa) veri�es property C,

b) or Sa is C2-di�eomorphic to Rd� and � �
a is C2,

then for any compact set K in Sa, there exists a di�eomorphism � �
e : Sa ! Rd� solving

Problem 2.

The proof of case a) of this theorem is given in Section 10.2. It provides an explicit construc-
tion of � �

e . The proof of case b) can be found in Appendix B.3. For the time being, we observe
that a direct consequence is :

1 If not replace � by �p
1+ j � j 2

.
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Corollary 10.1.1.

Let X be a bounded subset ofRdx , Sa be an open subset ofRd� containing K = cl (X � f 0g)
and � �

a : Sa ! � �
a (Sa) be a di�eomorphism such that

a) either � �
a (Sa) veri�es property C,

b) or Sa is C2-di�eomorphic to Rd� and � �
a is C2.

Then, there exists a di�eomorphism � �
e : Sa ! Rd� , such that

� �
e (Sa) = Rd� ; � �

e (x; 0) = � �
a (x; 0) 8x 2 X :

Thus, if besides the pair(� �
a ; Sa) solves Problem 1, then(� �

e ; Sa) solves Problems 1 and 2.

10.2 Proof of part a) of Theorem 10.1.1

We have the following technical lemma :

Lemma 10.2.1.

Let E be an open strict subset ofRd� verifying Condition C. For any closed subsetK of E ,
lying at a strictly positive distance of the boundary of E , there exists a di�eomorphism � :
Rd� ! E , such that � is the identity function on K .

A constructive proof of this lemma is given in Appendix B.2 and provides an explicit expres-
sion for � which will be used in Example 10.2.1 and Section 10.3. Its construction is illustrated
on Figure 10.1.

E"

x1

� (x1)

x2 = � (x2)

x3

� (x3)

E

Figure 10.1: Sketch of the construction of the di�eomorphism � in Lemma 10.2.1 : one follow
the �ow � given by Condition C for a more or less long time depending on the initial point.
E" denotes the set where� is the identity. " measuring the "width" of E n E" can be chosen
su�ciently small for K to be included in E" .

In the case a) of Theorem 10.1.1, we suppose that� �
a (Sa) satis�es C. Now, � �

a being a
di�eomorphism on an open setSa, the image of any compact subsetK of Sa is a compact subset
of � �

a (Sa). According to Lemma 10.2.1, there exists a di�eomorphism� from Rd� to � �
a (Sa)

which is the identity on � �
a (K ). Thus, the function � �

e = � � 1 � � �
a solves Problem 2 and the

theorem is proved.

Example 10.2.1 (Continuation of Example 9.1.1) In Example 9.1.1, we have introduced
the function

F (� ) = � 2� 3 � � 1� 4 ,
1
2

� > M�
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as a submersion onR4nf 0g satisfying

F (� � (x)) = 0 ; (10.1)

where � � is the injective immersion given in (8.3). With it we have augmented � � as

� �
a (x; w) = � � (x) +

@F
@�

T

(� � (x)) w = � � (x) + M� � (x) w

which is a di�eomorphism on Sa = ~S� ] � "; " [ for some strictly positive real number " .
To modify � �

a in � �
e satisfying � �

e (Sa) = R4, we let K be the compact set

K = cl (� �
a (X � f 0g)) � � �

a (Sa) � R4 :

With Lemma 10.2.1, we know that, if � �
a (Sa) veri�es property C, there exists a di�eomorphism

� de�ned on R4 such that � is the identity function on the compact set K and � (R4) = � �
e (Sa).

In that case, as seen above, the di�eomorphism� �
e = � � 1 � � �

a de�ned on Sa is such that � �
e = � �

a
on X � f 0g and � �

e (Sa) = R4, i-e would be a solution to Problems 1 and 2. Unfortunately this
is impossible. Indeed, due to the observability singularity at x1 = x2 = 0 , ~S (and thus Sa) is
not contractible. Therefore, there is no di�eomorphism � �

e such that � �
e (Sa) = R4. We will see

in Section 11.1 how this problem can be overcome. For the time being, we show that it is still
possible to �nd � �

e such that � �
e (Sa) covers "almost all"R4. The idea is to �nd an approximation

E of � �
a (Sa) verifying property C and apply the same method onE. Indeed, if E is close enough

to � �
a (Sa), one can expect to have� �

e (Sa) "almost equal to" R4.
With (10.1) and since M 2 = I , we have,

F (� �
a (x; w)) = j� � (x)j2 w :

SinceSa is bounded, there exists� > 0 such that the set

E =
n

� 2 R4 : F (� )2 < �
o

contains � �
a (Sa) and thus the compact setK . Let us show that E veri�es property C. We pick

� (� ) = F (� )2 � � =
�

1
2

� T M�
� 2

� � :

and consider the vector �eld �

� (� ) = � 2
@�
@�

(� ) = � [� T M� ] M� or more simply � (� ) = � � :

The latter implies the transversality property C.3 is veri�ed. Besides, the closed setK 0 = f 0g
is contained in E and is globally attractive for the vector �eld � .

Then Lemma 10.2.1 gives the existence of a di�eomorphism� : R4 ! E which is the identity
on K and veri�es � (R4) = E . We obtain an expression of� by following the constructive proof
of this Lemma (see Appendix B.2). Let E" be the set

E" =

(

� 2 R4 :
�

1
2

� T M�
� 2

< e � 4" �

)

:

It contains K . Let also � : [� "; + 1 [! R and t : R4 n E" ! R be the functions de�ned as

� (t) =
(t + " )2

2" + t
; t(� ) =

1
4

ln

�
1
2 � T M�

� 2

�
: (10.2)



10.3. Application : bioreactor 129

t(� ) is the time that a solution of _� = � (� ) = � � with initial condition � needs to reach the
boundary of E i.e. e� t(� ) � belongs to the boundary ofE . From the proof Lemma 10.2.1, we
know the function � : R4 ! E de�ned as :

� (� ) =

8
<

:
� ; if

�
1
2 � T M�

� 2
� e� 4" �;

e� � (t(� )) � ; otherwise;
(10.3)

is a di�eomorphism � : R4 ! E which is the identity on K and veri�es � (R4) = E .
As explained above, we use� to replace � �

a by the di�eomorphism � �
e = � � 1 � � �

a also
de�ned on Sa. But, because� �

a (Sa) is a strict subset of E , � �
e (Sa) is a strict subset of R4, i.e.

equation (8.17) is not satis�ed. Nevertheless, for any trajectory of the observert 7! �̂ (t) in R4,
our estimate de�ned by (x̂; ŵ) = � �

e
� 1(�̂ ) will be such that � �

a (x̂; ŵ) remains in E , along this
trajectory i-e j� � (x̂)j2 ŵ < � . This ensures that, far from the observability singularity where
j� � (x̂)j = 0 , ŵ remains su�ciently small to keep the invertibility of the Jacobian of � �

e . But we
still have a problem close to the observability singularity, i.e. when(x̂1; x̂2) is close to the origin.
We shall see in Section 11.1 how to avoid this di�culty via a better choice of the initial injective
immersion � � . N

10.3 Application : bioreactor

As a less academic illustration we consider the model of bioreactor presented in [GHO92] :

_x1 =
a1x1x2

a2x1 + x2
� ux1 ; _x2 = �

a3a1x1x2

a2x1 + x2
� ux2 + ua4 ; y = x1

where the ai 's are strictly positive real numbers and the control u veri�es : 0 < u min < u (t) <
umax < a 1. This system evolves in the setS =

�
x 2 R2 : x1 > " 1 ; x2 > � a2x1

	
which is

forward invariant. A high gain observer design leads us to consider the function� � : S ! R2

de�ned as :

� � (x1; x2) = ( x1; _x1ju=0 ) =
�

x1;
a1x1x2

a2x1 + x2

�
:

It is a di�eomorphism onto

� � (S) =
n

� 2 R2 : � 1 > 0 ; a1� 1 > � 2

o
:

The image by � � of the bioreactor dynamics is of the form

_� 1 = � 2 + g1(� 1)u ; _� 2 = ' 2(� 1; � 2) + g2(� 1; � 2)u

for which the following high gain observer can be built:

_� 1 = � 2 + g1(� 1)u � k1`(� 1 � y) ; _� 2 = ' 2(� 1; � 2) + g2(� 1; � 2)u � k2`(� 1 � y) ; (10.4)

where k1 and k2 are strictly positive real numbers and ` su�ciently large. As in [GHO92], � �

being a di�eomorphism the dynamics of this observer in thex-coordinates are

_̂x =

0

B
@

a1 x̂1 x̂2
a2 x̂1+ x̂2

� ux̂1

� a3a1 x̂1 x̂2
a2 x̂1+ x̂2

� ux̂2 + ua4

1

C
A + `

0

B
@

1 0

� 1 (a2 x̂1+ x̂2 )2

a1a2 x̂2
1

1

C
A

0

B
@

k1

k2

1

C
A (� 1 � y) : (10.5)

Unfortunately the right hand side is singular at x̂1 = 0 or x̂2 = � a1x̂1. S being forward
invariant, the system trajectories stay away from the singularity. But nothing guarantees the
same property holds for the observer trajectories given by (10.5). In other words, since� � is



130 Chapter 10. Around Problem 2 : image extension of a diffeomorphism

already a di�eomorphism, Problem 1 is solved with d� = dx , � �
a = � � and Sa = S. But (8.17) is

not satis�ed, i.e. Problem 2 must be solved.
To construct the extension � �

e of � �
a , we view the image� �

a (Sa) as the intersection � �
a (Sa) =

E1 \ E2 with :

E1 =
n

(� 1; � 2) 2 R2; � 1 > " 1

o
; E2 =

n
(� 1; � 2) 2 R2; a1� 1 > � 2

o
:

This exhibits the fact that � �
a (Sa) does not satisfy the property C since its boundary is not C1.

We could smoothen this boundary to remove its "corner�. But we prefer to exploit its particular
�shape� and proceed as follows :

1. We build a di�eomorphism � 1 : R2 ! E1 which acts on � 1 without changing � 2.

2. We build a di�eomorphism � 2 : R2 ! E2 which acts on � 2 without changing � 1.

3. Denoting � = � 2 � � 1 : R2 ! E1 \ E2, we take � �
e = � � 1 � � �

a : Sa ! R2.

To build � 1 and � 2, we follow the procedure given in the proof of Lemma 10.2.1 sinceE1 and
E2 satisfy property C with :

� 1(� ) = "1 � � 1 ; � 2(� ) = � 2 � a1� 1 ; � 1(� ) =

 
� (� 1 � 1)

0

!

; � 2(� ) =

 
0

� (� 2 + 1)

!

:

By following the same steps as in Example 10.2.1, with" an arbitrary small strictly positive real
number and � de�ned in (10.2), we obtain :

�
�
�
�
�
�
�
�
�
�
�
�

t1(� ) = ln 1� � 1
1� "

E"; 1 =
n

(� 1; � 2) 2 R2; � 1 > 1 � 1� "
e"

o

� 1(� ) =

(
� ; if � 2 E"; 1

� 1 � 1
e� ( t 1 ( � )) + 1 ; otherwise

�
�
�
�
�
�
�
�
�
�
�
�

t2(� ) = ln � 2+1
a1 � 1+1 ;

E"; 2 =
n

(� 1; � 2) 2 R2; � 2 � a1 � 1+1
e" � 1

o

� 2(� ) =

(
� ; if � 2 E"; 2

� 2+1
e� ( t 2 ( � )) � 1 ; otherwise

(10.6)

We remind the reader that, in the � -coordinates, the observer dynamics are not modi�ed.
The di�erence between using� � or � �

e is seen in thex̂-coordinates only. And, by construction it
has no e�ect on the system trajectories since we have

� � (x) = � �
e (x) 8x 2 S � � " � :

As a consequence the di�erence between� � and � �
e is signi�cant only during the transient,

making sure, for the latter, that x̂ never reaches a singularity of the Jacobian of� �
e .

We present in Figure 10.2 the results in the� coordinates (to allow us to see the e�ects of
both � � and � �

e ) of a simulation with (similar to [GHO92]) :

a1 = a2 = a3 = 1 ; a4 = 0 :1
u(t) = 0 :08 for t � 10 ; = 0 :02 for 10 � t � 20 ; = 0 :08 for t � 20

x(0) = (0 :04; 0:07); x̂(0) = (0 :03; 0:09); ` = 5 :
The solid black curves are the singularity locus. The red curve represents the bioreactor

solution. The magenta curve represents the solution of the observer built with� �
e . It evolves

freely in R2 according to the dynamics (10.4), not worried by any constraints. The blue curve
represents its image by� which brings it back inside the constrained domain where� � � 1 can
then be used. This means these two curves represent the same object but viewed in di�erent
coordinates.

The solution of the observer built with � � would coincide with the magenta curve up to the
point it reaches one solid black curve of a singularity locus. At that point it leaves � � (S) and
consequently stops existing in thex-coordinates.

As proposed in [MP03, AP13], instead of keeping the raw dynamics (10.4) untouched as
above, another solution would be to modify them to force� to remain in the set � � (S). For
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@��
@x non invertible

@��
@x invertible

Figure 10.2: Bioreactor and observers solutions in the� -coordinates

instance, taking advantage of the convexity of this set, the modi�cation proposed in [AP13]
consists in adding to (10.4) the term

M (� ) = � g S1
@h
@�

(� )T h(� ) ; h(� ) =

 
maxf � 1(� ) + "; 0g2

maxf � 2(� ) + "; 0g2

!

(10.7)

with S1 a symetric positive de�nite matrix depending on (k1; k2; `), " an arbitrary small real
number and g a su�ciently large real number. The solution corresponding to this modi�ed
observer dynamics is shown in Figure 10.2 with the dotted black curve. As expected it stays
away from the the singularities locus in a very e�cient way. But, for this method to apply, we
have the restriction that � � (S) should be convex, instead of satisfying the less restrictive property
C. Moreover, to guarantee that � is in � � (S), g has to be large enough and even larger when the
measurement noise is larger. On the contrary, when the observer is built with� �

e , there is no
need to tune properly any parameter to obtain convergence, at least theoretically. Nevertheless
there maybe some numerical problems when� becomes too large or equivalently� (� ) is too close
to the boundary of � � (S). To overcome this di�culty we can select the "thickness" of the layer
(parameter " in (10.6)) su�ciently large. Actually instead of �opposing� the two methods, we
suggest to combine them when possible. The modi�cation (10.7) makes sure� does not go too
far outside the domain, and � �

e makes sure thatx̂ does not cross the singularity locus.

10.4 Conclusion

Joining Corollaries 9.3.1 and 10.1.1, we obtain the following answer to our problem :



132 Chapter 10. Around Problem 2 : image extension of a diffeomorphism

Corollary 10.4.1.

Let X be a bounded subset ofRdx , S be an open subset ofRdx and � � : S ! Rd� be
an injective immersion. Assume there exists an open bounded contractible set~S which is
C2-di�eomorphic to Rdx and such that

cl (X ) � ~S � cl ( ~S) � S :

There exists a strictly positive number " and a di�eomorphism � �
e : Sa ! Rd� with

Sa = ~S � B " (0), such that

� �
e (x; 0) = � � (x) 8x 2 X ; � �

e (Sa) = Rd� ;

namely (� �
e ; Sa) solves Problems 1-2.

We conclude that if X , S and � � given by Assumption O verify the conditions of Corollary
10.4.1, then Problems 1-2 can be solved and Theorem 8.2.1 holds, i-e an observer can be expressed
in the given x-coordinates.



Chapter 11

Generalizations and applications

Chapitre 11 � Généralisations et applications. Dans les chapitres 9 et 10, nous avons
donné (en particuliier à travers Corollaire 10.4.1) des conditions permettant de résoudre les
Problèmes 1 et 2 lorsque l'hypothèseO est véri�ée et X est borné. Cependant, il arrive que
ces conditions ne soient pas satisfaites et nous montrons dans ce chapitre comment résoudre les
Problèmes 1 et 2 grâce à un meilleur choix de� � et ' T, donnés par l'hypothèseO. En particulier,
ceci permet d'écrire un observateur dans les coordonnéesx pour l'oscil lateur à fréquence inconnue
(8.1), à la fois par la voie du grand gain(8.4) et de Luenberger(8.6). En�n, nous montrons à
travers un exemple tiré d'une application, comment la méthodologie présentée dans cette Partie
III peut être étendue au cas où la transformation� � dépend du temps.
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Throughout Chapters 9 and 10, we have given (in particular in Corollary 10.4.1 ) condi-
tions allowing to solve Problem 1 and Problem 2 when AssumptionO holds and X is bounded.

However, it can happen that those conditions are not satis�ed and we show in this chapter
how to solve both Problems 1 and 2 via a better choice of the data given by AssumptionO,
namely � � and ' T. In particular, this enables to write an observer in the x-coordinates for
the oscillator with unknown frequency (8.1) both via the high gain (8.4) and Luenberger (8.6)
designs.

Finally, we show through an application in aircraft landing how the methodology presented
in this Part III can be extended to the case where the transformation� � is time-varying.

11.1 Modifying � � and ' T given by Assumption O

The su�cient conditions given in Chapters 9 and 10, to solve Problem 1 and Problem 2 in order to
ful�ll the requirements of Theorem 8.2.1, impose conditions on the dimensions or on the domain
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of injectivity S which are not always satis�ed : contractibility for Jacobian complementation
and di�eomorphism extension, limited number of pairs (d� ; dx ) for the ~P[d� ; dx ] problem, etc.
Expressed in terms of our initial problem, these conditions are limitations on the dataf , h and
� � that we have considered. In the following, we show by means of examples that, in some cases,
these data can be modi�ed in such a way that our various tools apply and give a satisfactory
solution. Such modi�cations are possible since we restrict our attention to system solutions
which remain in X . Therefore the data f , h and � � can be arbitrarily modi�ed outside this set.
For example we can add "�ctitious" components to the measured outputy as long as their value
is known on X .

11.1.1 For contractibility

It may happen that the set S attached to � � is not contractible, for example due to an observ-
ability singularity. We have seen that Jacobian complementation and image extension may be
prevented by this (see Theorem 9.3.1 and Remark 16). A possible approach to overcome this
di�culty when we know the system trajectories stay away from the singularities is to add a
�ctitious output traducing this information :

Example 11.1.1 (Continuation of Example 9.2.1) The observer (9.10) we have obtained
at the end of Example 9.2.1 for the harmonic oscillator with unknown frequency is not satisfac-
tory because of the singularity at x̂1 = x̂2 = 0 . To overcome this di�culty we add, to the given
measurementy = x1, the following one

y2 = h2(x) = } (x1; x2) x3

with

} (x1; x2) = max
�

0;
1
r 2 � (x2

1 + x2
2)

�
: (11.1)

By construction this function is zero on X and y2 can thus be considered as an extra measurement
with zero as constant value. The interest ofy2 is to give access tox3 even at the singularity
x1 = x2 = 0 . Indeed, consider the new function� � de�ned as

� � (x) = ( x1 ; x2 ; � x1x3 ; � x2x3 ; } (x1; x2) x3) : (11.2)

� � is C1 on R3 and its Jacobian is :

@��

@x
(x) =

0

B
B
B
B
B
@

1 0 0
0 1 0

� x3 0 � x1

0 � x3 � x2
@}
@x1

x3
@}
@x2

x3 }

1

C
C
C
C
C
A

; (11.3)

which has full rank 3 on R3, since} (x1; x2) 6= 0 when x1 = x2 = 0 . It follows that the singularity
has disappeared and this new� � is an injective immersion on the entireR3 which is contractible.

We have shown in Example 9.3.1 how Wazewski's algorithm allows us to get in this case a
C2 function 
 : R3 ! R4 satisfying :

det
�

@��

@x
(x) 
 (x)

�
6= 0 8x 2 R3 :

This gives us � �
a (x; w) = � � (x) + 
 (x)w which is a C2-di�eomorphism on R3 � B " (0), with

" su�ciently small. Furthermore, Sa = R3 � B " (0) being now di�eomorphic to R5, Corollary
10.1.1 applies and provides an extension� �

e of � �
a satisfying Problems 1 and 2. N
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11.1.2 For a solvable ~P[d� ; dx ] problem

If we are in a case that cannot be reduced to a solvable~P[d� ; dx ] problem, we may try to modify
d� by adding arbitrary rows to @��

@x. We illustrate this technique with the following example.

Example 11.1.2 (Continuation of Example 11.1.1) In Example 11.1.1, by adding the �c-
titious measured output y2 = h2(x), we have obtained another function � � for the harmonic
oscillator with unknown frequency which is an injective immersion onR3. In this case, we have
dx = 3 and d� = 5 which gives a pair not in (9.8). But, as already exploited in Example 9.2.1,
the �rst 2 rows of the Jacobian @��

@x in (11.3) are independent for allx in R3. It follows that our
Jacobian complementation problem reduces to complement the vector(� x1; � x2; } (x1; x2))> .
This is a problem with pair (3; 1) which is still not in the list (9.8). Instead, the pair (4; 1) is,
so that the vector (� x1; � x2; } (x1; x2); 0)> can be complemented via a universal formula. We
have added a zero component, without changing the full rank property. Actually this vector is
extracted from the Jacobian of

� � (x) = ( x1 ; x2 ; � x1x3 ; � x2x3 ; } (x1; x2) x3 ; 0) : (11.4)

In the high gain observer paradigm, this zero we have added can come from another (�cti-
tious) measured output y3 = 0 : As we saw in the proof of Theorem (9.2.1), a complement of
(� x1; � x2; } (x1; x2); 0)> is

0

B
B
B
@

x2 � } (x1; x2) 0
� x1 0 � } (x1; x2)

0 � x1 � x2

} (x1; x2) x2 � x1

1

C
C
C
A

and thus a complement of @��
@x(x) is


 (x) =

0

B
B
B
B
B
B
B
@

0 0 0
0 0 0
x2 � } (x1; x2) 0

� x1 0 � } (x1; x2)
0 � x1 � x2

} (x1; x2) x2 � x1

1

C
C
C
C
C
C
C
A

which gives with the formula (9.2)

� �
a (x; w) =

�
x1 ; x2 ; [� x1x3 + x2w1 � } (x1; x2)w2] ; [� x2x3 � x1w1 � } (x1; x2)w3] ;

[} (x1; x2)x3 � x1w2 � x2w3] ; [} (x1; x2)w1 + x2w2 � x1w3)]
�

:

The determinant of the Jacobian of � �
a thus de�ned is (x2

1 + x2
2 + } (x1; x2)2)2 which is nowhere

0 on R6. Hence� �
a is locally invertible. Actually it is di�eomorphism from R6 onto R6 since we

can express� = � �
a (x; w) as

 
x1

x2

!

=

 
� 1

� 2

!

;

0

B
B
B
@

� � 1 � 2 � } (� 1; � 2) 0
� � 2 � � 1 0 � } (� 1; � 2)

} (� 1; � 2) 0 � � 1 � � 2

0 } (� 1; � 2) � 2 � � 1

1

C
C
C
A

0

B
B
B
@

x3

w1

w2

w3

1

C
C
C
A

=

0

B
B
B
@

� 3

� 4

� 5

� 6

1

C
C
C
A

;

where the matrix on the left is invertible by construction. Since � �
a (R6) = R6, there is no need

for an image extension and we simply take� �
e = � �

a . To have all the assumptions of Theorem
8.2.1 satis�ed, it remains to �nd a function ' such that (� ex; ' ) is in the set ' T, the function � ex

being the x-component of the inverse of� �
e . Since the �rst four components of � � are the same
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as in (8.3), the �rst four components of ' are given in (8.5). It remains to de�ne the dynamics
of �̂ 5 and �̂ 6. Exploiting the fact that, for x in X ,

y2 = 0 ; _y2 =
_z {

} (x1; x2)x3 = 0 ; y3 = 0 ; _y3 = 0 ;

one can simply choose

_̂� 5 = 0 � a(�̂ 5 � y2) = � a �̂ 5 ; _̂� 6 = 0 � b(�̂ 6 � y3) = � b�̂ 6

for some strictly positive numbers a and b, which �nally leads to the function

' (�; x̂; y) =

0

B
B
B
B
B
B
B
@

� 2 + Lk 1(y � x̂1)
� 3 + L 2k2(y � x̂1)
� 4 + L 3k3(y � x̂1)

satr 3 (x̂1x̂2
3) + L 4k4(y � x̂1)

� a � 5

� b �6

1

C
C
C
C
C
C
C
A

With picking L large enough,' can be paired with any function � : R6 ! R6 which is locally
Lipschitz, and thus in particular with � ex. Therefore, Theorem 8.2.1 applies and gives the
following observer for the harmonic oscillator with unknown frequency

0

B
B
B
B
B
B
B
@

_̂x1
_̂x2
_̂x3
_̂w1
_̂w2
_̂w3

1

C
C
C
C
C
C
C
A

=

0

B
B
B
B
B
B
B
B
@

1 0 0 0 0 0
0 1 0 0 0 0

� x̂3 � @}
@̂x1

ŵ2 ŵ1 � @}
@x2

ŵ2 � x̂1 x̂2 � } 0
� ŵ1 � @}

@̂x1
ŵ3 � x̂3 � @}

@x2
ŵ3 � x̂2 � x̂1 0 � }

@}
@x1

x̂3 � ŵ2
@}
@x2

x̂3 � ŵ3 } 0 � x̂1 � x̂2
@}
@x1

ŵ1 � ŵ3
@}
@x2

ŵ1 + ŵ2 0 } x̂2 � x̂1

1

C
C
C
C
C
C
C
C
A

� 1

� (11.5)

�

0

B
B
B
B
B
B
B
@

x̂2 + Lk 1(y � x̂1)
[� x̂1x̂3 + x̂2ŵ1 � } (x̂1; x̂2)ŵ2] + L 2k2(y � x̂1)
[� x̂2x̂3 � x̂1ŵ1 � } (x̂1; x̂2)ŵ3] + L 3k3(y � x̂1)

satr 3 (x̂1x̂2
3) + L 4k4(y � x̂1)

� a [} (x̂1; x̂2)x̂3 � x̂1ŵ2 � x̂2ŵ3]
� b[} (x̂1; x̂2)ŵ1 + x̂2ŵ2 � x̂1ŵ3)]

1

C
C
C
C
C
C
C
A

:

It is globally de�ned and globally convergent for any solution of the oscillator initialized in the
set X given in (8.2). Results of a simulation are given in Figure 11.1. Notice that the observer
converges despite the fact thatx̂1 and x̂2 are initialized at the singularity. This would not have
been possible with observer (9.7), i-e without adding the �ctitious output. By the way, observe
that w2 and w3 present a violent peak at t = 0 . This is due to the fact that x̂1 and x̂2 are
around the singularity, where only the �ctitious output (which has a very small but non zero
value) preserves the invertibility of the Jacobian. We used a step-variable integration scheme to
take this into account. N

Remark 17 It is interesting to notice that the manifold �̂ 5 = �̂ 6 = 0 is invariant. This implies
the existence of an observer with order reduced to4. One could thus wonder if it could be
expressed with coordinates(x; �w) in R4, instead of (x; w) in R6, i-e if maybe there existed a
di�eomorphism �� e = (�� ex; �� ew) such that

x = �� ex(� 1; � 2; � 3; � 4) = � ex(� 1; � 2; � 3; � 4; 0; 0)
�w = �� ew(� 1; � 2; � 3; � 4)
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Figure 11.1: High gain observer (11.5) withx̂1 = x̂2 = x̂3 = 0 at the singularity, L = 3 , k1 = 10,
k2 = 35, k3 = 50, k4 = 24. The simulation was done with a step-variable Euler algorithm.

But then its Jacobian would necessarily be of the form :

@�� e

@�
(� 1; � 2; � 3; � 4) =

0

B
B
B
@

1 0 0 0
0 1 0 0
� � � � 1

� 2
1 + � 2

2 + } (� 1 ;� 2 )2 � � 2
� 2

1 + � 2
2 + } (� 1 ;� 2 )2

� � � �

1

C
C
C
A

which is singular for � 1 = � 2 = 0 .

11.1.3 A universal complementation method

In the previous example, we have made the Jacobian complementation possible by increasingd�

with augmenting the number of coordinates of� � . Actually if we augment � � with dx zeros the
possibility of a Jacobian complementation is guaranteed. Indeed pick anyC1 function B the
values of which ared� � d� matrices with positive de�nite symmetric part, we can complement 

@��
@x(x)

0

!

which is full column rank with 
 =

 
� B (x)
@��
@x(x)>

!

. This follows from the identity

(Schur complement) involving invertible matrices
 

@��
@x(x) � B (x)

0 @��
@x(x)>

!  
0 I
I B (x) � 1 @��

@x(x)

!

=

 
� B (x) 0
@��
@x

>
(x) @��

@x(x)> B (x) � 1 @��
@x(x)

!

:

So we have here a universal method to solve Problem 1. Its drawback is that the dimension of
the state increases byd� , instead of d� � dx .

11.2 A global example : Luenberger design for the oscillator

Let us now come back to the Luenberger observer presented in Section 8.1.2 for the oscillator
with unknown frequency. Although an inversion of the transformation was proposed in [PMI06]
based on the resolution of a minimization problem, we want to show here how this step can be
avoided.

Recall that the transformation is given by

� � (x) =
�

� 1x1 � x2

� 2
1 + x3

;
� 2x1 � x2

� 2
2 + x3

;
� 3x1 � x2

� 2
3 + x3

;
� 4x1 � x2

� 2
4 + x3

�
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and its Jacobian

@��

@x
(x) =

0

B
B
B
B
B
B
@

� 1
� 2

1+ x3
� 1

� 2
1+ x3

� � �
1 (x)

� 2
1+ x3

� 2
� 2

2+ x3
� 1

� 2
2+ x3

� � �
2 (x)

� 2
2+ x3

� 3
� 2

3+ x3
� 1

� 2
3+ x3

� � �
3 (x)

� 2
3+ x3

� 4
� 2

4+ x3
� 1

� 2
4+ x3

� � �
4 (x)

� 2
4+ x3

1

C
C
C
C
C
C
A

:

The complementation is quite easy because there is only one dimension to add : we could just
add a column
 (x) consisting of the corresponding minors as suggested in Section 9.2. However,
this would produce a di�eomorphism on X � B " (0) for some", where X de�ned in (8.2) is not
contractible due to the observability singularity at x1 = x2 = 0 . Therefore, no image extension
is possible and it would be necessary to ensure that̂w remains small and(x̂1; x̂2) far from (0; 0)
by some other means. Like for the high gain observer, we thus try to remove this singularity.

Again, we assume the system solutions remain inX and add the same �ctitious output y2

as before, which vanishes inX and which is non zero when(x1; x2) is close to the origin namely
:

y2 = } (x1; x2)x3

where } is de�ned in (11.1). Once again, it is possible to show1 that by adding y2 to � � , the
observability singularity disappears, namely the function

� � (x) =
�

� 1x1 � x2

� 2
1 + x3

;
� 2x1 � x2

� 2
2 + x3

;
� 3x1 � x2

� 2
3 + x3

;
� 4x1 � x2

� 2
4 + x3

; } (x1; x2)x3

�

is an injective immersion on
~S = R2 � R+ :

Although the Jacobian complementation problem is solvable for this� � according to Wazewski's
theorem 9.3.1 because~S is contractible, we want to avoid the lengthy computations entailed by
this method. We are going to see in the following that it is possible if one rather take (as before)

� � (x) =
�

� 1x1 � x2

� 2
1 + x3

;
� 2x1 � x2

� 2
2 + x3

;
� 3x1 � x2

� 2
3 + x3

;
� 4x1 � x2

� 2
4 + x3

; } (x1; x2)x3; 0
�

(11.6)

which is still an injective immersion on ~S. Although the utility of this zero seems questionable
at this point, we will point out its interest in the subsequent computations. The new Jacobian
takes the form

@��

@x
(x) =

0

B
B
B
B
B
B
B
B
B
B
B
@

� 1
� 2

1+ x3
� 1

� 2
1+ x3

� � �
1 (x)

� 2
1+ x3

� 2
� 2

2+ x3
� 1

� 2
2+ x3

� � �
2 (x)

� 2
2+ x3

� 3
� 2

3+ x3
� 1

� 2
3+ x3

� � �
3 (x)

� 2
3+ x3

� 4
� 2

4+ x3
� 1

� 2
4+ x3

� � �
4 (x)

� 2
4+ x3

A(x) B (x) C(x)
0 0 0

1

C
C
C
C
C
C
C
C
C
C
C
A

:

1 In [PMI06], it is shown that for any r > 0, there exists L r > 0 such that for all (xa ; xb) in R2 � (0; r ),
jx1;a � x1;b j + jx2;a � x2;b j +

x 1;a + x 1;b + x 2;a + x 2;b
2 jx3;a � x3;b j � L r j� �

14 (xa ) � � �
14 (xb)j where � �

14 denotes the �rst
four components of � � . Therefore, � �

14 (xa ) = � �
14 (xb) implies that x1;a = x1;b and x2;a = x2;b : either one of

them is non zero and in that case, the inequality says that we have also x3;a = x3;b , or they are all zero but then
� �

5(xa ) = � �
5(xb) implies that x3;a = x3;b . We conclude that � � is injective on ~S. Now, applying the inequality

between x and x + hv and making h go to zero, we get that @� � 14
@x (x)v = 0 implies that v1 = v2 = 0 and v3 = 0

if either x1 or x2 is nonzero. If they are both zero, @� � 5
@x (x)v = 0 with v1 = v2 = 0 gives v3 = 0 . Thus, @� �

@x (x) is
full-rank.
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Let us �rst simplify the matrix to be complemented by noticing that

M (x3; � i )
@��

@x
(x) =

0

B
B
B
B
B
B
B
@

1 0 m1(x)
0 1 m2(x)
0 0 m3(x)
0 0 m4(x)

A(x) B (x) C(x)
0 0 0

1

C
C
C
C
C
C
C
A

(11.7)

where M (x3; � i ) is the invertible matrix

M (x3; � i ) =

 
D � 1(� i ) 04� 2

02� 4 I 2� 2

!

0

B
B
B
B
B
B
B
@

� 2
1 + x3 0 0 0 0 0

0 � 2
2 + x3 0 0 0 0

0 0 � 2
3 + x3 0 0 0

0 0 0 � 2
4 + x3 0 0

0 0 0 0 1 0
0 0 0 0 0 1

1

C
C
C
C
C
C
C
A

and D(� i ) is an appropriate Vandermonde matrix associated to the� i . So now we are left
with complementing the matrix given by (11.7). Observing that right-multiplying (11.7) by the

invertible matrix N (x) =

0

B
@

1 0 � m1(x)
0 1 � m2(x)
0 0 1

1

C
A gives

0

B
B
B
B
B
B
B
@

1 0 0
0 1 0
0 0 m3(x)
0 0 m4(x)

A(x) B (x) m5(x)
0 0 0

1

C
C
C
C
C
C
C
A

, with

m5(x) = C(x) � m1(x)A(x) � m2(x)B (x) ;

we conclude �rst that the vector (m3(x); m4(x); m5(x); 0) in R4 is non-zero on ~S and then that
(11.7) can be simply complemented by complementing the vector(m3(x); m4(x); m5(x); 0) into
an invertible 4� 4 matrix. Note that this is the solvable problem ~P[4; 1] from (9.8), and without
adding the 0 output y3, we would have obtained ~P[3; 1] which is not solvable. An explicit solution
to ~P[4; 1] is given in Section 9.2, but we can here also exploit the very particular structure of
the vector and use the remark made in Section 11.1.3 that the matrix

P(x) =

0

B
B
B
@

m3(x) � 1 0 0
m4(x) 0 � 1 0
m5(x) 0 0 � 1

0 m3(x) m4(x) m5(x)

1

C
C
C
A

is invertible as soon as(m3(x); m4(x); m5(x)) is non-zero.
Reversing the transformations, we thus manage to extend the Jacobian of� � into a matrix of

dimension 6 whose determinant is non-zero on~S. Adding three state components to the system
state, we obtain a di�eomorphism � �

a on Sa = ~S � B " , with " su�ciently small. All this leads to
the observer :  

_̂x
_̂w

!

=
�

@��a
@x

(x̂; ŵ)
� � 1

(A� �
a (x̂; ŵ) + By1) (11.8)

where B = [1 ; 1; 1; 1; 0; 0]> , A = diag (� � 1; � � 2; � � 3; � � 4; � �; � 
 ) and � and 
 are two
strictly positive real numbers. The expression of the Jacobian of the extended function is omitted
here due to its complexity, but it can be obtained by straightforward symbolic computations.

The singularity at (x̂1; x̂2) = 0 has disappeared, but we still need to ensure that̂x3 remains
positive, or at least greater than � minf � 2

i g. Besides, unlike the high gain observer (11.5), the
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invertibility of the extended Jacobian is only guaranteed for w in B " . To make sure the solutions
remain in Sa = ~S � B " , we should solve Problem 2 namely extend� �

a into a di�eomorphism
� �

e whose image ofSa covers R6. Since Sa is di�eomorphic to R6, we know it is theoretically
possible by Theorem 10.1.1 and replacing� �

a by the new surjective di�eomorphism � �
e in (11.8)

would give an observer whose solutions are ensured to exist for allt.
Unfortunately, due to the complexity of the expression of � �

a , we are not yet able to achieve
such an extension. The consequence is that there may exist a set of initial conditions and
parameters such that the corresponding trajectory of observer (11.8) encounters a singularity of
the jacobian of � �

a and thus diverges. A way of reducing this set is to approximate the image of
Sa by � �

a , as proposed in Example 10.2.1. In the present case, we have (denoting� �
14 the �rst

four components of� � de�ned in (11.6)),

(� 1; � 2; � 3; � 4) = � �
14(x) ()

0

B
B
B
@

� 2
1 � 1 � � 1 1 � 1

� 2
2 � 2 � � 2 1 � 2

� 2
3 � 3 � � 3 1 � 3

� 2
4 � 4 � � 4 1 � 4

1

C
C
C
A

0

B
B
B
@

1
x1

x2

x3

1

C
C
C
A

= 0

and thus
F (� � (x)) = F (� �

a (x; 0)) = 0

where F is the quadratic function de�ned by

F (� ) = det

0

B
B
B
@

� 2
1 � 1 � � 1 1 � 1

� 2
2 � 2 � � 2 1 � 2

� 2
3 � 3 � � 3 1 � 3

� 2
4 � 4 � � 4 1 � 4

1

C
C
C
A

:

Therefore, replacing� > M� by F (� ) in (10.2)-(10.3) gives a di�eomorphism (�; Id) from R6 to

E =
n

� 2 R6 : F (� )2 < �
o

and taking � �
e = � � 1 � � �

a instead of � �
a ensures that for any observer solutiont 7! �̂ (t), our

estimate de�ned by (x̂; ŵ) = � �
e

� 1(�̂ ) will be such that � �
a (x̂; ŵ) remains in E . When � goes to

zero, E gets closer to� �
a ( ~S � f 0g) and thus we can hope thatŵ will remain su�ciently small

to keep the invertibility of the Jacobian of � �
e . We indeed observe in simulations that taking� �

e
instead of � �

a enables to ensure completeness of some of the solutions which otherwise diverge
with � �

a . An example is given in Figure 11.2 : beforet = 0 :05, the observer trajectory is close to
a singularity, ŵ tends to become very large (see Figure 11.2(b)), so doesF (�̂ ), but � enables to
reduceF (�̂ ) (see Figure 11.2(d)) and thus preventŵ from becoming too large and encounter the
singularity. Unfortunately, although the set of initial conditions leading to uncomplete solutions
is reduced by this method, it does not completely disappears.

11.3 Generalization to a time-varying � �

In Assumption O, it is supposed that the transformation � � from the given x-coordinates to the
� -coordinates is stationary. But we have seen in Part II that it is sometimes easier/necessary to
consider a time-varying transformation which depends on the input, and apply Theorem 2.2.1.
It is thus legitimate to wonder if the methodology presented in this part is still useful. In fact,
the same tools can be applied in the sense that :

- Assumption O should now provide for eachu in U a C1 function � � : Rdx � R ! Rd� ,
subsetsSt and Xt of Rdx and a set' T made of couples('; � ) such that for all t in [0; + 1 ),
x 7! � � (x; t ) is an injective immersion on St , for all x0 in X0 and all all t in [0; + 1 ),
X (x0; t; u) is in Xt , for all x in Xt , � (� � (x; t ); t) = x and ' is such that the appropriate
convergence in the� -coordinates is achieved.
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- Problems 1 and 2 can then be solved applying the tools of Chapters 9 and 10 onx 7! � � (x; t )
for eacht. This leads to a function � �

e : Rdx � Rd� � dx � R ! Rd� and open subsetsSa;t of Rd�

containing X � f 0g such that for all t in [0; + 1 ), (x; w) 7! � �
e (x; w; t ) is a di�eomorphism

on Sa;t verifying :
� �

e (x; 0; t) = � � (x; t ) 8x 2 X t (11.9)

and
� �

e (Sa;t ; t) = Rd� : (11.10)

- In order to ensure
_z {

� �
e (x̂; ŵ; t)= ' (� �

e (x̂; ŵ; t); x̂; u; y ) ;

and conclude as before that

lim
t ! + 1

�
�
� � �

e

�
X̂ (x̂0; ŵ0; t; u); Ŵ (x̂0; ŵ0; t; u); t

�
� � � (X (x0; t; u); t)

�
�
� = 0 ; (11.11)

we must take into account the dependence of� �
e on t and take :

_z {"
x̂
ŵ

#

=
�

@��e
@(x̂; ŵ)

(x̂; ŵ; t)
� � 1 �

' (� �
e (x̂; ŵ; t); x̂; u; y ) �

@��e
@t

(x̂; ŵ; t)
�

: (11.12)

- Finally, to conclude from (11.11), that x̂ converges tox and ŵ to 0, we further need that
the injectivity of (x; w) 7! � �

e (x; w; t ) be uniform in t. When the dependence ont of � �
e

comes from the input (and its derivatives), this property is often satis�ed, in particular
when those signals are bounded in time (see Lemma A.3.5). Note that a special attention
should also be given to the setSa;t which could be of the form St � B " (t ) with " going to 0
with t. Thus, it should be checked that " is lower bounded. A justi�cation as to why this
should be true in practice appears in the next section.

We give in the following section some elements of justi�cation and then we illustrate this on
an example about aircraft landing.

11.3.1 Partial theoretical justi�cation

Suppose that for all t in [0; + 1 ), x 7! � � (x; t ) is an injective immersion on some open setSt .
Consider the extended system

(
_x = f (x; u(t))
_t = 1

; y =

 
h(x; u(t))

t

!

with state x = ( x; t ). Then, the function

� � (x) = ( � � (x; t ); t)

is an injective immersion on

S = f (x; t ) 2 Rdx � [0; + 1 ) : x 2 St g

and complementing its Jacobian

@��

@x
(x) =

 
@��
@x(x; t ) @��

@t (x; t )
0 1

!

on S is equivalent to complementing that of x 7! � � (x; t ) on St for each t. Indeed, if 
 (x; t ) is

a complementation of @��
@x(x; t ) on St for each t, 
 (x) =

 

 (x; t )

0

!

is a complementation for
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@��

@x(x) on S. And conversely, if 
 (x) =

 

 (x; t )

�

!

complements @��

@x(x), then 
 (x; t ) � @��
@t (x; t )

complements @��
@x(x; t ).

We conclude that it is not restrictive to look for a complementation of the Jacobian of
x 7! � � (x; t ) at each time t. Assume it has been done and take


 (x) =

 

 (x; t )

0

!

:

Following the methodology, we consider

� �
a (x; w) = � � (x) + 
 (x)w =

 
� � (x; t ) + 
 (x; t )w

t

!

=

 
� �

a (x; w; t )
t

!

:

Beware that Lemma 9.0.1 does not apply directly becauseS is not bounded, thus we cannot
directly conclude that there exists " > 0 such that � �

a is a di�eomorphism on Sa = S � B " .
However, the reader may check in the proof of [AEP14, Proposition 2] that if @��

@x(x; t ), 
 (x; t )

and @

@x(x; t ) are bounded onS, the Jacobian of� �

a is full-rank on Sa for some" su�ciently small.
This condition is often veri�ed in practice when the inputs are bounded. It follows that we can
reasonably assume Problem 1 solved, and leaving aside Problem 2, this leads to an observer of
the type (denoting � �

a (x; w; t ) rather than � �
a (x; t; w ))

_z {2

6
4

x̂
ŵ
t̂

3

7
5=

 
@��a

@(x; w; t )
(x̂; ŵ; t̂ )

! � 1  
' (� �

a (x̂; ŵ; t̂ ); x̂; u; y )
' 1(t̂; y )

!

where ' 1 should be an observer fort and we have

 
@��a

@(x; w; t )

! � 1

=

 @��a
@(x;w )

@��a
@t

0 1

! � 1

=

0

@

�
@��a

@(x;w )

� � 1

�
�

@��a
@(x;w )

� � 1 @��a
@t

0 1

1

A :

Of course, t being well known without any noise, we can replacêt by t and ' 1 by the constant
function 1. This �nally gives the "reduced order" observer (11.12).

11.3.2 Application to image-based aircraft landing

In [GBC + 15a, GBC+ 15b], the authors use image-processing to estimate the deviations of an
aircraft with respect to the run-away during a landing operation thanks to vision sensors such
as cameras and inertial sensors embarked on the aircraft. The objective is to make landing
possible without relying on external technologies or any knowledge about the run-away. In order
to estimate the position of the plane, the idea is to follow the change of position of particular
points and/or particular lines on the images provided by the cameras. A strategic choice of
those points/lines must be made in order to guarantee observability during the whole duration
of the landing operation : for instance, a point may disappear from the image, and a line can
stop moving on the image in some particular alignment conditions, thus providing no (or only
partial) information about the movement of the aircraft. A full study of those methods can be
found in [Gib16]. A possible choice ensuring observability is to follow on the image the position
of the two lateral lines of the run-away and the reference point at the end of the run-away. It



11.3. Generalization to a time-varying � � 143

gives the following model :
8
>>>>>>>>>><

>>>>>>>>>>:

_� 1 = � 1(� 1; � 1; t) + � 1(� 1; � 1; t)�
_� 1 = � 2(� 1; � 1; t) + � 2(� 1; � 1; t)�
_� 2 = � 1(� 2; � 2; t) + � 1(� 2; � 2; t)�
_� 2 = � 2(� 2; � 2; t) + � 2(� 2; � 2; t)�
_� 1 = ( VH � 1 � VX )�
_� 2 = ( VH � 2 � VY )�
_� = VH � 2

; y = ( � 1; � 1; � 2; � 2; � 1; � 2)

where (� i ; � i ) and (� 1; � 2) are the measured position on the image of the two lines and the point
respectively, the functions � and � are de�ned by

� 1(�; �; t ) = � ! 1� cos� � ! 2� sin � � ! 3

� 2(�; �; t ) = (1 + � 2)( ! 1 sin � � ! 2 cos� )

� 1(�; �; t ) = ( a sin � � bcos� )(v1 cos� + v2 sin � � v3� )

� 2(�; �; t ) = ( a� cos� + b� sin � + c)(v1 cos� + v2 sin � � v3� )

where the aircraft velocities v and ! expressed in the camera frame, the aircraft velocitiesVX ,
VY and VH expressed in the runway frame, and camera orientations(a; b; c) are known input
signals.

Denoting xm = ( � 1; � 1; � 2; � 2; � 1; � 2) the measured part of the state, we obtain a model with
state

x = ( xm ; � ) 2 R7

and dynamics of the form2

(
_xm = �( xm ; t) + �( xm ; t) �

_� = VH (t) � 2 ; y = xm ; (11.13)

where the action of the input u = ( a; b; c; v; w; VX ; VY ; VH ) is represented by a time-dependence3

to simplify the notations in the rest of this section. This system is observable if and only if the
unmeasured state� can be uniquely determined from the knowledge of the measured statexm .
From the structure of the dynamics, we notice that this is possible if the quantity

� (xm ; t) = �( xm ; t)> �( xm ; t) (11.14)

never vanishes. It is the case in practice, thanks to a sensible choice of lines and point (see
[Gib16] for a thorough observability analysis during several landing operations).

A high-gain observer

Assumptions

- The input signal u = ( v; w; VX ; VY ; VH ) and its �rst derivative are bounded in time.

- There exists a strictly positive number " and a compact subsetC of R7 such that for

2Note that whatever the number of chosen lines and points in the image, the model can always be written in
this form, only the dimensions of xm and the input change.

3This comes back to choosing one particular input law, but the reader may check that the same design works
for any input such that the observability assumption and the saturation by � in (11.18) are valid.
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where for each timet, we de�ne

St = f x 2 R7 ; � (xm ; t) � "g :

In other words, � remains greater than" along any solution of the system, making it observ-
able. Under this assumption, we know that the statex can be reconstructed from the measure-
ment xm and its �rst derivative. We thus consider the transformation � �

0 : R7 � R ! R12 made
of y and its �rst derivative i-e :

� �
0 (x; t ) = H 2(x; u(t)) =

 
xm

�( xm ; t) + �( xm ; t) �

!

: (11.16)

For any t in R, � �
0 (� ; t) is an injective immersion on St . Since u, _u and the trajectories are

bounded, we deduce from Theorem 5.2.1 and Remark 4 that� �
0 transforms the system into a

phase variable form (
_� m = � d
_� d = � 2(�; u (t); _u(t))

; y = � m (11.17)

where � m denotes the �rst six components of � and � d the six others, and � 2 can be de�ned by

� 2(�; � 0; � 1) = sat(L 2
f

h(� 0(�; t ); � 0; � 1); �) (11.18)

with f and h as de�ned in De�nition 5.2.1, � a bound of L 2
f

h(x; � 0; � 1) for x in C and (� 0; � 1)

bounded by the bound for (u; _u), and � 7! � 0(�; �) any locally Lipschitz function de�ned on R12

such that it is a left-inverse4 of x 7! � �
0 (x; �) for x in Xt .

We have the following observer for System (11.17):
8
<

:

_̂� m = �̂ d + Lk 1(y � �̂ m )
_̂� d = � 2(�̂; u; _u) + L 2k2(y � �̂ m )

; y = � m (11.19)

with k1; k2 > 0 and L su�ciently large. Although a left inverse � 0 of � �
0 can be found in that

case, and an estimatêx of x could be computed byx̂ = � 0(�̂; t ) as proposed by Theorem 2.2.1,
we would like to express the dynamics of this observer directly in thex-coordinates.

Observer in the given coordinates

Fictitious output Following the same idea as for the oscillator with unknown frequency, we start
by removing the injectivity singularity of � �

0 outside of St , i-e we look for an alternative function
� � which is an injective immersion onR7. Notice that the function

} (xm ; t) = max
n

" � � (xm ; t); 0
o4

(11.20)

is zero inSt and nonzero outside ofSt . According to (??), this function remains equal to 0 along
the solutions and therefore so does the �ctitious output

y7 = } (xm ; t)� :

It follows that y7 can be considered as an extra measurement traducing the information of
observability. Consider now the function

� � (x; t ) = ( � �
0 (x; t ) ; } (xm ; t)� ) :

4Take for instance � 0(�; t ) =
�

� m ; �( � m ) T ( � d � �( � m ;t ))
max f � ( � m ;t ) ;" g

�
.
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Unlike � �
0 (�; t), � � (�; t) is an injective immersion on the whole spaceR7 for all t. Indeed, �( xm ; t)

and } (xm ; t) cannot be zero at the same time so that the new coordinate} (x; t )� enables to
have the information on � when � is zero. Besides, its Jacobian

@��

@x
(x; t ) =

0

B
@

I 6� 6 06� 1

� �( xm ; t)
� } (xm ; t)

1

C
A (11.21)

is full-rank everywhere.
Immersion augmentation into di�eomorphism by Jacobian complementation. Following the

methodology presented in this Part III, we extend the injective immersion � � (�; t) into a dif-
feomorphism. The �rst step consists in �nding a C1 matrix 
 (x; t ) in R13� 6 such that the
matrix �

@��

@x
(x; t ) ; 
 (x; t )

�

is invertible for any x and any t. In others words, we want to complement the full-rank rect-
angular matrix @��

@x(x; t ) with 6 vectors in R13 which make it square and invertible. Thanks
to the identity block, it is in fact su�cient to �nd 6 independent vectors in R7 which comple-

ment the vector

 
�( xm ; t)
} (xm ; t)

!

. A �rst solution would be to implement Wazewski's algorithm on

R6 which is contractible, like in Example 9.3.1, but this leads to rather tedious computations.
Since Problem ~P[7; 1] is not in the list (9.8) of cases admitting universal formulas, we could
had another �ctitious output y8 = 0 like we did for the oscillator to recover a solvable problem
~P[8; 1]. We present here another path which does not necessitate lengthy computations nor an

additional output. The idea comes from the remark made in Section 11.1.3 that when

 
@��
@x
0

!

is full rank, it can always be complemented by

 
� I

@��
@x

>

!

because the resulting matrix has a

determinant equal to det
�

@��
@x

> @��
@x

�
6= 0 . In our case, we remark that the determinant of the

matrix

 
�( xm ; t) � I 6� 6

} (xm ; t) �( xm ; t)>

!

is equal to } (xm ; t) + �( xm ; t)T �( xm ; t) which never vanishes

by de�nition. Thus, a possible candidate for complementation is :


 (xm ; t) =

0

B
@

06� 6

� I 6� 6

�( xm ; t)>

1

C
A :

As recommended by Lemma 9.0.1, we now introduce the extension of� � de�ned on R7 � R6 � R
by

� �
e (x; w; t ) = � � (x; t ) + 
 (xm ; t)w : (11.22)

Besides, thanks to the fact that 
 does not depend on� , we have :

@��e
@(x; w)

(x; w; t ) =

0

B
@

Id6� 6 06� 1 06� 6

� �( xm ; t) � Id6� 6

� } (xm ; t) �( xm ; t)>

1

C
A

which is invertible for any (x; w) in R13 and any time t. In fact, as for the high gain observer
for the oscillator, � �

e (�; t) is a di�eomorphism on R13 such that � �
e (R13; t) = R13 for any t. Thus,

we have managed to transform an injective immersion� � (�; t) : R7 ! R13 into a surjective
di�eomorphism � �

e (�; �; t) : R13 ! R13.
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Observer in the given coordinatesAs suggested at the beginning of this section, we consider
the observer :

_z {"
x̂
ŵ

#

=
�

@��e
@(x; w)

(x̂; ŵ; t)
� � 1 �

' (� �
e (x̂; ŵ; t); x̂; t; y ) �

@��e
@t

(x̂; ŵ; t)
�

(11.23)

where ' is de�ned on R13 � R7 � R � R6 by

' (�̂; x̂; t; y ) =

0

B
@

�̂ d + Lk 1(y � �̂ m )
sat(L 2

f
h(x̂; u(t); _u(t)) ; �) + L 2k2(y � �̂ m )

� a�̂ a

1

C
A

with �̂ = ( �̂ m ; �̂ d; �̂ a) 2 R6 � R6 � R, a any strictly positive number. A result of a simulation is
given in Figure 11.3.

11.4 Conclusion

We have presented a method to express the dynamics of an observer in the given system coor-
dinates, thereby avoiding the di�cult left-inversion of an injective immersion. It assumes the
knowledge of an injective immersion and a converging observer for the immersed system through
Assumption O.

The idea is not to modify this observer dynamics but to map it back to the given coordinates
in a di�erent way. Our construction involves two tools : the augmentation of an injective
immersion into a di�eomorphism through a Jacobian complementation (Chapter 9) and the
extension of the image of the obtained di�eomorphism to enlarge the domain where the observer
solutions can go without encountering singularities (Chapter 10).

For those tools to be usable, some assumptions on the domain of injectivity must be veri�ed,
but we have seen how they can be ful�lled in practice through a wise choice of the transformation
� � , and how those tools also extend to the case where the transformation is time-varying.

To conclude from an implementation point of view, the tools presented in Chapter 9 to
augment an injective immersion into a di�eomorphism are su�ciently constructive and general
to be applicable in practice. We have even given a universal complementation method in this
chapter. The main limitation of this method rather appears when wanting to extend the image
of this di�eomorphism. Indeed, the only constructive result presented in Chapter 10 requires
this set to be precisely known and also to satisfy some extra conditions. Although we have
shown that it is sometimes possible to use an approximation, it lacks in generality and this
step constitutes a signi�cant di�culty in practice. Other solutions may exist and need to be
developed, in particular to keep the amplitude of the extra coordinatesŵ small to preserve the
invertibility of the Jacobian.
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(a) x̂ � x (b) ŵ for t 2 [0; 0:07]

(c) ŵ for t 2 [0:07; 2] (d) Value of F before and after applying �

Figure 11.2: Luenberger observer (11.8) witĥx1 = 0 :08, x̂2 = x̂3 = 0 , � 1 = 6 , � 2 = 9 , � 3 = 14,
� 4 = 15, and � �

e = � � 1 � � �
a instead of � �

a . The simulation was done with a variable step Euler
algorithm.
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(a) ei = x̂ i � x i (b) ŵi

Figure 11.3: Observer (11.23) with L = 10 and k1 = k2 = 1 . The simulation was run on
Simulink.



Part IV

Observers for permanent magnet
synchronous motors with unkown

parameters





Chapter 12

Short introduction to permanent
magnet synchronous motors

Chapitre 12 � Courte introduction aux moteurs synchrones à aimant permanent.
Dans ce chapitre, nous présentons rapidement le fonctionnement et le modèle d'un moteur syn-
chrone à aimant permanent (MSAP). En pratique, il est crucial de savoir estimer en ligne la
position du rotor et sa vitesse de rotation, ceci avec un minimum de capteurs pour des raisons
de coût et de contraintes mécaniques. En particulier, des chercheurs ont développé le contrôle
"sensorless", c'est-à-dire basé seulement sur les mesures des variables électriques (tensions et
intensités) et non mécaniques (angle du moteur, vitesse). En particulier, des observateurs de
type gradient ont été proposés et sont rappelés ici. Cependant, ces observateurs dépendent le plus
souvent de paramètres tels que la résistance et le �ux de l'aimant, qui peuvent varier signi�ca-
tivement avec la température. Il est donc important de trouver des observateurs de la position
du rotor qui sont indépendants de ces paramètres, voire qui en donnent une estimation : c'est
le problème considéré dans cette partie.

A Permanent Magnet Synchronous Motor is composed of a permanent magnet rotor
placed inside a stator made of windings whose repartition and currents are chosen in order
to create a rotating magnetic �eld in the airgap of the machine. A torque is then produced
on the permanent rotor magnet due to magnetic attraction, thus inducing the rotor to rotate.
Compared to other commonly used induction machines (see Figure 12.1), the absence of rotor
windings and external rotor excitation reduces the maintenance costs as well as losses in the
rotor, and makes PMSMs highly e�cient.

Figure 12.1: Permanent Magnet vs Induction Motor
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Using Joule's and Faraday's laws, a PMSM model expressed in a �xed stator frame reads

_	 = u � R i (12.1)

where 	 is the total �ux generated by the stator windings and the permanent magnet, (u; i )
are the voltage and intensity of the current in the �xed stator frame and R the stator winding
resistance. The quantitiesu, i and 	 are two dimensional vectors. The way the total �ux 	 is
related to the rotor angle � r di�ers depending on the geometry of the rotor and stator. When
the repartition of the windings and the pro�le of the magnet are perfectly symmetric, the motor
is said to benon-salient and the total �ux may be expressed simply as

	 = L i + �

 
cos�
sin �

!

(12.2)

where L is the stator inductance, � the magnet's �ux, and � = np� r the electrical phase, with
np the number of poles (winding pairs) of the stator. This relation implies

j	 � L i j2 � � 2 = 0 (12.3)

� = arg(	 � L i ) : (12.4)

This model may appear unorthodox to those who are rather used to models of the type

L
_z{
i = u � R i � � np ! r

 
� sin(np� r )
cos(np� r )

!

_� r = ! r

J _! r = � np i >

 
� sin(np� r )
cos(np� r )

!

� � L (12.5)

where J is the inertia of the rotor and � L the load torque. However, they should observe that
the electrical part of this model (�rst line) is actually obtained by plugging (12.2) into (12.1).
But this operation makes ! r appear and they are then forced to integrate it in the model with
the mechanical part (third line). The drawback is that it depends on two new parametersJ and
� L which must be either known or estimated. That is why we rather keep the model made of
(12.1)-(12.2).

To minimize the cost and increase the reliability of PMSMs, it is strategic to make progress
on estimating online the rotor position � r and speed! r = _� r , with a minimum of sensors and
fast algorithms. To this end, researchers have developed the so-called "sensorless" control which
uses no measurement of mechanical variables, only of electrical ones, namely(u; i ). Indeed, cost
as well as mechanical constraints often render the integration of position sensors troublesome,
or even impossible.

According to (12.4), in the case whereL and i are known, an estimate of� can be simply
recovered from an estimate of the total �ux 	 . Thus, it is enough to design an observer for the
system

_	 = u � R i ; y = j	 � Li j2 � � 2 = 0 ; (12.6)

with known inputs (u; i ) and where the information given by (12.3) is used as a measurement.
A review of the �rst steps in that direction was given in [AW06]) and a Luenberger observer
was proposed in [PPO08]. More recently in [LHN+ 10], was proposed the very simple gradient
observer

_̂	 = u � Ri � 2q(	̂ � Li )
� �

�
� 	̂ � Li

�
�
�
2

� � 2
�

; (12.7)

which turned out to be extremely e�ective in practice as rotor position estimator. However,
from a theoretical view point, it was proved in [OPA + 11] to be only conditionally convergent
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: it may admit several equilibrium points depending on the rotation speed! . In fact, later in
[MPH12], the author showed that the following minor modi�cation

_̂	 = u � Ri � 2q(	̂ � Li ) max
� �

�
� 	̂ � Li

�
�
�
2

� � 2 ; 0
�

(12.8)

enables to achieve global asymptotic stability thanks to convexity arguments.

All these observers typically require the knowledge of the resistanceR, magnet �ux � and
inductance L . Unfortunately while L may be considered known and constant (as long as there is
no magnetic saturation), R and � do vary signi�cantly with the temperature and these variations
should be taken into account in the observer. For example, for a given injected current, when the
magnet's temperature increases, its magnetic �ux decreases, and the produced torque becomes
smaller. Therefore, an online estimation of the magnet's �ux enables to :

- adapt the control law in real time and thus ensure a torque control which is robust to the
machine's temperature ;

- have an estimation of the rotor's temperature

- have an estimation of the magnet's magnetization degradation with time.

That is why e�orts have been made to look for position observers which do not rely on
the knowledge of those parameters, or even better, which also estimates them. For instance,
[HMP12, BPO15a] have proposed observers which are independent from the magnet �ux. We
complete this line of research in Chapter 13 by extending the gradient observer (12.7) with
the estimation of � : global convergence is established when the rotation speed stays away
from zero and its performances are compared to that of other existing observers. As for the
resistance, in [ROH+ 16], the authors propose and study via simulations an adaptive observer to
make the gradient observer previously mentioned independent from the resistance. However, the
convergence is not ensured and actually we show in Chapter 14 that the system is not observable
when R is unknown unless other informations are added. When those informations are available,
we propose a novel Luenberger observer.





Chapter 13

Rotor position estimation with
unknown magnet �ux

Chapitre 13 � Estimation de la position d'un rotor lorsque le �ux des aimants est
inconnu. Dans ce chapitre, nous proposons un nouvel observateur "sensorless" qui estime la
position du rotor sans avoir à connaître le �ux des aimants : seules les mesures des intensités et
courants, et les valeurs de l'inductance et de la résistance sont nécessaires. Cet observateur étend
l'observateur gradient introduit dans [LHN+ 10] en ajoutant l'estimation du �ux des aimants, et
le rend globalement convergent si la vitesse de rotation ne s'approche pas de zéro. Nous étudions
sa sensibilité aux incertitudes de résistance et inductance, ainsi qu'à la présence de saillance.
Ses performances en boucle ouverte sont il lustrées par des simulations sur des données réelles et
comparées à d'autres observateurs indépendants du �ux existant dans la littérature, à la fois en
terme de coût en calcul et de robustesse.
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In this chapter, we address the problem of estimating the rotor position of a PMSM
without relying on the knowledge of the magnet's �ux, i-e when only electrical measurements
and (approximate) knowledge of the resistance and inductance are available.

First steps in this direction are reported in [HMP12] with the design of a Luenberger observer
(see [Hen14] for a much more detailed analysis and Section 7.2.1), and in [BPO15a, BPO+ 15b,
BBP+ 16], with the design of an observer based on tools from parameter linear identi�cation. In
fact, we will show that those two observers rely on the same regression equation but the former
solves it at each time whereas the latter solves it as time goes on with a gradient-like scheme.
Convergence comes under an assumption of invertibility of the regressor matrix for the former,
and on a persistent excitation condition for the latter.

In the same line of research, we propose here a new observer which extends the gradient ob-
server from [LHN+ 10] with the estimation of the magnet's �ux, and makes it globally convergent
provided the rotation speed remains away from zero. We study its sensitivity to uncertainties
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on the resistance and inductance and to the presence of saliency. Its performances in open-loop
are illustrated via simulations on real data and compared to the other previously mentioned
magnet �ux independent observers in terms of computational cost and robustness.

The content of this chapter was presented in [BP17].

Notations The rotation matrix is denoted

R(� ) =

 
cos� � sin �
sin � cos�

!

:

13.1 Gradient observer

Since� is unknown in this chapter, we consider the system
8
><

>:

_	 = u � Ri
_� = 0
y = j	 � Li j2 � � 2

(13.1)

with inputs (u; i ), known parameters(R; L ), state (	 ; �) and measurementy which is constantly
zero. We introduce the corresponding gradient observer

8
>><

>>:

_̂	 = u � Ri � 2q(	̂ � Li )
� �

�
� 	̂ � Li

�
�
�
2

� �̂ 2
�

_̂� = q �̂
� �

�
� 	̂ � Li

�
�
�
2

� �̂ 2
� (13.2)

whereq is an arbitrary strictly positive real number. It is a straightforward extension of observer
(12.7) with the estimation of � .

Theorem 13.1.1.

Consider ( ; �) in R2 � (0; + 1 ) and inputs u; i : R ! R2 such that there exists strictly
positive numbers ! 0, ! 0 and ! 1 such that the solution (	(  ; t; u; i ); �) of (13.1) veri�es

0 < ! 0 � _� (t) � ! 0 ; •� (t) � ! 1

with
� (t) = arg(	(  ; t; u; i ) � Li (t)) :

For any strictly positive real number q, for any ( ̂; �̂ ) in R2 � (0; + 1 ), the solution
(	̂(  ̂; �̂ ; t ; u; i ); �̂(  ̂; �̂ ; t ; u; i )) of (13.2) satis�es

lim
t !1

j 	̂( t) � 	( t)j + j�̂( t) � � j = 0 ;

where we have used the abbreviation	̂( t) = 	̂(  ̂; �̂ ; t ; u; i ), �̂( t) = �̂(  ̂; �̂ ; t ; u; i ) and
	( t) = 	(  ; t; u; i ).

In other words, System (13.2) is an observer for System (13.1) for the solutions with a bounded
rotation speed which remains away from zero. Of course, takinĝ� as the argument of 	̂ � Li ,
we also obtain

lim
t !1

�̂ (t) � � (t) = 0 :

Proof : The proof of Theorem 13.1.1 is lengthy and technical, so we only give here the most important
steps. The whole proof is available in Appendix C.

Consider a solution (	 ; �) of (13.1), with � in (0; 1 ) and de�ne

� (t) = arg(	( t) � Li (t)) ;
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so that

	( t) = Li (t) + �

�
cos� (t)
sin � (t)

�
: (13.3)

Pick ( ̂; �̂ ) in R2 � (0; 1 ), and q > 0. To ease the notations, we denote the corresponding solution of
(13.2) (	̂( t ); �̂( t )) . According to (13.3), it is enough to prove that

lim
t !1

�
	̂( t ) � Li (t)

�
� �

�
cos� (t)
sin � (t)

�
= 0

and

lim
t !1

�̂( t ) = � :

To simplify our task, we transform the solution

�
Li + �

�
cos� (t)
sin � (t)

�
; �

�
into an equilibrium. Thus,

we carry out the analysis in the coordinates

�
X d

X q

�
= R (� � ) (	 � Li ) ;

�
X̂ d

X̂ q

�
= R (� � )

�
	̂ � Li

�
:

With (13.3), we obtain
�

X d

X q

�
=

�
�
0

�

and it is enough to show that

lim
t !1

X̂ d (t) = � ; lim
t !1

X̂ q(t) = 0 ; lim
t !1

�̂( t ) = � :

In those coordinates, the dynamics of the observer reads :

8
><

>:

_̂X d = ! X̂ q � 2qX̂ d

�
X̂ 2

d + X̂ 2
q � �̂ 2

�

_̂X q = � ! X̂ d + ! � � 2qX̂ q

�
X̂ 2

d + X̂ 2
q � �̂ 2

�

_̂� = q �̂
�
X̂ 2

d + X̂ 2
q � �̂ 2

�
(13.4)

where ! (t) = _� (t). The set 
 = R2 � (0; + 1 ) being forward invariant for these dynamics, we study the
behavior of its solutions when they are in 
 . The proof consists in �nding a Lyapunov function decreasing
along the solutions of (13.4), and proving convergence to (� ; 0; �) which is the only equilibrium point
in 
 . More precisely :

1.The function

V (X̂ d ; X̂ q ; �̂) =
�̂ 4

4
+

1
2

�̂ 2(X̂ 2
d + X̂ 2

q ) � � �̂ 2X̂ d +
� 4

4

is a Lyapunov function. It satis�es :

_V = � q �̂ 2(�̂ 2 � (X̂ 2
d + X̂ 2

q )) 2 � 0 :

2.Any solution of (13.4) starting in 
 is bounded and is de�ned in 
 for all t in [0; + 1 ). Then,
thanks to Barbalat's lemma,

lim
t ! + 1

�̂( t )( �̂( t )2 � (X̂ d (t)2+ X̂ q(t)2)) = 0 ; lim
t ! + 1

�̂( t )X̂ q(t) = 0 ; lim
t ! + 1

�̂( t )( X̂ d (t)� �) = 0 :

3.It is not possible to have lim inf
t ! + 1

�̂( t ) = 0 .

�

Theorem 13.1.1 tells us that unlike for observer (12.7), no convexi�cation is needed to achieve
global convergence of the gradient observer (13.2). Hence, even when the parameter� is known,
we may prefer to use observer (13.2) instead of observer (12.8). In this way, although the
observer state is augmented with�̂ , we get global convergence without knowing� .
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13.2 Alternative path

The observer presented in the previous section is based on System (13.1) which is nonlinear
because of its output function. Fortunately, this function is quadratic in (	 ; �) , and ( _	 ; _�) does
not depend on(	 ; �) . Hence linearity can be obtained by time derivation. Namely, we have

_y = 2 (	 � Li )T (u � Ri �
_z {

Li )

which is linear in 	 and independent from � . The new problem we face now is the presence of

the time derivative
_z {

Li . A well known �x to this, is to use a strictly causal �lter. Namely, let

_� = � � (� + y) ; yf = � + y (13.5)

with � any complex number with strictly positive real part. It is easy to check that the evaluation
of yf + ( c + 2Li )T 	 � (z + L 2ji j2), along any solution, decreases asexp(� �t ) when c and z are
solutions of (

_c = � �c � 2�Li � 2(u � Ri )
_z = � �z + cT (u � Ri ) � �L 2ji j2 :

(13.6)

So, instead of the design model (13.1), we can use

_	 = u � Ri ; y f = � (c + 2Li )T 	 + ( z + L 2ji j2) (13.7)

with inputs (u; i; c; z), state 	 and measurementyf . Also because of (13.5), we pickyf constantly
zero as we did above withy. System (13.7) can be seen as a linear time varying system and
therefore any observer design for such systems apply. It can be a Kalman �lter or more simply
the following gradient observer

8
><

>:

_c = � �c � 2�Li � 2(u � Ri )
_z = � �z + cT (u � Ri ) � �L 2ji j2
_̂	 = u � Ri + 
 (c + 2Li )

�
� (c + 2Li )T 	̂ + z + L 2ji j2

�
:

(13.8)

where 
 is an arbitrary strictly positive real number. In [BPO15a], the authors propose the
following non minimal version of this observer :

8
><

>:

_� 14 = u � Ri
_� 5 = � � (� 5 � j � 14 � Li j2)

_� 89 = 
 

�
y � 
 T � 89

� ; y = � � j� 14 � Li j2 � �� 5 (13.9)

with

	̂ = � 14 + � 89


 = � � (c + 2Li )

where c veri�es the dynamics (13.8) and we have the relation

z = � T
14(c + � 14) + � 5 :

with z satisfying (13.8).
Convergence of these observers (13.8) or (13.9) is guaranteed as long as
 satis�es a persistent

excitation condition which, as proved in [BPO15a], holds when the rotation speed is su�ciently
rich.

Inspired from nonlinear Luenberger observers, another observer is proposed in [HMP12]. It
consists in usingm �lters of the type (13.6), with poles � k , with k in f 1; : : : ; mg, to obtain m
equations in 	̂

(ck + 2Li )T 	̂ � (zk + L 2ji j2) = 0 (13.10)
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which are solved in a least square sense. It is proved in [Hen14] that the matrix of theck + Li
is full column rank when ! stays away from 0, m � 3 and the � k are chosen in a generic way.

Actually, observer (13.8), observer (13.9) of [BPO15a], or the one in [HMP12], are identical
except in their way of solving in 	̂ equations (13.10). The former two solve (13.10) with only
one � (m = 1 ) but dynamically along time. The later solves them at each time, with at least
two � (m � 2).

In the remainder of the chapter, we intend to compare the performances of observer (13.2)
introduced in the previous section with those of this other family of observers, in particular
observer (13.8).

13.3 Performances

13.3.1 Computational cost

We already see that the smaller dimension of observer (13.2) and its great simplicity of imple-
mentation provides a signi�cant advantage. Indeed, in our matlab simulations, CPU time was
found to be twice smaller than for the other observers presented in Section 13.2. This numerical
e�ciency constitutes an important feature since those observers are intended to run online where
processing power is often limited.

13.3.2 Sensitivity to the presence of saliency when i d is constant

According to [BC98], the simplest way to take saliency into account in the model of a PMSM is
to keep (12.1) but to replace the expression (12.2) of the total �ux by

	 = L 0i + L 1

 
cos 2� sin 2�
sin 2� � cos 2�

!

i + �

 
cos�
sin �

!

(13.11)

where L 1 is a second order inductance. Thanks to the identity
 

cos 2� + 1 sin 2�
sin 2� � cos 2� + 1

! 
cos� � sin �
sin � cos�

!

= 2

 
cos� 0
sin � 0

!

the above expression of	 can be rewritten as

	 � (L 0 � L 1)i = (� + 2 L 1i d)

 
cos�
sin �

!

(13.12)

with the notation

i dq =

 
i d

i q

!

= R(� � ) i : (13.13)

This shows that, when i d is constant, we recover exactly the design model (13.1) provided we
replaceL and � by

L s = L 0 � L 1 ; � s = j� + 2 L 1i dj :

Hence Theorem 1 holds in the case with saliency at least when the signals obtained from the
motor are such that i d is constant. Speci�cally, by implementing observer (13.2) with L s instead
of L , we directly obtain :

lim
t !1

j 	̂( t) � 	( t)j + j�̂( t) � � sj = 0 :

This means that 	̂ converges to	 and �̂ to the "equivalent �ux" � s. But this time, it is not
su�cient to compute the argument of 	̂ � L si to obtain an estimate of � , since according to
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(13.12), it converges either to� or � + � depending on the sign of� + 2 L 1i d. In fact, de�ning
� 0 as

� 0 = arg(	 � L si )

and i dq;0 as

i dq;0 =

 
i d;0

i q;0

!

= R(� � 0) i

we have :

- if � + 2 L 1i d > 0, then � s = � + 2 L 1i d, � 0 = � , i d;0 = i d and � s � 2L 1i d;0 = � > 0

- if �+2 L 1i d < 0, then � s = � � � 2L 1i d, � 0 = � + � , i d;0 = � i d and � s � 2L 1i d;0 = � � < 0.

Therefore, computing
�̂ 0 = arg( 	̂ � L si )

and î dq;0 de�ned by

î dq;0 =

 
î d;0

î q;0

!

= R(� �̂ 0) i ;

and taking
�̂ = �̂ 0 if �̂ � 2L 1î d;0 � 0
�̂ = �̂ 0 + � otherwise ;

we obtain
lim

t !1
�̂ (t) � � (t) = 0 :

This convergence is a clear argument in favor of observer (13.2) with respect to observer (12.8).
Indeed, the �exibility provided by the estimation of � enables to apply the same observer to
salient motors without losing convergence of� . The same conclusions hold for the observers
presented in Section 13.2. Not to be forgotten, all this holds wheni d is constant.

13.3.3 Sensitivity to errors on R and L when (i d; iq; ! ) is constant

In Theorem 1, we claimed convergence for observer (13.2) assuming perfect knowledge of the
resistance and the inductance and the absence of saliency. Then, in the latter subsection, we
extended this result to salient models as long as the current in thedq frame i d is constant.
Given the fact that the non salient models can easily be obtained from the salient ones by
taking L 1 = 0 , we keep here the more general model with saliency made of (12.1) and (13.11).

In this section, we study the possible consequences of using in the observers approximations
R̂ and L̂ of R and L s. For this we restrict our attention to the case where R(� � ) i = i dq and
! are constant. This con�guration is often considered in practice, since it corresponds to a
constant rotation speed with a constant load torque. In this case, the model has an asymptotic
behavior given by

u = R(� )udq ; i = R(� )i dq ; 	 = R(� )	 dq

where udq, i dq and 	 dq are constants satisfying

!J 	 dq = udq � Ri dq ; 	 dq � L si dq =

 
� s

0

!

where

J =

 
0 � 1
1 0

!

:

Let 	 eq be de�ned as

	 eq =
1
!

J � 1R(� )(udq � R̂i dq)

It satis�es
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a) _	 eq = u � R̂i

i-e the same dynamics as	 but with R̂ instead of R.

b) 	 eq � L̂i = R(� )
�

1
!

J � 1
�
udq � R̂i dq

�
� L̂i dq

�

| {z }
constant

: (13:14)

Thus, with � eq the constant real number de�ned as

� eq =
�
�
� 1

! J � 1
�
udq � R̂i dq

�
� L̂i dq

�
�
�

=

�
�
�
�
�

 
� s

0

!

+
�
[R � R̂]J � 1

! + L s � L̂
�

i dq

�
�
�
�
�

we have
j	 eq � L̂i j2 � � 2

eq = 0 :

It follows that (	 eq; � eq) is solution of the model (13.1) if we replace(R; L ) by (R̂; L̂ ). So,
according to Theorem 13.1.1, the observer (13.2), implemented witĥR and L̂ , gives

lim
t !1

j 	̂( t) � 	 eq(t)j + j�̂( t) � � eqj = 0 :

Hence �̂ converges to

�
�
�
�
�

 
� s

0

!

+
�
[R � R̂]J � 1

! + L s � L̂
�

i dq

�
�
�
�
�
. And with �̂ computed as the argu-

ment of 	̂ � L̂i , we have asymptotically

�
�
� 	̂ � L̂i

�
�
�

 
cos(̂� � � )
sin(�̂ � � )

!

= R(� � )
�
	 eq � L̂i

�

=
1
!

J � 1
�
udq � R̂i dq

�
� L̂i dq

=

 
� s

0

!

+

 

[R � R̂]
J � 1

!
+ L s � L̂

!

i dq ; (13.15)

where we have used (13.14). In other words the error̂� � � converges to the argument of 
� s

0

!

+
�
[R � R̂]J � 1

! + L s � L̂
�

i dq. Up to the �rst order, this is exactly the same result as the

one obtained in [Hen14] for the Luenberger observer presented in [HMP12]. Of course we recover
the fact that, without any errors on R and L, the asymptotic value of �̂ is � s and �̂ converges
to � .

We illustrate formula (13.15) via simulations with ideal data obtained for L = 0 :65 mH,
R = 0 :167 
 , � = 7 :3 mWb, i d = � 3:46 A, i q = 6 A, for two di�erent regimes. The results
are given in Table 13.1 for observers (13.2) and (13.8). Both observers were implemented with
an Euler scheme withdt = 1 :2 10� 4 s and give similar results. The reader may check that the
absolute error on � and the relative error on � correspond exactly to the expected theoretical
errors.

13.4 Tests with real data

To illustrate the results above about the sensitivity with respect to the parameters, to saliency,
but also to noise, we apply in open-loop (and o�ine) the observers (13.2) and (13.8) to real data
obtained from two PMSM used in test beds at IFPEN : Motor 1 and Motor 2. The available data
are the measurements of voltagesum and currents i m in the �� �xed frame, the measurement
of the rotor position � m , the physical parameters given in Table 13.2.
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R + 1%R L + 1%L

! Obs ~� (rad) ~� =� ~� (rad) ~� =�

500
rpm

(13.2) 0.015 2:6 % 5:4 10� 3 0:3 %

(13.8) 0.015 2:6 % 5:2 10� 3 0:3 %

2000
rpm

(13.2) 3:8 10� 3 0:7 % 5:4 10� 3 0:3 %

(13.8) 3:3 10� 3 0:6 % 4:9 10� 3 0:3 %

Table 13.1: Sensitivity of observers (13.2) and (13.8) with respect toR and L at two di�erent

electrical rotation speeds with the notation ~� = j�̂ � � j and ~� =� = j �̂ � � j
� .

Parameter Motor 1 Motor 2

Regime variable : Figure 13.1 constant : 2000 rpm

L d 0:72 mH 0:142 mH

L q 0:78 mH 0:62 mH

� 8:94 mWb 18:5 mWb

R 0:151 
 0:023 


Pairs of poles (np) 10 2

Table 13.2: Parameters for Motor 1 and 2.

The norms of um and i m for each motor are given in Figure 13.2. Note that unlike Motor 2,
Motor 1 is submitted consecutively to four regimes : around 150 rpm, 450 rpm, 1000 rpm and
�nally 1500 rpm (see Figure 13.1).

The motors di�er in terms of saliency. According to [BC98], L 0 and L 1 in (13.11) are given
by

L 0 =
L d + L q

2
; L 1 =

L d � L q

2
:

and therefore
L s = L 0 � L 1 = L q :

We conclude that saliency is weak for Motor 1 (L 1
L 0

� 4%), but dominant for Motor 2 ( L 1
L 0

� 80%).
We have implemented the observers using the measured valuesum and i m as u and i , and

an explicit Euler scheme with the sample time (dt1 = 10 � 4 s, dt2 = 2 10� 5 s). We chose
the parameters of the observers to ensure the responses have all approximately the same time
constant (
 (13:2) = 20000, 
 (13:8) = 50000, � = 50) and so that convergence is obtained in
less than two rotations of the motor. The results are presented in Figures 13.3-13.4. The
performances are globally better for Motor 1 than Motor 2, but it is mainly due to the fact that
the data were noisier for the latter.

For � (Figure 13.3), both observers provide similar results, with a �nal oscillatory error of
amplitude smaller than 0:05 rad for Motor 1 ( 0:09 rad for the last regime) and0:12 rad for Motor
2. But (the mean value of) the estimation �̂ does not converge to the measurement� m . There
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are static errors. They are likely due, in part at least, to an o�set in the sensor for� m . But there
is more since, according to Figure 13.3(a), these biases depend on the regime. One explanation
comes from (13.15) where the regime! appears explicitly. Another possible explanation has
been proposed and studied in [Hen14]. It is the e�ects of the dynamics of the sensors providing
the measurementsum and i m . When they are modelled simply by

_i m = � � i (i m � i ) ; _um = � � u(um � u)

the phase shift of these �rst order systems (depending on the regime) is directly translated in a
static error on �̂ and consequently on�̂ . We refer the reader to [Hen14] for more details.

Concerning � (Figures 13.4), although both observers provide again the same mean for the
�nal errors, the transient of observer (13.8) seems to be more oscillatory. This di�erence could
be explained by the fact that �̂ is directly estimated by observer (13.2) while it is reconstructed
from the norm of 	̂ � L qi for observer (13.8). Here again (the mean value of)̂� does not tend
to � . Let us concentrate on the data from Motor 2 and from the �rst regime of Motor 1, where
the norm of the current is constant. Assuming that the o�set �̂ � � m mentioned above is only
due to the position of the sensor and therefore that�̂ is actually the correct rotor position, we
compute i d as the �rst component of R(� �̂ )i and �nd

Motor 1: i d;1 = � 4:2A
Motor 2: i d;2 = � 201A :

If the values of R, L d, L q and � in Table 13.2 are correct, we can expect̂� to tend to � s =
j� + 2 L 1i dj, i-e

Motor 1: � s;1 = 9 :2mWb
Motor 2: � s;2 = 115 mWb :

This is veri�ed for both motors on Figures 13.4(a) (�rst regime) and 13.4(b). We could conclude
that the values of R and L used in the observers are correct. Unfortunately we cannot go further
in the analysis since, for the other regimes in Figure 13.4(a), the steady state is not reached.

13.5 Conclusion

We have introduced a new rotor position observer for sensorless permanent magnet synchronous
motors (PMSM). It is designed from a non salient model and uses measurements of voltages and
current, and estimations of resistance and inductance. But it does not require the knowledge of
the magnet �ux. We have claimed its convergence in an ideal context and for a rotating motor.

We have compared it with the equivalent observers proposed in [HMP12, Hen14] and [BPO+ 15b].
The main di�erence is that this new observer is less demanding in terms of computations. On the
other hand it gives qualitatively the same kind of performance, in terms of speed of convergence,
sensitivity to errors in the resistance or the inductance and also in presence of saliency.

At least three important issues remain to be addressed:
a) Sensitivity to measurement noise or more interestingly the de�nition of a tuning policy in

presence of such disturbances. This kind of study has been made in [Hen14] for the Lu-
enberger observer proposed in [HMP12] . The same kind of tools should be useful in our
context.

b) Use of the observer in closed loop. Tests via simulations or test beds for the observers in
[HMP12] and [BPO+ 15b] are reported in those papers. But as far as we know no theoretical
results are yet available.

c) Extension to non salient models. We are unaware of any observer for this case.
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Figure 13.1: Regime of Motor 1 (rpm).

(a) Motor 1 (b) Motor 2

Figure 13.2: Norm of the voltageum (V) and current i m (A).
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(a) Motor 1 (b) Motor 2

Figure 13.3: Error �̂ � � m (rad) given by observers (13.2) and (13.8) , where� m is a measurement
of � .

(a) Motor 1 (b) Motor 2

Figure 13.4: �̂ given by observers (13.2) and (13.8) compared to� .





Chapter 14

Rotor position estimation with
unknown resistance

Chapitre 14 � Estimation de la position du rotor lorsque la résistance est inconnue.
Nous montrons dans ce chapitre que contrairement à(	 ; �) , le couple(	 ; R) n'est pas observable
avec la seule information quey(t) = 0 pour tout t. Cependant, lorsque! et i d sont non nuls, il
ne peut exister que six solutions indistingables maximum, la resistance étant l'une des racines
d'un polynôme de degré 6. De plus, dans le cas particulier où! , i d et i q sont constants, nous
prouvons que le nombre de solutions possibles est réduit à deux, avec deux valeurs bien identi�ées
pour la résistance, qui sont distinctes sauf sii q est nul. Il apparaît alors que ces deux solutions
peuvent en fait être dissociées si le signe dei q (c'est-à-dire le mode d'utilisation du moteur)
est connu. Cette propriété nous permet de proposer une stratégie d'observation, basée sur une
synthèse de Luenberger. Ses performances sont testées et il lustrées en simulation.
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We have seen in the previous chapter that it is possible to estimate both	 and � at the
same time. In this chapter, we suppose the magnet �ux� known, but the resistanceR unknown
and we wonder if it is possible to estimate both	 and R. So we consider the system

8
><

>:

_	 = u � R i
_R = 0
y = j	 � L i j2 � � 2

(14.1)

with inputs (u; i ), known parameters(� ; L ), state (	 ; R) and the knowledge that y is constantly
zero.
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To ease the reading of this chapter, some of the proofs are summarized with only their most
important steps, or even omitted when they are of no particular interest. Their detailed version
is available in Appendix D.

14.1 Observability

Before looking for an observer, we need to check the observability of the system. To do that, we
consider the time-varying system

8
><

>:

_x = u � x3 i
_x3 = 0
y = jx � L i j2 � � 2

(14.2)

with L and � given, and whereu and i are time signals such that there exists a particular
solution (x = 	 ; x3 = R) of (14.2) verifying

y(t) = 0 8t :

This means that there exists a (unique) time-signal� such that for all t,

	( t) = L i (t) + �

 
cos(� (t))
sin(� (t))

!

: (14.3)

In the following, we denote

z =

 
cos�
sin �

!

; i dq =

 
i d

i q

!

= R(� � ) i ; ! = _� :

We want to know whether, given the time signals(u; i ) and the parameters(L; �) , the particular
solution (	 ; R) is the unique solution to System (14.2) verifying y(t) = 0 for all t. Note that
this is somehow a weak notion of observability since it is for a particular trajectory ofy.

14.1.1 A �rst observability result

We start from the following result :

Theorem 14.1.1.

If

a) for all t, ! (t) = 0

or

b) for all t such that ! 6= 0 , i d(t) = 0 , i q(t) 6= 0 and !
i q

is constant

there exists an in�nite number of solutions to System (14.2) verifying y(t) = 0 for all t.
Otherwise, if besidesji (t)j 6= 0 for all t, there exist at most 6 solutions.

Proof : Consider a solution (x; x 3) to System (14.2) verifying for all t

0 = y(t) = jx(t) � Li (t)j2 � � 2 :

x is necessarily of the form

x(t) = x0 +

Z t

0

u(� )d� � x3

Z t

0

i (� )d�

with
_x0 = 0 ; _x3 = 0 ;
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and �nding (x; x 3) is equivalent to �nding (x0 ; x3). It follows that for all t

0 = jx(t) � Li (t)j2 � j x0 � Li (0) j2

= [ x(t) � x0 � L (i (t) � i (0))] > [x(t) + x0 � L (i (t) + i (0))]

= ~� (x3 ; t )> [2(x0 � Li (0)) + ~� (x3 ; t )]

where we have de�ned

~� (x3 ; t ) =

Z t

0

u(� )d� � x3

Z t

0

i (� )d� � L (i (t) � i (0)) : (14.4)

We deduce that for any time t,

2~� (x3 ; t )> (x0 � Li (0)) = � ~� (x3 ; t )> ~� (x3 ; t ) = �j ~� (x3 ; t )j2 :

Therefore, unlessx3 makes ~� (x3 ; t1) and ~� (x3 ; t2) colinear for any (t1 ; t2), there exits at most one possible
value of x0 for each x3 .

The rest of the proof then consists in showing that 1 :

1.for x3 such that ~� (x3 ; :) is not constant, there exist couples (t1 ; t2) such that ~� (x3 ; t1) and ~� (x3 ; t2)
are not colinear. x0 is then uniquely determined by the value of x3 , which must be the root of a
polynomial of degree 6. Therefore, there are at most 6 solutions (x; x 3) such that ~� (x3 ; :) is not
constant.

2.to the values of x3 such that ~� (x3 ; :) is constant, is associated an in�nite number of solutions
(x; x 3).

3.if x3 makes ~� (x3 ; :) constant, it must satisfy for all t

(R � x3)i d (t) = 0

(R � x3)i q(t) = � ! (t)� : (14.5)

We can thus distinguish the following cases :

-if ! (t) = 0 for all t , there exists at least one constant value of x3 solution to System (14.5) for all
t . Thus, ~� (x3 ; �) is constant and there is an in�nite number of solutions (x; x 3).

-if for all t such that ! (t) 6= 0 , i d (t) = 0 , i q(t) 6= 0 , and !
i q

is constant, there exists a constant value
of x3 solution to System (14.5) for all t and thus an in�nity of solutions (x; x 3).

-otherwise, there exist no solutions to System (14.5). Therefore, ~� (x3 ; �) cannot be constant and
there are at most 6 solutions (x; x 3) to our observability problem.

�

We recover the fact that the system is not observable when the rotating speed is zero (this
is the case even whenR is known). In the usual case where there exists at least a timet for
which ! (t)i d(t) 6= 0 , this result says that there exist maximum 6 possible solutions(x; x 3), with
x3 given by the roots of a polynomial of order 6. In order to conclude that the system is not
observable, we need to know more about those roots. In particular, the polynomial may not
have 6 distinct real roots and even if it does, they may not be constant with time.

To get more information, one could study in detail this polynomial of order 6 obtained in
the proof. But its expression is too complex and the next section shows how a stronger notion
of di�erential observability enables to get a more precise idea of this polynomial.

14.1.2 Di�erential observability of order 3

Let us consider the stronger observability question : is(	( t); x3) the only solution at time t
of y(t) = _y(t) = •y(t) = 0 ? Of course, in the cases of non observability identi�ed in Theorem
14.1.1, the answer is no. But we want to study in more details what happens in the other cases,
in particular when there exists a time t such that

ji (t)j 6= 0 and ! (t) 6= 0 and i d(t) 6= 0 or i q(t) = 0 ;

1See Appendix D.1.1.
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which is equivalent to
! (t) 6= 0 and i d(t) 6= 0 :

Consider the function H 3 made of
�
y(t); _y(t); •y(t)

�
:

H 3(x; x 3; t) =

0

B
B
B
@

jx � L i (t)j2 � � 2

2(x � L i (t))> (u(t) � x3 i � L
_z{
i (t))

2(x � L i (t))> ( _u(t) � x3
_z{
i (t) � L

•z{
i (t) + 2 ju(t) � x3 i (t) � L

_z{
i (t)j2

1

C
C
C
A

:

Our problem consists in looking for the solutions in(x; x 3) of

H 3(x; x 3; t) = 0 :

We have the following result :

Theorem 14.1.2.

Consider a time t such that ! (t) 6= 0 and i d(t) 6= 0 . There are as many solutions(x; x 3) to
the equation

H 3(x; x 3; t) = 0 ;

as the number of real roots of the following polynomial of order 6 :

P(x3; t) = ! (t)6� 6

2

6
4

0

@1 �
(R � x3)

! (t)�

0

@
_z {�
i d

!

�
(t) � 2i q(t)

1

A +
(R � x3)2

! (t)2� 2 � (t)ji (t)j2
1

A

2

�

 

1 +
(R � x3)

! (t)�
2i q +

(R � x3)2

! (t)2� 2 ji (t)j2
! 3

3

5 (14.6)

where2

� (t) =
1

! (t)

�
i (t)> J

_z {
i (t)

�

ji (t)j2
; J =

 
0 1

� 1 0

!

:

Proof : It is appropriate to introduce the following degree one polynomial of x3

� (x3 ; t ) = u(t) � x3 i (t ) � L
_z{
i (t ) ; (14.7)

so that H 3 actually reads

H 3(x; x 3 ; t ) =

0

@
jx � L i (t)j2 � � 2

2� (x3 ; t )> (x � L i (t))

2 _� (x3 ; t )> (x � L i (t)) + 2 j� (x3 ; t )j2

1

A :

It is interesting to note that � (x3 ; t ) = _~� (x3 ; t ), where ~� is de�ned in (14.4), and what is done in this
proof is somehow the di�erential version of the proof of Theorem 14.1.1 To study how many solutions
in (x; x 3) the equation H 3(x; x 3 ; t ) = 0 has, we note that the second and third component is a linear
system in x � L i . So our approach is to solve this system and replace in the �rst component. This gives
a function of x3 only. Hence the �rst question is invertibility of the linear system, i.e. colinearity of
� (x3 ; t ) and _� (x3 ; t ).

Assume that � (x3 ; t ) is non zero and is colinear with _� (x3 ; t ), namely _� (x3 ; t ) = �� (x3 ; t ). Then,
H 3(x; x 3 ; t ) = 0 gives

� (x3 ; t )> (x � Li (t)) = 0 ; �� (x3 ; t )> (x � Li (t)) = �j � (x3 ; t )j2

2 � is the ratio between ! and the rotation speed of i .
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and necessarily � (x3 ; t ) = 0 which is impossible. Therefore, colinearity can only happen if � (x3 ; t ) = 0 .
But di�erentiating (14.3) with respect to time and combining this expression with (14.7), we get

� (x3 ; t ) = � ! (t)� Jz(t) + ( R � x3)i (t) : (14.8)

By imposing � (x3 ; t ) to be zero and multiplying by R (� � ), we recover System (14.5) which does not
admit any solution if ! (t) and i d (t) are nonzero. We conclude that for all x3 , � (x3 ; t ) and _� (x3 ; t ) are
not colinear.

It follows that we can get x from the second and third components of H 3 , namely

(x � L i (t)) > � (x3 ; t ) = 0

(x � L i (t)) > _� (x3 ; t ) = �j � (x3 ; t )j2 (14.9)

i-e

x � L i (t) =
j� (x3 ; t )j2

� (x3 ; t )> J _� (x3 ; t )
J� (x3 ; t ) :

Inserting this expression in the �rst component of H 3 gives

� 2 =

�
�
�
�

j� (x3 ; t )j2

� (x3 ; t )> J _� (x3 ; t )
J� (x3 ; t )

�
�
�
�

2

=
j� (x3 ; t )j6

[� (x3 ; t )> J _� (x3 ; t )]2

and x3 is a root of the following polynomial

P (x3 ; t ) = � 2 [� (x3 ; t )> J _� (x3 ; t )]2 � j � (x3 ; t )j6 :

Di�erentiating (14.8), we get

_� (x3 ; t ) = � _! (t)� Jz(t) � ! (t)2 � z(t) + ( R � x3)
_z{
i (t ) ; (14.10)

which yields

det
�

� (x3 ; t ) ; _� (x3 ; t )
�

= � (x3 ; t )> J _� (x3 ; t )

= ! 3 � 2 � (R � x3)�

�
! 2 i > Jz � _! i > z + !

_z{
i

>

z

�
+ ( R � x3)2 i > J

_z{
i

= ! 3 � 2 � (R � x3)� ! 2

"

� 2i q +
_z{
i d

!

#

+ ( R � x3)2 i > J
_z{
i (14.11)

where we have used the fact that i > z = i d and i > Jz = � i q . Inserting those expressions in the expression
of P , we get the polynomial (14.6). The coe�cient of degree 6 is ji j6 which is non zero by assumption.
We conclude that there are at most 6 possible values for x3 , and since the value of x is imposed by that
of x3 , we get the result. �

With this result, we are not much further advanced than with Theorem 14.1.1, but at least
we have a more precise expression of the polynomial. The reader may check in particular that
x3 = R is a possible root. But since the degree is even, there is at least another real root (which
can be equal toR too). In order to have a better idea of those roots, we study the usual case
where ! , i d and i q are constant.

14.1.3 Particular case where ! , i d and i q are constant

We have the following corollary :

Corollary 14.1.1.

Assume! , i d and i q are constants such that! 6= 0 and i d 6= 0 . P has only two roots given
by

x3 = R ; x3 = R +
2� ! i q

ji j2
:

Therefore, the equation H 3(x; x 3; t) = 0 admits one solution if i q = 0 and two distinct
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solutions if i q 6= 0 .

Proof : In this particular case, i > J
_z{
i = ! ji j2 so that � (t) = 1 and

P(x3) = � ! 6 � 6

�
1 +

(R � x3)
! �

2i q +
(R � x3)2

! 2 � 2
ji j2

� 2
(R � x3)

! �

�
2i q +

(R � x3)
! �

ji j2
�

:

The polynomial ji j2X 2 + 2 i qX + 1 has a discriminant equal to � 4i 2
d < 0 and does not admit any real

root. The conclusion follows. Note that in this case, according to (14.11), P also writes

P(x3) = � � 2 det
�

� (x3) ; _� (x3)
� 2 (R � x3)

! �

�
2i q +

(R � x3)
! �

ji j2
�

: (14.12)

�

The conclusion from this theorem is that the system is not di�erentially observable of order
3 unlessi q = 0 . This does not mean that the system is not observable because the solution
corresponding to x3 = R + 2� ! i q

j i j2 may not be admissible for System (14.2). Actually, it turns
out that both solutions are truly indistinguishable :

Theorem 14.1.3.

Assume ! , i d and i q are constants such that ! 6= 0 and i d 6= 0 . There exist exactly two
indistinguishable solutions (x; x 3) to System (14.2) verifying y(t) = 0 for all t. They are of
the form (	 ; R) and (	 � ; R� ) with

R� = R +
2� ! i q

ji j2
:

Proof : See Appendix D.1.2. �

We conclude that the system is not observable ifi q 6= 0 . However, the problem is well-
identi�ed with only two possible solutions and the following result shows how they can be
dissociated by adding an extra information, namely the sign ofi q.

Theorem 14.1.4.

Assume ! , i d and i q are constants such that ! 6= 0 and i d 6= 0 . Consider both solutions
(	 ; R) and (	 � ; R� ) given by Theorem 14.1.3, and their associated3 (�; i dq), (� � ; i dq;� ). We
have

i d;� = i d

i q;� = � i q

so that both solutions can be distinguished by the sign of their correspondingi q.

Besides, if(R̂; �̂ ) is is one of the solutions
n

(R; � ); (R� ; � � )
o

, then the other solution is4

0

@R̂ +
2� !̂

ẑ{
i q

ji j2
; �̂ + arctan 2

 

2
ẑ{
i q

ẑ{
i d ; 1 � 2

ẑ{
i q

2
! 1

A :

Proof : See Appendix D.1.3. �

3 i dq;� =

�
i d;�

i q;�

�
= R (� � � ) i :

4
ẑ {
i dq =

 ẑ{
i d
ẑ{
i q

!

= R (� �̂ )i
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We conclude that the additional information of the sign of i q makes the system observable !
If fact, the sign of i q determines the mode of use of the machine : ifi q > 0, the torque is positive
and the machine acts as a motor, whereas ifi q < 0, the torque is negative and the machine acts
as a generator. In other words, both solutions can be distinguished if we know the mode of use
of the motor.

This result also says that if an estimation R̂ among f R; R � g is available (for instance thanks
to an observer), it is possible to �nd the other candidate, at least when the rotation speed!
is known or estimated. Therefore, if the sign ofi q is known or if an imprecise sensor gives an
idea of � , the right solution can be picked online. Of course, the smalleri q the more di�cult
to know its sign or to choose between� and � � , but also the smaller the error if we choose the
wrong one...

Remark 18 In fact, from a physical point of view, those two values ofR correspond to two
systems with same total energy but with di�erent energy repartition. Indeed, the dynamics of
a PMSM in the dq-coordinates can be modeled by

8
>><

>>:

L
_z{
i d = � Ri d + !Li q + ud

L
_z{
i q = � Ri q � !Li d � ! � + uq

_! = � i q � �

where � is the external torque. The total energy of the system varies along

L
2

_z {
i 2
d + i 2

q + ! 2 = � R(i 2
d + i 2

q) + i > u � � ! = � Rji j2 + i > u � � ! :

Thus, an equilibrium with i d, i q and ! constant is such that

� Rji j2 + i > u � � ! = 0 ; � i q = � :

Now, either � = � 0 > 0, in which caseR = u> i � � 0 !
j i j2 , either � = � � 0, and R = u> i + � 0 !

j i j2 . The

two values of R di�er by 2!� 0
j i j2 , i-e 2! � ji q j

j i j2 , which is exactly what we found in our observability
analysis. We conclude that both solutions have the same total energy, but in the �rst one energy
is produced by the motor and lost in friction, and in the second one external energy is given to
the motor and is dissipated in the motor by a larger resistance.

We conclude from this observability analysis that System (14.2) is not observable when! or
i d remains at 0. However, when! and i d are nonzero, the number of indistinguishable trajectories
is reduced to maximum 6 : the possible values ofR are the roots of a polynomial P of order
6 given by (14.6). Unfortunately, we have not been able to say more about those roots unless
! , i d and i q are constant. In that case, there are exactly two indistinguishable trajectories and
they can be distinguished with additional information on the resistance or simply the sign ofi q.
In the next section, we propose an algorithm to estimate those solutions based on a Luenberger
observer.

14.2 Observer design

For � in R�
+ , we de�ne the function

T� (x; x 3; t) = � 2 x> x + � c � (t)> x + � x 3 b� (t)> x + a� (t)x3 + d� (t)x2
3 (14.13)

on R2 � R+ � R, with a� , b� , c� , and d� the outputs of the following �lters :

_a� = � (� a� + c>
� i � b>

� u) (14.14)
_b� = � (� b� + 2 i ) (14.15)

_c� = � (� c� � 2u � 2�Li ) (14.16)
_d� = � (� d� + b>

� i ) : (14.17)
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We have the following result :

Lemma 14.2.1.

For any � in R�
+ , for any initial conditions in the �lters (14.14)-(14.17), any solution (	 ; R)

to System (14.1) such that y(t) = 0 for all t, and any solution Z � to the dynamics

_z� = � (� z� + c>
� u � � 2L 2ji j2 + � 2� 2) (14.18)

verify
lim

t !1
Z � (t) � T� (	( t); R; t ) = 0 :

Proof : Straightforward computations show that t ! T� (	( t); R; t ) follows the dynamics (14.18), hence
the result. �

This means that by implementing �lters (14.14)-(14.17) and (14.18) with any initial con-
ditions, one can obtain an estimate ofT� (	( t); R; t ). Since our goal is to estimate(	 ; R), we
are interested in the injectivity of the function T� . Theorem 7.1.2 tells us that by choosing
a su�ciently large number m of eigenvalues� i , the function T = ( T� 1 ; :::; T� m ) is injective if
the system is backward-distinguishable. We have seen that when! , i d and i q are constant,
two states (	 ; R) and (	 � ; R� ) are not distinguishable by the dynamics, and thus necessarily
T(	( t); R; t ) = T(	 � (t); R� ; t) for all t. This means that it is hopeless to prove the injectivity
of T, but it may still be possible to recover the (at most 6 !) possible values of(	 ; R).

14.2.1 An algorithm for the inversion of T

Consider three strictly positive real numbers � 1, � 2, � 3. We deduce from Lemma 14.2.1 that by
de�ning the function

T(x; x 3; t) =

0

B
@

T� 1 (x; x 3; t)
T� 2 (x; x 3; t)
T� 3 (x; x 3; t)

1

C
A = m� x> x + � ( c(t) + x3 b(t)) x + a(t) x3 + d(t) x2

3 (14.19)

on R2 � R � R, we have
lim

t !1
Z (t) � T(	( t); R; t ) = 0 ;

where we have denoted

� =

0

B
@

� 1 0 0
0 � 2 0
0 0 � 3

1

C
A ; Z =

0

B
@

Z � 1

Z � 2

Z � 3

1

C
A ; m� =

0

B
@

� 2
1

� 2
2

� 2
3

1

C
A

a =

0

B
@

a� 1

a� 2

a� 3

1

C
A ; b =

0

B
B
@

b>
� 1

b>
� 2

b>
� 3

1

C
C
A ; c =

0

B
B
@

c>
� 1

c>
� 2

c>
� 3

1

C
C
A ; d =

0

B
@

d� 1

d� 2

d� 3

1

C
A :

Thus, implementing the �lters (14.14)-(14.17) and (14.18) for three values of� gives an estimate
of T(	( t); R; t ), and we would like to invert T, i-e �nd the possible candidates(x; x 3) for a given
T(x; x 3; t).

To do that, we consider the matrix

M � =

 
� 2

2 � � 2
1 0

0 � 2
3 � � 2

2

!

which is such that
M � m� = 0 : (14.20)

We have the following result :
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Theorem 14.2.1.

Consider any (� 1; � 2; � 3) in (R�
+ )3, any initial conditions of the �lters (14.14)-(14.17) and

(14.18), and de�ne

M (x3; t) = M � �
�
c(t) + x3 b(t)

�
: (14.21)

Assume the input (u; i ) is bounded. Then, any solution (	 ; R) to System (14.1) such that
there exists � such that for all t,

y(t) = 0 ;
�
�
�det

�
M (R; t )

� �
�
� � � > 0 ;

veri�es
lim

t ! + 1
	( t) � � (R; t ) = 0 ; lim

t ! + 1
J (R; t ) = 0

where
� (x3; t) = M (x3; t) � 1

�
M � Z (t) � M � a(t) x3 � M � d(t) x2

3

�
(14.22)

and
J (x3; t) = m>

�

�
Z (t) � T(� (x3; t); x3; t)

�
: (14.23)

Proof : Observe that

M � T(x; x 3 ; t ) = M � �
�

c(t) + x3 b(t)
�

x + M � a(t) x3 + M � d(t) x2
3

is linear in x. This means that for any x3 and any t such that the matrix M (x3 ; t ) is invertible, x is
solution of :

x = M (x3 ; t ) � 1
�
M � T(x; x 3 ; t ) � M � a(t) x3 � M � d(t) x2

3

�
:

Thus, (x; x 3) = (	( t); R) satis�es this equation for all t and we have

j	( t) � � (R; t )j �
�
�M (R; t ) � 1

�
� jM � jj Z (t) � T (	( t); R; t )j :

Lemma 14.2.1 gives the result if

�
�M (R; t ) � 1

�
� =

1�
�
�det

�
M (R; t )

� �
�
�
jM � (R; t )j

is upper-bounded in time, where M � (R; t ) is the comatrix of M (R; t ). t 7! M � (R; t ) is a continuous
function of the coe�cients of c and b which are �ltered versions of the bounded input (u; i ) and which

are thus bounded. Since
�
�
�det

�
M (R; t )

� �
�
� is lower-bounded away from 0, the conclusion follows. �

This leads us to introduce the following algorithm :

Algorithm

Implement �lters (14.14)-(14.17) and (14.18) for three strictly positive real numbers � 1, � 2,
� 3, and at any time t, �nd an estimate R̂ of R with

R̂(t) = Argminx32 R+ jJ (x3; t)j ; (14.24)

and an estimate 	̂ of 	 with
	̂( t) = � (R̂(t); t) :

In fact, � captures the information given by T in the direction of M � and the remaining
information along the orthogonal direction, i-e along m� , is used inJ to determine x3.

Theorem 14.2.1 says that(	̂ ; R̂) = (	 ; R) should be (asymptotically) a possible solution
of this algorithm whenever M (R; t ) is invertible for all t. Its implementation thus raises two
questions :
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- Is the matrix M (R; t ) invertible for any t, or, more precisely, is
�
�
�det

�
M (R; t )

� �
�
� lower-

bounded ?

- Is R the only solution to the minimization problem at least after a certain time ? If no,
which are the other solutions ?

Note that at each time t, the determinant of M (x3; t) is a polynomial of order 2 in x3, so
that M (x3; t) is invertible for all x3 except maybe for two valuesf z1(t); z2(t)g. Then, � (x3; t)
is a two-dimensional matrix made of rational fractions in x3 with numerator of degree 3 and
denominator of degree 2, de�ned everywhere except atf z1(t); z2(t)g. We conclude that J (x3; t)
is a rational fraction with numerator of degree 6 and denominator of degree 4 de�ned everywhere
except maybe at the two roots of the determinant ofM (x3; t).

Remark 19 Sincex3 is one-dimensional and we often have a fairly good idea of the interval in
which lies the true value R, the resolution of the minimization problem can easily be managed
with a one-dimensional grid, which can either be �xed around the initial guessR̂(0) or placed
at each iteration around the previously found value R̂(t). This latter option enables to follow
the slow variations of R with the temperature. Also, since R is fairly constant, it may not be
necessary to updateR̂ at each iteration.

Remark 20 This algorithm necessitates the implementation of 7 �lters (b� and c� are of dimen-
sion 2, anda� , d� and z� of dimension 1) for three values of� , namely 21 �lters. An alternative
solution with only 14 �lters will be given in Section 14.2.3.

14.2.2 Link with observability

The following technical lemma shows that there is a tight link between the quantities of interest
for the observer, and those encountered during the observability study above.

Lemma 14.2.2.

We have the following relations :

det
�
M (x3; t)

�
= 4 � 2

2(� 1 � � 2)( � 2 � � 3)( � 3 � � 1)
| {z }

O(� 5 )

det
�
� (x3; t) ; _� (x3; t)

�
+ O(� 4) ; (14.25)

and if (x3; t) is such that M (x3; t) and (� (x3; t); _� (x3; t)) are invertible
 

� (x3; t)>

_� (x3; t)>

!

(� (x3; t) � Li ) =

 
0

�j � (x3; t j2

!

+ O
�

1
�

�
(14.26)

J (x3; t) = ( � 4
1 + � 4

2 + � 4
3)

| {z }
O(� 4 )

P(x3; t)

det
�
� (x3; t) ; _� (x3; t)

� 2 + O(� 3) (14.27)

with � de�ned in (14.7), P in (14.6), and the notation O(� k ) indicates a term

f (� 1; � 2; � 3; x3; t) such that
�
�
�
�
f (�� 1; �� 2; �� 3; x3; t)

� k

�
�
�
� is bounded when� goes to+ 1 .

Proof : This is done by developing the solutions of the �lters with respect to � . See Appendix D.2.1. �

It follows that when the � i are su�ciently large, M and J are closely related to
�
� (x3; t) ; _� (x3; t)

�

and P respectively. We can thus hope to transfer the known properties of those functions toM
and J .



14.2. Observer design 177

About Equation (14.25)

From (14.25), we get the impression that the invertibility of M (x3; t) is related to that of�
� (x3; t) ; _� (x3; t)

�
, at least for � i su�ciently large. Actually, we have a more precise result :

Theorem 14.2.2.

Consider (~� 1; ~� 2; ~� 3) three distinct strictly positive real numbers and assume that the inputs
(u; i ) and their derivatives are bounded.

Then, for any x3 and any d such that for all t,
�
�
�det

�
� (x3; t) ; _� (x3; t)

� �
�
� � d > 0 ;

there exists � > 0 and � > 0 such that for any � � � ,
�
�
�det

�
M (x3; t)

� �
�
� � �

for all t when choosing
(� 1; � 2; � 3) = ( � ~� 1; � ~� 2; � ~� 3) :

In particular, if there exists ! > 0 such that j! (t)j � ! for all t, there exists � > 0 and

� > 0 such that for all � � � ,
�
�
�det

�
M (R; t )

� �
�
� � � for all t.

Proof : See Appendix D.2.2. �

We conclude that, if ! is lower-bounded away from zero, it is possible to guarantee the
invertibility of M (R; t ) for all t by taking the � i su�ciently large. In that case, any x3 making
M (x3; t) non invertible at some time t cannot be R and can be put aside in the algorithm.

About Equation (14.26)

(14.26) implies that � (x3; t) is solution to the same system (14.9) (at the �rst order of 1
� ) as

x in the observability analysis. Therefore, whenever(� (x3; t); _� (x3; t)) is invertible, � (x3; t)
corresponds tox in the observability analysis, and further

�
� j� (x3; t) � Li j2 � � 2

�
� corresponds to

P(x3; t), still at the �rst order in 1
� . Thus, in order to �nd x3, one could minimize J (x3; t) =�

� j� (x3; t) � Li j2 � � 2
�
� instead of (14.23). But the injection of the input i in the criteria increases

its sensitivity to noise. Note that this option is exploited in the next section 14.2.3.

About Equation (14.27)

(14.27) implies that, for large values of� i , the criteria J (x3; t) roughly behaves like
P(x3; t)

det
�
� (x3; t) ; _� (x3; t)

� 2

which is also a rational fraction with numerator of degree 6 and denominator of degree 4. There-
fore, we can hope that, by choosing� i su�ciently large, one can ensure that J does not have
more roots than P, and minimizing J is closely linked to �nding the roots of P. Since P is
perfectly known with Corollary 14.1.1 when ! , i d and i q are constant, it is possible to state the
following result :

Theorem 14.2.3.

Let (~� 1; ~� 2; ~� 3) be any three distinct strictly positive real numbers.

Assume the inputs (u; i ) are bounded, and! , i d and i q are constant such that ! 6= 0 and
i d 6= 0 . Then, for any initial conditions in the �lters and for any 0 < " < 1, there exists � > 0
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such that for all � � � , by choosing

(� 1; � 2; � 3) = ( �� 1; �� 2; �� 3) ;

we have :

- there exists � > 0 such that
�
�
�det

�
M (R; t )

� �
�
� � � for all t.

- for all t, the only two roots of det
�
M (x3; t)

�
are complex and situated in the annulus5

C(R; r " ; r " ) with

r " =
! �
ji j

(1 � " ) ; r " =
! �
ji j

(1 + ")

In other words, M (x3; t) is invertible and J (x3; t) is de�ned for all x3 in R and all t.

- for all t, J (�; t) admits in [R � r " ; R + r " ]

- only one zeroR̂1(t) if i q > 1� "
2 ji j ;

- two zeros(R̂1(t); R̂2(t)) if i q < 1� "
2 ji j.

Proof : The proof of this result relies on Rouché's theorem. See Appendix D.2.3 �

Remark 21 Unfortunately, we cannot say anything about the number of zeros ofJ (�; t) outside
of [R � r " ; R + r " ]. Indeed, J (�; t) admits (complex) poles outside ofB r " (R) (the roots of
det(M (�; t)) ), and Rouché's theorem would only tell us that it admits at most 6 zeros, which we
already know.

We conclude from this study, that when j! j is lower-bounded away from zero, the invertibility

of M (R; t ) (and lower-boundedness of
�
�
�det

�
M (R; t )

� �
�
�) can be ensured for allt by taking the

� i su�ciently large. According to Theorem 14.2.1, this means that lim t ! + 1 J (R; t ) = 0 and R
should appear among the minimizers ofjJ (�; t)j at least after a certain time.

In particular, when ! , i d and i q are constant with ! 6= 0 and i d 6= 0 , J has only one or two
zeros in the vicinity of R. Note that (	 ; R) and (	 � ; R� ) identi�ed in Corollary (14.1.1) are
both solution to the dynamics and are both such that y(t) = 0 for all t. Therefore, Theorem
14.2.1 apply to both and we have in fact :

lim
t ! + 1

J (R; t ) = lim
t ! + 1

J (R� ; t) = 0 :

This means that the two zeros of J expected with Theorem 14.2.3 are likely to beR and
R� = R + 2! � i q

j i j2 asymptotically.
In fact, although we are not able to prove it theoretically at this point, simulations seem to

indicate that P(�; t) has always only two roots, as soon asi d(t) 6= 0 and ! (t) 6= 0 . Therefore,
J (�; t) has, at least after a certain time, also two roots, with one converging toR. The problem
of course is that a numerical minimization of jJ (�; t)j might return the "wrong" root. So, how to
detect this situation, and how to deduce the "right" root ? Here are some elements of solution :

- most of the time, an interval for the value of R is known and the minimization can be
carried out on this interval. When both roots are far apart, there might be only one in
the interval of interest.

- in the case where! and i dq are constant, Theorem 14.1.4 shows how to detect whether the
solution is the "right" one, if the sign of i q is known. It also provides the exact expression

of the other candidate, which can be computed by estimating the rotation speed, i-e_̂� .
5The annulus C(a; r 0 ; r 1) is the set of points such that r 0 < jx � aj < r 1 .
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- even in the general case, when! and i dq are not moving too fast, the two solutions may
still be associated to two values ofi q of opposite sign. Therefore, the detection may still
be possible if this sign is known. As for computing the other candidate, although the value
given by Theorem 14.1.4 is not exact, it can enable to switch the basin of attraction and
obtain the right estimate at the following iteration.

An account on the e�ciency of this strategy in simulations is provided in Section 14.3.

14.2.3 Alternate observer with a reduced number of �lters

Before commenting some simulations, we want to signal to the reader the existence of an observer
involving a smaller number of �lters, and thus a reduced computational cost.

Indeed, the dynamics (14.18) can be rewritten as

_z {
z� � � 2� 2 = � (� (z� � � 2� 2) + c>

� u � � 2L 2ji j2) :

Therefore, we can take

~T� (x; x 3; t) = T� (x; x 3; t) � � 2� 2

= � 2(jx � Li j2 � � 2) + � (c� (t) + 2 � Li )> x + � x 3 b� (t)> x + a� (t)x3 + d� (t)x2
3 � � 2L 2ji j2

which is such that ~T� (	 ; R; t ) is solution of

_~z� = � (� ~z� + c>
� u � � 2L 2ji j2) : (14.28)

Besides, since(j	 � Li j2 � � 2) = 0 along the solutions of interest, we can even take

~T� (x; x 3; t) = � (c� (t) + 2 � Li + � x 3 b� (t))> x + a� (t)x3 + d� (t)x2
3 � � 2L 2ji j2

= � � � � (x3; t)> x + a� (t)x3 + d� (t)x2
3 � � 2L 2ji j2

which is linear in x and we have like before :

lim
t !1

~Z � (t) � ~T� (	( t); R; t ) = 0 :

The drawback of this solution is that we use the measurementi directly in ~T� and thus the
estimation may be biased by noise. However, the fact that it is already linear inx suggests that
it is su�cient to implement the �lters (14.14)-(14.17) and (14.28) for only two values of � to
obtain x as a function ofx3. Then, the value ofx3 can be obtained by minimizing(jx � Li j2 � � 2).

So consider two strictly positive real numbers� 1 and � 2. By de�ning the function

~T(x; x 3; t) =

 
~T� 1 (x; x 3; t)
~T� 2 (x; x 3; t)

!

= ~M (x3; t) x + ~a(t) x3 + ~d(t) x2
3 � L 2ji j2 ~m�

on R2 � R � R, we have
lim

t !1
~Z (t) � ~T(	( t); R; t ) = 0 ;

where we have denoted

~� =

 
� 1 0
0 � 2

!

; ~Z =

 
~Z � 1
~Z � 2

!

; ~m� =

 
� 2

1
� 2

2

!

~a =

 
~a� 1

~a� 2

!

; ~M (x3; t) = � ~�

 
� � 1 (x3; t)>

� � 2 (x3; t)>

!

; ~d =

 
~d� 1
~d� 2

!

:

Since x can be simply deduced from ~T by inversion of ~M , it is natural to try the following
simple algorithm :
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Alternate algorithm

Implement �lters (14.14)-(14.17) and (14.28) for two strictly positive real numbers � 1 and
� 2, and at any time t, �nd an estimate R̂(t) of R by

R̂(t) = Argminx32 R+ j ~J (x3; t)j ;

where
~� (x3; t) = ~M (x3; t) � 1

�
~Z (t) � ~a(t) x3 � ~d(t) x2

3 + L 2ji j2 ~m�

�
; (14.29)

~J (x3; t) = j ~� (x3; t) � Li j2 � � 2 ; (14.30)

and an estimate 	̂( t) of 	( t) by
	̂( t) = ~� (R̂(t); t) :

Once again, it leads to the questions of invertibility of the matrix ~M and uniqueness of
solutions to the minimization problem. But in the same spirit as Lemma 14.2.2, it is possible
to show that

det( ~M (x3; t)) = 4 ( � 2 � � 1)
| {z }

O(� )

det
�
� (x3; t); _� (x3; t)

�
+ O(1)

 
� (x3; t)>

_� (x3; t)>

!

(~� (x3; t) � Li (t)) =

 
0

�j � (x3; t)j2

!

+ O
�

1
�

�

~J (x3; t) =
P(x3; t)

det
�
� (x3; t) ; _� (x3; t)

� 2 + O
�

1
�

�
;

so that the same conclusions hold.
The main advantage of this algorithm is that the �lters are implemented for only two �

(instead of three), thus reducing the dimension of the state from 21 to 14. However, the mea-
surement i is used directly in the computation of ~� and ~J , which, in presence of noise, can
signi�cantly deteriorate the invertibility of ~� and the estimation of R̂ and 	̂ .

14.3 Simulations

Model and scenario. The simulations presented in this chapter are based on ideal data
produced by a general PMSM model of the type (12.5), where the inputu is chosen to follow a
desired rotation speed! R . The details of this model and of the controller is of no interest here,
as long as the produced signals are solution to our model (12.6). The speed scenario chosen to
test our observer is shown on Figure 14.1. The corresponding signals(u; i ) are given in Figure
14.2. Note that at t = 3 , although the speed setpoint is constant, an external torque is added,
resulting in a transient behavior in the signals. This torque then remains constant throughout
the simulation.

Observer algorithm. Choose strictly positive real numbersG and dtR , a one-dimensional
grid G of the interval [� G; G], and three distinct strictly positive real numbers � 1, � 2, � 3. We
assume the machine is used as a motor, i-e thati q is positive. The observer consists of the
following modules :

- Implementation of �lters (14.14)-(14.17) and (14.18).

- Computation of
	̂( t) = � (R̂; t ) ;
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Figure 14.1: Rotation speed! = _� and estimated rotation speed !̂ = _̂� . The estimation
algorithm starts at t = 0 :5.

(a) i dq = R (� � )i (b) udq = R (� � )u

Figure 14.2: Currents and voltages in the rotating frame.

�̂ (t) = arg( 	̂( t) � Li (t)) ;

at each time t, given the current value of R̂.

- Estimation of !̂ (t) = _̂� (t) at each time t (see below).

- Update of the value ofR̂ everydtR > 0 with the following algorithm :
R̂1 = Argminx32 R̂+ G jJ (x3; t)j

	̂ 1 = � (R̂1; t)
�̂ 1 = arg( 	̂ 1 � Li (t))

i q;1 =
h

� sin(� 1) ; cos(� 1)
i
i (t)

if i q;1 � 0 then
R̂ = R̂1

else
R̂2 = R̂1 + 2� !̂ (t ) i q;1

j i (t ) j2
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� = R̂2 � R̂1

if j� j > G then
R̂ = R̂2

else if � > 0 then
R̂ = Argminx32 R̂+ (G\ [ �

2 ;G]) jJ (x3; t)j

else
R̂ = Argminx32 R̂+ (G\ [� G; �

2 ]) jJ (x3; t)j

end if
end if

In other words, the minimum of J is computed on the grid R̂ + G centered at the current
value R̂ and, if the correspondingi q is positive, this value is kept. Otherwise, we take the
other candidate given by Theorem 14.1.3, or rather, if this other value is in the grid where
J has already been computed, the true minimum ofJ around this value is computed. This
latter step can be removed and postponed to the next iteration, but it o�ers the possibility
of correcting the estimate given by Theorem 14.1.3 when! , i d and i q are not constant
and/or when ŵ is not exact.

Note that instead of starting the estimation process right away, one can wait for the �lters to
reach their steady-state, i-e "forget" their initial conditions. In the simulations presented here,
we waited for 0:5s.

Estimation of !̂ = _̂� . In order to implement the previous algorithm, ! and thus !̂ = _̂�
needs to be estimated. This can be done in numerous ways including dirty derivatives, exact
di�erentiators etc. A raw dirty derivative approach would be to take :

( _̂� e = !̂ e � `(�̂ e � y)
_̂! e = � `2(�̂ e � y)

; y = �̂

with ` su�ciently large to compensate for the neglected _̂! . But the correction (�̂ e � y) is not
a good idea because it does not vanish at2k� . A possible solution is to take the correction
arctan2(sin(�̂ e � y); cos(̂� e � y)) instead, but convergence is not guaranteed.

Another idea is to consider as measurementsx1 = cos(�̂ ) and ~x1 = sin( �̂ ) and build a high
gain observer for (x1; _x1; ~x1; _~x1), from which !̂ can easily be deduced. This method o�ers the
advantage of making no approximation on _̂! , but it leads to an observer of dimension 4.

An intermediate solution is to use a reduced order observer of dimension 3 of the form :
8
><

>:

_̂� = � (
̂ � k + `2) y � ` �̂
_̂~� = � (
̂ � k + `2) ~y � ` ~̂�
_̂
 = 2k (�̂ + ` y) y + 2k ( ~̂� + ` ~y) ~y

; y = cos �̂ ; ~y = sin �̂

and

!̂ e = �̂ 2 + ~̂� 2 � `2 or !̂ e = y~� � ~y � :

It is possible to prove6 that !̂ e converges to!̂ , at least when !̂ is constant.
This latter observer is used for the estimation of!̂ (and thus ! ) shown in Figure 14.1 with

` = 1000 and k = 500.

6Take x2 = _x1 = � ŵ sin �̂ , ~x2 = _~x1 = !̂ cos�̂ , � = x2 � `x 1 , ~� = ~x2 � ` ~x1 and 
 = !̂ 2 + kx 2
1 + k~x2

1 = !̂ 2 + k.

Denoting e� = �̂ � � , ~e� = ~̂� � ~� and e
 = 
̂ � 
 , we get

�z {
ke2

� + k~e2
� +

1
2

e2

 = � 2k` (e2

� + ~e2
� ), and thus lim e� = 0

and lim ~e� = 0 . Hence the convergence of!̂ e.
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Results The results of the simulations are presented in Figure 14.3, for two grids with ampli-
tude G = 1 and G = 0 :1 respectively.

Observe that with G = 1 , the algorithm �nds the right value of R in two iterations only,
whereas with G = 0 :1, it takes a longer time beforeR can appear in the grid. In fact, for a
same precision, the broader the grid, the higher the chances ofR appearing in it, but the larger
the number of points and computation time, and also the higher the chances of having several
minima in the grid. In practice, one know roughly well the initial value of the resistance, so
that a grid with small amplitude can be chosen, which is then going to followR throughout the
experiment, in the case where it evolves due to temperature.

The evolution of the criteria J during the simulation with G = 1 is shown in Figure 14.4.
One can see that the minimum is well marked aroundR = 1 :45.

As for the estimation of � , it naturally converges onceR̂ has converged. It is interesting to
observe the peak in the error aroundt = 3 (which in turn appears on !̂ ). This is due to the
sudden addition of a torque which destabilizesi d and ! and makes them go through 0. We
have seen that in this case, observability is lost andM (R; t ) is likely to be non invertible (the
assumption of Theorem 14.2.2 is no longer veri�ed). This event is not visible onR̂ because it is
not updated at those precise moments.

14.4 Conclusion

Unlike (	 ; �) , the couple (	 ; R) is not observable from the only knowledge thaty(t) = 0 for
all t. However, when! and i d are non zero, there are at most six indistinguishable solutions,
the resistance being one of the roots of a polynomial of degree 6. Besides, in the particular case
where ! , i d and i q are constant, the number of possible solutions is reduced to two, with two
well-identi�ed values for the resistance. But those solutions turn out to be distinguishable if
the sign of i q (i-e the mode of use of the machine) is known. This information has enabled us
to propose an observation strategy based on a Luenberger design. It remains now to test this
observer on real data, and to understand the a�ect of saliency on this algorithm.

Note that in this context of non observability, it would be impossible to write the dynamics of
the observer in the original coordinates(x; x 3) as recommended in Part III (the transformation
is not even injective). Interestingly, the step of inversion of the transformation via minimization
is crucial to the design because it allows to incorporate the additional information about the
sign of i q and to use a discontinuous strategy, which has no in�uence on the dynamics of the
observer.

As a �nal remark, this example strongly advocates in favor of the Luenberger methodology.
Indeed, we are not aware of any other observer construction which could work in this case. In
particular, a high gain design is out of the question for two reasons : �rst, it would necessarily
involve the derivatives of (u; i ) which is undesirable in practice, and also, the dynamics of the
observer depend on the inverse of the transformation.
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(a) R̂ (b) e� = �̂ � �

Figure 14.3: Results of the observer algorithm with� 1 = 20, � 2 = 30, � 3 = 40, dtR = 0 :1, and
two grids with amplitude G = 1 and G = 0 :1 respectively. The estimation starts at t = 0 :5.

(b) Zoom around R = 1 :45

Figure 14.4: Plot of the criteria J (�; t) on the grid with G = 1 at each iteration where R̂ is
updated, i-e everydtR = 0 :1.



Bibliography

[ABS13] V. Andrieu, G. Besançon, and U. Serres. Observability necessary conditions for the
existence of observers.Conference on Decision and Control, 2013.

[AEP14] V. Andrieu, J.-B. Eytard, and L. Praly. Dynamic extension without inversion for
observers. IEEE Conference on Decision and Control, pages 878�883, 2014.

[AK01] M. Arcak and P. Kokotovic. Observer-based control systems with slope-restricted
nonlinearities. IEEE Transactions on Automatic Control , 46, 2001.

[Ala07] M. Alamir. Nonlinear Observers and Applications, volume 363, chapter Nonlinear
Moving Horizon Observers : Theorey and Real-Time Implementation, pages 139�
179. Springer, 2007.

[And05] V. Andrieu. Bouclage de sortie et observateur. PhD thesis, École Nationale
Supérieure des Mines de Paris, 2005.

[And14] V. Andrieu. Convergence speed of nonlinear Luenberger observers.SIAM Journal
on Control and Optimization, 52(5):2831�2856, 2014.

[AP05] A. Astol� and L. Praly. Global complete observability and output-to-state stability
imply the existence of a globally convergent observer.Mathematical Control Signals
Systems, 18(1):1�34, 2005.

[AP06] V. Andrieu and L. Praly. On the existence of a Kazantzis�Kravaris / Luenberger
observer. SIAM Journal on Control and Optimization , 45(2):432�456, 2006.

[AP13] D. Astol� and L. Praly. Output feedback stabilization for siso nonlinear systems
with an observer in the original coordinate. IEEE Conference on Decision and
Control, pages 5927 � 5932, 2013.

[APA06] V. Andrieu, L. Praly, and A. Astol�. Nonlinear output feedback design via dom-
ination and generalized weighted homogeneity.IEEE Conference on Decision and
Control, 2006.

[APA08] V. Andrieu, L. Praly, and A. Astol�. Homogeneous approximation, recursive ob-
server design, and output feedback.SIAM Journal on Control and Optimization ,
47(4):1814�1850, 2008.

[APA09] V. Andrieu, L. Praly, and A. Astol�. High gain observers with updated gain and
homogeneous correction terms.Automatica, 45(2):422�428, 2009.

[AW06] P.P Acarnley and J.F Watson. Review of position-sensorless operation of brush-
less permanent-magnet machines. IEEE Transactions on Industrial Electronics ,
53(2):352�362, 2006.

[BB97] G. Besançon and G. Bornard. On characterizing a class of observer forms for
nonlinear systems.European Control Conference, 1997.



186 Bibliography

[BBD96] J.P. Barbot, T. Boukhobza, and M. Djemai. Sliding mode observer for triangular
input form. IEEE Conference on Decision and Control, 2:1489 � 1490, 1996.

[BBH96] G. Besançon, G. Bornard, and H. Hammouri. Observer synthesis for a class of
nonlinear control systems. European Journal of Control, 3(1):176�193, 1996.

[BBP+ 16] A. Bobtsov, D. Bazylev, A. Pyrkin, S. Aranovsky, and R. Ortega. A robust non-
linear position observer for synchronous motors with relaxed excitation conditions.
International Journal of Control , 2016.

[BC98] M. Bodson and J. Chiasson. Di�erential-geometric methods for control of electric
motors. Int. J. Robust. Nonlinear Control , 8:923�254, 1998.

[Bes99] G. Besançon. Further results on high gain observers for nonlinear systems.IEEE
Conference on Decision and Control, 3:2904�2909, 1999.

[BH91] G. Bornard and H. Hammouri. A high gain observer for a class of uniformly ob-
servable systems.Conference on Decision and Control, 1991.

[BM58] R. Bott and J. Milnor. On the parallelizability of the spheres. Bullettin of American
Mathematical Society, 64(3):87�89, 1958.

[BP17] P. Bernard and L. Praly. Robustness of rotor position observer for permanent
magnet synchronous motors with unknown magnet �ux. IFAC World Congress,
2017.

[BPA15] P. Bernard, L. Praly, and V. Andrieu. Tools for observers based on coordinate
augmentation. IEEE Conference on Decision and Control, 2015.

[BPA17a] P. Bernard, L. Praly, and V. Andrieu. Observers for a non-lipschitz triangular form.
Automatica, 82:301�313, 2017.

[BPA17b] P. Bernard, L. Praly, and V. Andrieu. On the triangular canonical form for uni-
formly observable controlled systems.Automatica, 85:293�300, 2017.

[BPAew] P. Bernard, L. Praly, and V. Andrieu. Expressing an observer in given coordinates
by augmenting and extending an injective immersion to a surjective di�eomorphism.
SIAM Journal on Control and Optimization , 2015, Under review.

[BPO15a] A. Bobtsov, A. Pyrkin, and R. Ortega. A new approach for estimation of electrical
parameters and �ux observation of permanent magnet synchronous motors.Int. J.
Adapt. Control Signal Process., 30:1434�1448, 2015.

[BPO+ 15b] A. Bobtsov, A. Pyrkin, R. Ortega, S. Vukosavic, A. Stankovic, and E. Panteley. A
robust globally convergent position observer for the permanent magnet synchronous
motor. Automatica, 61:47�54, 2015.

[BRG89] D. Bossane, D. Rakotopara, and J. P. Gauthier. Local and global immersion into
linear systems up to output injection. Conference on Decision and Control, pages
2000�2004, 1989.

[BS04] J. Back and J.H. Seo. Immersion of non-linear systems into linear systems up to
output injection : Characteristic equation approach. Internation Journal of Control ,
77(8):723�734, 2004.

[BS15] S. Bonnabel and J-J. Slotine. A contraction theory-based analysis of the stability
of the deterministic Extended Kalman Filter. IEEE Transactions on Automatic
Control, 60(2):565�569, 2015.



Bibliography 187

[BT07] G. Besançon and A. Ticlea. An immersion-based observer design for rank-observable
nonlinear systems.IEEE Transactions on Automatic Control , 52(1):83�88, 2007.

[BZ83] D. Bestle and M. Zeitz. Canonical form observer design for nonlinear time variable
systems. International Journal of Control , 38:419�431, 1983.

[Che84] C-T Chen. Linear system theory and design. CBS College Publishing, 1984.

[CZM16] E. Cruz-Zavala and J. A. Moreno. Lyapunov functions for continuous and discon-
tinuous di�erentiators. IFAC Symposium on Nonlinear Control Systems, 2016.

[CZMF11] E. Cruz-Zavala, J.A. Moreno, and L. Fridman. Uniform robust exact di�erentiator.
EEE Transactions on Automatic Control , 56(11):2727�2733, 2011.

[DBGR92] F. Deza, E. Busvelle, J.P. Gauthier, and D. Rakotopara. High gain estimation for
nonlinear systems.Systems & Control Letters, 18:295�299, 1992.

[Die60] J. Dieudonné. Foundations of Modern Analysis. Academic Press, 1960.

[Dug66] J. Dugundgi. Topology. Allyn and Bacon, 1966.

[Eck06] B. Eckmann. Mathematical survey lectures1943� 2004. Springer, 2006.

[EKNN89] S.V. Emelyanov, S.K. Korovin, S.V. Nikitin, and M.G. Nikitina. Observers and
output di�erentiators for nonlinear systems. Doklady Akademii Nauk, 306:556�560,
1989.

[Eng05] R. Engel. Exponential observers for nonlinear systems with inputs. Technical report,
Universität of Kassel, Department of Electrical Engineering, 2005.

[Eng07] R. Engel. Nonlinear observers for Lipschitz continuous systems with inputs.Inter-
national Journal of Control , 80(4):495�508, 2007.

[Fil88] A. Filippov. Di�erential equations with discontinuous right-hand sides. Mathemat-
ics and its Applications Kluwer Academic Publishers Group, 1988.

[FK83] M. Fliess and I. Kupka. A �niteness criterion for nonlinear input-output di�erential
systems. SIAM Journal of Control and Optimization , 21(5):721�728, 1983.

[Fli82] M. Fliess. Finite-dimensional observation-spaces for non-linear systems. In Heidel-
berg Springer, Berlin, editor, Hinrichsen D., Isidori A. (eds) Feedback Control of
Linear and Nonlinear Systems. Lecture Notes in Control and Information Sciences,
volume 39, pages 73�77, 1982.

[GB81] J-P. Gauthier and G. Bornard. Observability for any u(t) of a class of nonlinear
systems. IEEE Transactions on Automatic Control , 26:922 � 926, 1981.

[GBC+ 15a] V. Gibert, L. Burlion, A. Chriette, J. Boada, and F. Plestan. New pose estimation
scheme in perspective vision system during civil aircraft landing.IFAC Symposium
on Robot Control, 2015.

[GBC+ 15b] V. Gibert, L. Burlion, A. Chriette, J. Boada, and F. Plestan. Nonlinear observers in
vision system : Application to civil aircraft landing. European Control Conference,
2015.

[Gel74] A. Geld. Applied Optimal Estimation . MIT Press : Cambridge, 1974.



188 Bibliography

[GHO92] J.-P. Gauthier, H. Hammouri, and S. Othman. A simple observer for nonlin-
ear systems application to bioreactors.IEEE Transactions on Automatic Control ,
37(6):875�880, 1992.

[Gib16] V. Gibert. Analyse d'observabilité et synthèse d'observateurs robustes pour
l'atterrissage basé vision d'avions de ligne sur des pistes inconnues. PhD thesis,
Ecole Centrale de Nantes, 2016.

[GK01] J-P. Gauthier and I. Kupka. Deterministic observation theory and applications.
Cambridge University Press, 2001.

[GMP96] A. Glumineau, C. H. Moog, and F. Plestan. New algebro-geometric conditions
for the linearization by input-output injection. IEEE Transactions on Automatic
Control, 41(4):598�603, 1996.

[GRHS00] J.L. Gouzé, A. Rapaport, and M.Z. Hady-Sadok. Interval observers for uncertain
biological systems.Ecological Modelling, 133:45�56, 2000.

[Gua02] M. Guay. Observer linearization by output-dependent time-scale transformations.
IEEE Transactions on Automatic Control , 47(10), 2002.

[Hah67] W. Hahn. Stability of Motion . Springer-Verlag, 1967.

[Ham08] Y. Hamami. Observateur de Kazantzis-Kravaris/Luenberger dans le cas d'un sys-
tème instationnaire. Technical report, MINES ParisTech, 2008.

[HBB10] H. Hammouri, G. Bornard, and K. Busawon. High gain observer for struc-
tured multi-output nonlinear systems. IEEE Transactions on Automatic Control ,
55(4):987�992, 2010.

[HC91] H. Hammouri and F. Celle. Some results about nonlinear systems equivalence for
the observer synthesis. InNew Trends in Systems Theory, volume 7 of New Trends
in Systems Theory, pages 332�339. Birkhäuser, 1991.

[Hen14] N. Henwood. Estimation en ligne de paramètres de machines électriques pour
véhicule en vue d'un suivi de la température de ses composants. PhD thesis, Control
and System Center, MINES ParisTech, https://pastel.archives-ouvertes.fr/pastel-
00958055, 2014.

[Hir76] M. Hirsch. Di�erential topology . Springer, 1976.

[HK77] R. Hermann and A.J. Krener. Nonlinear controllability and observability. IEEE
Transactions on Automatic Control , 22(5):728�740, 1977.

[HK96] H. Hammouri and M. Kinnaert. A new procedure for time-varying linearization up
to output injection. Systems & Control Letters, 28:151�157, 1996.

[HM90] H. Hammouri and J. De Leon Morales. Observer synthesis for state-a�ne systems.
IEEE Conference on Decision and Control, pages 784�785, 1990.

[HMP12] N. Henwood, J. Malaizé, and L. Praly. A robust nonlinear luenberger observer for
the sensorless control of SM-PMSM : Rotor position and magnets �ux estimation.
IECON Conference on IEEE Industrial Electronics Society, 2012.

[HOD99] L. Hsu, R. Ortega, and G.R. Damm. A globally convergent frequency estimator.
IEEE Transactions on Automatic Control , 44(4):698�713, 1999.



Bibliography 189

[Hou05] M. Hou. Amplitude and frequency estimator of a sinusoid. IEEE Transactions on
Automatic Control , 50(6):855�858, 2005.

[Hou12] M. Hou. Parameter identi�cation of sinusoids. IEEE Transactions on Automatic
Control, 57(2), 2012.

[Jaz70] A. H. Jazwinski. Stochastic processes and �ltering theory. Academic Press, 1970.

[JG96] P. Jouan and J.P. Gauthier. Finite singularities of nonlinear systems. Output sta-
bilization, observability, and observers. Journal of Dynamical and Control Systems,
2(2):255�288, 1996.

[Jou03] P. Jouan. Immersion of nonlinear systems into linear systems modulo output injec-
tion. SIAM Journal on Control and Optimization , 41(6):1756�1778, 2003.

[Kal60] R.E Kalman. Contributions to the theory of optimal control. Conference on Ordi-
nary Di�erential Equations , 1960.

[KB61] R.E Kalman and R.S Bucy. New results in linear �ltering and prediction theory.
Journal of Basic Engineering, 108:83�95, 1961.

[KE03] G. Kreisselmeier and R. Engel. Nonlinear observers for autonomous lipshitz con-
tinuous systems. IEEE Transactions on Automatic Control , 48(3):451�464, 2003.

[Kel87] H. Keller. Nonlinear observer by transformation into a generalized observer canon-
ical form. Internation Journal of Control , 46(6):1915�1930, 1987.

[Kha02] H. Khalil. Nonlinear Systems, 3rd Edition. Prentice Hall, 2002.

[KI83] A.J. Krener and A. Isidori. Linearization by output injection and nonlinear ob-
servers. Systems & Control Letters, 3:47�52, 1983.

[Kir34] M. D. Kirszbraun. über die zusammenziehende und lipschitzsche transformationen.
Fundamenta Mathematicae, 22:77�108, 1934.

[KK98] N. Kazantzis and C. Kravaris. Nonlinear observer design using Lyapunov's auxiliary
theorem. Systems and Control Letters, 34:241�247, 1998.

[KP13] H. K. Khalil and L. Praly. High-gain observers in nonlinear feedback control. Int.
J. Robust. Nonlinear Control, 24, April 2013.

[KR85] A. J. Krener and W. Respondek. Nonlinear observers with linearizable dynamics.
SIAM Journal of Control and Optimization , 23(2):197�216, 1985.

[KX03] A.J. Krener and M. Xiao. Nonlinear observer design in the Siegel domain.SIAM
Journal on Control and Optimization , 41(3):932�953, 2003.

[KX06] A.J. Krener and M. Xiao. Nonlinear observer design for smooth systems.Chaos
in Automatic Control, W. Perruguetti and J.-P. Barbot, Eds., Taylor and Francis ,
pages 411�422, 2006.

[Leb82] D. Leborgne.Calcul Di�érentiel et Géometrie . Presse Universitaire de France, 1982.

[Lee13] J. M. Lee. Introduction to Smooth Manifolds. Springer, 2013.

[Lev b] A. Levant. Higher-order sliding modes and arbitrary-order exact robust di�eren-
tiation. Proceedings of the European Control Conference, pages 996�1001, 2001
b.



190 Bibliography

[Lev03] A. Levant. Higher-order sliding modes, di�erentiation and output-feedback control.
International Journal of Control , 76(9-10):924�941, 2003.

[Lev05] A. Levant. Homogeneity approach to high-order sliding mode design.Automatica,
41(5):823�830, 2005.

[LHN + 10] J. Lee, J. Hong, K. Nam, R. Ortega, L. Praly, and A. Astol�. Sensorless con-
trol of surface-mount permanent-magnet synchronous motors based on a nonlinear
observer. IEEE Transactions on Power Electronics, 25(2):290�297, 2010.

[Lue64] D. Luenberger. Observing the state of a linear system.IEEE Transactions on
Military Electronics , 8:74�80, 1964.

[LZA03] H. Lin, G. Zhai, and P. J. Antsaklis. Set-valued observer design for a class of
uncertain linear systems with persistent disturbance.American Control Conference,
2003.

[McS34] E. J. McShane. Extension of range of functions.Bull. Amer. Math. Soc., 40(12):837�
842, 1934.

[Mil65] J. Milnor. Lectures on the h-cobordism Theorem. Notes by L. Siebenmann and J.
Sondow. Princeton University Press, 1965.

[MP03] M. Maggiore and K.M. Passino. A separation principle for a class of non uniformly
completely observable systems.IEEE Transactions on Automatic Control , 48, July
2003.

[MPH12] J. Malaizé, L. Praly, and N. Henwood. Globally convergent nonlinear observer for
the sensorless control of surface-mount permanent magnet synchronous machines.
IEEE Conference on Decision and Control, 2012.

[MV00] J. Moreno and A. Vargas. Approximate high-gain observers for uniformly observable
nonlinear systems. In Decision and Control, 2000. Proceedings of the 39th IEEE
Conference on, volume 1, pages 784�789. IEEE, 2000.

[NYN04] H. Nakamura, Y. Yamashita, and H. Nishitani. Lyapunov functions for homo-
geneous di�erential incolusions. IFAC Symposium on Nonlinear Control Systems,
2004.

[OPA+ 11] R. Ortega, L. Praly, A. Astol�, J. Lee, and K. Nam. Estimation of rotor position and
speed of permanent magnet synchronous motors with guaranteed stability.IEEE
Transactions on Control Systems Technology, 19(3):601�614, 2011.

[OPCTL02] G. Obregón-Pulido, B. Castillo-Toledo, and A. Loukianov. A globally convergent
estimator for n frequencies. IEEE Transactions on Automatic Control , 47(5):857�
863, 2002.

[ORSM15] F.-A. Ortiz-Ricardez, T. Sanchez, and J.-A. Moreno. Smooth lyapunov function
and gain design for a second order di�erentiator. IEEE Conference on Decision
and Control, pages 5402�5407, 2015.

[PdNC91] L. Praly, B. d'Andréa Novel, and J.-M. Coron. Lyapunov design of stabiliz-
ing controllers for cascaded systems.IEEE Transactions on Automatic Control ,
36(10):1177�1181, 1991.

[PG97] F. Plestan and A. Glumineau. Linearization by generalized input-output injection.
Systems & Control Letters, 31:115�128, 1997.



Bibliography 191

[PJ04] L. Praly and Z.P. Jiang. Linear output feedback with dynamic high gain for non-
linear systems. Systems and Control Letters, 53:107�116, 2004.

[PMI06] L. Praly, L. Marconi, and A. Isidori. A new observer for an unknown harmonic
oscillator. Symposium on Mathematical Theory of Networks and Systems, 2006.

[PPO08] F. Poulain, L. Praly, and R. Ortega. An observer for permanent magnet synchronous
motors with currents and voltages as only measurements.IEEE Conference on
Decision and Control, 2008.

[Qia05] C. Qian. A homogeneous domination approach for global output feedback sta-
bilization of a class of nonlinear systems. Proceedings of the American Control
Conference, 2005.

[QL06] C. Qian and W. Lin. Recursive observer design, homogeneous approximation, and
nonsmooth output feedback stabilization of nonlinear systems.IEEE Transactions
on Automatic Control , 51(9), 2006.

[RM82] A. Michel R. Miller. Ordinary Di�erential Equations . Academic Press, 1982.

[RM04] A. Rapaport and A. Maloum. Design of exponential observers for nonlinear systems
by embedding. International Journal of Robust and Nonlinear Control , 14:273�288,
2004.

[ROH+ 16] J-G. Romero, R. Ortega., Z. Han, T. Devos, and F. Malrait. An adaptive �ux
observer for the permanent magnet synchronous motor. Int. J. Adapt. Control
Signal Process., 30:473�487, 2016.

[RPN04] W. Respondek, A. Pogromski, and H. Nijmeijer. Time scaling for observer design
with linearizable error dynamics. Automatica, 40:277�285, 2004.

[RZ13] F. Rotella and I. Zambettakis. On functional observers for linear time-varying
systems. IEEE Transactions on Automatic Control , 58(5), 2013.

[Sho92] A. Shoshitaishvili. On control branching systems with degenerate linearization.
IFAC Symposium on Nonlinear Control Systems, pages 495�500, 1992.

[SL16] H. Shim and D. Liberzon. Nonlinear observers robust to measurement disturbances
in an ISS sense.IEEE Transactions on Automatic Control , 61(1), 2016.

[Smi01] G. Smirnov. Introduction to the theory of di�erential inclusions , volume 41. Grad-
uate studies in Mathematics, 2001.

[Son89] E. Sontag. Smooth stabilization implies coprime factorization.IEEE Transactions
on Automatic Control , 34(4), 1989.

[SP11] R. Sanfelice and L. Praly. On the performance of high-gain observers with gain
adaptation under measurement noise.Automatica, 47:2165�2176, 2011.

[SW95] E. Sontag and Y. Wang. On characterizations of the input-to-state stability prop-
erty. Systems & Control Letter, 24:351�359, 1995.

[Tee96] A. R. Teel. Nonlinear small gain theorem for the analysis of control systems with
saturations. IEEE Transactions on Automatic Control , 41(9):1256�1270, 1996.

[Tor89] A. Tornambe. Use of asymptotic observers having high gains in the state and
parameter estimation. IEEE Conference on Decision and Control, 2:1791�1794,
1989.



192 Bibliography

[Tru07] J. Trumpf. Observers for linear time-varying systems. Linear Algebra and its Ap-
plications, 425:303�312, 2007.

[Val45] F. A. Valentine. A lipschitz condition preserving extension for a vector function.
American Journal of Mathematics, 67(1):83�93, 1945.

[Waz35] T. Wazewski. Sur les matrices dont les éléments sont des fonctions continues,
volume 2. Composito Mathematica, 1935. p. 63-68.

[Wil69] F. W. Wilson. Smoothing derivatives of functions and applications. Transactions
American Mathematical Society, 139:413�428, 1969.

[YL04] B. Yang and W. Lin. Homogeneous observers, iterative design, and global stabiliza-
tion of high-order nonlinear systems by smooth output feedback.IEEE Transactions
on Automatic Control , 49(7):1069�1080, 2004.

[Zei84] M. Zeitz. Observability canonical (phase-variable) form for nonlinear time-variable
systems. International Journal of Systems Science, 15(9):949�958, 1984.

[Zim94] G. Zimmer. State observation by on-line minimization. International Journal of
Control, 60(4):595�606, 1994.



Appendix A

Technical lemmas

In this appendix, we give the proof to some general technical lemmas used throughout this
thesis.

A.1 About homogeneity

Lemma A.1.1.

Let � be a continuous functions de�ned onRn+1 and f a continuous function de�ned on Rn .
Let C be a compact subset ofRn . Assume that, for all x in C and s in S(f (x)) ,

� (x; s) < 0 :

Then, there exists � > 0 such that for all x in C and s in S(f (x))

� (x; s) < � � :

Proof : Assume that for all k > 0, there exists xk in C and sk in S(f (xk )) � [� 1; 1] such that

0 > � (xk ; sk ) � �
1
k

:

Then, � (xk ; sk ) tends to 0 when k tends to in�nity. Besides, there exists a subsequence (km ) such that
xk m tends to x � in C and sk m tends to s� in [� 1; 1]. Since � is continuous, it follows that � (x � ; s� ) = 0
and we will have a contradiction if s� 2 S(f (x � )) . If f (x � ) is not zero, then by continuity of f , s� is
equal to the sign of f (x � ), and otherwise, s� 2 [� 1; 1] = S(f (x � )) . Thus, s� 2 S(f (x � )) in all cases. �

Lemma A.1.2.

Let � be a function de�ned on Rn homogeneous with degreed and weight vector r =
(r1; :::; rn ), and V a positive de�nite proper function de�ned on Rn homogeneous of degree
dV with same weight vector r . De�ne C = V � 1(f 1g). If there exists � such that for all x in C

� (x) < � ;

then for all x in Rn n f 0g,

� (x) < �V (x)
d

dV :

Proof : Let x in Rn n f 0g. We have �x =
x i

V (x)
r i

d V

in C. Thus � (�x) < � and by homogeneity

1

V (x)
d

d V

� (x) < �

which gives the required inequality. �
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Lemma A.1.3.

Let � be a homogeneous function of degreed and weight vector r de�ned on Rn by

� (x) = max
s2 S(f (x))

~� (x; s)

where ~� is a continuous function de�ned on Rn+1 and f a continuous function de�ned on
Rn . Consider a continuous function
 homogeneous with same degree and weight vector such
that, for all x in Rn n f 0g and s in S(f (x))


 (x) � 0 ;

 (x) = 0 ) ~� (x; s) < 0 :

Then, there exists k0 > 0 such that, for all x in Rn n f 0g,

� (x) � k0 
 (x) < 0 :

Proof : De�ne the homogeneous de�nite positive function V (x) =
nX

i =1

jx i j
d

r i and consider the compact

set C = V � 1(f 1g). Assume that for all k > 0, there exists xk in C and sk in S(f (xk )) such that

~� (xk ; sk ) � k 
 (xk ) � 0

~� is continuous, and thus bounded on the compact set C � [� 1; 1]. Therefore, 
 (xk ) tends to 0 when k
tends to in�nity. Besides, there exists a subsequence (km ) such that xk m tends to x � in C and sk m tends
to s� in [� 1; 1]. It follows that 
 (x � ) = 0 since 
 is continuous. But with the same argument as in the
proof of Lemma A.1.1, we have s� 2 S(f (x � )) . It yields that ~� (x � ; s� ) < 0 by assumption and we have a
contradiction.

Therefore, there exists k0 such that

~� (x; s) � k0 
 (x) < 0

for all x in C and all s in S(f (x)) . Thus, with Lemma A.1.1 there exists � > 0 such that

~� (x; s) � k0 
 (x) � � �

so that
� (x) � k0 
 (x) < 0

for any x in C. The result follows applying Lemma A.1.2. �

Lemma A.1.4.

Consider a positive bounded continuous functiont 7! c(t) and an absolutely continuous
function t 7! � (t) both de�ned on [0; t) and such that

for almost all t in [0; t) such that � (t) � c(t) then _� (t) � � � (t)d

with d in ]0; 1[. Then, for all t in [0; t),

� (t) � max
n

0; maxf � (0) � c(0); 0g1� d � t
o1=(1� d)

+ sup
s2 [0;t ]

c(s) :

Proof : Let t be in [0; t) and ct = sup s2 [0 ;t ] c(s). For almost all s � t such that � (s) � � t , _� (s) � � � (s)d ,
and thus

_z {
maxf � (s) � ct ; 0g � � � (s)d

� � maxf � (s) � ct ; 0gd :

This inequality is also true when � (s) < c t , therefore it is true for almost all s � t . It follows that for all
s � t

maxf � (s) � ct ; 0g1� d � maxf � (0) � ct ; 0g1� d � s

� maxf � (0) � c(0); 0g1� d � s ;
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i-e
maxf � (s) � ct ; 0g � max

�
0;

�
maxf � (0) � c(0); 0g1� d � s

		 1
1 � d

and �nally, for all s � t

� (s) � max
�

0;
�

maxf � (0) � c(0); 0g1� d � s
		 1

1 � d + ct :

Taking this inequality at s = t gives the required result. �

Lemma A.1.5.

For any (xa; xb) in R2, for any p � 1, we have

-
�
�
�bxae

1
p � b xbe

1
p

�
�
� � 21� 1

p jxa � xbj
1
p

- (jxaj + jxbj)
1
p � j xaj

1
p + jxbj

1
p .

Proof : The second inequality is just the de�nition of the concavity of x 7! x
1
p on R+ . As for the �rst

one, it is enough to prove it for jxa j � j xbj (otherwise exchange them) and xa non negative (otherwise
take (� xa ; � xb). Besides, since it clearly holds for xb = 0 , we only have to prove (for x = x a

j x b j ),

x
1
p � 1 � 21� 1

p (x � 1)
1
p 8x � 1 :

First, by concavity of x 7! x
1
p , 1

2 x
1
p + 1

2 1
1
p �

�
x +1

2

� 1
p which gives the required inequality for the case

"+ ". Besides, still by concavity of x 7! x
1
p , we have for x � 1, x � 1

x x
1
p + 1

x 0
1
p �

�
x � 1

x x + 1
x 0

� 1
p and

1
x x

1
p + x � 1

x 0
1
p �

�
1
x x + x � 1

x 0
� 1

p . Adding those two inequalities gives the case "� ". �

A.2 About continuity

Lemma A.2.1.

Let  : Rn ! Rq be a continuous function on a compact subsetC of Rn . There exists a
concave classK function � such that for all (xa; xb) in C2

j (xa) �  (xb)j � � (jxa � xbj) :

Proof : De�ne the function
� 0(s) = max

x 2C ; j ej� s
j (x + e) �  (x)j

which is increasing and such that � 0(0) = 0 . Let us show that it is continuous at 0. Let (sn ) a
sequence converging to0. For all n, there exists xn in C and en such that jen j � sn and � 0(sn ) =
j (xn + en ) �  (xn )j. Since C is compact, there exist x � in C, e� and subsequences of(xn ) and (en )
converging to x � and e� respectively. But e� is necessarily 0 and by continuity of  , � 0(sn ) tends to 0.
Now, the function, de�ned by the Riemann integral

� 1(s) =

8
<

:

1
s

Z 2s

s

� 0(s)ds + s ; s > 0

0 ; s = 0

is continuous, strictly increasing and such that � 0(s) � � 1(s). Besides, taking �s = max ( x a ;x b ) 2C 2 jxa � xbj,
there exists a concave classK function � such that for all s in [0; �s], � 1(s) � � (s) (see [McS34] for instance).
Finally, we have :

j (xa ) �  (xb)j � � (jxa � xbj) 8(xa ; xb) 2 C2 :

�
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Lemma A.2.2.

Consider a function  : Rn ! R. Assume that there exist a compact setC of Rn and a
function � of classK such that for all (xa; xb) in C2

j (xa) �  (xb)j � � (jxa � xbj) :

De�ne the function  ̂ : Rn ! [�  ;  ] by1

 ̂ (z) = sat ( (z))

with  = max
z2C

 (z). Then, for any compact subset ~C strictly contained 2in C, there exists a

positive real number c such that for all (xa; xb) in Rn � ~C,

j ̂ (xa) �  ̂ (xb)j � c� (jxa � xbj) (A.1)

Proof : Since C strictly contains ~C, we have :

� = inf
( x a ;x b ) 2 ( Rn nC) � ~C

jxa � xbj > 0 :

First, for xb in ~C,  ̂ (xb) =  (xb). Now, if xa is in C, then we have  ̂ (xa ) =  (xa ) and consequently
(A.1) holds for c � 1. If xa =2 C, we have, for all xb in ~C,

jxa � xbj � � ;
j  ̂ (xa ) �  ̂ (xb)j � 2 � 2 � ( j x a � x b j )

� ( � ) ;

and (A.1) holds for c � 2 
� ( � ) . �

A.3 About injectivity

In this appendix, we consider two continuous functions	 : Rn ! Rr and 
 : Rn ! Rq and a
subsetS of Rn such that

	( xa) = 	( xb) 8(xa; xb) 2 S 2 : 
 (xa) = 
 (xb) : (A.2)

In the particular case where	 is the identity function, (A.2) characterizes the injectivity of 
 .

Lemma A.3.1.

There exists a function  de�ned on 
 (S) such that

	( x) =  (
 (x)) 8x 2 S : (A.3)

Proof : De�ne the map  on 
 (S) as

 (z) =
[

x 2S

 ( x )= z

f 	( x)g :

For any z in 
 (S), the set  (z) is non-empty and single-valued because according to (A.2), if z = 
 (xa ) =

 (xb), then 	( xa ) = 	( xb). Therefore, we can consider as a function de�ned on 
 (S) and it veri�es
(A.3). �

1The saturation function satM (�) is de�ned by satM (x) = max f minf x; M g; � M g
2By strictly contained, we mean that ~C � C and the distance between ~C and the complement of C, namely

Rn n C, is strictly positive.
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Lemma A.3.2.

Consider any compact subsetC of S. There exists a concave classK function � such that
for all (xa; xb) in C2

j	( xa) � 	( xb)j � � (j
 (xa) � 
 (xb)j) : (A.4)

Proof : We denote D (xa ; xb) = j
 (xa ) � 
 (xb)j. Let

� 0(s) = max
(xa ; xb) 2 C2

D (xa ; xb) � s

j	( xa ) � 	( xb)j

This de�nes properly a non decreasing function with non negative values which satis�es :

j	( xa ) � 	( xb)j � � 0(D (xa ; xb)) 8(xa ; xb) 2 C2 :

Also � 0(0) = 0 . Indeed if not there would exist (xa ; xb) in C2 satisfying :

D (xa ; xb) = 0 ; j	( xa ) � 	( xb)j > 0 :

But this contradicts Equation (A.2).
Moreover, it can be shown that this function is also continuous at s = 0 . Indeed, let (sk )k 2 N be a
sequence converging to0. For each k, there exist (xa;k ; xb;k ) in C2 which satis�es D (xa;k ; xb;k ) � sk

and � 0(sk ) = j	( xa;k ) � 	( xb;k )j. The sequence(xa;k ; xb;k )k 2 N being in a compact set, it admits an
accumulation point (x �

a ; x �
b ) which, because of the continuity of D must satisfy D (x �

a ; x �
b ) = 0 and

therefore with (A.2) also 	( x �
a ) � 	( x �

b ) = 0 : It follows that � 0(sk ) tends to 0 and � 0 is continuous at
0. Proceeding with the same regularization of � 0 as in the proof of Lemma A.2.1, the conclusion follows.
�

Lemma A.3.3.

Consider any compact subsetC of S. There exists a uniformly continuous function  de�ned
on Rq such that

	( x) =  (
 (x)) 8x 2 C :

Proof : Consider  and � given by Lemmas A.3.1 and A.3.2 respectively. For any (za ; zb) in 
 (C)2 ,
there exists (xa ; xb) in C2 such that za = 
 (xa ) and zb = 
 (xb). Applying (A.4) to (xa ; xb) and using
(A.3), we have

j (za ) �  (zb)j � � (jza � zbj) :

� being concave, we deduce from [McS34, Theorem 2] (applied to each of ther real-valued components
of  ) that  admits a uniformly continuous extension de�ned on Rq . Note that the extension of each
component preserves the modulus of continuity � , so that the global extension has a modulus of continuity
equal to c� for some c > 0 depending only on the choice of the norm on Rr . �

When q � n and 
 is full-rank on C, the function  is evenC1:

Lemma A.3.4.

Assume that q � n and
@

@x

is full-rank on S, namely 
 is a submersion onS. Then, 
 (S) is

open and there exists aC1 function  de�ned on 
 (S) such that

	( x) =  (
 (x)) 8x 2 S :

Proof : 
 is an open map according to [Lee13, Proposition 4.28], thus 
 (S) is open. Consider the
function  given by Lemma A.3.1 and take any z� in 
 (S). There exists x � in S such that z� = 
 (x � ).

 being full-rank at x � , according to the constant rank theorem, there exists an open neighborhood V
of x � and C1 di�eomorphisms  1 : Rn ! V and  2 : Rq ! 
 (V) such that for all ~x in Rn :


 ( 1(~x)) =  2(~x1 ; : : : ; ~xq) :

It follows that for all z in 
 (V)

 ( 1( � 1

2 (z); 0)) = z

namely 
 admits a C1 right-inverse 
 ri de�ned on 
 (V) which is an open neighborhood ofz� . Therefore,
 = 	 � 
 ri and  is C1 at z� . �
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A direct consequence from those results is that any continuous function
 : Rn ! Rq injective
on a compact setC admits a uniformly continuous left-inverse  de�ned on Rq (take 	 = Id).
The previous lemma does not apply because
 cannot be a submersion. However, we will show
now that when 
 is full-rank (i-e an immersion), this left-inverse can be taken Lipschitz onRq.

Due to needs in Chapters 5 or 7, we generalize those results to the case where the function

 depends on another parameterw evolving in a compact set:

Lemma A.3.5.

Let 
 : Rn � Rp ! Rq be a continuous function and compact setsCx and Cw of Rn and Rp

respectively such that for all w in Cw , x 7! 
 (x; w) is injective on Cx .
Then, there exist a concave classK function � , such that for all (xa; xb) in C2

x and all w
in Cw ,

jxa � xbj � � (j
 (xa; w) � 
 (xb; w)j) ;

and a function  de�ned on Rq � Rp and a strictly positive number c such that

x =  (
 (x; w); w) 8(x; w) 2 Cx � C w

and
j (za; w) �  (zb; w)j � c� (jza � zbj)

i-e z 7!  (z; w) is uniformly continuous on Rq, uniformly in w.
If besides for all w in Cw , x 7! 
 (x; w) is an immersion onCx , i-e for all w in Cw , and all

x in Cx ,
@

@x

(x; w) is full-rank, then � is linear and z 7!  (z; w) is Lipschitz on Rq, uniformly
in w.

Proof : The proof of the existence of � follows exactly that of Lemma A.3.2, but adding in the max
de�ning � 0 , w 2 Cw . Since it is a compact set, � is well de�ned and the same � can then be used for
any w in Cw . Applying Lemma A.3.3 to every x 7! 
 (x; w ) gives the result since it is shown there that
the extensions admit all the same modulus of continuity c� for some c > 0 depending only on the norm
chosen onRr .

Now suppose that x 7! 
 (x; w ) is full-rank for all w in Cw . Let � be the function de�ned on Cx �C x �C w

by

�( xa ; xb; w) = 
 (xa ; w) � 
 (xb; w) �
@

@x

(xb; w)( xa � xb) :

Since @

@x(x; w ) is full-rank by assumption, the function

P(x; w) =
� @


@x
(x; w)> @


@x
(x; w)

� � 1 @

@x

(x; w)>

is well-de�ned and continuous on Cx � C w , and for any (xa ; xb; w) in Cx � C x � C w , we have

jxa � xbj � Pm (j
 (xa ; w) � 
 (xb; wj + j�( xa ; xb; w)j)

with Pm = max Cx �C w jP (x; w )j. Besides, the function j �( x a ;x b ;w ) j
j x a � x b j 2 is de�ned and continuous on Cx �C x �

Cw , thus there exists L � > 0 such that

j�( xa ; xb; w)j � L � jxa � xbj2 �
1

2Pm
jxa � xbj

for any (xa ; xb) in C2
x such that jxa � xbj � 2r with r = 1

4Pm L �
, and for any w in Cw . Now, de�ne the

set

 = f (xa ; xb) 2 C2

x j j xa � xbj � 2r g

which is a closed subset of the compact setC2
x and therefore compact. The function (xa ; xb; w) 7!

j x a � x b j
j 
 ( x a ;w ) � 
 ( x b ;w ) j is de�ned and continuous on 
 � C w since 
 (�; w) is injective for any w in Cw . Thus, it
admits a maximum M on the compact set 
 � C w .

Finally, take any (xa ; xb) in C2
x and any w in Cw . There are two cases :
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-either (xa ; xb) =2 
 , i-e jxa � xbj < 2r , and

jxa � xbj �
Pm

2
j
 (xa ; w) � 
 (xb; w)j :

-or (xa ; xb) 2 
 , and
jxa � xbj � M j
 (xa ; w) � 
 (xb; w)j :

We conclude that � can be chosen linear with rate L = max f Pm
2 ; M g. �





Appendix B

Proofs of Chapter 10

B.1 Proof of Lemma 10.1.1

The compact K 0 being globally asymptotically attractive and interior to E which is forward
invariant, E is globally attractive. It is also stable due to the continuity of solutions with
respect to initial conditions uniformly on compact time subsets of the domain of de�nition. So
it is globally asymptotically stable. It follows from [Wil69, Theorem 3.2] that there exist C1

functions VK : Rm ! R� 0 and VE : Rm ! R� 0 which are proper onRm and a classK1 function
� satisfying

� (d(z; K 0)) � VK (z) ; � (d(z; E)) � VE (z) 8 z 2 Rm ;

VK (z) = 0 8z 2 K 0 ; VE (z) = 0 8 z 2 E ;
@VK
@z

(z) � (z) � � VK (z) ;
@VE
@z

(z) � (z) � � VE (z) 8 z 2 Rm :

With d an arbitrary strictly positive real number, the notations

vE = sup
z2 Rm : d(z;E )� d

VK (z) ; � =
� (d)
2vE

;

and since� is of classK1 , we obtain the implications

VE (z)+ �V K (z)= � (d) ) � (d(z; E)) � VE (z) � � (d)

) d(z; E) � d ) VK (z) � vE :

With our de�nition of � , this yields also

� (d) � � V K (z) = VE (z) ) 0 <
� (d)

2
� VE (z) ) 0 < d (z; E) � d :

On the other hand, with the compact notation V(z) = VE (z) + �V K (z), we have @V
@z(z) � (z) �

�V (z), for all z 2 Rm . All this implies that the sublevel set E = f z 2 Rm : V(z) < � (d)g is
contained in f z 2 Rm : d(z; E) 2 [0; d]g and that cl (E ) is contained in E. Besides,E veri�es
property C with the vector �eld � and the function � = V � � (d).

B.2 Proof of Lemma 10.2.1

We use the following notations:
The complementary, closure and boundary of a setS are denotedSc, cl (S) and @S, respectively.
The Hausdor� distance dH between two setsA and B is de�ned by :
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dH (A; B ) = max

(

sup
zA 2 A

inf
zB 2 B

jzA � zB j ; sup
z2 A

inf
zB 2 B

jzA � zB j

)

:

Z (z; t) denotes the (unique) solution, at time t, to _z = � (z) going trough z at time 0 and
� " =

S

t2 [0;" ]
Z (@E; t).

Lemma B.2.1 Let E be an open strict subset ofRm verifying C, with a Cs vector �eld � and
a Cs mapping � . There exists a strictly positive (maybe in�nite) real number "1 such that, for
any " in [0; "1 [, there exists aCs-di�eomorphism � : Rm ! E , such that

� (z) = z 8z 2 E" = E \ (� " )c ; dH (@E" ; @E) � " sup
z

j� (z)j :

Proof : According to Condition C, � is bounded and K 0 is a compact subset of the open setE . It
follows that there exists a strictly positive (maybe in�nite) real number " 1 such that

Z (z; t) 62K 0 8(z; t) 2 @E� [0; 2" 1 [ :

In the following " is a real number in [0; " 1 [.

We introduce the notations

� 2" =
[

t 2 [0 ;2" ]

Z (@E; t) ; E2" = E \ (� 2" )c

and establish some properties.

� E is forward invariant for � . This is a direct consequence of pointsC.1 and C.3.

� � 2" is closed. Take a sequence(zk ) of points in � 2" converging to z� . By de�nition of � 2" , there exists
a sequence(tk ), such that :

tk 2 [0; 2" ] and Z (zk ; � tk ) 2 @E 8k 2 N :

Since[0; 2" ] is compact, one can extract a subsequence(t � ( k ) ) converging to t � in [0; 2" ], and by continuity
of the function (z; t) 7! Z (z; � t), (Z (z� ( k ) ; t � ( k ) )) tends to Z (z� ; � t � ) which is in @E, since @Eis closed.
Finally, because t � is in [0; 2" ], z� is in � 2" by de�nition.

� � 2" is contained in cl (E ). Since, E is forward invariant for � , and so is cl (E ) (see [Hah67, Theorem
16.3]). This implies

@E � � 2" =
[

t 2 [0 ;2" ]

Z (@E; t) � cl (E ) = E [ @E :

At this point, it is useful to note that, because � 2" is a closed subset ofcl (E ) and E is open, we have
� 2" \ E = � 2" n@E. This implies :

E nE2" = ( E2" )c \ E = ( E c [ � 2" ) \ E = � 2" \ E = � 2" n@E; (B.1)

and E = E2" [
6=

(� 2" n@E).

With all these properties at hand, we de�ne now two functions t and � . The assumptions of global
attractiveness of the closed set K 0 contained in E open, of transversality of � to @E, and the property
of forward-invariance of E , imply that, for all z in E c, there exists a unique non negative real number
t(z) satisfying:

� (Z (z; t(z))) = 0 () Z (z; t(z)) 2 @E:

The same arguments in reverse time allow us to see that, for all z in � 2" , t(z) exists, is unique and in
[� 2"; 0]. This way, the function z ! t(z) is de�ned on (E2" )c. Next, for all z in (E2" )c, we de�ne :

� (z) = Z (z; t(z)) :

Thanks to the transversality assumption, the Implicit Function Theorem implies the functions z 7! t(z)
and z 7! � (z) are Cs on (E2" )c.

Now we evaluate t(z) for z in @� 2" . Let z be arbitrary in @� 2" and therefore in � 2" which is closed.
Assume its corresponding t(z) is in ] � 2"ÃŠ; 0[. The Implicit Function Theorem shows that z 7! t(z) and
z 7! � (z) are de�ned and continuous on a neighborhood of z. Therefore, there exists a strictly positive
real number r satisfying

8y 2 B r (z) ; 9ty 2 ] � 2"; 0[ : Z (y; t y ) 2 @E :
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