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Chapter 1

Introduction

Context

In many applications, estimating the current state of a dynamical system is crucial either to
build a controller or simply to obtain real time information on the system for decision-making
or surveillance. A common way of addressing this problem is to place some sensors on/in the
physical system and design an algorithm, calledbserver whose role is to process the incomplete
and imperfect information provided by the sensors and thereby construct a reliable estimate of
the whole system state. Of course, such an algorithm can exist only if the measurements from
the sensor somehow contain enough information to determine uniquely the state of the system,
namely the system isobservable

The number and quality of the sensors being often limited in practice due to cost and physical
constraints, the observer plays a decisive role in a lot of applications. Many e orts have thus
been made in the scientic community to develop universal methods for the construction of
observers. Several conceptions of this object exist, but in this thesis, we mean by observer a
nite-dimensional dynamical system fed with the measurements, and for which a function of
the state must converge in time to the true system state. Although very satisfactory solutions
are known for linear systems, nonlinear observer designs still su er from a signi cant lack of
generality. The very vast literature available on the subject consists of scattered results, each
making speci ¢ assumptions on the structure and observability of the system. In other words,
no uni ed and systematic method exists for the design of observers for nonlinear systems.

Actually, observer design may be more or less straightforward depending on the coordinates
we choose to express the system dynamics. For instance, dynamics which seem nonlinear at rst
sight could turn out to be linear in other coordinates. In particular, some speci c structures,
called normal forms, have been identi ed for allowing a direct and easier observer construction.
One may cite for instance the state-a ne forms with their so-called Luenberger or Kalman ob-
servers, or the triangular forms associated to the celebrated high gain design. With this in mind,
most solutions available in the literature actually t in the following three-step methodology :

1. look for a reversible change of coordinates transforming the dynamics of the given nonlinear
system into one of the identi ed normal forms,
2. design an observer in those new coordinates,

3. deduce an estimate for the system state in the initial coordinates via inversion of the
transformation.

Of course in order to follow this method one need to know

I. a list of normal forms and their associated observers,

[l. under which conditions and thanks to which invertible transformation one can rewrite a
dynamical system into one of those forms,
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[11. how to compute the inverse of this transformation.

When browsing the literature, one discover that the rst two points have been extensively
studied, although not always under this terminology. In fact, they constitute the core of the
observer design problem and they are tightly linked since a particular form is of interest if it
admits observers (Point I.) and if a large category of systems can be transformed into that
form (Point 11.). Therefore, Points I. and II. are often treated simultaneously. On the contrary,
very few results concern Point Ill., mainly because the observer problem is often considered
theoretically solved, once an invertible transformation into a normal form has been found.

Problems addressed in this thesis

Actually, in practice, inverting a nonlinear map is far from trivial. Most of the time, the system
and the normal form have di erent dimensions, so that the transformation is at best an injective
immersion. Since its inverse is a priori de ned only on a submanifold of the observer space, an
extension is often necessary. When an explicit expression for a global inverse is not available,
numerical inversion usually relies on the resolution of a minimization problem with a heavy
computation cost, which thus raises implementation issues. That is why the rst goal of this
thesis was to develop a methodology to avoid the explicit inversion of the transformation, by
bringing the dynamics of the observer (designed in the normal form coordinates) back into the
initial system coordinates.

When | started my thesis, some preliminary results in that direction had already been ob-
tained in the case of autonomous systems, but some tools remained to be developed in order to
complete the theory and also to make the method implementable in practice. This kept us busy
for several months and at the end, we tried to extend our results to time-varying/controlled
systems. In doing so, we discovered that surprisingly, the limitation did not come from our
method of inversion, but rather from the scarcity of general observer design techniques available
for nonlinear controlled systems, namely from Points I.-1I. rather than Point I11.

In particular, we realized that, in the usual case where the derivatives of the input are
unknown, even the widely used high gain design, reputed to be general, had only been proved to
work under the assumptions that the system be observable for any input AND that its order of
di erential observability be equal to the system dimension. In this particular case, the system can
indeed be transformed into a triangular normal form with Lipschitz nonlinearities appropriate for
the design of a high gain observer. Given the restrictive nature of this framework, we naturally
wondered if one of those two assumptions could be relaxed. Actually, the "observable for any
input” assumption is necessary to have a triangular form and cannot be altered. However, we
discovered that, interestingly, it was often possible to preserve the triangularity of the target
form when allowing the order of di erential observability to be larger than the dimension of the
system, but that the Lipschitzness of the nonlinearities could be lost. This observation led us to
address the following two problems : rst, what kind of observers can be used for a triangular
normal form with continuous (non-Lipschitz) nonlinearities, and second under which conditions
a system can be transformed into such a continuous triangular form.

Apart from the high gain paradigm, another general technique for nonlinear observer design
had recently been developed, inspired from Luenberger's initial approach to build observers for
linear systems. This so-called Kazantzis-Kravaris or Luenberger design consists in transforming
the system into a Hurwitz linear form (for which a trivial observer exists) via the resolution
of a partial di erential equation (PDE). But this approach was only available for autonomous
systems and we thus tried to gure out how it could be extended to controlled/time-varying
systems, namely how to transform this kind of system into a Hurwitz linear form.



Thesis organization

Summing up, this thesis provides contributions to each of the three points mentioned above :

Contribution 1 observer design for a continuous triangular form (related to Point I.)

Contribution 2 characterization of controlled systems which can be transformed into a con-
tinuous triangular form (related to Point I1.)

Contribution 3 characterization of controlled systems which can be transformed into a Hur-
witz linear form (related to Point I1.)

Contribution 4  method to express the dynamics of the observer in the given coordinates to
avoid the inversion of the transformation (related to Point Ill.)

Instead of presenting the results in a chronological way, | thus found clearer to organize my
thesis along this three-step methodology and classify the contributions accordingly, namely in
three parts :
Part I Normal forms and their observers (with Contribution 1)
Part Il Transformation into a normal form (with Contributions 2 and 3)
Part [1l  Observer in given coordinates (with Contribution 4)
Since the topics of Part | and Il have been extensively studied in the literature, detailed reviews
are provided in each of those parts, so that this thesis nally gives a good overview of the state
of the art in terms of observer design for nonlinear systems.

On the other hand, | also had the opportunity to work on applications, in particular the
design of observers for permanent magnet synchronous motors (PMSM) without mechanical

information (sensorless) and with some unknown parameters. This led to the following contri-
butions :

Contribution 5 gradient observer for the estimation of the rotor position and magnet ux of
a PMSM

Contribution 6  observability analysis and observer design for a PMSM with unknown rotor
position and unknown resistance.

This work was carried out in parallel to the rest and is detailed in a separate part :

Part IV  Observers for PMSMs with unknown parameters (with Contributions 5 and 6).

Publications

The work presented in this thesis has resulted in the following publications :
- Journals
1. P. Bernard, L. Praly, V. Andrieu, Observers for a non-Lipschitz triangular form,

Automatica, Vol. 82, p301-313, 2017

2. P. Bernard, L. Praly, V. Andrieu, On the triangular normal form for uniformly ob-
servable controlled systemsAutomatica, Vol. 85, p293-300, 2017.

3. P. Bernard, L. Praly, V. Andrieu, Expressing an observer in given coordinates by
augmenting and extending an injective immersion to a surjective di eomorphism
Submitted to SIAM

- Conferences
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1. P. Bernard, Luenberger observers for nonlinear controlled systemsConference on
Decision and Control, 2017 (To appear)

2. P. Bernard, L. Praly, Robustness of rotor position observer for permanent magnet
synchronous motors with unknown magnet ux IFAC World Congress, 2017

3. P. Bernard, L. Praly, V. Andrieu, Non Lipschitz triangular normal form for uniformly
observable controlled systemdFAC Symposium on Nonlinear Control Systems, 2016

4. P. Bernard, L. Praly, V. Andrieu, Tools for observers based on coordinate augmenta-
tion, Conference on Decision and Control, 2015



Introduction

Contexte

Dans beaucoup d'applications, I'estimation en temps réel de I'état d'un systéme dynamique est
cruciale, que ce soit pour la synthése d'un contréleur ou simplement pour la surveillance et la
prise de décision. Une facon usuelle de résoudre ce probléme consiste a installer des capteurs
sur/dans le systéme physique et implémenter un algorithme, appelébservateur dont le réle est
de traiter les informations partielles et imparfaites données par les capteurs, et d'en déduire une
estimation able de I'état complet du systéeme. Bien s(r, un tel algorithme ne peut exister que
si les mesures des capteurs contiennent assez d'informations pour déterminer de maniére unique
I'état du systéme : le systéme est alors dibbservable

Le nombre et la qualité des capteurs étant souvent limités en pratique en raison de contraintes
physiques et de colt, I'observateur est amené a jouer un réle décisif dans beaucoup d'applications.
La communauté scienti que s'est donc e orcée de développer des méthodes aussi universelles
gue possible pour la synthése d'observateur. Plusieurs conceptions de cet objet existent, mais
dans cette thése, le terme "observateur" désigne un systéme dynamique de dimension nie,
prenant en entrée les mesures, et dont une fonction de I'état converge en temps vers I'état
réel du systéme. Alors que des solutions satisfaisantes existent pour les systémes linéaires, les
synthéses d'observateurs non linéaires manquent cruellement de généralité. La littérature, par
ailleurs trés fournie sur le sujet, se compose essentiellement de résultats épars, chacun faisant sa
propre hypothése sur la structure et I'observabilité du systéme. Autrement dit, il n'existe pas
de méthode générale pour la synthése d'observateur pour systéme non linéaires.

En fait, il se peut que la synthése soit plus ou moins facile suivant les coordonnées que l'on
a choisies pour exprimer la dynamique du systeme. Par exemple, une dynamique qui parait
non linéaire au premier abord pourrait s'avérer étre linéaire dans d'autres coordonnées. Or,
des structures particulieres, appeléesormes normales ont été identi ées comme permettant la
construction facile et directe d'un observateur. Parmi elles, les formes anes en I'état, avec
leurs observateurs de Luenberger ou de Kalman, ou les formes triangulaires, associées au célébre
observateur grand gain. A partir de 13, la plupart des solutions disponibles dans la littérature
s'inscrivent en fait dans une démarche a trois étapes que l'on peut résumer ainsi :

1. chercher un changement de coordonnées réversible qui transforme la dynamique du systeme
non linéaire donné dans l'une des formes normales connues,
2. synthétiser un observateur dans ces coordonnées,
3. en déduire une estimation de I'état du systeme dans les coordonnées initiales en inversant
la transformation.
Bien s0r, pour suivre cette méthode, il est nécessaire de connaitre

I. une liste de formes normales et les observateurs associés,

Il. sous quelles conditions et grace a quelle transformation inversible il est possible de réécrire
un systeme dynamique sous l'une de ces formes,

[1l. comment calculer l'inverse de la transformation.
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Il s'avere que les deux premiers points ont beaucoup été étudiés dans la littérature (pas toujours
sous cette terminologie). En fait, ils constituent le coeur du probléme de synthése d'observateur
et ils sont fortement liés puisqu'une forme particuliere n'a d'intérét que si elle admet un obser-
vateur (Point I.) et si une large catégorie de systémes peuvent étre transformés en cette forme
(Point 11.). Les Points I. et Il. sont donc trés souvent traités simultanément. Au contraire, trés
peu de résultats concernent le Point Ill., principalement parce que le probléme d'observateur est
souvent considéré comme résolu lorsque une transformation inversible dans une forme normale
a été trouvée, c'est-a-dire lorsque les Poaints I. et Il. ont été traités.

Problemes abordés dans cette these

En fait, en pratique, inverser une application non linéaire est loin d'étre trivial. La plupart

du temps, le systeme et la forme normale ont des dimensions di érentes, et la transforma-
tion est donc au mieux une immersion injective. Puisque son inverse n'est a priori dé nie que
sur une sous-variété de l'espace ou évolue I'observateur, une extension est souvent nécessaire.
En I'absence d'expression explicite et globale de l'inverse, l'inversion numérique repose sur la
résolution d'un probleme de minimisation colteux en calcul, ce qui souléve d'importants prob-
lemes d'implémentation. C'est pourquoi le premier objectif de cette these était de développer
une méthode permettant d'éviter l'inversion explicite de la transformation, en ramenant la dy-
namigue de l'observateur (écrite dans les coordonnées de la forme normale) dans les coordonnées
initiales du systéme.

Lorsque j'ai commencé ma thése, des résultats préliminaires avaient déja été obtenus dans
cette direction pour les systémes autonomes, mais il restait a développer certains outils pour
compléter la théorie ainsi que pour la rendre implémentable en pratique. Ceci nous a occupés
guelques mois, jusqu'a ce que nous essayions d'étendre nos résultats aux systéemes instation-
naires/commandés. C'est alors que nous nous rendimes compte avec surprise que les limitations
ne provenaient pas de notre méthode d'inversion, mais plutét de la rareté des techniques générales
de synthése d'observateurs existant pour les systemes non linéaires commandés, c'est-a-dire des
Points I. et II. plutét que du Point IlI.

En particulier, nous réalisames que, dans le cas usuel ou les dérivées de l'entrée sont in-
connues, méme la synthése grand gain, si largement utilisée et réputée générale, ne s'applique
théoriguement qu'aux systemes observables pour toute entrée dont l'ordre d'observabilité dif-
férentielle est égal a la dimension du systeme. Dans ce cas particulier en e et, le systeme peut
étre transformé en une forme normale triangulaire avec des non linéarités Lipschitz appropriées
a la synthése d'un observateur grand gain. Vu le caractére restrictif de ce cadre, nous nous de-
mandames naturellement si I'une de ces deux hypothéses pouvait étre relachée. Pour ce qui est
de la premiére, l'observabilité "pour toute entrée" est nécessaire pour obtenir une forme trian-
gulaire et ne peut donc étre modi ée. Par contre, nous découvrimes qu'il était souvent possible
de préserver la triangularité de la forme cible en autorisant 'ordre d'observabilité di érentielle
a étre supérieur a la dimension du systeme, mais que le caractere Lipschitz des non linéarités
pouvait alors étre perdu. Cette observation nous amena naturellement a nous intéresser a deux
nouveaux problémes : d'une part, quels types d'observateurs peuvent étre utilisés pour une
forme triangulaire avec des non linéarités continues (non-Lipschitz), et d'autre part, sous quelles
conditions un systéme quelconque peut étre transformé en une telle forme.

En face de la synthése grand gain, une autre technique générale de synthése d'observateurs
non linéaires avait été récemment développée, inspirée de l'approche initialement adoptée par
Luenberger pour la synthése d'observateur de systemes linéaires. Cette synthése "de Kazantzis-
Kravaris" ou "de Luenberger”, consiste a transformer le systéme en une forme linéaire Hurwitz
(pour laquelle un observateur trivial existe) via la résolution d'une équation aux dérivées par-
tielles (EDP). Mais cette approche étant disponible seulement pour les systémes autonomes,
nous essayames de I'étendre aux systémes instationnaires/commandés.
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Organisation de la these

En résumé, cette these contribue a chacun des trois points mentionnés plus haut :

Contribution 1 Synthése d'observateurs pour une forme triangulaire continue (relié au Point
1)

Contribution 2 Caractérisation des systémes commandés pouvant étre transformés en une
forme triangulaire continue (relié au Point 11.)

Contribution 3 Caractérisation des systemes commandés pouvant étre transformés en une
forme linéaire Hurwitz (relié au Point I1.)

Contribution 4  Méthode pour exprimer la dynamique de l'observateur directement dans les
coordonnées du systeme pour éviter l'inversion de la transformation (relié au Point 1l1.)

Au lieu de présenter les résultats chronologiquement, j'ai ainsi trouvée plus clair d'organiser ma
thése en suivant cette démarche a trois étapes, et donc de classi er les contributions en trois
parties :

Partie I Formes normales et leurs observateurs (avec Contribution 1)
Partie Il Transformation dans une forme normale (avec Contributions 2 et 3)
Partie Il Expression de I'observateur dans les coordonnées du systéme (avec Contribution 4)
Les thémes des Parties I. et Il. ayant été intensivement étudiés dans la littérature, ce plan m'a
aussi permis de faire apparaitre un bilan détaillé des résultats existant en début de ces deux
parties. Cette thése donne donc nalement une bonne vue d'ensemble de I'état de l'art en
matiére d'observateur pour les systemes non linéaires.

Enn, jai aussi eu l'opportunité de travailler sur des applications, en particulier sur la
synthése d'observateurs pour moteurs synchrones a aimant permanent (MSAP) en l'absence

d'informations mécaniques (sensorless) et avec certains paramétres inconnus. Ce travail a mené
aux contributions suivantes :

Contribution 5 Observateur gradient pour I'estimation de la position du rotor et du ux de
l'aimant dans un MSAP

Contribution 6  Analyse d'observabilité et synthése d'observateur pour un MSAP dont la po-
sition du rotor et la résistance sont inconnues.

Ceci a été réalisé en paralléle et est donc détaillé dans une partie séparée et indépendante :

Partie IV Observateurs pour MSAPs aux paramétres inconnus (avec Contributions 5 et 6).

Publications

Les travaux présentés dans ce manuscrit ont fait I'objet des publications suivantes :
Journaux internationaux avec comité de lecture
1. P. Bernard, L. Praly, V. Andrieu, Observers for a non-Lipschitz triangular form,

Automatica, Vol. 82, p301-313, 2017

2. P. Bernard, L. Praly, V. Andrieu, On the triangular normal form for uniformly ob-
servable controlled systemsAutomatica, Vol. 85, p293-300, 2017.

3. P. Bernard, L. Praly, V. Andrieu, Expressing an observer in given coordinates by
augmenting and extending an injective immersion to a surjective di eomorphism
Soumis a SIAM.
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1. P. Bernard, Luenberger observers for non linear controlled systemsConference on
Decision and Control, 2017 (A paraitre)

2. P. Bernard, L. Praly, Robustness of rotor position observer for permanent magnet
synchronous motors with unknown magnet ux IFAC World Congress, 2017

3. P. Bernard, L. Praly, V. Andrieu, Non Lipschitz triangular normal form for uniformly
observable controlled system3FAC Symposium on Nonlinear Control Systems, 2016

4. P. Bernard, L. Praly, V. Andrieu, Tools for observers based on coordinate augmenta-
tion, Conference on Decision and Control, 2015



Chapter 2

Nonlinear observability and observer
design problem

Chapitre 2  Observabilité non-linéaire et synthése d'observateur. Ce chapitre
présente brievement la notion d'observabilité pour les systémes non-linéaires commandés et intro-
duit le probléme de la synthése d'observateur. La méthode introduite en introduction consistant
a transformer le systéme dans une "forme normale" est formalisée et les notations utiles au reste
de la thése sont introduites.
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This rst chapter introduces the problem of observer design for nonlinear controlled systems
and presents some basic notions of observability which will be needed throughout the thesis.
The subject under discussion here is well-established and widely described in the literature. Our
aim is not to provide an exhaustive study on nonlinear observability and observer design, but
rather to situate our contribution and introduce the basic tools/notations needed in the rest of
this thesis.

2.1 Observation problem

We consider a general system of the form :
x=f(xu) ; y=h(xu) (2.1)

with x the state in R%, u an input function with values in R%, y the output (or measurement)
with values in R% and f and h su ciently many times continuously di erentiable functions
de ned on R% R% . We denote

- X (Xo;to; t; u) the solution at time t of (2.T) with input u and passing throughx, at time
tg. Most of the time, tg is the initial time 0 and Xg the initial condition. In that case, we
simply write X (Xo;t; u).
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- Y (Xo; to; t; u) the output at time t of System (2.1) with input u passing throughx, at time
tg i-e :
Y (Xo;to; t;u) = h(X (Xg;to; t; u); u(t)) :

To alleviate the notations when to = 0, we simply note yy,.y, i-e
Yxou(t) = h(X (Xo;t;u); u(t)) :

Those notations are used to highlight the dependency of the output on the initial condition
(and the input). When this is unnecessary, we simply writey(t).

- Xo a subset of R% containing the initial conditions that we consider for System (2.3).
For any Xo in Xo, we denote *(xo;u) (resp y (Xo;Uu)) the maximal time of existence of
X (Xo; ;u) in R% (resp in a setX).

- U the set of all su ciently many times di erentiable inputs u:[0;+1 ) ! R% which the
system can be submitted to.

- U a subset ofR% containing all the values taken by the inputsu 2 U, i-e

u(o;+1) U:
u2u

More generally, for an integer m such that any u in U is m times di erentiable, Up,
denotes a subset oR%(M*1) containing the values taken by the inputsu in U and its rst
m derivatives, i-e
Um([0;+1)) Unm ;
u2u

The object of this thesis is to address the following problem :

Observation problem

For any input u in U, any initial condition Xg in Xp, nd an estimate R(t) of X (xo;t;u) based
on the only knowledge of the input and output up to time t, namely ujo; and yjo;, and so
that ®(t) asymptotically approachesX (xp;t;u), at least when®(t) is de ned on [0;+1 ).

Note that the solutions are de ned from any points in R%, but we may choose to restrict
our attention to those starting from a subset Xo of R% (perhaps for physical reasons) and thus,
we are only interested in estimating those particular solutions. Otherwise, takeXg = R%. As
for the causality constraint that only the past values of the input upy; can be used at timet,
this may be relaxed in the case where the whole trajectory ofi is known in advance, namely for
a time-varying system.

The continuous di erentiability of f says that any solution to System ) is uniquely
determined by its initial condition. Thus, the problem could be rephrased as : "given the input,
nd the only possible initial condition which could have produced the given output up to time
t". Of course, this raises the question of uniqueness of the initial condition leading to a given
output trajectory, at least after a certain time. This is related to the notion of observability
which will be addressed later in this chapter. In any case, one could imagine simulating System
@) simultaneously for a set of initial conditions xg and progressively removing from the set
those producing an output trajectory Y (Xo;t; u) "too far" from y(t) (with the notion of "far" to
be de ned). However, this method presents several drawbacks : rst, one need to have a fairly
precise idea of the initial condition to allow a trade o between number of computations and
estimation precision, and second, it heavily relies on the model (2|1) which could be imperfect.
This path has nevertheless aroused a lot of research :
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- either through stochastic approaches, adding random processes to the dynamids (.1) and to
the measurement, and following the probability distribution of the possible values of the state
(Jaz7q))

- or in a deterministic way, adding unknown admissible bounded disturbances to the dynamics
(2.1) and to the measurement, and producing a "set-valued observer" or “interval observer"
such as in [GRHSO00| LZAO03].

But as far as we know, no viable solution exist for standard nonlinear systems.
Another natural approach is the resolution of the minimization problem ([Zim94])
Z, ’
R(t) = Argmin, Y (&t; ju) y() d
0

or rather with nite memory
Z, 2
R(t) = Argmin,  Y(%t; ;u) y() d
tt

Along this path, a rst idea would be to integrate backwards the di erential equation (
for a lot of initial conditions % at time t until t t and select the "best" one, but this would
require a huge number of computations which would be impossible to carry out online and, as
before, it would rely too much on the model. Some methods have nonetheless been developed to
alleviate the number of computations and solve this optimization problem online, in spite of its
non-convexity and the presence of local minima (seé [Ala07] for a survey of existing algorithms).
In this thesis, the path we follow is rather to look for a dynamical system using the current
value of the input and output and whose state is guaranteed to provide (at least asymptotically)
enough information to reconstruct the state of System ). This dynamical system is called an
observer. A more rigorous mathematical de nition is the following (a sketch is given in Figure

RID).

De nition 2.1.1.

An observerfor System ) initialized in Xq is a couple(F;T) where
-F:R% R% R% 1 RY jscontinuous

- T is a family of continuous functions T, : RY: [0;+1 ) ! R%  indexed by u in U,
which respect the causalitff| condition :

e :[0;+1)! RU; 8t2[0+1); Ugy=tpy =) T u(t)= Tu(51)
- forany uin U, any zg in R% and any xo in Xo such that *(xo;u) =+ 1 , an)E] solution
Z(2zo,t;U; Yxou) tO
z= F(Z;U;Yxou) (2.2)
initialized at zo at time 0, with input u and yy,.,, exists on[0;+1 ) and is such that

Jim X ((x0;z0):tiU) X (xoitiu) =0 (2.3)

with

X ((X0;20); t;u) = Ty (Z(Zoi t; U; Vo) 1)

! Again, this causality condition may be removed if the whole trajectory of u is explicitly known, for instance
in the case of a time-varying system where u(t) = t for all t.

2We say "any solution" because F being only continuous, there may be several solutions. This is not a
problem as long as any such solution veri es the required convergence property.
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In other words, X ((xo; Zo); t;u) is an estimate of the current state of System [(2.L) and the
error made with this estimation asymptotically converges to 0 as time goes to the in nity.

If T, is the same for anyu in U and is de ned on RY instead of RY R, i-e is time-
independent, T is said stationary. In this case, T directly refers to this unique function and
we may simply say that

z=F(z;wyy) ; R*=T(z)

is an observer for System[(2]1) initialized inXo.

In particular, we say that the observer isin the given coordinatesif T is stationary and is
a projection function from R% to R%, namely X ((xo; zo); t; u) can be read directly from dy
components ofZ (zo;t; U; yx,u)- In the particular case wheredy = d; and T is the identity
function, we may omit to precise T.

Finally, when X, = R%, i-e the convergence is achieved for any initial condition of the
system, we say "observer" without specifyingXo.

u x = f(x;u) y
y = h(x;u) z=F(z;uy) R
Plant u 1 2= Tu(z:t)

Observer

Figure 2.1: Observer : dynamical system estimating the state of a plant from the knowledge of
its output and input only.

Remark 1 We will see in Chapter[4 that it is sometimes useful to write the observer dynamics
(2.2) as a di erential inclusion. In this case, F is a set-valued map and everything else remains
unchanged.

The time-dependence ofT, enables to cover the case where the knowledge of the input and/or
the output is used to build the estimate ® from the observer statez. For example, using the
output sometimes enables to reduce the dimension of the observer state (and thus alleviate the
computations). However, for those so-called reduced-order observers, the estimage depends
directly on y and is therefore a ected by measurement noise. This kind of observer won't be
mentioned in this thesis. On the other hand, we will see that it is sometimes necessary to use the
input (either implicitly or explicitly) in Ty, but always keeping in mind the causality condition.

The advantage of having an observer in the given coordinates is that the estimate of the
system state can directly be read from the observer state. This spares the maybe-complicated
computation of T,. Writing the dynamics of the observer in the given coordinates constitutes
one of the goals of this thesis, but we will see that unfortunately, it is not always possible, nor
easy.

Anyhow, the role of an observer is to estimate the system state based on the knowledge of
the input and output. This means that those signhals somehow contain enough information to
determine uniquely the whole state of the system. This brings us to the notion of observability.

2.2 Observability and observer design for nonlinear systems

2.2.1 Some notions of observability

In order to have an observer, a detectability property must be satis ed :
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Lemma 2.2.1.

Assume there exists an observer for Systenj (3.1). Then, Systerpi (2.1) is detectable for any
in U, i-e for any u in U and for any (xa; Xp) in Xog X gsuchthat *(xa;u)= *(Xpu)=+1
and

Yxau(t) = Yxpu(t) 8t O

we have

tI|i1m X (Xaq;t;u) X (Xpt;u)j=0:

The property of detectability says that even if two di erent initial conditions are not dis-
tinguishable with the output, the corresponding system solutions become close asymptotically
and thus we still get a "good" estimate no matter which we pick. This is a well-known nec-
essary condition which can be found for instance in(JABS13], and which admits the following
straight-forward proof.

Proof : Consider any u in U and any (xa;xp) in X& such that *(xa;u)= *(Xp;u)=+ 1 andyx,u =

Yxpu - Take zo in RY and pick a solution Z(zo;t;U;Yyx,u) of with input yx, ... Itis also a solution

to ( with input  yx,.u. Therefore, by denoting )@((xa;zo); tu) = T (Z(Z0;t;U; Yxamu )i U(L); Vxa (1)),

we have

lim iX((xa;20); t;u) X (Xa;t;u)j =0

and
lim X (xa;zo); tiu) X (xprt;u)j =0 :

The conclusion follows.

This means that detectability at least is necessary to be able to construct an observer.
Actually, we often ask for stronger observability properties such as :

De nition 2.2.1.

Consider an open subse8 of R%. System[2.1 is

distinguishableon S for some inputu: R! R% if
forall (Xa;xp)iNS S,

Yau(t) = Yxpu(t) 8t 2 [0;minf " (Xa;u); T (Xp;u)g) =) Xa= Xp:

- instantaneously distinguishableon S for some inputu: R! R% if
for all (Xa;xp) iN'S S, forall tin (0;minf *(xa;u); *(xp u)g)

Yxau(t) = Yxpu(t) 8t2[0;1) =) Xa= Xp:

- uniformly observableon S if
it is distinguishable on S for any input u:R! R% (not only for u in U).

- uniformly instantaneously observableon S if
it is instantaneously distinguishable on'S for any input u:R! R% (not only for u in
U).

In particular, the notion of instantaneous distinguishability means that the state of the
system can be uniquely deduced from the output of the system as quickly as we want. In the
particular case wheref, h and u are analytical, y is an analytical function of time ([Die60,
10.5.3]) and the notions of distinguishability and instantaneous distinguishability are equivalent
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because two analytical functions which are equal on an interval are necessarily equal on their
maximal interval of de nition. Besides, for any Xo, there existsty, such that

1 (k
SV RN ()

o t . 8t2[0ty,) ;

Yo (t) =
k=0
and distinguishability is thus closely related to the important notion of di erential observability
which will be de ned in Chapter §]and which roughly says that the state of the system at a
speci c time is uniquely determined by the value of the output and of its derivatives (up to a
certain order) at that time.

The notion of uniform observability could appear unnecessary at rst sight because it seems
su cient that the system be observable for any u in U, namely for any considered input, rather
than for any u: R! R%. However, we will see that this (strong) observability property infers
some structural properties on the system which are useful for the design of certain observers.

In fact, more or less strong observability properties are needed depending on the observer
design method and on what is required from the observer (tunability, exponential convergence
etc). For example, it is shown in [ABS13], that for autonomous systems, instantaneous distin-
guishability is necessary to have a tunable observer, i-e an observer giving an arbitrarily small
error on the estimate in an arbitrarily short time.

2.2.2 Observer design

It is proved in [ABS13] that if there exists an observer(F ; T) for an autonomous system

x=1(x) ; y=hx)

and a compact subset oR%  R% which is invariant by the dynamics (f; F), then there exist
compact subsetsG, of R% and G, of R%, and a closed set-valued maf de ned on G, such that
the set

E=f(x;2)2C, C, : z2T(X)g

is invariant, attractive, and veri es :
8(x;z) 2E; T(z;h(x))= x:

In other words, the pair made of the system statex (following the dynamics f ) and the observer
state z (following the dynamics F) converges necessarily to the graph of some set-valued mdp
and T is a left-inverse of this mapping. Note that this injectivity is of a peculiar kind since it is
conditional to the knowledge of the output, namely "x 7! T(x) is injective knowing h(x)". This
result justi es the usual methodology of observer design for autonomous systems which consists
in transforming, via a function T, the system into a form for which an observer is available,
then design the observer in those new coordinates (i-e nd-), and nally deduce an estimate
in the original coordinates via inversion of T (i-e nd T). Note that in practice, we look for a
single-valued mapT because it is simpler to manipulate than a set-valued map.

When considering a time-varying or controlled system, the same methodology can be used,
but two paths are possible :

- either we keep looking for a stationary transformation x 7! T(x) like for autonomous
systems

- or we look for a time-varying transformation (x;t) 7! Ty(x;t) which depends either explic-
itly or implicitly on the input u.

It is actually interesting to detail what we mean by explicitly/implicitly. In building a time-
varying transformation, two approaches exist, each attached to a di erent vision of controlled
systems :
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- either we consider, as in System[(2]1), that only the current value of the input (or some-
t, i-e there exists a function T such that for any u in U, Ty(x;t) = T(x; u(t)).

- or we consider Systeml) as a family of systems indexed hyin U, i-e
x="fu(x) ; y=hyX)

and we obtain a family of functions T, each depending on a whole functioru in U. In

this case, it is necessary to ensure thafl,( ;t) depends only on the past values ofi to
guarantee causality.

Along this thesis, we will encounter/develop methods from each of those categories. In any case,
here is a su cient condition to build an observer for System (2.1) :

Theorem 2.2.1.

Consider an integerd and continuous mapsF : R R% R% 1 R4 H:RI Ru1| RY
andF :RY R% R% 1 RY such that

=F(uy (2.4)

is an observer fofl
= F(wH(u)) 5 y=H(;u) (2.5)

i-e for any ("o; o) in (RY)? and any u in U, any solution { "o;t;u;¥,.u) of @4) and any
solution ( o;t;u) of (2.5) verify

Jme Totuygw)  (otiu) =0 (2.6)

Now suppose that for anyu in U, there exists a continuous functionT, : R%* R! RY and
a subsetX of R% such that :
a) for any xg in Xg such that *(xg;u) =+ 1, X (Xo; ;u) remains in X.

b) there exists a concaveK function and a positive real numbert such that for all (Xa; Xp)
inX?andallt t

JXa X ITu(Xa;t)  Tu(Xpt)j
i-e X 7! Ty(x;t) becomes injective onX, uniformly in time and in space, after a certain
time t.
c) Ty transforms System ) into System ), i-e for allx in X and all t in [0;+1 )
Lty Tu(xit) = F(Tu(xt);u(t);hOu(t)) 5 h(xqu(t)) = H(Tu(x;t);u(t)) ; (2.7)
whereL 1, 1) Ty is the Lie derivative of T, along the extended vector eld (f; 1), namely

Tu(X(X;t;t+ hyu);t+ h)  Ty(x;t)
h

L yTu(xit) = Ir|1r!n0

d) Ty respects the causality condition

8u:[0;+1)! R%; 8t2[0+1); Upy =ty =) Tu(;t)= Tu(;t):

3The expression of the dynamics under the form F(;u;H ( ;u)) can appear strange and abusive at this
point because it is highly non unique and we should rather write F( ;u). However, we will see in Part []how
speci ¢ structures of dynamics F( ;u;y) allow the design of an observer ).
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Then, for any u in U, there exists a functionT, : RY [0;+1 ) ! R% such that for each
t T, 7! Tu(;t) is uniformly continuous on RY and veri es

Tu(Tu(x;t);t) = x 8x2X :

Besides, denotingT the family of functions T, for u in U, (F;T) is an observer for System
@.7) initialized in Xo.

Solving the partial di erential equation (4.7)| a priori gives a solution T, depending on the
whole trajectory of u and rather situates this result in the last design category presented above.
But this formalism actually covers all three approaches and was chosen for its generality. In
fact, the dependence ofT, on u may vary, but what is crucial is that they all transform the
system into the same target form [2.5) for which an observer[(2}4) is known.

Proof : Take u in U. For any t t, x 7! Tu(x;t) is injective on X, thus there exists a function
Te : Tu(X;t) ' X such that for all x in X, T, '(Tu(x;t)) = x. Taking any &:[0;+1)! R™ such
that up.; = Hpox; thus gives Tu;tl = Tml on Ty (X;t) = Tu(X;t) according to d). Besides, with b), for
all (15 2) in Tu(X;t)?,

T (1) Tl (i 1 2 (2.8)
Applying [McS34] Theorem 2] to each component of Tu;tl, there exist c > 0 and an extensiorﬂ of Tu;[1 on
R? verifying (28] with = ¢ forall (1; 2) in (R®)? (i-e T, is uniformly continuous on R? ) and
such that T,' = T,,' onR® . Dening T onR? [0;+1) as
ift t

e Tud()
Tu(it) = 0 : otherwise

T. veri es the causality condition and we have forall t fandall (x; )in X RY,

iTu(it) X I Tu(xt)j - (2.9)

Now consider Xo in Xo such that * (xo;u) =+ 1 . Then, from a) and c), since X (Xo; ;u) remains in X
and Ty (X (Xo; ;u);t) is a solution to ( initialized at o = Tu(Xo;0) and for all t, yxow (t) = ¥ 4w (1).
Thus, because of [2.§), for any "o in R" and any solution T "o;t; U; yxowu) Of

t= F(/?U;YXO;U)

we have
Iim1 Tt U yaou)  Tu(X(Xo;t;u);t) =0 :
I+

t
If follows from (2.9) that
Jim X ((x0; 0);t;u) X (Xo;t;u) =0

with X ((xo; Ao);t;u) = Tu(1 Ao;t;u;yxo;u);t). Thus, (F;T) is an observer for System ).

Remark 2 Without the assumption of concavity of , it is still possible to show that x 7!
Tu(x;t) admits a continuous left-inverseT, de ned on RY . But, as shown in [SL16, Example 4],
continuity of T is not enough to deduce the convergence & from that of . uniform continuity
is necessary. Note that if X is bounded, the concavity of is no longer a constraint, since a
concave upper-approximation can always be obtained by saturation of (see [McS34] for more
details).

Besides, if there exists a compact se€ such that X is contained in C, it is enough to ensure
the existence of for (xa;Xp) in C2. As long as for allt, x 7! Ty(x;t) is injective on C, then for
all t, there exists a concaveK function  verifying the required inequality for all (xa;Xp) in C

“Denoting T,.; the jth component of T}, take T,,; () =min 51 x,fTyf (D+ (7  j)gor equivalently
Tug ()=minox fx + (Tu(xD) g

Afunction is uniformly continuous if and only if limn1 +1 jXn ynj =0 implieslimn +1 j (Xn) (yn)j=0.
This property is indeed needed in the context of observer design.
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(see Lemmg A.3.2). Thus, only uniformity in time should be checked, namely that there exists
a concavekK function greater than all the ¢, in other words that x 7! T(x;t) does not become
"less and less injective" with time. Of course, wheril, is time-independent, no such problem
exists and it is su cient to have x 7! Ty(x) injective on C. This is made precise in the following
corollary.

Corollary 2.2.1.

Consider an integerd and continuous mapsF : RY R% R&% | RI H:RI R RY
andF :RY R% R% ! RY such that 2.4) is an observer for [2.5). Suppose there exists
a continuous function T : R% | RY and a compact setC of R% such that :

- for any xg in Xg such that *(xo;u) =+ 1, X(Xg; ;u) remains in C.
- X 7! T(x) is injective on C.

- T transforms System [2.]) into System [2.5) onC, i-e for all x in C, all uin U, all t in
[0;+1)

L T(X) = F(TX);u);h(x;u(t)) 5 hOxu(t)) = H(T(x);u(t)) :
Then, there exists a uniformly continuous function T : RY I R% such that

T(T(x))=x 8x2C;

and (F;T) is an observer for System[(2]1) initialized inXo.

Proof : This is a direct consequence of Lemma A.3.2 and Theorem[2.2.1.

2.3 Organization of the thesis

As illustrated in Figure P.3] Theorem [2.2.1 shows that a possible strategy to design an
observer is to transform the system into a favorable form ) for which an observer is known,
and then bring the estimate back into the initial coordinates by inverting the transformation.
This design procedure is widely used in the literature and raises three crucial questions :

1. what favorable forms {2.5) do we know and which observers are they associated to ?
2. how to transform a given nonlinear system into one of those forms ?
3. how to invert the transformation ?

The present thesis contributes to each of those questions and is thus organized accordingly,
dedicating one part to each of them. Since the rst two have aroused a lot of research, detailed
literature reviews are provided in each case to help the reader situate our contributions. As for
the third one, it has not received a lot of attention as far as we know, although it constitutes a
recurrent problem in practice.

To those contributions, we add in a fourth part the results obtained in parallel concerning
observer design for permanent magnet synchronous motors with some unknown parameters.

Here is a more detailed account of the content of this thesis :
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Part Il

Part |

Part 11l
Figure 2.2: Process of observer design suggested by Theorem 2]2.1 and organization of the thesis.

Part I[}] Normal forms and their observers. We start by making a list of system
structures (2.5) for which we know an observer[(2.4). We call those favorable structuresormal
forms. Chapter[3 reviews the normal forms existing in the literature and recalls their associated
observer : state-a ne forms with Luenberger or Kalman observers and triangular forms with
high gain, homogeneous or mixed high gain-Kalman observers. Noticing that few observers exist
for non-Lipschitz triangular forms, we then |l this gap in Chapter 4,]by extending the use of
existing homogeneous observers to a broader class of Holder triangular forms and proposing a
new observer for the "only continuous" triangular form.

Part I] :]Transformation into a normal form. We address the problem of transforming
a nonlinear system into one of the previously mentioned normal forms. In each case, su cient
observability conditions on the system are given. A lot of results in this area already exist in
the literature and are recalled in Chapter[5. Then, we present in Chapterd 6 and |7 our new
results concerning the transformation of nonlinear systems into continuous triangular forms and
Hurwitz forms.

Part I[T : |[Expression of the observer dynamics in the initial system coordinates.
Although the observer design problem seems solved with Paiff| | andl ]I according to Theorem
[2.2.7, implementation issues may arise such as the computation of the inversk, of the trans-
formation. That is why, we develop in Part [IT b novel methodology to avoid the inversion of T,
by bringing the dynamics (2.4) back in the x-coordinates, i-e nd 2 and obtain an observerin
the given coordinatesas de ned in De nition 2.1.1] Although this process is quite common in
the case whereT,, is a di eomorphism, completeness of solutions is not always ensured and we
show how to solve this problem. Most importantly, we extend this method to the more complex
situation where T, is only an injective immersion, i-e the dimension of the observer state is
larger than the one of the system state. This is done by adding some new coordinates to the
system.

Part IV :|Observers for permanent magnet synchronous motors with unkown pa-
rameters. This part gathers results concerning observability and observer design for permanent
magnet synchronous motors when some parameters such as the magnet ux or the resistance
are unknown. Simulations on real data are provided. This work was carried out in parallel and
this part is mostly independent from the rest of the thesis.
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Chapter 3

Quick review of existing normal
forms and their observers

Chapitre 3 Formes normales existantes et leurs observateurs Ce chapitre présente les
principales formes normales observables qui existent dans la littérature et pour chacune d'entre
elles, rappelle la ou les observateurs associés. Deux principales catégories sont dissociées : d'une
part les formes a nes en I'état pour lesquelles des observateurs de Luenberger ou de Kalman
sont utilisés, et d'autre part, les formes triangulaires auxquelles s'appliquent les observateurs de
type grand gain.
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In this chapter we consider systems of the forif
—=F(Guwy) ; y=H(u) 3.1

with  the state in RY , u an input with values in U  R% y the output with values in R%
and F (resp H) a continuous function dened on R R% R% (respRY R%). We are
interested in nding normal forms, namely speci ¢ expressions of the functionsF and H such
that an explicit observer for System (3.1) can be written in the given coordinatef] i-e the -
coordinates. Indeed, an a priori knowledge of such forms is necessary to apply Theorém 2]2.1
and design an observer for a nonlinear system.

We do not claim to be exhaustive, neither about the list of normal forms nor about their
history. We select the most popular forms and associated observer, and endeavor to give the
most sensible references. Our goal is only to introduce some de nitions and results which will
be of interest throughout this thesis, and give a starting point to the problem of observer design

1The notation F(;u;y) is somehow abusive because is not an input to the dynamics of . We should rather
write F(;u;H (;u)) asin but this latter notation is less straight-forward. We thus decided to keep the
former for clarity.

25ee De nition
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for nonlinear systems. Note that according to Theoren] 2.21, we are only interested in global
observers with guaranteed convergence. This excludes for example the extended Kalman lters,
obtained by linearizing the dynamics and the observation along the trajectory of the estimate
(IGel74]). Indeed, their convergence is only local in the sense that the estimate converges to
the true state if the initial error is not too large and the linearization does not present any
singularity ([BS15] and references therein).

Before giving the results of this chapter, we need the following de nition.

De nition 3.0.1.

The observability grammian of a linear system of the form

_=A() ; y=C()
with input  and output vy, is the function de ned by :

Z,
(to;ta) = (ito)”CC ()7CC () (;to)d

to

where  denotes the transition matrix[’j'], namely the unique solution to :

%(;t)

AC(C) t)
(tt) :

3.1 State-a ne normal forms
In this section, we consider a system with dynamics of the form :
—= A(uy) +B(uy) ; y=H(;u) (3.2)

where isavectorofRY ,A:R%W R¥% 1 R d B:RMW R¥ I RI gndH :R¥% R¥y | Rb
are continuous functions.

3.1.1 Constant linear part : Luenberger design

In this section, we consider the case wherd is constant, with two sub-cases :
- A is Hurwitz and H any continuous function

- A is any matrix but H is linear.
A Hurwitz : Luenberger's original form
We introduce the following de nition :

De nition 3.1.1.

We call Hurwitz form dynamics of the type:
—=A +B(uy) ; y=H(;u): (3.3)

where A is a Hurwitz matrix in RY 9 and B and H are continuous functions.

3See for instance [Che84]
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For a Hurwitz form, a trivial observer is made of a copy of the dynamics of the system :

Theorem 3.1.1.

The system
== A"+ B(ury) (3.4)
is an observer for system[(38).

Indeed, the error " decays exponentially according to dynamics

z—{

=A" )

We have referred to this form as "Luenberger's original form" because originally in_[Lue64],
Luenberger's methodology to build observers for linear systems was to look for an invertible
transformation which would map the linear system into a Hurwitz one, which admits a very
simple observer. We will study in Part [Tjunder which condition a standard nonlinear system
can be transformed into such a form, namely extend Luenberger's methodology to nonlinear
systems.

H linear: H(;u)= C with C constant

We consider now a system of the forif
—=A +B(yy) ; y=C (3.5)
whereB is a continuous function. The following well-known result can be deduced from [Lue64]:

Theorem 3.1.2.

If the pair (A;C) is observable, there exists a matrixK such that A  KC is Hurwitz. For
any such matrix K, the system

= A"+ B(uy)+ Ky €9 (3.6)

is an observer for system[(3)5).

As opposed to Theorenf 3.1J1A is not supposed Hurwitz but H is a linear function.

3.1.2 Time-varying linear part : Kalman design

We suppose in this section thatH is linear, but not necessarily constant namely
—= A(wy) +B(uy) ; y=C(u) : (3.7)

The most famous observer used for this kind of system is the Kalman and Bucy's observer
presented in [KB61] for linear time-varying systems, i-e with A(t), B(t) and C(t) replacing
A(u;y), B(u;y) and C(u) respectively. Later, a "Kalman-like" design was proposed in_ [HM90,
BBH96] for the case whereA(u;y) = A(u). This design can be easily extended to Systen] (3.7)
by considering (u;y) as an extended input. The di erence with the time-varying case studied by
Kalman and Bucy in [KB61] is that every assumption must be veri ed uniformly for any such

4In [AKO1], the authors propose an observer for a more general form —= A + B(u;y)+ G (H ),y=C ,
under certain conditions on
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extended input, namely for any input u and for any output function y coming from any initial
condition. To highlight this fact more rigorously, we denote

Y ou(t) = C(u(®) ( oit;u)
the output at time t of system (3.7) initialized at ¢ at time O.
Theorem 3.1.3. [HM90, BEH96]

Assume the input u is such that
- forany o, t 7! A(u(t);y ,.u(t)) is bounded by Amax,
- for any o, the extended input = (u;y ,.y) is regularly persistent for the auxiliary dy-
namics
=AY ) 5y =C(u) (3.8)

uniformly with respect to o, i-e there exist strictly positive numbers to, t and such that
forany ¢ and any timet to,
(t;t+1) I

where s the observability grammian (see De nition B.0.1)) associated to System[(3]8).
Then, for any > 2Anqax, there exist strictly positive numbers 1 and » such that the
matrix di erential equation

R= P PA(uy) A(uy)” P+ C(u)”C(u) (3.9)

initialized at P(tg) = P(tg)” > 0, admits a unique solution verifying for all t  to,

P7(t)y=P(t) ; 1 P 2l:
Besides, the system
= AUy) "+ Buy)+ Ky Cu)” (3.10)
with the gain
K =P C(u) (3.11)

is an observer for the state-a ne system (3.7).

Remark 3

- It is important to note that K is time-varying and depends on the functionst 7! u(t) and
t 7!y ,.u(t) and thus on o.

- The assumptions of boundedness of and regular persistence are mainly to ensure that
the solution to ( is uniformly bounded from below and above, namely thatP (and thus
the gain K') neither goes to 0 nor to in nity.

- An equivalent way of writing (8.9) and (B.11) is with

A(u;y)P + PA(u;y)> PC(u)>C(u)P+ P
P C(u)”

P
K

(i-e P is replaced byP 1). This implementation does not require the computation of the
inverse of P (t) at each step.

- Following Kalman and Bucy's original paper [KB61], the gain K can also be computed
with

P(t) = A(u(t); y(D)P(t) + P(t)A(u(t); y(t))~
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P()C(u(t))”R *(t)C(u(t))P(t)+ D(t)Q(t)D(t)”
K (t) = P()C(u(t))”R *(t)

where R(t) (resp Q(t)) is a positive de nite matrix representing the covariance at time t
of the noise which enters the measurement (resp the dynamics) anB (t) describes how
the noise enters the dynamics. In the case where those noises are independent white noise
processes, this observer solves the following optimal problem : given the values ofand
y up to time t, nd an estimate “(t) of (t) which minimizes the conditional expectation
E "t (i3] Yito:t]> Upto:t) - 1N Order to ensure asymptotic convergence of the observer,
according to [KB61, Theorem 4], the following assumptions are needed :
- boundedness ofA
- uniform complete observability of (A; C) : this corresponds to the regular persistence
condition of Theorem whenA and C depend on an inputu and A is bounded (see
[Kal60])
- uniform complete controllability of (A;D) : this is the dual of uniform complete ob-
servability, namely uniform complete observability of (A~ ;D) (see [Kal60])
- R and Q are uniformly lower and upper-bounded in time.

Only the rst two assumptions depend on the system and they are the same as in Theorem
[3.1.3 ; the other two must be satis ed by an appropriate choice of the design parameters
R and Q.

3.2 Triangular normal forms

3.2.1 Nominal form : high-gain designs

Triangular forms became of interest when[[GB8I] related their structure to uniformly observable
systems, and when[[Zei84] introduced the phase-variable form for di erentially observable sys-
tems. The celebrated high gain observer proposed in [Tor89, EKNN&9] for phase variable forms
and later in [BH91, IGHQO92] for triangular forms, have been extensively studied ever since. It
would be too long for the interest of this thesis to provide a thorough review of this literature,
but we refer the interested reader to [KP13] and the references therein for a detailed analysis of
the high gain design.

De nition 3.2.1.

We call continuous triangular form dynamics of the form:

8
% 2 = 2+ (U 1)
_§

i1+ (U o) s Y= o1 (3.12)

+
- - m(u; )
where for all i in f1;::;mg,  is in RY, = ( 1::5; m)isin RY, with d = mdy,
i » R Ridy 1 RY gre continuous functions. In the particular case where only
is nonzero, we saycontinuous phase-variable form '
If now the functions ;(u; ) are globally Lipschitz on R uniformly in u, namely there
existsa in R such that for all uin U, all ( a; p) in (RY)2 and for all i in f1;:::;mg
Xi
Joi(u 1a5itt i(U i)l & Jja ol
i=1

we say Lipschitz triangular form and Lipschitz phase-variable form
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Lipschitz triangular form

The Lipschitz triangular form is well-known because it allows the design of a high gain observer

Theorem 3.2.1.

Suppose the functions j(u; ) are globally Lipschitz on RYy, uniformly in u. For any
(k1; 5 km) in R™ such that the roots of the polynomial

S+ kys™ 14 11+ kos+ kg

have strictly negative real parts, there existsL in R™ such that for any input function u
with values in U, forany L L , the system

8
% o= %+ auw) Lka(hoy)
Ao_oA CALA L2k, (°
E 2 = 3t 2(u; 1 2) 2('1 ) (3.13)
S W) Lka (L y)

is an observer for the Lipschitz triangular form (3.13).

Actually, extensions of this high gain observer exist for more complex triangular forms, in
particular when each block does not have the same dimension, but extra assumptions on the
dependence of the function ; must be made to ensure convergence (see [BH91] or later [HBB10]
for instance). We omit these here because they are of no use for this thesis.

In any cases, the standard implementation of a high gain observer necessitates the global
Lipschitzness of the nonlinearities ;. In the case where they are only locally Lipschitz, it is
still possible to use observer3) if the trajectories of the system evolve in a compact set, by
saturating ; outside this compact set (see Sectioh 4]4). Otherwise, several researchers have
tried to adapt the high gain L online by "following" the Lipschitz constant of ; when it is
observable from the output ([PJ04,[APOS,[APAQ9, [SP11] and references therein).

Unfortunately, when the nonlinearities are only continuous, we will see in the next Chapter
[ that the convergence of the high gain observer can be lost, but that, under speci ¢ Holder-
like conditions, it still provides arbitrary small errors (by taking a su ciently large gain). In
particular, it has been known for a long time, mostly in the context of dirty-derivatives and
output di erentiation, that a high gain observer can provide an arbitrary small error for a
phase-variable form as long as ., is bounded ([Tor89] among many others).

Hoélder continuous triangular form

Fortunately, moving to a generalization of high gain observers exploiting homogeneity makes it
possible to achieve convergence in the case of non-Lipschitz nonlinearities verifying some Holder
conditions. Itis at the beginning of the century that researchers started to consider homogeneous
observers with various motivations: exact di erentiators ([Lev b] Lev03| [Lev05]), domination as

a tool for designing stabilizing output feedback ([YL04], [Qia0%], [QLO6], [APAQ8] and references
therein (in particular [APAQ6])), ... The advantage of this type of observers is their ability to
face Holder nonlinearities. In [Qia05], or in more general context in[[APAQ8], the following
observer design is used :
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Theorem 3.2.2. [Qia05]

Consider a continuous triangular form (3.12). Assume there existsly in ( 1;0] and ain Rs

Joiu; 1aiit ia i(U iy )l a Jja gl o (3.14)

wherer is a vector in R™*1 | called weight vector, the components of which, called weights,
are de ned by

ri=1 do(m i): (3.15)
There exist (kq;:::;km) and L l1suchthatforall L L ,the systenﬂ
8 A A\ N j/\ mfz
5 = 2+ 1(w1) Lki 1oy ™
AN AN 2 J/\ mfa
= "3+ 2u1;72) Lk 1oyt

(3.16)

g . J M m+1
- N N

m m(U;A) L™km 12y

is an observer for the continuous triangular form [3.12).

do is called degree of the observer. Whemly = 0, all the weights r;j are equal to 1, the
nonlinearities are Lipschitz and we recover the high gain observer (3.13). In that sense, we can
say that the homogeneous observer| (3.16) is an extension df (3]13). Noticing that the Holder
constraints (3.14) become less and less restrictive ady goes to 1, it is interesting to wonder
what happens in the limit case wheredg = 1. In that case, rn+1 = 0, which makes the last

correction term of B.16) equalto "y 'y = sign ("1 y). This function being discontinuous at

0, the system becomes a di erential inclusion when de ning the sign function as the set valued
mag|

8
2 flg if a> 0;

Sa) = S [ L,1] ifa=0; (3.17)
- f 1g ifa<O0:

Note that this set valued map is upper semi-continuous with nonempty, compact and convex val-
ues, namely it veri es the usual basic conditions for existence of absolutely continuous solutions
for di erential inclusions given in [Fil88,] Smi01].

Actually, when dg = 1, we recover the same correction terms as in the exact di erentiator
presented in [Lev b], where nite-time convergence is established for a phase-variable form with
m is bounded. Quite naturally, this boundedness condition on n, is exactly the condition we

obtain when taking do = 1 in the Hélder constraint (8.14). Actually, we will show in the next
Chapter [4 that Theorem [3.2.7 still holds when allowing the degree to be 1, i-e that the exact
di erentiator presented in [Lev b] can also be used in presence of continuous nonlinearities on
every line, provided they verify the Holder constraint (8.14) with do = 1.

Note that a generalization of observer [(3.1p) was presented i [APAG8] in the context of
"bi-limit" homogeneity, i-e for nonlinearities having two homogeneity degrees (around the origin
and around in nity), namely

Xi roji+1 Xi i+l

joi(u 18000 ia i(U iy b)l @ Jja bl 9 +ar jja jp] T

SWe denote the signed power function as bae® = sign (a) jaj®, for b > 0.
SWriting ¢ = bae” will mean ¢2 a).
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with
roi = 1 do(m i) ; = 1 d1 (m i)

and 1<do d; < 1. It would also be interesting to see if this design is still valid when
do = 1.
Continuous triangular form ?

The only existing observer we are aware of able to cope with no more than continuous is the
one presented in[[BBD96]. Its dynamics are described by a di erential inclusioﬁ

22F (%y;u)

vi = 2+ 1(uy)
2 2 sat,(2) kiSy )

Vi Tt i(wy; 2
T 2 sabv, (Ge1) ki 7)

Vm 2 m(Wy; 255 m) KmS(m Tm)
where sat is the saturation function
saty(x) = max fminfx;ag;, ag (3.18)

and M; are known bounds for the solution. It can be shown that any absolutely continuous
solution gives in nite time an estimate of under the only assumption of boundedness of the
input and of the state trajectory. But the set valued map F above does not satisfy the usual
basic assumptions given in[[Fil88| Smi01] (upper semi-continuous with non-empty, compact and
convex values). It follows that we are not guaranteed of existence of absolutely continuous
solutions nor of possible sequential compactness of such solutions and therefore of possibilities
of approximations of F.

That is why we dedicate the next Chapter[4 to the problem of designing observers for
the continuous triangular forms. In particular, we propose a novel cascade of homogeneous
observers whose convergence is established without requiring anything but the continuity of the
nonlinearities and boundedness of trajectories.

3.2.2 General form : High gain-Kalman design

A more general triangular form is the following :

De nition 3.2.2.

"See Remark[jr.
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We call general continuous triangular form dynamics of the form
8
% 4

+
-m

A(uy) 2+ a(u; 1)

Ai(u;y) 1+ i(u; 150 8) 5 Yy = Ca(u) 1 (3.19)

m(u; )
P
where for alli in f1;:::;mg, | is iB RV, W My Nj = d, A Rl R 1 RNi Niwa

Ci:R% 1 R% Nignd ;:R% R =2V 1 RN are continuous functions.
If besides the functions (u; ) are globally Lipschitz on R' uniformly in u, then we will
say general Lipschitz triangular form.

Note that when the values of the functions A; are constant full-column rank matrices and
C1(u) is the identity function, this form covers the standard triangular form ( if Nj = N;j for
all (i;j ), and also the forms studied in [BH91] or[[HBB10]. In those cases, a high gain observer
is possible because the system is observable for any input and the functions are triangular
and Lipschitz. When the dependence on the input and output is allowed inA; however, the
observability of the system depends on those signals and a high gain is no longer su cient. In
fact, System (3.19) is a combination of both [3.2) and [(3.1P). It is thus quite natural to combine
both Kalman and high gain designs, as proposed iri_[Bes99] for the case whexg = 1 for all i,
and then in [BTQO7Y] for the general case.

In the following, we denotey ., the output at time t of system (3.19) initialized at ¢ at
time 0, and

0 1
0 Ai(u;y) 0 i 0
A(u;y)=E 0 . C(u)=(Ci(u); 0;:::;0)
Am 1(ury)
0 e 0
L Lin, O o !
0o .
(u )= JCHETET , (L)= : LTI,
: 0
m(U; 1,711 m) 0 0 L™y,

Theorem 3.2.3. [BTO7]

Assume the input u is such that
a) Forany o, t 7! A(u(t);y ,.u(t)) is bounded by Amax,
b) for any o, the extended input = (u;y ,.) is locally regular for the dynamics

=AWy ) 5y =C(u (3.20)

uniformly with respect to o, i-e there exist strictly positive real numbers and Lo such

thatforany ,anyL Loandanyt £,

1
t ot L (L) 2
i (L)

where s the observability grammian (see De nition 3.0.1)) associated to System((3.20).
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P i
c) the functions ;(u; ) are globally Lipschitzon R i=2 Ni uniformly in u,
Then, there exists a strictly positive real gainL suchthatforanyL L andany 2A max »
there exist strictly positive real numbers ; and ; such that the matrix di erential equation

P=L P A(uy)’P PA(uy)+ C(u)”C(u)
initialized at P(0) = P(0)> > 0 admits a unique solution verifying for all t
P(t)>=P(t) ; al Pt al:

Besides, the system
=AWY) T (uYHK Yy c” (3:21)

with gain
K= (L)P C)

is an observer for the general Lipschitz triangular form [3.19).

As opposed to the classical Kalman observeO), the input needs to be more than regularly
persistent, namely to be locally regular. This is because in a high gain design, observability at
arbitrarily short times is necessary. Note that in the case where the matrice#\; are of dimension
one, [GKO1, Lemma 2.1] shows that the gairkK can be taken constant under the only condition
that there exists Anin and Anax such that for any o,

O0<Amin <Aiu);y ou(t) <Amax :

3.3 Conclusion

We have introduced in this chapter the main normal forms and their associated observer design
with guaranteed global convergence. They are summed up in Table 3.1.

Although the Lipschitz triangular form and its high gain observer have been widely studied,
its continuous version has received little attention. This is quite unfortunate because in Par{Tl,
we will show that a large category of nonlinear systems can be transformed into this form, and
not in the Lipschitz one. Partial solutions exist nevertheless, such as the homogeneous observer
(3.16) when the nonlinearities verify some Hélder conditions. In the next Chaptef #, we show
that the use of this type of observer can be extended to a broader class of Holder nonlinearities
and present a novel observer made of a cascade of homogeneous observers which requires only
continuity of the nonlinearities and boundedness of trajectories : we are thus going to Il lines
6-7 of Table[3.1 which for now are empty.

Note that we concentrate our e orts on the continuous triangular form (B.12) because it is
of special interest for Part[lT] But many of the techniques used in the following chapter should
also be applicable to the general continuous triangular form[(3.19) (lines 9 of Tabl¢ 3|1).
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Structure Observablll_ty Observer design
assumption
H A constant copy of the
State-a ne nonlinear Hurwitz ’ dynamics
forms _ A and C constant | (A;C) observable Luenberger
H linear
A or € non (u;y) regularl
constant ’yersis%ent y Kalman
A bounded P
i Lipschitz ; High-gain
Nominal i Holder (3.14), _ Homogeneous of
. 3.12 do2( 10 ’ degreed
Triangular 619 0" ( L0 greedo
forms i Holder (3.14), 5 5
do= 1 ’ '
i continuous ? ?
i Lipschitz (u;y) locally . .
General A; bounded regular High gain-Kalman
E19) _
i cont{;nuous 5 5

Table 3.1: Normal forms and their associated observer design







Chapter 4

Observers for the continuous
triangular form

Chapitre 4 Observateurs pour la forme triangulaire continue. Dans ce chapitre,
nous montrons qu'en l'absence de caractére Lipschitz et sous une condition de type Hélder, le
grand gain usuel donne au mieux une convergence pratique, c'est -a-dire avec une erreur nale
arbitrairement faible. Lorsque cette condition n'est pas satisfaite, nous proposons un nouvel ob-
servateur grand gain en cascade. Cependant, cette convergence pratique peut nécessiter I'emploi
de trés grands gains, ce qui devient problématique en présence de bruit de mesure. Sous une
hypothése un peu plus restrictive, nous montrons que des observateurs homogénes donnent par
contre une convergence asymptotique. Comme pour le grand gain, nous proposons une cascade
d'observateurs homogénes pour le cas ou cette condition ne serait pas respectée. La convergence
asymptotique est alors prouvée sous la seule hypothése de continuité. Dans un souci de complé-
tude, pour chaque observateur, des perturbations sur la dynamique et sur la mesure sont prises
en compte, et les résultats sont énoncés sous la forme stabilité entrée-sortie.

Contents
4.1 High gain observer ? | . . . . .. ... 41
4.2 Homogeneous observer | . . . . . . . .. ... 44

[4.3.1 Highgaincascade . ... ... .. . .. . . . .. e 50
[4.3.2 Homogeneous cascade . .. .. ... ... . ... .. 52
4.4 Relaxing the assumptions marked with [CD)] P 54
4.5 Tustrative example . | . . .. .. ... ... . . 55

In this chapter, we address the problem of designing observers for the continuous trian-
gular normal form (8.12). We will see in Chapter[§ that this form is useful for a certain category
of systems, namely those which are uniformly observable and di erentially observable at an
order greater than the dimension of the system. Indeed, those systems may be transformed in
a triangular form but with nonlinearities which may not be locally Lipschitz.

The content of this chapter has been published in[[BPA17A].
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In order to present results which are as complete as possible, we consider the continuous
triangular form (8.12), but unlike in the rest of this thesis, we add some disturbances on the
dynamics and on the measurement, namefy

= gat oi(uopiin D)+t w s y= 1tV (4.1)

8
% —1=. 2+ (U )+ w
:

d (U )+ wy

+
-
where is the state in RY , y is a measured output inR, is a continuous function which is
not assumed to be locally Lipschitz and(v; w) are time-functions which verify the Caratheodory
conditions. w can model either a known or an unknown disturbance on the dynamics and is
an unknown disturbance.

We show in Section[4.1 that the classical high gain observer may still be used when the
nonlinearities ; verify some Holder-type condition. Nevertheless, the asymptotic convergence
is lost and only a convergence with an arbitrary small error remains.

On the other hand, according to Theorem[3.2.2, homogeneous observers enable to ensure
asymptotic convergence in presence of Hélder nonlinearities. In particular, the homogeneous
observer [3.16) with degreedg in ( 1;0] is built in [APAQ8] following a Lyapunov design. We
show in Section[4.2 that the same Lyapunov design can be extended to the case where the
degree of homogeneity isdp = 1. This is interesting since the Hélder constraints [3.14) on
the nonlinearities become less and less restrictive as the degree gets closer ta. It turns out
that we recover with this method the exact di erentiator presented in [Lev b] and which is
de ned by an homogeneous di erential inclusion. As opposed to[[Lev b] where convergence is
established only for a phase-variable form via a solution-based analysis, in our case, convergence
is guaranteed by construction for the triangular form since the Lyapunov design provides a strict
homogeneous Lyapunov function which allows the presence of homogeneous disturbances on the
dynamics. Actually, many e orts have been made to get expressions of Lyapunov functions for
the output di erentiator from [Lev b].] First limited to small dimensions (see [ORSM15]), it
was only recently achieved (simultaneously to our work) at any dimension in[[CZM16]. This
approach is much harder since the authors look for a Lyapunov function for an already existing
observer (Lyapunov analysis), while in our work, the observer and the Lyapunov function are
built at the same time (Lyapunov design).

To face the unfortunate situation where the nonlinearities verify none of the above mentioned
Holder type conditions, we propose novel observers made of a cascade of high gain observers
in Section[4.3.1 and of homogeneous observers in Sectipn 4]3.2 of dimension less or equal to
%. We prove that the high gain version converges with an arbitrary small error, and the
homogeneous version converges asymptotically, all this without requiring anything but continuity
of the nonlinearities in the case where the system trajectories and the input are bounded.

All along this chapter, we sometimes use stronger assumptions than necessary in order to
simplify the presentation of our results. We signal them to the reader with a(. ) symbol as in
the trajectories are complete (. ) . We discuss how they can be relaxed later in Sectio@A, in
particular when we restrict our attention to compact sets.

Finally, we illustrate our observers with an example in Section 4.5.

Notations

To simplify the computations in this chapter, we consider the case dy = 1, i-e each ; is of dimension 1, but
everything still holds for a block triangular form (3[12) vith i of dimension RY
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For ((1;:::; i) and (";:::: %) (resp. (Gi1;:::;74)) in RY, we denote
=Cnns g A.f Al;"'/\;/\i) (.resp. A|=(/\il;”';/\ii)) (4.2)
& =9 i =G ja&= 5 g

To simplify the presentation, we assume that the solutions to ) are dened for allt O
(i.e. the trajectories are complete(. ) ). Besides, wanting to present the results in a uni ed

and concise way, we will say that the function veri es the property H(; a) or a positive real
d (d +1)
number a, and a vector in [0;1]7 2z , if:

Property H(; a) (.)

Xi
bi(u @) iU w)ioa Jjja o el (4.3)
i=1

This property captures many possible contexts. In the case in which j > 0, it implies that
the function  is Holder with power ;. When the j =0, it simply implies that the function

is bounded.

It is possible to employ the degree of freedom given in[ (4]1) by the time functionsv to
deal with the case in which the given function ( u; ) doesn't satisfy H(a; ). In this case, an
approximation procedure can be carried out to get a function” satisfying H(a; ) and selecting
w=( u;) '( u; ) which is an unknown disturbance. The quality of the estimates obtained
from the observer will then depend on the quality of the approximation (i-e the norm of w).
This is what is done for example in [MV00] when dealing with locally Lipschitz approximations.
We will further discuss in Section how to relax assumptionH (a; ).

4.1 High gain observer ?

We consider in this section the standard high gain observer already presented in the previous
chapter

8
% o= B o)+ Lka(hy)
N N N N N
S = 3+ o(u; ")+ v L2k
g 5 3+ 2(u; Ty )+ Ve 201 y) (4.4)
S o= a WD+ LOkg (1Y)

whereL and the k;'s are gains to be tuned,y is the measurement. The#; are approximations of
the w;. In particular, when w; represents unknown disturbances, the corresponding; is simply
set to 0. In the following, we denote

w=%W Ww:

When  satis es the property H(; a) with ; =1 forall 1 j i d, we recognize
the usual triangular Lipschitz property for which the nominal high-gain observer gives an input
to state stability (ISS) property with respect to the measurement disturbance v and dynamics
disturbance w. Speci cally, we have the following well known result (see for instancel [KP13] for
a proof).

2Actually  ; can depend also on i+ to  as long as ) holds. It can also depend on time requiring
some uniform property (see Section[4.4).
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Theorem 4.1.1. Nominal high-gain

There exist real numbersky;:::;kqg, L, , and such that,
a) for all functions  satisfying(- ) for all i and for all ,, and , in R!

Xi
Ji(u qa)  i(w )i @ jja jplt b (4.5)
j=1
b) forall L maxfalL ;1g,
c) for all locally bounded time function (u;v;w;w), all ( o; o) in R RY,
any solution '( ’\0; ot u;v;w; W) of @) veries, for all tg andt such thatt to 0, and
foralliinfl;::;dg,

8 9
2 . . =
- i1 ] ow(s)jt+ by
)i max L't Mi(t)  i(to) e B 1S,-Upm L! 1Jv(s)J;J—L'j( |)11 L
' s2[to:t] ’
(4.6)

where we have used the abbreviations( t) = ( o;t;u;w) and T t) = T "o; ort;u;viw;w).

Since the nominal high-gain observer gives asymptotic convergence for Lipschitz nonlineari-
ties, we may wonder what type of property is preserved when the nonlinearities are only Holder.
In the following theorem, we show that the usual high-gain observer can provide an arbitrary
small error on the estimate provided the Holder orders j satisfy the restrictions given in Table

or Equation (4.7).

] 1 2 d 2 d 1 d
[

d 2
! a1

d 3 d 3
2 d 2 d 2

ij >
1 1 1

d 2 2 2 2
d 1 0 0 0
d dj 0 o =:x oo 0

Table 4.1 : Holder restrictions on  for arbitrarily small errors with a high gain observer.

Theorem 4.1.2.

d (d +1)
Assume the function veries H(; a) for some(; a) in [0;1]7 2z — R, satisfying, for

1 i

T < i 1 for i=1:::;d 1; 4.7)

Then, there exist real numbersky;:::;kq , such that, for all > 0 we can nd positive real
numbers , , , and L such that, for all L L , for all locally bounded time function
(u;v;w;w) and all ( o; o) in RY  RY, any solution T “o; o;t;u;v;w;w) of @) veri es, for
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all toandt suchthatt ty O, andforalliinfl;::dg,

(
N max LT Nt i) e B¢

_J()J

i+1

sup L' 1 JV(S)J,
1§ d

s2[to;t]

where we have used the abbreviation( t) = ( o;t;u;w) and T t)= T "o o;t;u;v;w;w).

Comparing this inequality with (, we have now the arbitrarily small non zero " in the right
hand side but this is obtained under the Holder condition instead of the Lipschitz one.

Proof : With Young's inequality, we obtain from (4hat, for all i in R+ and all “and in R
Xi
")) 3| i+ by (4.8)

with &; and b;j de ned as

8 .
Eaijzo;bij:a; if 4 =0
1 L . i
a =ai 5 ;' b= = ifo< 3 <1 (4.9)
2 I
. I
a =a, b =0 ity =1

1
and and,if L> max; jfa L ;1g, the solution satis es the ISS |nequaI|ty (. .6)] The result will

follow if there exist L and j such that

P
With ( , the assumptions of Theorem 4 are satis ed with b = J!_ bj . It gives ky;::i;kg , L,

X o
L> maxfa; L ;1g ; max L't (4.10)
i )

At this point, we have to work with the expressions of a; and by given in (£.9). From (4.7),  can be
zeroonly ifi = d . And, when 4 - =0, we get

bd \LI d 1 — aLl d 1 T
Say that we pick ¢ * =1 in this case. For all the other cases, we choose

i

p= da e

to obtain from (4.9)

b Ll 1 1 1

: jacd T
So, with this selection of the j, the right inequality in (4/10)|is satis ed for L su ciently large. Then,

. ij
according to (, the a; are independent of L or proportional to L(d PY . But with (we
have 1
O<(d i 1) <1:

ij
tends to O asL tends to +1 . We conclude that (f#.10) holds if we pick L su ciently

a,l

This implies that
large.

It is interesting to remark the weakness of the assumptions imposed on the last two compo-
nents of the function . Indeed, ) only imposes that 4 1 be Holder without any restriction
on the order, and that 4 be bounded(. ).

We have shown with Theorem[4.1.2 that one can hope to obtain an arbitrarily small error
when taking the high gain L su ciently large. In the next section, we show that actually
asymptotic convergence can be achieved when considering homogeneous observers.
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il 1 2 d 2 d 1 d
i

d 1
1 d

d 2 d 2
2 d d 1

ij =

2 2 2
d 2 a a1 3

1 1 1
d 1 a d1 2
d 0 o o o 0

Table 4.2 : Holder restrictions on  for a homogeneous observer withlg = 1.

4.2 Homogeneous observer

4.2.1 Main result

In this section, we consider the homogeneous observdr (3]16) to which we add the estimation of
the perturbations W :

8 N N N j/\ m%
% 7 = 2t a(u)+ Lka 1y
j ms
S o= Tt o) L2k oy (4.11)
% A J R md +1
"= aWwN+Ng Lk Loy T
wherer is the weight vector in RY *1 de ned by
ri=1 do(d i); (4.12)

and where L and the k;'s are gains to be tuned,dy the degree to be chosen i 1;0]. We
have seen in Theorenj 4.1]2 that the usual high-gain observer can provide an estimation with
an arbitrary small error provided the nonlinearity satis es the property H(; a) with the j;

verifying (£.7). But since [APAO8] (see Theorem[3.2.R), we know that asymptotic estimation
may be obtained with homogeneous correction terms and when considering nonlinearities which
satises H(; a) with the j verifying

o 1 do(d i 1) _ T+
T dd )

1§ i od: (4.13)

for somedp in ( 1;0]. As announced in the introduction, we want to extend this result to the
extreme case wheralp = 1 i-e for nonlinearities satisfying H( ; a) with j given in Table .

Theorem 4.2.1.

Assume that there existdp in [ 1;0] and ain Ry such that satises H(; a) with  veri-
fying ( (. ) . There exist (ki;:::;kq ), such that for all wy > O there existL 1 and
a positive constant such that, forall L L there exists a classKL function such that
for all locally bounded time function (u;v;w;w), and all ( ;o) in R RY system (4.11)
admits absolutely continuous solutions? “o; o;t;u;v;w; W) de ned on Ry and for any such
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solution the following implications hold for all to andt such thatt tg O, and for all i in
fl,::;dg:
If dp> 1:
8
VAN . < . .
PN M max. (Tto)  (toiit to);
8 . 99
< i f ifia =
sup . L' 1jv(s)jW;JWJ% (4.14)
$2 o3 -
where j =(j i+1) rjr+11 , and we have used the abbreviation( t) = ( o;t;u;w) and
T=1T"% otiuv;w;w).
Moreover, whendp < O and v(t) = w;(t) =0 forall t andj =1;:::;d, there existst such
that Tt)= ( t)forallt f.
Ifdo= landj wg (t)] Wq :
8
- N\ . < . .
i i®p max, (Tt (to)ist to);
8 . 99
< ) T . ity = =
sup . L tjy(e)irt; MO T g5
1 i 1° L i v
s2[to;t]
where jj, (t) and 1 t) are de ned above.
Moreover, whenv(t) = wj(t) = 0 for all t and j = 1;:::;d, there exists t such that
Tty=(tyforalt t

Note that j isinf1;:::;igin (8.14) whereas itis inf1;:::;i 1gin (4.15).

The proof of Theorem for the casalg 2 ( 1;0] and without disturbances is given for
example in [APA08]. Actually [APAQ8] gives a Lyapunov design of a generalized version of
observer ) with a recursive construction of both Lyapunov function and observer. Here we
are concerned with the casa&ly = 1. In this limit case, observer ) is a di erential inclusion
corresponding to the exact di erentiator studied in [Lev b], where convergence is established
in the particular case in which { =0 forj =1;:::;d 1and 4 is bounded. We prove in
Lemmal[4.2.2 that the Lyapunov design of [APAO8] can be extended to this case. This allows us
to show that observer ) still converges if, for each,  is HOlder with order j equal to
the values given in Table[4.2, wherd is the index of ; andj is the index of g . We also recover
the same bound in presence of a noise as the one given in[[Lev b]. Note that knowing the
convergence of the exact di erentiator from [Lev b], we could also have deduced the existence
of such a Lyapunov function via a converse theorem as i [NYNG4]. But with only existence,
guantifying of the e ect of the disturbances is nearly impossible.

Finally, it is interesting to remark that in the case dp = 1, the ISS property between the
disturbance wy and the estimation error is with restrictions as de ned in [Tee96, De nition 3.1].

If j wq (t)j Wy andL is chosen su ciently large, then asymptotic convergence is obtained.
However, nothing can be said wherj wy j > Wy . Moreover, it may be possible for a bounded
large disturbance to induce a norm of the estimation error which goes to in nity. We believe that

this problem could be solved employing homogeneous in the bi-limit observer as in [APA08]. It
is shown to be doable in dimension 2 in [CZMF11].

Proof : The set-valued function e; 7! be;e® = Se;) de ned in ( is upper semi-continuous and has
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convex and compact values. Thus, according to [Fil88], there exist absolutely continuous solutions to
(%.11).
Let L = diag(1;L;::5L ¢ ). The error e= *  produced by the observer (4.17) satis es

e2 LAy e+ + LLK(e1+ V) (4.16)
where Ay is the shifting matrix of order d ,
=(wH+w (u) w;

and K is the homogeneous correction term the components of which are de ned as

(Kex)i =k bere 7o

where (ki;:::;kq ) are positive real number and r; is de ned in (. In the scaled error coordinates
"= L e those error dynamics read

1, " "

E _2 Ag "+ DL + K( 1+ V) (4.17)

with D_ = L ! . With this mind, the proof consists in nding an 1SS homogeneous Lyapunov function
for the L independent auxiliary system

e2 Aqg e+ K(er) (4.18)

with state e in R , then extending it to (4.17)| by a robustness analysis, and nally deducing the result
on (4.16).

Let V:RY I R, be the function de ned as

X lz\iei dy dy 1

. jeq j%
V(e): T be 7 begse'in d + 5 :
i=1 b3|+1 eli+t Y

(4.19)

where dy and °; are positive real numbers such that dy > 2d 1. It is shown in [APA08,] Theorem
3.1] that, in the case where do is in ( 1;0], and by appropriately selecting the parameters *; and ki,
V is a strict C! Lyapunov function for the auxiliary system (4and is homogeneous of degree dy
with weight vector r. In fact, the same construction is still valid for the case dy = 1 as stated in the
following technical result, which is proved in the next subsection to ease the reading.

Lemma 4.2.1.

For all do in [ 1;0], the function V dened in (4.19] is positive de nite and there exist positive
real numbers ki;:::kg , '1;:::°d¢ , , € and ¢, such that for all ein RY , in RY and v in R the
following implication holds :

Mi+1 r
i cv(@ T 8i; and jvj V(@™
dy +dg

n 0
=) || max %/(e)(Ad e+ +K(e+v) Ve v

This Lemma says V is a ISS Lyapunov function for the auxiliary system (4.18)] See [SW95| Proof of
Lemma 2.14] for instance. With this result in hand a robustness analysis can be carried out on a system

of the form (B.17).
. . . . ); rli .
Indeed, since satises H(; a), with ( and 1, we obtain, forall L 1

)Q f Fi+1 . Fi+1 i i
. a lisg s Wi
iDL ] L LY 0 I+1J"il R LiIJ*Q
j=1
)Q Fi+1 H
a I Wi .
e ST
=1
Cyypuyi ] Wij
EV( )V L

®Here the max is with respect to s in be; + v’ = (e, + v) appearing in the d th component of
K(er + v) whendo = 1.
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where c is a positive real number obtained from Lemma RA.I.2]in Appendix A.I.] With Lemma 4[2.1,]
where ; plays the role of D, , v the role of v and e the role of ", we obtain that, by picking L su ciently
large such that = <, we have, for all L > L

(

i wij
Li ‘o
Y o V(")

c Titl . n 0
VO SRR I @V,... INCELER
4 =) T max @e( ) V(") d : (4.20)

Now, when evaluated along a solution, " gives rise to an absolutely continuous function t 7! "(t).
Similarly the function dened by t 7! (t) = V("(t)) is absolutely continuous. It follows that its time
derivative is de ned for almost all t and, according to [Smi01, p174], {4.2Q) implies, for almost all t,

(. . .
Wi C 1 :
AR SO

Vioe ()T

dy +dg

5 T o (4.21)

Here two cases have to be distinguished.

1If doisin] 1;0], with Lemma A.1.4]in Appendix A.1 (see also [SW95]), we get the existence of
a classkKL function v such thatl'
8 99
) S 4w T eIt T
" ") - . ] Wi e '
V V L _ —_—
("(1) o TR v(V("(0); Lt )’S%E]i Lc o

The result holds since with Lemma [.T.Z]there exist a positive real number c; such that

€
Li ¢

Moreover, when v(t) = wj(t)= by =0 for j =1;:::;d , (4.21)) implies nite time convergence
in the case in which dp < O.

eV ( )ﬁ:

2Ifdo= 1,thenrg 1 =0. We chooseL su ciently large to satisfy
Wq c .
(L) 4
We obtain that the rst condition in (4.21) is satised for i =d whenL L . With Lemma

in Appendix A.1](see also [SW95]), the implication (4.21)] implies the existence of a class
KL function vy such that*

8 8 . 99
< < . Lo )it
VO®) o max o (veO) L) sup  BMED T VEIT

----- 1g . s2[0it] - Lic &5

And the result holds as in the previous case.

4.2.2 Proof of Lemma 4[2.1 ]

The proof is based on the following Lemma|(4.2.2) which establishes that for a chain of integrator
it is possible to construct homogeneous correction terms which provide an observer and that it
is possible to construct a smooth strict homogeneous Lyapunov function.

Lemma 4.2.2.

For all dg in [ 1;0], the function V de ned in (f.19) is positive de nite and there exists
positive real numbersky;:::kq , "1;::: ¢, ~ such that for all ein RY | the following holds :

dy +do

max @@Y(e) Aq e+ K(ey) V (e) v (4.22)

do v
4according to Lemma v(s;t)=max f0;sdv  tg do
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Proof : [Casedo = 1 (see [APAQS8] otherwise)]

We denote E; = (&;:::;eq ). Let dv be aninteger suchthatdy > 2d 1 and the functions K; recursively
de ned by :
0 1

Mi+1
b ige i

Ki(es)= e = Ses) ; K(e)= @ PR A
Ki+v1 bige i

Note that the jth component of K; is homogeneous of degree;j.1 = d | and, for any & in R, the set
Ki(e) can be expressed as
Ki(e) = fRi(e;s); s2 Ye)g;

whereKi : R [ 1;1]! R is a continuous (single valued) function.

i jdv )

Let Vg (&g ) = Jeddvj andforalliinfl;:::;d 1g,letalsoVi :R?! RandV :RY "1 1 R bethe
functions de ned by

Z

dy 1 dy rj
Vi(; &i+1) = i bxe T bewae’in dx;
beiﬂ eri+1
Xi
Vi(Ei) = Vi(ie g+)+ Vo (8 ):
j=d 1

With these de nitions, the Lyapunov function V dened in (4.19) is simply V(e) = Vi(e) and the
homogeneous vector eld K(e1) = Ki(e1) with

i +1 :f+1 Titl i+l
k=" e
The proof of Proposition #£2.2]is made iteratively from i = d toward 1. At each step, we show that V;
is positive de nite and we look for a positive real number i, such that for all E; in R '*?
N av o 4y 1
A G @(Ei)(Ad i+1 Ei + Ki(e;9)) GVi(Ei) v (4.23)

where ¢ is a positive real number. The lemma will be proved once we have shown that the former
inequality holds for i =1.

Stepi = d : At this step, Eq4 = ey . Note that we have

@y . a1 dy 1
max ——(Eq)Rq (&4 ;8) = jEgjV "= ¢ Vg (Eq) 9 ;
sZS(ed)@E(d)d(d ) j Ea] Ca Vo (Eq ) %
dy 1
with ¢ = dvd" . Hence, equation (4.23) holds fori = d .
Stepi = j : Assume V.1 is positive de nite and assume there exists (Tj+1;:::; ¢ ) such that (
dy " dy '
holds forj =i 1. Note that the function x 7! bxe 'i bene'int is str_ictly increasing, is zero

1 i
if and only if x = be.. €'+t | and therefore has the same sign asx b g.1 e'i*t . Thus, for any €1
"

xed in R, the function 7! Vj(; g+1) is non negative and is zero only forv = be .1 €i+t . Thus, V,
is positive and we have

Vj+1(Ej+1):o o Ej+1:0 ‘

Vi (Ei)=0 X i
J( J) 0 VJ(Je]’e]H_):O ‘je]:bej+1€rj+1 =0

so that V; is positive de nite.

On another hand, let Vi (;Ej+1) = Vj+1 (Ej+1)+ Vi(; g+ ) and let T1 be the function de ned
Ti(;Ej+«1)=max Ti(;Ej+1:s
1(GEja) max, 1(;Ej+;9)

with T1 continuous and de ned by

@
@ E+l

o G ay_1
(Ej+1 )(Ad i 1Eia + Kjua(be'i ;s)+ Vi(GEja) v

Tl(;Ej+1;s): 2
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Let also T, be the continuous real-valued function de ned by
d fi+l
To(V;Ej+1) = %(;Em)(qﬂ b e’ ):

Note that T1 and T, are homogeneous with weightr; for and r; for & and degreedy 1. Besides,
they verify the following two properties :

forall Ej+1 inR? 1, inR
Tz(;Ej+1) O

Tj+1 dy 1j dy 1j

g+ )and(be i b g+ e i+t ) have the same sign)

(since (b e i
forall (;Ej+«1)inRY 1%t nfog, and sin § ), we have the implication
T2(;Ej+2)=0 =) Ti(;Ej+1;8) <0

Mj+1

since T, is zero only whenb e i = g+ and
T+l
Tuba el B9 = o (Ea)An iEpa * Ky (6 i)
G+ dy 1 G+ dy 1
¥ J21Vi+1 (Ejwr) % J21VJ+1 (Ejs1) v 5

where we have employed [(4.28) fori = j 1.

Using Lemma[A.1.3]in Appendix A.T|there exists *; such that
Ti(;Ejs2) "jT2(;Ej+1) 0; 8(;Ej+1):
Finally, note that
@ ~ N N i +1 dy 1
Jnax @7}1’:—/(Ei)(Am i+ Ej + Ki(g;98) =Ti(jg) "jT2(6:Ej+) 012 Vi (Ej) v

Hence, {4.23) holds fori = j.

We are now ready to nish the proof of Lemma. LetK(e1;s) be the function de ned as

R(e1;s) i =(K(ey)); s 12[1d 1];

and,
kg s; whendg= 1

R(ews) q (K(ew)y ; whendp> 1

K is a continuous (single) real-valued function which satis es for alle; in R
K(er) = fR(e1;s); s2 Se)g:

Consider also the functions

dy +dg

~e; ;v;s) = G;D"@V(e)(Ad e+ + KR(ep+v;s))+ ;V(e)T;

and
(;v)= Jij "o o+jvp o
i=1

With (4.22), we invoke Lemma[A.1.3 to get the existence of a positive real numberc; satisfying

forall sin S(e; + v) :

eV : - dVd;do )g d\r/i :1d0 . 9v+do
@(e)(Ad e+ + K(er+ v;s)) §V(e) v o+ i +Cljvj 1
i=1
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This can be rewritten,

@Vea K : T V(e w
@(e)( de+ + K(e +v;s)) m (e) %
!
)@ . v +do -~ Vv dvd’fdo
+ 1 i+l -
dy +dg -~ dy +dg
+ vior V d
I T RAC
ri
Consequently, the result of Lemmd 4.2.1L holds with = ﬁ c=o= g dv *do

4.3 Cascade of observers

4.3.1 High gain cascade

According to Theorem[4.1.2, the classical high gain observer can provide an arbitrary small error
when the last nonlinearity is only bounded and when there is no disturbance. We exploit here
this observation by proposing the following cascaded high gain observer to deal with the case
where the functions ; do not satisfy (4.7):

8

uE M Lika(Cuoy)

51 0= Tt 1)+ v Lok (" y)
ez W Likee(moy)
................................................................. (4.24)
1= Jaet 1w p)+ W Lakai(aroy)

G2 = Tast 29 pi @ p)+t e Likio(Ta1 y)

d
Sd = Wa Lgkida (a1 y)

with the gain kj; chosen as in a classical high gain observer of dimensionf; are estimations ofw;
and L; are the high gains parameters to be chosen. It is important to notice that the arguments
of all the nonlinearities j in block i come from the blocki 1 (thanks to triangularity) and
that ; is not present (because we saw that a bounded error is allowed on the last line of a high
gain observer).

Assuming the input function and the system solution are bounded, it is shown in the following
that estimation with an arbitrary small error can be achieved by the cascaded high-gain observer

@.29).
Theorem 4.3.1.

Assume is continuous. For any positive real numbers and T, for any strictly posi-

function and two classK; functions 1 and » such that, for all locally bounded time
function (u;v;w; W), for all ( o; o) in R® RY and for all t such thatj ( o;s;u;w)j  and
jus)j uforall 0 s t,anysolution "1(%; oit;u;viwiw):in Ny (Tor ortiurviwi W)
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8 0 1 9
A . < X no 0=
i)y i max, ;o @ itA sup a(v(s)i); 20 w(s)j)
: j=1 s2[0;t] ’

where " is the state of theith block (see Notation )) and we have used the abbreviation
"ty = "o otiupv;wiw) and (1) = (ot uiw).

Proof : This result is nothing but a straightforward consequence of the fact that a cascade of ISS systems
is ISS.

Speci cally the error system attached to the high gain observer in block i has state e; (see Notation
(@2)) and input v and  de ned ag|

Poo= (N ) (U o) I w]

i = i+1 i(up )+ viow
with ¢ +1 = 0. With Theorem {;E we have the existence of ki1;:::;ki, i, i and ; such that we
have, forall L; 1,allt t 0 alljinfl;:::;igand with e; (t) denoting the jth error in the ith

block evaluated along the %olution at time t,

9
< . . T~ (S) =
jey (0 max LI ' ije(t)je N5 sup L ljv(s)j;:_f J.HJ
' 512[ti;i] i
But according to Lemma [K.2.T] the continuity of the - implies the existence of a function  of classK
such that, for all ~in f1;:::;d gand forall ( ; 5" pi;u)in R ' R ' U satisfying j ; o]
and juj T,
. N . . .
P ) (w o) iei vl
This implies
ji (9 (jei 1(s))+ ] w(s)j; =155 15
j i (s)j it it Wi(s);
where | = max. oo —j i(u; jand ; isaboundforj i(;s;u;w)j (which is less than ). Hence,
we have the existence 6fci independent of L; such that
jei()i cmax L je(t)ie W5 sup L Tjv(s)i;
s2[tjst] )
gei_1(9)j) j w(s)i. it
sup ——————=; su —a
Sz[tiF;)t] L2 ! . \pi L, "t Li
s2[tj;t]

This makes precise what we wrote above that we have a cascade of ISS systems. Hence (s€e [Son89,
Prop. 7.2]), for each i in f1;:::;mg, there exist a classKL function ; and classK functions . and

wi » €ach depending onl(_l to L; and such that we have, forallt 0, )
je®j max i max fie(0)jg;t ;$i; sup fyi(iv(s)); wi (i w(s)j)g
jef 1 g s2[0;t]
where $; is a positive real number de ned by the sequences
o2t 1g Gat i ($00)
$l Clil_l , $| Ci max I—i ’ L|2 i

Then by picking L;i L; wherelL; is de ned recursively as :

— . = H 1 i+1

@7 L= mn Ci+1 L:+12
L= @ =0l ]
d i
SWe write -~ (u; ( 1) although ; 4 is the state of the previous block of dimension i 1, which can be

larger than *. We should rather have introduced a symbol for the °-rst coordinates of ; ;, but we thought
this would unnecessarily complexify the notations. Indeed, for the present proof, we only need to know that those
variables come from the previous block of dimensioni 1.
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we obtain $; for all i, hence the result.

Note that unlike for the previous observers, we cannot state the result with "there exists
(Ly;::iLy ) such that for any (Lq;:::;Lg ) satisfying L; L, for all i, [:::]" becauseL,

This observer has the advantage of working without any assumption on the nonlinearities
besides their continuity. Note however that it requires the knowledge of a bound on the system
solution and on the input. Also we may not need to buildd blocks, since according to Theorem
4.1.2, we need to create a new block only for the indexeiswhere ; does not verify Property
H(; a) forany a 0and with satisfying (4.7). Unfortunately, as it appears from the proof
of Theorem , the choice oflL1;:::;;Lg ) can be complicated. Besides, only a convergence
with an arbitrary small error is obtained. It may thus be necessary to take very large gains
which is problematic in terms of peaking (seellKha02, Section 14.5] for instance) and most
importantly in presence of noise (see Sectioh 4.5). In the following section, we design a similar
cascade observer, but with homogeneous correction terms, and show that it enables to obtain
asymptotic convergence.

4.3.2 Homogeneous cascade

When we cannot nd dg in [ 1;0] and a such that the nonlinearities satisfy H( ; a), with
de ned in (§.13), we may lose the convergence of observef (4]11), or the possibility of making
the nal error arbitrarily small. In such a bad case, we can still take advantage of the fact that,
for verifying ( with dg = 1, H(; a) does notimpose any restriction besides boundedness
of the last functions ¢4 (see Table).

From the remark that observer (4.11)

1. can be used for the system

4 = 2+ 4(t)
«+1 = kt+ k1)
4« = "k(t)

provided the functions ; are known and the function' x is unknown but bounded, with
known bound.

2. gives estimates of the ;'s in nite time,

we see that it can be used as a preliminary step to deal with the system

2 = 2+ ()
«1 = k+ k1(b)
+« = ke tok(Uo1iin )
441 = k(U o1iiin ke1)
Indeed, thanks to the above observer we know in nite time the values of 1;:::; k, so that the
function (u; 1;:::; k) becomes a known signal (t).

From this, we can propose the following observer made of a cascade of homogeneous ob-
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servers

N N VAN
21= 22+ (U 1))+ W1 Lok 21 Y

S22 W, L3kaaS(o1 y)

i ma
..... N d

5 e p)F Na o1 LS "y @ 1) d1 Y
Bd 2 Wy Lﬁ kid (a1 Y)
(4.25)
where thek; and L; are positive real numbers to be tuned.
As a direct consequence of Theoremh 4.7.1 and following the same steps as in the proof of
Theorem[4.3.], we have

Theorem 4.3.2.

Assume is continuous. For any positive real numbers , U, W, we can nd positive real
numbers kj and L;, two classK functions ; and > and a classkL function such that,
for all (Lq1;:::;Lg ) verifying L; L,, for all locally bounded time function (u;v;w;W),
and all ( o;") in R RY | the observer ) admits absolutely continuous solutions
"1('\0; o, LU vy wi W) My (’\0; o;t;u;v;w; W) which are de ned on R: and for any such
solution we have for alli in f1;::;;d g and for all t such that j ( o;s;u;w)j ,ju(s)j U
andj w(s)j wforall0 s t:

=N\ . n . AN . . . . 0

i i max o (jo OJJt)Jl ?uiplf 1(v(9)j); 2 w;(s)i)g

s2[to;t]

where " is the state of theith block (see Notation )) and we have used the abbreviation

M= N otwv,wiw) and ()= i oituiw).
Moreover, whenv(t) = w; =0, there existst such that M= i) forallt

Proof : This proof is very similar to that of Theorem 4[3.1 {but also much simpler). We give it all the
same for the sake of completeness. The error system attached to the homogeneous observer in block
has state e; and input v and ; de ned as

A‘(U?A(i 1) (U o) I w]

i Zis1 i(up )+ viow
with zm+1 =0. j is bounded, thus Theorem[4.2.] gives the existence ofki1;:::;ki, Li, i, iand i
such that we have, forall L; L;,allt O, alljinfl;:::;igand with e; (t) denoting the jth error in
the ith block evaluated along the solution at time t,
8 ( 0 ) 9
< . /=
., O g - Pk (97
jej O max_ i(e(0)it); i sup LD V()T T
. 1 1 il
sZ[OJ;t]
But the continuity of the - implies the existence of a function of class K such that, for all " in
f1,::igandforall (4" »;w)in RY Y R U satisfying j o and juj T,

I A(i ) N CHETEEY)| iei 1)l
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This implies
e (e wS))+ ] w(s)j; =15 1
Hence, we have the existence of two clasK functions i, w such that
8 9
3 . . 3
e (D)i i (V1Y - i)y - (e 1(s)j) . o any
jei®i max_ i(jei(0)j;t); sup w(jv(s)j); sup ——————; sup w(j w(9)j)_ :
3 s2[0:t] s2[0;t Li 1 i1 B

s2[0;t]

Hence, by recursion, for eachi in f1;:::;d g, there exist a classKL function ; and classK functions
vi and i, each depending onL; to L; and such that we have, forallt 0,

( )

jei®)i max i max fie(0)jg;t ; sup f vi(jv(s)i); wi (i w(s)i)g
j2f 1:ig s2[0;t]

Observer (4.2%) is an extension of the cascaded high gain observer (4.24) presented in Section
[4.3.1. The use of homogeneity enables here to obtain asymptotic convergence without demanding
anything but the knowledge of a bound on the input and on the system solution. A drawback of
a cascade of observers is that it gives an observer with dimensio?q(dz;l) in general. However,
as seen in Sectiof 4.3]1, it may be possible to reduce this dimension since, for each new block,
one may increase the dimension by more than one, when the corresponding added functiong
satisfy H( ; a) for some verifying (#.13) with do = 1 and for somea.

Finally, note that the result of Theorem {.3.2] does not mean that the observer is ISS with
respectto w. Indeed, w mustbe bounded to obtain this ISS-like inequality : the system is ISS
with restrictions. Again, we believe that this problem could be solved employing homogeneous
in the bi-limit observer as in [APAQS].

4.4 Relaxing the assumptions marked with (.)

First, if System (4.1) is not complete, every ISS inequalities still holds for any solution( o; t; u;w),
but only on [0; *( o;u)[ where *( o;u) is its maximal time of existence inRY .

The global aspect of boundedness, HoldekI( ; a), ..., can be relaxed as follows. LetJ be
bounded and letM be a given compact set. We de ne” aﬁ

Ti(ur g ) = sab (i s ) (4.26)
where B
= max i g )i
Now consider any compact set\™ strictly contained in M. We have "= on M, so that if

the system trajectories remain in M-, the model (4.1) with " replacing is still valid. Besides,
according to Lemma in Appendix|A.2, there existsa such that (@.3) holds for " for all

(2 p)in Rd M. Then, by taking instead of in the observers, we can modify the
assumptions

- in Theorem[4.1.1, so that [4.5) holds only on the compact seM ;

- in Theorems|4.1.2 and 4.2.11, so that veries H(; a) only on the compact setM ;

- Theorems[4.3.1 and 4.3]2 remain unchanged.

In this case, the results hold for the particular system solutions ( o;t;u;w) which are in the

compact setM™ for t in [0; ,:'/r( 0;u)). Precisely, for these solutions, the bounds on'; (t) i()

given in these theorems hold for allt in [0; ,‘\“/r( o w).

5The saturation function is de ned on R by saty (x) =max fminfx;M g; Mg:
"By strictly contained, we mean that M is contained in the interior of M .
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Note also that if H(; a) holds on a compact set, then for any~ such that ~; j for
all (i;j ), there exists a such that H(+ &) also holds on this compact set. It follows that the
constraints given by ) or Table in Theorem 4.2.[L can be relaxed toj; %
and the less restrictive conditions one may ask for are obtained fodg = 1.

Finally, in Theorems|4.1.1,/4.1.2 and 4.2 11, it is possible to consider the case wheredepends
also on time as long as any assumption made on is satis ed uniformly with respect to time.

4.5 lllustrative example

As an example, we consider the triangular normal form of dimensior4 de ned by
8

5 4 = 2
2 = 3
: = : 4.27
3 3 = a4t 3(U 15 2 3) yo 1 (4.27)
o4 = a(u)
where ) )
3(U; 1; 25 3)=5Uj 3+ 1j5baes ;0 4(u; )= ( u; ()
with : R% R3! Rand :R*! RS3 continuous function de ned by :
(u )= 1 213+20 §3 35 153 5145 3 3% 53 3+ 32 1+u( 20§ § 245 3 )
% (ot D1t (4t D+3i(a+ Dbaelits L
3t 1)1+ (4+ 2)+5j(3+ 1)b1€2)5 2 >
()=%l; 21@ 2+ 2 A §:
1

2

Those seemingly mysterious expressions do not make a lot of sense for now. We shall see how

they appear in an example in Chapter . In fact, they are given here for the sake of completeness

but only the expression of 3 and the fact that 4 is continuous matter here. We are interested

in estimating trajectories remaining in a given compact set which will be de ned in Chapter|[8.
The function 3 is not Lipschitz at the points on the hyperplanes 3= jand ;=0. The

function 4 is continuous and therefore bounded on any compact set. Besides, fg and 5 in

a compact set, andu bounded there exisf]

IS

. NN LA . . i . A L1 N .
jos(u; ;"2 "3) 3(U; 15 25 3)] Cj1 15+ cC3yz 3

This implies that 3 is Holder with order %

Hence the nonlinearities 3 and 4 verify the conditions of Table [4.3. It follows that for
L suciently large, convergence with an arbitrary small error can be achieved with the high
gain observer [4.4). However, 3 does not verify the conditions of Table[4.2. Thus, there is
no theoretical guarantee that the homogeneous observel) witdp = 1 will provide exact
convergence.

45.1 An observer of dimension 4 ?

We consider a solution to System ) which regularly crosses the Lipschitzness singularities

3 = 1 0r 1 =0, as illustrated in Figure B.1. In the following, we use the same noisy
8 . .4 1. 4 1. .4 1 1

Let 3( 15 3,€1,83)= jat+t e+ 1+ejs5br+eed | 3+ 1j5bie5 =j 3+ 1j5 b1+ ees b e85 +
b+ ele% jat 1+e+ elj% j 3+ 1j% . By Lemma A.1.5] we have b+ ele% b 1e% Z%jelj% and
et atetes | o+ s 25(esj+jer)d  25(esjf + jerjt). Besides,j 1+ et | jf + jerjs, so
that for 1 and s in compact sets, ] s( 1; s;€1;€3)] Cij€rj5 + Cojesjs + Csjerjs + Cajerj5jesj + Csjerj. By
Young's inequality, jelj%jegj% %jelj + %jegj, and nally, for e; and e; in compact sets,j  3( 1; 3;€1;€3)j

4

eljelj% + €3jesj5.
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Figure 4.1: Trajectory of System (4.27), with initial conditon = (1;1; 1; 1), with input
u = 5sin(10t) and with the noisy measurementy ( ltered gaussian noise with standard deviation
= 0:03 and 1st order lItering parameter a = 50), used to test the observers.

measurementy, shown on Figure[4.], in every simulation with noise.

We rst implement a high gain observer of dimension 4, in the absence of noise, initialized
at "= (0:1;0:1; 0:1; 0:1), and with the gains k; = 14, k, = 99, k3 = 408, kg4 = 833. As
an illustration of Theorem @.1.7, the convergence with an arbitrary small error is achieved and
is illustrated in Table #.3] However, we observe that the decrease of the errors, especially for
€4, Is very slow compared to the increase of the peaking and a very high gain is needed to
obtain "acceptable” nal errors. In presence of noise, the tradeo between nal error and noise
ampli cation becomes impossible : with the noisy measurement of Figurg 4]1, the smallest
nal error e is 200 achieved forL = 2. Of course, there might exist a choice of the gains
ki giving better results. But overall a high gain observer may not be a systematic solution in
practice for non-Lipschitz triangular systems, especially when the solution regularly crosses the
Lipschitz-singularities.

L e e €3 e, | maxjg
2 0.15 4 60 | 200| 300

5] 6:10 ¢ 0.04 | 15| 30 | 4000
8 | 5:10° [4:10°%|0.25] 7 | 15:10
10| 8:10°% [1:20%] 0.1 | 4 | 35:10°
15[ 1:5:10 6 [ 3:10 4 [ 0.03| 2 | 1:2:10°

Table 4.3. Decrease of the nal error g = ¢ i) with the gain L, with a high gain observer
and in the absence of noise. The last columns shows however that the peaking increases, i-e the
errors reach higher and higher values during the transient before converging.

Let us now implement an homogeneous observer of dimensi@with an explicit Euler method
with xed measurement and integration steps equaling10 °, and with the Matlab sign function.
The degree isdg = 1, and the gains are chosen according ta_[Lev05], i-k1 = 5, ko = 8:77,
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Figure 4.2: Convergence of an homogeneous observer with degred in the absence of noise

N

(=" i)

ks = 4:44, k4 = 1:1. For a gain L = 3, the convergence is achieved with a nal error of
jesj = 8:10 4, even though the Holder restriction of Theorem is a priori not satis ed
around 1 =0. The results are given in Figure[4.2. Unfortunately, the nal errors are heavily
impacted in presence of noise, as illustrated in Tablé 4]4. This may also come from a lack of ISS
property. Notice that the ampli cation of the noise by the gain L is not as rapid as expected

from the bound in Theorem[4.2.1. The nal errors remain nonetheless too large, although, once
again, we did not optimize our choice of gains;.

L €1 | & | e3 | &
251 0.15|35(30| 18

3 1015 3 | 35| 25
4 1 01] 2 |25 50
5 101| 2 [30]| 80
6 | 01| 2 |35]|120

Table 4.4: Final errors given by a homogeneous observer of degreel in presence of noise.

45.2 Cascaded observers

In the absence of noise, the cascaded observers presented in Sections 4.3.1[and }4.3.2 give similar
results to the corresponding observers in dimension 4, i-e arbitrary small asymptotic error and
nite time convergence respectively. However, they seem to provide better accuracies in presence
of noise.

In the case of a high gain cascade observer, the errors, although smaller than in the high
gain observer of dimension 4, remain too large to consider it a viable solution. On the other
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hand, the homogeneous cascade observer :

N

S inom
1= 12 Likin 110y

N N N
2= "13 L%kiz 11y

132 L3kisS(M1 )

N
22="23 L3k 21y

m
N N N N N N 1
23 = 24+ satga('11; 12; 13))u L3kes 1y ¢

" 542 LikaaS(1 y)

with the coe cients ki chosen, according to[[LevO5], a&i1 = 3, k12 = 2:6, ki3 = 1:1, and ky
as above, and with the gainsL1 = 2:5 and L, = 3, gives the following nal errors :

e11=0:05 e2=0:4 e3=25 eys=12

Comparing to Table 4.4, we see that implementing an intermediate homogeneous observer of
dimension 3 enables to obtain much better estimates of the rst three states j, which are then
used in the nonlinearity of the second block, thus giving a better estimate of 4.

4.6 Conclusion

To summarize the most important ideas, we provide in Table[4.6 a synthetic comparison of the
four observers proposed in this chapter, in the case where the system trajectories and the input
are bounded.

We have shown the convergence with an arbitrary small error of the classical high gain
observer [4.4) in presence of nonlinearities verifying some Hélder-like condition. Also, for the case
when this Holder condition is not veri ed, we have proposed a novel cascaded high gain observer
(@.24). On the other hand, under slightly more restrictive Holder-like conditions, we have made
a Lyapunov design of the homogeneous observll) and proved its asymptotic convergence
with the help of an explicit Lyapunov function. As for its cascaded version [4.25), asymptotic
convergence has been established under the only condition of continuity of the nonlinearities
and the fact that the trajectories (and input) are bounded. We conclude that a global observer
exists for the continuous triangular form (3.19).

Although it is an extremely important aspect, we have had no time to devote much attention
to the impact of disturbances on the behavior of the observers. Nevertheless, we have established
an ISS property with respect to dynamics and measurement noises. Our numerical experience
seems to indicate that it is very di cult to tune the gains of both high gain and homogeneous
observers in presence of measurement noise, although it is slightly simpler for the latter since
smaller gains are su cient to ensure convergence. Simulations on our example suggest that
the situation may be more favorable with the cascaded homogeneous observer. Anyway, the
presented results are still unsatisfactory in presence of noise, and the question of the construction
of robust observers for non-Lipschitz triangular forms remains unanswered. Our theoretical ISS
bounds being far too conservative, it would be necessary to carry out a ner study if we wanted
to optimally tune the gains of the observers. It may also be appropriate to use on-line gain
adaptation technigues since large gains should be necessary only around the points where the
nonlinearities are not Lipschitz. About these two aspects, we refer the reader to the survey in
[KP13l Sections 3.2.2 and 3.2.3] and the references therein.
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4.6. Conclusion
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Transformation into a normal form






Chapter 5

Review of existing transformations

Chapitre 5 Bilan des transformations existantes. Tout au long de Partie[l, nous avons
listé un certain nombre de formes normales pour lesquelles un observateur est connu. An
d'appliquer Théoreme[2.2.], il nous faut maintenant étudier comment transformer un systéme
non linéaire quelconque en l'une de ces formes. C'est I'objet de Partig]ll. Comme dans la
précédente, nous commencons par faire un rapide bilan des résultats existant dans la littérature
concernant ce probléme en soulignant les points qui n'ont pas encore été étudiés. Ceci nous
permet de situer nos contributions qui seront ensuire détaillées dans les chapitres suivants.

Contents
.l Transformations into a state-ane normalforms . . .| ...... ... 64
[(5.1.1 Linearization by output injection]. . . . . .. .. .. ... ... ....... 64
.12 Transformation into Hurwitz form| . . . ... .. .... ... .. ... .. 65
[5.2  Transformations into triangular normal forms S 67
[>.2.1 Lipschitz triangular form| . . . . . . ... ... ... ... .. 67
[>.2.2  General Lipschitz triangular form. . . . . . .. ... .. ... ... ... .. 71
53 Conclusion |. . . . .. ... 73

Throughout Part [|we have given a list of normal forms and their associated observers.
We now have to study how a nonlinear system can be transformed into one of those forms to
apply Theorem[2.2.1. This is the object of Part[l]l Using the same methodology as in the
previous part, we start by reviewing the literature concerning this problem in order to highlight
along the way the points which have not been addressed yet, and we situate our contributions
which will be detailed in the next chapters.
More precisely, we consider a general nonlinear system of the form

x=f(xu) ; y=h(xu) (5.1)

with x the state in R%, u an input function in U with values in U  R%, y the output in R%.
For each normal form presented in Part]] of the form

—=FCwHGuU)) 5 y=H(u); (5.2)

we look for su cient conditions on System (b.I) for the existence of a subsetX and functions
To: X [0;+1[! RY for eachu in U which transforms System ) into the normal form
(5.2) in the sense of Theoren 2.2]1, i-e for ak in X and all t in [0;+1 )

L pTu(t) = F(Tu(t);ut); hOu() 5 hGqu(t)) = H(Tu(x;t);u(t)) :

Indeed, according to Theorem[2.Z.]l and Corollary 2.2]1, the observer design problem is then
solved for System [(5.1) if the solutions of System[(5]1) which are of interest remain iX and
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- either for any u in U, x 7! Ty(x;t) becomes injective onX uniformly in space and in time
after a certain time ;

- or C= X is a compact set, and for anyu in U, T, is a same stationary transformation T
injective on C.

5.1 Transformations into a state-a ne normal forms

5.1.1 Linearization by output injection
Constant linear part

The problem of transforming a nonlinear system into a linear one of the form|(3.p) i-e
—=A +B(uy ; y= (=¢C (5.3)

with the pair (A;C) observable and : R% | R% a possible change of output, has a very
long history. The rst results appeared in [KI83] BZ83] for autonomous systems and were then
extended by [KR85] to multi-input multi-output systems. In those papers, the authors looked
for necessary and su cient conditions on the functions f and h for the existence of a local
change of coordinates (and possibly change of output) which brings the system into the form
(6.3), which they called "observer form". [BRG89] then gave conditions for the existence of a
local (and global) immersimﬂ (instead of di eomorphism) in the particular case of control a ne
systems. A vast literature followed on the subject, either developing algebraic algorithms to
check the existence of a transformation or tools to explicitly nd the transformation.

In [Jou03], the general problem of nding an immersion (rather than a di eomorphism)
which transforms a nonlinear system of the form ) is addressed. If such a transformation
exists, the system is said linearizable by output injection. The following result is proved :

Theorem 5.1.1. [Jou03, Theorem 2.3]

A system of the form
x=f(u) ; y=hx)

is linearizable by output injection if and only if there exist a C*1 function T and a di eo-
morphism :R% | R% transforming the system into the particular triangular form

;-
:

—+
-

2+ 1(u; 1)

i+t (U)o = (W)= 1

d (u; 1)

Thus, the linearization problem reduces to the existence of a transformation into this latter
observable form. Note that if besides this transformation is required to be injective (like in
our context of observer design), then the system is necessarily uniformly observa.eActuaIIy,
the class of systems considered here is even strictly smaller because for a uniformly observable

From this, it is possible to deduce :

T .R™ 1 RY is an immersion if the rank of %1 is dy. Contrary to a di eomorphism, this allows to take
d dy .

235ee De nition
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Theorem 5.1.2. [Jou03, Theorem 2.6]

An autonomous system
x=f(x) ; y=h(x)

is linearizable by output injection if and only if there exists a C' function , an integerd
andd C! functions 1, .., g4 such that

1 2

LI =LY * g m+L! 2, A+l g 1 A+ g N

with h = h.

This is the so-called characteristic equation which extends the same notion for linear systems
and was introduced in [Kel87] originally with d = dy. This partial di erential equation (PDE)
is important in practice because several results show that the linearization of a controlled system
rst necessitates the linearization of its uncontrolled parts or drift dynamicsE] ([KR85] BRG89,
Jou03] among others). A rst di culty thus lies in solving this PDE, which does not always
admit solutions ([Jou03,[BS04]).

Along the history of linearization, we must also mention some generalizations such as [KelB87],
where the function B is allowed to depend on the derivatives of the input and later on the
derivatives of the output in [GMP96]| PG97], or [Gua02,[RPNO04] where it is proposed to use an
output-depending time-scale transformation.

We conclude that linearizing both the dynamics and the output function is very demanding
and requires some very restrictive conditions on the system. The existence of the transformation
is di cult to check and involves quite tedious symbolic calculations which do not always provide
the transformation itself, and even when they do, its validity is often only local.

Time-varying linear part

In parallel, others allowed the linear part A to depend on the input/output, i-e looked for
conditions to transform the system in the state-a ne form (3.7)

—= A(uy) +B(wy) ; y=C(u) :

The rst to address this problem were [Fli82, [FK83] but without allowing output injection
in the dynamics, namely requiring A(u) and B(u). This led to the very restrictive niteness
criterion of the observation space, which roughly says that the linear space containing the suc-
cessive derivatives of the output along any vector eld of the typef (;u) is nite. Later,
[HK96! HC91, [BB97] allowed A and B to depend on the output to broaden the class of con-
cerned systems. But it remains di cult to characterize those systems because there are often
many possible ways to parametrize the system via the output. Besides, even when the trans-
formation exists and is known, the input must satisfy an extra excitation condition to allow the
design of a Kalman observer (see Chaptéfr|3).

5.1.2 Transformation into Hurwitz form

In a completely independent line of research, some researchers have tried to reproduce Luen-
berger's original methodology presented in[[Lue64] for linear systems on nonlinear systems. It
consists in nding a transformation into a Hurwitz form (3.3)|

— A +B(uy) ; y=H(u)

3Dynamics with u equal to a constant
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with A Hurwitz, for which a trivial observer (3.4) (made of a copy of the dynamics) exists. Note
that unlike in the previous section, this procedure is not a linearization of the system, since
the output function H can be any nonlinear function (seel[KK98, Remark 4]). It is not even
necessary to know its expression since it is not needed in the observer. This crucial di erence
leads to far less restrictive conditions on the system.

The extension to autonomous nonlinear systems of Luenberger's original methodology ([Lue64])
was proposed and analyzed in a general context by [Sho92]. It was rediscovered later by [KK98]
who gave a local analysis close to an equilibrium point under conditions relaxed later on in
[KX03]. The localness as well as most of the restrictive assumptions were then by-passed in
[AP0O6]. As noticed in [KX06] and [APQ6], this nonlinear Luenberger observer is also strongly
related to the observer proposed in[[KEOQ3].

In [APQ6], the authors investigate the possibility of transforming an autonomous system

x=f(x) ; y=h(x)

into a Hurwitz autonomous form
— A +B(y):

This raises the question of nding, for some integerd , a continuous function T : R% | Rd

verifying
LiT(x)= AT(x)+ B(h(x)) ; 8x2X (5.4)

with A some Hurwitz matrix of dimensiond and B : R% | RY some continuous function.
The existence of such a transformation is shown for any Hurwitz matrixA and for some well-
chosen functionsB under the only assumption that the system is backward-completf] in X
(JAPQ6!, Theorem 2]). Of course, this is not enough since, as we saw in the introduction, it is
required that T be uniformly injective on X to deduce from the estimate of T(x) an estimate
of Xx. The authors show in [APOE, Theorem 3] that injectivity of T is achieved for almost any
diagonal complex Hurwitz matrix A of dimensimﬂ (dx +1)dy on C and for any B verifying some
growth condition under the assumption that the system is backward S-distinguishableﬁ on X
for sope open setS contajning X, i-e for any (Xa; Xp) in X2 such that x5 6 Xxp, there existst in

max s(Xa); s(Xp) ;0 such thatyy,(t) & yx,(1).
In the case whereX is bounded, the result simpli es into :

Theorem 5.1.3. [APO6]

Assume that X and S are open bounded subset dR%, such that cl (X ) is contained in S and
System ) is backwardS-distinguishable on X. There exists a strictly positive number °
and a setR of zero Lebesgue measure i6%*! such thatdenoting = f 2C : <( )< ‘g,
forany ( 1;:::; g¢.+1)in **1 nR, there exists a function T : R% I R(&*1) dy yniformly

injective on X and verifying (5.4) with
0
B
; B(y)= a B y

0
A
Aza A
A B

4Any solution exiting X in nite time must cross the boundary of X. See [AP06, De nition 1].

5Separating the reallimaginary parts, the observer is thus of dimension 2(dx + 1) dy on R.

®This notion is similar to the distinguishability de ned in De nition 2.2/1 buf in negative time and with the
constraint that t occurs when both solutions are still in S.

1
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and
0 1 0 11

1
A= X ;B=%>5X:
dy +1 1
Besides, ifX is backward-invariant, the function T is unique onX and de ned by:
z 0
T(x) = e ABMX(KX )d : (5.5)

We conclude from this result that it is possible to design an observer for an autonomous
nonlinear system under the weak assumption of backward-distinguishability. Note that with a
stronger assumption of strong di erential observability[] of order m, and still in a bounded set,
it is also proved in [AP06, Theorem 4] that injectivity of ($.5) is ensured for any choice ofm
real strictly negative ; smaller that ~ with ~ su ciently large.

The di culty lies in the computation of the function T, let alone its inverse. Even whenX
is bounded and backward-invariant, the use of its explicit expression[(5]5) is not easy since it
necessitates to integrate backwards the di erential equation at each time step. Several examples
will be given in Chapter [7] or Chapter [1]] to show how the functionT can be computed without
relying on this formula. In particular, we will see in Chapter [/|how this task can sometimes be
made easier by allowingT to be time-varying.

The extension of this Luenberger methodology to controlled systems is not straight-forward.
First steps in this direction were made in [RZ13,[Tru07] for linear time-varying systems, in
[HamO8] for nonlinear time-varying systems, and in [[EngQJ7] for nonlinear controlled systems.
This is the object of Chapter [7.

5.2 Transformations into triangular normal forms
5.2.1 Lipschitz triangular form

The Lipschitz triangular form ] 3.12)
8
% 2 = 2t (1)

i1 (e i), Y= o1

- - m(th )

is well-known because it is associated to the classical high gain observgr (3/13). The idea
of transforming a nonlinear system into a phase-variable forrﬂ (i-e with ; = 0 except )
appeared in [Zei84]. For an autonomous system,

x=1f(x) ; y=h(x)
the function H, de ned by the output and its m 1 rst derivatives, namely
d
Hg (X) = (h(x);L¢h(x);:::; L 1h(x)) ;
transforms the system into

2= 2 5 5 4= w5 i = Lhe) Y= g

"See De nition 5.2.2|in the autonomous case.
81t is useful to denote here the input & because we will see that it can be for instancet = (u; u; ®;:::).

9See De nition
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This is a Lipschitz phase-variable form if and only if there exists a function , Lipschitz on RY
such that
8x2X ; LPh(X)= m(Hm(X)) ;

i-e the mth-derivative of the output can be expressed "in a Lipschitz way" in terms of itsm 1
rst derivatives. This is possible for example if X is bounded andH 1, is an injective immersiorE]
on some open sefS containing cl (X) (see Theore below for this result in the general
controlled case).

In the remaining of this section, we review the existing results in terms of transformation of
general controlled systems into a Lipschitz triangular form.

Time varying transformation

The rst natural idea introduced in [Zei84] is to keep considering the transformation made of
the output and its m 1 rst derivatives, despite the presence of the input, and transform the
system into a phase-variable form in the same way as for autonomous systems. In order to
properly de ne this transformation, we need the following de nition.

De nition 5.2.1.

Given an integer m, and using the notation
we call dynamic extension of orderm of System ) the extended dynamical system
x=f(xu™) y=h(Ex (5.6)

with input u(M*D) in R% extended stateX = (x; ) in R% R%(M*1) “extended vector
eld f de ned by
fuMDy= f(x 0); 15005 myu™d

and extended measurement functiorh de ned by

h(X) = h(x; o) :

Note that for any solution x to System (5.1) with some input u, (x; Un) is solution to the
dynamic extension ), with the notation Uy = (u;u;:::;u(™). While = is an element of
R4 (m*+1) g, is a function de ned on [0;+1 ) such that U (s) = (u(t);u(t);:::;ulM(t)) is in
Uy, R% (M)  The successive time derivatives of the outpuly are related to the Lie derivatives
of h along the vector elds f, namely for anyj m and any (Xo;tg) in X [0;+1)

@Y = -
@(xo;to;t;u)z L’ffh(X (Xo; to; t;u); Um(t)) :
We are now ready to de ne the notion of di erential observability.
De nition 5.2.2.

Consider the function Hy, on R% R%(m*1) de ned by

Hin(6™m) = 06 ™m); Leh(6 Tm) 5o L Th( ~m) (5.7)

""Hum is injective and @z-(x) has full-rank on X
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- weakly dierentially observable of orderm on S if for any —, in U, the function
X 7! Hm(X; —m) is injective on S.

- strongly di erentially observable of orderm on S if for any —, in Um, X 7! Hm(X; ~m)
is an injective immersion onS.

The function Hp( ; —m) is equivalent to H, for autonomous systems since it is made of the
successive derivatives of the output, but it now depends on the input and its derivatives. The
notion of di erential observability of order m thus means that when knowing the current input
and its derivatives, the current state is uniquely determined by the current output and its rst
m 1 derivatives. With this in hand, a straightforward extension of the stationary case along
the idea presented in[[Zei84] is :

Theorem 5.2.1.

If Un is a compact subset ofR%(M*1) and there exists an integerm and a subsetS of R%
such that System (5.7) is weakly (resp strongly) di erentially observable of orderm on S,
then, for any compact subsetC of S and any u in U, the function de ned by

T(Xt) = Hm(X; Um(t))

transforms System [5.]) into a continuous (resp Lipschitz) phase-variable form of dimension
d = mdy on Cand with input &= Uy. Besides,x 7! T(x;t) is uniformly injective in space
and in time on C.

Proof : Assume rst that the system is weakly di erentially observable of order m, i-e for all 7, in

Um, x 7! Hm (X; ~m) is injective on C. According to Lemma it is uniformly injective in space and
in time on C and for any —n, it admits a uniformly continuous left inverse i-e there exists a function
A, ':RY RIuMD | R gych that for all “m in Um and all x in C

X=Hp (Fm (X "m);m)

Now de ne
m(; m)= LPAH G (G 7m)i )

T transforms System (5.1)) into the continuous phase-variable form

8 _
E —1—-2
3 .

m (5 Um (1))

-m

Assume now the system is strongly observable. Still with Lemma 7! Wml( ; “m) can now be
taken Lipschitz on RY , with the same Lipschitz constant for all —p in Up,. Itfollows that 7! o (; "m)
is Lipschitz on any compact set of R? containing the compact set of interest Hy, (C U ), with the same
Lipschitz constant for all — in Um. According to Kirszbraun-Valentine theorem [Kir34, Wal45],lit can
be extended to a Lipschitz function on RY with still the same Lipschitz constant. This new extended
function 7! . (; ~m) is globally Lipschitz uniformly in —, and has not changed onH (C  Up)
where the system solutions evolve, thus we have a Lipschitz phase-variable form.

The assumptions given in Theoren] 5.2]1 are su cient to ensure the existence of the func-
tion n, in the phase-variable variable form. But they are not necessary. The possibility of
nding such a function, namely to express Lfﬂ“ﬁ (the mth derivative of the output) in terms of

derivatives) is thoroughly studied in [JG96] through the so-called "ACP(m) condition”. We refer
the reader to [JG96] (or [GKO1]) for a more complete analysis of those matters.
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Remark 4 Note that as we saw in Chapter{4, for a high gain design, it is not necessary to have
global Lipschitzness of the function , with respect to . It is su cient to have

imGm) wCwioda

forall “in RY , all 7, in Uy and  in a compact set containingHm (C  Um) where the system
solutions evolve. Thus, the Lipschitz extensions made in the proof of Theorerh 5.2.1 are not
necessary in practice : as suggested in Chaptéf 4, it is su cient to takg]]

m(: m) = satv (LMA(H L (; “m)i ) (5.8)

where M is a bound foerfL”ﬁj onC U, and Wml is any locally Lipschitz function de ned on

RY Uy, which is a left-inverse ofH, on Hn(C  Upy). It follows that the only di culty is
the computation of a globally de ned left-inverse for H,, which is needed anyway to deduce an
estimate ® from " (see [RMO04]).

Stationary transformation

We have seen that under an appropriate injectivity assumption, the function made of the suc-
cessive derivatives of the output transforms the system into a Lipschitz phase-variable form.
The drawback of this design is that the transformation depends on the derivatives of the input,
which we may not have access to, in particular if we are not in an output feedback con guration.
It turns out that under appropriate assumptions involving uniform observability, a control-a ne
multi-input single-output system

x=f(x)+gx)u ; y=h(x)2R (5.9)

can be transformed into a Lipschitz triangular form (B.12) by a stationary transformation. This
famous result was rst proved in [GB81] and then in a simpler way in [GHO92]. Before stating
the result, we need the following de nition.

De nition 5.2.3.
We call drift system of System [5.9) the dynamics withu 0, namely
x=f(Xx) ; y=hx):

Applying De nition we say that the drift system of System (5.9) is weakly (resp
strongly) di erentially observable of order m on S if the function

is injective (resp an injective immersion) onS.

Di erential observability of the drift system is weaker than di erential observability of the
system since it is only foru (F_zl In order to obtain a triangular form, it is necessary to add
an assumption of uniform observability :

Theorem 5.2.2. [GB81, GHO92]

Assume that there exists an open subse8 of R% such that

1 The saturation function is de ned by satwy (s) = min fM; maxfs; M gg.
120r any other constant value
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- System (5.9) is uniformly instantaneously observablE] onsS;
- The drift system of System (5.9) is strongly di erentially observable of order dx on S.
Then, Hqy, de ned by
Haq, (X) = (h(x);Lsh(x);:::; L?X th(x)) (5.10)

which is a di eomorphism on S by assumption, transforms System [(5.D) into a Lipschitz
triangular form (8.12) of dimensiond = dy on S.

Triangularity makes the form (B.12) instantaneously observable for any input. Since the
transformation H g4, itself is independent from the input and injective, this observability property
must necessarily be veri ed by the original System [(5.9). Thus, the rst assumption is necessary.
A usual case where this property is veri ed is when there exists an ordep such that the system
is weakly di erentially observable of order p.

It is crucial that the order of strong di erential observability of the drift system be dy (the
dimension of the state) to ensure the Lipschitzness of the triangular form in order to use a high
gain observer. When this order is larger thandy, we will see in Chapter[§ that triangularity
is often preserved but the Lipschitzness is lost : the triangular form is only continuous and
observers from Chapter 4 must be used.

5.2.2 General Lipschitz triangular form

Consider a general multi-input single-output control-a ne system
x=f(xX)+ gx)u ; y=hXx)+ h'xX)u 2R (5.11)
where g and hY are matrix elds with values in R% % and R! % such that for any u =
(ug; 25 Ug,) in R%,
Ru Ru

gx)u= ok(X)ux ; h'(x)u= hg(x)uk
k=1 k=1

with gy vector elds of R% and h real-valued functions. We want to know under which condi-
tions this system can be transformed into a general Lipschitz triangular form )

; -
_%

-+
-m

Ar(uiy) 2+ 1(u; 1)

Ai(upy) w1+ (U i) 5y = Ca(u) 1

m(U; )

for which a Kalman-High gain observer [3.21) may exisffj]. Before stating the main result, we
need some de nitions introduced in [HK77].

De nition 5.2.4.

The observation spaceof System[5.11, denotedD, is the smallest real vector space such that

- O is stable under the Lie derivative along the vector eldsf, gi, ... , 0q,, i-€ for any

¥see De nition
14 An additional excitation condition on the input is needed, see Chapter C-.D
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element of O,Ly andLg forall kinfl;:::;dygareinO.

We denote dO the codistribution of R% de ned by

n o
do(x)= d (x); 20

This leads to the following observability notion.

De nition 5.2.5.

System[5.11 is said to satisfy theobservability rank condition at a point x in R% (resp on
S) if
dim(dO(x)) = dx (resp8x 2S) :

It is proved in [HK77] that the observability rank condition is su cient to ensure the so-
called "local weak observability”, which roughly means that any point can be instantaneously
distinguished from its neighbors via the output. In fact, this property is also necessary on a
dense subset oK . We refer the interested reader to [HK77] for a more precise account of those
notions.

In [BTQY], the authors relate the observability rank condition to the ability of transforming
(at least locally) a system into a general Lipschitz triangular form.

Theorem 5.2.3. [BTO7]

If System ) satis es the observability rank condition at xp then there exists a neigh-
borhood V of xo and an injective immersion T on V which transforms System [5.11) into a
general Lipschitz triangular form ( on V with the linear parts A; independent from the
output i-e Aj(u;y) = Aj(u).

This result is local because the rank condition is of local nature and does not say that we can
select the same immersiom around every point of X, let alone that this function is injective on
X. However, we give this result all the same because the idea of the construction of the function
T is the same whether we look for a global immersion or a local one. Here is the algorithm
presented in [BTO7]:

1. Take T1(x) = (h(x);hY(x);:::;hY (x)) of dimensionNy = dy +1.
2. SupposeTl; .. T have been constructed in the previous steps, of dimensioN1;:::;N;
Pick among their N1+ :::+ N; di erentials a maximum number ; of di erentials d 1;:::;d
which generate a regular codistribution aroundxg, i-e there exists a neighborhood ofg
wheredim(sparfd 1(x);:::;d (x)g) is constant and equal to ;.
- if = dy stop ;
- otherwise build T*1 with every functions L Tji andLg, Tji ,with j inf1;:::;N;gandk
inf1;:::;dyg, except those whose di erential already belongs tesparfd 1(x);:::;d ,(X)g

The observability rank condition ensures that the algorithm stops at some time because com-
puting the successiveT' comes back to progressively generating alD which is of dimensiondy
around Xxo. Besides, it is shown in [[BTO7], that when the dierential d of some real valued
function is such that, in a neighborhood ofxg, d (x) belongs tosparfd 1(x);:::;d ,(X)g
with d 1(x);:::;d ,(x) independent, then can be locally expressed in a Lipschitz way in
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terms of 1;:::; .. Therefore, either the derivatives of the elements ofT' are in T'*! or they

matrix Aj(u) and a function ; (linear in u and with ( u; ) Lipschitz) such that

z{ . Xu . . .
T'(x)= Li T'(x) + UL T'(X) = Aiu)T™ )+ (U THX); 5 TH(X))
k=1

which gives the general triangular form (3.19).

Note that the transformation T thus obtained is a local immersion. If we are interested in
a global transformation, the same algorithm can be applied but everything must be checked
globally (and not in a neighborhood of xg) and we need to go on with this algorithm until
obtaining a global injective immersion. But there is no guarantee that this will be possible,
unless a stronger assumption is made. In particular, if the drift system (i-e withu  0) is
strongly di erentially observable of some order p, the algorithm provides a global injective
immersion in a maximum of p iterations. Beware however, that it still remains to check that the
functions ; exist globally. If this is not the case, it is always possible to put the corresponding
Lt T(x) or Lg, T/ (x) in T™*1, but this is bound to considerably increase the dimension off (and
thus of the observer).

Finally, it is important to remark that this design enables to avoid the strong assumption
of uniform observability needed for the classical triangular form, by stu ng the Lg, Tji (x) which
do not verify the triangularity constraint into the state. The rst obvious setback is that it
often leads to observers of very large dimension. But mostly, unlike the classical Lipschitz
triangular form which admits a high gain observer without further assumption, the possibility
of observer design for the general Lipschitz triangular form is not automatically achieved as
seen in Chapter[ 3 : building the transformation is not enough, one need to check an additional
excitation condition on the input.

5.3 Conclusion

A lot of results exist in the literature concerning the characterization of systems which can

be transformed into a normal form and we have tried to give in this chapter as thorough an
account as possible. Those results are summed up in Table 5.1. However, some cases have not
been addressed yet. They are highlighted in the table with the sigr? and will be studied in the
following chapters :

- Chapter [g : transformation into a continuous triangular form. We study what becomes
of Theorem[5.2.2 when the system has an order of di erential observability larger than
dx. We show that using the same transformation, triangularity may be preserved but not
its Lipschitzness, i-e the system may be transformed into a continuous triangular form,
instead of a Lipschitz triangular form.

- Chapter E] . transformation of time-varying/controlled systems into a Hurwitz form. We
extend the results presented in Sectioj 5.1]2 for autonomous systems to controlled sys-
tems. We show that similar results can be obtained under the assumption of backward
distinguishability in nite time, or strong di erential observability.
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Chapter 6

Transformation into a continuous
triangular form

Chapitre 6 Transformation dans une forme triangulaire continue. Ce chapitre
étend le résultat présenté dang [GB81, GHO92] et rappelé dans Theordm 5.2.2, selon lequel tout
systeme instantanément uniformément observable et, pour 0, fortement di érentiellemment
observable d'ordre sa dimensiordy, peut étre transformé en une forme triangulaire Lipschitz
(B.17). En particulier, nous étudions le cas plus général ou I'ordre d'observabilité di érentielle est
guelconque, c'est-a-dire éventuellemment supérieur a la dimension du systéme. Nous montrons
gue dans ce cas, la dynamique du systeme peut encore (au moins partiellemment) étre décrite
par une forme triangulaire continue mais que cette forme n'est plus nécessairement Lipschitz.
Des conditions nécessaires et su santes pour que le caractéere Lipschitz soit assuré sont établies,
et en particulier un lien étroit avec I'observabilité in nitésimale uniforme est mis en évidence.

Contents
[6.1 Presentation of the problem . .|. . .. ... .. ... ... ......... 76

This chapter extends the result presented in[[GB81| GHO9?] and recalled in Theorem
5.2.2 which says that any uniformly instantaneously observab single-output control-a ne
system whose drift system is strongly di erentially observablﬂ of order its dimensiondy, can be
transformed into a Lipschitz triangular form (. In particular, we investigate what happens
in the more general case where the drift system is weakly di erentially observable of some order,
namely of an order larger or equal to the dimension of the system. We shall see that, in this
case, the system dynamics may still be described by a (partial) continuous triangular form
but with nonlinear functions ; which may not be locally Lipschitz. As we saw in Chapter[4,

1See De nition £.2.1
2See De nition 5.2.3
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this loss of Lipschitzness can prevent the use of a high gain observer, and we establish in this
chapter necessary and su cient conditions on the system for the Lipschitzness to be ensured. In
particular, a tight link with uniform in nitesimal observability is revealed. The results presented

in this chapter have been published in[[BPA17b].

6.1 Presentation of the problem

As in Section[5.2.], we consider a single-output control-a ne system of the form :
x=f(x)+gx)u ; y=h(x) (6.1)
wherex is the state in R%, u is an input in R%, y is a measured output inR and the functionsf ,
g and h are su ciently many times di erentiable. As in the previous chapter, we go on denoting
Hi(x) = (h(x);Lsh(x); Lt th(x)) 2 R : (6.2)

According to De nition we say that the drift system of System ( is weakly (resp.
strongly) di erentially observable of order m on S if H, is injective (resp. an injective immer-
sion) on S.

We are interested in solving :

Problem T

Given a compact subsetC of RY% . under which condition do there exist integerst and d ,
a continuous injective function T : C ! RY, and continuous functions' ¢ : RY I R and
g :R'(or RY) ! R% such that T transforms System [6.]) into the up-to-T-triangular form

-
_§

2+ 01( 1)u

= = ot O( 1)U

742 T Or+1( ) U YT (63)

F+1

- "a()+ga()u

on C.

Becauseg; depends only on 1 to i, fori T, but potentially on all the components of
for i > 1, we call this particular form up-to-T-triangular normal form and T is called the order
of triangularity. When d = 1+ 1, we say full triangular normal form. When the functions ' 4
and g; are locally Lipschitz we say Lipschitz up-to-r-triangular normal form.

According to Theorem [5.2.2, in the case where Systen] (6.1) is instantaneously uniformly
observable andH 4, is a di eomorphism on an open setS containing the given compact set,
T = Hgq, transforms the system onC into a full Lipschitz triangular normal form of dimension
d = dx. However, in general, it is possible for the system not to be strongly di erentially
observable of orderdy everywhere. This motivates our interest in the case where the drift
system is strongly di erentially observable of order m > dy, i-e Hp, is an injective immersion
but not a di eomorphism.

The speci city of the triangular normal form (§.3)]is not so much in its structure but more in
the dependence of its functionsg; and ' 4 . Indeed, by choosingT = Hq4 , we obtain in general:

0 1 0 1
Q 1 0 ::: O :
Hd_(x§: T 6§Hd(x)+ O §+L9Hd(x)u

0 ::: :: 0 1 d

o
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But, to get (6.3), we need further the existence of functions' 4 and g; satisfying, fori> T,

LYh(x) = "¢ (Ha (x)) : LgL! ¥(x) = gi(Hg (x)) 8x2C (6.4)

and, fori T,
LgLi *(x) = ai(h(x);z::iL} *h(x)) 8x2C: (6.5)

Let us illustrate via the following elementary example what can occur.

Example 6.1.1 Consider the system de ned as

8
2 X1 = X2
o X2 = X3 LY =X
" X3 = 1+ u
We get
h()lO 1 OH()l OH()l
X X1 3(X 3(X
H3(x)=%)th(x)£=%)ng ; H5(x)=%)L;°’h(x)£=%) 3x3 X
LZh(x) x3 Lih(x) 6X3

HenceH ;3 is a bijection and H s is an injective immersion on R3. So the drift system is weakly
di erentially observable of order 3 on R® and strongly di erentially observable of order 5 on R3.
Also the function (x1;X2;X3) 7! (Yy;V;Yy) being injective for all u, it is uniformly instantaneously
observable onR3. From this we could be tempted to pick d = 3 or 5 and the compact setC
arbitrary in R3. Unfortunately, if we choosed =3, we must have

'3(H3(x)) = L{h(x) = 3x5 = 3(L{h(x))*™
and there is no locally Lipschitz function * 3 satisfying (6.4) if the given compact setC contains
a point satisfying x3 = 0. If we choosed =5, we must have
g3(H3(x)) = LgLZh(x) =3x3 = L?h(x) = 3(LZh(x))*™3
and there is no locally Lipschitz function gs satisfying (6.5) if the given compact setC contains
a point satisfying x3 = 0. N

Following this example, we leave aside the Lipschitzness requirement for the time being, and
focus on the existence of continuous functions 4 and g; verifying ( and (. It turns out
that ( is easily satis ed as soon asHq is injective :

Theorem 6.1.1.

Suppose the drift system of System[(6]1) is weakly (resp. strongly) di erentially observable
of order m on an open setS containing the given compact setC. Forany d  m, there exist
continuous (resp. Lipschitz) functions' ¢ :RY | R, g :RY | R satisfying ).

Proof : There is nothing really new in this result. It is a direct consequence of the fact that a continuous
injective function, like Hp,, de ned on a compact set admits a continuous left inverse de ned on R
(see Lemma|A.3.3), and that when it is also an immersion, its left-inverse can be chosen Lipschitz on
RY (see Le or [RMO04]).

We conclude that the real di culty lies in nding triangular functions g satisfying (6.5).

6.2 Existence of g satisfying (6.5)]
6.2.1 Main result

We will prove the following result :
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Theorem 6.2.1.

Suppose System[(6]1) is uniformly instantaneously observable on an open s8tcontaining
the given compact setC. Then,

- there exists a continuous functiong; : R! R% satisfying (6.5).

- if, for somei in £2:::;dkg, Ho; i1 Hi dened in ( are open maps, then, for all
j i, there exists a continuous functiong, : RI | R% satisfying (6.5).

The rest of this section is dedicated to the proof of this result through a series of lemmas.
Note that, in the case where the drift system is strongly di erentially observable of orderdy, H;
is a submersion and thus open for ali  dy, and the result holds.

A rst important thing to notice is that the following property must be satis ed for the
identity (6.5) to be satis ed (on S).

Property A (i)

| LoLt *h(xa) = LgL} h(xp)  8(Xa;Xp) 252 : Hi(xa) = Hi(Xp)

Actually the converse is true and is a direct consequence of Lemnja A.3.3 :

Lemma 6.2.1.

If Property A(i) is satis ed with S containing the given compact setC, then there exists a
‘ continuous function g; : R ! R% satisfying (6.5).

Property A(i) being su cient to obtain the existence of a function g satisfying (6.5), we

study now under which conditions it holds. Clearly A(i) is satis ed for all i m if Hy is
injective. If we do not have this injectivity property the situation is more complex. To overcome
the di culty we introduce the following property for 2 i dy+1.

Property B(i)

For any (Xa:Xp) in S? such that xa 6 Xxp and Hi(xa) = Hi(xp) ; there exists a sequence

(Xa:k; Xpx) Of points in S? converging to (Xa; Xp) such that for all k, Hi(Xax) = Hi(Xpx) and

@i 1

@x

As in this property, let x5 8 xp be such thatH;(x3) = Hi(Xp). If @-I@ixl is full-rank at either
Xa Or Xp, then we can take (Xa:k; Xp:k) constant equal to (Xa;Xp). Thus, it is su cient to check
B(i) around points where neither@@xl(xa) nor @éxl(xb) is full-rank. But according to [GKO1]
Theorem 4.1], the set of points where% is not full-rank is of codimension at least one for a
uniformly observable system. Thus, it is always possible to nd pointsx,.x as close tox, as we
want such that @éxl(xa;k) is full-rank. The diculty of B(i) thus rather lies in ensuring that
we have alsoH(Xak) = Hi(Xpk)-

In Section[6.2.2, we prove :

is full-rank at Xax Or Xpk-

Lemma 6.2.2.

Suppose System[(6]1) is uniformly instantaneously observable o8.

- Property A(1) is satis ed.
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‘ alljinfl;:::;i 1g, then Property A(i) holds.

Thus, the rst point in Theorem §.2.1]is proved. Besides, a direct consequence of Lemmas
[6.2.1 and[6.2.2 is that a su cient condition to have the existence of the functionsg; for i in

Theorem([6.2.1 by showing thatB(j) is in fact satis ed when H; is an open map.

Lemma 6.2.3.

Proof : Take (Xa;Xp) in S? such that xa 6 x, and Hj (xa) = Hj(xp) = Yo. Let  be the set of points
of S such that @g,; is not full-rank. According to Sard's theorem, H;() is of measure zero inR.
Now, take p > 0 and consider B,(xa) and B,(x,) the open balls of radius % centered at Xa and Xp
respectively. Since H; is open, Hj (Bp(Xa)) and Hj (By(Xp)) are open sets, both containing yo. Thus,
H;j(Bp(xa)) \ Hj(Bp(xp)) is a non-empty open set. It follows that (H; (Bp(Xa)) \ Hj(Bp(Xp))) nH; ()
is non-empty and contains a point y,. We conclude that there exist (Xap;Xbp) in Bp(Xa)  Bp(Xp)
such that Hj (Xap) = Hj(Xbp) = yp and @(;; (and thus @gxl) is full-rank at Xap and Xpp. Besides
(Xap ; Xb;p) converges to(xa;Xp), and B(j) is satis ed.

Note that the assumption that H; is an open map is stronger thanB(j ) since it leads to the
full rank of %, while, in B(j), we only need the full-rank for %. We show in the following

example that the openness oH; is not necessary.

Example 6.2.1 Consider the system de ned as

8

2 X1 = X2

X2 = x¥x1o; Yy =X (6.6)
X3 = 1+ u

OnS= x2R3:x}+x560 , and whatever u is, the knowledge of the functiont 7! y(t) =
X1(x;t) and therefore of its three rst derivatives
Y= Xz; Yy = x3x1; ¥ o= 3x5xa(l+ u)+ x3xz

gives usxy, X2 and x3. Thus, the system is uniformly instantaneously observable or5. Besides,

the function 0 1
X1

Ha(x) = % x%f)z(l E

3x3x1 + x3x;

is injective on S, thus the system is weakly di erentially observable of order 4 onS. Now,

although H is trivially an open map on S, H3 is not. Indeed, consider for instance the open

baIIEIB%(O;xz;O) in R3 for somex» such that jx»j > % B%(O;xz; 0) is contained inS. Suppose its

image by H 3 is an open set ofR®. It contains H3(0; x»; 0) = (0; X»;0) and thus (";x ;") for any
su ciently small ". This means that there existx in B%(O;xz; 0) such that (";x2;") = H3s(x), i-e
necessarilyx; = " and x3 = 1. But this point is not in B%(O; X2;0), and we have a contradiction.
Therefore, H 3 is not open. However,B(3) trivially holds because H ; is full-rank everywhere. N

6.2.2 Proof of Lemma 6[2.2 ]

Lemma|6.2.2 is fundamental for the main result of this chapter. That is why we dedicate a
whole section to its proof. It is built in the same spirit as the one in [GHO92] but in a more

3B, (x) denotes the open ball centered atx and with radius r.
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detailed and complete way so that the reader can understand how the fact thatH 4 is no longer
a di eomorphism makes a great di erence.

Assume the system is uniformly instantaneously observable o8. We rst show that property
A(1) holds. Suppose there existgXy; X,) in S2 and k in f1;:::;dyg such that x, 6 Xy, and
h(xy) = h(xp) Lg h(xa) 6 Lg h(xp) :
Then, the control law u with all its components zero except itskth one which is

Lih(xa) Lsh(xp) .
Lgkh(xa) Lgkh(xb) .

Ug =

is de ned on a neighborhood of(x,; x,). The corresponding solutionsX (x,; t;u) and X (x,; t; u)
are de ned on some time interval [0;t) and satisfy

h(X (Xa;t;u)) = h(X (xp;t;u)) 8t 2[0;) :
Sincex, is dierent from Xx,, this contradicts the instantaneous observability. Thus A(1) holds.

in f1;:::;i 1g. To establish by contradiction that A(i) holds, we assume this is not the case.
This means that there exists(X,.0; Xp) N S? and k in f1;::;dyg such that Hi(X40) = Hi(Xp0)
but Lg L} *(Xa0) 6 Lg L *(Xpo). This implies X, 6 Xpo. By continuity of Lg L} ' and
according to B(i), there exists x, (resp xp) in S su ciently close to X,.o (resp X) satisfying
Xa 6 Xp,

Hi(x)) = Hi(xp) ; LgLt 2(xy) 6 Lg Lt Y(xp);

and @@;Xl is full-rank at x, or x,. Without loss of generality, we suppose it is full-rank at
X,. Thus, % is full-rank at x, for all j < dy +1. We deduce that there exists an open

neighborhood V, of x, such that for all j <i , % is full-rank on V,. Since A(j) holds for all
j<i,according to Lemma[A.3.4,H;(Vy) is open for allj <i and there exist locally Lipschitz
functions g; : H;j (Va) ! R% such that, for all x in Va,

gi(Hj(x )= Lol *h(x ) : (6.7)

Also, Hj(x,) = Hj(x,) implies that H; (x,) is in the open setH (V). Continuity of each H;
implies the existence of an open neighborhooW} of x,, such that Hj (Vp) is contained in H; (Va)
forall j<i . Thus, for any x in Vp, Hj(x ) isin Hj(Va), and there existsx in V, such that
Hj(x )= Hj(x ). According to A(j) this implies that LgL} *h(x ) = LgLt *h(x ) and with
67,

LoLt *h(x )= Lgld h(x )= gi(Hj(x )= gi(Hj(x ) :

Therefore, (6.7) holds onV, and V.
Then, the control law u with all its components zero except itskth one which is

Lih(xa) Lih(xp)
Lo Lt *h(xa) LgL} *h(xp)
is de ned on a neighborhood of(x,; x,). The corresponding solutionsX (x,;t;u) and X (x,; t; u)

are de ned on some time interval [0;t) where they remain in V; and V, respectively. Let
Za(t) = Hi(X(Xg;t;u)), Zp(t) = Hi(X (X t;u)) and W(t) = Za(t) Zp(t) on [0;t). Since, for

Ug =
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allj<i, (6.7) holds onV; and Vy , (W; Z,) is solution to the system :

=
|

Wis1 +(g(ansh aj) Glar Wi ay W)U

a1 = 2+ 01( a1

aj = j+1*tG(aniy aj)u

% W1 W2+ (01( 1) Q1( a1 Wi))u
= 0

i = U

with initial condition (0;Hi(x,)), where & is the time derivative of Z,i(t). Note that the
function (0;Z3) is also a solution to this system with the same initial condition. Since the
functions involved in this system are locally Lipschitz, it admits a unique solution. Hence, for
all tin [0;t], W(t) =0, and thus Za(t) = Zp(t), which implies h(X (x4;t)) = h(X (x,;t)). Since
X4 is dierent from X, this contradicts the uniform observability. Thus A(i) holds.
6.2.3 A solution to Problem T
With Theorems [6.1.7 and[6.2.1, we have the following solution to Problend.
Theorem 6.2.2.
Let S be an open set containing the given compact se€. Suppose

- System (6.1) is uniformly instantaneously observable ors

- the drift system of System (6.1) is weakly di erentially observable of orderm on S.

With selecting T = H,, andd = m, we have a solution to ProblemT if we pick either =1,

or T=i whenHj is an open map for anyj in f2;:::;igwith i  d.
Remark 5
- As seen in Examplg 6.2.]1, the openness of the functiortd; is su cient but not necessary.
We may ask only for B(j) for any j in f2;:::;igwith i dx + 1. Besides, this weaker

assumption allows to obtain the existence ofg; up to the order dy + 1.

- Consider the case wherd3(j) is satised forall j dy+1 andm = dyx +2. Then we have
T= d¢ +1 and it is possible to obtain a full triangular form of dimensiond = 7+ 1 =
m = dy +2. Actually, we still have a full triangular form if we choose d >m. Indeed,H
being injective, A(i) is satis ed for all i larger than m, thus there also exist continuous
functions g : R' I R% satisfying ) foralli m. It follows that T can be taken larger
than dy +1 andd = 1+ 1 larger than m.

- If Problem T is solved withd = T+1, we have a full triangular normal form of dimension
d . But, at this point we know nothing about the regularity of the functions g;, besides
continuity. As we saw in Example[6.1.], even the usual assumption of strong di erential
observability is not su cient to make it Lipschitz everywhere. As studied in Chapter 4,]
this may impede the convergence of a high gain observer. That is why, in the next section,
we look for conditions under which the Lipschitzness is ensured.
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- As explained in Section[5.2.]1, another way of solving ProblenT is to allow the transfor-
mation T to depend on the controlu and its derivatives. In particular, if d > 7+1, a full
triangular form may still be obtained with T = (H; T) where the componentsT; of T are
de ned recursively as

X2 @r
Ti=Lih ; T =LiegTi+v —ul
j=0 @0

i+1)

until (if possible) the map x 7! T(x;u; u;:::) becomes injective for all(u; u; :::). The inter-
est of this approach is to ensure triangularity while reducing the order of di erentiation of
u compared to Theorem[5.2.11.

Example 6.2.2 Coming back to Example[6.2.], we have seen thdtl , is open and thatH 3 is not
but B(3) is satis ed. Besides, the system is weakly di erentially observable of order 4. We deduce
that there exists a full-triangular form of order 4. Indeed, we havelL gh(x) = LgL¢ h(x) =0 and

LgLZh(x) = 3x3x; = 3(LZN(x)) 3 (h(x)) 3

so that we can take R

1
01=0=0 ; 0s(1; 25 3)=3 3 7:
As for ' 4 and gs, they are obtained via inversion ofH 4 i-e for instance onR*nf(0;0; 3); 32 Rg

O O - 111
H41()=%1; 2;@(4 312 SAS:
2

6.3 Lipschitzness of the triangular form

6.3.1 A su cient condition

We saw with Examples[6.1.1 and 6.2]1 that uniform instantaneous observability is not su cient
for the functions g; to be Lipschitz. Nevertheless, we are going to show in this section that it
i

is su cient except maybe around the image of points where « is not full-rank (x; = 0 or

X3 =0 in Example [6.2.7).

Consider the open setR; of points in S where @-I)'(
Corollaire p68-69], if H; is an open map,R; is an open dense set. Anyway, assumBg4, \C is
non empty. Then there exists"o > 0 such that, for all " in (0;"¢], the set

n (0]
Ki- = x2R;\C ; d(x; R%nRj) "

has full rank. According to [Leb82,

is non-empty and compact, and such that its points are {)-away from singular points. The next
theorem shows that the functionsg; can be taken Lipschitz on the image oK, i-e everywhere
except arbitrary close to the image of points where the rank of the Jacobian oH; drops.

Theorem 6.3.1.

Assume System [(6.]1) is uniformly instantaneously observable on an open s& containing
the compact setC. For all i in f1;:::7dcg and for any " in (0;"o], there exists a Lipschitz
function g : R'! R% satisfying (6.5) for all x in K. .

Proof : As noticed after the statement of Property B(i), since S} has full rank in the open set R;,

Property B(i) holds on R; (i-e with R; replacing S in its statement). It follows from Lemma 6/2.2 |
that A(i) is satis ed on R;. Besides, according to Lemma, Hi(Ri) is open and there exists aC
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function g dened on H;(R;) such that for all x in Ri, gi(Hi(x)) = LgL}{ *h(x). Now, Ki» being a
compact set contained in Ri, and H; being continuous, H; (K- ) is a compact set contained in H; (Ri).
Thus, g is Lipschitz on H; (K ). According to [McS34], there exists a Lipschitz extension of g to Rl
coinciding with g on H; (K- ), and thus verifying ( forall x in Kj» .

For a strongly di erentially observable system of order m = dyx on S, the Jacobian of H;
for any i in f1;:::;dyg has full rank on S. Thus, taking d = T+1 = m = dy a full Lipschitz
triangular form of dimension dy exists, i.e. we recover the result of Theoren 5.2]2.

Example 6.3.1 In Example , Hsis full rank on Snfx 2 R®j x; =0 or x3 = 0g. Thus,
according to Theorem[6.3.1, the only points wheregs may not be Lipschitz, are the image of
points wherex; =0 or x3 = 0. Let us study more precisely what happens around those points.
Take Xa = (X1:a;X2:2;0) in S. If there existed a locally Lipschitz function gs verifying (
around x,, there would exista > 0 such that for any Xp = ( X1.p; X2:a; X3:p) SU ciently close to X,
with x1;5 6 0, j3x3,j  ajx3,j, which we know is impossible. Therefore, there does not exist a
function gs which is Lipschitz around the image of points wherexs = 0. Let us now study what
happens elsewhere, namely o6 = S nfx 2 R® jx3 = 0g. It turns out that, on any compact set
Cof S, there existﬂ a such that we have for all (x4; xp) in C?,

IX3.aXLa X3:pX1;0) a(JXl;a Xl;bJ+JX3;aX1;a X3;bX1;bJ)

Therefore, the continuous function gz found earlier in Example [6.2.2 such thatgs(H 3(x)) =
LgL2(x) = 3x3x1 on' S (and thus on C) veri es in fact

jg3(a) 93(b) @ a b

on H3(C) and can be extended to a Lipschitz function onR? according to [McS34]. We conclude
that although H 3 does not have a full-rank Jacobian everywhere oI (singularities at x; = 0),
it is possible to nd a Lipschitz function gz solution to our problem on this set. N
6.3.2 A necessary condition

We have just seen that the condition in Theorem[6.3.1 that the Jacobian ofH; be full-rank, is
su cient but not necessary. In order to have locally Lipschitz functions g; satisfying ), there
must exist for all x a strictly positive number a such that for all (xa; Xp) in a neighborhood ofx,

jLoLi "h(xa) LgLi *h(xp)j ajHi(xa) Hi(xp)j: (6.8)
We have the following necessary condition :

Lemma 6.3.1.

Considerx in S such that (6.8) is satis ed in a neighborhood ofx. Then, for any non zero

i1
@ @lg Ly °h
‘x)v=0 ) —*T (x)v=0: (6.9)
@x @x
4 If X1 and X1 are both zero, the inequality is trivial. Suppose jX1.aj > jX1pj and denote = :11;’ LIf <0,
. :
) . . . . 3. 2x3)(x3a+P X 5p)
we have directly jx3, X35 maxfx3.;x55011 j. lfnow > 0, X5, X3, = 3)'(3_a+p;'2;axz;b+ - gs"
0 ; ;
and thus jx3a  x %, 22 ix3, §x3. Besidesxda  Fxdpi= xda xZpt (1 P )3
X + X

g
X3a  X3pi+ 1’%%@]1 j which gives a on compact sets.



84

Chapter 6. Transformation into a continuous triangular form

@i

Proof : Assume there exists a non-zero vectorv in R% such that —X(x) v =0 . Chooser > 0 such

that Inequality (6.8)]holds on B (x), the baII centered at x and of radius r. Consider for any integer p
the vector xp in B (x) dened by xp = X 5> JVJv This gives a sequence converging tox when p tends
to in nity. We have
jLg L *h(x) Lg,Li *h(xp)] LHI0) H ()]
X Xpj X Xpj

(6.10)

Hj H . . . . . i
But, W tends to @ii(x)v which by assumption is 0 . Similarly o7 (Lac Ly Th(x)
i1

) @lg, L
L L; *h(xp)) tends to #(x)v which is also 0 according to (6.10).

@x
We conclude that whenH; does not have a full-rank Jacobian, it must satisfy condition [6.9)

to allow the existence of locally Lipschitz triangular functions g;. This condition is in fact about
uniform in nitesimal observability.

De nition 6.3.1.
See [[GKO1, De nition 1.2.1.3]. Consider the system lifted to the tangent bundle ([GKO01,
page 10]) ( (
x = )+ 9gxu ;- y = h(x) (6.11)
v= S+ G2 v w o= Shx)v '

with v in R% and w in R and the solutions of which are denoted(X (x;t;u); V ((x;V); t;u)).
System (6.1) is uniformly instantaneously in nitesimally observable on S if, for any pair
(x;v) in S R% nf0g, any strictly positive number t, and any C* function u de ned on an

interval [0;1), there exists a timet < t such that ggx (x;t;u)) V((x;v); t;u) 6 0 and such
that X (x;s;u) 2S forall s t.

We have the following result.

Theorem 6.3.2.

Suppose that System ) is strongly di erentially observable of orderm (or at least that
Hm is an immersion onS) and that Inequality (6.8) is veri ed at least locally around any
point x in S for any i in f1;:::;mg. Then the system is uniformly in nitesimally observable
onS.

Proof : According to Lemma we have (6.9). Now take x in S and a non-zero vectorv and suppose
that there exists t> Osuch thatfor all tin [0;T), X (;t;u) isin Sandw(t) = SH(X (x;t;u))V ((x;v); t;u) =
0. To simplify the notations, we denote X (t) = X (x;t;u) and V(t) = V((x; v), t;u). For all integer i, we
denote

wi(t) = @lr (X V) :

We note that for any function R"! R, we have

Z—{

7()( (t))V(t)— (X (t))V(t)+ Uk @lgk (X V() :

k=1
We deduce for all integer i and all t in [0; 1)
Wi (1) = wis (1) + X @lgki(x OV :
k=1

Let us show by induction that w;(t) = O for all integer i and all t in [0;t). It is true for i = 1 by

assumption. Now, take an integer i > 1, and supposew;(t) = 0 for all t in [0;t) and all j i,

-e %(X (x;t;u)V((x;v); t;u) =0 for all t < t. In particular, wi(t) = 0 for all t < t. Besides,
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h _
according to , %(X (x;t;u)V((x;v); t;u)=0 forall kinf1;:::;dygand forall t< t. Thus,

i
wis (t) = 0 for all t < t. We conclude that w; is zero on [0;t[ for all i and in particular at time O,
@(*@;‘ (x)v_: ( w1(0);:::;wn (0)) =0 . But Hy is an immersion on S, thus, necessarilyv = 0 and we have
a contradiction.

Example 6.3.2 We go on with Example[6.2.1. The linearization of the dynamics [(6.p) yields

8

T VI = V2

J V2 = x3vi+3x3X1v3 5 W = vg (6.12)
vs = 0

Consider xg = (X1;X2;0) in S and vg = (0;0; v3) with vz a nonzero real number. The solution
to (6.6)-(6.12) initialized at (xo; Vo) and with a constant input u = 1 is such that X (xo;t; u)
remains in S in [0;t) for some strictly positive t and w(t) = 0 for all t in [0;t). Sincevg is
nonzero, System [(6.B) is not uniformly instantaneously in nitesimally observable onS. But,
for System (6.6), H7 is an immersion onS. We deduce from Theorem| 6.3 that Inequality
(6.8) is not satis ed for all i, i-e there does not exist Lipschitz triangular functions g; for all
i on S. This is consistent with the conclusion of Example. However, orf, i-e when we
remove the points wherexs = 0, the system becomes uniformly instantaneously in nitesimally
observable. Indeed, it can easily be checked that fok in S, w= w = w = w® =0, implies
necessarilyv = 0. Unfortunately, from our results, we cannot infer from this that the functions
gi can be taken Lipschitz onS. Nevertheless, the conclusion of Exampl.l is thagiz can be
taken Lipschitz even around points with x; = 0. All this suggests a possible tighter link between
uniform instantaneous in nitesimal observability and Lipschitzness of the triangular form. N

We conclude from this section that uniform instantaneous in nitesimal observability is re-
quired to have the Lipschitzness of the functionsg; when they exist. However, we don't know if
it is su cient yet.

6.4 Back to Example 45 in Chapter 4 []

Consider the system

8

R X1 = X2

J X2 = Xp# X3X1 ;Y = Xp: (6.13)
" X3 = XiXa+ U

It would lead us too far from the main subject of this thesis to study here the solutions behavior
of this system. We note however that, whenu is zero, they evolve in the2-dimensional surface
fx 2 R®:3x2 +3x3+ x§ = c®g. The equilibrium (0;0; x3) being unstable at least forc > 1, we
can hope for the existence of solutions remaining in the compact set

n 0
G = x2R*:x2+x3 ; 32+3x3+x§

for instance whenu is a small periodic time function, except maybe for pairs of inputu and
initial condition (X1;X2; x3) for which resonance could occur. An example is given in Figu@.l.

OnS= x2R3: x3+x360 ,and whateveru is, the knowledge of the functiont 7! y(t) =
X1(x;t) and therefore of its three rst derivatives

y = Xz
y X1+ X3X1
v

X2  5X3X3Xo + X3X2 +5X3X1U
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Figure 6.1: Solution of System [(6.1B) with initial condition x = (1;1;0) and input u =
5sin(t=10).

gives usxi, X2 and xz. Thus, System (6.13) is uniformly instantaneously observable onS.
Besides, the function 0 1
X1

_ X2
Ha(x) = % X1+ X3X1 §

X2 B5X3xFxo + X3

is injective on S and admits the following left inverse, denedon 2 R*: 2+ 260
0 1

2
1 _ 0 h i 11
Hy ()= @( 3+ 1) 1+ (a+ 2)#3j( 3+ 1)b 19%13% 2 2A5 E

75 2
it 2

However, H 4 is not an immersion because of a singularity of its Jacobian axz = 0. So the
drift system is weakly di erentially observable of order 4 on S but not strongly. The reader
may check that it can be transformed into the continuous triangular normal form of dimension4
given by ). The trajectory given in Figure on which the observers presented in Section
[4.5 have been tested are in fact the image by 4 of the solution plotted in Figure p.1]

6.5 Conclusion

Like for strongly di erentially observable systems of order dy, uniform instantaneous observabil-
ity of systems whose drift system is weakly di erentially observable systems of ordem > d,
may still imply the existence of an at least up-to-dy +1 -triangular normal form (6.3} of dimension
m. But
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- we have shown this under the additional assumption that the functionsH  (x) = ( h(x); Lt h(x);:::; L‘f Th(x)

- the functions in the triangular form are possibly non Lipschitz, but only close to points
where the rank of the Jacobian ofH; changes. Anyhow, uniform in nitesimal observability
is necessary to have Lipschitz functions.

- for a non Lipschitz triangular normal form, convergence of the regular high gain observer
may be lost, but, as we saw in Chaptef 4, it is still possible to design asymptotic observers.

Although our result only gives a partial triangular form and with additional assumptions B(i),
we have no counter example showing that uniform instantaneous observability is not su cient
to have a full continuous triangular form. The crucial point would be to prove Lemma[6.2.2
under this weaker condition, which unfortunately we have not managed to do.






Chapter 7

Transformation into a Hurwitz form:
nonlinear Luenberger observers

Chapitre 7  Transformation dans une forme Hurwitz : observateurs de Luen-

berger non linéaires. Dans ce chapitre, nous montrons comment la méthodologie de Luen-
berger s'applique a des systémes non linéaires commandeés, i-e nous étendons ce qui a été fait
dans [APOQOE€] pour les systémes autonomes. Cette méthode consiste a transformer le systéme en
une forme Hurwitz par la résolution d'une EDP. Si cette transformation est injective, un obser-
vateur s'ensuit immédiatement. Le probléme se résume donc a l'existence (et au calcul) d'une
solution injective a une EDP. Nous montrons entre autres que cette EDP admet toujours des
solutions dépendant du temps dont I' injectivité est assurée si le systéme est fortement di éren-
tiellement observable a un certain ordre et que les trajectoires sont bornées. Lorsque le systeme
est seulement distingable en temps rétrograde, nous montrons qu'au moins une des solutions est
injective pour presque tout choix de la matrice Hurwitz. Nous illustrons comment ces solutions
peuvent étre calculées en pratique sur des exemples physiques. En n, nous ajoutons un résultat
concernant la possibilité d'utiliser une transformation stationnaire malgré la présence d'entrées

dans le cas d'un systéme uniformément instantanément observable.
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Consider a general system of the form

x = f(x;u) ; y = h(x;u) (7.2)

wherex is the state in R%, y the measurement inR%, f and h su ciently many times di eren-

tiable functions and u : [0;+1 ) ! R% in U, the set of considered inputs. Recall that we denote
X (x;t;s;u) the value at time s of the solution to System (7.3) with input u, initialized at x at

time t, and Y (x;t;s; u) the corresponding output function at time s.
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In this chapter, we investigate the possibility of transforming System (7.1) into a Hurwitz
formf
—=A +By (7.2)

with A Hurwitz in RY 9 B a vector in RY %, for some strictly positive integer d , i-e for
eachu in U, nd a transformation ET :R% [0:+1)! RY such that for any x in X and any
time t in [0;+1 ),

g;:(x;t)f (x;u(t) + %{(x;t) = AT(x;t)+ Bh(x;u(t)) : (7.3)

Indeed, since the Hurwitz form (7.2) admits a trivial observer made of a copy of its dynamics,
according to Theorem[2.2.], it is su cient that T becomes injective uniformly in time and in
space at least after a certain time to obtain an observer for System (7]1).

We have seen in ChaptetDS that this problem has been solved iri_ [AP06] for autonomous
systems. Our goal is to extend those results to controlled/time-varying systems. Exactly as
we saw for the high gain design in Sectiof 5.2]1, two paths are possible : either we keep the
stationary transformation obtained for some constant value ofu (for instance the drift system
at u 0) and hope the additional terms due to the presence ofi do not prevent convergence,
or we take a time-varying transformation taking into account (implicitly or explicitly) the input
u.

As far as we know, no result concerning this problem exists in the literature apart from
[Eng08,|Eng07] which follows and extends [KEQ3]. The idea pursued in [EngD5] belongs to the
rst path : the transformation is stationary and the input is seen as a disturbance which must
be small enough. Although the construction is extended in a cunning fashion to a larger class
of inputs, namely those which can be considered as output of a linear generator model with
small external input, this approach remains theoretic and restrictive. On the other hand, in
[Eng07], the author rather tries to use a time-varying transformation but its injectivity is proved
only under the so-called " nite-complexity" assumption, originally introduced in [KEQ3] for
autonomous systems. Unfortunately, this property is very restrictive and hard to check. Besides,
no indication about the dimensiond is given and the transformation cannot be computed online
because it depends on the whole past trajectory of the output.

That is why, in this chapter, we endeavor to give results of existence and injectivity of
the transformation under more reasonable observability assumptions and keeping in mind the
practical implementation of this method. We start by exploring the path of a time-varying
transformation in Section [Z.1. We show that the existence of the transformation itself is not a
problem. On the other hand, its injectivity can be ensured by observability assumptions, similar
to those presented in[[APQO6] for autonomous systems. Then, in Secti.2, we show on practical
examples how an explicit expression for such a transformation can be computed. Finally, in Sec-
tion [/.3, we prove that, similarly to Theorem 5.2.7 for a high gain design, uniformly observable
input-a ne systems whose drift system is strongly di erentially observable of order dyx, admit a
Luenberger-type observer built with a stationary transformation.

Notations
1. Sinceh (resp Y) takes values inR%, we denoteh; (respY;) its ith-component.

2. For some integerm, which will be chosen later in the chapter, we consider the dynamic
extension of orderm introduced in De nition §.2.1Jand use the corresponding notations :

1We could have considered a more general Hurwitz form —_= A+ B(y) with B any nonlinear function, but
taking B linear is su cient to obtain satisfactory results.

2The function T depends onu in U and we should write T, as in Theorem[2.2.1. But we drop this too heavy
notation in this chapter to ease the comprehension. What is important is that the target Hurwitz form (7.4), |
namely d , A and B, be the same for all u in U.
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Un = (u;u;u™), —n = ( o::; m), f the extended vector eld
fO6mu™ D)= f(x o) 1oy mou™D
and the extended measurement function
hi(X; "m) = hi(X; o) :

We recall the reader that while —, is an elementR%(m+*1) @ is a function de ned on
[0;+1 ) such that Uny () = (u(s);u(s); :;ulM(s)) isinUy,  R¥(M*D) forall sin [0;+1 ).

For 1 i dy, the successive time derivatives ofY; are related to the Lie derivatives of
h; along the vector elds f, namely forj m
QY

@.S(x;t;s;u): Li hi (X (x;t;s;u); Um(S)) :

7.1 Time-varying transformation

The existence of aC! time-varying solution to PDE ( is achieved thanks to the following
lemma :

Lemma 7.1.1.

Considerd a strictly positive number, A a Hurwitz matrix in RY 9, B a matrix in R9 &
and u an input function in U. The function T denedon S [0;+1 ) by
z t
TOx;t) = . A SIBY (x;t;s;u)ds (7.4)

is a C! solution to PDE (F.3).

Proof : First, forany uin U, and any sin [0;+1 ), (x;t) 7! Y(X;t;s;u) = h(X (x;t;s;u);s) is C?, thus
T%isC!. Take x in Sandtin [0;+1 ). Forany in R,

X(X(xtt+ ;u)t+ ;s;u)= X(x;t;s;u):

Therefore,
Z.,
TOX (x;t;t+ su)t+ ) = " IBh(X (x;t;s;u);u(s))ds
0 Z.,
- & Tty + e et IBh(X (xt;s;u);u(s))ds
t
and
0 . ) . Ofy-
TOX Ot t+ u)it+ ) TO0xt) uTo(x;t)
Z.,
+& e IBh(X (x;t;s;u);u(s))ds

t

Making tend to O, we get PDE ([.3).

Note that extending directly what is done in [KEO3| APO6] would rather lead us to the
solution 7

t
T (x;t) = e SBY (x;t;s;u)ds :
1

The drawback is that some assumptions about the growth ofY have to be made to ensure
its continuity, unless Y is bounded backward in time. As for the C! property, and even if
the solutions are bounded backward in time, it is achieved only if the eigenvalues oA are
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su ciently negative. In fact, it is not absolutely needed that the solution be C?*, one could look
for continuous solutions to

L nT(xt) = AT (x;t) + Bh(x;u(t))

as de ned in Theorem[2.2.] instead of PDE [(7.B). The major disadvantage of this solution
is rather that T! is not easily computable since it depends on the values aff on (1 ;t].
Nevertheless, it may still be useful. For example, that is the solution chosen in [PPOQ08] for the
speci ¢ application of a permanent synchronous motor, where it is proved to be injective.

Unlike T1 , T® depends only on the values of the inputi on [0; t]. Therefore, it is theoretically
computable online. However, for each couplé€x;t), one would need to integrate backwards the
dynamics ) until time 0, which is quite heavy. If the input u is known in advance (for instance
u(t) = t) it can also be computed o ine. We will see in Section[7.2 on practical examples how
we can nd a solution to PDE ( in practice, without relying on the expression TP.

We conclude that a C! time-varying transformation into a Hurwitz form always exists, but
the core of the problem is to ensure its injectivity.

7.1.1 Injectivity with strong di erential observability

Assumptions

There exists a subsetS of R% such that :

1. Forany uin U, any x in S and any time t in [0;+1 ), X(X;t;s;u) isin S for all sin
[0;+1).

2. The quantity
f
M¢ = sup g)gx; 0)

x2S
02U
is nite.
3. There existdy integers (my;:::;mg, ) such that the functions
Hi(6 m) = hi06 “m)sLehiC Tm)s 2L thi(X; ) (7.5)
denedonS R%M*D with m=max;m;and1 i dy verify :

- for all uin U, Hi(;um(0))) is Lipschitz on S.
- there existsLy such that the function

HOG Tm) = Ha( ™m)s cin s Hi(6 Tm)s oo s Hay (X "m) (7.6)
veri es for any (x1;x2) in S? and any " in Up,
X1 X2j  LujH(X2;7m)  H(X2;"m)i
namely H is Lipschitz-injective on S, uniformly with respect to —, in Up,.
4. Foralll i dy,there existsL; such that for all (x1;x2) in S2 and for all =, in Upy,
JLIhi(x;7m)  LMhi(x2s Tm)j Lijxa X2

namely Lfrni hi(;~m) is Lipschitz on S, uniformly with respect to —p, in Up,.
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We have the following result.

Theorem 7.1.1.

Suppose Assumption$ [[{2]8}4 are satis ed. Consider Hurwitz matriced; in R™ ™, with m;
de ned in Assumption E] and vectors B; in R™ such that the pairs (A;; Bj) are controllable.
There exists a strictly positive real number k such that for all k  k, for all input u in U,
there existsiy,, such that any C* solution T to PDE ( onS [0;+1) with

P
-d = |d;l1 mi
-AinRY 9 andB in RY % dened by

0 1
kA1

0
A= kAi Bza Bi

kAg, Bq

y

- T(;0) Lipschitz on S

is such that T( ;t) is injective on S for all t  ty.,, uniformly in time and in space. More
precisely, there exists a constantL x such that for any (x1;x2) in S2, any u in U and any time
t fk;u

X1 X2)  LejT(xyt)  T(xzt)j:

Besides, for anyt  ty.y, T(;t) is an injective immersion onS.

Note that the additional assumption "T( ;0) Lipschitz on S" is not very restrictive because
the solution T can usually be chosen arbitrarily at initial time 0 (see examples in Secti02).
In particular, the elementary solution T° found in Lemma 1 is zero at time 0 and thus clearly
veri es this assumption.

Proof : Given the form of the matrices A and B, we have

Txt)= To(xt); i Ti(xt); o0 Ta, (X 1) (7.7)

with a7 @7

@(x;t)f(x;u(t))+ @(x;t): kKA; Ti(x;t) + Bi hi(x;u(t)) : (7.8)
Take uin U, iin f1;:::;dyg, x in Sand t in [0;+1 ). According to PDE (, T satis es for all s in
[0;+1),

%Ti(x(x;t;s;U);s)= KA Ti(X (x;t;s;u);8) + BiYi(xt;s;u)
Integrating between t and s, it follows that

Z S
TI(X(xt;s;u);s)= €Ais V) Ti(X(x;tZ;t;u);t?+ A B Yi(x:t; ;u)d
t

| {

Ti(xt)

and thus, Z,
Ti(xt)= 4 I T(X(xtisiu)s)+ €4 IBY(xt; su)d
applying this inequality at s =0, we get s
Ti(t) = T Ti(X (x;t;0;u); 0) + T2(x;t)
where T? is such that T° de ned in (-4) is

To(xt) = TPOGt) i To(xt)s i TS (xt)
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But after m; successive integration by parts in (7.4), we get,
To(xt)= A ™ G Ki Hi(x; Un (1))

+A; MM IGK HI(X (x:150:U); U (0)) + k%Ai "Ri(Xt)
whereK; = diag # ; :::; @ ., G is the invertible controllability matrix
G =[A" 'Bi; ::i; AiBi; Bil;
Hi(x; “m) is de ned in ({.5), and R; is the remainder :
ZI
Ri(gt)= 1 IB LM hi (X(x:t; ;u);Um( ))d
0

We nally deduce that

Tict)= A, M GK O Hi(GTn () + K; 'C b et (X (xt;0;u);0) + kiRi(x;t)

with i(x;t) = AT Ti(xt) + CKi Hi(X U (1)) :

Let us now considerx; and xz in S, and tin [0; +1 ). We are interested in the quantity jT(x1;t) T(X2;t)j,
and thus in jTi(x1;t)  Ti(X2;t)j.

Thanks to Assumption E]for any (x1;X2)in S, and (t; )in [0;+1 )2, we have (see for instance [RM82])
X (xaits 5u) X(xarts sw)i €' Uik xoj (7.9)

By assumption T;( ;0) and H;( ;Un (0))) are Lipschitz on S, thus there exists L , such that

j (X (x1;t;0;u);0) i(X(x2;t;0;u);0)j L | e"ilixs  Xoj:
Then, A; being Hurwitz, there exists strictly positive numbers a; and ; (see [RM8Z]) such that for all
in [0;t]

ekAi(t s) e kaj(t s) : (7.10)

Using Assumption Hand inequalities (f.9) and (7.10), we deduce that if k > M—f,

ai
Z, o
. i v . . (kaj Mg)(t ) . . I—i]BiJi . -
jRi(x1;t)  Ri(xz2;t)j LijBij i e d jx1 X2 ———jx1 Xzj:
0 kai Mf
We nally deduce that
Tt Tt ) AL™GKGG j O HI K CIC T @M o) R
A "G . . . . . .
JIIT'J P OHi K™C Y L e KA MOty i
. 1. L|]B|] - .
1 G k& My X1 Xz
where Hj, i and R; denote the dierence of the functions Hi( ;Un(t)), i(X(;t;0;u);0) and

Ri(;t) respectively, evaluated at x; and Xx». It follows (by norm equivalence), that there exists a

constant ¢ such that

mini(in mi Cij) h
m

jT(x1;t) T(xz;t)j c K

JH(X1;Um (1)) H(X2;Um (1)]

X ! Py 1 ! #
- P Li G YiBij .
mi i~ 1 ‘ (ka My)t i=1 !
i1 e te * ka My ol
mini QA TGP L ymg e o L
Tk L oke “a wm,

where m a, ¢, ¢; are constants independent from k and t de ned by

xXp xP
m=maxm; ; a=miha ; C = G YL, = Li 4iC liiBij
I : i=1 i=1
We deduce that for
|n(4kmC1LH) .

1
k —(Ms +4cL ;o
a( f cLw) ka M,
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we have ‘
min; (jA, " Gij) 1
km 2Ly

JT(x1;t)  T(xz5t)) ¢ X1 X2

km
" emini (A, ™ Gij)
and T( ;t) is injective on S, uniformly in time. We conclude that the result holds with

X1 X2j 2L JT(X1;t)  T(xz2;t)j (7.11)

k™ i In(4km ClLH) i

_ 1 _
k= =(Ms +4c,L Lk =2Ly —mM8M8M tky = mMax ;0
a M racln) “T TN Cmini (A, ™ Ci) K ka My

SinceM;, Ly and L; (and thus c) are independent from u, k and L are the same for all u in U, while
tku depends onu through L .

Now, take any x in Sandt tx, . For any v and any h such that x + hv is in S, we have

JT(x+ hvit)  T(xt)]
jhj

Ljvj

and by letting h go to 0, we get
L. @T . :
Lkjvj @X(x,t)v :

Hence, T( ;t) is an immersion on S.

Applying successively Lemma 7.1]1, Theoreni 7.1l1 and Theorefn 2.2.1, we conclude that
under Assumptions[2,[3[4, it is possible to write an observer for systen{ (7]1) by choosing any
(Aji; Bj) controllable and k su ciently large.

Remark 6 It is important to note that k does not dependent oru, thanks to the fact that Ly,
Ms and L; given by Assumptions@@ﬂl are the same for alty, in Uy,. However, the time iy,
after which the solution becomes injective a priori depends ork and u. This is not a problem
in practice since we only want to be sure that fork su ciently large, any solution will become
injective after a certain time. If we want this time ty., to be uniform in u, the Lipschitz constants
of Hi(;un(0))) and of T( ;0) must be the same for allu in U.

Remark 7 If we choosem = max; m; su ciently large distinct strictly positive real numbers

j,and take Aj = diag 1;:::; m;) and B; =(1;:::;1)”, then, the PDEs to solve are simply
@T; @T
@"X(x;t)f (x;u(t) + @"t (xt)= T, (xt)+ hi(x;u(t)) (7.12)
foreachl i dyand inf 4;:::; m 0. Then, one take
TXt)= T 40057 m 0T nds i T m gy iy
Remark 8 Under Assumption[3{4, the sysiem could also be transformed into a Lipschitz phase-
. . . o dy ‘ . . .
variable form of dimensiondy, max; m; iZ1 m; according to Theorem and a high gain

observer could be used. If we wanted to use onlyn; derivatives for each input and obtain an
observer of same dimension idil mj, eacthTi h would have to satisfy an additional triangularity
assumption. But in any case, the crucial di erence with the Luenberger observer presented in
this chapter is that the latter does not require the computation of the derivatives of the input
(see examples in Sectiof 7]2).

In order to check the assumptions of Theorenj 7.1]1 more easily in practical cases, we have
the following result :
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Lemma 7.1.2.

Assume that S is compact and there existd, integers (mg;::;;mg,) such that Uy with

m = max; m; is compact and for any ", in Um, H(; m) dened in (F.6) is an injective
immersiorf|on S. Then, Assumptions[2,[3,[4 are satis ed.

In other words, since the additional assumption T( ;0) Lipschitz on S" made in Theorem
[7.1.7 is automatically veri ed when S is compact, the result of Theorem[7.1.]l holds under the
only assumptions of Lemmd 7.1.R ifS satis es Assumption [1].

Proof : First, S and U, being compact, Assumptions@ and@ are satised. Besides, Hi( ;Um (0)) is

clearly Lipschitz on S. The only thing to prove is the uniform Lipschitz-injectivity of  H, which follows
directly from Lemma A.35]

7.1.2 Injectivity with backward distinguishability ?

In the previous section, we have shown that nding an injective transformation into an Hurwitz
form was possible under a strong di erential observability property, namely that the function
made of each output and a certain number of its derivatives was an injective immersion. We
investigate in this section if injectivity is still ensured when we have only a weak di erential
observability or even only backward-distinguishability as in [AP0O6, Theorem 3] for autonomous
systems (recalled in Section 5.1]2).

Theorem 7.1.2.

Take u in U. Assume that for this input, System @) is backward-distinguishable in time
tuonsS, i-eforanyt T, and any (xa;xp) in S?,

Y(Xatis;u) = Y(Xpt;s;u) 8s2 [t tyit] =) Xa=Xp:

“*lnRwith = f 2C;<()<0g andanyt T, the function T° de ned in (7.4) with
-AiInRY 9 andB in RY % de ned by

0 1 0 1
A B
A= A ;o B = a B
A B
and 0 1 0,1
1 1
A= % ﬁ , B = Eb : E ;
dy+1 1
is such that TO( ;t) is injective on S for t > T,.
Proof : Letus denefor in C, the function T°:S R* ! CY%
Z t
TOx;t) = e " Iv(xt;s;u)ds: (7.13)

0

3H (;~m) is injective on S and %(x; “m) is full-rank for any x in S
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Given the structure of A and B, and with a permutations of the components,

We need to prove that T? is injective for almostall ( 1;:::; a,+1)in  %*! (in the sense of the Lebesgue
measure). For that, we de ne the function

T(Xa;Xpt, )= TO(Xait)  TOo(xp;t)

on with
= f(Xa;Xp;t)2S? (fu;+1) : Xa 6 Xpg:

We are going to use the following lemma whose proo[] can be found in [AP06]:

Lemma 7.1.3. Coron's lemma

Let and be open sets ofC and R?%*! respectively. Let T : I C% be a function which
is holomorphic in  forall x in and C'in x forall in . If forany (x; ) in such that
T(x; )=0, there existsi in f1;:::;dyg and k > 0 such that @@ kTi (x; ) 60, then the set
[ dy +1
R = (13000 aee1)2 & DT (X; )= i = 0 T(X; de+1)=0
x2
has zero Lebesgue measure ifC%** .

In our case, T is clearly holomorphic in and C! in x. Since for everyx in , 7! T(x; ) is

holomorphic on the connex set C, its zeros are isolated and admit a nite multiplicity, unless it is
identically zero on C. In the latter case, we have in particular for any ! in R

Z.,
e" g()d =0
1

with g the function

()= Y(Xa;t;t ;u) Y(xpit;t o osu) ;o if 2[0;1]
9 )= 0 :  otherwise

which is in L2. Thus, the Fourier transform of g is identically zero and we deduce that necessarily
Y (Xa;t;t iu) Y (Xp:t;t ;u)=0
for almost all  in [0;t] and thus for all  in [O;t] by continuity. Since t ty, it follows from the

backward-distinguishability that xa = Xxp, but this is impossible because (Xa;Xp;t) isin . We conclude
that 7! T(x; ) is not identically zero on C and the assumptions of the lemma are satis ed. Thus,

Remark 9 The function T proposed by Theoren] 7.1.p takes complex values. To remain in the
real frame, one should consider the transformation made of its real and imaginary parts, and

W= T Yi

in C, one should implement

A< () =() A yi
i =() < () 7

in R. Thus, the dimension of the observeri2 dy, (dx +1) in terms of real variables.

“More precisely, the result proved in [BP06] is for  open set of R?% instead of R?%**1 | But the proof turns
out to be still valid with R2%*! because the only constraint is that the dimension of  be strictly less than
2d +1).



98 Chapter 7. Transformation into a Hurwitz form

Remark 10 It should be noted that Theorem gives for eachu in U a set Ry of zero
measure in which not to choose the i, but unfortunately, there is no guarantee that Ry is

u2u
also of zero-Lebesgue measure.

Remark 11 Unlike Theorem|7.1.1 which proved the injectivity of any solution T to PDE (,
Theorem|7.1.2 proves only the injectivity of T?. Note though that as shown at the beginning of
the proof of Theorem[7.1.], any solutionT writes

T(x;t) = M T(X(x;t;0;u);0) + TOx;1)

with A Hurwitz, and thus tends to the injective function T°. We can thus expectT to become
injective after a certain time. In fact, a way of ensuring the injectivity is to take, if possible, a
solution T with the boundary condition

T(x;0)=0 8x2S;
because in that case, necessarily, = TO.

We conclude from this section that there always exists a time-varying solution to PDE )
which is injective under appropriate observability assumptions. It follows that the only remaining
problem to address is the computation of such a solution without relying on the expressior{ (7]4).
This is done in the following section through practical examples.

7.2 Examples

7.2.1 Permanent Magnet Synchronous Motor (PMSM)

A rst practical example which falls directly into the scope of this paper is the Luenberger
observer presented in[[HMP12] for a PMSM. We reproduce here the minimal information needed
for comprehension, and we add the theoretical arguments which are not given in [HMP12]. The
system can be modeled by

x=u Ri ; y=jx Lij? ?=0 (7.14)

where x is in R?, the voltagesu and currentsi are inputs in R?, the resistanceR, impedancelL
and ux are known scalar parameters and the measuremernt is constantly zero. Heredy =1,
so we can drop the subscripti. Since the dynamics are linear and the measurement quadratic
in X, one can look forT of the form :

T (x;t)= jxj2+a (t)”x+ b ()

where the dynamics ofa and b are to be chosen so thafl is solution of PDE (7.19). We can
check that the dynamics

a = a 2(u Ri)+2Li
b = b a(u Ri)+ L%ij? ?2 (7.15)
make T follow the dynamics
- = + y=
and a trivial solution is thus = 0. Let us now check whether the assumptions of Theorem

. A |
7.1.1 are veried. We suppose thati, i, i and u, u are bounded, so that the statex also

remains bounded (sincey = 0). Choosingm = 3, we have
0 1
jx Lij? 2
Z
HeuiwftH=8 2rx ) K
2>(x Li)+2 ~
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where we denote = u Ri + ini. Thus, if we suppose besides that there exists > 0 such
that the inputs verify jdet(; )j c, every assumption of Lemmd 7.1} is satis ed. In fact, the
inputs happen to be such thaﬁ det( ; )= w3 2, where! is the rotor angular velocity. We
conclude that all the conditions are veri ed when the inputs and their derivatives are bounded
and the rotor angular velocity is away from zero.

Applying Theorem [7.1.7], it follows that for any three distinct and su ciently large strictly
positive j, the function

TGt)=(T (1), T ,(xt); T ,(xt))

becomes injective after a certain time (once the lters ) have su ciently converged). Imple-
menting (7.15) for each j, one can obtain after a certain time an estimate® of x(t) for instance
by : . |

2(t) = a 1(t)z a 3(t): b,(t) b,(t)

a,(t)> a,() b,(t) b,(t)

Note that for this system, a classical gradient observer of smaller dimension exists| ([LHN1Q,
MPH12]). The Luenberger observer proposed here o ers the advantage of depending only on
Itered versions of u and i, which can be useful in presence of signi cant noise. On the other
hand, no high gain design would have been possible for this system without computing the
derivatives of i, which is not desirable in practice.

7.2.2 Non-holomic vehicle

Another appropriate example is the celebrated non-holomic vehicle with dynamics
8

2 X3 = uzcosiKs)
o X2 = uisin(xa) ;Y =(X1;X2) (7.16)
©oX3 = Uuz

where the inputs u; and u, correspond to the norm of vehicle velocity and the orientation of
the front steering wheels respectively. A wide literature already exists on this system, and our
goal here is only to show on another example how to solve PDH (7.12) for each component of
the measurement. The dynamics and measurements being linear iRy, X2, cosiKs), sin(Xs),

it is quite natural to look for a function T linear in those quantities. Besides,x; and x, are
independent so we look forT. ; and T. ,, associated to measuremenk; and X respectively, of
the form :

T;a(x;t) a (t)x1+ b (t)cosxs) + ¢ (t)sin(xs)
T.2(x;t) = -a (t)xz+ b (t)cosxz) + € (t)sin(xz) :

By straightforward computations, we conclude that to satisfy PDE ([/.12), we can take :

1
a=-a=-,; b= ¢ ; e=d
1
h = b uiusc  —uUp
c = C + uuzb : (7.17)
Then, T.1 and T. , are solutions of
-1 = 1t X1

5 = Ccs)lsn , with  the motor angle, and ! = _ See Chapter for more information on this

system.
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respectively. Besides, computing the successive derivatives of the measuremefitg; x,), we can
see thatH1 and H, are injective immersions at the orderm if at least u; or one of its rst m 2
derivatives is nonzero. Therefore, if the state, the inputsus, u, and their derivatives remain in
compact sets, and if there exist an integetm 2 and a real numberc > 0 such that for all t
and all considered input u,

ur()2+ up )2+ i+ u™ 2?2 ¢

then all the assumptions in Lemmg7.1.2 are veri ed withm1 = my = m. Therefore, by choosing
m strictly positive distinct real numbers ;, the function

TG =(T o), on T a(t); Toalxt); s T2 t))

becomes injective after a certain time. Implementing (7.1}) (7.18) for each j, we thus get an
observer of dimensiordm.

7.2.3 A time-varying transformation for an autonomous system ?

It was observed in [AndQ5, Section 8.4] that it is sometimes useful to allow the transformation
to be time-varying even for an autonomous system. Only results concerning stationary transfor-
mations were available at the time, so that the framework of dynamic extensions had to be used.
This is no longer necessary thanks to Theorems 7.1.2 arjd 7.1.1. Indeed, consider for instance
the system (

x1 = X3

Xy = X1 ;Y= X1 (7.19)

which admits bounded trajectories, the quantity x7 + x5 being constant along the trajectories.
This system is weakly di erentially observable of order 2 onR? sincex 7! Ha(x) = ( X1;X3)

is injective on R?. It is thus a fortiori instantaneously backward-distinguishable and Theorem

[5.1.3 holds. Applying Luenberger's methodology to this system would thus bring us to look for
a stationary transformation T into

— + X1 ; (720)

for which a possible solution is
Zog
T (x) = e Y(x; )d :
1

Although the injectivity of T = (T ;T ,;T ,) is satis ed for a generic choice of( 1; 2; 3) in
f 2C : <()> 0g®according to Theorem, it is di cult to compute numerically and as
far as we are concerned, we are not able to nd an explicit expression.

Instead, it may be easier to look for a time-varying transformation and apply either Theorem
[7.1.7 or[7.1.2. Given the structure of the dynamics, one can try to look for a transformation of
the form

T (xt)=a ()x3+ b ()xZ+ ¢ (hx2+ d (t)xy + e (1) : (7.21)
It veri es the dynamics (}.20) if for instance

+d
+3ay
+2by
+1
+Cy

I 20 7@
1l
O QO O T Q©
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Using Remark[11 and applying Theoren| 7.12, we know that, by initializing the lters a , b,
c,d ande atOattime O, x 7! (T ,(x;t); T ,(x;t); T ,(x;t)) is injective on R? for t > 0 and
for a generic choice of 1; 2; 3)inf 2C : <()> 0g’.

To reduce the dimension of the lters, we can taked (t) = % and a (t) = 5. In that case
Theorem cannot be properly applied becaus& is not T°. However, we have found at
least in simulations that injectivity is preserved after a certain time as shown in Figure[7.].

Figure 7.1: Nonlinear Luenberger observer for Systenf (7.19) : dynamic$ (7.R0) and transforma-
tions (7.21) (with d (t)= L anda ()= &) for 1=5, =6, 3=7. The transformation is
inverted by searching numerically the common roots of two polynomials of order 3.

Note that since the system is strongly di erentially observable of order 4 onS = f(x1;X2) 2
R? : x2+ x3 6 0g, i-e Hy4 is an injective immersion on S, Theorem|7.1.] also says that, for
any compact subsetC of S, by choosing 4 su ciently large real strictly positive numbers ,
and for any initial conditions for the lters, x 7! (T ,(x;t); T ,(x;t); T ,(x;t); T ,(x;t)) becomes
injective on C after some time.

7.3 Stationary transformation ?

We have just seen that a time-varying transformation could be used for an autonomous system.
We investigate here the converse, i-e if a stationary transformation can be used for time-varying
systems. Consider a control-a ne single-output system

x=f(xX)+gx)u ; y=h(x)2R (7.22)

In the high gain framework, we saw with Theorem [5.2.2) that if System[7.22 is uniformly
instantaneously observable and its drift dynamics are di erentially observable of orderdy, it
is possible to keep the stationary transformation associated to the drift autonomous system,
because the additional terms resulting from the presence of inputs are triangular and do not
prevent the convergence of the observer. It turns out that, inspired from [APO6, Theorem 5],
an equivalent result exists in the Luenberger framework.

Theorem 7.3.1.
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Assume that System [7.22) is uniformly instantaneously observab§on S and its drift system
is strongly di erentially observable[] of order dy on S. Then, for any positive real number T,
any bounded open subsetX, X°and X %of R%, and any C! function :R% ! R such
that

-el(X) X % (X9 X 9 ¢ (X% s,

- forany uin U, for all t in [0;+1 ) and for all xgp in Xg, ju(t)] T and X (Xg;t;u) is in
X,

1 ifx2cl (X9
- (0= 0 ; ifx2x0

there exists a strictly positive number k such that for any k > k :

- the function T : R% | R% de ned by

ZO
T(x) = e A Bh(X(x; ))d
1

where X (x; ) denotes the value at time of the solution initialized at x at time 0 of
the modi ed autonomous drift system

x= ()f(x);

is a di eomorphism on X %and is solution to the PDE associated to the drift dynamics

g;rgx)f (x)= KAT(X)+ Bh(x) 8x2X?9: (7.23)

- there exists a Lipschitz function ~ de ned on R% verifying
T
~(T(x)) = @X(x)g(x) 8x 2 X9, (7.24)
@
and such that, for any function T : R% | R% verifying
T(T(x)=x  8x2XPY;

the system
2= kA+By+Nu ; 2=T" (7.25)

is an observer for Systenj 7.22 initialized inXo.

Remark 12 The function *~ is de ned on the open setT(X9 by ). If the trajectories of
the observer state " remain in this set, there is no need to extend its domain of de nition to
the whole R%. Otherwise, the only constraint is that the global Lipschitz constant a of the
extension be such thatk minj ;j > at, to ensure the convergence of the observer. In the proof
below, it is proved that such extensions exist fork su ciently large (this is not trivial because
a could a priori depend onk).

Otherwise, instead of extending™ outside T(X Y, one could take

o @T
)= @ Nem)

5See De nition £.2.1
“See De nition 5.2.2
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but the way T is de ned outside T (X) must be such that :

AM

9> 0:8k k;8"2R%;8x2X:jT(x) T(T(Yji iTx 7:
The constraint here is that must be independent fromk. For instance, the function

T()= Argmingy o T(X) ]

clearly works since
T TTNi i TX) AJ+|'A T&T(“));:

I T

Another more regular candidate is the McShane extension

TO=mnx+iTe0

which also veri es the requirement.

Proof : According to [Bnd14] Proposition 3.3], there exists ko such that for all k ko, T is C! and
veri es PDE (7.23). Now let us prove that it is injective on cl (X9 for k su ciently large [ﬂ The drift
system being strongly di erentially observable of order dy, the function

is an injective immersion on cl (X°) and by Lemma [A.3.5] there exists Ly > 0 such that for all (Xa; Xb)?
in cl (X9?2,
jHay(Xa)  Hao(Xp)j LujXa Xpj:

Besides, sincef = f on cl (X9, after several integrations by parts, we obtain for all x in cl (X9

TO)= A %C KHa(0+ 5-RK) (7.26)
where K = diag &;:; k%x , C is the invertible controllability matrix
C=[A% 'B::ABB];
and R the remainder Z,

R(x)= C ! e " BLO(X(x )d :
1

This latter integral makes sense on cl (X9 because :

-A being diagonal and denotinga=min;j ij> 0,forall 2 (1 ;0]

e kA ekal

-By de nition of the function , for all x in cl (X%, X(x; ) is in cl (X% for all ,ie 7!
L% (X (x; )) is bounded.

So now taking (xa;Xp) in ¢l (X %2, and considering the dierence jT(xa) T(Xp)j, from (, we obtain
jA

dxCj . - N
T(lde (Xa) Ha,(Xp)j ] R(Xxa) R(xb)j) ;

and if R is Lipschitz with Lipschitz constant Lg, we get

T(xa)  T(Xp)j

A % Cj . )
JKTJ(LH Lr)jXa Xpj:

In order to deduce the injectivity of T, we also needLr <L 4 and we are going to prove that this is
true for k su ciently large. To compute Lg, let us nd a bound of %‘(x) . By de ning

@t*h

max B——
x2 ¢l (X 0) @x

jT(xa) T(xb)j

Co = x) 1=x2(rgléa(>><<o) %f)gx) ;

8This proof is similar to that of [AP06, Theorem 4.
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: _ @L*h
we have forall in (1 ;0]and all x in cl (X9, BW(X x; ) Co an
e .. 1.
@(x, ) e : (7.27)

We conclude that for k > -, R is C* and there exists a positive constant ¢; such that for all x in ¢l (X9,

a
Z, q
*h
e kA @l

@ . 1. ) [C. % c
Gw 1 B gy (X( ) B )d
We nally obtain
iT(Xa) T(Xb)j LtiXa Xbj 8(Xa;Xp) 2 cl (X9? (7.28)
where g
_ A ™Cj G .
Lt = @ bv @ .
and T is injective on cl (X9 if k ki with
(0]
Ki=max Ko & ibn
alLny

Moreover, taking x in X% any v in R™ and h su ciently small for x + hv to be in X? it follows from

that
T(x+ hv) T(x)

h Lrivj;
and making h tend to zero, we get
@T, L
v L

and T is full-rank on X% SoT is a di eomorphism on X°for k  ki.

Now, let us show that System ([.25) is an observer for System (7.22). Suppose for the time being that
we have shown that there exists a strictly positive number a such that for any k ki, there exists a
function "~ such that (F.24) holds and

i 0N ai” j 8t )2 (RM): (7.29)
Take u in U, o in Xo "o in R%, and consider the solution X (xo;t;u) of System (7.22) and any corre-

sponding solution /( Ao;t;u;yxo) of System ). Since X (Xo; t;u) remains in X by assumption, the
error e(t) = T "0;t;U;yxe)  T(X (Xo;t;u)) veries

e=kAe+ (T oitiuyx) (T(X(xoitiw) u
and thus 24
ee 2(ka ame e:
Dening kz = maxfki; &g, we conclude that e asymptotically converges to 0 if k  ka. Note that
for this conclusion to hold, it is crucial to have a independent from k. Now, consider an open setX
such that ¢l (X) X ¢l (X) X % Since T(X (xo;t;u)) remains in T(X) and cl (T(X)) = T(cl (X))
is contained in the open set T(X), there exists a time t such that for all t T, } "o;t;u;yxo) is in
T(X). T =T 'is C! on the compact set cl (T(X)) and thus Lipschitz on that set. It follows that
X ((xo0; 0); t;u) = T(T ";t;u;yx,)) converges toX (xo;t; u).
It remains to show the existence of the functions . Since System ) is uniformly instantaneously
observable and its drift system is strongly di erentially observable of order dx on S, we know since

Lol *h(x) = gi(h(x);:::;L; *(x)) 8x2cl(X): (7.30)
Consider the function
. _ @T
(x) = @X(X)QC()X)

1
A dcB ok @o g0+ i@R(X)Q(X)§ :
% @ ) (G

"H(X) "R(X)

°Because ()= & (x; ) follows the ODE $-( )= Z(X(x; ) ( ),and (0)= 1.
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Let us rst study ' w. Notice that the ith-componentof 'y is' wi = k—liLgLif *h(x) and according to
([7.30), there exists L; such that
Xi
o . ; 1 51 i1 ) 2
I"wi (R) " (X)) L w b &) L T 80 R) 2 el (X)
j=1

and thus L such that
PR W] LKHG (8) KHa, ()] 8(x:8) 2 cl(X)?:
But using (.26), we get
KHa, (]) KHa (] | A%C HiTR) T)j+ (G- iR®) R} 8(x8) 2cl (X)*:

We have seen that

RE) ROO] —=—J& xi 8(%)2 ¢l (X)’
1
and according to (7-28),
1. . = . ; .
@ IR®) ROOT A% C iT(R) T 806#) 2ol (X)*:

ka 1

We nally obtain, for any (x;®) in cl (X)? and for any k ki,

C1

FHE W] LA%C Y 1 g JT(R) T(X)]
H ka 1
LA%C 5 1+ —%  iT®) T :
j ] +LH(k1a D iT®)  TX)J
Let us now study the term ' r(x). For (x; %) in cl (X)2,
ZO
"R(R) RO = kdlxc Y e B(Du(x & )+ Da(xi & )+ Ds(x; % ))d
1
where |
. @&h . @h @
Di(x;% ) = @x (X% ) @x X% ) @(%, )9(R)
ey L @Eh @ @K,
D2(x; % ) = @x (X% ) @k, ) @(x, ) 9(®)
@ h
Dsix ) = oot xos ) Lo e o)

Assuming that L?X his C? and g is C?, it follows from ( and the fact that X (x; ) is in the compact
setcl (X9 forall in (1 ;0] that for all (x;%)in cl(X)?andforall in (1 ;0]

21

iD1(X; %5 )] ce xR

iDs(x; %, )j cze ' jx  Rj:
As for D, posing' () = %(k; ) %(x; ), and di erentiating ' with respect to time, we get

(@

@(X; ) (7.31)

v - o y- @F o W LA @f . ..
©@=0 ; ()= @X(X & N )+ @éx (%)) @)gx x )
Since forall in (1 ;0] and for all (x; %) in cl (X)?,

@, .
@x’

) e’

Xy x

and of of
=i . = . 1 i
@X(X (% ) @}X (x; ) ce 'ijx  Rj;
we obtain by solving (F.31) in negative time and taking the norm

iD2(%;x; )i cse ' +ce 2t jx R ce?lijx R
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forall in (1 ;0]andall (x;%) in cl (X)2. Therefore, for all k ki,

Co
. . ka 1 . . Cg . .,
x R T TR —=——iT(X) T(&)i:
1 Ly rcl 1 Ly (kla 1)

Cs

N , 1
i R(%R) R (X)] ko ka

Finally, there exists a constant a such that for all k ki, and for all (x; ®) in cl (X)?,
&) X ajT(®) T(x)j: (7.32)

Consider now the function

()= (T ()
de ned on T(X9. According to (, “~is Lipschitz on T (X9, and with Kirszbraun-Valentine Theorem
[Kir34] Val45], it admits a Lipschitz extension on R% with same Lipschitz constant a, i-e such that

and hold. This concludes the proof.

7.4 Conclusion

We have shown how a Luenberger methodology can be applied to nonlinear controlled systems.
It is based on the resolution of a PDE, the solutions of which exist, transform the system into
a linear asymptotically stable one, and become injective after a certain time. This injectivity is
ensured if

- either the function made of the output and a certain number of its derivatives is Lipschitz-
injective : this is veri ed when the system is strongly di erentially observable and the
trajectories are bounded.

- or the system is backward-distinguishable (uniformly in time), but in this case, injectivity
is ensured for "almost all" choice of a diagonal complex matrixA (of su ciently large
dimension) in the sense of the Lebesgue measure

This methodology relies on nding a time-varying solution to a PDE, which always exists but
may be di cult to compute. We have shown on practical examples how this can be done by a
priori guessing its "structure”.

Also, it is interesting to remember that as in the high gain paradigm, for uniformly instanta-
neously observable control-a ne systems, we may use the stationary transformation associated
to the autonomous drift system when it is strongly di erentially observable of order dy. The
result does not stand for higher orders of di erential observability, since it relies on the existence
of Lipschitz functions g; such that gi(Hi(x)) = LgL; 1(x), and we have seen in Chaptef |6 that
the Lipschitzness is lost when the drift system is di erentially observable of higher order.
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Chapter 8

Motivation and problem statement

Chapitre 8 Motivation et énoncé du probleme. Les Parties[lHlTjmontrent que I'on peut
sous certaines conditions construire un observateur pour un systéme non linéaire en transfor-
mant sa dynamique en une forme favorable pour laquelle un observateur global est connu. Il
s'ensuit que la dynamique du systéme et celle de l'observateur ne sont pas exprimées dans les
mémes coordonnées et évoluent méme souvent dans des espaces de dimension di érente. An
d'obtenir une estimée de I'état du systéme, il est alors nécessaire d'inverser la transformation.
Or, cette opération peut se révéler compliquée en pratique, notamment lorsqu'une expression
explicite de l'inverse n'est pas connue, car elle repose alors sur la résolution d'un probléme de
minimisation couteux en calculs. C'est pour cette raison que nous avons développé une méthode
permettant de ramener la dynamique de l'observateur dans les coordonnées initiales du systeme
a n d'éviter l'inversion de la transformation. Dans ce chapitre, nous motivons cette démarche a
l'aide d'exemples et donnons une premiére condition su sante pour résoudre ce probléeme dans
le cas ou la transformation est stationnaire. Les chapitres suivant$]9-10-11 seront consacrés
a montrer comment remplir cette condition. De plus, la possible extension de ces résultats au
cas ou la transformation est non-stationnaire sera étudiée dans le chapitfe 11, principalement a
l'aide d'exemples tirés d'applications.
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Parts[[}[T have shown that it is possible, under certain conditions, to build an observer for
a nonlinear system by transforming its dynamics into a favorable form for which a global observer
is known. It follows that the dynamics of the system and of the observer are not expressed in
the same coordinates and often even evolve in spaces of di erent dimensions. In order to obtain
an estimate for the system state or even sometimes write the observer dynamics, it is necessary
to invert the transformation. But this step can be di cult in practice, mostly when an explicit
expression for the inverse is not available. Indeed, in this case, inversion usually relies on the
resolution of a minimization problem with a heavy computation cost. That is why we have
developed a methodology enabling to pull the dynamics of the observer back into the system
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coordinates in order to avoid the inversion of the transformation, namely design an observer
in the given coordinateﬁ. In this chapter, we motivate and introduce this problem through
examples and give a rst su cient condition to solve this problem in the case of a stationary
transformation. The remaining chapters[9fI0FI1 will show how to satisfy this condition. Besides,
the possible extension of those results to the case where the transformation is time-varying will
be studied in Chapter[1] mainly through an example coming from an application. Note that we
have submitted most of the results presented in this part in [BPA15] and [BPAew].

8.1 Example

To motivate the problem we shall tackle in this part of the thesis, we consider a harmonic
oscillator with unknown frequengy with dynamics

2 X1 = X2
S X2 = XiXz o Yy=Xi (8.1)

with state x = (X1;X2;X3) in R? Rso and measurementy. We are interested in estimating
the state x of this system from the only knowledge of the functiont 7! y(t) = X1(x;t). This
problem has been widely studied in the literature ([HOD99,/OPCTL0Z,[Hou0%, Houl?] among
many others) and our goal is not to produce yet another observer for this system but rather to
illustrate our methodology and the problems encountered throughout its implementation. This
example is indeed su ciently simple in terms of computations, but su ciently rich in terms of
underlying observability issues to be interesting throughout this part of the thesis.

For any solution with initial condition x;1 = X2 =0, y does not give any information onxas.
We thus restrict our attention to solutions evolving in X of the type

1
X = x2R¥:x2+x52 o i x32]0:r[ (8.2)

wherer is some arbitrary strictly positive real number. This set is forward-invariant by (.
Note also that System [8.1) is strongly di erentially observable of order 4 on
S= R2nf(0;0)g R

containing X, namely H 4 de ned by

h(x) ! X !
1
L h(x) X
Ha(x) = % LZh(x) § % x12x3 E
L3h(x) XoX3

is an injective immersion onS.

8.1.1 High-gain design
According to Theorem([5.2.1 and RemarK #, we know that de ned by
(X) = Ha(X) = (X1;X2; X1X3; X2X3) (8.3)

transforms System[8.1 into a phase-variable form of dimension 4 for which a high-gain observer
can be designed:

0 1 0 1 0 1
0100 0 LK,
0 01 0 L2k
0000 4" L%k,

1See De nition
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where 4 is de ned by
4( ) = sata(Lth( ()

with  any locally Lipschitz function de ned on R* verifying
(Ha(x))= x 8x2X ;

r3 may be replaced by any bound ofL?h on X, and L is a su ciently large strictly positive
number depending on the Lipschitz constant of 4, namely on the choice of andr. Wanting
to highlight the role of the computation of the left-inverse , we get in fact a raw observer

with dynamics

0 1 0
01

00
2
ooy - B0 L GO § %{jﬁ[y s or= () 69
0000 sat s (klk "4,

We deduce that the computation of the function (whose existence is guaranteed by the theorem)
is crucial in the implementation of this observer, of course to deduce from " but also to de ne
the dynamics of the observer itself.

Although in this example an explicit and global expressioﬁ]for can easily be found due to
the simplicity of the transformation = Hyg, it is not always the case in high gain designs for
more complex applications. To overcome this problem, we may go with solving an optimization
problem as

(V= Agmin * (®)

8.1.2 Luenberger design

Instead of a high gain observer design as above, we may use a non linear Luenberger design. As
explained in Section/5.1.2, the idea is to nd a transformation into a Hurwitz form of the type :

-= A + By

with  in RY , A a Hurwitz matrix and (A;B) a controllable pair. Indeed, this system admits
as global observer

= (ly) = A"+ By: (8.6)
Since the dynamics [(8.1) are linear in(x1;x2), we can look for a transformation depending
linearly in (x1;X2). Straightforward computations give :

(x) = (A%+ xsl) [ABx 1+ Bxz]: (8.7)
In particular, for a diagonal matrix A = diag( 1;:::; ¢ ) with ;> 0,andB =(1;:::;1)7,
this gives fori in f1;:::;d g:
_ X1 Xz,
i (X)= W (8.8)

It is shown in [PMIO6] that is injective on Sif d 4 for any distinct ;'sin (0;+1 ). More
precisely, it is Lipschitz-injective on any compact subset ofS and therefore, is an injective
immersiorﬂ on S. This is consistent with [APQO6, Theorem 4] and the fact that the order of
strong di erentiability of this system is 4.

2The saturation function is de ned by saty (s) = min fM; maxfs; M gg.

3 H . . 13% 42 .
For instance, we can take ()= 1; 2; maxt 2+ 2L

4 Indeed, consider anyx in S and V an open neighborhood ofx such that cl (V) is contained in S. According
to the Lipschitz-injectivity of on cl (V), there exists a such that for all v in R® and for all h in R such that

x+hvisinV,jvj a—to

C) and thus by taking h to zero, jvj a &-(x)v which means that %(x)
is full-rank.
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Thus, since the trajectories of the system remain bounded, applying Corollary 2.2]1, there
exists an observer for System 1) which is given by6) and any continuous function
satisfying

( X))=x 8x2X:

However, it is di cult to nd an explicit expression of such a function, thus for this design, we
would have to solve online :

2= (N= Argmin ®) 2

Note that a di erence with the high gain observer above is that ® is not involved in (B.6), i.e.
the observer dynamics do not depend on.

8.1.3 General idea

In the following, we propose a methodology to write the dynamics of the given observerg (§.5)
and ) directly in the x-coordinateﬁ in order to eliminate the minimization step. This has
been suggested by several researchers [DBGR92, MP03, AR13] in the case where the observer
state " and the state estimate ® are related by a di eomorphism. We remove this restriction
and complete the preliminary results presented in[[AEP14].

In the example above, pulling the observer dynamics from the -coordinates back to the
x-coordinates appears impossible sinc& has dimension3 whereas has dimension4. We
overcome this di culty by adding one component, say w, to x. Then, the dynamics of (%; W)
can be obtained as an image of those of if we have a di eomorphism (x;w) 7! = ,(x;w)
augmenting the function x 7!  (x) given in (8.3) or (8.7). We show in Chapter[9 that
this can be done by complementing a full column rank Jacobian into an invertible matrix.
Unfortunately, in doing so, the obtained di eomorphism is rarely de ned everywhere and we
have no guarantee that the trajectory in (%; W) of the observer remains in the domain of de nition
of the di eomorphism. We show in Chapter [I0 how this new problem can be overcome via a
di eomorphism extension. The key point here is that the given observer dynamics|(8.b) or[(8.6)
remain unchanged. This diers from other techniques as proposed in [MP03, AP13], which
require extra assumptions such as convexity to preserve the convergence property.

8.2 Problem statement

8.2.1 Starting point
We consider a given system with dynamics :
x=f(xu) ; y=h(xu); (8.9)

with x in R%, u a function in U with values in U R% andy in R%. The observation problem
is to construct a dynamical system with input y and output R, supposed to be an estimate of
the system state x as long as the latter is in a specic set of interest denotedX R%. As
starting point here, we assume this problem is (formally) already solved but with maybe some
implementation issues such as nding an expression of. More precisely,

Assumption O : Converging observer in the -coordinates

There exist an open subseS of R%, a subsetX of S, a C! injective immersion :S! RY,

SWe will also refer to the x-coordinates as the "given coordinates" because they are chosen by the user to
describe the model dynamics.
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and a seﬁ] 'T of pairs ('; ) of functions such that :
- :RY 1 R% js aleft-inverse of on (X),i-e

( x)) = x 8x 2 X (8.10)

- for any u in U and any xg in Xg such that *(xo;u) =+ 1, the solution X (Xo;t;u) of
8.9) remains in X for t in [0;+1 ) .

- for any uin U, any xg in Xo such that *(xo;u) =+ 1, and any "o in RY , any solution
(X (xo;t;u); T xo; 0); t; u)) of the cascade system :

x = f0qu) ; y=hxu) 5 =rCray) o 2= (D)5 (61D
initialized at (xo; "o) and under the input u, is also de ned on[0;+1 ) and satis es :

Jm o ((xo0itu) (X (xoitiw) =0 (8.12)

Remark 13

1. The convergence property given by 2) is in the observer state space only. Property
(8.10) is a necessary condition for this convergence to be transferred from the observer
state space to the system state space. But as we saw earlier, we may need the injectivity
of  to be uniform in space, or equivalently to be uniformly continuous on RY , in order
to conclude about a possible convergence in thg-coordinates. In that case, the couple
(F;T) de ned by

FGuy)="( ()hwy) 5 T()= ()

is an observer for System[(8.9) initialized inXo. Note that as in Corollary P.2.1], this is
achieved without further assumption in the case whereX is bounded.

2. The reason why we make depend onR, instead of simply taking F ( ;u;y) as before, is
that most of the time, and especially in a high gain design (see[ (8]5)), when expressing
the dynamics of (x) as function of to compute F, we replacex by ( ). Since we want
here to avoid the computation of , we make this dependence explicit inf .

3. The need for pairing' and comes from this dependence because it may imply to change
' whenever we change . In the high-gain approach for instance, as in ), whenX is
bounded, thanks to the gainL which can be chosen arbitrarily large,” can be paired with
any locally Lipschitz function  provided its values are saturated whenever they are used
as arguments of' . On another hand, if, as in (8.6)," does not depend org, then it can
be paired with any

Example 8.2.1 For System (8.1), X given in (8.2) being bounded, a set T satisfying Assump-
tion O is made of pairs of

- a locally Lipschitz function  satisfying
X = (X1;X2; X1X3; X2X3) 8x 2 X (8.13)

and the function ' de ned in (B.5), with L adapted to the properties of , if is de ned
by B-3) ;

5The symbol ' T is pronounced phitau.
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- or a continuous function  satisfying

1X1 X2, 2X1 Xz, 3X1 X2, 4X1 X2

= ; ; ; 8x 2 X 8.14
" Trxs ' Stxs’ ftxa’ f+xs " &40
and the function ' de ned in (8.6) if  is de ned by (B.8). N

Although the problem of observer design seems already solved under AssumptidD, it can
be dicult to nd a left-inverse of . In the following, we consider that the function and
the set'T are given and we aim at avoiding the left-inversion of by expressing the observer
for x in the, maybe augmented,x-coordinates.

8.2.2 A sucient condition allowing the expression of the observer in the
given Xx-coordinates

For the simpler case where the raw observer staté has the same dimension as the system state
X,l.e.dy=d, ,in Assumption O, is a di eomorphism on S and we can express the observer
in the given x-coordinates as :

@ 1
2= @(k) O ®)Ruy) (8.15)

which requires a Jacobian inversion only. However, although, by assumption, the system trajec-
tories remain in S where the Jacobian is invertible, we have no guarantee the ones of the observer
do. Therefore, to obtain convergence and completeness of solutions, we must nd means to en-
sure the estimate®r does not leave the setS, or equivalently that (%) remains in the image set
(S). Observing that this problem obviously disappears if this set is the whole spac®? , we

address this point by modifying marginally in order to get (S)= RY.

In the more complex situation whered >dy, is only an injective immersion. In [AEP14],
it is proposed to augment the givenx-coordinates in R% with extra ones, sayw, in R % and
correspondingly to augment the given injective immersion into a di eomorphism , : S;!
RY |, where S, is an open subset oRY , which "augments"S, i-e its Cartesian projection on R%
is contained in S and contains cl (X).

To help us nd such an appropriate augmentation, we have the following su cient condition.

Theorem 8.2.1.

Assume AssumptionO holds and X is bounded. Assume also the existence of an open subset
S, of RY containing ¢l (X f 0g) and of a di eomorphism e 1Sy ! RY satisfying

c(X0) = (x) 8x 2 X (8.16)

and
o(Sa)= RY : (8.17)

and such that, with let ¢x denoting the x-component of the inverse of ., there exists a
function ' such that the pair (; ex) is in the set'T given by Assumption O.

Under these conditions, for anyu in U and any Xq in Xg such that *(xo;u) =+ 1, any
solution (X (xo; t;u); X (Xo; Ro; Wo; t; u); W (xo; Ro; Wo; t; u)), with initial condition (%o; W) in
Sa, of the cascade of System[(8]9) with the observer :

-y @ !
W @k;‘iﬁ)(k:w) " (RW) R UY) (8.18)




8.2. Problem statement 115

is also de ned on[0;+1 ) and satis es :
im W (xo; Ro;Woi t;u) + X (xo;t;u) X (Xo;Ro;Wo;t;u) =0 : (8.19)

In other words, System (8.I8) is an observer in the given coordinatfs for System (8.9)
initialized in Xo.

The key point in the observer (8.18) is that, instead of left-inverting the function  via as
in (B.10), we invert only a matrix, exactly as in (B.15).

Proof : Take u in U and (Xo;(%0;Wo)) in Xo S a such that *(xo;u) =+ 1. X(Xo;t;u) remains in
X for t in [0 +1 ) by assumption. Let [0;t[ be the right maximal interval of de nition of the solution

(X (Xo;t); X(xo,ko,wo,t,u) \/\‘/(xo,ko,wo,t u)) when considered with values in X S 5. Assume for the
time being t is nite. Then, when t goes tot, either (X (xo;R0;Wo;t;u); W (xo;%0;Wo;t;u)) goes to
in nity or to the boundary of S.. By construction t 7! (t):= o X (%o0;Wo:t;u); W (&o;Wo:t;u) is a

solution of (B.11] (- on [O;t[ with = . From assumption O and since('; &) isin 'T, it can be extended
as a solution de ned on [0;+1 [ When considered with values in R® = ,(Sa). This implies that ( )
is well de ned in RY . Since, with (- the inverse . of . is a di eomorphism dened on RY , we
obtain lim,, ; X (%o;Wo;t;u); W (&o;Wo;t;u) = &(( ©)), which is an interior point of ¢(R® ) = Sa.
This point being neither a boundary point nor at in nity, we have a contradiction. It follows that tis
in nite.

Finally, with assumption O, we have :

Jim X (%0; Wo; t; u); W (%0; Wo; t; u) (X (xo;t;u)) =0

Since X (Xo;t;u) remains in X, (X (Xo;t;u)) equals ¢ (X (Xo;t;u);0) and remains in the compact set
(cl (X)). So there exists a compact subsetCof RY and atime tc suchthat o X (&o;Wo;t;u); W (&o;Wo;t;u)
isin Cforall t>t . Since . is a di eomorphism, its inverse . is Lipschitz on the compact set C. This

implies (B.19).

With Theorem B.2.1], we are left with nding a di eomorphism , satisfying the conditions
listed in the statement :

Equation (B.16) is about the fact that , is an augmentation, with adding coordinates, of the
given injective immersion . It motivates the following problem.

Problem 1. Immersion augmentation into a di eomorphism

Given a set X, an open subsetS of R% containing cl (X), and an injective immersion

;S| (S) RY, the pair ( ,;Sa) is said to solve the problem of immersion augmen-
tation into a di eomorphism if S, is an open subset ofRY containing cl (X f 0g) and
2:Sa! .(Sa) RY is a dieomorphism satisfying

(%0 = (%) 8x2X :

We will present in Chapter [9 conditions under which Problem[] can be solved via comple-
menting a full column rank Jacobian of into an invertible matrix, i.e. via what we call
Jacobian complementation.

The condition expressed in {(8.1F), is about the fact that . is surjective onto RY . This
motivates us to introduce the surjective di eomorphism extension problem

Problem 2. Surjective di eomorphism extension

Given an open subsetS, of R, a compact subsetK of S, and a di eomorphism ,:

"See De nition
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extension problem if it satis es

e(Sa) = R W)= J(xw) 8(x;w) 2 K:

This Problem [2 will be addressed in Chapter 1ID.

When Assumption O holds andX is bounded, by successively solving Problein 1 and Problem
@with cl(Xf 0g) K S a wegetadieomorphism . guaranteed to satisfy all the conditions
of Theorem[8.2.] except maybe the fact that the pair("; ex) is in 'T. Fortunately, pairing a
function ' with a function ¢x obtained from a left inverse of . is not as di cult as it seems, at
least for general purpose observer designs such as high gain observers or nonlinear Luenberger
observers. Indeed, we have already observed in poifif 3 of Remark]13 that if, as for Luenberger
observers, there is a pair('; ) in the set 'T such that ' does not depend on , then we can
associate this' to any ex. Also, for high gain observers, we need only that ¢y, used as argument
of ' , make it globally Lipschitz. This is obtained by modifying, if needed, this function outside
a compact set, as the saturation function does in[(8)5). We conclude from all this that our
problem reduces to solving Problem$[1 an]2.

Throughout Chapters [91Q, we will show how, step by step, we can express in th&-
coordinates the high gain observer for the harmonic oscillator with unknown frequency intro-
duced in Section[8.1.]l. We will also show that our approach enables to ensure completeness of
solutions of the observer presented in [GHO92] for a bioreactor. The various di culties we shall
encounter on this road will be discussed in Chaptef 1. In particular, we shall see how they can
be overcome thanks to a better choice of and of the pair ('; ) given by Assumption O. We
will also see that the same tools apply to the Luenberger observer presented in Sectipn 8J1.2 for
the oscillator. Finally, we will show in Chapter [LI]that this methodology can be extended to
the case where the transformation is time-varying through a very practical application related
to aircraft landing.



Chapter 9

Around Problem 1 [ Jaugmenting an
Injective immersion into a
di eomorphism

Chapitre 9  Autour du Probleme 1 : pligmenter une immersion injective en un

di éomorphisme. Une condition su sante pour résoudre ce probleme est de savoir compléter
contindment le Jacobien (de rang plein) de la fonction en une matrice inversible. En e et,
lorsque ceci est possible, une formule explicite de l'augmentation en un di éomorphisme est
proposée. Ce chapitre est donc consacré au probléme de complémentation continue d'une matrice
rectangulaire de rang plein en une matrice carrée inversible. Plusieurs résultats sont donnés avec
dans chaque cas des formules explicites ou des algorithmes constructifs, et sont illustrés grace a
I'exemple de l'oscillateur a fréquence inconnue.
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In JAEP14], we nd the following su cient condition for the augmentation of an immersion
into a di eomorphism.

Lemma 9.0.1. [AEP14]

Let X be a bounded setS be an open subset oR% containing cl (X),and : S| (S)
RY be an injective immersion. If there exists a bounded open se§ satisfying

d(X) S c(S) S

and a C! function :S ! RY (@ &) the values of which ared (d  dy) matrices
satisfying :
det @éx(x) (x) 60 8x 2 cl (S) ; (9.1)

then there exists a strictly positive real number™ such that the following pairﬂ ( a:Say) solves
Problem[1
axw) = X))+ (X)w ; S3=S B-(0): (9.2)

LFor a positive real number " and zo in RP, B (zo) is the open ball centered at z, and with radius "
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In other words, an injective immersion  can be augmented into a di eomorphism , if we
are ableto nd d dy columns which are C! in x and which complement the full column
rank Jacobian %((x) into an invertible matrix.

Proof : The fact that , is an immersion for " small enough is established in [AEP14]. We now prove
it is injective. Let "o be a strictly positive real number such that the Jacobian of . (x;w) in ( is
invertible for any (x;w) in cl (S B-,(0)). Sincecl (S B-,(0)) is compact, not to contradict the
Implicit function Theorem, there exists a strictly positive real number such that any two pairs (Xa;Wa)
and (Xp;Wp) in cl (S B-,(0)) which satisfy

a(Xa;Wa) = 2(Xp;Wb) 5 (Xa;Wa) 6 (Xp;Wp) (9.3)
satis es also
jXa  Xpj + jwa  Wpj

On another hand, since s continuous and injective on cl (S) S , it has an inverse which is uniformly
continuous on the compact set  (cl (S)) (see Lemma[A.3.3). It follows that there exists a strictly
positive real number  such that

Baix) 20 ()] (xa)  (w)i< i Jxa X<
But if (9.3) holds with wa and wy in B-(0) with " "o, we have
2" jXa Xej; ] (Xa) (Xp)] = ] (Xa)Wa  (Xp)wp] 2" sup j (x)j:
x2cl(S)
n (0]
We have a contradiction for all " min 37; T e T So ) cannot hold for such "'s, i.e.

a IS injective on S B-(0).

Remark 14 Complementing ad  dx full-rank matrix into an invertible one is equivalent to
nding d dx independent vectors orthogonal to that matrix. Precisely the existence of

satisfying (9.1) is equivalent to the existence of aC® function ~ : ¢l (S) ! RI (@ &) the
values of which are full rank matrices satisfying :

~(x) @(x) =0 8x 2cl(S): (9.4)
Indeed, ~ satisfying (9.4) satis es also {9.]) since the following matrices are invertible
| |
e @ I CO N
@x*"7 = (xX) ~(x) = @x @x
0 e ™ 0 )" ~()
Conversely, given satisfying (9.1), ~ de ned by the identity below satis es (9.4) and has full
column rank " . #
_ @ @ > @ > :
(x)= | @(X) @(X) @((X) @(X) (x)

9.1 Submersion case

When (cl (S)) is a level set of a submersion, we have the following complementation result

Theorem 9.1.1.

Let X be a bounded set,S be a bounded open set and be an open set satisfying
cd(X) S ¢c(S S

Letalso :S! (S) RY be an injective immersion. Assume there exists &2 function
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F:RY 1 RY % which is a submersioff| at least on a neighborhood of (S) satisfying:
F( (x))=0 8x2S; (9.5)

then, with the C? function x 7! (x) = @: ( (x)), the matrix in ( is invertible for all x
in S and the pair ( 4;Sa) de ned in (. b.2) solves Problem([1.

Proof : For all x in cl (S), S5 (x) is right invertible and we have @F( (x)) <(x) = 0. Thus, the
rows of %( (x)) are orthogonal to the column vectors of & Gx (x) and are |ndependent sinceF is a

submersion. The Jacobian of  can therefore be completed W|th %FT( (x)). The proof is completed
with Lemma 8.0.1]

Remark 15 Since %( is of constant rank dy on S, the existence of such a functionF is

guaranteed at least locally by the constant rank Theorem.

Example 9.1.1 (Continuation of Example 8.2.1) | Elimination of the %; in the 4 equations
given by the injective immersion  de ned in (B.3) leads to the function F( )= 23 14
satisfying ). It follows that a candidate for complementing:

0 1
1 0 0
@ _% o 1 0 %
@((X)_ xz3 O X1 (9:6)
0 X3 X2

(x) = Cg( () = (XaXa, XiXa Xz, X1)”

This vector is nothing but the column of the minors of the matrix (. It gives as determinant
(X2X3)? + (X1X3)? + x5 + X which is never zero onS.

Then, it follows from Lemma|[9.0.1, that, for any bounded open setS such that X ¢l (S)
S the following function is a di eomorphism on S B (0) for " su ciently small

a(GW) = (X1 + XoX3W; X2 X1X3W; X1X3+ XoW; XaX3  X1W) :

With picking . = 4, (8.18) gives us the following observer written in the givernx-coordinates
augmented with w :

1,20 10 1
)’(‘3W R RoRs R, RiRaW Lk,
kgg % kgw RW Rﬂ%g% gé k1k3+’x2W§ % 2k2§ z
%}a 2 Ry Rk AWK T BL3Kax Y Rl ©.7)
25 R1 sat s (X1R%) L*ky4

Unfortunately the matrix to be inverted is non singular for (%; W) in S B-(0) only and we have
no guarantee that the trajectories of this observer remain in this set. This shows that a further
modi cation transforming , into . is needed to make sure that (') belongs to this set
whatever in R*. This is Problem 2. N

The drawback of this Jacobian complementation method is that it asks for the knowledge
of the function F. It would be better to simply have a universal formula relating the entries of
the columns to be added to those o%(.

’F:R’ 1 R"with d nisasubmersion onV if €F( ) is full-rank for all in V.
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9.2 The PId ;dy] problem

Finding a universal formula for the Jacobian complementation problem amounts to solving the
following problem.

Problem P[d ;dy]

For a pair of integers (d ;dy) such that 0 < dy < d , a C! matrix function ~: R™ " |
R4 (@ &) solves theP[d ;dy] problem if for any d  dy matrix T = (Tj) of rank dy, the
matrix T ~(T) is invertible.

As a consequence of a theorem due to Eckmann [Eck06, Y1.7 p. 126] and Lenjma 9.0.1, we
have

Theorem 9.2.1.

The PTd ;dy] problem is solvable by aC?! function ~ if and only if the pair (d ;dy) is in one
of the following pairs
( 22d 1) or (4;1) or (8;1): (9:8)

Moreover, for each of these pairs and for any bounded seX, any bounded open setS and
any open setS satisfying

cd(X) S c(S S R*;

and any injective immersion :S'! (S) RY, the pair ( ,;Sa) de ned in ( with
(xX)=~ %((x) solves Probleer.

Proof : ["only if'] The following theorem is due to Eckmann.

Theorem 9.2.2. [ECkO6]

For d >d,, there exists a continuous function ~, : R 9% 1 RY with non zero values and satisfying
~(1)TT=0foranyd dy matrix T =(7;) of rank dy if and only if (d ;dx) is in one of the following
pairs

( 2d 1) or (even 1) or (7;2) or (8;3) (9:9)

With Remark 4] any pair (d ;dy) for which Pd ;dy] is solvable must be one in the list (8.9). The pair
( 2,d 1)isinthe list (. For the pair (even; 1), we needto nd d 1 vectors to complement the
given one into an invertible matrix. After normalizing the vector 7 so that it belongs to the unit sphere
s* 1 and projecting each vector ;(t) of (1) onto the orthogonal complement of T, this complementation
problem is equivalent to asking whether S * is parallelizable (since the ;(t) will be a basis for the
tangent space att for eacht 2 &' 1). It turns out that this problems admits solutions only for d =4
ord =8 (see [BM58]). So in the pairs (even; 1) only (4;1) and (8;1) are in the list (9.8).

Finally, since P6; 1] has no solution, the pairs (7;2) and (8; 3) cannot be in the list (9.8]. Indeed, let T be

afull coumnrank (d 1) (dx 1) matrix. 8 2 is a full column rank d  dyx matrix. If if P[d ;dx]
has a solution, there exist a continuous (d 1) (d dx) matrix function ~ and a continuous row
vector functions a' such that ;g; B 2 is invertible. This implies that ~(7) T is also invertible.

So if Pd ;dx] has a solution, P[d  1;dx 1] must have one.

25ee Remar.
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Proof : ["if'] For (d ;dx) equal to (4;1) or (8;1) respectively, possible solutions are

0 1
T2 T3 Ta Ts Te T7 T8
0 1 T1 Ta T3 Te Ts5 T8 T7
T2 T3 Ta T4 T1 T2 T7 T8 Ts T6
’*(T) _ % T1 T4 T3 g ) "(T) _ T3 T2 T1 T8 T7 Te Ts5
T4 T1 T2 ! Te T7 Ts T1 T2 T3 T4
T3 T2 T1 Ts5 T8 T7 T2 T1 T4 T3
Tg Ts5 T6 T3 T4 T1 T2

T7 Te Ts Ta T3 T2 T1
where 1; is the jth component of the vector 7. For dx = d 1, we have the identity

X
det(r ~(1))= ~ (7 ) Mjm (7ij)
j=1
where ~ is the jth component of the vector-valued function ~ and the Mjm , being the cofactors of
(T ~(1)) computed along the last column, are polynomials in the given components 1 . At least one of
the M;m is non-zero (because they are minors of dimensiondy of T which is full-rank). So it is su cient
to take ~ (Ti ) = Mjm (15 ).

In the following example we show how by exploiting some structure we can reduce the
problem to one of these3 pairs.

Example 9.2.1 (Continuation of Example 9.1.1) | In Example[9.1.1, we have complemented
the Jacobian (9.6) with the gradient of a submersion and observed that the components of this
gradient are actually cofactors. We now know that this is consistent with the casedy = d 1.
But we can also take advantage from the upper triangularity of the Jacobian [9.6) and com-
plement only the vector ( x1; X») by for instance (x2; x1). The corresponding vector is

(x) =(0;0;x2; X1): Here again, with Lemma, we know that, for any bounded open set
Ssuchthatcl (X) S cl(S) S the function

a(GW) = (X1; X2; X1X3+ XaW; XoX3  X1W)

is a dieomorphism on S B (0). In fact, in this particular case " can be arbitrary since the
Jacobian of , is full rank on S RY %, With picking , = ,, ) gives us the following
observer :

— o 1,20
1 1 0 0
5@%_%} o 1 0 o% E% klk3+’X2W§ %L%g z
%}5&2 O R W R R 2,85 RW b % (9.10)
W W R Ry Ry sats(X1%3) L *Ka4
However, the singularity at #1 = %> = 0 remains and equation [8.1}) is still not satised. N

Given the very small number of cases where a universal formula exists, we now look for a
more general solution to the Jacobian complementation problem.

9.3 Wazewski's theorem

Historically, the Jacobian complementation problem was rst addressed by Wazewski in[[\Waz35].
His formulation was :

Wazewski's problem

Given a continuous function T : S R% I RY % the values of which are full-rank
d dy matrices, look for a continuous function : S ! RY (d &) gych that the ma-

trix T(X) (X) is invertible for all x in S.
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The di erence with the previous section, is that here, we look for a continuous function of
the argument x of T(x) instead of continuous functions ofT itself.
Wazewski established that this other version of the problem admits a far more general
solution

Theorem 9.3.1. [Waz35, Theorems 1 and 3]

If S, equipped with the subspace topology oRY%, is a contractible space, then Wazewski's

problem admits a solution. Besides, the function can be choser! on S.

Proof : The reader is referred to [Eck06, page 127] or|[[Dug66, pages 406-407] and to [Waz35, Theorems
1 and 3] for the complete proof of existence of a continuous function when S is contractible. We rather
detail here the constructive main points of the proof originally given by Wazewski in the particular case
where S is a parallelepiped, because it gives an insight on the explicit construction of . It is based on
Remark 14}, noting that, if we have the decomposition

T(x) = 283

with A(x) invertible on some given subsetR of S, then

- Ck
(X) - D(X)

makes T(x)  (x) invertible on R if and only if D(x) is invertible on R and we have
Cx)= (AT(x) 'B(x)"TD(x) 8x2R: (9.12)

Thus, C is imposed by the choice of D and choosing D invertible is enough to build on R.

Also, if we already have a candidate
A(x)  Co(x)
B(x) Do(x)

on a boundary @ of R and A(x) is invertible for all x in @R, then, necessarily, Do(x) is invertible
and Co(x) = (AT(X)) B(x)"Do(x) all x in @. Thus, to extend the construction of a continuous
function inside R from its knowledge on the boundary @R, it su ces to pick D as any invertible matrix
satisfying D = Do on @R. Because we can propagate continuously from one boundary to the other,
Wazewski deduces from these two observations that, it is su cient to partition the set S into adjacent
setsR; where a givend d minor A; is invertible. This is possible since T is full-rank on S. When S
is a parallelepiped, he shows that there exists an ordering of the R; such that the continuity of each D;
can be successively ensured. We illustrate this construction in Example [9.3:7] below.

Finally, it remains to show how this continuous function can be modied into a smoother one giving
the same invertibility property. For this, we use a partition of unity. Let i denote the ith column of

. We start with modifying 1 into ~. Sincer, and the determinant are continuous, for any x in S,
there exists a strictly positive real number ry, such that, may be after changing i into 1,

det t(y) 1(X) 2da a (y) >0; 8y 2 By, (X) : (9.12)

where i, denotes the matrix composed of the i to j™ columns of . The family of sets (B, (X)) s
is an open cover ofS. Therefore, by [Hir76] Theorem 2.1], there exists a subordinate C* partition of
unity, i.e. there exist a family of C! functions x :S! R ¢ such that

Supp( x) B (x) 8x2S; (9.13)
f Supp( x))(gxzs is locally nite ; (9.14)
x(y)=1 8y2s (9.15)

x2S

With this, we de ne the function ~; on S by
X
~(y) = x(¥) 1(x) :

x2S
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This function is well-de ned and C' on S because the sum is nite at each point according to (p.14).
Using multi-linearity of the determinant, we have, for all yin S,

X
det T(y) ~1(Y) 24 () = x(y)det T(y) 1(X) 24 a.(Y)

x2S

Thanks to (p.14), at each point y in S, there is a nite number of  (y) which are not zero. Also, the
right hand side is the sum of non negative terms because of ) and the non negativeness of the y,
and one of these terms is strictly positive because of [9.12) and [9.1%). Therefore, we can replace the
continuous function 1 by the C' function ~; as a rst column of . Then we follow exactly the same
procedure for , with this modied . By proceeding this way, one column after the other, we get our
result.

The following corollary is a consequence of Lemma 9.0.1 and provides another answer to
Problem 1.

Corollary 9.3.1.

Let X be a bounded setS be an open subset oR% containing cl (X) and which, equipped
with the subspace topology ofR% , is a contractible space. Letalso :S'! (S) RY be
an injective immersion. There exists aC! function such that, for any bounded open setS
satisfying

cd(X) S c(S S

we can nd a strictly positive real number " such that the pair ( ,; Sa) de ned in (P.2) solves
Problem [11.

Example 9.3.1 Consider the function

0 1 0 0 1
0 1 0 1 4
T(x) = x3 0 X1 ; Y(xux2) = max 0 (x2+ x3)
0 X3 X2 r
Slxs Sixs }

T(x) has full rank 3 for any x in R3, since} (x1;X2) 6 0 whenx; = X, = 0. To follow Wazewski's
construction, let  be a strictly positive real number and consider the following5 regions ofR3

(see Figure[9.1)

Ri=]1; 1 R ; Rx=[,;1 [+1] R
Rz=[ ;P R; Rs=[;11I1; 1 R ; Rs=[;+1] R%:

We select su ciently small in such a way that } is not 0in Rs.

X2
R>

R3
X1

R4

Figure 9.1: Projections of the regionsR; on R2.



Chapter 9. Around Problem 1 : ddgmenting an injective immersion into a
124 diffeomorphism

We start Wazewski's algorithm in R3. Here, the invertible minor A is given by rows 1, 2
and 5 of T (full-rank lines of T) and B by rows 3 and 4. With picking D as the identity, C is
(AT) 1B according to (9.13). D gives rows3 and 4 of and C gives rows1, 2 and 5 of
Then we move to the regionR,. There the matrix A is given by rows 1, 2 and 4 of T, B by
rows 3 and 5. Also D, along the boundary betweenR3 and R, is given by rows 3 and 5 of
obtained in the previous step. We extrapolate this insideR, by keeping D constant in planes
X1 =constant. An expression forC and therefore for follows.

We do exactly the same thing forR 4.

Then we move to the regionR ;. There the matrix A is given by rows1, 2 and 3 of T, B by rows

4 and 5. Also D, along the boundary betweenR; and R, betweenR1 and R3 and between

R1 and Ry, is given by rows4 and 5 of obtained in the previous steps. We extrapolate this

inside R, by kipping D constant in planesx, = constant. An expression forC and therefore for
follows.

We do exactly the same thing forRs.

Note that this construction produces a continuous , but we could have extrapolatedD in
a smoother way to obtain as smooth as necessary. N

Although Wazewski's method provides a more general answer to the problem of Jacobian
complementation than the few solvablePTd ; dx] problems, the explicit expressions of given in
Section are preferred in practice (when the coupléd ;dy) is in the list (D.8)) to Wazewski's
costly computations.

We have given several methods to solve Problefn 1, but to apply Theorein 8.7.1, we also need
to solve Problem[2.
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Chapitre 10 Autour du Probléeme 2 : Ektension d'image d'un di éomorphisme.

Dans ce chapitre, nous étudions comment un di éomorphisme peut étre étendu pour que son
image couvre l'espaceR? entier, c'est-a-dire pour qu'il devienne surjectif. Dans certains cas, la
construction de I'extension est explicite et est illustrée a partir d'exemples. En particulier, nous
montrons que la résolution du Problémé |2 garantie la complétude des solutions de I'observateur
présenté dans[[GHO9R] pour un bioréacteur.
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We study now how a di eomorphism can be augmented to make its image be the whole set
RY i.e. to make it surjective. In certain cases, the construction of the extension is explicit and is
illustrated on examples. In particular, we show that solving Problem[2 guarantees completeness
of solutions of the observer presented in [GHOS2] for a bioreactor.

10.1 A su cient condition

There is a rich literature reporting very advanced results on the di eomorphism extension prob-
lem. In the following some of the techniques are inspired from_[Hir76, Chapter 8] and_[Mil65,
pages 2, 7 to 14 and 16 to 18](among others). Here we are interested in the particular aspect of
this topic which is the di eomorphism image extension as described by Problenj 2. A very rst
necessary condition about this problem is in the following remark.

Remark 16 Since ., obtained solving Problem Q makes the setS di eomorphic to RY, S
must be contractible.

One of the key technical property which will allow us to solve Problem[2 can be phrased as
follows.
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Property C

An open subsetE of RY is said to verify property Cif there exista C! function :RY | R,
a bounde(ﬂ Cl vector eld , and a closed seK  contained in E such that:
n )
1.E= z2RY : (2)<0
2. Ko is globally attractive for

3. we have the following transversality property:

géz) (z2)<0 8z2RY: (2)=0:

The two main ingredients of this condition are the function and the vector eld  which,
both, have to satisfy the transversality property C[3. In the case where only the function is
given satisfying C[1] and with no critical point on the boundary of E, its gradient could play
the role of . But then for Ko to be globally attractive we need at least to remove all the
possible critical points that could have outsideK . This task is performed for example on
Morse functions in the proof of the h-Cobordism Theorem [Mil65]. We are in a much simpler
situation when is given and makesE forward invariant.

Lemma 10.1.1.

Let E be a bounded open subset oRY, be a boundedC? vector eld , and Kq be a
compact set contained inE such that:

1. Kg is globally asymptotically stable for

2. E is forward invariant for

For any strictly positive real number d, there exists a bounded seE& such that

cl(E) E f z2RY; inf jz zgj dg
ze 2E

and E veri es Property C.

This Lemma roughly says that if E does not satisfy conditionsC[l] or C[3 but is forward
invariant for , then Condition C is satis ed by an arbitrarily close superset of E. Its proof is
given in Appendix B.1}

Our main result on the di eomorphism image extension problem is:

Theorem 10.1.1.

Let S, be an open subset oRY and ,: Sa! RY be a di eomorphism. If

a) either ,(Sa) veries property C,

b) or S, is C2-di eomorphic to RY and , is C?,
then for any compact setK in S,, there exists a di eomorphism . : S, ! RY solving
Problem [2.

The proof of case a) of this theorem is given in Sectiop 10.2. It provides an explicit construc-

tion of .. The proof of case b) can be found in AppendiX B.B. For the time being, we observe
that a direct consequence is :

Y1 not replace by pP——

g g2’
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Corollary 10.1.1.

Let X be a bounded subset oR%, S, be an open subset oR? containing K = ¢l (X f 0g)
and ,:S;! ,(Sa) be a di eomorphism such that

a) either ,(S;) veries property C,

b) or S, is C2-di eomorphic to RY and , is C2.
Then, there exists a di eomorphism  : S; ! RY | such that

e(Sa)= RY ;  L(x0) = ,L(x0) 8x 2 X :

Thus, if besides the pair( ,;Sa) solves Problen 1, then( ;Sa) solves Problemg [l and 2.

10.2  Proof of part a) of Theorem 10{1.1 |

We have the following technical lemma :

Lemma 10.2.1.

Let E be an open strict subset ofRY verifying Condition C. For any closed subsetk of E,
lying at a strictly positive distance of the boundary of E, there exists a di eomorphism
RY I E, suchthat is the identity function on K.

A constructive proof of this lemma is given in Appendix[B.Z and provides an explicit expres-
sion for  which will be used in Example[10.2.1 and Sectiof 10}3. Its construction is illustrated

on Figure[10.1.

X1

(X1) E-

X2 = (X2)

(X3)

X3

Figure 10.1: Sketch of the construction of the di eomorphism in Lemma[10.2.] : one follow
the ow given by Condition C for a more or less long time depending on the initial point.
E- denotes the set where is the identity. " measuring the "width" of E n E+ can be chosen
su ciently small for K to be included in E-.

In the case a) of Theorem[10.1]1, we suppose that,(S,) satises C. Now, , being a
di eomorphism on an open setS,, the image of any compact subseK of S; is a compact subset
of ,(Sa). According to Lemma[10.2.], there exists a di eomorphism from RY to ,(Sa)
which is the identity on ,(K). Thus, the function , = 1, solves Problem[j]z and the
theorem is proved.

Example 10.2.1 (Continuation of Example 9.1.1) | In Example 9.1.1, we have introduced

the function
1.
F()= 23 14, > M
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as a submersion orR*nf0g satisfying
F( (x)=0; (10.1)
where s the injective immersion given in (8.3). With it we have augmented as

)
W) = (x)+%F( YW= )+ M ()w

which is a di eomorphismon S; = S ] ";"[ for some strictly positive real number".
To modify , in . satisfying .(Sa) = R* we let K be the compact set

K=cl(aX f0g) a(Sa) R*:

With Lemma , we know that, if ,(Sz) veries property C, there exists a di eomorphism

de ned on R* such that is the identity function on the compact set K and (R*) = .(Sa).
In that case, as seen above, the di eomorphism, = ' _ denedon S, is suchthat , = ,
onX f Ogand ,(S,) = R4 i-e would be a solution to ProblemsD. an(ﬂz. Unfortunately this
is impossible. Indeed, due to the observability singularity atx; = x» =0, § (and thus S;) is
not contractible. Therefore, there is no di eomorphism , such that (S,) = R* We will see
in Section[I1.1 how this problem can be overcome. For the time being, we show that it is still
possible to nd , such that .(S,) covers "almost all"R?. The idea is to nd an approximation
E of ,(Sa) verifying property Cand apply the same method onE. Indeed, if E is close enough
to ,(Sa), one can expect to have . (S,) "almost equal to" R*.

With (10.1} and since M2 = I, we have,

F(a(xw) =] (iw:

Since S; is bounded, there exists > 0 such that the set

n 0
E= 2R*:F()?<
contains ,(S;) and thus the compact setK . Let us show thzat E veri es property C. We pick
1
()=F()?* = 3™

and consider the vector eld
_ L@ 7 , _
()= 2@( )= [ 'M M or more simply ()=

The latter implies the transversality property CJ3 is veri ed. Besides, the closed se = fOg
is contained in E and is globally attractive for the vector eld .

Then Lemma[10.2.] gives the existence of a di eomorphism : R*! E which is the identity
onK and veries (R% = E. We obtain an expression of by following the constructive proof
of this Lemma (see Appendi B.2). LetE- be the set

( 1 ) " )
E-= 2R*: ETM <e 4

It contains K. Letalso :[ " +1[! Randt:R*nE-! R be the functions de ned as

1 ™ C
t( )= Z'” - (10.2)

NI
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t( ) is the time that a solution of _= () = with initial condition needs to reach the
boundary of E i.e. e ) belongs to the boundary of E. From the proof Lemma|10.2.1, we
know the function : R*! E dened as :
8
< S LT 2 4.
()= i M € (10.3)
e () . otherwisg

is a di eomorphism : R*! E which is the identity on K and veries (R%) = E.

As explained above, we use to replace , by the dieomorphism . = 1 also
de ned on S,. But, because ,(S,) is a strict subset of E, .(Sa) is a strict subset of R?, i.e.
equation ) is not satis ed. Nevertheless, for any trajectory of the observett 7! “(t) in R4,
our estimate de ned by ({;W) = 1(") will be such that ,(%; W) remains in E, along this
trajectory i-e j (%)jW < . This ensures that, far from the observability singularity where
] (®)j =0, w remains su ciently small to keep the invertibility of the Jacobian of . But we
still have a problem close to the observability singularity, i.e. when(%1;%2) is close to the origin.
We shall see in Sectioii 11]1 how to avoid this di culty via a better choice of the initial injective

immersion . N

10.3 Application : bioreactor

As a less academic illustration we consider the model of bioreactor presented in [GHO92] :

a1xX1X2 Az 1X1X2
xi= 2 kg xp = o2 ot uag s y = X
arX1 + X2 X1+ X2
where the g;'s are strictly positive real numbers and the controlu veries : 0<umn <u(t) <
Umax < @1. This system evolves in the setS = x2R%: x;>"1; X2> apX; Which is
forward invariant. A high gain observer design leads us to consider the function :S ! R?
de ned as :

. _ . . _ . a1X1Xo
(X1;%2) = (X1; Xajy=0) = Xl,iale_'_ Xz
It is a di eomorphism onto
n 0

(S) = 2R?: 1> 0 a1 1> »

The image by  of the bioreactor dynamics is of the form
2= 2+t q()u ; 2= "2(1 20+ (1 2u
for which the following high gain observer can be built:
2= 2+ (U Ki(1 YY) 5 2="201 2+ R(1; 2Qu k(1 Y); (10.4)

where k1 and k, are strictly positive real numbers and ~ su ciently large. As in [GHO92]
being a di eomorphism the dynamics of this observer in thex-coordinates are

0 1 0 10 1
ai1R1%R2 uR 1 0 K

%= % a aajf;r,xz 1 + %) (a2R1+X2)2 2 E’D . g( 1Y) (10.5)
W uRz + uay 1 Taraphl ko

Unfortunately the right hand side is singular at 1 = 0 or 22 = ai;®1. S being forward

invariant, the system trajectories stay away from the singularity. But nothing guarantees the
same property holds for the observer trajectories given by|[(10]5). In other words, since is



130 Chapter 10. Around Problem 2 : i@age extension of a diffeomorphism

already a di eomorphism, Problem [1 is solved withd = dy, , = andS; = S. But (8.17) is
not satis ed, i.e. Problem 2] must be solved.
To construct the extension . of ., we view the image ,(Sa) as the intersection ,(S;) =
E.\ E» with :
n ) n o
Ei= (1 202R% 1>"1 Ex= (1 202R% a11> »

This exhibits the fact that ,(S,) does not satisfy the property C since its boundary is notC*.
We could smoothen this boundary to remove its "corner. But we prefer to exploit its particular
shape and proceed as follows :

1. We build a di eomorphism 1 : R?! E; which acts on 1 without changing ».

2. We build a di eomorphism 5 : R?! E, which acts on » without changing 1.

3. Denoting = , 1:R?! Ej\ Ej,wetake = ' _:Sy! RZ
To build 1 and », we follow the procedure given in the proof of Lemmd 10.2]1 sincE; and
E, satisfy property C with :

| |

1()="1 17 2()= 2 a1; 1()= (10 Y »20)= (20"'1)

By following the same steps as in Exampl¢ 10.2]1, withi an arbitrary small strictly positive real
number and  de ned in (L0.2), we obtain :

ty()=In L2 to()=In 25
n [0} n (0]
Ewy= (( 1 2)2R?% 1>1 L~ B2 = (( B 2R 2 B3R 1 (10.6)
. if 2Ew ;i 2E+
1( ) = 11 +1 : otherwise 2( ) = ket 1; otherwise
e (1) ' e (200 J

We remind the reader that, in the -coordinates, the observer dynamics are not modi ed.
The di erence between using or . is seen in theR-coordinates only. And, by construction it
has no e ect on the system trajectories since we have

X)= o(x) 82S "

As a consequence the dierence between and . is signicant only during the transient,
making sure, for the latter, that ® never reaches a singularity of the Jacobian of .

We present in Figure the results in the coordinates (to allow us to see the e ects of
both and .) of a simulation with (similar to [GHO92]) :

aa=—a=—a3=1; a4=0:1
u(t)=0:08fort 10; =0:02for10 t 20; =0:08fort 20
x(0) = (0:04;0:07); 2(0)=(0:030:09); "~=5:

The solid black curves are the singularity locus. The red curve represents the bioreactor
solution. The magenta curve represents the solution of the observer built with .. It evolves
freely in R? according to the dynamics ), not worried by any constraints. The blue curve
represents its image by which brings it back inside the constrained domain where ! can
then be used. This means these two curves represent the same object but viewed in di erent
coordinates.

The solution of the observer built with  would coincide with the magenta curve up to the
point it reaches one solid black curve of a singularity locus. At that point it leaves (S) and
consequently stops existing in thex-coordinates.

As proposed in [MP03,[AP13], instead of keeping the raw dynamics[ (10/4) untouched as
above, another solution would be to modify them to force to remain in the set (S). For
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@ . .
“@x hon invertible

@ . .
“ox invertible

Figure 10.2: Bioreactor and observers solutions in the -coordinates

instance, taking advantage of the convexity of this set, the modi cation proposed in [AP13]
consists in adding to (10.4) the term

|
maxf 1( )+ "; Og?

maxf »( )+ "; 0g® (10.7

M ()= gslg(fh() () =

with S; a symetric positive de nite matrix depending on (ki;kz; "), " an arbitrary small real
number and g a su ciently large real number. The solution corresponding to this modi ed
observer dynamics is shown in Figurd 10]2 with the dotted black curve. As expected it stays
away from the the singularities locus in a very e cient way. But, for this method to apply, we
have the restriction that  (S) should be convex, instead of satisfying the less restrictive property
C. Moreover, to guarantee that isin (S), g has to be large enough and even larger when the
measurement noise is larger. On the contrary, when the observer is built with o, there is no
need to tune properly any parameter to obtain convergence, at least theoretically. Nevertheless
there maybe some numerical problems when becomes too large or equivalently ( ) is too close
to the boundary of (S). To overcome this di culty we can select the "thickness" of the layer
(parameter " in () su ciently large. Actually instead of opposing the two methods, we
suggest to combine them when possible. The modi cation[(10]7) makes sure does not go too
far outside the domain, and . makes sure that® does not cross the singularity locus.

10.4 Conclusion

Joining Corollaries[9.3.1 and 10.1.]1, we obtain the following answer to our problem :
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Corollary 10.4.1.

Let X be a bounded subset ofR%, S be an open subset oR% and :S ! RY be
an injective immersion. Assume there exists an open bounded contractible se& which is
C2-di eomorphic to R% and such that

cd(X) S c(3) S

There exists a strictly positive number " and a dieomorphism . : Sy ! RY with
Sa.= S B-(0), such that

e(X0)= (x) 82X ; o(Sa)= RY ;

namely ( ¢;Sa) solves Problems [[-R.

We conclude that if X, S and  given by Assumption O verify the conditions of Corollary

[10.4.1, then Problems JI-R can be solved and Theorgm 8.2.1 holds, i-e an observer can be expressed
in the given x-coordinates.
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Generalizations and applications

Chapitre 11 Généralisations et applications. Dans les chapitres[ ® ef 10, nous avons
donné (en particuliier a travers Corollaire des conditions permettant de résoudre les
Problémes[1 et P lorsque I'hypothés® est vériée et X est borné. Cependant, il arrive que
ces conditions ne soient pas satisfaites et nous montrons dans ce chapitre comment résoudre les
Problémeq 1 ef 2 grace a un meilleur choix de et'T, donnés par I'hypothéseD. En particulier,

ceci permet d'écrire un observateur dans les coordonnéespour I'oscillateur a fréquence inconnue
(8.1), a la fois par la voie du grand gain(8.4) et de Luenberger(8.6). En n, nous montrons a
travers un exemple tiré d'une application, comment la méthodologie présentée dans cette Partie
[T Jpeut étre étendue au cas ou la transformation  dépend du temps.
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Throughout Chapters [9 and[10, we have given (in particular in Corollary[10.4.1 ) condi-

tions allowing to solve Problem[1 and Problem{ 2 when AssumptiorO holds and X is bounded.

However, it can happen that those conditions are not satis ed and we show in this chapter
how to solve both Problems[]1 and P via a better choice of the data given by Assumptior®,
namely and 'T. In particular, this enables to write an observer in the x-coordinates for
the oscillator with unknown frequency (8.1) both via the high gain (8.4) and Luenberger [8.6)
designs.

Finally, we show through an application in aircraft landing how the methodology presented
in this Part [IT ¢an be extended to the case where the transformation is time-varying.

11.1 Modifying and 't given by Assumption O

The su cient conditions given in Chapters §and [LO] to solve Problem[] and Problen{2 in order to
ful Il the requirements of Theorem B.2.1] impose conditions on the dimensions or on the domain
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of injectivity S which are not always satis ed : contractibility for Jacobian complementation
and di eomorphism extension, limited number of pairs (d ;dy) for the P[d ;dx] problem, etc.
Expressed in terms of our initial problem, these conditions are limitations on the dataf , h and
that we have considered. In the following, we show by means of examples that, in some cases,

these data can be modied in such a way that our various tools apply and give a satisfactory
solution. Such modi cations are possible since we restrict our attention to system solutions
which remain in X. Therefore the dataf, h and can be arbitrarily modi ed outside this set.

For example we can add " ctitious” components to the measured outputy as long as their value

is known on X.

11.1.1 For contractibility

It may happen that the set S attached to  is not contractible, for example due to an observ-
ability singularity. We have seen that Jacobian complementation and image extension may be
prevented by this (see Theoren{ 9.3]1 and Remark 16). A possible approach to overcome this
di culty when we know the system trajectories stay away from the singularities is to add a
ctitious output traducing this information :

Example 11.1.1 (Continuation of Example 9.2.1) | The observer [9.10) we have obtained
at the end of Example[9.2.] for the harmonic oscillator with unknown frequency is not satisfac-
tory because of the singularity at®; = %> = 0. To overcome this di culty we add, to the given
measurementy = X1, the following one

y2 = ha(X) = }(X1;X2) X3

with 1
}xaixz) = max 0= X2+ x3) (11.1)

By construction this function is zero on X andy, can thus be considered as an extra measurement
with zero as constant value. The interest ofy, is to give access toxz even at the singularity
X1 = X2 = 0. Indeed, consider the new function de ned as

(X) = (X125 X2;  XiXz; XoX3; }(X1;X2)X3) ! (11.2)

is C1 on R3 and its Jacobian is :

0 1 o o !
1 0
@
—(x) = 0 Xlg ; (11.3)
@x % X3 X2
@XX3 7} }

which has full rank 3 on R3, since} (x1;x2) 6 0 whenx; = x, = 0. It follows that the singularity
has disappeared and this new is an injective immersion on the entireR3 which is contractible.

We have shown in Example[9.3.]l how Wazewski's algorithm allows us to get in this case a
C? function :R3! R* satisfying :

@ 3.
det @(x) x) 60 8x 2 R°:
This gives us ,(x;w) =  (x)+ (x)w which is a C2-di eomorphism on R® B-(0), with

" su ciently small. Furthermore, S, = R® B-(0) being now di eomorphic to R®, Corollary
applies and provides an extension, of , satisfying Problems[] and 2. N
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11.1.2 For a solvable PTJd ;d] problem

If we are in a case that cannot be reduced to a solvabl®[d ;dx] problem, we may try to modify
d by adding arbitrary rows to %(. We illustrate this technique with the following example.

Example 11.1.2 (Continuation of Example 11.1[1) | In Example[11.1.1, by adding the c-
titious measured output y, = hy(x), we have obtained another function  for the harmonic

oscillator with unknown frequency which is an injective immersion onR3. In this case, we have
d« =3 andd =5 which gives a pair not in (9.8). But, as already exploited in Example[9.2.1,
the rst 2 rows of the Jacobian %, in (11.3) are independent for allx in R®. It follows that our

X
Jacobian complementation problem reduces to complement the vectof Xxi1; X2;} (X1;X2))”.

This is a problem with pair (3;1) which is still not in the list (9.8). Instead, the pair (4;1) is,

so that the vector ( X1; X2;} (X1;X2);0)” can be complemented via a universal formula. We
have added a zero component, without changing the full rank property. Actually this vector is

extracted from the Jacobian of

(X) =(X1; X2;  X1X3; Xa2X3; } (X1;X2) X35 0) (11.4)

In the high gain observer paradigm, this zero we have added can come from another ( cti-
tious) measured outputys = 0 : As we saw in the proof of Theorem |(9.2.11), a complement of
( x1; X2;} (X1;%2);0)7 is

0 1
X2 }(X1;%2) 0
X1 0 } (x1;%2) §
0 X1 X2
} (X1;X2) X2 X1

and thus a complement of%((x) is

0 0 0 0 1
0 0 0
_ X2 }(X1;%2) 0
X) =
(x) X1 0 } (x1;%2)
0 X1 X2
}(X1;%2) X2 X1
which gives with the formula (9.2)
a(XW) = X1; Xo; [ Xaixz+ Xowyp (X1 X2)wo] s [ XoXz  Xawp o} (X1;X2)wa];

[} (X1;X2)x3  X1w2  Xows]; [} (X1; X2)W1 + XoWo  X1W3)]

The determinant of the Jacobian of , thus de ned is (x% + x3 + } (X1;X2)?)? which is nowhere
0 on R®. Hence , is locally invertible. Actually it is di eomorphism from R® onto R since we
can express = ,(x;w) as

0 Ve o 0, o

| | 1 2 1 2 3 3
X1 _ 1, % 2 1 0 | AN 2)%@1&2%4§.
X2 2 ' @ (1 2) 0 1 2 2 sA

0 P( 1 2) 2 1 W3 6

where the matrix on the left is invertible by construction. Since ,(R®) = RS, there is no need
for an image extension and we simply take . = ,. To have all the assumptions of Theorem
8.2.1 satis ed, it remains to nd a function ' such that ( ;' ) is in the set'T, the function ¢x
being the x-component of the inverse of .. Since the rst four components of are the same
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as in (8.3), the rst four components of ' are given in (8.5). It remains to de ne the dynamics
of 5 and “s. Exploiting the fact that, for x in X,

z——
y2=0 ; Y2=}(X;X2)xz3 = 0 ; ys3=0 ; y3 =0;
one can simply choose
5=0 a(s y2)= a5 ; %=0 N% y3)= b

for some strictly positive numbersa and b, which nally leads to the function

0 1
2+ Lka(y Ri)

3+ szz(y R1)
C ol et — a+ LKka(y Ri)

G Ry) = Satrs(k]_k%) + L4k4(y R1)
a s
be
With picking L large enough,’ can be paired with any function : R®! R® which is locally
Lipschitz, and thus in particular with ex. Therefore, Theorem[8.2.1 applies and gives the
following observer for the harmonic oscillator with unknown frequency

0,1 1 0 o 0o o o'
25 0 1 0O 0O 0 O
@} @}
Wy W, W3 Rz geWs R R 0} '
%%}iﬁs W, %%ks w3 )} 0 R %R
W3 @Wl W3 @Wl + o 0 0 } Ro R1 1

R2+ Lki(y Ri1)

[ RiR3+XoW1  } (Re;R2)Wo] + L2Ko(y  R1)
[ R2%3 Ry} (ReRo)Ws]+ L3ks(y 1)
sats(&1R%) + Lka(y R1)
af} (Re;R2)&3 Rz RoWs]

b[} (R1; R2)W1 + XoW2  R1W3)]

It is globally de ned and globally convergent for any solution of the oscillator initialized in the
set X given in (8.2). Results of a simulation are given in Figurg 11.]l. Notice that the observer
converges despite the fact that®, and R, are initialized at the singularity. This would not have
been possible with observer?), i-e without adding the ctitious output. By the way, observe
that w, and ws present a violent peak att = 0. This is due to the fact that ®1 and R, are
around the singularity, where only the ctitious output (which has a very small but non zero
value) preserves the invertibility of the Jacobian. We used a step-variable integration scheme to
take this into account. N

Remark 17 It is interesting to notice that the manifold 5 = "6 =0 is invariant. This implies

the existence of an observer with order reduced tal. One could thus wonder if it could be
expressed with coordinates(x; w) in R*, instead of (x;w) in R®, i-e if maybe there existed a
di eomorphism ¢ =( ex; ew) Such that

X = ex( 1253 4) = ex(1; 25 3 400)
w ew( 1, 25 35 4)



11.2. A global example : Luenberger design for the oscillator 137

Figure 11.1: High gain observer|(11.5) with®; = %2 = X3 = 0 at the singularity, L =3, k; = 10,
ko = 35, k3 =50, kg = 24. The simulation was done with a step-variable Euler algorithm.

But then its Jacobian would necessarily be of the form :

°31 0 0 0 1

@, _%01 0 0 §
@( 1, 2, 3 4)_ §+ %

1 2
2+}( 1; 2)2 + 2+} (15 2)2

which is singular for 1 = > =0.

11.1.3 A universal complementation method

In the previous example, we have made the Jacobian complementation possible by increasidg
with augmenting the number of coordinates of . Actually if we augment  with dy zeros the
possibility of a Jacobian complementation is guaranteed. Indeed pick anyC! function B the
values of which ared d matrices with positive de nite symmetric part, we can complement

@ (x) . . B(X) . o
@x which is full column rank with = > . This follows from the identity
0 &0
(Schur complement) involving invertible matrices
! ! !
g .(x)  B(X) 0 | _ B (x) 0
- >
0 & I B(x) 'G5(x) @ () G07B(x) 12i(x)

So we have here a universal method to solve Problefd 1. Its drawback is that the dimension of
the state increases byd , instead ofd  dy.

11.2 A global example : Luenberger design for the oscillator

Let us now come back to the Luenberger observer presented in Sectipn 8.]1.2 for the oscillator
with unknown frequency. Although an inversion of the transformation was proposed in[[PMI06]
based on the resolution of a minimization problem, we want to show here how this step can be
avoided.
Recall that the transformation is given by
(x) = 1X1 X2, 2X1 X2, 3X1 X2, 4X1 X2

%+X3 %+X3 §+X3 ‘21+X3
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and its Jacobian

0 1

1 1 1(X)

§+X3 %+ X3 %4‘ X3

2 1 5 (X)

@ (x) = 2+ X3 2+ X3 2+ X3
@X 3 1 3(X)
§+X3 §+ X3 §+ X3

4 1 4(X)

‘2‘+X3 ‘21+ X3 i+ X3

The complementation is quite easy because there is only one dimension to add : we could just
add a column (x) consisting of the corresponding minors as suggested in Secti.2. However,
this would produce a di eomorphism on X  B-(0) for some", where X de ned in (8.2) is not
contractible due to the observability singularity at x; = x» = 0. Therefore, no image extension
is possible and it would be necessary to ensure thaf remains small and(%1; ®,) far from (0; 0)
by some other means. Like for the high gain observer, we thus try to remove this singularity.
Again, we assume the system solutions remain irX and add the same ctitious output y»
as before, which vanishes irK and which is non zero when(x1; X») is close to the origin namely

Y2 = } (X1, X2)X3

where } is de ned in (L1.1). Once again, it is possible to sho@ that by adding y, to , the
observability singularity disappears, namely the function

X2, 2X1 X2, 3X1 X2, 4X1 Xz, )
Z i} (X1;X2)X3

_ 1X1
(X)_ 2+X ’ 2+X ’ 2+X ’ 2+X
1 3 2 3 3 3 4
is an injective immersion on

S=R?> R;:

Although the Jacobian complementation problem is solvable for this according to Wazewski's
theorem becausé& is contractible, we want to avoid the lengthy computations entailed by
this method. We are going to see in the following that it is possible if one rather take (as before)

(x) = 1X1 X2, 2X1 X2 3X1 X2, 4X1

X2
; ; 1} (X1, X2)X3;0 11.6
i xs 25 24 % }(x13 x2) (11.6)

which is still an injective immersion on S. Although the utility of this zero seems questionable
at this point, we will point out its interest in the subsequent computations. The new Jacobian
takes the form 0

1
1 1 1(X)
%+ X3 §+X3 %+X3
2 1 2 (X)
2+ X3 2+ X3 2+ X3
@ 3 1 3(X)
—(x) = 2+ X3 2+ x3 2+ X3
@x a 1 4 ()
421+ X3 i+X3 §+ X3
A(x) B(x)  C(x)
0 0 0

YIn [PMIOE], it is shown that for any r > 0, there exists L, > 0 such that for all (xa;Xs) in R*  (0;r),
jX1:a  Xip)t+ jX2a  Xopjt+ Xl?a+xl:b+2X2:a+Xz;ij3;a Xabj Lrj 14(Xa) 14(Xp)j Where 14 denotes the rst
four components of . Therefore, 14(Xa) = 14(Xp) implies that X1.a = X1 @and Xz.a = Xz @ either one of
them is non zero and in that case, the inequality says that we have also x3.a = X3, Or they are all zero but then

5(Xa) =  s5(Xp) implies that xs;a = X35. We conclude that is injective on S. Now, applying the inequality
between x and x + hv and making h go to zero, we get that @@—;“(x)v =0 implies that v1 = v, =0 and vz =0
if either x1 or x, is nonzero. If they are both zero, @@XS (x)v =0 with v; = v, =0 givesvsz =0. Thus, %(x) is
full-rank.
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Let us rst simplify the matrix to be complemented by noticing that

0 1 0 may(x) 1
0 1 m2(x)
N _ 0 0  mg(x)
M (Xs; .)@(X)— 0 0 max) (11.7)
A(x) B(x) C(X)
0 0 0
where M (x3; ;) is the invertible matrix
0 1
2+ X3 0 0 0 00
I 0 %+ X3 0 0 00
v D) 042 0 0 2+ X3 0 00
Mxai i) = 04 122 0 0 0 2+x3 0 0
0 0 0 0 10
0 0 0 0 01

and D( ;) is an appropriate Vandermonde matrix associated to the ;. So now we are left
with complementing the matrix given by (L1.7). Observing that right-multiplying (1L.7)]by the

1 0 0
0 1
L0 m) 8 é m (zx)
invertible matrix N(x)= @0 1  ma(x) X gives 3 , with
0 0 1 0 0 Mg (X)

A(x) B(x) ms(x)
0 0 0

ms(x) = C(x)  mMi(X)A(x) mz(x)B(X) ;

we conclude rst that the vector (ms(x); m4(x); ms(x);0) in R* is non-zero onS and then that
(11.7) can be simply complemented by complementing the vectofms(x); ma(x); ms(x); 0) into
an invertible 4 4 matrix. Note that this is the solvable problem PT4; 1] from (9.8), and without
adding the 0 output y3, we would have obtainedP|3; 1] which is not solvable. An explicit solution
to P[4;1] is given in Section, but we can here also exploit the very particular structure of
the vector and use the remark made in Sectiof 11,113 that the matrix

0 1
m3(X) 1 0

0
_ mMy(X) 0 1 0
P)= %mg(x) 0 0 1 §
0 m3(x) my(x) ms(x)

is invertible as soon as(m3(x); m4(x); ms(x)) is non-zero.

Reversing the transformations, we thus manage to extend the Jacobian of into a matrix of
dimension 6 whose determinant is non-zero o%. Adding three state components to the system
state, we obtain a di eomorphism , onS; = § B, with " su ciently small. All this leads to
the observer : I

2

A

@ 1
@""X(k; ) (A (% W)+ Byj) (11.8)

whereB = [1;1;1;1;0,0, A = diag( 1, 2, 3, 4, ; ) and and are two
strictly positive real numbers. The expression of the Jacobian of the extended function is omitted
here due to its complexity, but it can be obtained by straightforward symbolic computations.
The singularity at (%1;%2) =0 has disappeared, but we still need to ensure thaks remains
positive, or at least greater than minf 2g. Besides, unlike the high gain observer5), the
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invertibility of the extended Jacobian is only guaranteed forw in B-. To make sure the solutions
remain in S; = § B-, we should solve Problenﬂz namely extend , into a di eomorphism

. Whose image ofS, coversR®. Since S, is di eomorphic to R®, we know it is theoretically
possible by Theoren{ 10.11 and replacing, by the new surjective di eomorphism  in (L1.8)
would give an observer whose solutions are ensured to exist for dll

Unfortunately, due to the complexity of the expression of ,, we are not yet able to achieve

such an extension. The consequence is that there may exist a set of initial conditions and
parameters such that the corresponding trajectory of observer[(11]8) encounters a singularity of
the jacobian of , and thus diverges. A way of reducing this set is to approximate the image of
Sa by ., as proposed in Exampld 10.2]1. In the present case, we have (denoting, the rst

four components of  de ned in (L1.6)),
10 1
1 1
e
3 X2
4 X3

0
(1203 4= X)) 0 %

HANWNNNEN
A W N P
A WN P
N e

and thus
F( (x))= F(a(x0)=0

where F is the quadratic function de ned by
0 1

F( )=det%

Therefore, replacing >M by F( ) in (f£0.2)-(I0.3) gives a di eomorphism ( ; Id) from R® to
n 0

e
w N
000

1 1
2 2
3 3
4 4

HANWNNNEN

E= 2RO:F()*<

and taking . = 1 instead of , ensures that for any observer solutiont 7! "), our
estimate de ned by ({; W) = 1(’\) will be such that ,(%; W) remains in E. When goes to
zero, E gets closer to 4(S f 0g) and thus we can hope thatWw will remain su ciently small

to keep the invertibility of the Jacobian of .. We indeed observe in simulations that taking .
instead of , enables to ensure completeness of some of the solutions which otherwise diverge
with ;. An example is given in Figure[11.2 : before = 0:05, the observer trajectory is close to

a singularity, W tends to become very large (see Figur)), so doés("), but  enables to
reduceF (") (see Figur) and thus prevent# from becoming too large and encounter the
singularity. Unfortunately, although the set of initial conditions leading to uncomplete solutions

is reduced by this method, it does not completely disappears.

11.3 Generalization to a time-varying

In Assumption O, it is supposed that the transformation  from the given x-coordinates to the

-coordinates is stationary. But we have seen in Parf I] that it is sometimes easier/necessary to
consider a time-varying transformation which depends on the input, and apply Theoren] 2.2]1.
It is thus legitimate to wonder if the methodology presented in this part is still useful. In fact,
the same tools can be applied in the sense that :

- Assumption O should now provide for eachu in U a C! functon :R% R! RY,
subsetsS; and X; of R%* and a set' T made of coupleq'; ) suchthatforall tin[0;+1 ),
x 7' (x;t) is an injective immersion on S, for all xg in Xg and all all t in [0;+1 ),
X (Xp;t;u) isin X¢, for all x in X;, ( (x;t);t) = x and ' is such that the appropriate
convergence in the -coordinates is achieved.
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- Problems[] and 2 can then be solved applying the tools of Chaptefg 9 afd[10 on7!  (x;t)
for eacht. This leads to a function . : R%* RY % R1 RY andopen subsetsS, of RY
containing X f Og such that for all tin [0;+1 ), (x;w) 7! o(x;w;t) is a di eomorphism
on Sy verifying :

c(X0t) = (xt) 8x 2 X (11.9)
and
o(Sar;t) = RY : (11.10)

Z—{ .

and conclude as before that

Jim e X (Ro; Wo; t; u); W (Ro; Wo; t; u); t (X (xo;t;u);t) = 0 ; (11.11)
we must take into account the dependence of, ont and take :
X 1
W o@w e AEY et T

- Finally, to conclude from (L1.11)), that ® converges tox and W to 0, we further need that
the injectivity of (x;w) 7! o(X;w;t) be uniform in t. When the dependence ort of
comes from the input (and its derivatives), this property is often satis ed, in particular
when those signals are bounded in time (see Lemnja A.3.5). Note that a special attention
should also be given to the seS,¢ which could be of the formS;  B.(;) with " going to 0
with t. Thus, it should be checked that" is lower bounded. A justi cation as to why this
should be true in practice appears in the next section.

We give in the following section some elements of justi cation and then we illustrate this on
an example about aircraft landing.
11.3.1 Partial theoretical justi cation

Suppose that for allt in [0;+1 ), x 7! (x;t) is an injective immersion on some open se§;.
Consider the extended system

(X_ FoGu@® .y h(x;U(t))!
t =1 2 t

with state x = (x;t). Then, the function
—(x)=( (xt);t)
is an injective immersion on
S=f(xt)2R% [0;+1): x2Sg

and complementing its Jacobian
!
@ (= G (xt) Gn(xt)
@x— 0 1

on S is equivalent to complementing that of x 7! (x;t) on S; for,eacht. Indeed, if (x;t) is

a complementation of %((x;t) on §; for eacht, (x) = ()gt) is a complementation for
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(x;t)

%}(l) on S. And conversely, if (x) = complements%}(x), then (x;t) %(x;t)

complements & (x; ).
We conclude that it is not restrictive to look for a complementation of the Jacobian of
X 7! (x;t) at each time t. Assume it has been done and take

|
= &Y

Following the methodology, we consider

! !
x;t)+  (x;t)w X;W; t
LGow= o+ (ows=  CGDEGOW (oY
Beware that Lemma([9.0.]1 does not apply directly becausé& is not bounded, thus we cannot
directly conclude that there exists " > 0 such that , is a dieomorphismon S = S B-.
However, the reader may check in the proof of [AEP14, Proposition 2] that |f (1), (xt)
and @x(x t) are bounded onS, the Jacobian of , is full-rank on S, for some" su C|ently small.
This condltlon is often veri ed in practice when tt the inputs are bounded. It follows that we can
reasonably assume Problem]1 solved, and leaving aside Problém 2, this leads to an observer of
the type (denoting ,(x;w;t) rather than ,(x;t;w))

z @ P !
"axwiBiruy)
Gwk = _aw (a® y
¢ @x; w; t)( Y 1(fy)
where' 1 should be an observer fot and we have
0 1
@ @ @ @ ' 1 @ @ ‘e.
-a =  @w) @t =@ axw) @xw) @t A
@x; w;t) 0o 1 0 1

Of course,t being well known without any noise, we can replacd by t and ' ; by the constant
function 1. This nally gives the "reduced order" observer (11.12).

11.3.2 Application to image-based aircraft landing

In [GBC™ 158, GBC" 151], the authors use image-processing to estimate the deviations of an
aircraft with respect to the run-away during a landing operation thanks to vision sensors such
as cameras and inertial sensors embarked on the aircraft. The objective is to make landing
possible without relying on external technologies or any knowledge about the run-away. In order
to estimate the position of the plane, the idea is to follow the change of position of particular
points and/or particular lines on the images provided by the cameras. A strategic choice of
those points/lines must be made in order to guarantee observability during the whole duration
of the landing operation : for instance, a point may disappear from the image, and a line can
stop moving on the image in some particular alignment conditions, thus providing no (or only
partial) information about the movement of the aircraft. A full study of those methods can be
found in [Gib16]. A possible choice ensuring observability is to follow on the image the position
of the two lateral lines of the run-away and the reference point at the end of the run-away. It
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gives the following model :

8
4 = 1y ut)y+ (1 ut)
% a1 = 201 )+ 201 15t)
2 = 1( 2 )+ 1( 25 21)
2 = 2( 2, 20+ 2( 25 2:1) o Y=(01 1 20 20 15 2)
% a2 = (W1 W)
2 = (Mu 2 VW)
. =y 2

where( j; i) and ( 1; »2) are the measured position on the image of the two lines and the point
respectively, the functions and are de ned by

1(;;t) = g cos lpsin g

o(;:t) = (L+ ?(yisin !,cos)

1(;;t) = (asin bcos )(vicos + vysin V3 )
o(;;t) = (a cos +b sin +c)(vicos + vosin vz )

where the aircraft velocitiesv and ! expressed in the camera frame, the aircraft velocitie&/y ,
Vy and Vy expressed in the runway frame, and camera orientationga; b; 9 are known input
signals.
Denoting Xm = ( 1; 1; 2; 2; 1; 2) the measured part of the state, we obtain a model with
state
X =(Xm; )2 R’

and dynamics of the fornff]
(

Xm = ( Xmit)+ ( Xm;t)

= V() 2 Y= Xm o (11.13)

where the action of the inputu = (a; b; c;v;w; \& ; Vv ; Vy) is represented by a time—dependen@
to simplify the notations in the rest of this section. This system is observable if and only if the
unmeasured state can be uniquely determined from the knowledge of the measured statey, .
From the structure of the dynamics, we notice that this is possible if the quantity

(Xm;t) = ( Xm:t)” ( Xm;t) (11.14)

never vanishes. It is the case in practice, thanks to a sensible choice of lines and point (see
[Gib16] for a thorough observability analysis during several landing operations).

A high-gain observer

Assumptions

- The input signal u = (v;w; Vx ;W ;Vy) and its rst derivative are bounded in time.

- There exists a strictly positive number " and a compact subsetC of R’ such that for

2Note that whatever the number of chosen lines and points in the image, the model can always be written in
this form, only the dimensions of X, and the input change.

3This comes back to choosing one particular input law, but the reader may check that the same design works
for any input such that the observability assumption and the saturation by~ in ( are valid.
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where for each timet, we de ne

S =fx2R"; (xm:t) "g:

In other words, remains greater than" along any solution of the system, making it observ-
able. Under this assumption, we know that the statex can be reconstructed from the measure-
ment X, and its rst derivative. We thus consider the transformation ,:R’ R! R!? made
of y and its rst derivative i-e :

Xm

O(X;t): qZ(X;u(t)): ( Xm;t)+ ( Xm;t)

(11.16)
For any t in R, o( ;t) is an injective immersion on S;. Sinceu, u and the trajectories are

bounded, we deduce from Theorem 5.211 and RemaiK 4 that, transforms the system into a
phase variable form (

-m
-

d . -
2( ‘u (t), U_(t)) ' Y= m (1117)

where ., denotes the rst six components of and 4 the six others, and » can be de ned by

2(; 0 1) = sa(LEh( o(;t); 0 1);) (11.18)

with f and h as de ned in De nition $.2.1/ a bound ofo%ﬁ(x; 0; 1) for x in Cand ( o; 1)

bounded by the bound for(u;u), and 7! o(; ) any locally Lipschitz function de ned on R1?
such that it is a Ieft—inversef_r] of x 71 (x; ) for x in X;.
We have the following observer for System|(11.17):

8
<

"o+ Lka(y  m)
2(u; W+ L2kay ")
with ki;k2 > 0 and L su ciently large. Although a left inverse o of ; can be found in that

case, and an estimate? of x could be computed by® = (" t) as proposed by Theorel,
we would like to express the dynamics of this observer directly in thex-coordinates.

Y= m (11.19)

o> 3

Observer in the given coordinates

Fictitious output Following the same idea as for the oscillator with unknown frequency, we start
by removing the injectivity singularity of  outside of S;, i-e we look for an alternative function
which is an injective immersion onR’. Notice that the function

n (o))
} (Xm;t)=max " (Xm;t);0 (11.20)

is zero inS; and nonzero outside ofS;. According to (?7?), this function remains equal to 0 along
the solutions and therefore so does the ctitious output

y7 =} (Xmit)

It follows that y; can be considered as an extra measurement traducing the information of
observability. Consider now the function

) =( o(1t); } (Xm;t) ) :

T .
“Take for instance o ;t)= m; e —temit)
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Unlike o(;t), (;t)is an injective immersion on the whole spacdR’ for all t. Indeed, ( Xm;t)
and } (xm;t) cannot be zero at the same time so that the new coordinatg (x;t) enables to
have the information on when is zero. Besides, its Jacobian

0 1
@ le 6 0O 1
Z (xt)= ( xm:t) K (11.21)
@x
} (Xm:t)

is full-rank everywhere.

Immersion augmentation into di eomorphism by Jacobian complementation. Following the
methodology presented in this Part@ we extend the injective immersion ( ;t) into a dif-
feomorphism. The rst step consists in nding a C! matrix (x;t) in R © such that the
matrix

@ . . .
@(x,t) X (x;t)

is invertible for any x and any t. In others words, we want to complement the full-rank rect-
angular matrix %(x;t) with 6 vectors in R'® which make it square and invertible. Thanks
to the identity block, it is ip fact su cient to nd 6 independent vectors in R’ which comple-
( Xm;t)
} (Xm;t)
R® which is contractible, like in Example [9.3.1, but this leads to rather tedious computations.
Since Problem P[7;1] is not in the list ( of cases admitting universal formulas, we could
had another ctitious output ys =0 like we did for the oscillator to recover a solvable problem
P[8;1]. We present here another path which does not necessitate lengthy computations noy an

ment the vector . A rst solution would be to implement Wazewski's algorithm on

@
additional output. The idea comes from the remark made in Sectior] 11.1)3 that when %X
!

I
is full rank, it can always be complemented by @ > because the resulting matrix has a

‘@x
determinant equal to det %>|%< 6 0. In our case, we remark that the determinant of the
( Xm;t) le 6

matrix is equal to} (Xm;t)+ ( Xm;t)T ( Xm;t) which never vanishes

FXmit)  ( Xmit)”
by de nition. Thus, a possible candidate for complementation is :

0 1
Os 6

(mi)= @ lss K :
( Xm;t)”
As recommended by Lemma 9.0]1, we now introduce the extension of denedon R’ R® R
by

cXwit) = (Xt)+ (XmiOwW . (11.22)
Besides, thanks to the fact that does not depend on , we have :
0 1
@ |d6 6 06 1 06 6 g
e . . — .
ey win= 8 (xmit)  1ds 6

}(Xmit)  ( Xmit)”

which is invertible for any (x;w) in R'® and any time t. In fact, as for the high gain observer
for the oscillator, ( ;t) is a di eomorphism on R*3 such that ,(R3;t) = R for any t. Thus,
we have managed to transform an injective immersion (;t) : R’ I R!® into a surjective
di eomorphism .(; ;t): R¥! R
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Observer in the given coordinatesAs suggested at the beginning of this section, we consider
the observer :

x @ ! @
- @X;fN)(k:W;t) (BWDRLY) R (11.23)

where' isdenedonR® R’ R RShy

0 1

it lkaly. W)
C(Aaty) = B salLZR(&u®iu®); )+ L2kely w) K
a’y

N

with "= ("m:"4; ") 2 R® R® R, a any strictly positive number. A result of a simulation is
given in Figure[11.3.

11.4 Conclusion

We have presented a method to express the dynamics of an observer in the given system coor-
dinates, thereby avoiding the di cult left-inversion of an injective immersion. It assumes the
knowledge of an injective immersion and a converging observer for the immersed system through
Assumption O.

The idea is not to modify this observer dynamics but to map it back to the given coordinates
in a dierent way. Our construction involves two tools : the augmentation of an injective
immersion into a di eomorphism through a Jacobian complementation (Chapter[d) and the
extension of the image of the obtained di eomorphism to enlarge the domain where the observer
solutions can go without encountering singularities (Chapter| 10).

For those tools to be usable, some assumptions on the domain of injectivity must be veri ed,
but we have seen how they can be ful lled in practice through a wise choice of the transformation

, and how those tools also extend to the case where the transformation is time-varying.

To conclude from an implementation point of view, the tools presented in Chapter[ 9 to
augment an injective immersion into a di eomorphism are su ciently constructive and general
to be applicable in practice. We have even given a universal complementation method in this
chapter. The main limitation of this method rather appears when wanting to extend the image
of this di eomorphism. Indeed, the only constructive result presented in Chapter[10 requires
this set to be precisely known and also to satisfy some extra conditions. Although we have
shown that it is sometimes possible to use an approximation, it lacks in generality and this
step constitutes a signi cant di culty in practice. Other solutions may exist and need to be
developed, in particular to keep the amplitude of the extra coordinatesw small to preserve the
invertibility of the Jacobian.
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@ % x (b) W for t 2 [0; 0:07]

(c) W for t 2 [0:07; 2] (d) Value of F before and after applying

Figure 11.2: Luenberger observer|(11|8) withR; = 0:08, 2, =%3=0, 1=6, 2=9, 3=14,
4=15,and .= ! _ instead of ,. The simulation was done with a variable step Euler
algorithm.
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(a) e = Xi Xi (b) Wi

Figure 11.3: Observer |(11.23) withL = 10 and k; = k; = 1. The simulation was run on
Simulink.
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Observers for permanent magnet
synchronous motors with unkown
parameters






Chapter 12

Short introduction to permanent
magnet synchronous motors

Chapitre 12 Courte introduction aux moteurs synchrones a aimant permanent.

Dans ce chapitre, nous présentons rapidement le fonctionnement et le modeéle d'un moteur syn-
chrone a aimant permanent (MSAP). En pratique, il est crucial de savoir estimer en ligne la
position du rotor et sa vitesse de rotation, ceci avec un minimum de capteurs pour des raisons
de colt et de contraintes mécaniques. En particulier, des chercheurs ont développé le controle
"sensorless", c'est-a-dire basé seulement sur les mesures des variables électriques (tensions et
intensités) et non mécaniques (angle du moteur, vitesse). En particulier, des observateurs de
type gradient ont été proposés et sont rappelés ici. Cependant, ces observateurs dépendent le plus
souvent de paramétres tels que la résistance et le ux de I'aimant, qui peuvent varier signi ca-
tivement avec la température. Il est donc important de trouver des observateurs de la position
du rotor qui sont indépendants de ces parametres, voire qui en donnent une estimation : c'est
le probleme considéré dans cette partie.

A Permanent Magnet Synchronous Motor is composed of a permanent magnet rotor
placed inside a stator made of windings whose repartition and currents are chosen in order
to create a rotating magnetic eld in the airgap of the machine. A torque is then produced
on the permanent rotor magnet due to magnetic attraction, thus inducing the rotor to rotate.
Compared to other commonly used induction machines (see Figu.l), the absence of rotor
windings and external rotor excitation reduces the maintenance costs as well as losses in the
rotor, and makes PMSMs highly e cient.

Figure 12.1: Permanent Magnet vs Induction Motor
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Using Joule's and Faraday's laws, a PMSM model expressed in a xed stator frame reads
= u RI (12.1)

where s the total ux generated by the stator windings and the permanent magnet, (u;i)
are the voltage and intensity of the current in the xed stator frame and R the stator winding
resistance. The quantitiesu, i and are two dimensional vectors. The way the total ux is
related to the rotor angle ; diers depending on the geometry of the rotor and stator. When
the repatrtition of the windings and the pro le of the magnet are perfectly symmetric, the motor

is said to benon-salient and the total ux may be expressed simply as
!
cos

= Li+ sin (12.2)
where L is the stator inductance, the magnet's ux, and = np ; the electrical phase, with
np the number of poles (winding pairs) of the stator. This relation implies

i Lij2 2%=0 (12.3)
= arg( Li): (12.4)

This model may appear unorthodox to those who are rather used to models of the type
|

z i '
LR = u R not,  SNMp )
cos(p r)
+ = I |
. > sin(np r)

where J is the inertia of the rotor and | the load torque. However, they should observe that
the electrical part of this model ( rst line) is actually obtained by plugging (12.2)| into (12.1)]
But this operation makes ! ; appear and they are then forced to integrate it in the model with
the mechanical part (third line). The drawback is that it depends on two new parametersJ and
L which must be either known or estimated. That is why we rather keep the model made of

@21)-@22)

To minimize the cost and increase the reliability of PMSMs, it is strategic to make progress
on estimating online the rotor position . and speed! ; = 4, with a minimum of sensors and
fast algorithms. To this end, researchers have developed the so-called "sensorless" control which
uses no measurement of mechanical variables, only of electrical ones, namélyi). Indeed, cost
as well as mechanical constraints often render the integration of position sensors troublesome,
or even impossible.

According to (12.4), in the case whereL and i are known, an estimate of can be simply
recovered from an estimate of the total ux . Thus, it is enough to design an observer for the
system

= u Ri ; y=j Lij? ?2=o0; (12.6)

with known inputs (u;i) and where the information given by (12.3) is used as a measurement.
A review of the rst steps in that direction was given in [AWO06]) and a Luenberger observer
was proposed in[[PPO08]. More recently inl[LHN 10], was proposed the very simple gradient
observer

A . G T A T (12.7)
which turned out to be extremely e ective in practice as rotor position estimator. However,
from a theoretical view point, it was proved in [OPA™ 11] to be only conditionally convergent
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: it may admit several equilibrium points depending on the rotation speed! . In fact, later in
[MPH12], the author showed that the following minor modi cation

2
~ u R 29" L)max " Li 2:0 (12.8)
enables to achieve global asymptotic stability thanks to convexity arguments.

All these observers typically require the knowledge of the resistanc®, magnet ux  and
inductance L. Unfortunately while L may be considered known and constant (as long as there is
no magnetic saturation), R and do vary signi cantly with the temperature and these variations
should be taken into account in the observer. For example, for a given injected current, when the
magnet's temperature increases, its magnetic ux decreases, and the produced torque becomes
smaller. Therefore, an online estimation of the magnet's ux enables to :

- adapt the control law in real time and thus ensure a torque control which is robust to the
machine's temperature ;

- have an estimation of the rotor's temperature
- have an estimation of the magnet's magnetization degradation with time.

That is why e orts have been made to look for position observers which do not rely on
the knowledge of those parameters, or even better, which also estimates them. For instance,
[HMP12| BPO154d] have proposed observers which are independent from the magnet ux. We
complete this line of research in Chapter{ IB by extending the gradient observeq (12.7) with
the estimation of . global convergence is established when the rotation speed stays away
from zero and its performances are compared to that of other existing observers. As for the
resistance, in [ROH" 16], the authors propose and study via simulations an adaptive observer to
make the gradient observer previously mentioned independent from the resistance. However, the
convergence is not ensured and actually we show in Chaptgr L4 that the system is not observable
whenR is unknown unless other informations are added. When those informations are available,
we propose a novel Luenberger observer.






Chapter 13

Rotor position estimation with
unknown magnet ux

Chapitre 13 Estimation de la position d'un rotor lorsque le ux des aimants est

inconnu. Dans ce chapitre, nous proposons un nouvel observateur "sensorless" qui estime la
position du rotor sans avoir a connaitre le ux des aimants : seules les mesures des intensités et
courants, et les valeurs de l'inductance et de la résistance sont nécessaires. Cet observateur étend
I'observateur gradient introduit dans [LHN™ 10] en ajoutant I'estimation du ux des aimants, et

le rend globalement convergent si la vitesse de rotation ne s'approche pas de zéro. Nous étudions
sa sensibilité aux incertitudes de résistance et inductance, ainsi qu'a la présence de saillance.
Ses performances en boucle ouverte sont illustrées par des simulations sur des données réelles et
comparées a d'autres observateurs indépendants du ux existant dans la littérature, a la fois en
terme de colt en calcul et de robustesse.
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I35 Conclusion 1. . . . . . . . . 163

In this chapter, we address the problem of estimating the rotor position of a PMSM
without relying on the knowledge of the magnet's ux, i-e when only electrical measurements
and (approximate) knowledge of the resistance and inductance are available.

First steps in this direction are reported in [HMP12] with the design of a Luenberger observer
(see [Hen14] for a much more detailed analysis and Secti.l), and [N [BPO15%a, BPQ5h,
BBP* 16], with the design of an observer based on tools from parameter linear identi cation. In
fact, we will show that those two observers rely on the same regression equation but the former
solves it at each time whereas the latter solves it as time goes on with a gradient-like scheme.
Convergence comes under an assumption of invertibility of the regressor matrix for the former,
and on a persistent excitation condition for the latter.

In the same line of research, we propose here a new observer which extends the gradient ob-
server from [LHN* 10] with the estimation of the magnet's ux, and makes it globally convergent
provided the rotation speed remains away from zero. We study its sensitivity to uncertainties
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on the resistance and inductance and to the presence of saliency. Its performances in open-loop
are illustrated via simulations on real data and compared to the other previously mentioned
magnet ux independent observers in terms of computational cost and robustness.

The content of this chapter was presented in[[BP17].

Notations The rotation matrix is denoted

cos sin

R()= sin cos

13.1 Gradient observer

Since is unknown in this chapter, we consider the system

8

2 —= Uu Ri

. -=0 (13.1)
Ty = hpPE 2

with inputs (u;i), known parameters(R;L), state ( ; ) and measurementy which is constantly
zero. We introduce the corresponding gradient observer

8
5 A\ .2 LY
3

Li

|>

= u Ri 2q(" Li)

2
= q" " U

(13.2)

1>
>

N2

whereq s an arbitrary strictly positive real number. It is a straightforward extension of observer
(12.7) with the estimation of
Theorem 13.1.1.
Consider (; ) in R? (0;+1) and inputs u;i : R'! R? such that there exists strictly
positive numbers! o, 1o and 11 such that the solution (( ;t;u;i); ) of (13.1) veries

O<lgy L) THo ; () T
with

(t)y=arg(( tyui) Li(t) :

For any strictly positive real number g, for any (% ") in R2 (0;+1), the solution
(T % %tui); T % Ntui)) of (@T3.2) satis es

Jm ity (oi+ity  j=0;

A

where we have used the abbreviation{ t) = T * Mt;wi), Tt) = T % ™t;u;i) and

(t)=( tui).

In other words, System (13.2) is an observer for Systenf (13.1) for the solutions with a bounded
rotation speed which remains away from zero. Of course, taking' as the argument of "  Li,
we also obtain

Jim Mty (t)=0:

Proof : The proof of Theorem [3.1.1] is lengthy and technical, so we only give here the most important
steps. The whole proof is available in Appendix ]

Consider a solution ( ;) of ({3.1), with in (0;1 ) and de ne
(ty=arg(( t) Li(t);
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so that
cos (t)

(t)y=Li@)+ sin (D

(13.3)

Pick (* M in R® (0;1), and q > 0. To ease the notations, we denote the corresponding solution of

@32) (T 1); T t)). According to (£3:3), it is enough to prove that

. . cos (t)
tllllm to uo sin (t) 0
and
im Ty =
— . . cos (t) . I
To simplify our task, we transform the solution Li + sin (1) ; into an equilibrium. Thus,
we carry out the analysis in the coordinates
Xd _ . . )(\d _ N .
X4 =R(C )(C L) ; %4 =R( ) Li
with ({3.3), we obtain
Xa  _
and it is enough to show that
dmXa©= 5 gm e(©=0 ;T
In those coordinates, the dynamics of the observer reads :
8
2 Ry = 1R, 2qRg X2+ X2 "2
> Xg = 1 Xg+! 20Rq XG+X§ "2 (13.4)
. n - q/\ )eg_‘_ )eg N2
where! (t) = (t). Theset = R2 (0;+1 ) being forward invariant for these dynamics, we study the

behavior of its solutions when they are in . The proof consists in nding a Lyapunov function decreasing
along the solutions of , and proving convergence to ( ;0; ) which is the only equilibrium point
in . More precisely :

1.The function
N

VORaRe )= 4 3G RD e

1

-+ =

4 2
is a Lyapunov function. It satis es :

v= gt (" X+ X§)® 0

2.Any solution of ({3.4] starting in is bounded and is dened in  for all t in [0;+1 ). Then,
thanks to Barbalat's lemma,

Jim oot n® Ra®+XqM=0 : lim THXet)=0 ; lim T )(Xat) )=0

3.lt is not possible to have Itilmiqf Ty=o0.

Theorem|[13.1.] tells us that unlike for observer[(12]7), no convexi cation is needed to achieve
global convergence of the gradient observef (13.2). Hence, even when the parameteis known,
we may prefer to use observer2) instead of observef (12.8). In this way, although the
observer state is augmented with™, we get global convergence without knowing .
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13.2 Alternative path

The observer presented in the previous section is based on Syste.l) which is nonlinear
because of its output function. Fortunately, this function is quadraticin ( ;) ,and(—; ) does
not depend on( ;) . Hence linearity can be obtained by time derivation. Namely, we have

y =2( L)' (u Ri ET{)

which is linear in  and independent from . The new problem we face now is the presence of
Z
the time derivative LT. A well known x to this, is to use a strictly causal Iter. Namely, let

_= (+y) ;5 yr= +y (13.5)

with any complex number with strictly positive real part. Itis easy to check that the evaluation
ofyf +(c+2Li)T (z+ L?3jij?), along any solution, decreases asxp( t) whenc and z are
solutions of (

c 2L 2u Ri)

c
z = z+d(Uu Ri) LZij?: (13.6)
So, instead of the design model[(13]|1), we can use
= u Ri ; yf= (c+2Li)" +( z+ L%ij? (13.7)

with inputs (u;i;c;z), state and measurementy; . Also because of), we picly constantly
zero as we did above withy. System ) can be seen as a linear time varying system and
therefore any observer design for such systems apply. It can be a Kalman Iter or more simply
the following gradient observer

= ¢ 2L 2u Ri)
= z+cl(u Ri) LZij? (13.8)
u Ri+ (c+2Li) (c+2Li)™™ z+ L%ij? :

vV N
>
>IN o

where is an arbitrary strictly positive real number. In [BPO15a], the authors propose the
following non minimal version of this observer :
8

2 34 = U Ri
., 5 = (s 14 LD ; y= ju Lj? 5 (13.9)
" 89 = y T 89
with
N
= 14T 89
= (c+2Li)

where c veri es the dynamics (13.8) and we have the relation
- T :
z= 1u(ct 1)t 5

with z satisfying (13.8).

Convergence of these observerp (13.8) dr (13.9) is guaranteed as long asatis es a persistent
excitation condition which, as proved in [BPO15&], holds when the rotation speed is su ciently
rich.

Inspired from nonlinear Luenberger observers, another observer is proposed in [HMP12]. It
consists in usingm lters of the type ({3.6), with poles , with k in f1;:::;mg, to obtain m
equations in "

(e +2LI)™"  (z+ L%ij> =0 (13.10)



13.3. Performances 159

which are solved in a least square sense. It is proved ih [Hen14] that the matrix of the, + Li
is full column rank when! stays away from0, m 3 and the | are chosen in a generic way.
Actually, observer (13.8), observer [(13.9) of [BPO158], or the one in [HMPI12], are identical
except in their way of solving in " equations (13.10). The former two solve 0) with only
one (m = 1) but dynamically along time. The later solves them at each time, with at least
two (m 2.
In the remainder of the chapter, we intend to compare the performances of observe.2)
introduced in the previous section with those of this other family of observers, in particular

observer [13.8).

13.3 Performances

13.3.1 Computational cost

We already see that the smaller dimension of observelf (13.2) and its great simplicity of imple-
mentation provides a signi cant advantage. Indeed, in our matlab simulations, CPU time was
found to be twice smaller than for the other observers presented in Sectign 13.2. This numerical
e ciency constitutes an important feature since those observers are intended to run online where
processing power is often limited.

13.3.2 Sensitivity to the presence of saliency when Iq IS constant

According to [BC98], the simplest way to take saliency into account in the model of a PMSM is

to keep (12.7) but to replace the expression[(12]2) of the total ux by
! !

cos2 sin2 - cos

= i + . ) .
Lo+ ba gino  cos2 sin (13.11)
whereL is a second order inductance. Thanks to the identity
! ! !
cos2 +1 sin 2 cos sin 5 COS 0
sin2 cos2+1 sin cos  ° sin O
the above expression of can be rewritten as
!
(Lo Lp)i=(+2 Liig) g?ns (13.12)
with the notation I
g = 4 =R( )i (13.13)

Iq

This shows that, when iy is constant, we recover exactly the design model (13/1) provided we
replaceL and by
Ls=Lo Li ; s=]j+2 Liigj:

Hence Theorem 1 holds in the case with saliency at least when the signals obtained from the
motor are such that iy is constant. Speci cally, by implementing observer ) with L g instead
of L, we directly obtain :

Imity (0j+ity  §=0:

This means that " converges to and " to the "equivalent ux" . But this time, it is not
su cient to compute the argument of " Lsi to obtain an estimate of , since according to
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(13.12), it converges either to or + depending on the sign of +2 Liigy. In fact, de ning
o as
o=arg(  Lsi)

and igqo as |
. ig: .
ldgo = id,O =R( o)l
g;0
we have :
-if +2 Ljig> 0O, then s= +2 Liig, 0= ,igo=Igand s 2Ljigo= >0
-if +2 Lqig< O,then = 2L4ig, 0= + ,igo= igand s 2Ljigo= < 0.

Therefore, computing
N N .
o = arg( Lsi)
and Tgq0 de ned by !

A
Ig: .
?dq;o = Ad,O = R( AO)' ,
Ig;0
and taking
= Ao if " 2L l?d;O 0
N N .
= o+ otherwise ;
we obtain

Jim ) (t)=0:
This convergence is a clear argument in favor of observef (13.2) with respect to observer (1P.8).
Indeed, the exibility provided by the estimation of enables to apply the same observer to

salient motors without losing convergence of . The same conclusions hold for the observers
presented in Sectior]f I3.2. Not to be forgotten, all this holds wheriy is constant.

13.3.3 Sensitivity to errors on R and L when (ig;iq;! ) is constant

In Theorem 1, we claimed convergence for observef (13.2) assuming perfect knowledge of the
resistance and the inductance and the absence of saliency. Then, in the latter subsection, we
extended this result to salient models as long as the current in thedq frame iq4 is constant.
Given the fact that the non salient models can easily be obtained from the salient ones by
taking L1 = 0, we keep here the more general model with saliency made df (12.1) and (13/11).

In this section, we study the possible consequences of using in the observers approximations
R and ' of R and Ls. For this we restrict our attention to the case where R( )i = idq and
! are constant. This con guration is often considered in practice, since it corresponds to a
constant rotation speed with a constant load torque. In this case, the model has an asymptotic
behavior given by

u=R()Ugg; 1=R()igg: = R() g

where Uqq, idq @and  gq are constants satisfying

'J dq = Udgqg Rigq dq Lsidg = 0

where !

Let eq be dened as
1 ,
eq = TJ 1R( )(Ugq IQIdq)

It satis es
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a) —eq=U Ri

i-e the same dynamics as but with R instead of R.
1 . .
!—J Y Uyq Rigg Ligg : (13:14)

| {z }

constant
Thus, with ¢4 the constant real number de ned as

b) eq Li =R()

1
eq i

1 - -
| Udg |Qldq Cldq

o * R RIZ—+Ls C iy

we have

J eq [’_‘ijz ng

It follows that ( eq eq) iS solution of the model (13.) if we replace(R;L) by (R;(). So,
according to Theorem|13.1.1, the observer (13]2), implemented withR and (', gives

im T e®i*tilt)  ed=0:
Os!
ment of * (i, we have asymptotically

|
SR S YO B

sin(* )

Hence” converges to + [R Ifi]J!—l +Ls C idq - And with " computed as the argu-

1 . )

s J1 .
o * R RIE—+Ls [ ia; (13.15)

where we have used4). In other words the errof" converges to the argument of
S
0
one obtained in [Hen14] for the Luenberger observer presented in [HMP12]. Of course we recover
the fact that, without any errors on R and L, the asymptotic value of " is ¢ and " converges
to

+ [R RlIZ=+Ls C ig. Uptothe rstorder, this is exactly the same result as the

We illustrate formula (L3.15) via simulations with ideal data obtained for L = 0:65 mH,
R=0:167 , =7 :3mWb, ig= 346A, iq =6 A, for two di erent regimes. The results
are given in Table[13.] for observers[(13]2) and (13]8). Both observers were implemented with
an Euler scheme withdt = 1:210 # s and give similar results. The reader may check that the
absolute error on and the relative error on  correspond exactly to the expected theoretical
errors.

13.4 Tests with real data

To illustrate the results above about the sensitivity with respect to the parameters, to saliency,
but also to noise, we apply in open-loop (and o ine) the observers [13.2) and[(13.B) to real data
obtained from two PMSM used in test beds at IFPEN : Motor 1 and Motor 2. The available data

are the measurements of voltagesi,, and currents i, in the xed frame, the measurement
of the rotor position n,, the physical parameters given in Table[13..
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R +1%R L +1%L
! Obs | T(rad) | "= “(rad) | "=

500 (3.2) | 0.015 | 2:6% | 5:410 * | 0:3%

rpm
[3.8) | 0.015 | 26% | 5210 3| 0:3%

2000 [A3.2) | 3:810 % | 0:7% | 5410 3 | 0:3%

rpm
[13.8) | 3:310 % | 0:6% | 4910 3 | 0:3%

Table 13.1:  Sensitivity of observers|(13.R) and|(13]8) with respect tdR and L at two di erent

electrical rotation speeds with the notation ~= j* jand == L1
Parameter Motor 1 Motor 2
Regime variable : Figure|13.1| constant : 2000 rpm

Lg 0:72mH 0:142mH
Lq 0:78 mH 0:62 mH
8:94 mWb 185 mWb

R 0:151 0:023

Pairs of poles ) 10 2

Table 13.2: Parameters for Motor 1 and 2.

The norms ofuy, and iy, for each motor are given in Figure[13.R. Note that unlike Motor 2,
Motor 1 is submitted consecutively to four regimes : around 150 rpm, 450 rpm, 1000 rpm and

nally 1500 rpm (see Figure[13.]).
The motors di er in terms of saliency. According to [BC98], Lo and L1 in (13.11)) are given

by

Lo= —— ; Li= ——:
0 2 ! 2
and therefore

We conclude that saliency is weak for Motor 1 G 4%), but dominant for Motor 2 ( '[—é 80%).
We have implemented the observers using the measured values, and i, asu and i, and
an explicit Euler scheme with the sample time @t; = 10 * s, dt, = 210 ° s). We chose
the parameters of the observers to ensure the responses have all approximately the same time
constant ( = 20000, = 50000, = 50) and so that convergence is obtained in
less than two rotations of the motor. The results are presented in Figures 13|3-13.4. The
performances are globally better for Motor 1 than Motor 2, but it is mainly due to the fact that
the data were noisier for the latter.
For (Figure [13.3), both observers provide similar results, with a nal oscillatory error of
amplitude smaller than 0:05rad for Motor 1 (0:09 rad for the last regime) and 0:12 rad for Motor
2. But (the mean value of) the estimation " does not converge to the measurement,,. There
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are static errors. They are likely due, in part at least, to an o set in the sensor for ,. But there

is more since, according to Figur), these biases depend on the regime. One explanation
comes from [13.1p) where the regimé appears explicitly. Another possible explanation has
been proposed and studied in([Hen14]. It is the e ects of the dynamics of the sensors providing
the measurementsu,, and iy,. When they are modelled simply by

lm = i(im 1) Un = u(Um u)

the phase shift of these rst order systems (depending on the regime) is directly translated in a
static error on " and consequently on”. We refer the reader to [Hen14] for more details.

Concerning  (Figures[13.4), although both observers provide again the same mean for the
nal errors, the transient of observer (13.§) seems to be more oscillatory. This di erence could
be explained by the fact that " is directly estimated by observer (13.2) while it is reconstructed
from the norm of * L for observer {13.8). Here again (the mean value off* does not tend
to . Letus concentrate on the data from Motor 2 and from the rst regime of Motor 1, where
the norm of the current is constant. Assuming that the o set " ., mentioned above is only
due to the position of the sensor and therefore that” is actually the correct rotor position, we
compute ig as the rst component of R( '\)i and nd

Motor 1: g1 = 42A
Motor 2: ig2 = 201A:

If the values of R, L4, Lq and in Table are correct, we can expect'\ totendto ¢ =
j +2 Laiigj, i-e

Motor 1: s1=9:2mWb

Motor 2: s2 =115mWhb :

This is veri ed for both motors on Figures [L3.4(a)| ( rst regime) and 13.4(b)| We could conclude
that the values of R and L used in the observers are correct. Unfortunately we cannot go further
in the analysis since, for the other regimes in Figure 13.4(a), the steady state is not reached.

13.5 Conclusion

We have introduced a new rotor position observer for sensorless permanent magnet synchronous
motors (PMSM). It is designed from a non salient model and uses measurements of voltages and
current, and estimations of resistance and inductance. But it does not require the knowledge of
the magnet ux. We have claimed its convergence in an ideal context and for a rotating motor.
We have compared it with the equivalent observers proposed in [HMP12, Hen14] and [BPOL15h].

The main di erence is that this new observer is less demanding in terms of computations. On the

other hand it gives qualitatively the same kind of performance, in terms of speed of convergence,

sensitivity to errors in the resistance or the inductance and also in presence of saliency.
At least three important issues remain to be addressed:

a) Sensitivity to measurement noise or more interestingly the de nition of a tuning policy in
presence of such disturbances. This kind of study has been made in_[Hen14] for the Lu-
enberger observer proposed i [HMP12] . The same kind of tools should be useful in our
context.

b) Use of the observer in closed loop. Tests via simulations or test beds for the observers in
[HMP12] and [BPO™ 15h] are reported in those papers. But as far as we know no theoretical
results are yet available.

c) Extension to non salient models. We are unaware of any observer for this case.
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Figure 13.1: Regime of Motor 1 (rpm).

(a) Motor 1 (b) Motor 2

Figure 13.2: Norm of the voltageu, (V) and current i, (A).
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(a) Motor 1 (b) Motor 2

Figure 13.3: Error * 1, (rad) given by observers (13.2) and[(13.B) , where, is a measurement
of .

(a) Motor 1 (b) Motor 2

Figure 13.4: " given by observers [(13.2) and[(13]8) compared to .







Chapter 14

Rotor position estimation with
unknown resistance

Chapitre 14 Estimation de la position du rotor lorsque la résistance est inconnue.

Nous montrons dans ce chapitre que contrairement & ; ) , le couple( ;R) n'est pas observable
avec la seule information quey(t) = 0 pour tout t. Cependant, lorsque! et iy sont non nuls, il

ne peut exister que six solutions indistingables maximum, la resistance étant I'une des racines
d'un polynéme de degré 6. De plus, dans le cas particulier oll, iy et iq sont constants, nous
prouvons que le nombre de solutions possibles est réduit & deux, avec deux valeurs bien identi ées
pour la résistance, qui sont distinctes sauf siq est nul. Il apparait alors que ces deux solutions
peuvent en fait étre dissociées si le signe di (c'est-a-dire le mode d'utilisation du moteur)

est connu. Cette propriété nous permet de proposer une stratégie d'observation, basée sur une
synthése de Luenberger. Ses performances sont testées et illustrées en simulation.
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We have seen in the previous chapter that it is possible to estimate both and at the
same time. In this chapter, we suppose the magnet ux known, but the resistanceR unknown
and we wonder if it is possible to estimate both and R. So we consider the system

8

2 —= U RIi

SR =0 (14.1)
Ty =) L 2

with inputs (u;i), known parameters( ;L), state ( ;R) and the knowledge thaty is constantly
zero.
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To ease the reading of this chapter, some of the proofs are summarized with only their most
important steps, or even omitted when they are of no particular interest. Their detailed version
is available in Appendix [D]

14.1 Observability

Before looking for an observer, we need to check the observability of the system. To do that, we
consider the time-varying system

8
2 X = U Xgi
x3 = 0 (14.2)
y = Jx Lij

with L and given, and whereu and i are time signals such that there exists a particular

solution (x = ;x3 = R) of ([14.9) verifying
y(t)=0 8t:

This means that there exists a (unique) time-signal such that for all t,

!
(t)= Li(t)+ Z?ns(( ((:)))) : (14.3)
In the following, we denote
! !
z= 99 ;g = 'd =R(C )i ; ' =2

iq
We want to know whether, given the time signals(u;i) and the parameters(L; ) , the particular

solution ( ;R) is the unique solution to System [14.2) verifyingy(t) = O for all t. Note that
this is somehow a weak notion of observability since it is for a particular trajectory ofy.

14.1.1 A rst observability result

We start from the following result :
Theorem 14.1.1.
If
a) forallt,! (t)=0
or
b) for all t such that! 60, igq(t)=0, iq4(t) 60 and I'—q is constant

there exists an in nite number of solutions to System (14.2) verifying y(t) = 0 for all t.
Otherwise, if besidesji(t)j & 0 for all t, there exist at most 6 solutions.

Proof : Consider a solution (x;x3) to System (14.2) verifying for all t
0=yt =jx(t) Li®PF *:

X is necessarily of the form 7 7
t

t
X(t) = Xo + u( )d  xs  i()d
0 0
with
X0=0 ; x3=0;
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and nding (X;X3) is equivalent to nding (Xo;x3). It follows that for all t
0 = jx(t) Li®P°jx L0

[X(t) xo L((t) iO) [x()+ xo L(i(t)+ i(0))]
~(x3;1)” [2(x0  Li (0) + ~ (x3;1)]

where we have de ned
Z t Z t

«xs;)=  u()d  xs  i()d L@ i(0) : (14.4)
0 0

We deduce that for any time t,
2(xait)” (xo Li(0)= ~xsit)” ~xait) = | ~(xai0)j?

Therefore, unlessxs; makes ~(xs;t1) and ~(xs;t2) colinear for any (t1;t2), there exits at most one possible
value of xgo for each xs.

The rest of the proof then consists in showing that[1] :
1.for x3 such that ~(xs;:) is not constant, there exist couples (t1;t2) such that ~(xs;t1) and ~(xs;t2)

are not colinear. Xo is then uniquely determined by the value of xs, which must be the root of a
polynomial of degree 6. Therefore, there are at most 6 solutions (x; x3) such that ~(xs;:) is not

constant.
2.to the values of x3 such that ~(xs;:) is constant, is associated an in nite number of solutions
(X;x3).
3.if x3 makes ~(x3;:) constant, it must satisfy for all t
(R X3)id(t) = 0
(R xa)ig(t) = () - (14.5)

We can thus distinguish the following cases :

-if 1 (t)=0 for all t, there exists at least one constant value of x3 solution to System (fL4.5) for all
t. Thus, ~(xs; ) is constant and there is an in nite number of solutions (X;X3).

-if for all t such that ! (t) 6 0, iq(t) =0, iq(t) 60, and I'—q is constant, there exists a constant value
of X3 solution to System ([L4.5) for all t and thus an in nity of solutions ~ (x;X3).

-otherwise, there exist no solutions to System (14.5). Therefore, ~(x3; ) cannot be constant and
there are at most 6 solutions (x; x3) to our observability problem.

We recover the fact that the system is not observable when the rotating speed is zero (this
is the case even wherR is known). In the usual case where there exists at least a time for
which ! (t)ig4(t) 6 0, this result says that there exist maximum 6 possible solutiongx; x 3), with
X3 given by the roots of a polynomial of order 6. In order to conclude that the system is not
observable, we need to know more about those roots. In particular, the polynomial may not
have 6 distinct real roots and even if it does, they may not be constant with time.

To get more information, one could study in detail this polynomial of order 6 obtained in
the proof. But its expression is too complex and the next section shows how a stronger notion
of di erential observability enables to get a more precise idea of this polynomial.

14.1.2 Di erential observability of order 3

Let us consider the stronger observability question : is(( t);x3) the only solution at time t
of y(t) = y(t) = ¢(t) =0 ? Of course, in the cases of non observability identi ed in Theorem
[14.1., the answer is no. But we want to study in more details what happens in the other cases,
in particular when there exists a time t such that

ji(t)j 60 and ! ()60 and iy(t) 60 orig(t)=0 ;
'See Appendix[D.1.1.
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which is equivalent to
I(t)60 and ig(t)60 :

Consider the function H3 made of y(t);y(t);y(t)

0 x Limp 2

Hs(x; x3;t) = % 2(x  Li(t)~(u(t) xsi ini(t))
2(x  Li(t)~ (ut) stii(t) in{(t) +2ju(t)  xsi(t) ini(t)j2
Our problem consists in looking for the solutions in(x; x3) of
H3(x;x3;t) =0 :
We have the following result :

Theorem 14.1.2.

Consider a timet such that ! (t) 6 0 and i4(t) 6 0. There are as many solutions(x; x3) to
the equation

Ha(x;x3;t) =0 ;
as the number of real roots of the following polynomial of order 6 :
20 R ) 0, . 1 R )2 )
4y — 6 6 X3 I'q C A X3 N2
P(xa;t) = ! (t) J@1 T@ T (1)  2ig(H)~ + T 2 (D)ji(t)j
1 .3
R xa). . (R xa? o &
wherd?
| !
1 i(t)y”Ji(0) 0o 1
O=7v0 TFor ' ’° 10
Proof : It is appropriate to introduce the following degree one polynomial of X3
(x3;1) = u(t) xsi(t) ini(t); (14.7)

so that H s actually reads

0 1

x Limp 2
Ha(xxat) = @ 2 (xa;t)” (x  Li(t) A

2 (x3it)” (x  Li(t)+2] (xa;1)j

It is interesting to note that  (Xs3;t) = =(xs;t), where ~is de ned in (14.4), and what is done in this

proof is somehow the di erential version of the proof of Theorem {4.1.T]|To study how many solutions

in (x;x3) the equation H3(x;x3;t) = 0 has, we note that the second and third component is a linear

systeminx Li. So our approach is to solve this system and replace in the rst component. This gives

a function of x3 only. Hence the rst question is invertibility of the linear system, i.e. colinearity of
(x3;t) and _(xs;t).

Assume that (xs;t) is non zero and is colinear with _(xs;t), namely _(xs;t) = (Xx3;t). Then,
Hs(x;x3;t) =0 gives

(xsit)” (x  Li()=0 ; (xsit) (x Li®)= | (xs0)j

2 is the ratio between ! and the rotation speed of i.
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and necessarily (xs;t) =0 which is impossible. Therefore, colinearity can only happen if (x3;t)=0.
But di erentiating (14.3) vith respect to time and combining this expression with (14[7), e get
(xz;t) = 1 (1) Jz(t)+(R xg)i(t) : (14.8)

By imposing (xs;t) to be zero and multiplying by R( ), we recover System ) which does not
admit any solution if ! (t) and iq(t) are nonzero. We conclude that for all x3, (x3;t) and _(xs;t) are
not colinear.

It follows that we can get x from the second and third components of H 3, namely

(x Li(t)” (xs:t) = 0
x Li) (xsi) = | (xsi0f 14.9)
i-e _ L
X Li(t) = OO gy

(x3;t)>J _(X3;t)
Inserting this expression in the rst component of H3 gives

. . 2 . .
2 _ ICERY . (xait) = i (x3;1)j°

(073 (i) [ (xs:t)>J_(xs;0))?

and xs is a root of the following polynomial

P(xait)= [ (xa;1)”J (xa;)]* ] (xa:)°
Di erentiating (1f4.8),| we get

: A
(X t) = 1(t) Jz(t) (1) z(t)+(R x3)T(t); (14.10)
which yields

det (x3;1); (Xa;t) (x3;1)” J (Xs;t)

z{> z
= 132 (R x3) !%7Jz li“z+! ui z +(R X3)2i>Jii
n Z.{#
_ 3 2 2 . r 5. 2
= (R xs3) ! 2+ = +(R xg)?i”3F (14.12)
where we have used the factthati” z = ig andi” Jz = iq. Inserting those expressions in the expression

of P, we get the polynomial (. The coe cient of degree 6 is jij® which is non zero by assumption.
We conclude that there are at most 6 possible values for x3, and since the value of x is imposed by that
of x3, we get the result.

With this result, we are not much further advanced than with Theorem [[4.1.1], but at least
we have a more precise expression of the polynomial. The reader may check in particular that
X3 = R is a possible root. But since the degree is even, there is at least another real root (which
can be equal toR too). In order to have a better idea of those roots, we study the usual case
where! , ig and iq are constant.

14.1.3 Particular case where !, iq and iq are constant

We have the following corollary :
Corollary 14.1.1.

Assume! , iqg and iq are constants such that! 6 0 andiyg 6 0. P has only two roots given
by
2 lig .

X3= R ; Xz3= R+ —
3 3 i

Therefore, the equation H3(x;x3;t) = 0 admits one solution if ig = 0 and two distinct
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| solutions ifiq 6 0.

z
Proof : In this particular case, i~ J Ii = 1jij> sothat (t)=1 and

(R x3)®. ., 2(R X3)

X3)
rzz !

(R X3)...2
!

P(xa)= 1°° 1+(R| 2+ 2iq + jij

The polynomial jij*?X?2 +2iqX +1 has a discriminant equal to  4i3 < 0 and does not admit any real
root. The conclusion follows. Note that in this case, according to (14.11), P also writes

P(xs)=  2det (x3); (xs) 2(R|7X3) 2iq + M]ijz : (14.12)

The conclusion from this theorem is that the system is not di erentially observable of order
3 unlessig = 0. This does not mean that the system is not observable because the solution
corresponding toxz = R + Zji!jé 4 may not be admissible for System [(142). Actually, it turns
out that both solutions are truly indistinguishable :

Theorem 14.1.3.

Assume! , ig and iq are constants such that! 6 0 and iq 6 0. There exist exactly two
indistinguishable solutions (x; x3) to System (14.2) verifying y(t) = O for all t. They are of
the form ( ;R) and ( ;R ) with

,2liq.

TR TR

Proof : See Appendix[D.1.2.

We conclude that the system is not observable ifi; 6 0. However, the problem is well-
identi ed with only two possible solutions and the following result shows how they can be
dissociated by adding an extra information, namely the sign ofi,.

Theorem 14.1.4.

Assume! , ig and iq are constants such that! 6 0 and iy 6 0. Consider both solutions

( ;R) and ( ;R ) given by Theorem|14.1.8, and their associat@i( idg), ( ;idg ). We
have

g, = g
ig, = iq
so that both solutions can be distinguished bX the sign of thgir correspondingg.
Besides, if(R; ") is is one of the solutions (R; );(R ; ) , then the other solution i

0 A 11

N 2’
@R + Zji'jzlq - M+ arctan » 2iZ§iz§;1 2izc{1 A

Proof : See Appendix|[D.1.3.

Sigg = 1% =R( )i
ICI§!

2 B
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We conclude that the additional information of the sign of i makes the system observable !
If fact, the sign of i5 determines the mode of use of the machine : ify > 0, the torque is positive
and the machine acts as a motor, whereas ify < 0, the torque is negative and the machine acts
as a generator. In other words, both solutions can be distinguished if we know the mode of use
of the motor.

This result also says that if an estimation R amongfR; R g is available (for instance thanks
to an observer), it is possible to nd the other candidate, at least when the rotation speed!
is known or estimated. Therefore, if the sign ofigq is known or if an imprecise sensor gives an
idea of , the right solution can be picked online. Of course, the smalletiq the more di cult
to know its sign or to choose between and , but also the smaller the error if we choose the
wrong one...

Remark 18 In fact, from a physical point of view, those two values of R correspond to two
systems with same total energy but with di erent energy repartition. Indeed, the dynamics of
a PMSM in the dg-coordinates can be modeled by

8 Z
3 L; = Rig+ !Li g+ ug
= Iq
where is the external torque. The total energy of the system varies along

2|d+|2‘+|£— R(ig+ig+i"u | = Rjij*+i"u 1I:
Thus, an equilibrium with iq4, igand! constant is such that
Rjij?+i”u ! =0 ; ig=
Now, either = o> 0, in which caseR = Y| , either = 0, and R = Wit ol The

J|12 jij?
two values of R dier by %, i-e % which is exactly what we found in our observability
analysis. We conclude that both solutlons have the same total energy, but in the rst one energy
is produced by the motor and lost in friction, and in the second one external energy is given to
the motor and is dissipated in the motor by a larger resistance.

We conclude from this observability analysis that System [14.) is not observable wheh or
ig remains at 0. However, when andiq are nonzero, the number of indistinguishable trajectories
is reduced to maximum 6 : the possible values oR are the roots of a polynomial P of order
6 given by ). Unfortunately, we have not been able to say more about those roots unless
I', ig and iq are constant. In that case, there are exactly two indistinguishable trajectories and
they can be distinguished with additional information on the resistance or simply the sign ofi.
In the next section, we propose an algorithm to estimate those solutions based on a Luenberger
observer.

14.2 Observer design

For in R,, we de ne the function

T (xx3t)= 2x"x+ ¢ (1)7x+ x3b ()"x+a (t)xz+d (t)x3 (14.13)
onR?> R* R,with a,b,c,andd the outputs of the following lters :
a = (a+ci bu (14.14)
b = ( b +2i) (14.15)
c = (c 2u 2Li) (14.16)
d = (d+bi): (14.17)
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We have the following result :

Lemma 14.2.1.

For any in R,, for any initial conditions in the lters (14.14){(14.17), any solution ( ;R)
to System (14.1) such thaty(t) = 0 for all t, and any solution Z to the dynamics
z= (z+cu 23%ijP+ 2 ? (14.18)

verify

imz @ T((t)R1=0:

Proof : Straightforward computations show that t! T (( t);R;t) follows the dynamics (fL4.18), hence
the result.

This means that by implementing lters (14.14}-(14.17) and (14.18) with any initial con-

ditions, one can obtain an estimate of T (( t);R;t). Since our goal is to estimate( ;R), we
are interested in the injectivity of the function T . Theorem tells us that by choosing
a su ciently large number m of eigenvalues j, the function T = (T ;5T ) is injective if
the system is backward-distinguishable. We have seen that whet, ig and iq are constant,
two states ( ;R) and ( ;R ) are not distinguishable by the dynamics, and thus necessarily
T(( t);R;t) = T( (1);R ;t) for all t. This means that it is hopeless to prove the injectivity
of T, but it may still be possible to recover the (at most 6 !) possible values of ;R).

14.2.1 An algorithm for the inversion of T

Consider three strictly positive real numbers 1, », 3. We deduce from Lemmg 14.2]1 that by
de ning the function
1
T (X X3;t)
T(x;x3;t) = %p T ,(X;x3;t) X =m x“x+ ( c(t)+ xzb(t)) x + a(t) x3 + d(t) x% (14.19)
T 5(Xx3;1)
onR?> R R, we have
Jmz@ T(CiR=0;

where we have denoBed

1 0 1 0o _1
1 0 0 Z, 2
= 0 , 0Kk ; z=Bz, %X : m=08 2%
0 0 3 Z, 2
1 0

0 1 ° . 1 0 1
a, 1 ¢y d,
azaazg ; b=%b>2§ ; c=%c>2§ ; d=%d2g:
a, b, <, d,

Thus, implementing the Iters (14.14)-(14.17) and ([L4.18) for three values of gives an estimate

of T(( t);R;t), and we would like to invert T, i-e nd the possible candidates(x; x 3) for a given
T(X;x3;t).
To do that, we consider the matrix

M = 2 1
0 3 5
which is such that
M m =0: (14.20)

We have the following result :
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Theorem 14.2.1.

Consider any ( 1; 2; 3) in (R,)3, any initial conditions of the lIters (14.14)-( and
(14.18), and de ne
M (x3;t) = M c(t) + xzb(t) (14.21)

Assume the input (u;i) is bounded. Then, any solution( ;R) to System (14.1) such that
there exists_ such that for all t,

y(t)=0 ; det M (R;t) _>0;
veri es
t!Ii[rnl (1) (Rit)=0 ; t!IiTl J(R;t)=0
where
(xz;1)= M (xz3;t) ' M Z(t) M a(t)xs M d(t)x3 (14.22)
and
J(xz;t)=m” Z(t) T( (xsit);xsit) - (14.23)

Proof : Observe that
M T(x;xs;t)= M c(t)+ xab(t) x+ M a(t)xs+ M d(t)x3

is linear in x. This means that for any x3 and any t such that the matrix M (x3;t) is invertible, x is
solution of :
X=M(xs;t) ' M T(xx3t) M at)xs M d(t)x3

Thus, (x;x3) = (( t);R) satis es this equation for all t and we have
(Y (R MER M Z) TR

Lemma [14.2.7 gives the result if

M(R;t) * = ;J’M (R;t)j

det M (R;t)

is upper-bounded in time, where M (R;t) is the comatrix of M (R;t). t 7! M (R;t) is a continuous
function of the coe cients of ¢ and b which are Itered versions of the bounded input (u;i) and which

are thus bounded. Since det M (R;t) is lower-bounded away from 0, the conclusion follows.
This leads us to introduce the following algorithm :

Algorithm
Implement lters (14.14)-(14.17) and ([L4.18) for three strictly positive real numbers 1, »,

3, and at any time t, nd an estimate R of R with
R(t) = Argmin g jJ(x3;t)j ; (14.24)

and an estimate " of  with

To= R@;:

In fact, captures the information given by T in the direction of M and the remaining
information along the orthogonal direction, i-e alongm , is used inJ to determine x3.

Theorem says that(";R) = ( ;R) should be (asymptotically) a possible solution
of this algorithm whenever M (R;t) is invertible for all t. Its implementation thus raises two
guestions :
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- Is the matrix M (R;t) invertible for any t, or, more precisely, is det M (R;t) lower-
bounded ?

- Is R the only solution to the minimization problem at least after a certain time ? If no,
which are the other solutions ?

Note that at each time t, the determinant of M (x3;t) is a polynomial of order 2 in x3, so
that M (x3;t) is invertible for all x3 except maybe for two valuesf z;(t); z>(t)g. Then, (xs;t)
is a two-dimensional matrix made of rational fractions in x3 with numerator of degree 3 and
denominator of degree 2, de ned everywhere except attz;(t); z2(t)g. We conclude that J (x3;t)
is a rational fraction with numerator of degree 6 and denominator of degree 4 de ned everywhere
except maybe at the two roots of the determinant ofM (xs;t).

Remark 19 Sincexs is one-dimensional and we often have a fairly good idea of the interval in
which lies the true value R, the resolution of the minimization problem can easily be managed
with a one-dimensional grid, which can either be xed around the initial guessR(0) or placed
at each iteration around the previously found value R(t). This latter option enables to follow
the slow variations of R with the temperature. Also, since R is fairly constant, it may not be
necessary to updateR at each iteration.

Remark 20 This algorithm necessitates the implementation of 7 Iters (b and ¢ are of dimen-
sion 2, anda ,d andz of dimension 1) for three values of , namely 21 lters. An alternative
solution with only 14 Iters will be given in Section

14.2.2 Link with observability

The following technical lemma shows that there is a tight link between the quantities of interest
for the observer, and those encountered during the observability study above.

Lemma 14.2.2.

We have the following relations :

det M (xs;t) =4|§( 1 2)( 3 3)( 3 12 det (x3;t); (xat) +O( %) ; (14.25)
o( 9)

and if (x3;t) is such that M (x3;t) and ( (xs3;t); (x3;t)) are invertible
! !

4(23 (Gay )= (23;“.2 +0 1 (14.26)
4 P(x3;t)

5+ 0( 9 (14.27)

I(x3:1) = 1+ {é"" 3
o( %)
with  dened in ([47), P in ([4.6), and the notaton O( ¥) indicates a term

1, 20 3iXs3it)
k

% det (xs3;t); _(X3;1)

f( 1; 27 3;Xs;t) such that is bounded when goesto+1 .

Proof : This is done by developing the solutions of the Iters with respectto . See Appendix[D.2.1.

It follows that when the ; are su ciently large, M andJ are closely relatedto  (x3;t); (X3;t)

and P respectively. We can thus hope to transfer the known properties of those functions ti/
and J.
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About Equation  (14.25)
From (fL4.25), we get the impression that the invertibility of M (x3;t) is related to that of

(x3;1); (x3;t) , at least for ; su ciently large. Actually, we have a more precise result :
Theorem 14.2.2.

Consider(™1; T2; 73) three distinct strictly positive real numbers and assume that the inputs
(u; i) and their derivatives are bounded.
Then, for any x3 and any d such that for all t,

det (xs;t); _(xs;t) d>0;
there exists_ > 0 and _ > 0 such that for any -,
det M (xsz;t)

for all t when choosing
(120 3=( "15 25 T3):
In particular, if there exists ! > 0 such that j! (t)] ! for all t, there exists__ > 0 and
_> 0 such that for all _, det M (R;t) _ for all t.

Proof : See Appendix|[D-2.2.

We conclude that, if ! is lower-bounded away from zero, it is possible to guarantee the
invertibility of M (R;t) for all t by taking the ; su ciently large. In that case, any x3 making
M (x3;t) non invertible at some time t cannot be R and can be put aside in the algorithm.

About Equation  (14.26)

(T4.26) implies that (xs;t) is solution to the same system [(I4]9) (at the rst order of 1) as
X in the observability analysis. Therefore, whenever( (x3;t); (x3;t)) is invertible, (Xx3;t)

corresponds tox in the observability analysis, and further j (xs;t) Lij? 2 corresponds to
P(xs;t), still at the rst order in 1 Thus, in order to nd xs, one could minimize J (x3;t) =

i (xa;t) Lij2 2 instead of (14.23). But the injection of the input i in the criteria increases
its sensitivity to noise. Note that this option is exploited in the next section [[4.2.3.

About Equation  (14.27)
P(xs;t)

(14.27) implies that, for large values of i, the criteria J (x3;t) roughly behaves like >
det (xs;t); _(X3;t)
which is also a rational fraction with numerator of degree 6 and denominator of degree 4. There-

fore, we can hope that, by choosing ; su ciently large, one can ensure that J does not have

more roots than P, and minimizing J is closely linked to nding the roots of P. SinceP is
perfectly known with Corollary {4.1.T]jwhen! , ig and iq are constant, it is possible to state the
following result :

Theorem 14.2.3.

Let (T1; T2; T3) be any three distinct strictly positive real numbers.

Assume the inputs(u;i) are bounded, and! , iy and iq are constant such that! 6 0 and
ig 6 0. Then, for any initial conditions in the Iters and forany 0<"< 1, there exists_ > 0
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such that for all _, by choosing
(1520 3=(C 15 20 3);
we have :

- there exists_ > 0 such that det M (R;t) _ for all t.

- for all t, the only two roots of det M (x3;t) are complex and situated in the annuluﬁ
C(R;r=;1) with

! !

Jij Jij

In other words, M (x3;t) is invertible and J(x3;t) is de ned for all x3 in R and all t.

PE( ) T (1)

- forall t, J(;t) admitsin [R  r«;R+ r+]

- only one zeroRq(t) if iq > 1. jij ;
- two zeros (R(t); Ro(t)) if iq < 1jij.

Proof : The proof of this result relies on Rouché's theorem. See Appendix[D.2.3

Remark 21 Unfortunately, we cannot say anything about the number of zeros ofl ( ;t) outside
of [R r+;R+ r+]. Indeed, J(;t) admits (complex) poles outside ofB,.(R) (the roots of
det(M ( ;t))), and Rouché's theorem would only tell us that it admits at most 6 zeros, which we
already know.

We conclude from this study, that whenj! j is lower-bounded away from zero, the invertibility
of M (R;t) (and lower-boundedness ofdet M (R;t) ) can be ensured for allt by taking the

i su ciently large. According to Theorem this means that limy +; J(R;t)=0 and R
should appear among the minimizers ofJ( ;t)j at least after a certain time.

In particular, when ! , ig and iq are constant with ! 6 0 andiyq 6 0, J has only one or two
zeros in the vicinity of R. Note that ( ;R) and ( ;R ) identied in Corollary (14.1.1) are
both solution to the dynamics and are both such that y(t) = 0 for all t. Therefore, Theorem
[14.2.7 apply to both and we have in fact :

t!I|r+n1 J(R;t) = t!mjl J(R;t)=0:

This means that the two zeros ofJ expected with Theorem[14.2.8 are likely to beR and
R =R+ Z'T}q asymptotically.

In fact, afthough we are not able to prove it theoretically at this point, simulations seem to
indicate that P( ;t) has always only two roots, as soon asgy(t) 6 0 and ! (t) 6 0. Therefore,
J(;t) has, at least after a certain time, also two roots, with one converging toR. The problem
of course is that a numerical minimization ofjJ ( ;t)j might return the "wrong" root. So, how to

detect this situation, and how to deduce the "right" root ? Here are some elements of solution :

- most of the time, an interval for the value of R is known and the minimization can be
carried out on this interval. When both roots are far apart, there might be only one in
the interval of interest.

- in the case wherel and iqq are constant, Theoren@ shows how to detect whether the
solution is the "right" one, if the sign of iy is known. It also provides the exact expression

of the other candidate, which can be computed by estimating the rotation speed, i-€-

5The annulus C(a;ro;r1) is the set of points such that ro < jx aj<r j.
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- even in the general case, wheh and iqq are not moving too fast, the two solutions may
still be associated to two values ofiq of opposite sign. Therefore, the detection may still
be possible if this sign is known. As for computing the other candidate, although the value
given by Theorem[I4.1.4 is not exact, it can enable to switch the basin of attraction and
obtain the right estimate at the following iteration.

An account on the e ciency of this strategy in simulations is provided in Section [[4.3.

14.2.3 Alternate observer with a reduced number of lters

Before commenting some simulations, we want to signal to the reader the existence of an observer
involving a smaller number of Iters, and thus a reduced computational cost.
Indeed, the dynamics (14.18) can be rewritten as

=
z T2%= ((z *AH+cu AP

Therefore, we can take

T (x;x3;t) T (xx3t) 2 2

2Gx  Lij® %+ (c()+2 Li )”x+ x3b(@)x+a (t)xz+d (t)x3  2L3ij?

which is such that T ( ;R;t) is solution of
== (=z+cu 2L3%ij?»: (14.28)
Besides, sincej Lij2  2)=0 along the solutions of interest, we can even take

T (xx3t) =  (c(t)+2 Li + x3b (1)”x+a (hxz+d ()x53  2L%ij?
= (x3;1)"x+ a (thxz+ d ()x3  2L%ij?

which is linear in x and we have like before :

tI!ilm Z(t) T((tRt)=0:

The drawback of this solution is that we use the measurement directly in T~ and thus the
estimation may be biased by noise. However, the fact that it is already linear inx suggests that
it is su cient to implement the lters (14.14)-(14.17) jand (14.28)|for only two values of  to
obtain x as a function ofxs. Then, the value ofx3 can be obtained by minimizing(jx Lij2 ?2).

So consider two strictly positive real numbers 1 and ». By de ning the function
|

T, (X;X3;1) '
T ,(X;X3;1)

T(x;x3;t) = = M (x3;t) x +a(t)xg+ dt) x5 L%ij’m

onR? R R, we have
Jm Z(t) T ):Rit)=0;
where we have denoted

- 1 O
2

1
NN

1
2
! S ! !
X3;t
&= ! ;o M(xgit)= 7 1(Xs )> , a= T
&, ,(X3;t) a,
Since x can be simply deduced fromT by inversion of M, it is natural to try the following
simple algorithm :

N N
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Alternate algorithm

Implement Iters (14.14)-(14.17) and ([L4.28) for two strictly positive real numbers 1 and
», and at any time t, nd an estimate R(t) of R by

R(t) = Argmin, ., g+ JJ(X3;1)] ;

where
~(xait) = M (xa;t) b Z(t) at)xs dAt) x5+ LZijPm (14.29)

Jxs;t) = j~(xgt) Lij*>  2; (14.30)
and an estimate { t) of ( t) by

TH=~R@:t):

Once again, it leads to the questions of invertibility of the matrix M~ and uniqueness of
solutions to the minimization problem. But in the same spirit as Lemma[14.2.2, it is possible
to show that

det(NF(X3;t))=4(|_z{Z_1;det (x3;1); (x3;t) + O(1)
o()
! !
(xat)” . Lo 0 1
(xgty TS HOE e 1O
J(xgit) = P i) +o L,

det (x3;t); _(xs;t) i

so that the same conclusions hold.

The main advantage of this algorithm is that the lters are implemented for only two
(instead of three), thus reducing the dimension of the state from 21 to 14. However, the mea-
surement i is used directly in the computation of ~ and J, which, in presence of noise, can
signi cantly deteriorate the invertibility of ~ and the estimation of R and ".

14.3 Simulations

Model and scenario. The simulations presented in this chapter are based on ideal data
produced by a general PMSM model of the type ), where the inpuu is chosen to follow a
desired rotation speed! g. The details of this model and of the controller is of no interest here,

as long as the produced signals are solution to our modef (13.6). The speed scenario chosen to
test our observer is shown on Figurl. The corresponding signa(sl;i) are given in Figure
[14.2. Note that at t = 3, although the speed setpoint is constant, an external torque is added,
resulting in a transient behavior in the signals. This torque then remains constant throughout
the simulation.

Observer algorithm. Choose strictly positive real numbersG and dtg, a one-dimensional
grid G of the interval [ G; G], and three distinct strictly positive real numbers 1, 2, 3. We

assume the machine is used as a motor, i-e that is positive. The observer consists of the
following modules :

- Implementation of lters (§4.14}-({4.17) and ([L4.18).

- Computation of

ty= Rt);
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Figure 14.1: Rotation speed! = _and estimated rotation speed™ = * The estimation
algorithm starts at t = 0:5.

(@) igg = R( )i (b) ugg = R( )u

Figure 14.2: Currents and voltages in the rotating frame.

"t=arg(Tt) Li);
at each time t, given the current value of R.

- Estimation of M(t) = “t) at each timet (see below).

- Update of the value ofR everydtg > 0 with the following algorithm :
R1= Argmin, , . cjJ (X3i1)j
:1 = (F‘é/%;t) _
1= a‘;Q( 1 Li(1) i
ig1 = sin( 1) ; cos( 1) i(t)
if iga  Othen
=R,
else 28 )
_ A()ig;
Ra = Ru+ Sygpt
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= IQZ Iﬁl
if j j>G then
[Q = |Q2
else if > 0then
R = Argmin, o . (c\[,:c]) 19 (X3:1)]
else
R= ArgMIN 0. (e[ ;,]) 19 (X3 D]
end if
end if

In other words, the minimum of J is computed on the grid R + G centered at the current
value R and, if the correspondingiq is positive, this value is kept. Otherwise, we take the
other candidate given by Theorem 14.1.B, or rather, if this other value is in the grid where
J has already been computed, the true minimum of) around this value is computed. This
latter step can be removed and postponed to the next iteration, but it o ers the possibility

of correcting the estimate given by Theorem[14.13 wher , iy and iy are not constant
and/or when W is not exact.

Note that instead of starting the estimation process right away, one can wait for the Iters to
reach their steady-state, i-e "forget" their initial conditions. In the simulations presented here,
we waited for 0:5s.

Estimation of " = %~ In order to implement the previous algorithm, ! and thus I = -
needs to be estimated. This can be done in humerous ways including dirty derivatives, exact
di erentiators etc. A raw dirty derivative approach would be to take :

(

ol

e ‘(Ae y) . _ N
N ’ y -
2(/\e y)

e

with * su ciently large to compensate for the neglected I. But the correction (" y) is not
a good idea because it does not vanish a2k . A possible solution is to take the correction
arctany(sin("e  y);cos(e y)) instead, but convergence is not guaranteed.

Another idea is to consider as measurements; = cos(’\) and »1 = sin( ’\) and build a high
gain observer for(Xx1;Xy;%1;%1), from which I can easily be deduced. This method o ers the
advantage of making no approximation on, but it leads to an observer of dimension 4.

An intermediate solution is to use a reduced order observer of dimension 3 of the form :

8
3

>

* k+)y 7
(r k+ 2y "2 ; y=cos”; y=sin"
2k (" +y)y+2k(R+ ")y

> 1> 1>

and
— A2, N2 2 - :
Re="+ = or Pe=y ¥y

It is possible to provef| that I'e converges to!*, at least when ™ is constant.
This latter observer is used for the estimation of?* (and thus ! ) shown in Figure[14.7 with
* =1000 and k = 500.

6Take X2 = X1 = Wsin”, %, = x3 =4 cos”, = X2 X1, ~= X2 {‘x~1and =42+ kxi+ k€ =22+ k.
—
. 1 N .
Denotinge =~ ,e =2 ~ande =" , we getke® + ke? + 5e2: 2k* (e +€?), and thus ime =0

and lime =0. Hence the convergence off\c.
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Results  The results of the simulations are presented in Figuré¢ 14]3, for two grids with ampli-
tude G =1 and G = 0:1 respectively.

Observe that with G = 1, the algorithm nds the right value of R in two iterations only,
whereas with G = 0:1, it takes a longer time beforeR can appear in the grid. In fact, for a
same precision, the broader the grid, the higher the chances & appearing in it, but the larger
the number of points and computation time, and also the higher the chances of having several
minima in the grid. In practice, one know roughly well the initial value of the resistance, so
that a grid with small amplitude can be chosen, which is then going to followR throughout the
experiment, in the case where it evolves due to temperature.

The evolution of the criteria J during the simulation with G = 1 is shown in Figure[14.4.
One can see that the minimum is well marked aroundR = 1:45.

As for the estimation of , it naturally converges onceR has converged. It is interesting to
observe the peak in the error aroundt = 3 (which in turn appears on ). This is due to the
sudden addition of a torque which destabilizesig and ! and makes them go through 0. We
have seen that in this case, observability is lost andV (R;t) is likely to be non invertible (the
assumption of Theore is no longer veri ed). This event is not visible orR because it is
not updated at those precise moments.

14.4 Conclusion

Unlike ( ;) , the couple ( ;R) is not observable from the only knowledge thaty(t) = O for
all t. However, when! and iy are non zero, there are at most six indistinguishable solutions,
the resistance being one of the roots of a polynomial of degree 6. Besides, in the particular case
where! , ig and iq are constant, the number of possible solutions is reduced to two, with two
well-identi ed values for the resistance. But those solutions turn out to be distinguishable if
the sign of i (i-e the mode of use of the machine) is known. This information has enabled us
to propose an observation strategy based on a Luenberger design. It remains now to test this
observer on real data, and to understand the a ect of saliency on this algorithm.

Note that in this context of non observability, it would be impossible to write the dynamics of
the observer in the original coordinates(x; x3) as recommended in Par{ 1] (the transformation
is not even injective). Interestingly, the step of inversion of the transformation via minimization
is crucial to the design because it allows to incorporate the additional information about the
sign of iq and to use a discontinuous strategy, which has no in uence on the dynamics of the
observer.

As a nal remark, this example strongly advocates in favor of the Luenberger methodology.
Indeed, we are not aware of any other observer construction which could work in this case. In
particular, a high gain design is out of the question for two reasons : rst, it would necessarily
involve the derivatives of (u;i) which is undesirable in practice, and also, the dynamics of the
observer depend on the inverse of the transformation.
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N

(@) R (b) e =

Figure 14.3: Results of the observer algorithm with ; =20, , =30, 3 =40, dtr =0:1, and
two grids with amplitude G =1 and G = 0:1 respectively. The estimation starts att = 0:5.

(b) Zoom around R =1:45

Figure 14.4: Plot of the criteria J(;t) on the grid with G = 1 at each iteration where R is
updated, i-e everydtg = 0:1.
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Appendix A

Technical lemmas

In this appendix, we give the proof to some general technical lemmas used throughout this
thesis.

A.1 About homogeneity

Lemma A.1.1.

Let be a continuous functions de ned onR"*1 and f a continuous function de ned on R".
Let Cbe a compact subset oR". Assume that, for all x in Cand s in f (x)),

(x;8) < 0:
Then, there exists > 0 such that for all x in Cand s in f (x))

(x;s) <

Proof : Assume that for all k > 0, there exists xx in Cand sx in §(f (xx)) [ 1;1] such that
1
0> (Xk;Sk) K
Then, (xx;sk) tends to O when k tends to in nity. Besides, there exists a subsequence (km) such that
Xk, tendsto x in Cand sk, tendsto s in [ 1;1]. Since is continuous, it follows that (x ;s )=0
and we will have a contradiction if s 2 S(f(x )). If f(x ) is not zero, then by continuity of f, s is
equal to the sign of f (x ), and otherwise, s 2 [ 1;1]= (f(x )). Thus, s 2 §f (x )) in all cases.

Lemma A.1.2.

Let be a function de ned on R" homogeneous with degreed and weight vector r =
(ry;:rn), and V oa positive de nite proper function de ned on R" homogeneous of degree
dy with same weight vectorr. Dene C= V 1(f1g). If there exists such that for all x in C

(x) < ;

then for all x in R" nf0g,

X) <V (X) :

Proof : Let x in R" nf0g. We have x = Xi'rl in C. Thus (x) < and by homogeneity
V(x) %
1
- (X<
V(x) v

which gives the required inequality.
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Lemma A.1.3.

Let be a homogeneous function of degreé and weight vector r de ned on R" by

X) = max X;S
(x) st(f(x))*( )

where ~ is a continuous function de ned on R"*! and f a continuous function de ned on
R". Consider a continuous function homogeneous with same degree and weight vector such
that, for all x in R" nf0Og and s in f (x))

(x) 0;
x)=0 ) ~(x;8) < O

Then, there existskg > 0 such that, for all x in R" nf0g,
(x) ko (x)<0:

xX g
Proof : De ne the homogeneous de nite positive function V(x) = jXij7i and consider the compact

i=1
setC=V 1(f1g). Assume that for all k > 0, there exists xi in Cand s, in (f (xk)) such that

~(xx;sk) k (xk) O

~is continuous, and thus bounded on the compact set C [ 1;1]. Therefore, (xx) tends to O when k
tends to in nity. Besides, there exists a subsequence (km ) such that xi,, tendsto x in Cand si, tends
tos in[ 1;1]. It follows that (x ) =0 since is continuous. But with the same argument as in the

proof of Lemma|A.1.1I] we haves 2 S(f(x )). Ityields that ~(x ;s ) < O by assumption and we have a
contradiction.

Therefore, there exists ko such that
~x;s) ko (x)<0

for all x in Cand all sin §f (x)). Thus, with Lemma here exists > 0 such that
~x;s) ko (x)

so that
xX) ko (xX)<O

for any x in C. The result follows applying Lemma AI.2]

Lemma A.1.4.
Consider a positive bounded continuous functiont 7! ¢(t) and an absolutely continuous
function t 7! (t) both de ned on [0;t) and such that
for almost all t in [0;t) such that (t) c(t) then (t) (t)d
with d in ]0;1[. Then, for all t in [O;1),
n 1 g 01 9
(t) max O;maxf (0) c(0);0g t + sup ¢(s) :
s2[0;t]
Proof : Let t bein[0;t) and ¢ = Sup g,y C(s). Foralmostall s tsuchthat (s) t, (S) (s)4,
and thus
YA
maxf (s) Ct;Oéj (s)¢

maxf (s) c;0g” :

This inequality is also true when (s) < c, therefore it is true for almost all s t. It follows that for all
s t

maxf (s) c;0g" © maxf (0) c;0g" ¢ s
maxf (0) c(0);0g" ¢ s;



A.2. About continuity

concave clasK function such that for all (xa;Xp) in C

J (xa)  (xp)j  (Xa Xpj) :

Proof : De ne the function
o(s)= max j (x+e€  (x)]
x2C;jej s

which is increasing and such that o(0) = 0. Let us show that it is continuous at 0. Let (sy) a
sequence converging to0. For all n, there exists x, in C and e, such that je,j sn and o(sn) =
i (Xn + &) (xn)j. Since Cis compact, there exist x in C, e and subsequences ofx,) and (e,)
converging to x and e respectively. But e is necessarily 0 and by continuity of , o(sn) tends to O.
Now, the function, de ned by the Riemann integral

8 Zz

< 2s

()= o(s)ds+s ;s>0

O vl

:s=0

is continuous, strictly increasing and such that  o(Ss) 1(s). Besides, takings = max (x, x,)2c2 jXa Xbj,
there exists a concave clasX function such thatforall sin [0;s], 1(s) (s) (see[McS34] for instance).
Finally, we have :

i (xa)  (Xb)j (ixa Xb])  8(Xa;Xp) 2 C*:

195
i-e 1
maxf (s) c:;0g max O; maxf (0) c(0);0g" ¢ s T @
and nally, forall s t
P
(s) max O; maxf (0) c(0);0g" ¢ s T 7 +¢:

Taking this inequality at s =t gives the required result.
Lemma A.1.5.

For any (Xa;Xp) in R?, for any p 1, we have

1 1 1 1. 1
- bxaer b xper 27 P jXag XpjP
L. Lo L. .1 .1
- (iXaj + JXbi)P ] Xaj? + jXpj?

Proof : The second inequality is just the de nition of the concavity of x 7! x? on R*. As for the rst

one, it is enough to prove it for jxaj j Xpj (otherwise exchange them) and x, non negative (otherwise

take ( Xa; Xp). Besides, since it clearly holds for x, = 0, we only have to prove (for x = J.i:j ,

1 ;L 1
xp 1 2 pP(x 1)p 8 1:
1
First, by concavity of x 7! x%, %x% + %1% % P which gives the required inequality for the case
1
"+, Besides, still by concavity of x 7! x7, we have forx 1, Xx—lx% + %O% x1x+ 10 ® and
1

%x% + %0% 1x+ 210 . Adding those two inequalities gives the case " ".
A.2 About continuity
Lemma A.2.1.

Let :R"! RYbe a continuous function on a compact subseC of R". There exists a
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Lemma A.2.2.

Consider a function : R" ! R. Assume that there exist a compact setC of R" and a
function of classK such that for all (Xa;Xp) in C

j (Xa)  (Xp)i  (Xa X)) :
De ne the function “:R"! [ 5 "] byff

"(2) = sat( (2)

with = max (z). Then, for any compact subsetC strictly containedn C, there exists a
z
positive real number c such that for all (xa;Xp) in R" C,

I"(xa) (o) (Xa  Xbf) (A1)

Proof : Since C strictly contains C, we have :

= inf Xa Xpj>0:
(XaXxp)2(R"nC) C

First, for xp in C, A(xb) = (Xp). Now, if x5 is in C, then we have A(xa) = (xa) and consequently
holds for ¢ 1. If xa 2C, we have, for all x, in C,

an ij ; . .
i"(xa)  "(xb)] 2 2*w;

and 1 holds for ¢ 7

A.3 About injectivity

In this appendix, we consider two continuous functions : R"! R and :R"! R%anda
subsetS of R" such that

(Xa)= ( Xb) 8(XaiXp)2S?: (Xa)= (Xp): (A2)
In the particular case where s the identity function, (f.2)] characterizes the injectivity of

Lemma A.3.1.

There exists a function de ned on (S) such that

(x)= (X)) 82S: (A.3)

Proof : Denethe map on (S) as

[
(2) = f(x)g:
x2S
(x)=1z
Forany zin (S), theset (z)is non-empty and single-valued because according to ), ifz= (Xa)=
(Xp), then ( xa) = ( Xp). Therefore, we can consider as a function de ned on (S) and it veri es

(A.3).

1The saturation function saty () is de ned by satw (x) = max fminfx;M g; Mg

2By strictly contained, we mean that C C and the distance between C and the complement of C, namely
R" n C, is strictly positive.
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Lemma A.3.2.

Consider any compact subsetC of S. There exists a concave clas& function such that
for all (Xa;Xp) in C
Jj(xa) (xp)i  ( (xa)  (xp)j) : (A.4)

Proof : We denote D (Xa;Xp) = | (Xa) (Xp)j. Let

o(s) = max J(%a)  ( Xp)j
(Xa;Xp) 2 C?
D(Xa;Xp) S

This de nes properly a non decreasing function with non negative values which satis es :
J(xa)  ( xb)j o(D(Xa;Xp))  8(Xa;Xp) 2C?:
Also ¢(0) = 0. Indeed if not there would exist (xa;xp) in C satisfying :
D(Xa;xp) =0 ;  j(xa) (xp)j> 0:

But this contradicts Equation (A4.2).]

Moreover, it can be shown that this function is also continuous at s = 0. Indeed, let (sk)x2n be a
sequence converging to0. For each k, there exist (Xax ;Xpx) in C? which satis es D (Xax ;Xbk) Sk
and o(sk) = j( Xak) ( Xbk)j. The sequence(Xak ;Xbk )k2n being in a compact set, it admits an
accumulation point (Xa;X,) which, because of the continuity of D must satisfy D(x,;X,) = 0 and
therefore with ( also ( xa) ( x,) = 0 :Itfollows that o(sk) tendsto 0 and o is continuous at
0. Proceeding with the same regularization of ¢ as in the proof of Lemma|[A.2.7] the conclusion follows.

Lemma A.3.3.

Consider any compact subseC of S. There exists a uniformly continuous function de ned
on RY such that
(x)= ( (x)) 8x2C:

Proof : Consider and given by Lemmas and respectively. For any (za;z») in  (C)?,
there exists (Xa;Xp) in C such that za = (Xa) and z, = (Xp). Applying (f4)]to (Xa;Xp) and using

(A3}, we have
j (za)  (20)] (iza  zv)) :
being concave, we deduce from[[McS34, Theorem 2] (applied to each of the real-valued components
of )that admits a uniformly continuous extension de ned on RY. Note that the extension of each

component preserves the modulus of continuity , so that the global extension has a modulus of continuity
equal to ¢ for some c > 0 depending only on the choice of the norm on R".

Whenq nand is full-rank on C, the function is evenC?:

Lemma A.3.4.

Assume thatq n and @Xis full-rank on S, namely is a submersion onS. Then, (S) is
open and there exists aC~ function de ned on (S) such that

(x)= ((xX) 82S:

Proof : is an open map according to [Leel3, Proposition 4.28], thus (S) is open. Consider the
function  given by Lemmaand take any z in (S). There exists x in S suchthat z = (x ).

being full-rank at x , according to the constant rank theorem, there exists an open neighborhood V
of x and C! dieomorphisms 1:R"!V and ,:R%! (V) such that for all xin R":

(1(®) = 20%15::00 %) ¢
It follows that for all zin (V)
(1( 2'(2:0) =z

namely admits a C! right-inverse " de ned on (V) which is an open neighborhood ofz . Therefore,
= "and isClatz.
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A direct consequence from those results is that any continuous function : R" ! RYinjective
on a compact setC admits a uniformly continuous left-inverse de ned on RY (take = Id).
The previous lemma does not apply because cannot be a submersion. However, we will show
now that when s full-rank (i-e an immersion), this left-inverse can be taken Lipschitz onR®.
Due to needs in Chapterd 5 of |7, we generalize those results to the case where the function
depends on another parametemw evolving in a compact set:

Lemma A.3.5.

Let :R" RP! RYbe a continuous function and compact setsG, and G, of R" and RP
respectively such that for all w in Gy, x 7! (x;w) is injective on G;.
Then, there exist a concave clas¥K function , such that for all (xg;Xp) in Cf and all w
in Gy,
Xa xo  ( (Xa;w)  (Xp;W)j) ;
and a function dened on RY RP and a strictly positive number c such that
x= ( (xw);w) 8(x;w)2Cx Cy
and
j Zaw)  (zww)i ¢ (jza zi)

i-ez 7! (z;w) is uniformly continuous on RY, uniformly in w.
If besides for allw in Gy, x 7! (x;w) is an immersion onG; , i-e for all w in G, and all

x in G, g)gx;w) is full-rank, then islinear andz 7! (z;w) is Lipschitz on RY, uniformly
in w.

Proof : The proof of the existence of follows exactly that of Lemma A:3.Z but adding in the max
dening o, w2 Cy. Since it is a compact set, is well de ned and the same can then be used for
any w in Gy. Applying Lemma pA.3.3}to every x 7! (x;w) gives the result since it is shown there that
the extensions admit all the same modulus of continuity ¢ for some ¢ > 0 depending only on the norm
chosen onR'.

Now suppose that x 7! (x;w) is full-rank for all win Gy. Let be the functiondenedon G Cx Cy
by

e = . . Q. . .
( Xa;Xp;W) = (Xa;w) (Xp; W) @éxb,w)(xa Xp) :
Since g—x(x;w) is full-rank by assumption, the function
. —_ @ . > @ . ! . >
P(x;w) = @)gx,w) @)gx,w) @)gx,w)
is well-de ned and continuous on G, C , and for any (Xa;Xp;w) in G Cx C w, we have
jXa X  Pm(j (Xa;w)  (Xo;Wj+ j( Xa;Xp; W)j)

with P, =maxc, ¢ ,, jP(X;w)j. Besides, the function %"ﬁ is de ned and continuous on G, C
Gy, thus there exists L > 0 such that

J(Xaxoiw)i  Lojxa Xef? Xa  Xbj

2P
for any (xa;xp) in G such that jxa  Xpj  2r with r = 54—, and for any w in G,. Now, de ne the
set

= f(Xa;Xb) 2CFjjXa Xoj 2rg

which is a closed subset of the compact setG? and therefore compact. The function (Xa;Xp;w) 7!
IXa_Xp) is de ned and continuous on  C , since (;w) is injective for any w in Gy. Thus, it

J (Xasw)  (Xpw)j
admits a maximum M on the compact set C .

Finally, take any (Xa;Xp) in G2 and any w in G,. There are two cases :
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-either (Xa;Xp) 2 ,i-ejXxa Xpj < 2r, and
. . Pm.
Xa  Xel i (Xa;w)

-or (Xa;Xp) 2 , and
jXa  Xbj Mj (Xa;w)

(Xo;W)j :

(Xo;W)j :

We conclude that  can be chosen linear with rate L = max f 22-; M g.






Appendix B

Proofs of Chapter 1

B.1 Proof of Lemma 10.1.1 ]

The compact Ko being globally asymptotically attractive and interior to E which is forward

invariant, E is globally attractive. It is also stable due to the continuity of solutions with

respect to initial conditions uniformly on compact time subsets of the domain of de nition. So

it is globally asymptotically stable. It follows from [Wil69,] Theorem 3.2] that there exist C?!

functionsVk :R™! R gandVg : R™! R ( which are proper onR™ and a classK; function
satisfying

(d(z;Ko)) W (z); (d(z;E)) Ve(2) 8z2 R™:
Vk(2)=0 822Ky ; Ve(2)=0 8z2E;
%(Z(Z) (z2) Y% (2; @@yz(z) (z2) Ve(z) 8z2R™:

With d an arbitrary strictly positive real number, the notations

VE = sup Vk (2) ; = @

Z2RM:d(z,E) d 2Ve

and since is of classK; , we obtain the implications
VE(2)+ Vk(2)= (d) ) (d(z;E)) Ve(® (d)
) dz;E) d ) V(2 Vve:

With our de nition of , this yields also

@ Vk@=Ve@ ) 0< D v ) o0<d@zE) 4
On the other hand, with the compact notation V(z) = Ve(2) + V « (z), we have %Z(z) (2)
V (z), for all z 2 R™. All this implies that the sublevel set E= fz 2 R™ : V(z) < (d)gis
contained infz 2 R™: d(z;E) 2 [0;d]g and that cl (E) is contained in E. Besides,E veri es
property C with the vector eld and the function =V (d).

B.2 Proof of Lemma 10.2.1 ]

We use the following notations:
The complementary, closure and boundary of a se§ are denotedS°¢, cl (S) and @ Srespectively.
The Hausdor distance dy between two setsA and B is de ned by :
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( )
dy(A;B) = max sup inf jza zgj;sup inf jza zZgj
ZAZAZBZB ZZAZBZB
Z(z;t) d§notes the (unique) solution, at timet, to z = (z) going trough z at time 0 and
= Z(@E;}.
t2[0;"]

Lemma B.2.1 Let E be an open strict subset oR™ verifying C, with a CS vector eld and
a C® mapping . There exists a strictly positive (maybe in nite) real number "; such that, for
any " in [0;"1 [, there exists aCS-di eomorphism : R™ ! E, such that

(2)=z 82E-=E\(+)° ; du(@E; @8 " supj (2)] :

Proof : According to Condition C, is bounded and K, is a compact subset of the open setE. It
follows that there exists a strictly positive (maybe in nite) real number "1 such that

Z(z;1) 62K, 8(z;1) 2 @E [0;2"1 [:

In the following " is a real number in [0;"1 [.
We introduce the notations
2" = [ Z(@E;) ; Ex»r=E\ ( 2)°
t2[0;2"]
and establish some properties.
E is forward invariant for . This is a direct consequence of points C[I] and C[3

2+ is closed. Take a sequence(zk) of pointsin 2+ converging to z . By de nition of -, there exists
a sequence(ty), such that :

tx 2 [0;2"] and Z(zx; tk)2 @E 8k2N:

Since[0; 2"] is compact, one can extract a subsequencgt () converging tot in [0; 2"], and by continuity
of the function (z;t) 7! Z(z; t), (Z(z );t «))) tendsto Z(z ; t ) whichisin @E since @Eis closed.
Finally, becauset isin [0;2"], z isin 2 by de nition.

2+ is contained in cl (E). Since, E is forward invariant for , and so iscl (E) (see [Hah67, Theorem
16.3]). This implies [
@E = Z(@E;) cl(E) = E[ @E:

t2[0;2"]
At this point, it is useful to note that, because »- is a closed subset ofcl (E) and E is open, we have
>\ E = 2 n@E This implies :

EnE,- :(Ez--)c\ E :(EC[ 2)\ E= ,\E= »n@E; (Bl)

andE = E>» [ ( 22n@B.
With all these properties at hand, we de ne now two functions t and . The assumptions of global
attractiveness of the closed setK contained in E open, of transversality of to @E and the property
of forward-invariance of E, imply that, for all z in E®, there exists a unique non negative real number
t(z) satisfying:

(Z(z:t() =0 Z(z;4(2)) 2 @E:

The same arguments in reverse time allow us to see that, for all z in  ,-, t(z) exists, is unique and in
[ 2" 0]. This way, the function z! t(z) is de ned on (E2-)°. Next, for all z in (E2-), we dene :

(2) = Z(z;4(2)):

Thanks to the transversality assumption, the Implicit Function Theorem implies the functions z 7! t(z)
and z7! (z) are C® on (Ez")°".

Now we evaluate t(z) for z in @ »-. Let z be arbitrary in @ 2+ and therefore in ,+ which is closed.
Assume its correspondingt(z) isin] 2"AS;0[. The Implicit Function Theorem shows that z 7! t(z) and
z 7! (z) are de ned and continuous on a neighborhood of z. Therefore, there exists a strictly positive
real number r satisfying

8y2B:(z); 9ty 2] 2%0[: Z(y;ty) 2 @E :
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