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Résumé

Cette thèse porte sur l’extraction de descripteurs hiérarchiques et multi-échelles d’images, en

vue de leur interprétation, caractérisation et segmentation. Elle se décompose en deux parties.

La première partie expose des éléments théoriques et méthodologiques sur l’obtention de

classifications hiérarchiques des nœuds d’un graphe valué aux arêtes. Ces méthodes sont ensuite

appliquées à des graphes représentant des images pour obtenir différentes méthodes de seg-

mentation hiérarchique d’images. De plus, nous introduisons différentes façons de combiner des

segmentations hiérarchiques. Nous proposons enfin une méthodologie pour structurer et étudier

l’espace des hiérarchies que nous avons construites en utilisant la distance de Gromov-Hausdorff

entre elles.

La seconde partie explore plusieurs applications de ces descriptions hiérarchiques d’images.

Nous exposons une méthode pour apprendre à extraire de ces hiérarchies une bonne segmenta-

tion de façon automatique, étant donnés un type d’images et un score de bonne segmentation.

Nous proposons également des descripteurs d’images obtenus par mesure des distances inter-

hiérarchies, et exposons leur efficacité sur des données réelles et simulées. Enfin, nous étendons

les potentielles applications de ces hiérarchies en introduisant une technique permettant de

prendre en compte toute information spatiale a priori durant leur construction.

Mots clés : Traitement d’images, Morphologie mathématique, Segmentation, Segmentation

hiérarchique, Classification hiérarchique, Apprentissage statistique, Théorie des graphes.
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Abstract

This thesis deals with the extraction of hierarchical and multiscale descriptors on images, in

order to interpret, characterize and segment them. It breaks down into two parts.

The first part outlines a theoretical and methodological approach for obtaining hierarchical

clusterings of the nodes of an edge-weighted graph. These methods are then applied to graphs

representing images and derive different hierarchical segmentation techniques. In addition, we

introduce different approaches to combine hierarchical segmentations. Finally, we propose a

methodology for structuring and studying the space of hierarchies by using the Gromov-Hausdorff

distance as a metric.

The second part explores several applications of these hierarchical descriptions for images.

We expose a method to learn how to automatically extract a segmentation of an image, given a

type of images and a score of evaluation for a segmentation. We also propose image descriptors

obtained by measuring inter-hierarchical distances, and expose their efficiency on real and

simulated data. Finally, we extend the potential applications of these hierarchies by introducing

a technique to take into account any spatial prior information during their construction.

Keywords: Image Processing, Mathematical Morphology, Segmentation, Hierarchical Seg-

mentation, Hierarchical Clustering, Machine Learning, Graph Theory.
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Introduction

In this thesis, we introduce and study images structurings as series of nested partitions, or

hierarchical segmentations, expressing the salient parts of them. Hierarchical segmentation has

been one of the major trends in recent years for segmentation and filtering tasks, as it allows

to deal with the inherently multi-scale structures and information present in the images. To go

further, we take interest in studying such hierarchical representations as images features, that

we can combine and adapt for image segmentation, characterization or recognition.

Any method which progressively merges adjacent regions of an initial partition produces

such a hierarchy, characterized by the fact that each region of the hierarchy is either a region of

the initial partition or results from the fusion of smaller regions of this partition. The resulting

hierarchy depends upon the strategy for merging regions.

More specifically, the hierarchical structures that we systematically explore in this work are

the so-called morphological hierarchies, constructed in the classical framework of mathematical

morphology, and thus capture morphological information about local differences in contrast,

or regions sizes and shapes. We present three main streams for constructing morphological

hierarchies:

— The hierarchies associated to a sequence of levelings. As connected operators, the levelings

merge and extend the flat zones, naturally creating a hierarchy of flat zones.

— The hierarchies associated with the watershed. The catchment basins of a topographic

surface form a partition, where each region contains a regional minimum of the surface.

By flooding the relief, more and more minima are suppressed and the corresponding basins

merge or are absorbed by neighboring basins.

— The last type of methods explored in this thesis for constructing hierarchies is the stochastic

watershed. The stochastic watershed produces a hierarchy, by estimating the probability

that a particular region of the hierarchy is produced by a watershed segmentation in which

random germs are used as markers.

Despite the fact that the methods we use for constructing hierarchies are diverse, the

hierarchies are represented in the unified framework of weighted graphs. First of all, one

constructs a fine partition to which is associated a region adjacency graph or RAG. Each node

of the RAG represents a region of the fine partition. Two nodes are linked by an edge if the
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INTRODUCTION

corresponding regions are neighbors in the fine partition. Each edge is weighted by a weight

expressing the dissimilarity between the regions represented by its extremities.

This representation paves the way for introducing various distances between the nodes of

the graph. One of them will play a fundamental role in this thesis, namely the ultrametric

distance. A series of nodes, in which two successive nodes are linked by an edge is called a

path. Each path then gets a weight, equal to the weight of the highest edge along this path.

The ultrametric distance between two nodes is by definition the lowest weight of the paths

connecting these nodes. Other distances, like lexicographic distances may be used, refining the

ultrametric distance.

Various auxiliary representations may then be derived, like the minimum spanning tree

(MST) of the weighted graph. The MST completely encodes the ultrametric distance, as the

ultrametric distance between any pair of nodes of the graph may be derived from it. The regions

of the hierarchy appear to be the closed balls of the ultrametric distance. An order relation

between regions is defined expressing the level in which the regions have merged. A dendrogram

based on this order relation structures the interrelations between the regions of the hierarchy.

Additionally, an order relation between hierarchies structures them as a lattice, in which

several operators like the supremum and infimum may be defined.

Finally, as the hierarchies provided with an ultrametric distance become metric spaces, one

may use the Gromov-Hausdorf distance between hierarchies in order to study the geometry of

the space of hierarchies.

We have presented three main families of morphological hierarchies. For each of them we

explain how to derive the associated weighted graph, minimum spanning tree and dendrograms.

These families of hierarchies may be further enriched, by combining hierarchies. The

sequential chaining of hierarchies transforms an input hierarchy into an output hierarchy by

assigning new weights to its minimum spanning tree. The parallel combinations takes advantage

of the fact that all hierarchies based on the same fine partition share by construction the same

minimum spanning tree. Thanks to this property, the many parallel combinations of hierarchies

become in addition extremely fast to compute.

Building on these theoretical and methodological elements, several applications of these

hierarchical features are then presented for image segmentation and classification.

This thesis will thus be decomposed in two parts:

1. A methodological part, in which will be introduced in details the different notions we

will use regarding graphs, hierarchies, images modelizations as graphs and multiple ways

to generate and combine hierarchical representations of images. Note that the chosen

representation is very general, so that even if we apply it to images, it may be applied to

other types of data modeled as graphs.

2. Provided with these tools, we address in the second part several applications examples. We

expose a framework for learning-based image segmentation for a given task. We also see

how to do efficient image classification using hierarchical features. Finally, we present a
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simple and versatile way of introducing prior information for hierarchical segmentation

and image representation.

More precisely, the rest of the work presented herein is structured as follows:

— Chapter 1 introduces notations, definitions and properties regarding graphs and trees, and

especially about the minimum spanning tree that has an important role in the methods

introduced throughout this thesis. It also makes a reminder on the taxonomy of clusterings

on graphs methods, and expose non-hierarchical techniques to do so.

— Chapter 2 focuses specifically on hierarchical clustering. It introduces definitions, notations

and properties concerning hierarchies, their relation to ultrametric distances, and their

representation as dendrograms. In the case of a graph, it then shows how the structure of

its minimum spanning tree inherently induces a hierarchical clustering of its nodes, which

takes the form of a minimum spanning forest. Finally, a lattice structure on the hierarchical

space is introduced, with the existence of an order relation, possible combinations and a

distance between hierarchies.

— Chapter 3 exposes some image hierarchical segmentations algorithms implemented within

the graphs-based hierarchical clustering framework described in the previous chapter. They

effects are illustrated from a qualitative point of view and some insights regarding the

choices we made to implement them are provided.

— Chapter 4 proposes several methods to combine hierarchies and thus obtain derived

hierarchies that capture complex features of the image. In the specific case where we

combine hierarchies obtained from the same minimum spanning tree, an interesting result

is demonstrated that simplifies the combination of these hierarchies. A possible structuring

of the space of hierarchies is also proposed by using the Gromov-Hausdorff distance,

which is difficult to compute in the general case but is more easily obtained between two

hierarchies built on the same set of regions. By combining this distance with tools for

dimensionality reduction and data visualization, we obtain a methodology to study and

visualize the combinatorial space of possible hierarchies.

— Chapter 5 proposes a general framework to learn, for given type of images and score to

evaluate the quality of a segmentation, the hierarchy/combination of hierarchies and the

cut level that are the better suited to the problem. It is illustrated on several segmentation

problems.

— Chapter 6 proposes to use the Gromov-Hausdorff distance between hierarchies built upon

the same image to generate image descriptors that can be used for classification tasks.

These descriptors are tested to classify images generated using dead-leaf process with

different parameters, as well as texture image classes.

— Chapter 7 presents a method that allows to take into account any prior spatial information

for obtaining a hierarchical segmentation that emphasizes the contours or regions of
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interest while preserving the important structures in the image. Several applications are

presented that illustrate the versatility and efficiency of the method.

— Chapter 8 draws some perspectives on how morphological hierarchical segmentations

may complement Convolutional Neural Networks (CNN), a class of methods providing

state-of-the-art results in many areas of computer vision.

The thesis concludes by a summary of the main contributions, and by offering some perspectives

on future research directions.
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Introduction

The object of this thesis is the introduction, study and use of several images structurings as

series of nested partitions, i.e. hierarchical segmentations. These multi-scale representations are

useful as the pertinent information about an image are often present at several different scales.

In the first part of the thesis, we show how these structurings can be built in a graph-based

framework, by operating on graph representations of images. More specifically, the minimum

spanning tree structure is introduced and intensively used throughout their construction: it is

a tree (without cycles), containing all nodes, such that the sum of its edge weights is minimal.

This structure is inherently linked with hierarchical clustering, and leads to hierarchies enjoying

nice theoretical properties, as well as efficiency and practical convenience.

The main contributions of the methodological part of this thesis are the following:

1. We present numerous morphological hierarchical segmentation methods in a graph-based

framework.

2. We propose new comprehensive ways to combine them, by simple arithmetic or logical

operations. In the particular case where we combine hierarchies built upon the same

minimum spanning tree structure, such combinations are proved to be very fast to obtain

in most cases.

3. We propose a framework to study the properties of the resulting high-dimensional space

of possibilities, using the Gromov-Hausdorff distance between hierarchies, as long as

visualization tools from the data analysis and visualization literature.

4. We propose and describe efficient implementations of these tools within the open-source

library Smil.

Prologue

The purpose of this prologue is to motivate the presentation of theoretical tools regarding

graphs that are going to be introduced in this part of the thesis. As was already stated, we often

need to study the image at different levels, since pertinent information is present at several

scales. A possible structure to capture such multi-scale information in an image is a series of

nested partitions, or hierarchy. Different hierarchies can be constructed for the same image.

Furthermore, the hierarchies we introduce are for the most part morphological. In mathe-

matical morphology, an image is often seen as a topographic relief. Flooding such a relief leads

to watershed lines delineating regions of the image. This representation is called critical lakes:

it is inherently linked with the notion of hierarchy, as to each type of flooding of the relief is

associated a progressive fusion of regions, and therefore a hierarchy of them. When the image

is represented as a graph, an equivalent artificial representation of this flooding process exists.

The graph modeling the image is built on a fine partition of this image. Each node corresponds

to a region of this fine partition, and adjacent regions are linked and weighted according to a
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dissimilarity. One can then consider that, between any two adjacent regions, there is a wall with

no thickness and a height equal to the dissimilarity between these regions. This “virtual” relief

gives us a frame in which we develop several methods. The correspondence between those two

modelizations is illustrated in figure 0.1.

(a) Topographic relief flooding (b) Graph modelization

Figure 0.1 – Correspondance between the topographic relief and the graph modelizations of an
image flooding.

We have thus defined the frame in which this work takes place. The tools/representations we

work with are defined for edge-valued graphs. This is why we begin by introducing in chapters 1

and 2 the theoretical notions on graphs and clustering/hierarchical clustering on them. We can

then make use of these notions to present in chapter 3 several morphological hierarchical seg-

mentations methods, as well as their efficient implementation. These methods follow a common

mechanism. To a series of progressive floodings correspond watershed lines, which naturally

produces a hierarchy. The hierarchies then differ depending on the flooding type. A specific type

of flooding is the marker-based one, in which we choose some nodes to be the flooding sources.

This way, we can specify which nodes we want to be separated in the output segmentation. The

stochastic watershed model then constitutes a supplementary step, in which we compute for

each contour statistical values corresponding to multiple flooding processes simulations with

random markers. Finally, we extend the number of possible hierarchical structurings of the image

in chapter 4, by showing how we can combine hierarchical segmentations. On this occasion,

we introduce several tools to quantify and visualize the relative descriptive power of different

hierarchical segmentation methods.
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Chapter 1

Graph Theory

Résumé

Dans ce chapitre, nous introduisons les notations, définitions et propriétés sur les graphes et

arbres, et notamment l’arbre de poids minimum qui va occuper un rôle important dans les

méthodes introduites dans cette thèse. Nous faisons également un rappel sur la taxonomie

des méthodes de classification des noeuds d’un graphe, ainsi qu’un état de l’art des méthodes

non-hiérarchiques pour ce faire.

Abstract

In this chapter, we introduce notations, definitions and properties regarding graphs and trees,

and especially about the minimum spanning tree that has an important role in the methods

introduced throughout this thesis. We also do a reminder on the taxonomy of clusterings on

graphs methods, and expose non-hierarchical techniques to do so.

1.1 Introduction

Graph theory appears in modern mathematics at the confluence of combinatorics and com-

puter science. Fundamentally, a graph is a mathematical structure useful to model pairwise

relations between objects. The seminal paper of this field is by Euler and dates back to 1736

[Euler (1736)]. It deals with the problem of the seven bridges of Könisgberg, illustrated in figure

1.1: two branches of the river are flowing around the Kneiphoff island in Könisgberg, and seven

bridges are crossing these two branches, and the question is to determine whether a person can

plan a walk such that he would cross each one of the bridges once and only once. Later on,

ideas coming from both mathematics and chemistry got to fuse, contributing to the standard

terminology of graph theory. Indeed, graph theory has been extensively used in chemistry for

molecular modeling, for example for the study of isomers by Cayley [Cayley (1874)]. The term

“graph” itself was introduced by Sylvester [Sylvester (1878)].
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1. GRAPH THEORY

Figure 1.1 – Excerpt from Euler’s paper about the seven bridges of Könisgberg problem, which is
the following. Two branches of the river are flowing around the Kneiphoff island in Könisgberg,
and seven bridges are crossing these two branches. The question is then to determine whether a
person can plan a walk such that he would cross each one of the bridges once and only once.

Then, graph theory has mainly been developed as mathematical puzzles during the second

half of the 19th century, such as the “Icosian Game” proposed by W.R. Hamilton, in which the

goal is to find a Hamiltonian circuit, i.e. a loop along the edges of a icosahedron.

Progress in graph theory has also been driven by real-life applications regarding for example

the study of networks and circuits. Historically, Kirchoff in 1847 [Kirchoff (1847)] was the first

to model electrical network geometry in the form of a graph (known as electric scheme). Kirchoff

rules then provide a way to determine the linearly independent currents and voltages equations.

Furthermore, this graph representation enabled Kirchoff to compute, in the case of a network

with a finite number of linear resistors, the currents in any of the resistors, when knowing the

voltage in the network. Kirchoff’s work is considered as the basis of the flow theory and related

algebraic methods.

As a result of its successes, a growing number of mathematicians worked to improve the

seminal works cited before, and links with other mathematical branches were made. Since

1930, thousands of papers have been published regarding theoretical considerations as well as a

large spectrum of real life applications, with graphs representing data as various as electrical

networks, phylogenetic information or social media relationships. Graph theory is now linked

with algebra, topology, combinatorics, and provides state-of-the-art methods for problems in

computer science, operations research, game theory, decision theory or machine learning. For

example, algebraic graph theory aims at applying algebraic methods to graphs problems, and

a sub-branch of this field resides in studying the spectrum of matrices representing graphs,

which is known as spectral graph theory [Ng et al. (2002); Von Luxburg (2007)]. Other recent

theoretical research directions consist in finding how to use successful learning-based approaches

such as Convolutional Neural Networks (CNN) on graphs representations to be able to classify

them [Niepert et al. (2016)], or in using graph structures to help learning algorithms to handle

relational reasoning (i.e. reason the relations between entities) [Santoro et al. (2017)].

From an application point of view, image processing and more specifically image segmentation

(a branch of image processing aiming at partitioning the image domain into a set of meaningful
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1.1. Introduction

regions according to some pre-specified criteria) methods using graphs have flourished. One

may notice that two main tendencies emerge in these methods.

A Kirchoff-like approach consists in defining the notion of flow on the graph, and trying to

maximize this flow with the minimum possible cuts on the graph. This approach, referred to as

Max-Flow Min-Cut, has been widely used for image segmentation [Malik et al. (2001); Boykov

et al. (2004); Felzenszwalb et al. (2004)].

An other approach is linked with the problem of the Minimum Spanning Tree whose history is

described in [Nešetril et al. (2010)], and which has been initially addressed by Boruvka [Boruvka

(1926)]. The initial issue was to find a way to minimize the total length of cables needed to

electrify Romania. He did so by modeling this problem as a minimization one on graphs, where

the goal is to find for each pair of nodes, the path with the lowest edges. The union of all these

paths constitutes a minimum spanning tree (provided that edge valuations are all different),

and cutting edges on this tree leads to clustering of the graph. This notion has then be used for

graphs describing images, thus leading to new ways of obtaining images segmentations [Xu and

Uberbacher (1997)] or filtering images [Stawiaski and Meyer (2009); Bao et al. (2014)]. This

approach is somehow complementary to the previous one, as it attempts at finding the shortest

path between any two nodes, instead of maximizing the flow. The work presented in this thesis

falls within this category and makes a heavy use of the minimum spanning tree structure and its

convenient properties.

Note that connexions have been made in the literature between these two techniques,

showing that they solve similar minimization problems [Couprie et al. (2011)].
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1. GRAPH THEORY

1.2 Notations and Definitions

This first sections introduces definitions regarding graphs and important related structures.

1.2.1 Definitions

Definition 1.1 (Graph). A graph G is a pair (V,E), with V and E both finite sets. The elements

v ∈ V are called vertices or nodes, and the elements e ∈ E ⊂ {{i, j}, (i, j) ∈ V × V := V2, i 6= j}
are called edges. An edge {i, j} of E is denoted eij or (i, j).

Definition 1.2 (Adjacency). We say that an edge eij connects i and j. In this case the vertices i

and j are neighbors.

Similarly, two edges are adjacent if they have a node in common.

Definition 1.3 (Subgraph). Given a graph G = (V,E), the graph G′ = (V′,E′) is a subgraph of G
if and only if:

— V′ ⊂ V.

— E′ = {epq ∈ E|(p, q) ∈ V′2}

Definition 1.4 (Partial graph). Given a graph G = (V,E), the graph G′ = (V′,E′) is a partial

graph of G if and only if E′ ⊂ E and V′ = {(p, q) ∈ V′2|epq ∈ V′}.

Definition 1.5 (Edge-weighted graph). An edge-weighted graph G is a triplet G = (V,E, η),
where (V,E) is a graph and η is a mapping of the set of edges E into an ordered set T (for

example, [0, N ] for N ∈ N, R+, R, Z etc.). For each edge eij of G we write ηij = η(eij). ηij is

called the weight of the edge eij .

Definition 1.6 (Weight map). The mapping η is called the weight map of G = (V,E, η).

Definition 1.7 (Adjacency matrix). An adjacency matrix is a square matrix AG used to represent

a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not

in the graph. In the case of an undirected graph, it is a symmetric (0,1)-matrix with zeros on its

diagonal.

AG = (aij)(i,j)∈{1,...,N}, with N the number of nodes in the graph G, s.t.:

aij =

 1 if i, j are adjacent in G
0 otherwise

.

Definition 1.8 (Node-weighted graph). A node-weighted graph G is a triplet G = (V,E, ν),
where (V,E) is a graph and ν is a mapping of the set of nodes V into an ordered set T. For each

node vi of G we write νi its weight.
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Definition 1.9 (Node weight map). The mapping ηV is called the node weight map of G =
(V,E, ν).

Graphs can be directed or undirected. In the first case, edges eij and eji are considered to

be distinct edges. In this context, edges are sometimes referred to as arcs or arrows. In the

following, we will mainly focus on undirected graphs. A graphical representation of graphs is

useful for explaining concepts or illustrating algorithms, as illustrated in figure 1.2.

ηab

ηac

ηdc

ηad

a b

cd

Figure 1.2 – Graphical representation of a graph. Nodes are represented by disks and edges by
lines connecting nodes.

Definition 1.10 (Edge contraction). The edge contraction of an edge eij consists in replacing

it with both its extremities (i, j) by a unique vertex which becomes an extremity for all edges

adjacent to eij. It is illustrated in figure 1.3.

Figure 1.3 – Example of an edge contraction.

The notion of adjacency in a graph is useful to derive some geometrical properties of graphs.

Let us imagine a graph representing a network of roads connecting cities. Neighborhood relations

then model connections between cities. From them, it is possible to derive the notions of travels,

walks and paths on a graph.

Definition 1.11 (Path). A path π of the graph G = (V,E) is a sequence of nodes and edges,

interweaved in the following way: π starts with a vertex, say p, followed by an edge eps, incident

to p, followed by the other endpoint s of eps, and so on. We write π = (p, ep,s, s, . . . , q) and call π

a path from p to q. The set of all paths from p to q is denoted Π(p,q). In the case where there two

nodes are connected by at most one edge, there is no ambiguity and we can specify the nodes

only, such that π = (p, s, ..., q).
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1. GRAPH THEORY

Definition 1.12 (Paths concatenation). The concatenation of two paths πpq and πqs is the path

formed by joining these two paths such that the extremity of πpq is the origin of πqs. We denote

it πpq . πqs.

Definition 1.13 (Cycle). A cycle (or circuit) is a path π = (i, ei,i+1, ..., (k− 1), ek−1,k, k) such that

i = k.

e1,2

e2,6

e2,3

e1,4
e3,4

e4,8

e3,5

e5,8

e5,6

e6,7

e7,8

1

2

3

4

5

6

7

8

(a) Path from node 1 to node 6.

e1,2

e2,6

e2,3

e1,4
e3,4

e4,8

e3,5

e5,8

e5,6

e6,7

e7,8

1

2

3

4

5

6

7

8

(b) Cycle example

Figure 1.4 – Examples of path and cycle.

The notions of path and cycle are illustrated in figure 1.4, and are close to the intuitive ideas

they correspond to. In particular, the path is a fundamental notion that we will meet in all

shortest paths problems.

Definition 1.14 (Cocycle). Let us consider a graph G = (V,E), and two separated sets of nodes

A and B in V. The cocycle Cocycle(A,B) of both sets A and B is the set of edges with one

extremity in A and the other in B:

Cocycle(A,B) = {(p, q) ∈ E|p ∈ A, q ∈ B} (1.1)

By extension, the cocycle Cocycle(A) of A is the set of edges with one extremity in A and the

other in A{.

1.2.2 Distances on graphs

In this thesis, we address the problem of graph partitioning in the context of image segmen-

tation. Standard morphological approaches to clustering make a large use of various distances,

the general method consisting in operating a SKIZ on a Voronoï tessellation defined for these

different distances. In this process, germs are either regional minima or predetermined markers.

We thus now introduce several distances on graphs. Their construction mechanism is similar:

1. We begin by defining the weight of a path π. We denote it |π|.

2. We then define the shortest path between any two nodes p and q as the path with minimal

weight η(p, q) between p and q (and we set it to∞ is no path exists between these nodes).

It indeed then verify the triangular inequality necessary to be a distance: if η(p, s) = |πp,s|,
η(s, q) = |πs,q| and η(p, q) = |πp,q| then |πpq| ≤ |πps . πsq|, because the concatenation of

πp,s and πs,q is one path among possible paths between the nodes p and q.
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1.2. Notations and Definitions

Definition 1.15 (Generalized Path Length, Shortest path distance, Lowest path distance). The

n-generalized length of a path π is defined by:

n ∈ N∗, Ln(π) = n

√ ∑
ei,j∈π

ηni,j (1.2)

Moreover: 
L0(π) =

∑
ei,j∈π 1

L1(π) =
∑

ei,j∈π |ηi,j |
L∞(π) = maxei,j∈π(ηi,j) = lim

n→+∞

(
n

√∑
ei,j∈π |ηi,j |n

) (1.3)

The distance between two nodes then is the length of the minimal-length path between two

nodes.

In this context, using the L1-norm leads to the shortest path distance, and using the L∞-norm

leads to the lowest path distance. Both distances are illustrated by figure 1.5.

Figure 1.5 – (i) Shortest path distance: When using the L1-norm, the length of a path is the sum
of the weights of its edges, and the distance between two nodes is the minimal length of all
paths: in this example it is equal to 4. (ii) Lowest path distance: When using the L∞ norm, the
length of a path is the highest weight of the edges along this path, and the distance between two
nodes defined as before: here the associated distance is equal to 2. This disance corresponds to
the ultrametric distance, so that |πps . πsq| = |πps| ∨ |πsq|.

Definition 1.16 (Cheapest path). When working with a node-weighted graph, one can define

the length of a path as the sum of the nodes weights along this path:

L(π) =
∑
vi∈π

νi (1.4)

Then the distance between two nodes corresponds to the length of the minimal-length path

between them, and is referred to as the cheapest path distance between these two nodes. An

example is provided in figure 1.6.
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1. GRAPH THEORY

Figure 1.6 – On a node-weighted graph, the length of a path can be defined as the sum weights
of the nodes along the path. The topographical distance then corresponds to the length of the
minimal-length path among all paths. This distance is useful to interpret the classical watershed
operator as a skeleton by zone of influence [Meyer (1994b)] for the topographic distance. In
this example, the cheapest path between nodes x and y is equal to 6.

Definition 1.17 (Easiest path, Lexicographic distance).

In an edge-weighted graph, we call toughness of a path πpq between two nodes (p, q) the list

of altitudes of the highest edges met along this path. It is obtained in the following way: (i) it is

initiated with the weight of the highest edge when going from p to q, (ii) then we add the weight

of the highest edge on the remaining path, (iii) and so on until arriving to q. Once the toughness

has been defined, we can compare different paths using a lexicographic distance. Note that the

toughness of a path depends on the departure and arrival nodes. An example of the toughness of

a path is provided in figure 1.7. There are several possibilities to define a lexicographic distance

[Meyer (2005)]:

— We can order the edges weights by decreasing order:

1. by taking into account duplicate values when they exist.

2. by taking into account each value only once.

— We can give an importance to the direction of path explorations: for a given path, we

retain the highest weight, then the highest weight on the remaining path etc.

Note that the lexicographical distance is somehow finer than the lowest path distance. It

conserves the inequalities between paths obtained with the shortest path distance, but if two

paths are equivalent in view of the lowest path distance, they may differ for the lexicographical

distance. In other words,the lexicographical distance is less short-sighted than the lowest path

distance.
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Figure 1.7 – On this example, the toughness of the path in red is [3,2] in boths way (node x to
node y, or node y to node x).

Once we have defined these different distances, we may often want to compute the shortest

path between nodes, using shortest paths algorithms. The classical shortest path algorithms,

such as [Kruskal (1956); Prim (1957); Dijkstra (1959)], are defined for the L1-norm, for which

the weight of a path is its length. Gondran and Minoux have proposed an algebraic framework

called path algebra, in which finding shortest paths amounts to solve a family of linear equations

in this algebra [Gondran (1975)]. We will see in the next chapter how this indeed proves to be

interesting in partitioning problems.

1.3 Trees and Forests

In this section, we expose definitions and notations regarding trees and forests.

1.3.1 Definitions

Definition 1.18 (Tree, forest). A tree T is a connected graph without cycles. A graph F with no

cycles is called a forest. Each tree is a connected subgraph of the forest.

Definition 1.19 (Spanning Tree). A spanning tree ST of a graph G is a subgraph of G such that

is a tree which includes all of the vertices of G. A graph may have several spanning trees.

Definition 1.20 (Spanning Forest). A spanning forest SF of a graph G is a forest that spans all

of the vertices of G, meaning that each node of G is a vertex in SF .

Theorem 1.21 (Spanning tree properties). Let T = (V,E) be a graph with n vertices (|V| = n).

The following statements are equivalent:

— T is a spanning tree.

— T has (n− 1) edges and no cycles.

— T has (n− 1) edges and is connected.

— T contains a unique path between any pair of nodes.
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1.3.2 Connectivity

In order to address the problem of clustering on graphs, one must define the notions of

connectivity and connected component on them. Indeed, an important aspect of clustering is to

be able to connect nodes that share common properties, which is translated in these notions. In

the following, we denote S a finite set.

Definition 1.22 (Equivalence relation). A binary relation R on S is an equivalence relation if

and only if it is reflexive, symmetric and transitive, i.e. ∀(x, y, z) ∈ S3:

— xRx (reflexivity);

— xRy ⇒ yRx (symmetry);

— ((xRy) ∧ (yRz))⇒ xRy (transitivity).

Definition 1.23 (Equivalence class). The equivalence class of an element x ∈ S is the set of all

elements y ∈ S such that xRy.

Definition 1.24 (Path connectedness). A path-connected space is a notion of connectedness

requiring the structure of a path and the definition of a binary relation between neighbors nodes.

Let us consider a given a symmetrical binary relation ∼ defined over couples of nodes on a metric

set (S, d). We say that two nodes a and b are path-connected, and we note aRb, if there exists

a path (a, ..., b) connecting a to b such that between any two successive nodes x and y on this

path, we have x ∼ y. aRb is then an equivalence relation and the connected components the

corresponding equivalence classes.

Definition 1.25 (Connected component). A connected component G′ = (V′,E′) of the graph

G = (V,E) is a subgraph of G such that there is a path connecting each pair of distinct nodes of

G′. A graph G is connected if G is itself a connected component.

Depending on the binary relation considered (cf. section 1.2), one obtains equivalence

relations, and the associated partition may take several forms. For example, one may consider

for a node-weighted graph, with each node vi having a weight νi, the λ-flat condition as a binary

relation:

viRvj ⇔ |νi − νj | ≤ λ (1.5)

This leads to the partition of the λ-flat zones of the graph. When λ = 0, this leads to the flat

zones of the graph. In the particular case where the graph represents an image, extracting

λ-flat zones of the graph may be interesting as they correspond to regions with a weak gradient

between one region and the next one.

1.3.3 Minimum Spanning Tree

The minimum spanning tree is a structure that we will often meet throughout this thesis,

since it appears to be very useful for image segmentation. We define in this section the minimum
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spanning problem and give some important properties of this structure. This structure is closely

linked with the lowest path distance, as we shall see.

Definition 1.26 (Minimum Spanning Tree (MST)). Given an edge-weighted connected graph

G = (V,E, η), the minimum spanning tree is a spanning treeMST = (V,EMST ) of G such that

the sum of its edges is minimal.

MST (G) := arg min
T ∈ST

 ∑
ei,j∈EST

ηij

 (1.6)

Where ST is the set of all spanning trees of G.

In general, there is not a unique minimum spanning tree of a graph. In the particular case

where all edges weights are different, the minimum spanning tree is unique. The number of

minimum spanning trees of a given graph may thus be large. Note also that the minimum

spanning tree property is invariant when applying a strictly increasing function to the weights of

the graphs, because the ordering of edges is then preserved.

A slightly different problem is the one of the minimum spanning forest (MSF), which consists

in finding an optimal forest with the constraint that each tree of the forest contains a root

belonging to a collection of nodes called roots.

Definition 1.27 (Minimum Spanning Forest (MSF)). Let G = (V,E, η) be a connected edge-

weighted graph. A minimum spanning forest rooted on a set of k distinct nodes {t1, ..., tk} is a

spanning forestMSF = (V,EMSF ) of G such that each tree ofMSF contains exactly one root

ti, and such that the sum of the edges weights ofMSF is minimal.

MSF(G) := arg min
F∈SFt1,...,tk

 ∑
ei,j∈ESF

ηi,j

 (1.7)

Where SF{t1,...,tk} denotes the set of all spanning forests of G rooted in the set {t1, ..., tk}.

An example of use of this is the marker-based segmentation on a graph [Meyer (1994a)]. It

corresponds to aMSF such that each tree is rooted in a marked node.

1.3.4 Characterizations of MST and MSF

In this section, we present useful characterizations of MST and MSF. These theorems are

important as they highlight links between structures appearing in graph optimization problem.

Indeed, MST and MSF present interesting properties regarding the paths and cuts induced by

these structures. The problems linked with spanning trees are among the oldest ones in graph

theory and have been studied intensively. We refer the reader to the textbook by Gondran

and Minoux [Gondran et al. (1984)] for proofs and detailed explanations of the results hereby

presented.
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Theorem 1.28 (Path optimality [Hu (1961)]). A spanning treeMST = (V,EMST ) of a graph

G = (V,E, η) is a minimum spanning tree if and only if it satisfies the following inequality:

∀ek,l /∈ EMST , ∀ei,j ∈ π, ηk,l ≥ ηi,j , (1.8)

where π is the unique path from node k to node l in theMST .

Stated otherwise, if an edge epq does not belong to theMST , then the weight ηpq is superior or

equal to the weight of all edges belonging on the path connecting p and q in theMST .

Figure 1.8 – Path optimality: all paths linking the nodes s and t in the graph have a highest edge
with a valuation superior to 7, which is the valuation of the highest edge of the path linking
these nodes in the MST.

Definition 1.29 (Graph cut). Since there is a unique path connecting two nodes in a spanning

tree, deleting one of its edges creates two distinct connected components. If we denote ei,j the

edge that has been cut, the set of edges of G connecting these two components is a graph cut

separating nodes i and j. We say that C(i,j) is a cut induced in the graph G by deleting the edge

ei,j in a spanning tree ST of G.

Theorem 1.30 (Cut optimality [Gondran et al. (1984)]). A spanning treeMST = (V,EMST ) of

a graph G = (V,E, η) is a minimum spanning tree if and only if it satisfies the following condition:

∀ei,j ∈ EMST ,∀ek,l ∈ C(i,j), ηi,j ≤ ηk,l, (1.9)

where C(i,j) is the cut induced in the graph G by deleting the edge ei,j inMST .

Stated otherwise, if Ti and Tj are the subtrees obtained by cutting the edge eij of theMST , then

ηij ≤ ηpq for any edge epq linking a node p of Ti with a node q of Tj , i.e. belonging to the cocycle

Cocycle(Ti, Tj).
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1.3. Trees and Forests

Figure 1.9 – Cut optimality: if we consider the edge est of the graph G, which is not in theMST
of the graph, we see that its valuation (9) is superior to all edges valuations on the path linking
nodes s and t on theMST (in orange).

The path optimality property of a minimum spanning tree allows for the computation of a

minimax path between two nodes of the graph, i.e. a path for which the maximum edge weight

along it is minimal.

Theorem 1.31 (Minimax path [Gondran et al. (1984); Hu (1961)]). A spanning treeMST =
(V,EMST ) of a graph G = (V,E, η) is a minimum spanning tree if and only if for all distinct pairs

of nodes (p, q) of G, the unique path π∗ between p and q inMST is a minimax path:

π∗ ∈ arg min(L∞(π))
π∈Π(p,q)

(1.10)

where Π(p,q) is the set of all paths from node p to node q in G.

The minimax path corresponds to the path of the lowest distance (cf. definition 1.15). Indeed,

the lowest distance between two nodes p and q of a graph is the maximal edge weight on the

path linking p and q in a MST of the graph.

As a direct consequence of theorems 1.28 and 1.30, the minimum spanning tree of a graph

only depends on the ordering of edges valuations by increasing values. In cases where there

are duplicated edges valuations, there can exist several MST of the same graph. Figure 1.10

illustrates this possibility.
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Figure 1.10 – When several equivalent choices are possible, there are several minimum spanning
trees for the same graph. All these MST then have the same distribution of edges weights.

Remark 1.32 (Multiple minimum spanning trees case). When having multiple minimum span-

ning trees of the same graph, there is a one-to-one correspondence between the edges numbers

for each given edge valuation.

Stated otherwise, if we consider two MSTMST 1 andMST 2 of the same graph G, and if

we order their edges by decreasing order of their weights, there is a one-to-one correspondence

between edges ofMST 1 and edges ofMST 2, corresponding edges holding the same weights

[Berge (1985)].

One may wonder whether the fact that the minimum spanning trees can be multiple may

hamper robustness. In section 3.3.5, we will see that it is when doing image segmentation using

them, and we will propose a way to handle such an instability by considering the union of all

minimum spanning trees before pruning the result to get a single spanning tree.

1.3.5 Algorithms to compute MST

In this section we briefly list, explain and compare the main different algorithms that can be

used to get a minimum spanning tree for a given connected edge-weighted graph.

The most popular algorithms for extracting MST from graphs are Boruvka’s algorithm

[Boruvka (1926)], Kruskal’s algorithm [Kruskal (1956)] and Jarnik’s/Prim’s/Dijkstra’s algorithm

[Jarnik (1930); Prim (1957); Dijkstra (1959)].

Dijkstra/Jarnik/Prim (DJP)

The Jarnik’s/Prim’s/Dijkstra’s algorithm has been developed by Jarnik in 1930 [Jarnik (1930)]

and simultaneously rediscovered by Prim and Dijkstra in 1959 [Prim (1957); Dijkstra (1959)].

18



1.3. Trees and Forests

In the following we refer to it as to DJP algorithm.

It forms the MST by finding the lowest adjacent edge to the tree that has been formed by

beginning from an arbitrary vertex and adding it to the tree, such that the edge to be added does

not form a cycle. A simple way to check that no cycle is created is to make use of a label that is

propagated from one node to the other.

Algorithm 1.1: DJP’s algorithm to compute MST.
Data: A graph G = (V,E, η);
Result: AMST of G

1 Choose arbitrarily a start node s ;

2 Initially, S = {s} andMST = {};
3 while S 6= V do

4 Find an edge e such that:

1. e starts in S and ends out of S

2. e has the minimal weight of edges satisfying 1.

Add e toMST ;

Add the vertex at the end of e to S
5 end while

Kruskal

Kruskal’s algorithm forms the MST by processing the edges in ascending order. To obtain

a MST, each edge is added unless a cycle is created. An illustration of Kruskal’s algorithm is

provided in figure 1.11.

Algorithm 1.2: Kruskal’s algorithm to compute MST.
Data: A graph G = (V,E, η);
Result: AMST of G

1 Initially, sort edges in ascending order of weight;

2 SetMST = {};
3 for each edge e ∈ E do

4 if G̃ = (V,MST ∪ {e}) does not contain a cycle then

5 Add e to theMST
6 end if

7 end for

Note that a version of Kruskal exists that does not require edges to be ordered, following the

process hereby:

— Add one edge at a time,

— If by adding an edge one create a cycle, withdraw the maximal weight edge in this cycle.
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Figure 1.11 – Illustration of a minimum spanning tree computation using Kruskal’s algorithm
(Left to right, and top to bottom).

Boruvka

Boruvka’s algorithm is similar to Kruskal’s algorithm. It begins by making a set of trees that

start out as single vertices. It then repeatedly iterates over these trees to find for each one the

chepeast edge that has one node in the tree and the other not. Then it adds these edges to the

MST , and merge the trees they join.

The difference with Kruskal’s algorithm is that Boruvka, at each iteration, finds all at once for

all trees the cheapest edges that have endpoints in different trees, of processing the edges one by

one following the increasing order of their weights.

Algorithm 1.3: Boruvka’s algorithm to compute MST.
Data: A graph G = (V,E, η);
Result: AMST of G

1 Initialize all vertices as individual components (or sets) ;

2 InitializeMST as empty ;

3 repeat

4 Consider next component ;

5 Find the closest weight edge that connects this component to any other component ;

6 Add this closest edge toMST if not already added

7 until There are more than one components;

1.4 Clustering on Graphs

Clustering is the process of grouping together objects that are similar to form clusters. It can

be seen as a particular case of classification in which clusters constitute the different classes of

objects. It is widely used, with applications from biology and astronomy to economics or image

analysis.
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1.4.1 Definitions

We hereby present formal definitions relative to the problem of clustering.

Definition 1.33 (Partition). A partition is a family of disjoint sets covering the whole space. Let

S be a finite set and P(S) be the set of all subsets of S. A partition P of S is a family (Pi) of

elements of P(S) such that:

— (i) ∀i 6= j,Pi ∩ Pj = ∅

— (ii) ∪Pj = S

Property 1.34 (Equivalence classes and partitions). The set of all equivalence classes of an

equivalence relation R on S is a partition of S. Conversely, any partition can be identified as the

equivalence classes of an equivalence relation.

Proof. Given an equivalence relation R on S, the reflexivity of R ensures that every element

x belongs to at least one equivalence class: its own. Transitivity ensures that two equivalence

classes are either confused or disjoint, i.e. that two classes having a non-void intersection are

identical.

Conversely, given a partition P of S, we can associate an equivalence relation R to this partition

that is defined by: xRy ⇔ (∃Pi ∈ P s.t. (x, y) ∈ P2
i ). Verifying that R is an equivalence relation

is trivial.

A taxonomy of clustering techniques

Following the taxonomy from [Jain et al. (1999)], we hereby introduce the different proper-

ties a clustering technique can verify:

1. It can be exclusive or nonexclusive.

Exclusive clustering techniques yields clusters that are disjoint, while nonexclusive ones

can lead to overlapping clusters. An exclusive clustering method generates a partition of

the set of objects, and most of existing methods fall within this category.

2. It can be intrinsic or extrinsic.

Intrinsic clustering is an unsupervised activity based only on the dissimilarities between the

objects that we want to cluster. Extrinsic clustering, on the opposite, can rely on external

information provided for example to specify which objects should be clustered together

and which ones should not.

3. It can be hierarchical or partitional.

Partitional clustering aims at generating a partition of the graph, either by relying on its

internal structure in the case of intrinsic partitional clustering, or by introducing external

information regarding the desired output in extrinsic partitional clustering.

Hierarchical clustering algorithms aim at the construction of a sequence of nested partitions.

More specifically, hierarchical agglomerative clustering (bottom-up approach) are built
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starting from a set of objects whose blocks consist in single objects, and in which certain

clusters are progressively merged together. Thus the result is an ascending chain of

partitions (considering the inclusion as order relation), the first one being the partition

of all separated objects and the last one the partition where all objects are merged.

In hierarchical divisive clustering methods (top-down approach), it is the opposite, and

successive partitions are built by subdividing blocks of the previous partition. Agglomerative

clustering methods are generally considered to be more efficient since such bottom-up

approaches bound the complexity to polynomial at worst, while divisive clustering methods

suppose a combinatorial search of every possible division of each cluster, thus potentially

leading to an exponential complexity. But as we may see in the following, these two

approaches are equivalent when deriving hierarchical clustering from minimum spanning

trees of the graphs.

In this thesis, we will mainly develop new clustering methods that are exclusive, intrin-

sic/extrinsic and hierarchical. We will delve into hierarchical clustering in chapter 2, and for

now focus on partitional clustering in this section.

The aim of partitional clustering is to create a partition of the set of objects whose blocks

are the clusters, such that objects in a cluster are more similar to each other than to objects

belonging to different clusters, given a way to compare these clusters.

1.4.2 Unsupervised approaches

In this section we make a brief survey of partitional clustering, which can be seen as the

unsupervised classification of patterns. As a result of its appeal and usefulness for a wide range

of applications, especially regarding exploratory data analysis, this problem has been addressed

in many contexts and disciplines, image segmentation being only one of them

An inherent problem accompanying partitioning algorithms is the choice of the desired

numbers of clusters in the output. These methods usually produce clusters by optimizing a

criterion function which can be defined either locally (on a subset of the features describing our

data) or globally (defined over all features). Furthermore, since the combinatorial search of the

best set of clusters among all possibilities is often computationally unfeasible, heuristics are used.

Either the algorithm runs multiple times with different starting states and the best result is used,

or an iterative optimization is operated, meaning a relocation schemes iteratively reassign points

between the k clusters.

Probabilistic clustering

In a probabilistic approach, we can consider data to be a sample independently drawn from

a mixture model of several probability distributions. The main assumption in such a framework

is that data points are generated by randomly picking a model among the existing models and

then drawing those points from the corresponding distributions. Thus, the overall likelihood of

22



1.4. Clustering on Graphs

the training data can be defined as its probability to be drawn from a given mixture model, and

it can serve as an objective function that one wants to maximize.

This gives rise to the Expectation-Maximization (EM) method, described in details with

references and examples in [Dempster et al. (1977); McLachlan et al. (2007)]. EM is a two-steps

iterative optimization method: step (E) estimates for each data point its probability to be in

each cluster, eventually leading to a (soft) reassignment of this point, step (M) then refines

the approximation of current soft assignments to a mixture model. This process leads to a

maximization of the likelihood, and finishes when it converges.

k-means methods

In the k-means algorithm, we represent each of the k clusters by the mean of its points, called

centroid. The sum of discrepancies between a point and its centroid can then be expressed using

appropriate distance function: when using the L2-norm as a distance, the corresponding sum is

the sum-of-squares error (SSE). This SSE corresponds to the total intra-clusters variance, and

can be used as an objective function to minimize. Note that the SSE can be seen as the negative

of the log-likelihood for normally distributed mixture model and thus can be derived from the

probabilistic framework [Dempster et al. (1977)]. This is why Forgy’s algorithm, one of the more

popular versions of k-means algorithm, is very similar to EM algorithm and consists in two steps

[Forgy (1965)]: (i) assigning each data point to its nearest centroid, (ii) recompute centroids of

newly assembled groups.

In a graph, a dissimilarity is defined between neighboring nodes only, and thus defining the

mean of a cluster is not obvious. This is why from a practical point-of-view, K-medoids methods

are more often used when it comes to graph approaches.

k-medoids methods

In k-medoids methods, a cluster is represented by one of its points. A k-medoid is the most

representative data point of a cluster of points, in the sense that it has the most central position

in the cluster relative to all other members of the cluster. Such a representation presents two

advantages. It is less sensitive to the presence of outliers since its location depends on the

location of a predominant fraction of the points. It also presents no limitations regarding the

attributes types that are considered. Once medoids are selected, clusters are defined as subsets

of points close to respective medoids and thus the objective function is defined as the sum of

distances between the points and their medoids. In a graph, several distances can be defined

and a min-max approach can be used. The sum of distances is not always meaningful, but we

can look fr the node such that its maximal distance to other nodes is minimal.

The more popular variant of k-medoids methods is called PAM (“Partition Around Medoids”)

[Kaufman et al. (2009)]. Just like in the two previously mentioned approaches, it can be

decomposed in two phases. At first, medoids are selected and each data point is assigned to a

cluster represented by the medoid of which it is the closest to: this is the building phase. Then
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during the swapping phase, swapping data points and existing medoids is considered: medoids

and nearby data points are iteratively swapped as long as these swaps do not diminish the

centrality of the medoids. Note that the PAM algorithm is more robust than Forgy’s variant of

k-means as it minimizes the sum of the dissimilarities instead of the sum of the squared errors.

More details on successive versions of k-medoids algorithms are provided in [Berkhin (2006)].

Spectral Graph Partitioning

Traditional clustering methods like k-means suppose that the points we want to regroup can

be clustered using a spherical or elliptical metric. Hence they do not work when the clusters are

non-convex. Spectral graph partitioning proposes a solution in such cases, as described in details

in [Von Luxburg (2007)].

This method starts from a matrix of pairwise similarities of size N ×N , representing an edge-

weighted graph with N nodes, with non-null values for pairs of connected nodes, and null values

elsewhere. The idea is then to build similarity graphs that represent the local neighborhood

relationships between points. It proceeds by finding the eigenvectors corresponding to the

smallest eigenvalues of the Laplacian matrix associated with the matrix of pairwise similarities

of the graph. Using a standard method like k-means, it then clusters the matrix of eigenvectors

to yield to a clustering of the original data points.

Minimal Cuts Approaches

The minimum spanning tree structure is commonly used in graph-based algorithms for ease

of use and speed. When working with the minimum spanning tree MST of a graph G (cf.

definition 1.26), there are different ways to produce a group of clusters. When the desired

number k of clusters is known, one can simply sort edges of the minimum spanning tree by

decreasing order of their weights, and remove the edges with the first k − 1 heaviest weights

[Xu, Olman, et al. (2001); Asano et al. (1988)]. We refer to this method as to the minimal

cuts method. It comes down to a minimization problem where the optimization criterion is the

diameter of the remaining clusters, the diameter of a forest being defined as the valuation of its

highest edge. Indeed, the clustering forest created by cutting the k highest edges in the MST

is a forest with the lowest possible diameter among all possible clustering forests. Note that

another minimal cuts approach exists that falls within the flow algorithms, and where the goal is

to minimize the sum of valuations of edges belonging to cocycles between the source(s) and the

sink(s) [Boykov et al. (2004)].

Such approaches are way faster than other methods proposed in the literature, such as

normalized cuts [Shi et al. (2000); Wang, Jia, et al. (2008)], spectral graph partitioning [Hagen

et al. (1992); Ng et al. (2002)] (even if parallelized versions recently appeared such as in

[Naumov et al. (2016)]). Indeed, although these methods allow to get more balanced partitions

by mainly minimizing a ratio between the length of cuts and the areas enclosed in them, they

require more complex and costly tools such as linear algebra tools to compute eigenvalues and
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vectors of large matrices. However, minimal cuts suffer from a shrinking problem: it often

produces small cuts which are often not relevant.

Improvements have been proposed to the minimal cuts approach for situations when the

desired number of clusters is not known in advance, with defined conditions regarding the edges

that need to be cut. In [Zahn (1971)], Zahn defines inconsistent edges, basically depending

on whether each edge connects two regions that are non-coherent between themselves but

coherent in themselves. In [Felzenszwalb et al. (2004)], the authors define a predicate to

measure the evidence between neighboring regions, using not only local information but also

global information regarding the regions, such as cluster size and longest edge for each cluster.

In [Wang, Zhang, et al. (2014); Saglam et al. (2017)], the authors propose sequential

clustering algorithms using the sequential edge list formed during Prim’s algorithm to define

inconsistent edges, thus creating a set of inconsistent edge queues. Then, depending on the

desired number of clusters k, one of these queues is selected.

Watershed approaches

By definition, the watershed transform [Lantuéjoul et al. (1981)] is the SKIZ of regional

minima and it can be defined for different distances, for example, and by order of precision, the

ultrametric distance, the topographic distance or the lexicographic distance.

It has been applied with success to a number of partitioning problems, mainly in image

partitioning tasks. In the classical representation of this technique, images are represented as

topographic reliefs, which can be flooded. More precisely, we departure from a gradient of the

image considered as a relief map, and minima of the image constitute the seeds of the regions

that will be separated by watershed lines in the final segmentation. One can also impose markers

to govern the process: instead of considering all minima, one can choose to consider only those

of markers images as flooding sources.

We can interpret such an approach on a graph [Meyer (2014)]. Indeed, defining an equiva-

lence relation on a graph, linked with a path-connectedness property, leads to obtaining influences

zones skeletons, namely here partitions. Furthermore, there is then a natural connexion between

watershed and minimum spanning forests algorithms, as we will see in this thesis.

1.4.3 Semi-supervised approaches

When trying to realize a clustering of a graph in homogeneous subgraphs, we often have

prior information in the form of labels for given nodes of the graph called markers or seeds, so

that we know in advance for example which are the nodes that we want to be separated in the

output clustering. We are thus in the case of a semi-supervised clustering problem, which can

also be formulated as a problem of clustering with constraints. We would like to make use of

hints or advices in the form of constraints to guide the clustering process. This problem has been

formalized notably in [Davidson et al. (2005); Basu et al. (2008)]. The authors remind that the

most prevalent form of constraints are conjunctions of pair-wise constraints of the form must-link
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Figure 1.12 – Left: a graph with markers; Middle: we compute a MST of the graph, and cut the
highest edges on the paths linking pairs of marked nodes; Right: final clustering.

(ML) and cannot-link (CL), which state that pairs of points should respectively be in the same

or in different clusters. They also draw the two main paths for using such an information in

clustering approaches: either one can use a standard dissimilarity and then try to satisfy all or

as many constraints as possible, or one can use these constraints to learn a distance function

that can then be used in a clustering algorithm. As we shall see throughout this thesis, these two

paths can cross, as finding an organization of data points satisfying the constraints can help to

define a distance function more suitable to the corresponding clustering problem.

Such an approach can also be interpreted as a Voronoi-like one: given markers, we would

like to attribute to each node the label of its closest marker for a given distance (amongst the

ones defined in section 1.2). This is why a standard morphological way to propose a solution to

such a problem can easily be obtained and explained in a MST-based framework using the lowest

path distance [Gomila (2001); Gomila and Meyer (2003)]. One can indeed select a node in each

region or object of interest that will serve as a root in each wanted tree. We then construct a

MSF in which each tree takes root in one of the selected nodes. The roots are also called markers

and this process referred to as marker-based segmentation or MSF segmentation. The final result

is obtained by suppressing, for each pair of markers, the highest edge on the unique path on the

MST linking them. This is illustrated in figure 1.12.

In [Couprie et al. (2011)], the authors build on the works in [Sinop et al. (2007)] to provide

proofs of connexions between the MSF algorithm and several other state-of-the-art approaches

for semi-supervised graph partitioning. Indeed, they show that the watershed transform/markers-

based segmentation, graph-cuts, random walker and shortest paths algorithms can all be seen

as providing solutions to variations of a similar minimization problem. They also give insights

regarding the performances of each approach. Graph cuts provide good results when the seeds

are far from the boundary, but is slow and thus not adapted to heavy problem such as 3D images

segmentation. Shortest paths is useful when the object to segment is well centered around

foreground and background seeds. Random walkers is globally efficient and provides good

results whether the markers are equidistant or strongly asymmetric. Minimum Spanning Forests

algorithms are useful especially because of their robustness to markers not centered, since they
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are not overdependent on the markers position. They also present the advantage of being very

fast to obtain.

In the following chapter, we will show how we can easily extend the MSF framework to

obtain hierarchies of segmentations, present some theoretical properties as long as a glimpse

into the versatility of such an approach.
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Chapter 2

Hierarchical Clustering on Graphs

Résumé

Ce chapitre s’intéresse spécifiquement à la classification hiérarchique. Nous commençons par

introduire définitions, notations et propriétés concernant les hiérarchies, leur lien avec les

distances ultramétriques, et leur représentation sous forme d’un dendrogramme. Dans le cas

d’un graphe valué aux arêtes, nous voyons ensuite comment la structure de son arbre de poids

minimum induit intrinsèquement une classification hiérarchique de ses noeuds. Enfin, nous

montrons que l’espace de ces hiérarchiques admet une structure de treillis, avec l’existence

d’une relation d’ordre, d’opérateurs permettant de combiner les hiérarchies et d’une distance

permettant de géométriser leur espace.

Abstract

This chapter focuses specifically on hierarchical clustering. We begin by introducing definitions,

notations and properties concerning hierarchies, their relation to ultrametric distances, and their

representation as dendrograms. In the case of an edge-weighted graph, we then see how the

structure of its minimum spanning tree inherently induces a hierarchical clustering of its nodes.

Finally, we show that the space of these hierarchies admits a lattice structure, with the existence

of an order relation, operators for combining hierarchies and a distance for assigning a geometric

structure to the space of hierarchies.

2.1 Introduction

Throughout this thesis, we will present methods for segmenting images as a step for solving

various tasks. Ideally, a segmentation of an image extracts all objects of interest for a later task,

which oftens implies to understand the semantic meaning of the images. When there are only a

few object types and the images to segment are obtained under controlled conditions, it is often

possible to directly detect and segment them. But in most situations, we need to proceed by

successive steps. Most of the methods we will present are based on a representation of the image
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as a graph, in which each node corresponds to a region of the image, and edges connect adjacent

regions of a partition. This partition is called fine partition, from which coarser partitions will be

derived. Since there is a huge amount of information represented on such a connected graph,

one can make progressively appear intermediate structures by successive cuts of the edges in a

particular order. Such an approach is said to be divisive, or top-down. On the opposite, one can

first extract homogeneous regions of the image according to local cues such as color, texture,

movement, and then progressively merge these regions to get more semantically significant ones.

This approach is agglomerative, or bottom-up.

In this chapter, we begin by introducing the mathematical structures and notations useful

to describe such constructions, namely the notion of hierarchy. Hierarchies are indeed derived

from classical structures for representing a taxonomy, that is to say a classification of objects of a

set into ordered categories. For example, the Linnaean system classifies nature into a series of

nested classes [Linné et al. (1758)]. Such structures are also encountered in image segmentation,

as was stated above. We will place ourselves in the particular case where the dissimilarity is

carried by the edges and expressed by weights.

Then, we introduce our model for representing the hierarchies, namely edge-weighted graphs,

in which the nodes represent regions of a fine partition, edges link neighboring nodes and edge

weights expressing the dissimilarity between the nodes. From this seminal representation are

derived additional structures such as the minimum spanning tree and the dendrogram.

2.2 Definitions and Properties

2.2.1 Dendrogram

In many problems, it appears interesting to structure a set of objects into ordered categories:

this is the object of a taxonomy. A well-known one is the Linnaean system [Linné et al. (1758)],

which classifies the set of all parts of nature: a first decomposition is made in three classes

(animal, vegetable, mineral), which can themselves be decomposed into several subclasses,

and so on. The proper mathematical structure to represent such taxonomies/hierarchies is the

dendrogram, of which we introduce the axiomatic in this section.

Definitions

Dendrograms are tree structures allowing to represent series of nested mergings of a family

of objects, and which are therefore particularly adapted to the representation of hierarchical

clusterings. We hereby present axiomatic definitions of dendrograms for a given order relation

on the space, taken from [Benzécri et al. (1973)] and which entirely rely on the set intersection

or union, and on the inclusion order relation between sets. Their construction is progressive:

starting with this inclusion order relation, we then add axioms to define trees, hierarchies and

stratified hierarchies.
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Definition 2.1 (Structure associated with an order relation). Let S be a set, P(S) be the set of

all subsets of S, X be a subset of P(S) on which we consider an arbitrary order or preorder

relation ≺ (for example the inclusion between sets ⊂). The union of all sets belonging to X is

called the support of X . The subsets of X can be structured into:

— the summits: Sum(X ) = {A ∈ X |∀B ∈ X : A ≺ B ⇒ A = B}

— the leaves: Leav(X ) = {A ∈ X |∀B ∈ X : B ≺ A⇒ A = B}

— the nodes: Nod(X ) = X\ Leav(X )

— the predecessors, or ancestors: ancestor(A) = Pred(A) = {B ∈ X |A ≺ B}

— the immediate predecessor, or father: father(A) = ImPred(A) = {B ∈ X |{U |U ∈ X , A ≺
U and U ≺ B} = {(A,B)}

— the successors, or descendants: descendant(A) = Succ(A) = {B ∈ X |B ≺ A}

— the immediate successors, or sons: son(A) = ImSucc(A) = {B ∈ X |{U |U ∈ X , B ≺
U and U ≺ A}} = {(A,B)}

— the cousins of A are the sons of an ancestor of A that are not themselves ancestors of A:

cousin(A) = {B ∈ X |B = son[ancestor(A)];B 6= ancestor(A)}

We can then structure X using the tree structure of a dendrogram. Another possible name

for dendrogram is “partial hierarchy”.

Definition 2.2 (Dendrogram). X is a dendrogram if and only if the order relation induced by ≺
is a total order over the set Pred(A) of the predecessors of A. Then the maximal element of this

family is a summit: the unique summit containing A.

There exist several interesting characterizations of dendrograms.

Proposition 2.3 (Dendrograms characterizations). The following properties are equivalent:

1. X is a dendrogram

2. (U, V,A) ∈ X 3 : A ⊂ U and A ⊂ V ⇒ U ⊂ V or V ⊂ U

3. (U, V ) ∈ X 2 : (U " V and V " U)⇒ U ∩ V = ∅

Representation of a dendrogram as a tree

When X is finite, X is a dendrogram if and only if any element A ∈ X − Sum(X ) possesses a

unique immediate predecessor.

We say that a dendrogram is connected if it possesses a unique summit.

A finite dendrogram is usually represented as a tree: each element A ∈ X is a node of the

tree, and is linked by an edge with its unique immediate predecessor. An example of such a

representation is provided in figure 2.1.
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2. HIERARCHICAL CLUSTERING ON GRAPHS

Figure 2.1 – A dendrogram.

Stratification indices

In a dendrogram, a node is included in all its predecessors, and this partial order relation

governs the hierarchical structure of the tree. We can make this inclusion order more precise by

the adjunction of a total order compatible with it.

Definition 2.4 (Stratified dendrogram). A dendrogramX is stratified if there exists a stratification

index st : X 7→ [O,L] which is strictly increasing with the inclusion order:

∀(A,B) ∈ X 2 : A ⊂ B and B 6= A⇒ st(A) < st(B).

Since E is finite, the number of distinct stratifications levels is finite, so:

∀A ∈ X : st(A) < L and st(∅) = L.

We can think of the stratification index as giving the level of the stratifications for which

nodes progressively merge. It appears that many stratification indices are compatible with a

given dendrogram, since it is the case as long as they properly reflect the order of fusions. Indeed,

two stratification indices can be radically different but both be compatible with the partial order

induced by the order relation expressed by the dendrogram (for example the inclusion order

when working with sets).

2.2.2 Hierarchy

Definition 2.5 (Hierarchy). Let S be a set and P(S) be the set of all subsets of S. A hierarchy

on the set S is a collection of sets H ⊆ P(S) that satisfies the following conditions:

1. the members of H are non empty

2. S ∈ H
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3. ∀x ∈ S, {x} ∈ H

4. if (H,H ′) ∈ H2 and H ∩H ′ 6= ∅, then we have either H ⊆ H ′ or H ′ ⊆ H

A hierarchy is a particular case of dendrogram. Indeed, H is a hierarchy if it is a dendrogram

such that: ∪Leav(H) = S.

Proposition 2.6. A dendrogram X is a hierarchy if and only if it verifies the union axiom:

(Union axiom) Any element A of X is the union of all other elements of X contained in A:

∀A ∈ X : ∪{B ∈ X |B ⊂ A;B 6= A} = {A, ∅}

2.2.3 Ultrametrics

Dissimilarities are functions allowing us to evaluate the extent to which data objects are

different.

Definition 2.7 (Dissimilarity). A dissimilarity on a set S is a function d : S2 → R≥0 satisfying

the following conditions:

1. ∀x ∈ S, d(x, x) = 0;

2. ∀(x, y) ∈ S2, d(x, y) = d(y, x)

The pair (S, d) is a dissimilarity space.

Additional properties may be satisfied by dissimilarities. A non-exhaustive list is given here:

1. ∀(x, y) ∈ S2, d(x, y) = 0⇒ ∀z ∈ S, d(x, z) = d(y, z) (evenness)

2. ∀(x, y) ∈ S2, d(x, y) = 0⇒ x = y (definiteness)

3. ∀(x, y, z) ∈ S3, d(x, y) ≤ d(x, z) + d(z, y) (triangular inequality)

4. ∀(x, y, z) ∈ S3, d(x, y) ≤ max(d(x, z), d(z, y)) (ultrametric inequality)

5. ∀(x, y, u, v) ∈ S4, d(x, y) + d(u, v) ≤ max(d(x, u) + d(y, v), d(x, v) + d(y, u)) (Buneman’s

inequality, or four-point condition)

The properties (3)(4)(5) can be seen as curvature conditions within the metric space,

formulated in terms of properties of triangles

Definition 2.8 (Metric, tree metric, ultrametric). A dissimilarity d on a set S is:

1. a metric if it satisties the definiteness property and the triangular inequality.

2. a tree metric if it satisties the definiteness property and the Buneman’s inequality.

3. an ultrametric if it satisfies the definiteness property and the ultrametric inequality.

If d is a metric (resp. an ultrametric) on a set S, then (S, d) is a metric space (resp. an ultrametric

space).

Theorem 2.9. Every tree metric is a metric, and every ultrametric is a tree metric.
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Lemma 2.10 (Ultrametric characterization). A function d : S2 → R≥0 is an ultrametric if and

only if it has the following properties:

1. ∀(x, y) ∈ S2, d(x, y) = 0⇔ x = y

2. ∀(x, y) ∈ S2, d(x, y) = d(y, x)

3. ∀(x, y, z) ∈ S3, d(x, y) ≤ max(d(x, z), d(y, z))

Definition 2.11 (Open ball, closed ball, radius). Let (S, d) be a metric space. The closed ball

centered in x ∈ S of radius r is the set:

B(x, r) = {y ∈ S|d(x, y) ≤ r} (2.1)

The open ball centered in x ∈ S of radius r is the set:

Cd(x, r) = {y ∈ S|d(x, y) < r} (2.2)

Definition 2.12 (Diameter). Let (S, d) be a metric space. The diameter of a subset U of S is the

number diamS,d = sup{d(x, y)|(x, y) ∈ U2}.

Theorem 2.13 (All triangles are isosceles in ultrametric spaces.). Let (S, d) be an ultrametric

space. For every (x, y, z) ∈ S3, two numbers d(x, y),d(x, z),d(y, z) are equal and the third is not

larger than the two other equal numbers.

This means that in an ultrametric space, any triangle is isosceles and the side that is not equal to the

two others cannot be longer than these.

Proof. Let us consider three distinct points p, q, r, and let us suppose that the largest edge

of this triangle is epq: d(p, r) ∨ d(r, q) ≤ d(p, q). Then according to the ultrametric inequality,

d(p, q) ≤ d(p, r) ∨ d(r, q). This shows that the two largest edges of the triangle have the same

length.

Lemma 2.14. Let B(x, r) be a closed ball in an ultrametric space (S, d). If z ∈ B(x, d), then

B(x, r) = B(z, r). Stated differently, in an ultrametric space, a closed ball has all its points as

centers.

Proof. Let us suppose that y is an element of B(x, r). Let us show that y is then also a center

of this ball. If z ∈ B(y, r): d(x, z) ≤ d(x, y) ∨ d(y, z) ≤ r. Hence z ∈ B(y, r), showing that

B(y, r) ⊂ B(x, r). Exchanging the roles of x and y shows that B(x, r) = B(y, r).

Lemma 2.15. Two closed balls B(x, r) and B(y, r) with the same radius are either disjoint or

identical.

Proof. If B(x, r) and B(y, r) are not disjoint, then they contain at least one common point z.

According to lemma 2.14, z is the centre of both balls B(x, r) and B(y, r), showing that they are

identical.

Lemma 2.16. In an ultrametric space, the radius of a ball is superior or equal to its diameter.
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Proof. Let B(x, r) be a ball of diameter λ = diamB(x,r),d. By definition, λ is the maximal distance

between two elements of the ball. Let us consider two nodes p and q such that d(p, q) = λ. Then

for any x, d(x, p) ≤ r, d(x, q) ≤ r, and thus λ = d(p, q) ≤ d(p, x) ∨ d(x, q) ≤ r. Hence λ ≤ r.

Open balls have exactly the same properties, and proofs for establishing them are similar.

2.2.4 Links between hierarchy, ultrametric distance, and dendrogram

We present now the link between an ultrametric defined on a finite set S and chains of

equivalence relations on S (or chains of partitions on S).

Let us consider here a connected graph G with N nodes. Then the set containing all the

nodes of the graph is a closed balls with a diameter being the weight of the highest edge in the

graph. Let us write rB (resp. dB) the radius (resp. diameter) of a ball B.

For a ball B, we define ζB as being the infimum of weights of the edges belonging to the

cocycle of B: ζB =
∧
{ηpq|p ∈ B, q /∈ B}.

We have dB ≤ rB < ζball, and the smallest closed ball strictly containing the ball B(p, dB) is

the ball B(p, ζB).
Let us then consider the sequence of closed balls centered at the node p:

B0 = {p}, with a radius equal to -∞

B1 = B(p, ζB0)

...

Bk = B(p, ζBk−1)

...

BN = B(p, ζB∞)

These balls are strictly increasing, so that: ∀(i, j) ∈ {0, ...N}2, i < j,Bi $ Bj .

Theorem 2.17. The closed balls of an ultrametric distance constitute a stratified dendrogram. If B
is a closed ball, its stratification index is equal to its diameter.

Proof. Let us consider a closed ball B(p, r). We want to show that Pred(A) is completely ordered

for ⊂. So let us consider two predecessors of A, a ball B = B(q, rB) and a ball C = B(p, rC). As

the node p belongs to both balls B and C, it is also the center of these balls. Thus, B and C are

two balls with the same center p, and we have: B(p, rB ∧ rC) ⊂ B(p, rB ∨ rC).

The union of all closed balls of an ultrametric distance forms a hierarchy, that we refer to as

the ultrametric hierarchy.

Theorem 2.18 (Ultrametric hierarchy). Let S be a finite set and let d : S × S → R≥0 be an

ultrametric distance. The closed balls B(., ζ) constitute a hierarchy of the space S, since:

— these balls are either identical or disjoint,

— each point is the center of one of these balls, meaning that the whole domain covered.
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Inversely, let us consider a list of nested partitions {S = P0, . . . ,Pn}, such that for any i, j, such

that j < i, each region of Pi is the union of regions of Pj . One can then define an ultrametric

distance d between regions of S = P0: ∀(p, q) ∈ S,

 d(p, q) = 0 if p = q

d(p, q) =
∧
{i|∃R ∈ Pi, p ⊂ R, q ⊂ R}

.

Corrolary 2.19. Stated differently, when operating hierarchical clustering, each ultrametric is

associated to a unique stratified dendrogram, i.e. a sequence of nested partitions of the space

represented by a dendrogram structure associated with a stratification index.

Theorem 2.20. The supremum of two ultrametrics is an ultrametric.

Proof. Let us consider two ultrametrics d1 and d2 defined on a finite set S, and let us consider

the function d1 ∨ d2 : (x, y) ∈ S2 7→ d1(x, y)∨ d2(x, y). To prove that d1 ∨ d2 is an ultrametric, we

must prove that it checks all properties of theorem 2.10. Properties 1 and 2 are trivial, so let us

prove the property 3, namely the ultrametric inequality. Let us consider two points (x, y, z) ∈ S3.

Then:

(d1∨d2)(x, y)∨(d1∨d2)(y, z) = (d1(x, y)∨d1(y, z))∨(d2(x, y)∨d2(y, z)) > (d1(x, z)∨d2(x, z)) =
d1 ∨ d2(x, z). Thus d1 ∨ d2 is an ultrametric.

Remark 2.21. The infimum of two ultrametrics is generally not an ultrametric, as illustrated

on a simple example in figure 2.2. However, one may associate to this infimum the largest

ultrametric distance below it, namely its subdominant ultrametric, as we shall see hereafter (cf

definition 2.22).

(a) d1 (b) d2 (c) d1 ∧ d2

Figure 2.2 – Simple example illustrating that the infimum of two ultrametric is not necessarily an
ultrametric, since it does not here respect the ultrametric inequality. Indeed: 2 = (d1∧d2)(a, c) >
(d1 ∧ d2)(a, b) ∨ (d1 ∧ d2)(b, c) = 1.

Definition 2.22 (Subdominant ultrametric). Let S be a set, and let us denote by DS the set of

all possible dissimilarities on S, and by US the set of ultrametrics on S. Since each ultrametric is

a dissimilarity, US is a subset of DS .

Let us then consider a dissimilarity d on S and let us denote Ud the set of ultrametrics:

Ud = {e ∈ US |e ≤ d}.
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The set Ud has a largest element in the poset (DS ,≤), which we call the subdominant ultrametric

for the dissimilarity d. We denote d the subdominant ultrametric associated with a dissimilarity

d.

Proof. Let consider the zero dissimilarity d0 given by: ∀(x, y) ∈ S2,d0(x, y) = 0. d0 is an

ultrametric and d0 ≤ d, so Ud is a nonempty set.

Furthermore, the family Ud is closed by supremum according to theorem 2.20, hence it has a

largest element.

Remark 2.23 (Saliency). In the image processing literature, it is often made reference to

the notion of saliency [Najman et al. (1996); Arbelaez (2006)], to value the importance of a

connexion between points of a studied space that has been hierarchically structured. Saliency

then corresponds to the subdominant ultrametric defined, for a given dissimilarity, over any two

pairs of points of this space.

Taking into account the saliency thus constructed instead of the initial metric can lead to a

different understanding of the connexion between given nodes, as illustrated in figure 2.3.

A: graph with dissimilarity values. B: the same graph with the corre-
sponding ultrametric values.

Figure 2.3 – Illustration of the impact of the choice to replace dissimilarity values (graph A)
with saliency values (graph B). Note that an edge with a high dissimilarity value can have a low
saliency value.

2.2.5 Choice of linkage in hierarchical clustering

Definitions

In an agglomerative hierarchical clustering approach, we seek to merge first the most similar

clusters, which implies to define a dissimilarity between clusters. There are different ways of

choosing such a dissimilarity between two clusters. Let (S, d) be a metric space of objects. Let us

consider two clusters U and V at a given level of the hierarchy. The new dissimilarity between

these two clusters can notably be defined using one of the following real-valued functions with

two arguments defined on the set of subsets of S:

— SL(U, V ) = min{d(u, v)|u ∈ U, v ∈ V },
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— CL(U, V ) = max{d(u, v)|u ∈ U, v ∈ V },

— AL(U, V ) =
∑
{d(u,v)|u∈U,v∈V }
|U |×|V | ,

(a) Single-Linkage:
SL(U, V ) = min{d(u, v)|u ∈ U, v ∈ V }.

(b) Complete-Linkage:
CL(U, V ) = max{d(u, v)|u ∈ U, v ∈ V }.

(c) Average-Linkage:

AL(U, V ) =
∑
{d(u,v)|u∈U,v∈V }
|U |×|V | .

Figure 2.4 – Illustration of the different possible linkages for hierarchical clustering.

The names of the functions SL, CL, AL are acronyms for “single linkage”, “complete linkage”

and “average linkage” respectively. These are the most classical variants of the hierarchical

agglomerative clustering we discussed. Complete-linkage and especially average-linkage are

often preferred to single-linkage in many practical applications, as these two methods have the

property to somehow favor the association of compact subsets of points. But as we will see

hereafter, this can also be the case of single-linkage when provided with a more informative

dissimilarity in input. Furthermore, single-linkage has interesting properties that are not shared

by complete and average-linkage, and we expose them hereafter.

Kleinberg’s impossibility theorem and discussions

In [Kleinberg (2003)], the author proposed that the ideal clustering function F ∗ should

achieve three properties:

1. Scale-invariance: the method provides the same classification when all datapoints are

scaled equally in all directions of the space. For any scalar α, F ∗ produces the same result

when the distances d between all datapoints are multiplied, i.e. F ∗(d) = F ∗(α.d).
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2. Consistency: if we stretch the data so that the distances between clusters increases and/or

the distances within clusters decreases, then the clustering should not change. Let us

consider two distances functions d and d′. If, for every pair (i, j) belonging to the same

cluster, d(i, j) ≤ d′(i, j), and for every pair (k, l) belonging to different clusters, d(k, l) ≥
d′(k, l), then we should have F ∗(d) = F ∗(d′).

3. Richness: Suppose a dataset contains N points, but the distances between points is un-

known. An ideal clustering function F ∗ should be flexible enough to produce all possible

partitions/clusterings of the set it is applied to. It means that the range of this function is

equal to all possible partitions of this set of length N .

Additionally, [Kleinberg (2003)] proves that no clustering method can satisfy at the same time

these three desirable properties.

However, in [Zadeh et al. (2009)], the authors propose to relax the richness property to a

K-richness property, arguing that in many cases, the (approximate) number K of desired clusters

is known. They also introduce an order-consistency property.

4. K-richness: richness with known number K of desired clusters.
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5. Order-consistency: for any two distances functions d and d′, a number of clusters K, if the

order of edges in d is the same as the order of edges in d′, then F (d,K) = F (d′,K).

They show that single-linkage clustering is the only one to be consistent, K-rich, scale-invariant,

and order-consistent at the same time.

Stability

Furthermore, in [Carlsson et al. (2010)] the authors study hierarchical clustering schemes and

compare their stability by quantifying the degree to which perturbations in the input metric space

affect their results. To do that, they work with the Gromov-Hausdorff distance, defined over the

set of hierarchies. We shall briefly introduce this distance in section 2.4.3. Such a distance indeed

allows to compare the results of different hierarchical clustering methods in a precise manner.

Their conclusion is that single-linkage enjoys the nice theoretical properties of being stable and

continuous in the sense of the Gromov-Hausdorff distance, whereas average- or complete-linkage

lack these properties. We can thus be sure that for any small pertubations of the set of objects in

input, the outputs of single-linkage clustering for the original and the perturbated set of objects

are at a small distance from one another. Thus, single-linkage hierarchical clustering appears

to be more robust. This property does not hold true for average-linkage and complete-linkage

linkage hierarchical clustering. Readers are invited to refer to [Carlsson et al. (2010)] for more

details and proofs of the mentioned results.

The problem of the chaining effect

Single-linkage hierarchical clustering is often perceived to produce clusters that are less

coherent conceptually than other linkages, because it can suffer from the chaining effect which

makes it more likely to produce clusterings which separate items should be together. Indeed,

since the merging criterion is strictly local in the case of single-linkage, a chain of points can

be extended for long distances without any regard for the overall shape of the emerging cluster.

This way, two clusters globally different can be connected through a chain of two-by-two similar

points: there may appear a long chain of points (a, b, ..., z) such that every two consecutive

elements are similar but that the distant elements no longer resemble each other at all. This

chaining effect is illustrated in figure 2.5, where the graph we consider has been constructed

upon an image, with each node corresponding to a pixel and adjacent nodes valuated by the

gradient between them. In this example,we can see that when considering successive levels of

the hierarchy, regions that are very different gradually merge.

But as it is noticed by the authors in [Carlsson et al. (2010)], this observation only accounts

for the need to have a dissimilarity that takes into account some notion of density rather than

simply a local geometric information alone. Indeed, as we shall see in the next chapter, we can

construct a dissimilarity that takes into account what is happening directly around a node as well

as over a larger integration domain. This way, we can multiply the points of view in a guided
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(a) Image (b) (c) (d)

(e) (f) (g) (h)

Figure 2.5 – Example illustrating the chaining effect on an image graph. Figures (b) to (h) show
successive levels of the SL-hierarchy: regions that are very different but locally similar gradually
merge.

way and avoid for this chaining effect to happen. The same kind of approach is for example

adopted in [Soille (2011)].

Single linkage leads to a simple ultrametric computation

Another interesting aspect when using single-linkage clustering algorithm on a graph is

that for a given dissimilarity defined over the graph, its subdominant ultrametric can easily be

deduced. Indeed, the subdominant ultrametric value between two nodes can then be computed

as the critical threshold value for which the two nodes are no longer in the same tree when

cutting edges by decreasing valuations. This presents the benefit of being easy and extremely

fast to compute.

For all those reasons, we chose to use single-linkage hierarchical clustering scheme. Unless

otherwise specified, all hierarchical clusterings presented from now on will use this linkage.

2.3 Graph-based Hierarchical Clustering and Ultrametrics

2.3.1 Hierarchical Minimum Spanning Forests

As we saw in the previous section, the closed balls of an ultrametric form constitute a

stratified dendrogram and thus a hierarchy, that we refer to as to the ultrametric hierarchy. There

are many different types of ultrametrics. In this thesis, we will mainly work with ultrametrics

created on undirected graphs.
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Indeed, given such a graph with positive edge weights, an ultrametric distance between two

nodes is given by the weight of the minimax path between these nodes, i.e. the path for which

the maximum edge weight along it is minimal (also known as the lowest path distance between

these nodes). This ultrametric is nothing but the subdominant ultrametric defined in definition

2.22 when using single-linkage hierarchical clustering (see section 2.2.5).

To easily compute this ultrametric as mentioned in section 2.2.5, we make use of minimum

spanning trees which were introduced in section 1.3.3. As we saw in theorem 1.28, minimum

spanning trees verify a property that allows a fast computation of this minimax path between

any two nodes of a graph. This way, they easily lead to the definition of an ultrametric, and thus

to an ultrametric hierarchy.

We can generate a MST of the graph using for example the Boruvka algorithm presented

and illustrated in section 7. Once provided with it, we can derive an ultrametric from this MST:

for any pair of nodes (p, q) of the graph, the ultrametric distance λ(p, q) is equal to the weight

of the highest edge on the unique path linking them in the MST. Thus, for a hierarchy (H,λ)
associated with a minimum spanning treeMST , we have:

∀(p, q),λ(p, q) =
∨
{ηst, est ∈ πpq ⊂MST } (2.3)

The simplicity of the procedure for the obtaining of the MST and of the underlying ultrametric is

illustrated in figure 2.6. An illustration of a hierarchy associated with a MST can also be found

in figure 2.7.

Note that if we give new edges valuations to the MST, we can see it as any other spanning

tree, and we thus can infer from it an ultrametric using equation (2.3). We will make a heavy

use of this property in the following.

2.3.2 Equivalent global representations

The hierarchies we work with are ultrametric hierarchies obtained using single-linkage

hierarchical clustering on an edge-weighted graph whose ultrametric distance is encoded in a

minimum spanning tree. They can thus be represented in at least three different ways.

Representation as a minimum spanning forest

First, hierarchies can be represented as minimum spanning forests, as we can see it on figure

2.7.

Let us consider two nodes x and y of the graph G. If d(x, y) = λ, there exists a minimax path

linking x and y. If we cut all edges with a valuation superior to λ, there is no path anymore

connecting them, and they are thus members of disjoint subgraphs. We obtain the same result

by applying the same procedure to a minimum spanning tree of the graph: cutting all edges

of theMST with a valuation superior to λ leads to a subset of trees (Ti). Each subgraph Gi is

spanned by a tree Ti, so that both families (Gi) and (Ti) induce the same partition of the nodes,

corresponding to the open ball of radius λ for the ultrametric distance λ.
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Figure 2.6 – Left to right, top to bottom. We make use of the Kruskal algorithm to generate a
minimum spanning tree of the graph. Each time we add an edge (in red) with a weight equal to
λ connecting two connected components of the graph, we add at the same time all the other
edges (in blue) with a weight superior or equal to λ that connect these two components, and
we give them the same weight λ. This way, the new edges weights are equal to the ultrametric
distance between weights extremities. It is also the valuation of the highest edge on the unique
path connecting the two extremities in the minimum spanning tree. It is sometimes referred to
as the “saliency” (cf. definition 2.23).

Figure 2.7 – Left to right, top to bottom. The successive cuts of the highest edges of the minimum
spanning tree of the graph correspond to the successive levels of a hierarchical clustering.
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2. HIERARCHICAL CLUSTERING ON GRAPHS

Representation using the tree structure of a dendrogram

As explained in the previous sections, there is a one-to-one correspondance between a

ultrametric hierarchy and a stratified dendrogram (cf corollary 2.19). Furthermore, a dendrogram

structure may be represented as a tree. The nodes of this tree then represent the closed balls

B(q, λ) associated with G, as it was stated in theorem 2.17. The leaves of the tree are the balls

with a radius equal to −∞ (the individual nodes of G). Each node is linked with its unique

predecessor by an edge, except the largest ball containing all nodes, which constitutes the root

of the tree. The stratification index correspond to the ultrametric distance.

An example of a dendrogram can be seen in figure 2.8. Note that even if it is the case in our

illustration, dendrograms are not necessarily binary trees, i.e. a node can have more than two

children in a dendrogram.

Figure 2.8 – Example of a dendrogram obtained on a set of points, generated using the data
science python library plotly [Inc. (2015)].

However, even when dendrograms are not binary trees, we can represent them as binary

trees. For example, if a dendrogram has a node having three children for a given stratification

index value, we can consider it to be a succession of two binary relations by choosing arbitrarily

their order. It will not matter when using dendrograms for our purpose, since the stratification

index value is usually the only important information here, and it remains the same in both cases.

But this reveals useful in terms of implementation, as we then have a structured and simple

dendrogram model to work with. This correspondence is illustrated on an example in figure 2.9.
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Figure 2.9 – Illustration of the correspondence between a non-binary dendrogram and a binary
dendrogram. In this example, for a stratification index of 2, the non-binary kinship relation
between nodes can be seen as a succession of binary ones, by choosing arbitrarily their orders
but keeping the same stratification index for both of them.

In the specific case where we make use of a minimum spanning tree to induce a hierarchical

clustering of the graph, we can visualize easily the correspondences between the minimum span-

ning tree and the associated dendrogram tree structure. These correspondences are presented in

figure 2.10.

Figure 2.10 – Structure of a dendrogram corresponding to a MST-based hierarchical clustering.
The MST nodes become the leaves of the dendrogram (in red), and the MST edges become the
internal nodes of the dendrogram (in cyan).

The needed information for completely specifying a binary dendrogram is then limited. For

implementing our algorithms we make use of the following structure:

1. Each node i (leave or internal node) has:

— a father Father(i),
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2. HIERARCHICAL CLUSTERING ON GRAPHS

— several forefathers Forefather(i),

— one ancestor Ancestor(i) the first of the lineage,

— one or several valuations linked to problem-related features.

2. Each internal node k represents an edge eij of the minimum spanning tree:

— it has the valuation of this edge: µk = ωij

— neighbor(k) = i

— neighbor(k) = j

3. Each internal node k also has a son l and a daughter g:

— son(k) = l

— daughter(k) = g

An example of these is given in figure 2.11 for the case illustrated in figure 2.10.

Figure 2.11 – Example of the internal structure of a dendrogram, for the node j:

1. The node j corresponds to the edge ede of the minimum spanning tree:

— it takes as valuation this edge valuation: µj = ωde = 7,

— neighbor1(j) = d,

— neighbor2(j) = e.

2. The internal node j has a son h and a daughter i:

— son(j) = h,

— daughter(j) = i.

Remark 2.24 (Dendrogram and ultrametric). In a stratified dendrogram, the ultrametric distance

between two leaves p, q (that correspond to nodes of the graph) λ(p, q) is the level of stratification

of the root of the smallest subdendrogram containing both p and q.

Representation as a matrix

Once a minimum spanning tree of the graph has been constructed, one can easily compute

the minimax paths and thus compute the lowest path distance between any two adjacent nodes

of the graph, which is nothing but the subdominant ultrametric between two nodes.
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As we saw before, one can indeed easily compute this subdominant ultrametric starting from

a minimum spanning tree of the graph. By cutting edges of the minimum spanning tree by

decreasing values, we can identify the cut valuation for which two nodes of the graph become

separated in the output clustering: this valuation correspond to the subdominant ultrametric

distance between them (otherwise called saliency of this pair of nodes).

So one can obtain a matrix entirely representing the connexions between nodes and thus

the hierarchical structure. Such a matrix M is square, symmetric, and of size (n− 1)× (n− 1),
with n the number of nodes in the graph and thus (n− 1) the number of edges in the minimum

spanning tree. If we denote by U the subdominant ultrametric easily computed between any pair

of nodes, then M(i, j) = U(vi, vj) for (i, j) ∈ {1, ..., n − 1}2. An example is provided in figure

2.12, where we can see the correspondance between the dendrogram illustrated in figure 2.8

and the aforementioned matrix.

Figure 2.12 – A symmetric matrix containing values of the subdominant ultrametric for a given
hierarchical clustering and the corresponding dendrogram.

The subdominant ultrametric distance can be derived from the adjacency matrix of the graph

(see definition 1.7) in the (min,max)-algebra [Gondran (1975)].

Definition 2.25 (Matrix product in (min,max)-algebra). Let A and B be two matrices. Their

matrix product in the (min,max)-algebra C = A×B is defined by:

cij =
∧
k

aik ∨ bkj (2.4)

If aik is the weight of the lowest path of length inferior to n between i and k, and bkj is the

weight lowest path of length inferior to n between k and j, then aik ∨ bkj is the weight of the

lowest path of length inferior to 2n between i and j. Thus
∧
k
aik ∨ bkj corresponds to the weight

of the lowest path of length inferior to 2n between i and j.

The matrix product applied to an adjacency matrix in this algebra allows for the computation

of the shortest paths.
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Property 2.26 (Shortest paths in the (min,max)-algebra). Let A be the adjacency matrix of

a graph G. Then, for any i, j, aij represents the shortest path of length inferior or equal to 1

between i and j. More generally, (aij)k represents the shortest path of length inferior or equal to

k between i and j

Property 2.27 (Subdominant ultrametric and adjacency matrix in the (min,max)-algebra). Let

A be the adjacency matrix of a graph G. Then:

∃n,An ×An = An = A∗ (2.5)

A∗ is then the adjacency matrix of the subdominant ultrametric distance associated with A.

The computation of the subdominant ultrametric on a graph, by successive multiplications of

its adjacency matrix, is illustrated in figure 2.13.

Figure 2.13 – A: an undirected positive-weighted graph and its associated minimum spanning
tree. B: B1 to B4 represent the successive multiplications of the adjacency matrix by itself in the
(min,max)-algebra until stability. C: the result of these operations, on the right, is the adjacency
matrix of the subdominant ultrametrics. Note that the values that remain the same in the initial
adjacency matrix and its subdominant ultrametric counterpart (in red) correspond to the edges
of the minimum spanning tree.
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2.3.3 Zahn’s Clustering Algorithm

The usefulness of minimum spanning trees for hierarchical clustering was explored by C.T.

Zahn [Zahn (1971)]. Indeed, we saw that suppressing one edge on a MST of the graph leads to

its subdivision into two forests, each spanning a given portion of the metric space. So that by

suppressing the more inconsistent edges first, one creates a hierarchical clustering in which similar

objects remain longer in the same clusters. The notion of inconsistent edge is thus essential for

Zahn’s algorithm, and can be defined in multiple ways.

Algorithm 2.1: Zahn’s clustering algorithm
Data: A complete graph G = (V, η) defined over a metric space (S, d) such that |V| = |S|,

and with for ∀(i, j) ∈ {1, ..., n}2, ηi,j = d(vi, vj);
Result: a clustering of the objects of S.

1 Construct a minimum spanning tree of G;

2 identify inconsistent edges in the minimum spanning tree;

3 create a cluster hierarchy by successively removing inconsistent edges.

Usually, the strategy that consists in departing from the original minimum spanning tree

and cutting edges by decreasing valuations suffers from the chaining effect described in section

2.2.5. So there is a need to quantify the consistency of the edges according to given criteria. In

order to avoid suffering from the chaining effect and to highlight interesting clusters, one may

want to propose hierarchical clustering methods in which the more inconsistent edges for these

criteria have the higher values, so that cutting edges by decreasing values in theMST leads

to a suitable hierarchy for these criteria. More specifically, the inconsistency of an edge may be

determined or measured by taking into account a larger neighborhood of the considered edge.

In the following of this thesis, we will propose methods to reevaluate the edges of the MST and

thus generate a new hierarchy from a previous one.

Remark 2.28. Note that howsoever is defined the inconsistency, this algorithm is dependant on

the minimum spanning tree, so that in cases where several minimum spanning trees exist, the

result can be very sensitive to the choice of one or the other. Two solutions can be thought of to

circumvent this issue for robustness purpose:

1. One can choose one MST based on supplementary criterias.

2. One can consider all possible MST during computations.

2.4 Lattice of Hierarchies

2.4.1 An order relation to form a complete lattice

Let us consider two utrametric hierarchies H1 and H2 and their associated ultrametrics λ1

and λ2, defined over a set S. We can then define an order between two hierarchies by:

H1 < H2 ⇔ (∀(Ta, Tb) ∈ P(S)2,λ1(Ta, Tb) > λ2(Ta, Tb)) (2.6)
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H1 < H2 can be read “H1 is finer than H2”, and means that H1 has more regions than H2

at each level. Indeed, let us consider a node p and a radius ρ. Then q ∈ B1(p, ρ) means that

λ1(p, q) ≤ ρ. Equation (2.6) implies that λ2(p, q) ≤ ρ, which means that q ∈ B2(p, ρ). Thus if we

denote P1(ρ) and P2(ρ) the partitions associated with the stratification level ρ for H1 and H2,

each region of P1(ρ) is included in a region of P2(ρ), i.e. P1(ρ) is finer than P2(ρ).
With such an order relation, the hierarchies of P(S) form a complete lattice. The maximum

element of the hierarchy has a unique element S, and the smallest contains only singletons.

Different adjunctions relations are also definable on the lattice of hierarchies [Ronse (2010);

Meyer (2013a)], which opens the way to possible definitions of basic morphological operators

and thus to morphological filtering on hierarchies.

2.4.2 Combining hierarchies

It might be interesting to combine several hierarchies, for example to use information from

several sources (in color or multi-spectral images for example). We can notably do so by taking

the infimum of hierarchies, as we will show hereafter.

Definition 2.29 (Infimum of hierarchies). The infimum of two hierarchies (H1,λ1) and (H2,λ2)
is written H1 ∧H2 (or INF(H1,H2)) and is defined by its ultrametric λ being the supremum of

the ultrametrics of both hierarchies λ = λ1 ∨ λ2 (cf theorem 2.20).

Definition 2.30 (Supremum of hierarchies). The supremum of two hierarchies (H1,λ1) and

(H2,λ2) is written H1 ∨H2 (or SUP(H1,H2)), is the smallest hierarchy larger than H1 and H2.

As the infimum of their ultrametrics is not an ultrametric, the largest ultrametric below this

infimum is their subdominant ultrametric (cf remark 2.20), which we can choose to be the

ultrametric associated with this supremum of hierarchies, i.e. λ = λ1 ∧ λ2 6= λ1 ∧ λ2.

Note that these definitions can easily be extended to a family of hierarchies with more than

two elements.

2.4.3 Gromov-Hausdorff distance between hierarchies

Definition

A hierarchical clustering of a set of graphs nodes is completely defined by the ultrametric

distance between these nodes. It constitutes a metric space defined on these nodes. Furthermore,

for the same set of nodes, several hierarchies can be derived with different ultrametrics. One may

then wonder if there are ways to quantify the differences or redundancies between hierarchical

clusterings, through the definition of a distance between dendrograms.

In [Gromov et al. (1981)] (translated in English in [Gromov (2007)]), the authors propose a

distance, called Gromov-Hausdorff (GH) distance, to measure how far two compact metric spaces

are from being isometric. It gives a very useful and natural way to distinguish between metric

spaces. By reducing this distance to the subclass of ultrametric spaces, we can in particular
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quantify the relative contributions of different hierarchical clusterings. This distance, used

intensively in several fields such as phylogenetics and data mining [Felsenstein (2014)], has also

notably been used in image processing as a way to estimate the similarity between two points

clouds [Mémoli (2004)].

We hereby present the general idea of the Gromov-Hausdorff distance, which is a classical

distance between metric space. In our case, we will use it between ultrametric spaces, which

are specific metric spaces (since they consist of metric space with a metric satisfying a stronger

condition than the triangle inequality, per se the ultrametric inequality).

Let us consider two metric spaces (X1, uα) and (X2, uβ). One supposes that we have defined

two functions f : X1 → X2 and g : X2 → X1 that are maps from one space to the other. The

GH-distance is expressed as:

dGH(X1, X2) := 1
2 min

f,g
max(dis(f), dis(g), dis(f, g)) (2.7)

With the distorsion dis(f) and the joint distorsion dis(f, g) defined as: dis(f) := max(x,x′)∈X2
1
|uα(x, x′)− uβ(f(x), f(x′))|

dis(f, g) := maxx∈X1,x′∈X2 |uα(x, g(x′))− uβ(x′, f(x))|
(2.8)

Intuitively, it measures how close can we get to an isometric (distance-preserving) embedding

between two metric spaces. As it is shown in [Gromov et al. (1981); Gromov (2007); Carlsson

et al. (2010)], to determine (2.7) for two hierarchies defined over different sets, one must match

data points before any distance computation, which is a computationally heavy operation that

leads some authors to provide heuristics to approximate it in specific configurations [Mémoli

(2004); Agarwal et al. (2015)].

Expression in a simpler case

However, there is a case in which the GH-distance computation is much simpler: the case

where the two hierarchies have been computed upon the same set of points. Indeed, in such a

case, the considered metric spaces differ only by their metrics and not by the space they cover,

which means that the two distortions are symmetrical and equal to the joint-distortion as well.

There is indeed no more need to map the points of the first on the second since these points are

identical.

Thus, the GH distance (2.7) simply becomes:

dGH((X,uα), (X,uβ)) = max
x,x′∈X

|uα(x, x′)− uβ(x, x′)|. (2.9)

An example of computation is provided in figure 2.14.

A natural idea that stems from this Gromov-Hausdorff distance is to see it as an extreme case

(in the sense of an infinity-norm) of other possible distances.

We thus define two other distances between hierarchical spaces in this simple case: dis1((X,uα), (X,uβ)) := 1
Card(X×X)

∑
x,x′∈X |uα(x, x′)− uβ(x, x′)|

dis2((X,uα), (X,uβ)) := 1
Card(X×X)

∑
x,x′∈X |uα(x, x′)− uβ(x, x′)|2

(2.10)
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Figure 2.14 – Example of computation of the Gromov-Hausdorff distance between two hierarchies
H1 and H2 generated upon the same set of points.

The Gromov-Hausdorff distance thus has a simple expression when it is computed for two

hierarchies defined over the same set, i.e. corresponding to two dendrograms with the same

leaves. Fortunately, this simple case will reveal itself to be interesting, as we shall see how to

construct a multitude of different hierarchies based on the same departure set. We can thus,

through the use of such a distance, quantify the relative contributions of each of these hierarchies.

We still have to note that this distance suffers from several limitations:

— It makes sense only if the compared ultrametrics are of the same scales and are commensu-

rable.

— It uses the L∞-norm and is thus very sensitive to outliers (to avoid this, one may use

alternative distances defined in (2.10)).

— One can also imagine to compute such a distance only for a subset of all nodes that would

have been selected otherwise.

2.4.4 The need for a normalization of ultrametric values

When wanting to compare or combine different hierarchical clusterings constructed upon

the same set of objects, one can be faced with a disparity of scales in the ultrametric values

associated with each one of them. Such a disparity is problematic for several reasons:

— It can give a false sense of predominancy of one hierarchy compared with another, when

the ultrametric values of a hierarchy are far superior to the ones of another hierarchy.

— When values are not sufficiently well spread, and especially when they are all condensed in

a small interval, it is hard to have a proper idea of what the hierarchical clustering method

is actually doing.
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— Distances between two hierarchies such as the Gromov-Hausdorff distance presented in

the above section often make sense only if the compared ultrametric values are of the same

scales and are commensurable.

To prevent such issues from happening, we propose a way to normalize these values according

to the number of nodes present in each cluster compared with the total number of nodes.

Definition 2.31 (Ultrametric Normalization Relatively to the Number of Hierarchical Levels).

Let (H,λ) be an ultrametric hierarchy, with λ : X 7→ [O,L] which is strictly increasing with the

inclusion order over H. Let us denote N = card(H), (H0, ...,HN ) the nested series of cluster-

ings associated with the hierarchy, which are clusters with numbers of connected components

(n0, ..., nN ), with 0 < n0 ≤ n1 ≤ ... ≤ nN = N . Then we take as a normalized ultrametric:

λ̃ :

 H → [0, 1]
Hi 7→ N−ni

N

(2.11)

This corresponds to replacing the diameter of a cluster (i.e. its maximum weight edge in the

cluster) with a value proportional to its number of leaves.

After normalization, for two hierarchies H1 and H2, the clusters with the same index have

the same number of constitutive elements.

An other way of normalizing these values is to do it relatively to the maximum ultrametric

value.

Definition 2.32 (Ultrametric Normalization Relatively to the Highest Level Valuation). Let (H,λ)
be an ultrametric hierarchy, with λ : X 7→ [O,L] which is strictly increasing with the inclusion

order over H. Let us denote λmax = max(λ) = L. Then we take as a normalized ultrametric:

λ̃ :

 H → [0, 1]
Hi 7→ λi

λmax

(2.12)
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Chapter 3

Obtaining and Using Morphological
Hierarchies in a Graph-Based

Framework

Résumé

Dans ce chapitre, nous exposons des méthodes de segmentation hiérarchique d’images implémen-

tées dans le cadre de la classification hiérarchique sur graphes valués aux arêtes introduite au

chapitre précédent. Pour de tels graphes, chaque arête a un poids qui exprime une dissimilarité

entre régions de l’image. Les hiérarchies introduites sont agglomératives et construites suivant

un mode de construction de type single-linkage. Nous illustrons d’un point de vue qualitatif leurs

effets et apportons quelques éclaircissements sur les choix que nous avons faits pour les mettre

en œuvre.

Abstract

In this chapter, we expose various image hierarchical segmentations algorithms implemented

within the graphs-based hierarchical clustering framework described in the previous chapter on

edge-weighted graphs. For such graphs, each edge has a weight that expresses a dissimilarity

between regions of the image.The hierarchies introduced are agglomerative and built according

to a single-linkage type of construction. We illustrate from a qualitative point of view their effects

and provide some insights regarding the choices we made to implement them.

3.1 Graphs in Image Segmentation

In this section, we present the commonly encountered graphs in imaging applications. We

consider 2D images whether univariate or multivariate. Note that a 2D color image can be seen

as a 3D image with depth 3 (corresponding to the Red, Green, Blue channels for example). In
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a first approach, one can use a pixel adjacency graph, which consists in a dense graph over all

pixels of the image. Otherwise, an unsupervised low-level segmentation of the image (i.e. an

over-segmentation of the image) can be used to build a regions adjacency graph.

3.1.1 Pixel Adjacency Graphs (PAG)

The easiest case is the one where we construct a dense graph over the image, in which each

node corresponds to a pixel of the image and edges link adjacent pixels of the image. This graph

is referred to as a “pixel adjacency graph”. In order to define such a graph, we only need an

image and an adjacency system. Different common adjacency systems are illustrated in figure

3.1.

(a) (b) (c)

Figure 3.1 – Adjacency systems and related pixel adjacency graphs. The figure illustrates some
common adjacency systems used in 2D image processing. (a) 4-neighborhood adjacency system
(noted V4) and its corresponding adjacency graph (b) 8-neighborhood adjacency system (noted
V8) (c) 6-neighborhood adjacency system on a hexagonal grid.

In our applications we will mainly consider the V6 adjacency. An underlying issue is the

necessity to find a satisfying trade-off between the algorithmic complexity and the precision

of our methods. Most graph algorithms have a complexity dependent on the number of edges

in the graph. The adjacency system that we use thus has an important impact on the speed of

the methods applied to the graph representing the image. One way to bypass this problem and

obtain a higher computational efficiency is to consider a region adjacency graph instead of a

pixel one. Like that, one reduces both the number of edges and the number of nodes of the

graphs we work with. Furthermore, the fine partition it is built upon is a first partition of the

image that does not suffer from the chaining effect that may affect single-linkage hierarchical

clustering.

3.1.2 Region Adjacency Graphs (RAG)

The main type of graphs that we consider in the present work is thus the “region adjacency

graph”. In this type of graph, the nodes represent regions of the image, and edges link neighboring

regions. It is obtained by a low-level segmentation of the image, using unsupervised clustering

methods such as a watershed transform [Beucher and Meyer (1992); Machairas et al. (2015)],

λ-flat zones labeling [Crespo et al. (1997)] or k-means clustering [Achanta et al. (2012)].

We refer to this low-level segmentation as to a fine segmentation of the image. Since this

fine segmentation constitutes the departure point for the following graph-based hierarchical

segmentation method, its quality is mandatory: it must be sufficiently coarse to turn regions
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into meaningful aggregations supports, while still capturing thin images structures. Ideally, all

contours of interest of the original image should appear in the fine partition. By contours of

interest, we mean contours of the objects or structures of interest in the image.

Once this fine segmentation is obtained, it is modeled by an edge-weighted graph, in which

each node of the graph corresponds to one of its regions, and neighbor nodes are linked by an

edge, weighted by a dissimilarity measure between its extremities. Since they are far less nodes

in a region adjacency graph than in a pixel one, the computational time taken by the applied

graph algorithms is reduced. A region adjacency graph is illustrated in figure 3.2.

(a) A fine partition of the image.

(b) Region adjacency graph of the fine partition.

Figure 3.2 – Region adjacency graph: this graph provides a compact representation of the image.

Another important question that arises is the choice of the dissimilarity to value edges between

regions. Indeed, in order to work with regions adjacent graphs in segmentation workflows, we

have to define a dissimilarity measure between adjacent tiles of the fine segmentation. These

dissimilarity measures are usually based on local gradient information (or color or texture).

In the following sections we introduce different hierarchical clustering constructions and

evaluate qualitatively the impact of these different possible choices on the output of our workflow.

3.2 Equivalent Global Representations of Hierarchical

Segmentations

As we have seen in section 2.3.2, there are several different ways to represent and work with

hierarchies obtained with single-linkage hierarchical clustering methods. We now present and

discuss their specificities.
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3.2.1 Dendrogram tree structure

First and foremost, single-linkage hierarchical clustering can be expressed in a minimum

spanning forest framework as a series of nested forests with minimal possible total weight at

each level. Such a hierarchical clustering can be obtained starting from a minimum spanning

tree of the graph.

Let us consider a fine segmentation of the image into regions partitioning the domain D of

the image I, such that D = {Ri}i. As previously stated, a hierarchical segmentation is then a

family of partitions (P0,P1, ...,Pn), such that: (i) P0 corresponds to the fine partition, (ii) Pn is

the complete domain, (iii) regions from coarse levels are unions of regions from fine levels, i.e.

for each i, Pi ⊂ Pi+1. Since to each level Pi of the hierarchy we can assign a real-valued index λi,

we can represent it as a stratified dendrogram, i.e. a region tree where the height of each node

is its index. Indeed, sweeping through all λi values can therefore be represented as a region

tree, whose root is the region representing the whole image. The stratification index values are

given by the contour strengths with which successive mergings are associated. An illustration of

such a process in the context of hierarchical image segmentation is provided in figure 3.3. This

representation of a hierarchical segmentation through the structure of a dendrogram, notably

illustrated in section 2.3.2, allows for a fast obtention and handling of hierarchies using dynamic

programming.

Figure 3.3 – Progressive fusion of regions as the cut level λ increases.

We can thus work with these dendrograms to compute dynamically new valuations for the

MST edges that reflect certain properties of the image. A new hierarchical structure automati-

cally stems from these new valuations once internal nodes of the MST have been reorganized

accordingly. This is illustrated in figure 3.4.
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Figure 3.4 – Reorganization of internal nodes of the dendrogram once new valuations for the
MST edges have been computed.

3.2.2 Ultrametric Contour Map (UCM), or Saliency Map

Furthermore, a hierarchical segmentation can also be represented as an ultrametric contour

map (UCM), which is an image obtained by weighting the boundary of each pair of adjacent

regions in the hierarchy by the stratification index for which they are merged [Najman et al.

(1996); Arbelaez (2006)]. The RAG regions belong to a connected fine partition of the image,

that can possibly be represented by a label image. In this fine partition, regions are side by side

and theirs frontiers are not represented. For visualization purposes, we can do an oversampling

of scale 2 of the image in each dimension, thus creating room for contours. A pixel having

two neighbors with different labels then belongs to a contour. Furthermore, we can attribute a

gray-level value to each contour, proportional to the saliency between its two adjacent regions.

This representation is useful for illustration purposes, as it provides a way to understand the

relative strengths of contours in a hierarchy.

Note also that one of the main properties of a UCM is that by thresholding it and keeping

only contours above a certain value, we obtain a closed boundary map, and thus a partition.

Thus, thresholding the UCM for increasing λi leads to a merging-sequence partition: a step

in this sequence corresponds to merging the set of regions sharing the boundary of strength

exactly λi. For better visibility, we represent in this thesis the UCM with inverted contrast. An

example of a UCM for the hierarchy directly derived from the initial dissimilarity (based on a

local gradient information) is provided in figure 3.5.

As it can be seen in the example above (figure 3.5), it is clear that when departing from the

hierarchy associated with the initial dissimilarity, the more salient contours are the ones of small

contrasted regions. These are generally not the contours that we want to be highlighted by our

hierarchical segmentation framework. It is linked with the fact that the dissimilarity of a contour
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(a) Image (b) Trivial hierarchy UCM

Figure 3.5 – Example of an Ultrametric Contours Map (UCM) with inverted contrast. It corre-
sponds to the trivial hierarchy, i.e. the hierarchy associated with the initial dissimilarity.

then corresponds to the altitude of its saddle point, and thus to the lowest gradient value along

this contour. And thus the longer the contour, the higher the chances to meet such a weak point.

This hierarchy can also suffer from the chaining effect we exposed in section 2.2.5, since the

dissimilarity we use only takes into account a local geometric information such as the gradient.

Hence the need to create better dissimilarities that build upon several scales and information

sources.

It has to be kept in mind that the final goal of hierarchical segmentation is often to extract a

segmentation of the image, and that the hierarchical segmentation constitutes a way to structure

the data in order to make this extraction simpler. When looking at the first regions proposed

in the hierarchy, they are often too rough. We must thus reorganize the partitions, in order for

them to be closer to the expected partition. In the following section, we introduce different

morphological hierarchical clusterings to do so.

3.3 Morphological Hierarchies on Graphs

Departing from a graph constructed over a fine partition of the image, one can imagine

several ways to operate a hierarchical clustering of the nodes of the graph, and in particular to

make use of the methods presented in chapter 2.

In this section, we illustrate schemes to obtain more pertinent dissimilarities in order to get

new ultrametrics and thus different and complementary hierarchical clusterings starting from

the same graph. These schemes are largely inspired by mathematical morphology approaches to

obtain hierarchies of segmentations on images. There is especially a strong connection between

single-linkage hierarchical clustering and hierarchies of flooded watersheds, that we describe

hereafter.
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3.3.1 Intrinsic connection between single-linkage hierarchical clustering and

hierarchies of flooded watershed of a topographic relief

Most of the graph-based hierarchical segmentations techniques we introduce in this chapter

take inspiration from classical morphological methods. In this section, we explain the intrinsic

connection that exists between the single-linkage hierarchical clustering method that has been

introduced in chapter 2, and hierarchies of flooded watersheds of a topographic relief.

Watershed and floodings: absorption of catchment basins during flooding

If g is a flooding of a reference function f , considered here as a topgraphic surface, we may

imagine a progressive flooding of f producing g. During this flooding process, the catchment

basins (CB) of f merge according to two mechanisms : a) the level of the water reaches a saddle

point within a CB X but has a lower level in the neighboring catchment basin Y : X is absorbed

by Y b) two lakes, previously disconnected merge, leading their corresponding CB to merge ;

such mergings also occur at the localization of a saddle point. As a result, each CB of g is either

identical with a CB of f or equal to the union of several CB of f .

As a result, the CBs of a flooded surface form a coarser partition than the CBs of the initial

surface. This leads, for increasing floodings, to a hierarchy of CBs.

Hierarchy of the catchment basins

Let us indeed now consider a family F of increasing floodings (gi)i≤N of a reference function

f , verifying gi ≤ gj for i < j, and g0 = f . The set of catchment basins of gi is called Ai ;

A =
⋃
Ai is the set of all catchment basins. Each Ai is a partition of E. The partitions are nested:

each element a of Ai is the union of CB of Ai−1.

This corresponds to a hierarchy of segmentations associated with the watershed transform. To

each particular flooding the watershed associates a partition. For a higher flooding, the partition

is coarser, and is obtained by merging tiles of the finer partition. The successive partitions form a

hierarchy.

We can now indicate useful families of floodings from which to derive hierarchies of seg-

mentations. As a matter of fact, the quality of segmentation will depend to a great extent of the

family of floodings on which it is build.

1. Uniform flooding: A flooding of a function f is uniform if the level of all lakes is at the

same level λ. This is the simplest but also the least informative flooding, as the only criterion

which is taken into consideration is the height of the pass-point separating two catchment

basins. Nevertheless, it is this type of flooding which underlies the traditional method of

morphological segmentation, based on the watershed. The watershed construction itself is

based on uniform flooding. It is illustrated in figure 3.6, and constitutes a singular case of

synchronous flooding, since the altitude of each lake is synchronized according to a global
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parameter that is uniform through the whole image. For a uniform flooding, we obtain the

trivial hierarchy.

Figure 3.6 – The trivial hierarchy can be seen as a uniform flooding of the gradient image. The
gradient image is flooded with the same flooding level. Its watershed produces a partition. For
increasing flooding levels, the partitions get coarser. This hierarchy is often not very interesting.

2. Size oriented flooding: Controlling the flooding, notably by imposing non-uniform flood-

ing schemes, can lead to different interesting hierarchies, as it is illustrated in figure

3.7.

Figure 3.7 – We can imagine different criteria to control the image flooding. Each of them will
enhance the saliency of different types of contours.

Size oriented flooding is produced by placing sources at each minimum and flooding the

surface in such a way that all lakes share some common measure (height, volume or area

of the surface). As the flooding proceeds, the level of some lakes cannot grow any further,

as the level of the lowest pass point has been reached. Later, when the neighboring lake

has reached the level of this same pass point, both lakes continue to grow together. In the

figure 3.8, a flooding starts from all minima in such a way that all lakes always have a

uniform depth. The resulting hierarchy is called dynamics in case of depth driven flooding

and has first been introduced by M.Grimaud [Grimaud (1992)]. Deep catchment basins

represent objects which are contrasted ; such objects will take long before being absorbed

by a neighboring catchment basin. The most contrasted one will absorbe all others. This

criterion obviously takes only the contrast of the objects into account and not their size.

If we control the flooding by the area or the volume of the lakes [Vachier et al. (1995)],

the size of the objects also is taken into consideration ; in multimedia applications, good

results are often obtained by using as a parameter controlling the flooding the volume of

the lakes, as if each source would pour water with a constant flow. As a summary, the
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depth criterion ranks the region according to their contrast, the area according their size

and the volume offers a nice balance between size and contrast.

Figure 3.8 – Example of a height synchronous flooding. Four levels of flooding are illustrated ;
each of them is topped by a figuration of the corresponding catchment basins.

Note that whenever the chosen type of flooding, the distance between two regions of the

image can then be defined as the level of the smallest flooding for which these two regions

belong to the same lake. This corresponds exactly to the ultrametric distance between elements

of a set in a single-linkage hierarchical clustering scheme.

Interpreting the RAG as a topographic relief

The ultrametric hierarchies considered in this thesis have in common to rely all on a fine

partition with a dissimilarity index between adjacent tiles.

In order to be able to apply the same types of hierarchical clusterings based on flooding a

topographic surface, we may associate a virtual topographic relief to the partition. One can

separate the adjacent regions of the fine partition by a wall of 0 thickness and with a height

equal to the dissimilarity between the tiles. It is illustrated in figure 3.9(a). This modelization

presents the benefit of being applicable to any RAG defined over the a partition of the image,

with adjacent regions connected by edges weighed according to any given dissimilarity. With this

model in mind, the single-linkage hierarchical clustering scheme can be interpreted as a flooding

of the graph, as shown in figure 3.9(b)(c). The flooding process then depends on the ultrametric

distance between nodes of the graph.

As in the image case, one can choose a flooding mode that transcribes some desirable

properties of the output clusterings.

Illustrations of those three types of hierarchical clusterings are provided for the same image

in figure 3.10. The depth criterion ranks the regions according to their contrast, the area criterion

according to their size, and the volume criterion offers a good trade-off between size and contrast.

The volume-based hierarchy notably provides interesting results for multimedia applications.

3.3.2 Hierarchies of Flooded Watersheds in the MSF Framework

In section 3.3.1, we have introduced a modelization to translate the flooding process on

partitions with a dissimilarity index between adjacent regions. The ultrametric distance between

two nodes corresponds to the minimum flooding level for which these two nodes belong to the
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(a) Graph model

(b)

(c)

Figure 3.9 – (a) Graph model. Two nodes/catchment basins p and q are separated by a frontier
of height ηpq modelized as an edge with similar weight between them. (b)(c) These figures
illustrate how a progressive flooding for any given criteria ends up progressively merging the
regions, thus creating a hierarchy.

same lake. This distance χ may be called flooding distance and is an ultrametric distance. The

ultrametric inequality χ(p, q) ≤ χ(p, r) ∨ χ(r, q) has a simple interpretation. Indeed, χ(p, q) is

the level of the lowest lake containing p and q, whereas χ(p, r) ∨ χ(r, q) is the level of the lowest

lake containing all three nodes p, q and r.

Then finding the distinct lakes on the graph for a given flooding level can be done by removing

edges of valuations superior to a threshold λ on a minimum spanning tree of the graph. Indeed,

such a tree encodes a hierarchical clustering, hence the valuation of each of its edges is equal to

the ultrametric distance between its ends. When working with the initial dissimilarity defined

over the graph, generally linked with the gradient between adjacent regions, one get a trivial

hierarchy such as the one exposed before. Such a hierarchy only reflects a local contrast, so that

the most salient regions in the image are the small contrasted ones.

Departing from this trivial hierarchy, one can get an interesting segmentation by marking some

nodes as important and then computing a partition accordingly (markers-based segmentation),

or by smartly editing the graph by finding the partition that minimizes an energetic function.

In a complementary approach, the quality of the obtained partitions also highly depends

on the dissimilarity that we use, and thus changing this dissimilarity can lead to more suitable

partitions. Instead of departing from a simple and rough dissimilarity such as contrast and then

use a sophisticated technique to get a good partition out of it, one can also try to obtain a more

informative dissimilarity adapted to the content of the image such that the simplest methods are

sufficient to compute interesting partitions. This way, the aforementioned techniques lead to
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(a) Image

(b) Trivial hierarchy (c) Surface-based hierarchy (d) Volume-based hierarchy

Figure 3.10 – Example of saliency images for the trivial, surface-based and volume-based
hierarchies.

segmentations better suited for further exploitation. Such a remark can be linked with the usual

critics that is formulated towards single-linkage hierarchical clustering regarding the chaining

effect that it can suffer from. Indeed, one can avoid such a chaining effect by constructing

dissimilarities that reflect more than only very local properties.

How can we construct these more pertinent and informative dissimilarities?

3.3.3 A Minimum Spanning Forest Associated To Markers

When having knowledge about the nodes we want to be separated in the output segmentation,

one way to construct more pertinent and informative dissimilarities is to select a node in each

region or object of interest that will serve as a root in each wanted tree. The roots are also called

markers and this process referred to as marker-based segmentation. When working with the

topographic relief flooding analogy, the marker-based segmentation corresponds to a flooding

for which we have selected the markers as flooding sources. The catchment basins which do not

contain any marker are then flooded starting from their neighbors.

Marker-based segmentation directly on theMST is possible [Meyer (1994a)]. Cutting all

edges of the MST with a weight higher than λ creates a spanning forest. Among all forests with
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the same number of trees, this forest is a minimum spanning forest MSFλ, the sum of its weights

being minimal. Two nodes p and q belonging to the same tree of the forest have a distance

δpq < λ : they belong to the same ball B(p, λ). Hence the trees of the forest and the balls B(p, λ)
induce the same partition of the nodes. As shown above, this partition often does not well

represent the salient features of an image.

More interesting partitions are obtained with the same number of trees, if we chose the roots

of the trees. We select a subfamily (mi) of nodes, (also called markers) within N and construct a

minimum spanning forest where each tree is rooted in a marker. Each minimum spanning forest

is obtained by cutting some edges of the MST. Consider two consecutive markers m1 and m2

on the MST, such that there exists no other marker along the path along the MST joining both

markers. In order to get a forest, one has to cut an edge along this path ; in order to minimize

the total weight of the edges, one cuts the highest edge. The same process applied to all pairs of

edges produces the desired minimum spanning forest [Meyer (1994a)].

Consider two consecutive markers m1 and m2. Suppose that the highest edge epq on the path

of the MST linking both markers has a weight λ. If p and m1 (resp. q and m2) are connected

after cutting epq, then the altitude of the path linking p with m1 (resp. q with m2) is lower then

λ. This gives us a criterion for recognizing whether a given edge of the MST belongs or not to the

MSF associated to a family of markers: the edge epq with weight λ does not belong to the MSF if

and only if there exists 2 paths with an altitude lower than λ, one linking p with a marker and

another linking q with another marker. Or equivalently, if the balls B(p, λ) and B(q, λ) contain

each at least one marker. This criterion will be used all along of this section for deriving various

features-driven hierarchies.

Figure 3.11 – A partition with dissimilarities in A, its region adjacency graph in B, the minimum
spanning tree in C, the choice of two markers in D, the resulting segmentation in E, and two
regions which should each contain a marker for generating the portion of contour (bold line)
between them in the final segmentation.

Illustration and analysis: A: A partition in which each tile has a different color. A dissimilarity

is defined between any couple of adjacent tiles.

B: The region adjacency graph is created: each node of the graph represents a region. An edge
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links the nodes representing two adjacent regions. This edge is weighted by the dissimilarity

between both regions.

C: A minimum spanning tree of the region adjacency graph

D: 2 nodes are chosen as markers: the nodes a and b. They are linked by a unique path on the

minimum spanning tree. The highest edge along this path has a weight equal to 5. Cutting this

edge cuts the minimum spanning tree in two subtrees Ta and Tb, spanning each a region.

E: Both trees form a minimum spanning forest, where each tree is rooted in a marker. The

regions spanned by these trees constitute the resulting segmentation associated to the markers a

and b

F: If we cut all edges of the MST with a weight ≥ 5, we create two subtrees Θa and Θa, containing

respectively the nodes a and the node b. These trees span two regions, one in orange color, the

other in blue color. The boundary between these two regions will appear in a marker-based

segmentation, if there is at least one marker in each of them.

Note that this process is robust to the choice of markers, since the selection of any node of a

region as a root leads to a segmentation of this region.

Figure 3.12 – A MST with markers. Considering two markers m1 and m2 falling into the regions
spanned by the two subtrees Ts and Tt obtained when cutting an edge est on the MST, the highest
edge on the path linking them is indeed est.

3.3.4 A Hierarchy Based On Prioritized Markers

The previous section has explained how to associate a partition to a family (mi) of the nodes

taken as markers. Let F be the minimum spanning forest associated to these markers. Suppose

that we add a new marker n. A marker mk of the family is a neighboring marker of n if there

exists a path between n and mk along the MST on which there is no other marker. Such a path

belongs to the tree Tk rooted in mk. The highest edge along this path has to be cut. Like that the

tree Tk is cut in two parts. Hence, by adding new markers, one obtains finer partitions [Meyer

(1994a)].

Consider now a family of markers ranked according to some priority (mi). We want to

construct a hierarchy associated to this family. The coarsest level of the hierarchy is the partition

associated to the markers with the highest priority. Every time we add a marker, we obtain a finer

partition, as a tile of the coarser partition is cut in several parts. Our goal is to define new weights

θpq for the edges epq such that cutting all edges with a weight above k produces a minimum

spanning forest associated to the k markers with the highest priorities.
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The edge epq with weight ηpq = λ does not belong to the MSF if the balls B(p, λ) and B(q, λ)
contain each at least one marker. If there is no marker at all in one of the balls θpq = 0. If µp and

µq are the highest priorities of the markers present respectively in B(p, λ) and B(q, λ), then, by

choosing all markers with a priority higher or equal than µp ∧ µq, there will be a marker in each

of the balls. If we assign to the edge epq the weight µp ∧ µq, we obtain the desired result.

The algorithm visits all edges of the MST in the order of increasing weights. Repeat until all

edges are processed:

Let epq the current edge to process with a weight λ.

If µp and µq are the highest priorities of the markers present respectively in B(p, λ)
and B(q, λ), we assign to the edge epq the weight µp ∧ µq.
Illustration and analysis: In figure 3.13 a number of prioritized markers have been introduced

; they appear in the second image as disks whose brightness is proportional to the priority. The

saliency of the hierarchy is indicated in the same image. The boundary between two regions has

a shade of grey proportional to the hierarchy level for which it disappears. The last 4 images

represent 4 partitions of the associated hierarchy with decreasing coarseness.

Figure 3.13 – A number of prioritized markers have been chosen: they appear as disks whose
shade of grey is brighter for higher priorities. The associated hierarchy is illustrated through the
saliency of the contours in the second image and through 4 levels of the associated hierarchy.

3.3.5 On the multiple-MST possibility

Marker-based segmentation may be done on the graph itself or on any of its minimum

spanning trees. The result then depends on the particular choice of the MST.

Furthermore, when several MST of the graph exist, the arbitrary choice of one instead of an

other can lead to different output clusterings, and some segmentations that do not seem natural

can be obtained.

An example of how different equivalent MST can lead to different segmentations is provided

in figure 1.10 of chapter 1. We illustrate this phenomenon for MST-based image segmentation

in figure 3.14. Figure 3.14(a) shows how the ultrametric distance can be short-sighted, in the

sense that the same ultrametric distance can correspond to different MST and thus different

segmentations when doing marker-based segmentations. In figure 3.14(b), we compare the
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different possible segmentations obtained with these different MST, with the one obtained using

the classical hierarchical waiting queue watershed algorithm on the graph itself. It turns out

that the result (which is the desired result) corresponds to the MST privileged when using the

lexicographic distance between nodes to discriminate between the possible MST [Meyer (2005)].

Thus two ways to handle the multiple-MST case can be thought of, as announced in section

2.3.3:

— Select one MST over the other possible ones by using additional criteria (as through the

use of the lexicographical distance for example).

— Consider all MST at the same time during computations.
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(a) Marker-based segmentation for the same 2 markers, but on different
equivalent MST. Cutting the highest-weight edge between the two markers
for the different MST does not lead each time to the same segmentation.
Is it possible to know which is the best?

(b) We compare the result above with the segmentation obtained by
using the zones of influence of the markers with a shortest ultrametric
path algorithm scheduled by a hierarchical waiting queue. The final
segmentation corresponds to the third minimum spanning tree in the
above figure.

Figure 3.14 – Example of the lack of robustness of MST-based HC
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3.3.6 Stochastic Watershed Hierarchies

Concept

Section 3.3.4 has shown how ranking the markers generates a hierarchy. We now replace

deterministic markers by stochastic markers. Rather than using deterministic markers in the

marker-based segmentation presented in section 3.3.3, one can indeed instead use random

markers following a given distribution and thus generate random MSF. Then, one can assign to

each edge of the MST the probability of appearance of the underlying contour. Depending on

the distribution of markers used, the obtained segmentation can be very variable.

This idea finds its source in the stochastic watershed presented in [Angulo and Jeulin (2007);

Angulo, Velasco-Forero, et al. (2009)]. If we see the image as a topographic relief, flooding this

image leads to watershed lines, i.e. to a segmentation. By spreading random flooding sources

multiple times and flooding the image accordingly, one can characterize each contour of the

image by its frequency of appearance in the associated segmentations. This simulated version of

the stochastic watershed is illustrated in figure 3.15. Large regions, separated by low contrast

gradient from neighboring regions will be sampled more frequently than smaller regions and

will be selected more often. On the other hand, strong contours will often be selected by the

watershed construction, as there are many possible positions of markers which will select them.

In [Bernander et al. (2013)], the authors introduce noise on the image and the use of a random

grid to distribute markers to obtain more satisfying results with this technique. In [Franchi et al.

(2015)], a re-sampling and bagging technique is introduced for the same purpose.

Evaluating the strength of the contours by simulation offers a great versatility : various laws

for the implementation of point patterns, various shapes for the markers themselves may be

used. The method suffers however from a serious handicap, if the contour strength is evaluated

through simulations, as each of them requires the construction of a watershed segmentation. We

show below, not only how simulations may be avoided, but also how to imagine scenarios which

would be difficult or even impossible to simulate [Meyer and Stawiaski (2010)].

As we shall see hereafter, we can indeed obtain similar results with computations made

directly on graphs, without the need for any simulation [Meyer and Stawiaski (2010)]. Further-

more, it also permits to construct stochastic watershed hierarchies with models which would

have been otherwise difficult to simulate. Indeed, we can define many ways to generate markers,

depending on the probability law used to implant them, but also on their sizes or shapes if they

are sets. Each particular mechanism favors the emergence of a certain type of regions to the

detriment of others. We take advantage of this versatility to compute new hierarchies that are

more linked with the semantic information present in the image.

Principle of the Method

We imagine that we draw random germs on the domain where the image is defined and

compute the probability of each piece of contour to appear in the associated segmentation. We
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(a) Initial image (b) Gradient image

(c) Watershed segmentations obtained by flooding the gradient image for
3 random markers distributions.

(d) Probability den-
sity function of the
contours computed
from 50 realisations
of random markers.

Figure 3.15 – Illustration of the stochastic watershed by simulation.
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have to assign to each edge epq of the MST with an initial weight ηpq a new weight θpq equal to

the probability to appear as a contour. In a first stage we only consider points a markers. Later

we will also considers arbitrary, stochastic or deterministic, sets as markers.

As shown above, the edge epq with weight ηpq = λ does not belong to the MSF if the balls

B(p, λ) and B(q, λ) contain each at least one marker. Thus the probability θpq is equal to the

probability that there is at least one random marker in each of the balls B(p, λ) and B(q, λ).
For the sake of simplicity, we chose a Poisson distribution of germs over the domain. We fix

the number of germs to be equal to ω ; the distribution is then uniform. Consider a set X of

area A within a domain D of area S. The probability that there falls no one germ within the

domain X is then
(
1− A

S

)ω
. And the probability that there is at least one germ in X is then

1−
(
1− A

S

)ω
.

Supposing that the Poisson distribution has an homogeneous density λ:

Λ(R) = area(R)λ, (3.1)

Absorption of the smallest region

Area Oriented Absorption Consider the edge epq with weight ηpq = λ and the balls B(p, λ)
and B(q, λ). Let ap and aq be the areas of these balls. We place a deterministic marker in the

region with the largest area and a random marker in the smallest. The probability θpq is then

equal to the probability that there exists at least one random marker in the smallest region of

area ap ∧ aq, i.e.:

θpq = 1−
(

1− ap ∧ aq
S

)ω
. (3.2)

This hierarchy is also referred to as area-based SWS hierarchy by extinction. It is the stochastic

counterpart of the surface extinction hierarchy associated with flooding, which is deterministic.

"Volume" Oriented Absorption The previous criterion is based on the area of the balls B(p, λ)
and B(q, λ). For high values of λ this area is likely to be larger than for small values. However, in

order to reinforce the influence of the contrast, one may multiply the areas of the balls B(p, λ)
and B(q, λ) by the value λ. This product λap may be considered as a kind of volume. Let λmax

be the highest weight of the edges of the MST. The probability that no marker falls within the

volume λap within the total volume λmasS is then:

θpq =
(

1− λ ap ∧ aq
S ∗ λmax

)ω
. (3.3)

Remark that whereas the absolute values of λ depend upon the global contrast of the image,

the evaluation of the contour strength is nevertheless relatively robust against the change of

contrast, as it is based on the ration λ/λmax.

This hierarchy is also referred to as volume-based SWS hierarchy by extinction.
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Contrast Oriented Absorption Consider again the watershed segmentation. If the image on

which the watershed is constructed is a gradient image, the significant features are the levels of

the pass points between adjacent regions ; the level of the minima, often near to 0, has not much

signification. In other situations one has to construct the watershed on images of a different type,

for which the levels of the minima is significant. For instance, the micro-aneurisms in a retina

appear as dark spots for which the level of the minima is significant. Another example is the

segmentation of text on a document. In such situations, the noise often appear also as dark spots

with less contrast. With the stochastic watershed less contrasted regions get absorbed by more

contrasted regions. We measure the contrast of the ball B(p, λ) as the difference between λ and

the deepest value ζp taken by the image in B(p, λ). We put a hard marker in the most contrasted

region and compute the probability that there is a marker in the less contrasted region for ω

markers uniformly distributed in the range [0, ζp], yielding:

θpq =
(

1− λ− ζp ∧ ζq
λmax

)ω
. (3.4)

The Symmetrical Stochastic Watershed

The Area Based Stochastic Watershed We now consider the distributions of markers in both

balls B(p, λ) and B(q, λ). In short we write Bp = B(p, λ) and Bq = B(q, λ). The weight θpq of the

edge epq is then equal to the probability of the event: E = {there is at least one marker in Bp}

and {there is at least one marker in Bq} The opposite event is the union of two non exclusive

events: noE = {there is no marker in Bp} or {there is no marker in Bq}.

Its probability is: P (noE) = P {there is no marker in Bp} + P {there is no marker in Bq} -

P {there is no marker in Bp ∪Bq}. And:

θpq = P (E) = 1−
(

1− ap
S

)ω
−
(

1− aq
S

)ω
+
(

1− ap + aq
S

)ω
. (3.5)

An example of the surface-based SWS are given in figure 3.16.

Figure 3.16 – Example of the effect of a surface-based SWS. Note that the big objects are better
highlighted in comparison with the trivial hierarchy (figure 3.5)

The Volume Based Stochastic Watershed For stressing more the strength of the gradient

separating both regions B(p, λ) and B(q, λ), we replace the measures of the areas ap and aq by
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the pseudo volumes λap and λaq. The markers being distributed in a total volume S × λmax. The

probability that there exists at least one markers in both "volumes" is then:

θpq = P (E) = 1−
(

1− λ ap
S × λmax

)ω
−
(

1− λ aq
S × λmax

)ω
+
(

1− λ ap + aq
S × λmax

)ω
(3.6)

An example of the volume-based SWS is given in figure 3.17.

Figure 3.17 – Example of the effect of the volume-based SWS.

(a) Image

(b) Trivial hierarchy. (c) Surface-based SWS hi-
erarchy.

(d) Volume-based SWS hi-
erarchy.

Figure 3.18 – Comparison of surface-based and volume-based SWS hierarchies. In comparison
with the surface-based SWS, the volume-based SWS favors contours that are not only connecting
regions with important surfaces but also different from one another (with a high gradient
between them). This is why the structures in the upper-right part of the image are more
highlighted in (c) than in (d).
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The Symmetrical Stochastic Watershed Within Transformed Domains

Until now we considered the domains B(p, λ) and B(q, λ) only through their area or the

deepest value taken by the image within the balls. In order to now take into account also their

shape, we apply an anti-extensive morphological operator ψ on the balls: ψ(X) ⊂ X. The area

of ψ(X) is thus smaller than the area of X. The most common operators are the erosion and

the opening. This opens a large choice of possibilities : erosion or opening, type of structuring

elements (often disks or segments in various directions), size of the structuring element, etc.

We define βp = area[ψB(p, λ)]. The probability θpq to be assigned to the edge epq is then:

θpq = 1−
(

1− βp
S

)ω
−
(

1− βq
S

)ω
+
(

1− βp + βq
S

)ω
. (3.7)

It is noteworthy that this assignment of probabilities cannot be obtained by the simulation

method, consisting in introducing real random germs in the image and constructing the watershed

partition for each new simulation.

This hierarchy will respond to the presence of particular structures in the image such as

elongated and thin structures or on the contrary to massive structures. It also permits to analyze

the anisotropies of an image.

The Symmetrical Stochastic Watershed With Non Punctual Markers

The computation which follows corresponds to the experiment where one uses random

markers, which are not reduced to points. We suppose that Zx is a marker implanted at a random

position x. For the sake of simplicity we suppose that Z is the same marker everywhere, and its

implementation is random. It is possible to imagine and compute the probabilities using random

markers (for instance disks with random radii, segments with random or regionalized length

and orientation etc.). Recall that the structuring element Zx hits a set X if its center x belongs

to the dilation of X by Z : x ∈ X ⊕ Z.
Taking the same notations as above : the edge epq will be cut for a random distribution of

markers, if the 3 following events are verified:

— A1 = {∃ random marker Z hitting Bp} = {∃ random point marker belonging to Bp ⊕ Z}

— A2 = {∃ random marker Z hitting Bq} = {∃ random point marker belonging to Bq ⊕ Z}

— A3 = {@ random marker Z hitting Bp and Bq} = {@ random point marker belonging to

(Bp ⊕ Z) ∩ (Bq ⊕ Z).

The balls Bp and Bq before and after dilation by an horizontal segment, and the intersection

(Bp ⊕ Z) ∩ (Bq ⊕ Z) of both dilated sets are illustrated in figure 3.19.
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Figure 3.19 – 1: The two balls Bp and Bq and a number of structuring elements hitting the balls.
The black ones hit both balls.
2: The dilated balls Bq⊕Z and Bp⊕Z and their intersection (Bq ⊕ Z)∩ (Bp ⊕ Z) in cyan colour.

We have to compute P (A1 and A2 and A3) = P (A1 and A2 | A3)× P (A3). If Spq is the area

of (Bp ⊕ Z) ∩ (Bq ⊕ Z), then P (A3) =
(
1− Spq

S

)ω
.

And P (A1 and A2 | A3) = 1− P (notA1 or notA2 | A3) = 1− P (notA1 | A3)− P (notA2 |
A3) + P (notA1 and notA2 | A3).

The conditional probability P (. | A3) means that all punctual germs have been distributed

outside (Bp ⊕ Z) ∩ (Bq ⊕ Z), that is in an area S − Spq. And the event (notA1 | A3) means

that there is no germ falling in Bp ⊕ Z, knowing that there is also no germ falling in (Bp ⊕ Z) ∩
(Bq ⊕ Z) , i.e. there is no germ falling in (Bp ⊕ Z)� (Bq ⊕ Z) , domain with an area Sp�q. Thus

the probability is equal to
(
1− Sp�q

S−Spq

)ω
. Exchanging the roles of p and q, we get P (notA2 |

A3) =
(
1− Sq�p

S−Spq

)ω
.

The event {notA1 and notA2 | A3}means that there is no punctual germ in (Bp ⊕ Z)� (Bq ⊕ Z)
nor in (Bq ⊕ Z)� (Bp ⊕ Z) . If Sp4q is the area of (Bp ⊕ Z)� (Bq ⊕ Z)∪ (Bq ⊕ Z)� (Bp ⊕ Z) ,
we obtain the probability P (notA1 and notA2 | A3) =

(
1− Sp4q

S−Spq

)ω
.

Putting everything together, we get the new weight:

θpq =
{

1−
(

1− Sp�q
S − Spq

)ω
−
(

1− Sq�p
S − Spq

)ω
+
(

1− Sp4q
S − Spq

)ω}
×
(

1− Spq
S

)ω
. (3.8)

Figure 3.20 – A: Partition and its minimum spanning tree
B: Area stochastic watershed: a random marker in both colored regions Bp and Bq
C: Area oriented absorption stochastic watershed: a fixed marker in the largest region Bp and a
random marker in the smaller region Bq
D: Area stochastic watershed with transformed domains: a random marker in the regions
obtained by a linear opening of Bp and Bq.
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(a) Image (b) Surface-based SWS
with punctual markers

(c) Surface-based SWS
with horizontal markers of
size 15

(d) Surface-based SWS
with vertical markers of
size 15

Figure 3.21 – Example of a surface-based SWS with return to the image during the construction
process to test the shapes of emerging regions. (c): we can notice that when using horizontal
markers, the thin vertical structures we can see in (b) are filtered out. (d): similarly, when using
vertical markers, the thin horizontal structures are filtered out.

An example is provided in figure 3.21, where we compare on the same image the saliency

maps of surface-based SWS hierarchies when drawing punctuals, horizontal and vertical markers.

Similar results are presented for Poisson lines and Poisson flats markers in [Jeulin (2016)].

Computing new hierarchies thanks to the dendrogram structure

As we stated it in sections 2.3.2 and 3.2, we can fully represent a hierarchical clustering

using a dendrogram structure. Such a structure, described in details in sections 2.2.1 and 2.3.2,

is especially useful regarding implementation issues. This is why we took advantage of this

representation to implement and work with hierarchies.

78



3.3. Morphological Hierarchies on Graphs

Algorithm 3.1: Area-based and volume-based stochastic watershed hierarchical cluster-

ing.
Data: An edge and node-weighted graph G = (V,E, η, ηV) defined over a metric space

(S, d) such that |V| = |S|, and ∀(i, j) ∈ {1, ..., n}2, ηi,j = d(vi, vj), and

∀k ∈ {1, ..., n}, ηV
k = A(Rk) the area of the region that the node represents;

A number N of markers;

Result: A stochastic watershed hierarchy of the input graph in the form of new edges

weights η̃.

1 Compute a minimum spanning treeMST = (V,EMST , η) of G ;

2 Get the dendrogram structure associated with the initial weights ;

3 Compute the areas of the regions spanned by each internal node of the dendrogram in a

bottom-up fashion, thus getting a new area for each region ;

4 Sort edges of theMST by increasing weights and visit all edges in this order ;

5 while all edges have not been processed do

6 Given the current edge est with a weight λ compute:

— the balls Bs(s, λ) and Bt(t, λ)

— the diameter diamBs (resp. diamBt) as the highest weight taken by the function η̃ in Bs
(resp. Bt).

We write As (resp. At) the area of the region spanned by all nodes below the node s

(resp. the node t) in the dendrogram.

Then for the area-based SWS:

η̃st = 1− (1− As
S )N − (1− At

S )N + (1− As+At
S )N .

And for the volume-based SWS:

η̃st = 1− (1− ηstAs

V )N − (1− ηstAt

V )N + (1− ηst(As+At)
V )N .

7 end while

The computation in a bottom-up fashion of the areas of the regions spanned by the internal

nodes of a dendrogram is given in figure 3.22.

Figure 3.22 – Computation of the surfaces of the regions spanned by the internal nodes of
dendrogram in a bottom-up approach. It requires one pass through the dendrogram.

The obtaining of the hierarchy for prioritized markers is also illustrated in figure 3.23.
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(a) (b)

(c)

Figure 3.23 – Indexed markers-based hierarchical clustering using dendrograms. (a) To each
leave of the dendrogram we attribute an index corresponding to the degree of priority of the
marker; (b) To each node we attribute the maximum index of its left and right sons ; (c) Then
we attribute to each node the minimum index of its sons indexes. The clustering of index λ is
then obtained by merging all regions separated by an edge with an index inferior or equal to λ.

Influence of the number of markers

One can wonder what is the impact of the numbers of markers that we spread. We illustrate

here the UCM for different numbers of markers.

As was expected, the higher the number of spread markers, the higher the probability for

each contour to appear when doing marker-based segmentation using them. However, the order

of disappearance of the contours in the hierarchy remains the same. Since the saliencies values

do not seem very important by themselves, we privilege a number of drawings that allow us

to obtain UCM that can be well interpreted by simple observation, that is to say a number of

markers that allows for a good dispersion of saliency values. In practice, we chose to draw 80
markers, for images with a resolution of around 1000 × 1000 pixels and approximately 1000
regions.

In a complementary way, we can also represent the hierarchy by an alternative saliency map

that we call “Persistence Contour Map” (PCM) in which each contour takes as value the level of

stratification for which it disappears in the hierarchy, independently from its saliency value. We

can see it as a kind of normalized UCM representing an ultrametric normalized relatively to the

number of regions (see definition 2.31).

3.3.7 Energetic Approach: Binary-Scale Climbing Hierarchy

The Binary-Scale Climbing Hierarchy (BSC hierarchy)

In the literature, many simplification or segmentation methods consist in the optimization

of an energy functional. Such an approach can also be applied to a hierarchical tree in order
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to select its meaningful lines. This has been investigated notably in [Cao et al. (2005); Pardo

(2002)].

Such approaches can be analyzed within the scale-space theory, which constitutes a fully

coherent theory of multi-scale low-level image processing. It is inherently linked with hierarchical

image segmentation, as it is based upon the same fundamental principal: the causality principle,

which formalizes the common-sensical idea that details can only disappear by zooming out.

The idea behind the use of energetic approaches for segmentation is to view a segmentation

as a more or less simple modelization of the image. Following the Occam’s Razor principle,

the idea is then, between two models that equally fit the data, to favor the simpler. Its dual

formulation states that between two equally complex models, the closer to the data of the two

should be preferred. This can be translated into an optimization problem and thus into the

minimization of its associated Lagrangian. Under large assumptions, this can be reduced to the

optimization of an energetic expression of the form D + λC, with D a “goodness-of-fit” term

and C a “regularization” term. λ controls the precision of the approximation and thus can be

thought of as a scale parameter.

A classical energetic functional that we can use is the Mumford-Shah functional, which is as

stated above composed of two main terms: an image-fit term and a regularization term.

1. If f is the image and a partition segmenting the image, a piecewise constant model is

adjusted to the image: each tile Ri of the partition π gets a grey-tone value equal to the

mean value µi of f within this tile. The quality of the fit is then measured by the sum of

variances of the image in all tiles of the partition:

D(π) =
∑
Ri∈π

∑
k∈Ri

(fk − µRi)2 (3.9)

2. The complexity of the partition is measured by the length of the contours C(π) = ∂π.

The problem is then to minimize the sum of variances under the constraint that the total

length of the contours is below some limit :

Find π∗ = arg min
π

(
∑
Ri∈π

∑
k∈Ri

(fk − µRi)2 + λ ∗ ∂π) (3.10)

A popular method to operate Mumford-Shah functional optimization is the seminal work of

[Mumford et al. (1989)]. Curve evolution methods are usually used to solve such a problem,

as they are effective and present theoretical foundations. However, they are computationally

expensive, which makes them hard to use in an automated segmentation framework for example.

Instead of trying to optimize such a functional for all possible segmentations, some authors

propose to minimize a similar functional subordinated to a given input hierarchical segmentation.

This way, they find an optimal hierarchical segmentation in the sense of energy minimization, as

in [Guigues et al. (2006); Kiran et al. (2014b); Xu, Géraud, et al. (2016)]. We take inspiration

in the work of [Guigues et al. (2006)] to obtain, for each input hierarchical segmentation, a

hierarchy that has been regularized as a trade-off between boundary length and image adherence.
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In this work, the authors minimize the MS energy within a restricted number of solutions to

create a hierarchy transcribing the successive values of the parameter λ for which the regions

fuse, which makes the problem solvable by dynamic programming. We adapt this approach

by performing this computation subordinated to the regions proposed by an input hierarchy.

In this regard, our proposal can be linked with the work in [Xu, Géraud, et al. (2016)], in

which the authors have a similar approach but use the tree of shapes instead of a hierarchy of

segmentations such as ours.

In our case, the dynamic programming consists in sweeping accross the hierarchy, from fine

to coarse and consider each tile. A region of the hierarchy is then retained for the λ− optimal
partition if the variance of this region is higher than the sum of the energies of its children. To

each λ corresponds a partition and for increasing values of λ, the partitions get coarser. This

means that one gets a new hierarchy with this process. Like that, one produces a new hierarchy

whose stratification levels are equal to the scale parameter λ. This hierarchy is produced by

non-horizontal cuts accross the initial hierarchy. It may then be used as any other hierarchy.

Description of the model

In our case we consider the same “energy” D(π) + λC(π) depending upon a scale parameter

λ but we do consider a more restricted family of regions which will be merged or not. If epq
is an edge linking the nodes p and q with a weight ρ ; we consider the balls Bp = Ball(p; ρ)
and Bq = Ball(q; ρ). The length of their common boundary is lpq. D(Bp) and D(Bq) are the

variances of the image within the balls Bp and Bq : We will merge both balls if the variance of

the union of both balls is lower than D(Bp) +D(Bq) + λlpq.

Efficient Computation

The advantage of this formulation is that it will be possible to construct in one pass through

the edges of the minimum spanning tree the associated hierarchy, by assigning new weights to

the MST generating a new ultrametric distance. In the more complex case of the Mumford Shah

model, one has to construct a partition for each value of λ.

Algorithm to construct the hierarchy The algorithm visits all edges of the MST in the order

of increasing weights. Repeat until all edges are processed:

— epq the current edge to process with a weight ρ

— we assign to each edge the weight λ∗ for which it is equivalent to merge or to keep both

balls separated

— if the balls merge : Energy(Bp ∪ Bq) = D(Bp ∪ Bq) ; if the balls remain separated :

Energy(Bp ∪Bq) = D(Bp) +D(Bq) + λlpq

— For a higher value µ > λ∗ ; we have D(Bp) + D(Bq) + µlpq > D(Bp) + D(Bq) + λ∗lpq ,

showing that both balls should be merged. For a lower value, they should keep separated.
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— Let us compute this value λ∗ which constitutes the point where merging or keeping them

separated are equivalent choices: λ∗ = D(Bp∪Bq)−D(Bp)−D(Bq)
2lpq

Algorithmic trick By keeping in memory for each leaf of the dendrogram (i.e. each node of

the finest partition) the size of its contours with each of its neighbors, its moments of orders

1,2 (
∑
k∈Ri

fk,
∑
k∈Ri

f2
k ), and the parenthood relationships between nodes, one can fastly compute

the fitting-term and the contour term of each level of a hierarchy of partitions represented as a

dendrogram.

Proof.

D(π) =
∑
Ri∈π

∑
k∈Ri

(fk − µRi)2 (3.11)

=
∑
Ri∈π

∑
k∈Ri

(fk −
mi

1
mi

0
)2 (3.12)

=
∑
Ri∈π

[
∑
k∈Ri

f2
k − 2m

i
1

mi
0

∑
k∈Ri

f2
k + mi

1
2

mi
0

2

∑
k∈Ri

1] (3.13)

=
∑
Ri∈π

(mi
2 −

mi
1

2

mi
0

) (3.14)

So let us say we want to have the new fitting-term D(Rp ∪ Rq) providing the moments of the

subregions Rp and Rq :

D(Rp ∪Rq) =
∑

k∈Rp∪Rq

(fk − µ)2 (3.15)

=
∑

k∈Rp∪Rq

[(mp
2 +mq

2)− (mp
1 +mq

1)2

mp
0 +mq

0
] (3.16)

We will also present in section 3.6.3 how to compute quickly the contours length of each

hierarchical level using the dendrogram structure and dictionaries.

Qualitative Analysis

This new hierarchy is interesting because it provides us with a way to balance the output of

a hierarchy with respect to a trade-off between image adherence and simplicity. Just as in the

expression of the Mumford-Shah energy, the parameter λ can be seen as playing the role of a

“potentiometer”. For each λ (corresponding to a cut level of the new hierarchy), we have the

optimal segmentation with respect to the input hierarchy regions proposals and to the energetic

expression to optimize.

We present some visualizations of the effect of this hierarchy in figures 3.24 and 3.25. As

expected, the regions proposed by this hierarchy tend to capture large homogeneous regions

first, as it favors the simpler model that can explain (i.e. correspond as much as possible to) the
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departure image. Hence, applying this hierarchy can be seen as a useful first step for low-level

hierarchical segmentation, in order to avoid missing any important large region.
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(a) Image (b) Superpixels image (c) Corresponding mosaic im-
age

(d) Trivial hierarchy (e) BSC hierarchy

(f) Trivial hierarchy: 10 regions (g) Trivial hierarchy: 30 regions (h) Trivial hierarchy: 50 regions

(i) BSC hierarchy: 10 regions (j) BSC hierarchy: 30 regions (k) BSC hierarchy: 50 regions

Figure 3.24 – Illustration of the effect of the BSC hierarchy. It allows to balance the output of
any hierarchy (here the trivial hierarchy) to obtain a hierarchy presenting a trade-off between
adherence to the image and model simplicity.
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(a) Image (b) Superpixels image (c) Corresponding mosaic im-
age

(d) Trivial hierarchy (e) BSC hierarchy

(f) Trivial hierarchy: 10 regions (g) Trivial hierarchy: 30 regions (h) Trivial hierarchy: 50 regions

(i) BSC hierarchy: 10 regions (j) BSC hierarchy: 30 regions (k) BSC hierarchy: 50 regions

Figure 3.25 – Illustration of the effect of the BSC hierarchy. It allows to balance the output of
any hierarchy (here the trivial hierarchy) to obtain a hierarchy presenting a trade-off between
adherence to the image and model simplicity.
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3.3.8 Other classical morphological hierarchies

Waterfall hierarchy

This hierarchy has first been described in the context of a topographic surface flooding

[Beucher (1990)].

Figure 3.26 – Four levels of the waterfall hierarchy. Each topographic surface has been flooded
up to the lowest pass point of the catchment basins associated to the preceding surface.

In a graph-based approach, let us suppose that the nodes correspond to the catchment basins

a topographic surface. We can then build a minimum spanning forest in which each tree takes

root in one of these minima. All of the edges internal to those trees take as value 1 (the first

level of the waterfall). The edges of each of these trees are then contracted until reduced to a

node. We then have a new graph on which we can proceed as previously, and edges internal to

the trees take the value 2. We keep going until all edges have been valuated and contracted.

To go further, it is possible to produce this waterfall hierarchy in one pass through the edges

of the MST [Meyer (2015)]. We assign to each edge est of the MST, with an initial weight ηst, a

new weight η̃st expressing its level in the waterfall hierarchy.

Figure 3.27 presents the waterfall hierarchy: the initial image, the waterfall saliency of the

contours, followed by 4 levels of the waterfall hierarchy.

Figure 3.27 – The waterfall hierarchy. The saliency of the contours followed by 4 levels of the
waterfall hierarchy.
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Algorithm 3.2: Waterfall Hierarchical Clustering
Data: A graph G = (V,E, η) defined over a metric space (S, d) such that |V| = |S|, and

with for ∀(i, j) ∈ {1, ..., n}2, ηi,j = d(vi, vj);
Result: a waterfall hierarchical clustering of the input graph in the form of new edges

weights η̃.

1 Compute a minimum spanning treeMST = (V,EMST , η) of G ;

2 Sort edges of theMST by increasing weights and visit all edges in this order ;

3 while all edges have not been processed do

4 Given the current edge est with a weight λ compute:

— the balls Bs(s, λ) and Bt(t, λ)

— the diameter diamBs (resp. diamBt) as the highest weight taken by the function η̃ in Bs
(resp. Bt).

Then: η̃st = 1 +min(diamBs , diamBt).
5 end while

Hierarchy of Levelings

An interesting family of hierarchies are the hierarchies of levelings, which rely on the levelings

operators that we reintroduce hereafter [Meyer (1998); Matheron (1997); Serra et al. (n.d.)].

This type of hierarchies is not obtained using a graph-based framework but directly through

successive appliances of levelings operators.

Quasi-flat zones An image is a grid of pixels. Segmenting means regrouping similar pixels

in the same class. Hence the simplest segmentation technique consists in regrouping all pixels

having the same grey tone or the same color. Such a group of pixels with the same color is called

flat zone. The relation “to have the same color” is an equivalence relation ; its equivalence classes

constitute the simplest segmentation technique.

Definition 3.1 (Flat zones). Two points x, y belong to the same flat-zone of a function f if and

only if there exists a n−tuple of points (p1, p2, . . . , pn) such that p1 = x, pn = y and for all i,

(pi,pi+1) are neighbours and have the same value through f : f(pi) = f(pi+1).

Definition 3.2 (Quasi-flat zones (or lambda-flat zones)). Two points x, y belong to the same

quasi-flat-zone of a function f if and only if there exists a n−tuple of points (p1, p2, . . . , pn) such

that p1 = x, pn = y and for all i, (pi,pi+1) are neighbours and have their value through f verify a

symmetrical relation.

Examples of symmetrical relations:

— |f(pi)− f(pi+1)| < λ, leading to slope levelings for λ > 0.

— f(pi+1) ≥ (γ ◦ f)(pi) and f(pi) ≥ (γ ◦ f)(pi+1).

— f(pi+1) ≤ (φ ◦ f)(pi) and f(pi) ≤ (φ ◦ f)(pi+1).
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— or any logical combination of the preceding ones.

Figure 3.28 – Flat and λ-flat zones. The levelings depend upon the definition of the flat zones.
For the same topographic surface A, two types of flat zones are produced: (i) In B strict flat
zones : the blue area + level lines are detected, (ii) In C three lambda flat zones (slope ≤ 1) are
detected.

From the preservation of contours to the levelings A good filter Φ should transform an

image f into an image g with less details and simpler to segment. However, the contours of any

segmentation produced on g should exactly match the contours of the same objects as seen in

f . In other words, there should be no displacement of the contours when one goes from f to

g. Crossing a contour between two pixels p and q in the simplified image g means finding a large

transition between two neighboring values gp and gq. A down transition between the neighboring

pixels p and q will be written gp � gq. It may be any relation defined on the neighborhoods

of gp and gq verifying gp � gq ⇒ gp > gq. In the present paper we will focus on the relation

gp � gq ⇔ gp > gq + λ. In practice, many more types may be defined. To any definition of an up

and down transition, we easily associate quasi flat zones. We first define the negation of the up

relation : Not [gp � gq]⇔ gp 4 gq. The relation

∣∣∣∣∣∣ gp 4 gq

gq 4 gp

∣∣∣∣∣∣⇔ gp h gq is symmetrical and pixels

verifying gp h gq belong to the same quasi-flat-zone, hence it permits to construct quasi-flat zones

as explained in the definition above. In the case where gp � gq means gp > gq + λ, gp h gq will

mean |gp − gq| ≤ λ.
Suppose now that gp � gq As we require that no contour be displaced when going from f

to g, a similar contour (by similar we mean that to an up transition should correspond an up

transition) should exist between the pixels p and q for the image f. This basic requirement is at

the heart of the definition of levelings:

Definition 3.3 (Leveling). A function g is a leveling of a function f if and only if: for any couple

of neighboring pixels (p, q): gp > gq + λ ⇒ fp ≥ gp and gq ≥ fq. When λ = 0, we talk of flat

leveling, and when λ > 0 of lambda-leveling.

The definition clearly shows that to any transition gp > gq + λ corresponds an even bigger

transition, since the interval [gq, gp] is included in the interval [fq, fp]. The definition is illustrated

for λ = 0 in the figure 3.29, on two couples of pixels for which fs = gs < gt < ft and

fq < gq < gp = fp.

89



3. OBTAINING AND USING MORPHOLOGICAL HIERARCHIES IN A GRAPH-BASED FRAMEWORK

Figure 3.29 – Illustration of the definitions of levelings: gp > gq ⇒ fp ≥ gp and gq ≥ fq

Definition 3.4 (Rho-leveling). A rho-leveling is a generalization of the classical leveling. A

function g is a rho-leveling of a function f if and only if:

f ∨ δγg ≤ g ≤ f ∧ εϕg (3.17)

Where ε is the adjunct erosion of δ, γ and ϕ are the associated openings and closings. The

rho-leveling introduces a viscosity that allows to avoid the reconstruction of small details through

narrow paths.

Levelings are connected operators The property of levelings which permits to derive hierar-

chies from them, is the fact that the levelings merge or extend quasi-flat zones.

A function g is a leveling of a function f if and only if for any couple of neighboring pixels

(p, q): gp > gq + λ⇒ fq ≤ gq and gp ≤ fp
It follows gp > gq + λ⇒ fq + λ ≤ gq + λ < gp ≤ fp ⇒ fq + λ < fp.

The contraposition of this implications states: fq + λ ≥ fp ⇒ gp ≤ gq + λ

Inverting the roles of p and q : fp + λ ≥ fq ⇒ gq ≤ gp + λ

Regrouping both expressions : fq + λ ≥ fp ≥ fq − λ⇒ gq + λ ≥ gp ≥ gq − λ, which shows

that if p and q belong to the same quasi-flat zone for the function f , expressed by the fact that

fq + λ ≥ fp ≥ fq − λ, then p and q also belong to a quasi-flat zone of g. In other words, the

leveling extends the quasi flat zones of f. This extension can only occur from merging pre-existing

flat zones of f, showing that the partition of the quasi-flat zones of f is finer that the partition of

the quasi-flat zones of g.

Property 3.5. “To be a leveling” is a preorder relation. In particular if g is a leveling of f and h

is a leveling of g, then h is a leveling of f.

A sequence of levelings creates a hierarchy of quasi-flat zones

Property 3.6. The levelings extend the flat-zones, the lambda-levelings extend the lambda-flat

zones. This is illustrated in figure 3.30.
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3.3. Morphological Hierarchies on Graphs

Figure 3.30 – The levelings extend the flat-zones, the lambda-levelings extend the lambda-flat
zones.

We have seen that “to be a leveling” is a preorder relation. In particular if g is a leveling of f

and h is a leveling of g, then h is a leveling of f. This property permits to derive from an initial

function f0 a sequence of increasing levelings (f0, f1, ....fk) where each function fi is a leveling

of all functions fj for j < i. As stated above the partition of quasi-flat zones of the functions fi is

coarser then the partition of quasi-flat zones of fj for j <, the coarser partition resulting from

the merging of regions of the finer partition. We have thus established that the quasi-flat zones

of a sequence of levelings forms a hierarchy.

A large set of possible hierarchies exist can be conceived in this regard, as we can choose:

— The hierarchy building type: linear or as a cascade (see figure 3.31).

— The type of levelings considered: flat, lambda, rho, lambda-rho.

— The type of markers consider: alternate sequential filters (ASF), gaussian filters etc.

— The structuring element form (hexagonal and thus isotropic, horizontal, vertical) and size.

In particular, we can note the choice of markers images can be directly tailored to adapt to

the content and the task at hand.

Figure 3.31

On the contrary to all hierarchies presented otherwise in this section, hierarchies of levelings

have not been obtained using a graph-based framework, although they could have been [Meyer

and Lerallut (2007); Meyer (2013c); Meyer (2013b)]. Furthermore, one can easily obtain a
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saliency matrix and a saliency map fully describing such a hierarchy for a given image. We are

thus able to compare the effect of this type of hierarchies with other ones obtained in a different

fashion as we have unified representations of them. In particular, having saliency matrices

(corresponding to ultrametric values) allows for a computation of distances between hierarchical

clusterings such as the Gromov-Hausdorff distance.

As we have seen, the designing of levelings hierarchies presents several degrees of freedom.

They consist in a progressive enlargement of flat zones of the images. By choosing the type of

images markers or the shape of the structuring elements we can favor certain directions. One can

also choose the type of leveling used to allow a less restrictive slope (λ-leveling) or an expansion

through fine structures of the image (ρ-leveling). This is illustrated in figure 3.32.

In a way, the mode of operation of these hierarchies is the counterpart of the watershed

hierarchies ones, in which we introduce prior constraints on the regions to highlight. Instead,

they operate in a more direct way, by working directly on the image and benefiting from

the structural property stating that a leveling can only enlarge flat zones (cf. property 3.6).

Furthermore, whereas watershed hierarchies are based upon image gradients and naturally

highlight contrasted objects, levelings hierarchies are based upon razings and floodings and thus

highlight peaks and valleys of the image, that stand out from its background. There thus seems

to be an intrinsic complementarity between those two approaches.

3.4 Comparison with State-of-the-art

In this section, we present the performances of the classical surface-based and volume-based

SWS hierarchies in comparison with other state-of-the-art hierarchical segmentations algorithms

over the BSD500 dataset [Arbelaez et al. (2011)]. The hierarchical segmentations algorithms

are evaluated for segmentation tasks upon a variety of different images by comparison with the

segmentations provided by human users considered to be the ground-truths.

3.4.1 Scores

Probabilistic Rand Index (PRI)

The Rand Index has initially been introduced for clusterings evaluation. It operates by

comparing pairs of points of the compared clusters. The Rand Index between a cluster S and a

ground-truth G is the sum of the number of pixels pairs that have the same labels in S and G,

and of those which have different labels in the two segmentations, divided by the total number of

pixels pairs. The Probabilistic Rand Index (PRI) is a variant introduced for the case when multiple

ground truthes are available. If we consider a set of ground-truthes (Gk)k, the PRI is given by:

PRI(S,Gk) = 1
T

∑
i<j

[cijpij + (1− cij)(1− pij)], (3.18)
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(a) Image. (b) Fine partition. (c) Associated mosaic im-
age

(d) Flat leveling - 10 re-
gions

(e) Flat leveling - 30 re-
gions

(f) Flat leveling - 50 re-
gions

(g) Flat leveling -
Saliency map

(h) λ-leveling - 10 re-
gions

(i) λ-leveling - 30 re-
gions

(j) λ-leveling - 50 re-
gions

(k) λ-leveling - Saliency
map

(l) λ− ρ leveling - 10 re-
gions

(m) λ − ρ leveling - 30
regions

(n) λ − ρ leveling - 50
regions

(o) λ − ρ leveling -
Saliency map

Figure 3.32 – Saliency maps and 10,30,50 regions images for different levelings hierarchies upon
the same image and fine partition. These hierarchies have been built using the cascade building
type with eroded and dilated images as markers.
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Where cij is the event “the pixels i and j” have the same labels and pij its probability. T is

the total number of pixels.

Variation of Information(VI)

The Variation of Information (VI) is also a metrics that has been introduced to compare

clusterings. It measures the distance between two segmentations relatively to their average

conditional entropies. It is given by:

V I(S, S′) = H(S) +H(S′)− 2I(S, S′), (3.19)

where H and I respectively represent the entropies and mutual information between two data

clusterings S and S′. In our case, the clusterings are the test and ground-truth segmentations.

Optimal Dataset Scale (ODS), Optimal Image Scale (OIS)

Let us consider a score(S,GT ) to attest of the quality of a segmentation S given a ground

truth GT . score can correspond to the PRI or the V I presented above.

A hierarchical segmentation method applied on an image provides a hierarchy (H,λ), where

the successive ultrametric levels (λ1, . . . , λN ) correspond to a series of nested segmentations

(S1, . . . , SN ). To properly evaluate it, one has to compute the score(Si, GT ) for any level λi of

the hierarchy of each image.

One can then either retain these best level λ∗ on the overall dataset, and the corresponding

score is the Optimal Dataset Scale (ODS), or retain the best level λi for each image and average

the best individual scores for all images, which correspond to the Optimal Image Scale(OIS). By

definition, the ODS is inferior or equal to the OIS.

3.4.2 Results

In table 3.1 are presented the performances of the surface-based and volume-based SWS

hierarchies. We notice that their results are in the same range than state-of-the-art algorithms.

As expected, the volume-based SWS hierarchy is more adapted than the surface-based SWS to

segment multimedia images.
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Table 3.1 – Segmentation results on BSD500 test set, with a comparison to the state-of-the-art
competitors

PRI(↑) VI(↓)
ODS OIS ODS OIS

SWS hierarchies
Volume-based SWS 0.81 0.84 1.84 1.59
Surface-based SWS 0.75 0.79 2.12 1.87

α-tree 0.78 0.82 — —
Tree based shape space [Xu, Carlinet, et al. (2016)] 0.80 0.83 — —

Ncuts [Salembier and Garrido (2000)] 0.78 0.80 2.23 1.89
Felz-Hutt [Felzenszwalb et al. (2004)] 0.80 0.82 2.21 1.87
Mean Shift [Comaniciu et al. (2002)] 0.79 0.81 1.85 1.64

UCM [Arbelaez et al. (2011)] 0.83 0.86 1.69 1.48
ISCRA [Ren et al. (2013)] 0.82 0.85 1.60 1.42

PFE+mPb [Yu et al. (2015)] 0.84 0.86 1.61 1.43
PFE+MCG [Yu et al. (2015)] 0.84 0.87 1.56 1.36

Further evaluation within a framework better-suited to hierarchical segmentation could be

conducted [Perret et al. (2018)].

3.5 Practical Considerations Regarding the Choices Made

As a reminder, here are the main steps to get a hierarchy of segmentations in the graphs-based

hierarchical segmentation framework we use:

1. get a fine partition FS(I) out of the image I

2. get a Region Adjacency Graph (RAG) G out of FS(I), considering a given dissimilarity

between regions of the fine partition

3. compute the Minimum Spanning TreeMST (G) from G

4. find the inconsistent edges on the MST (G) according to some criteria and cut them,

resulting in a partition of the image. Cutting edges in a MST produces forests. The more

edges are cuts, the smallest the trees in the resulting forest. To a series of cuts corresponds a

decreasing sequence of forests, and at each step, the trees of one forest underly a partition.

Thus we obtain a series of nested partitions, i.e. a hierarchy. In particular, a simple way of

proceeding to get such a hierarchy is to cut edges by decreasing valuations. When cutting

edges by decreasing order of consistency, one get a hierarchy of segmentations.

Different choices regarding the construction of the graph, namely concerning the construction

of the fine segmentation and the choice of the dissimilarity, have an important influence on

the output of this workflow. We hereby describe with more details the choices of methods and

implementations we made for each of these steps.
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3.5.1 Obtaining a satisfying fine partition

For the sake of computational efficiency, we chose to work with region adjacency graphs

instead of pixel ones. This way, there are far less nodes in the graph than there are pixels in the

image. This is why producing a fine segmentation of the image constitutes the first part of our

framework. We want this fine segmentation to delineate most of the relevant contours based on

perceptual cues. There are several adequate methods to obtain fine segmentations. The initial

image can also be filtered out for furthers treatments to be more simple.

First approach

To do so, a first possibility consists in operating a watershed transformation on a gradient

image of the image with its minima as flooding sources. In order to get a useful departure

oversegmentation, one must first suppress the meaningless minima. We do so by first filtering the

image, using an alternate sequential leveling of small size. Then we operate a h-reconstruction

of the gradient image. The h-reconstruction of a function f is the highest flooding of f that is

under the function f + h. Its effect is that some minima are filled, and the corresponding lakes

are absorbed by their neighbors. Once the gradient image has been processed, we can compute a

watershed transform on it. Finally, we aggregate the regions that are still too small at the end of

the entire process. An example of the type of results obtained with such a process is provided in

figure 3.33. Note that there exist some alternative to the h-reconstruction. For example, one can

filter the image according to the regions sizes, by computing the highest flooding of the gradient

image under the dilated gradient image.

Second approach

An other method, illustrated in figure 3.34, consists in making a heavier use of the concept

of lambda-flat zones, as long as of levelings, introduced in section 5. Just as previously, we

begin with a filtering of the image using an alternate sequential filter of small size (for example

2). Then we operate a lambda-rho leveling which presents the double interest of extending

the flat zones, thus creating larger regions, while still being able to capture fine and elongate

forms thanks to the introduction of a viscosity parameter. We usually choose the lambda and

rho parameters to be small (typically 2 and 1 respectively). Labelling the lambda-flat zones (for

the same lambda) of the result gives us a first labels image, with some regions generally being

too small. So we suppress these undesired regions by setting them to zero and then operate

a watershed transform on the gradient image using this labels image as a marker image. Just

as before, we label the lambda-flat zones of the output, this time set to zero the zones that are

narrower than a parameter (typically 2), and do a new watershed transform with this new image

as marker.
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(a) Image (b) Filtered image

(c) Fine partition obtained (d) Corresponding mosaic
image

Figure 3.33 – Example of a fine partition obtained using : (i) Filtering of the image using
alternate sequential levelings (ii) h-reconstruction of the watershed (iii) Removal of the too
small regions

Third approach: superpixels

Both these methods, while they can provide suitable fine partitions, rely on a lot of parameters

tuning to work properly. For example, in the first approach, depending on the initial image

(its size, texture) the initial filtering or the choice of the height in the h-reconstruction can

dramatically modify the output and possibly results in missing some potentially interesting

contours. Yet at this stage, our goal is precisely to extract all of these potentially interesting

contours, in order to structure them in following process. On one hand, this possibility of

fine-tuning reveals the versatility and adaptibility of these approaches, since they can be adapted

to very specific problems in order to get the best possible results on very specific tasks. But on

the other hand, this makes them less pertinent when placed at the beginning of an automated

segmentation process that we would like to be as adaptative as possible.

This is why we explored an other popular approach that consists in using superpixels

methods to produce our initial fine partitions. Superpixels are regions resulting from a low-

level segmentation in order to be used as primitives for further analysis such as detection,

segmentation, and classification of objects. Superpixels aim to have the following properties : (i)

homogeneity, i.e. pixels belonging to a given superpixel present similar colors or gray levels (ii)

the superpixels constitute a partition of the image (iii) adherence to object boundaries: object

boundaries should be included in superpixels object boundaries (iv) regularity: superpixels

should form a regular pattern on the image.

Many approaches exist to compute superpixels, most of them based on graphs [Felzenszwalb
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(a) Image. (b) Filtered image using
an ASF leveling of size 1,
and a lambda-rho leveling
with lambda=rho=1.

(c) Associated gradient im-
age that we use for water-
shed transform.

(d) Lambda-labelling of
the output of the first wa-
tershed transform.

(e) Removal of the regions
with an area inferior to 15.

(f) Lambda-labelling of
the output of the second
watershed transform, us-
ing the labels image with
small areas removed as
marker image.

(g) Removal of the regions
narrower than 2.

(h) Final labels image out-
put by a watershed trans-
form using previous labels
image as marker.

(i) Corresponding mosaic
image.

Figure 3.34 – Example of a fine partition obtained using : (i) Filtering of the image using ASF
and lambda-rho leveling (ii) Removal of small and narrow regions to create markers images for
watershed transform.
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et al. (2004)], geometrical flows [Levinshtein et al. (2009)] or k-means [Achanta et al. (2012)].

Since these superpixels will be used in an already long framework, we focus on linear complexity

methods such as those presented in [Achanta et al. (2012); Machairas et al. (2015)].

We privilege the waterpixels approach [Machairas et al. (2015)], which main idea is to

operate a markers-based watershed transform on the image by choosing seeds on a regular grid

of this image. While giving slightly better results than the SLIC superpixels, the waterpixels also

present the advantage of being connected by definition, on the contrary to SLIC superpixels which

require some ad-hoc postprocessing step to obtain this property. It is indeed an advantage since

our framework departures from a connected fine partition of the image, which is indeed the basis

for the construction of a regions adjacency graph. It also let us choose an approximate number of

regions wanted per image. Experiments show that 1500 regions in the fine segmentation allow

to capture most of the significant contours in the image. An example of the output given by such

an approach can be found in figure 3.35.

(a) Image (b) Superpixels (c) Corresponding mosaic
image

Figure 3.35 – Example of a fine partition obtained using waterpixels.

This way, we obtain over-segmentations of our images that do not miss (or only in rare

cases) any potentially interesting contour, given that the gradient image we operate on present

sufficiently accurate contours strength. The drawback is that some of these contours are not at

all pertinent. For example, the sky in figure 3.35, which is a zone with an almost null gradient, is

nonetheless divided by the superpixel method.

This approach, such as the preceding ones, is gradient-based. Standard methods can be used

to compute this gradient, or a specific gradient computation method can be designed for a given

application. In the following, we expose the different gradients we considered.

3.5.2 Choice of the gradient

The regions adjacency graphs that we get out an image is dependent of the gradient we

consider at two levels:

— Whether it is in a watershed or superpixels approach, the fine segmentation will be of

better quality if all potentially important contours are accentuated in the gradient.
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— The dissimilarities between regions of the graph are often based on local gradient infor-

mation between those regions, for example the means of the gradient along the borders

separating adjacent regions.

This is why it is of primary importance to have a gradient that highlights all potentially

important contours. The morphological gradient of an image is defined as:

G(I) = δ(I)− ε(I) (3.20)

It corresponds to the gradient magnitude of the topographical surface associated with the

processed image and provides a mean to highlight the high frequencies of the image. However,

using this gradient can lead to contours that are not sufficiently well accentuated, and this for

several reasons.

The first is that noise is systematically amplified in the morphological gradient. So it should

be either filtered out before computation or be modified to take this into account. For example, in

[Lerallut (2006)] the author defines the gradient at a given image point as the distance between

the two most significant modes of the brightness distribution covering the neighborhood of the

pixel under consideration. Similarly, in [Arbelaez et al. (2011)] the authors build a gradient by

comparing brightness distributions from either sides of a circular patch centered at the pixel of

interest and for different orientations.

Secondly, one must choose the size of the considered patches in such approaches. Indeed,

a sufficiently large patch size can widen the scope of analysis, thus enabling to be attentive

to smoothly evolving brightness transitions, which is particularly useful when dealing with

out-of-focus images. But if the patches are too large, thin homogeneous regions can be filled

with high gradient values, which is not desirable for the detection of contours. In [Bricola et al.

(2015)], the authors derive from the regularized gradient [Rivest et al. (1992)] a multi-scale

morphological gradient that addresses both those issues. The main idea of the regularized

gradient [Rivest et al. (1992)] is to compute a morphological gradient at different scales and

retains the highest gradient values across all scales, and then to thin the result using an erosion.

In [Bricola et al. (2015)], the authors propose enhancements to this technique: they avoid high

gradient values in high frequencies images regions by filtering the input image beforehand, and

replace the erosion step by a brightness transitions detection step. An example illustrating its

effectiveness is provided in figure 3.36.

For the above explained reasons, we choose to use this gradient in the waterpixels approach

as we found it to provide guarantees for not missing important contours while still fast enough

to compute to keep the entire chain not prohibitively long for the user.

3.5.3 Exploitation of colour information

There are many different ways to compute color gradients, and the adaptation of morpholog-

ical operators to colour images remain an active research topic. The reason behind this is that

there is no obvious way to order colours and to make sense of dilations or erosions on colours
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(a) Image (b) Filtered image using alternate
sequential filtering

(c) LAB gradient (d) Enhanced regularized gradient

(e) Waterpixels associated with
LAB gradient

(f) Waterpixels associated with en-
hanced regularized gradient

(g) Mosaic image associated with
LAB gradient

(h) Mosaic image associated with
enhanced regularized gradient

Figure 3.36 – Illustration of the usefulness of the enhanced regularized gradient.
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without a specific application domain. However, when we compute gradients, we are interested

in the distance between any two colours. So we first have to represent our images in a color

space, whether it is the classical (R,G,B) space or a perceptually-based one such as the CIE-LAB

space, in which perceptually different pixels are far from one another. Then we have to define a

distance between pixels. It can be intrinsic to the color space (for example a euclidean distance

between pixels of the color space) or marginal, i.e. defined on each component. We choose to

use the CIE-LAB and marginal distances.

Then we can replace the gradient between two pixels by a given combination of the colour

distances between them. In our case, we prefer to retain the maximum rather than the mean

of all channels gradients in order to avoid missing any potentially important contours. Indeed,

for building a satisfying oversegmentation of the image, the recall of perceptually meaningful

contours retrieving is more important than its precision.

3.5.4 Choosing the dissimilarity

In our framework, we construct a RAG based upon a fine partition produced by an initial

segmentation (tipycally a set of superpixels) and containing all contours making sense in the

image. We must define a dissimilarity measure between adjacent tiles of this fine partition that

correspond to the edges valuations of the RAG.

We choose to construct dissimilarities based on local gradient information, as this information

naturally corresponds to discrepancies between regions, and thus is connected to the notion of

dissimilarity.

Since the frontier between two tiles in a fine partition is not limited to one pixel, we need

to choose a way to integrate the gradient information along the frontier. We tested several

possibilities to compute these valuations:

— Taking the maximum of the gradient values along the frontier, which would be the ideal

choice if the image is not noisy, as it would ensure us that we do not miss any interesting

contour.

— Taking the mean of the gradient values along the frontier, which is the usual choice but

appears to be potentially misleading, as it sensitive to extreme values.

— Taking the min of the gradient values along the frontier, which is the usual choice in

mathematical morphology, because floodings are made along the saddle points of the

departure relief, which are the minimums.

— Taking the median of the gradient values along the frontier: we chose this possibility, as it

provides a good estimate of the average significance of the gradient on this frontier, while

still being more robust to noise and outlier values.
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3.6 Presentation of the Smil Library and the Implemented Module

3.6.1 The Smil Library

A large majority of the algorithms used to generate and use the morphological hierarchies

exposed in this thesis have been implemented within Smil, created at the Center of Mathematical

Morphology [Smil. (2015)]. Smil is a 2D/3D image library written in C++, which aims to be

lightweight, fast, easy to use and to extend. It is developped using templates, which means that

it can be used with any standard types, and it uses swig to be wrapped in several languages,

such as Python, Java, Ruby or Octave.

3.6.2 The implemented module

During this thesis, we have thus developed a large module within Smil to compute, modify

and visualize different kind of hierarchies. This represented an important part of this work.

These hierarchies are implemented mainly using dynamic programming on graphs, which makes

the related algorithms very efficient. It indeed allows to compute new characteristics for each

region of the hierarchy in a bottom-up fashion and to reorganize the internal structure of the

hierarchy at the same time. In a few lines of codes one can thus get from an image to the

computation and visualization of a large number of morphological hierarchical segmentations of

this image.

We make full use of the modular environment of Smil by working with C++ templates, thus

making possible to easily use the implemented methods with different images types (UINT8,

UINT16 or UINT32 for example). We think of and implement the hierarchies as dendrograms, i.e.

binary trees representing the progressive merging of fusions for different levels of the hierarchies.

Such structures are compatible with dynamic programming using pointers in C+ +, and thus

lead to efficient algorithms. We rely on the object-oriented aspect of C++ by creating two

classes: the class DendroNode, which correponds to a given node in a dendrogram representing

a hierarchy, and the class Dendrogram, which essentially consists in a vector of DendroNode all

connected between them through pointers. A comprehensive view of the structure of this code is

provided in figure 3.37.

Once a hierarchy has been created, one can get a segmentation out of it using different

possibilities:

— simply thresholding the highest saliency values,

— marking some nodes as important ones and then computing a partition accordingly, which

is known as marker- based segmentation,

— smartly editing the graph by finding the partition that minimizes an energetic function

(such as for example the Mumford-Shah functional).

All these possibilities have been implemented and tested. More specifically, the first one allows

us to very simply get the different levels produced by a hierarchical segmentation, whether it is
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(a) Class DendroNode.

(b) Class Dendrogram.

Figure 3.37 – Comprehensive view of the internal structure of the main classes of the implemented
hierarchical segmentation module in Smil.
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by specifying a threshold saliency value or more simply by choosing the number of regions we

want to have in the output segmentation.

One can also obtain several equivalent global representations of such a hierarchical segmen-

tation to work with.

— An adjacency sparse matrix in which each non-zero value corresponds to the saliency

attributed to the edge linking two adjacent regions in the hierarchy.

— A full matrix in which all couples of nodes have a valuation corresponding to the subdomi-

nant ultrametric between them, that is to say the highest edge on the path linking them for

this ultrametric.

— A UCM (Ultrametric Contour Map), i.e. an image in which each contour takes as value its

saliency in the hierarchy. Representing a hierarchy by its UCM is an easy way to get an

idea of its effect because thresholding an UCM always provides a set of closed curves, that

is to say a partition. In the thesis, for better visibility, we represent UCM with inverted

contrast.

— A dendrogram.

3.6.3 Examples of implementations

The implementation of the module hereby presented has been made in order to be fast and

robust. While giving all its technical details may be too heavy and useless, we illustrate in this

section the kind of procedures that were set up to solve efficiently technical issues.

These procedures make a heavy use of the dendrogram structure. Let us consider as an

example the problem of efficiently computing the areas of all regions of a hierarchical segmen-

tation. Intuitively, working only on the sequence of nested partitions to compute them would

imply a scan of all pixels in all partitions. Working on the dendrogram structure allows us to

scan the image only once, in order to compute the areas of the leaves, and then propagate the

to all parents as the sum of the areas of children. Of course, the drawback is that algorithms

then become intricate in terms of coding and necessary data structures. For example, computing

neighbors of a certain region, which is a trivial task when scanning the successive partitions of

a hierarchical segmentation, requires tailored data structures and algorithms in a dendrogram.

Formally, let us consider an image with p pixels, simplified to an image with s superpixels such

that m mergings are operated in the hierarchical segmentation process. Then computing areas

on all regions of the successive partitions of the hierarchical segmentation has a cost equal to the

one of scanning all pixels in these partitions, i.e. p× (m+ 1). Using the dendrogram structure,

we only need to scan the image once and then we can propagate the area values, so that the

computational complexity is p+m, which is a major improvement. This is why we made use of

tailored algorithms and data structures to compute the bounding boxes, perimeters, neighbors

and other interesting cues concerning regions using the dendrogram representation.
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Computation of the UCM using the dendrogram structure

In order to compute the UCM associated with a hierarchy, one must retain for each pair of

adjacent nodes the subdominant ultrametric value of the edge linking them for the consider

hierarchy. A naive approach to do so is to work with the segmentations themselves and stack the

contours of the successive segmentations. Instead of that computationally expensive method, we

once again make use of the dendrogram structure describing the hierarchy.

To do so, we have to keep in memory the adjacent regions as we are computing the subdom-

inant ultrametric incrementally. We thus assign to each node of the dendrogram a dictionary

hregions of size the number of nodes, initiliazed for each leaf at 1 for the leaf index (correspond-

ing to the label number of the underlying region of the fine partition) and 0 elsewhere. Then for

internal nodes of the dendrogram, the dictionary is equal to the supremum of the dictionaries

of the left and right children, and provides the information of the underlying regions for any

sub-dendrogram.

We also retain the information regarding the adjacent nodes and the length of the contours

between them. To keep this information, we explore once the labels image of the fine partition

and assign to each leave of the dendrogram a second dictionary hcontours of size the number

of nodes: for each leave i, hicontours(j) = lij the length of the frontier between the regions

corresponding to the nodes i and j of the graph. In the same way as with hregions, we can easily

propagate this information in a bottom-up fashion in the dendrogram, and thus have access to

the information regarding which nodes are connected to one another.

The obtention of both dictionaries are illustrated on an example in figure 3.38.
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(a) Region Adjacency Graph.

(b) Corresponding Dendrogram.

Figure 3.38 – (a) Region Adjacency Graph: in red are represented the MST and the asso-
ciated edges valuations, in green the lengths of the contours between adjacent regions. (b)
Corresponding dendrogram with the dictionaries initialized for the leaves and computed in a
bottom-up fashion for the internal nodes. For the sake of clarity, we represent for each node both
dictionaries hcontours and hregions with a unified representation:
- The valuations correspond to hcontours, i.e. to the aggregated sum of contours values over all
children of the sub-dendrogram associated with the considered internal node.
- The underlined bold numbers correspond to hregions, i.e. to the regions that have already fuse
for the sub-dendrogram associated with the considered internal node.

Now that we are provided with these dictionaries, computing the UCM can be made fast.

The idea is to obtain a sparse adjacency matrix with non-null subdominant ultrametric values

for regions that are connected in the image. To do so we operate as described in algorithm 3.3.
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First, a traversal of the dendrogram leaves allows to determine which labels are adjacent in the

image. Secondly, a traversal of the dendrogram internal nodes leads to the computation of the

sudbominant ultrametric values for these pairs of labels, as illustrated in figure 3.39. Note that

this algorithm is similar to the process described in section 7 of [Cousty et al. (2017)], although

it is obtained with structures allowing us to get rid of the use of the initial graph and to work

only with the dendrogram. However, its time complexity is in O(|V|2), as it does not operate

on an union-find basis that would imply a joint construction of the MST and the hierarchy.

In our framework, we indeed modify the values of the MST edges, and then induce a new

ultrametric/saliency map out of it.

Algorithm 3.3: UCM computation.
Data: A dendrogram for which the dictionaries hcontours and hregions have been

computed, the associated labels image.

Result: The UCM corresponding to this hierarchy.

1 Initialize a list of adjacent nodes LAdj.

while all leaves have not been traversed do

2 For a node i:

if hicontours(j) then

3 LAdj+ = (i, j, 0)
4 end if

5 end while

6 Sort internal nodes of the dendrogram by decreasing valuations.

while all internal nodes have not been traversed do

7 For a node i of valuation λ, and with children the nodes k and l:

if (∃j s.t. hkregions(j) ∧hlregions(j)) then

8 if ∃LAdj(k, l, 0) then

9 LAdj(k, l, 0)← LAdj(k, l,λ)
10 end if

11 end if

12 end while

13 Generate the UCM from LAdj and the labels images.
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Figure 3.39 – Illustration of the computation of the ultrametric values for each pair of adjacent
nodes of the image. The example and structures are the same as in figure 3.38. As the ultrametric
values rise, the regions progressively fuse: on the figure, the bold contours admit as saliency the
ultrametric value for which they disappear.

Fast computation of the contours length for each level of the hierarchy

Furthermore, as we have seen in section 3.3.7, some types of hierarchies need the information

of the contours length between regions in the hierarchy in their construction. To obtain this

information at each level of the dendrogram/hierarchy, we also make use of the dictionaries

hcontours and hneighbors, as described in the algorithm 3.4. An example is also provided in figure
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3.40 for a specific level of the hierarchy presented in figures 3.38.

Algorithm 3.4: Fast contours length computation for all levels of the hierarchy.
Data: A dendrogram for which the dictionaries hcontours and hregions have been

computed.

Result: The length of the contours for each level of the associated hierarchy.

1 Initialize a vector V of size |E| to contain the contours length for each level of the

hierarchy.

while all internal nodes have not been traversed do

2 For the level l:

V (l) =
∑
khlcontours(k)× (1−hlregions(k))

3 end while

Figure 3.40 – Computation of the contours length for the ultrametric value of 6 in the hierarchy
introduced in figure 3.38. A: sub-dendrogram ; B: its associated segmentation. We can see that
the length of the only remaining contour in the segmentation is indeed given by the formula of
the algorithm 3.4, as 1 + 6 + 2 + 1 = 11 = (0 + 10 + 1)× 1 + (12 + 15 + 11 + 22)× 0.

Computation time

In table 3.2 are presented the computation times of the different steps of the hierarchical

segmentation framework that we introduce in this chapter. The tests have been conducted on a

laptop equipped with an Intel i5-4210M CPU (2.60GHz) and 16 GO of RAM. Note that the graph

creation has not been optimized in the context of this work, and that it is part of a Smil version

to be published.
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Table 3.2 – Table presenting the computation time of each step of the hierarchical segmentation
framework presented in this thesis for a 600×600 color image, and a fine segmentation containing
approximately 1000 regions.

Algorithm Step Time (in s)
Fine partition (waterpixels) 0.863
Graph creation 1.360
MST from graph 5.379× 10−3

Dendrogram from MST 0.711
Hierarchy computation from original dendrogram 4.044× 10−2

UCM computation from dendrogram and labels image 0.805

3.6.4 A User-Friendly Environment

The Smil library, although it is written in C++ for the sake of efficiency, can be wrapped into

Python for the sake of simplicity of use. Indeed, Python is a high-level language, which makes

it easier to work with. Furthermore, it allows the Smil library to be used within an extremely

rich environment of open-sources libraries focused on data analysis and machine learning (e.g.

scikit-learn), deep learning (e.g. keras), image processing (e.g. numpy) or computer vision

(e.g. OpenCV), thus facilitating the test of additional ideas and algorithms. Finally, it enables

us to provide a user-friendly experience through the creation of IPython notebooks [Pérez et al.

(2007)] documenting the method in form of an executable algorithm which may be run on any

image and which presents the results of the processing.

Combining interactive programming with markdown documentation and portability, IPython

notebooks are indeed a powerful scientific-computing tool. Working within a notebook gives

one the ability to experiment as in a terminal-based interpreter and to save the work and results

when over.

By working with these tools, the user simply has to provide new images or markers needed

by the segmentation algorithms. He can then easily visualize the outputs of different hierarchical

segmentation methods, through their UCM or by visualizing different levels of those hierar-

chies. Users can also overlay the segmentation over the image or draw the underlying graphs.

Combinations of all these visualization methods allow for an easy and fast interpretation of

the segmentations results. Thus, complex morphological processes can be explored easily and

interactively.

To conclude, these methods have been made available to the Smil users community. They

have constituted a great programming effort to lead to a powerful, easy to use and versatile tool.

An example of the environment in a simple case is presented in appendix 3.
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Chapter 4

Combinations of Hierarchies

Résumé

Nous avons introduit dans le chapitre précédent des méthodes pour obtenir de façon contrôlée

des segmentations hiérarchiques obéissant chacune à un critère particulier. Toutefois, dans

de nombreuses applications de traitement d’image, les images que l’on cherche à segmenter

ou caractériser se distinguent par des traits discriminants différents. C’est pourquoi, dans ce

chapitre, nous proposons des méthodes pour obtenir des hiérarchies dérivées qui capturent des

caractéristiques complexes de l’image.

Nous distinguons deux modes principaux pour enrichir les hiérarchies. L’enrichissement

séquentiel associe à une hiérarchie de départ une hiérarchie dérivée en remplaçant les valuations

initiales de l’arbre de poids minimum par de nouvelles valuations calculées dans l’image.

La combinaison parallèle se fait simplement en définissant une nouvelle dissimilarité sur les

arêtes du graphe, comme fonction des distances ultramétriques des hiérarchies à combiner. Cette

nouvelle dissimilarité n’est en général pas une ultramétrique et il faut en dériver l’ultramétrique

sous dominante associée pour obtenir la hiérarchie finale, ce qui a un certain coût. Ce coût de

calcul est fortement réduit dans le cas où les hiérarchies à combiner ont en commun le même

arbre de poids minimum. La hiérarchie résultant de la combinaison garde alors le même arbre de

poids minimum, à partir duquel on peut calculer aisément les poids de toutes les autres arêtes.

Cependant, le nombre des hiérarchies explose avec toutes ces possibilités de les chaîner ou

de les composer. Or chaque hiérarchie munie de sa distance ultramétrique devient un espace

métrique et on peut géométriser l’espace des hiérarchies grâce à la distance de Gromov-Hausdorff

qui définit une distance entre espaces métriques. Cette distance est difficile à calculer dans le

cas général mais est très aisée à calculer entre deux hiérarchies qui ont en commun la même

partition fine. En combinant cette distance avec des outils de réduction de dimensionnalité

et de visualisation des données, nous obtenons ainsi une méthodologie pour étudier l’espace

combinatoire des hiérarchies.
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Abstract

The previous chapter has introduced various methods to construct hierarchies, each of them

stressing a particular feature of the image. However, in many cases, the images to segment or

analyze are characterized not by one but by the combination of several features. For this reason,

we propose in this chapter methods for obtaining derived hierarchies, triggered by more complex

features of the image to analyze.

We distinguish two modes for enriching hierarchies. The sequential mode associates to a

starting hierarchy a derived hierarchy by replacing the weights on the MST by new weights,

evaluated by taking into account new image features. The parallel combination of hierarchies

consists in defining new dissimilarity weights on the edges of the graph, as a function of the

ultrametric distances of the hierarchies to combine. This new dissimilarity is in general not an

ultrametric and one has to derive the associated subdominant ultrametric, which is a relatively

costly operation. This cost is markedly reduced in the case where the hierarchies to be combined

share a common minimum spanning tree. The derived hierarchy then keeps this minimum

spanning tree. The new weights have then simply to be computed on the edges of the MST and

then spread out to all other edges of the graph.

However with these methods for chaining or composing hierarchies their number literally

explodes. As any hierarchy provided with its ultrametric distance becomes a metric space, it is

possible to study the distance between them using the Gromov Hausdorff distance. This distance,

difficult to compute in the general case, is easily computed in the case where the hierarchies have

in common the same finest partition. Applying dimensionality reduction techniques with data

visualization methods to the space of hierarchies provides us with a powerful tool for exploring

and analyzing this space.

4.1 Introduction

In the previous chapter, we introduced several ways to generate hierarchies, and now have at

our disposal a versatile framework to characterize images through different hierarchies. We can

choose the type of hierarchy (trivial, surface-based or volume-based SWS, waterfall etc.), decide

whether we wish to return to the image to measure additional properties during construction,

set a number of markers in certain cases. Thus, the number of hierarchies we can generate

is substantial. The question of how to use them for particular images characterizations now

arises. Indeed, in a lot of real-life applications, the images we deal with are structured and share

similar characteristics. We can then use these hierarchical segmentations to characterize them in

a controlled way, whether it is for example for segmentation purposes (by finding the hierarchy

that facilitates it), image classification or anomaly detection.

When dealing with images, they are often hard to analyze, filter or segment, and their

content can only be characterized by the conjunction of multiple criteria. This is however a major

difficulty in many segmentation methods, as taking advantage of several distinct characteristics
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which are not necessarily homogeneous is not straighforward. Several approaches exist to do so:

— It is rare that a simple thresholding on the output of a watershed transform applied to

a gradient image leads to a proper extraction of the objects of interest. This is why it is

often necessary to inject prior knowledge in the form of markers to direct the segmentation

process.

— One can also decompose images as hierarchies of segmentations, such as the min-tree or

max-tree [Salembier, Oliveras, et al. (1998)], the tree of shapes [Monasse et al. (2000);

Ballester et al. (2003)] or MSF hierarchies [Meyer (1994a)], and prune the tree structures

of the hierarchies. These hierarchies are attribute-based, and such attributes, while leading

to interesting results, are not necessarily increasing: this makes them difficult to handle

and may lead to hierarchies lacking stability properties related to morphological filtering,

although some solutions have been proposed to force their increasingness.

— Energetic approaches consist in the designing of functionals that are weighted sums of

heterogeneous terms that counterbalanced each others. A good example is the Mumford-

Shah functional [Mumford et al. (1989)], which integrates measures of photometric and

boundary lengths. The goal is then to optimize such functionals to find the best trade-off

between their different terms. These methods however necessitate a lot of parameters-

tuning.

— One can also search in a discrete or continuous space the graph-cut optimizing the flow

[Stawiaski (2011)].

— Combine criteria to build tailored energetic hierarchies [Kiran et al. (2014a)].

In this chapter, we investigate how to build a multi-parameter approach of images by

combining several hierarchies. One can see each hierarchy as a filter of pure color. To obtain

the best contrast between objects of an image, one has to choose the best color filter, so that the

segmentation problem is reduced to a thresholding problem. For example, in an ophthalmics

image of the back of the eye, the best way to separate the retina from the red vessels is to apply

a green filter: this isolates vessels and makes their subtraction from the image easier. In a similar

way, morphological hierarchies can be seen as pure geometrical filters that can be combined to

obtain derived hierarchies that can discriminate complex structures. We will expose two ways to

do so: one sequential, corresponding to chainings of hierarchies, and one parallel, corresponding

to functional combinations of hierarchies.

Since the number of possible hierarchies is even bigger once these combinations have been

introduced, we expose tools to structure and study the hierarchical space. We take advantage of

the fact that several hierarchies constructed upon the same set of regions of a fine partition can

each be seen as distinct metric spaces. The Gromov-Hausdorff distance then allows to measure

the distance between these metric spaces. For a given set of hierarchies, we can thus generate

a distance map between them. This opens new ways to suppress redundancies and create a

restrained descriptive family of hierarchies. It also allows to study the properties of hierarchical

combinations or visualize the effects of several different hierarchies.
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We begin by presenting how we can structure the hierarchical space, and introduce a new

methodology to analyze and visualize the relative descriptive power of different hierarchies, that

leverages dimensionality reduction algorithms as well as the Gromov-Hausdorff distance. Then

we present different ways to combine hierarchies and apply this methodology to study their

properties.

4.2 Structuring the Hierarchical Space

Several levels of image representation, illustrated in figure 4.1, have until now been intro-

duced in the context of this work:

1. The finer level is the level of the image itself.

2. Computing a fine partition of the image already constitutes a rougher model of it, that we

can see as a region-based representation.

3. A structuring of the regions of the fine partition as a hierarchical segmentation. Each

hierarchy is fully characterized by the set of points that it regroups as long as by the

ultrametric it defines between these points.

Figure 4.1 – The different image representations considered in this work.

Since we can generate for the same image several different hierarchies, a new level of

representation naturally emerges:
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4. One can indeed wonder whether we can structure the space of hierarchies itself into a

metric space. Doing so would open a path to study the properties of different hierarchical

clustering methods, to evaluate to which extent they differ and are complementary.

In order to operate this structuring, one need to define a distance between these ultrametric

spaces. The Gromov-Hausdorff distance [Gromov et al. (1981); Gromov (2007)] defined between

metric spaces is a possible distance. It has been introduced in section 2.4.3. However, it is

generally difficult to compute between two metric spaces defined over different sets, as one

must then match data points before any distance computation. This computationally heavy

operation leads some authors to provide heuristics to approximate the Gromov-Hausdorff in

specific configurations [Mémoli (2004); Agarwal et al. (2015)].

In the context of this thesis, instead of attempting to compute distances between hierar-

chies from different images, we generate several hierarchies over the same image and com-

pute GH-distances between them. Indeed, in this case, these ultrametric spaces are defined

over the same set of points and the GH-distance computation is much easier, as seen in sec-

tion 2.4.3. More formally, given an image I, one can compute several hierarchies of this

image ((H1,λ1), . . . , (HN ,λN )), and also compute for any (i, j) ∈ {1, . . . , N}2 the distance

dGH((Hi,λi), (Hj ,λj)). One thus define a metric space over hierarchies, that constitutes a way

to define new discriminative image representations, as we shall see in chapter 6.

It also allows for a quantitative study of the different hierarchies using a variety of tools.

Notably, once we have defined a metric space on the space hierarchies through the computation

of inter-hierarchies distances, the interpretation of these distances is not straightforward. This

is the reason why, in the next section, we introduce dimensionality reduction algorithms for

a better visualization and understanding of hierarchical spaces. Thus we are able to see what

hierarchies are similar, which ones are complementary, and so on. Provided with these tools, we

then introduce different ways to combine hierarchies and illustrate how these analysis tools can

help us understand their effects and properties.

To sum up, starting from a set of unordered regions, we obtain a set of structured and rich

representations of this set in a low-dimensional space. In the intermediary step of this process,

each hierarchy has been built by introducing a lot of prior information on the type of regions

that one wants to pop up in it.

4.3 Dimensionality Reduction Algorithms for Hierarchical Space

Visualization

When provided with data embedded into a high-dimensional space, one may want to be able

to project them in a space of lower dimension. This is the purpose of dimensionality reduction

techniques, which aim at preserving as much as possible the structure of the high-dimensional

data in a low-dimensional map. We use such techniques to visualize the relative effects of

hierarchical segmentations methods.
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Many approaches exist to do dimensionality reduction. Traditional ones include Principal

Component Analysis (PCA) [Hotelling (1933)] or classical Multidimensional Scaling (MDS) [Torg-

erson (1952)]. These are linear techniques which mainly aim at keeping the low-dimensional

representations of dissimilar datapoints far from one another.

However, when dealing with high-dimensional data, it is usually more important to preserve

the low-dimensional representations of very similar data points close together. Indeed, the curse

of dimensionality [Bellman (1957)] implies, among others, that data points in high-dimensional

spaces are usually far from one another. Non-linear techniques thus put emphasis on keeping

the similar data points close to one another in the low-dimensional space. A review of most

of them can be found in [Lee et al. (2007)]. In this section, we restrain ourselves to the use

of multidimensional scaling [Torgerson (1952); Cox et al. (2008)] and t-distributed stochastic

neighbor embedding (t-SNE) [Maaten et al. (2008)].

In the context of this work, we can generate for each image a set of hierarchies, that can be

seen as a feature representation space of it. We are then interested in a dimensionality reduction

of this space to have a better understanding of these features.

We begin by presenting a short description of these algorithms. Then, we explain how these

techniques allows the visualization of relative contributions of hierarchies generated upon the

same set of points.

4.3.1 Multidimensional Scaling (MDS)

Multidimensional Scaling (MDS) is a low-dimension visualization technique of the level

of similarity of individual cases in a dataset. More precisely, it is a form of dimensionality

reduction that takes as input a distance matrix representing distances between objects in a

space of dimension M , potentially big, and places each object in a space of inferior dimension

m << M(typically 2 or 3) while trying to preserve distances between objects. Choosing m = 2
allows for a visualization as a scatterplot of the distances between objects.

Classical MDS [Torgerson (1952)]

It is also known as Principal Coordinate Analysis (PCoA). It takes as input a matrix of

dissimilarities between pairs of items, and outputs a coordinate matrix whose configuration

minimizes a loss function called strain.

Let us write X = (x1, ..., xN ) the vector of points in the high-dimensional space, and

D = [dij ](i,j)∈{1,...,N}2 = [d(xi, xj)](i,j)∈{1,...,N}2 the dissimilarity matrix associated with the

Euclidean distance d : RM × RM → R+ defined between them.

In the classical MDS, the strain loss function is given by:

StrainD(x1, ..., xN ) =
(∑

i,j(bi,j − 〈 xi, xj〉)2∑
i,j b

2
ij

) 1
2

, (4.1)

with bi,j are the terms of the matrix B defined hereafter. The classical MDS algorithm uses the

fact that the coordinate matrix can be derived by eigenvalue decomposition from B = XXT .
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Accordingly, the matrix B can be computed from the proximity matrix D by using double

centering transformation, as follows:

1. Set up the square proximity matrix D = [d2
ij ].

2. Double centering: B = −1
2JDJ , with J the centering matrix J = I − 1

N 11t.

3. Determine the m largest eigenvalues λ1, ..., λm and corresponding eigenvectors e1, ..., em

of B (where m is the number of dimensions desired for the output).

4. Projection as X = EmΛ
1
2
m, where Em is the matrix of m eigenvectors and Λm is the diagonal

matrix of the m largest eigenvalues of B.

Classical MDS supposes Euclidean distances, and needs to be generalized to use other types

of distances.

Metric MDS [Cox et al. (2008)]

The metric MDS generalizes the classical MDS application to a variety of loss functions and

input matrices of known distances.

For a (low) dimension m and a monotone function f , the metric MDS seeks to find an optimal

configuration X̃ ⊂ Rm such that f(dij) ≈ d̂ij = ||xi − xj ||2 is as close as possible. This function

f can be taken to be a parametric monotonic function (i.e. f(dij) = α+ βdij).

The useful loss function to optimize is then called stress, and the optimization process referred

to as stress majorization. This stress function is:

StressD(x1, ..., xN ) =
(∑

i 6=j=1,...,N (f(dij)− ||xi − xj ||)2∑
i,j d

2
ij

) 1
2

(4.2)

The usual metric MDS corresponds to the special case where f(dij) = dij , so that the stress

function to optimize becomes:

StressD(x1, ..., xN ) =
(∑

i 6=j=1,...,N (dij − ||xi − xj ||)2∑
i,j d

2
ij

) 1
2

(4.3)

Note that the usual metric MDS optimization solution in equation (4.3) differs from the

classical MDS optimization solution in equation (4.1).

4.3.2 t-Distributed Stochastic Neighbor Embedding (t-SNE)

The t-Distributed Stochastic Neighbor Embedding (t-SNE) is another non-linear dimensional-

ity reduction technique introduced in [Maaten et al. (2008)], and is a variation of the Stochastic

Neighbor Embedding (SNE) [Hinton et al. (2003)].

The t-SNE algorithm can be decomposed in two main steps. Given a set ofN high-dimensional

objects, it begins by building a probability distribution between any two high-dimensional objects,

so that similar objects have a high probability of being picked. For two objects xi and xj , it

defines the following probabilities using a Gaussian density form:
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 pj|i = exp(−||xi−xj ||2/2σ2
i )∑

k 6=i exp(−||xi−xk||2/2σ2
i )

pij = pj|i+pi|j
2N

(4.4)

Additionally, the parameters σi are set using a bisection method so that the perplexities of

all the conditional distributions are equal, the perplexity of a probability distribution being a

measurement of how well it predicts the sample.

In the same way, the t-SNE defines a similar probability distribution over any two points

(yi, yj) in the low-dimensional map, this time using a Student-t distribution:

qij = (1 + ||yi − yj ||2)−1∑
k 6=i(1 + ||yi − yk||2)−1 (4.5)

The goal is then to minimize, using gradient descent, the (non-symmetric) Kullback-Leibler

divergence between the two distributions with respect to the locations of the points in the

low-dimensional map (yi)i∈{1,...,N}.

KL(P ||Q) =
∑
i 6=j

pij log pij
qij

(4.6)

It ends up projecting high-dimensional data in a low-dimensional space while retaining both

its local and global structure.

In the next section, we see how to use these two methods to visualize and compare the

relative descriptive powers of hierarchies.

4.3.3 Using dimensionality reductions techniques to visualize the relative

descriptive power of each hierarchy

We would like to visualize the relative contributions of different hierarchical clustering

methods constructed upon the same points, i.e. the same regions of a fine partition. We have

seen in section 2.4.3 that in such a case, computing Gromov-Hausdorff distances between

hierarchies is straightforward. This appears interesting as computing the distance between two

hierarchies can give us an idea of their relative contributions, provided that we normalize their

values first, as described in section 2.4.4.

Let us consider a set of indexed hierarchies H = {(H1,λ1), (H2,λ2), . . . , (H|H|,λ|H|)}.
Whether it is to apply MDS or t-SNE, we start from a symmetrical matrix D of size |H| × |H|
filled with Gromov-Hausdorff distances between pairs of hierarchies:

D = (dij)(i,j)∈{1,...,|H|}2 , s.t. ∀(i, j) ∈ {1, . . . , |H|}2, dij = dGH(Hi,Hj). (4.7)

MDS and t-SNE can then be used for different purposes. If we have computed the inter-

hierarchies matrices for a given image, using MDS allows us to visualize the distances between

hierarchies for this image. This way, we can study their interrelations for this specific image,

determine their complementarity or redundancy, and more generally define patterns between
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them. Since we are not using a Euclidean distance but a Gromov-Hausdorff one, we make use of

the usual metric MDS and optimize the stress function given in equation 4.3 to project distances

between hierarchies from a space of dimension |H| × |H| into a space of dimension 2 or 3.

Given a reference hierarchy (for example the trivial hierarchy), this gives us an idea of how

the hierarchies distance themselves from one another by looking at how they place themselves

relatively to the reference hierarchy on the resulting figure. This way, we can estimate the

respective contributions of each hierarchical construction scheme.

In a complementary fashion, one may compute for several images the same hierarchies and

corresponding distances matrices, and characterize images this way, which will be the topic of

chapter 6. We then make use of t-SNE to project such images representations from a space of

dimension |H| × |H| to a space of dimension 2 or 3. This way, we can estimate whether the

departure hierarchies set was discriminative enough to separate different types of images.

In the next section, we present different ways to combine hierarchies and make use of the

techniques we introduced to study some of their properties.

4.4 Sequential combinations of hierarchies through chaining

4.4.1 Definition

In chapter 3, we have introduced many morphological hierarchical segmentation techniques

that can be obtained within a graph-based framework. We briefly remind the reader of the

process we follow to generate such hierarchies:

1. Get a fine partition FS(I) of the image I.

2. Construct a region adjacency graph G, with the regions of FS(I) being the nodes of the

graph, and adjacent regions being connected and valued according to an initial dissimilarity

(for example the median value of the gradient along the contour).

3. Compute a minimum spanning treeMST of G, associated with a dendrogram structure

representing the associated single-linkage hierarchical clustering.

4. Using this dendrogram structure, we efficiently compute new valuations for the MST’s

edges, which leads to a new associated dendrogram and thus to a new hierarchy.

We now draw the reader’s attention to the fact that departing from a tree which valuations

are those of the initial graph, one obtains a tree with identical structure but different edge

valuations. To go further, this new tree can then be used as a departure point for a similar

construction but based upon different criteria and parameters. More specifically, at the end of

step 3, we have obtained a MST with valuations η0. After step 4, we obtain a new MST with the

same structure but different valuations η1. This process can be iterated as much as desired, so

that it takes in entry a MST with valuations ηk and outputs a MST with the same structure and

with valuations ηk+1. We call this process chaining or composition of hierarchies, and denote

H2 ◦ H1 a chaining of a hierarchy H1 followed by a hierarchy H2, and H(n) = H ◦ . . . ◦ H︸ ︷︷ ︸
n times

. It can
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4. COMBINATIONS OF HIERARCHIES

be seen as a form of sequential combination, as in such a process, each hierarchy is built starting

from the preceding one. Note that one can iterate the same hierarchy several times, but also

chain different hierarchies. This hierarchical chaining process is depicted in figure 4.2.

Figure 4.2 – Process of hierarchical chaining.

We would like to study the properties of such chainings, taking as hierarchies the morpholog-

ical hierarchies we use. Several questions arise.

— Do hierarchies commute when we chain them, i.e. does the order of chaining matters?

More formally, for two hierarchies ((H1,λ1), (H2,λ2)), do we have H1 ◦ H2 = H2 ◦ H1?

— Does a series of hierarchical chainings possibly converge? More formally, for a given

hierarchy H and a distance d between hierarchies, do we have limn→+∞ d(H(n),H(n+1)) =
0?

4.4.2 The need for a normalization

When chaining hierarchies, two reasons account for the need to normalize the ultrametric

values at each step in the way that was described in section 2.4.4, i.e. to normalize them either

with respect to the maximal ultrametric value, or with respect to the number of regions that are

in the resulting segmentation for each level of the hierarchy.

1. The first reason is actually valid for all kind of hierarchical combinations: hierarchical

clusterings may be of very different natures. Indeed, their ultrametric values can represent

different things, as for example the surface-based (resp. volume-based) extinction hierarchy

ultrametric values are surfaces (resp. volumes), and the waterfall hierarchy ultrametric

values represent stacking orders. Furthermore, hierarchies can have different scales, as

typically SWS hierarchies have their probabilistic values in the range [0, 1], whereas other

types of hierarchies do not necessarily have ultrametric values in a fixed range. This is why,
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4.4. Sequential combinations of hierarchies through chaining

in order to properly combine hierarchies, we normalize their ultrametric values. This has

the effect of aligning them.

2. Furthermore, in the specific case of the chaining of hierarchies, another reason accounts

for this normalization need. In the specific case of SWS hierarchies, the distribution of

ultrametric values in the [0, 1] range depends on number of spread markers: its choice does

not impact the merging orders, but may lead to ultrametric values being poorly spread

along the [0, 1] range. When chaining hierarchies taking into account the ultrametric values

of the previous hierarchies such as the volume-based SWS hierarchy, this effect can be

amplified and lead to ultrametric values being progressively crushed towards extreme

values (0 and 1), until machine precision is no more sufficient to separate them. In such

cases, it becomes very difficult to compare hierarchies or measure distances between them.

Carefully select a number of spread markers could allow to avoid this phenomenon, but

this choice is not straightforward. A simpler solution is then to normalize ultrametric

values at each step. The effect of this solution on the histogram of ultrametric values is

illustrated in figure 4.3.

(a) (b) (c)

(d) (e) (f)

Figure 4.3 – Illustration of the effect of a normalization at each step of the hierarchical chaining
process. For a volume-based SWS hierarchy, the computation at a step t + 1 depends on the
ultrametric values at the step t. (a)(b)(c): Thus, when chaining such hierarchies, ultrametric
values tend to be progressively crushed towards extreme values, as one can observe it on the
values histograms of chainings of hierarchies H(1)

vol−SWS , H(5)
vol−SWS and H(10)

vol−SWS . (d)(e)(f):
However, when normalizing ultrametric values at each step with respect to the number of levels
in the hierarchies (see section 2.4.4), we avoid this undesirable phenomenon.
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4.5 Hierarchical chaining analysis

In this section, we want to study the properties of such chainings, and notably determine

whether they: (i) commute, i.e. do we have H1 ◦ H2 = H2 ◦ H1?, (ii) converge, i.e. are there

hierarchies H, for which limn→+∞ d(H(n),H(n+1)) = 0?. Since we have now at our disposal a

distance between hierarchies, we can address these questions.

For better visualization, we make use of multidimensional scaling (MDS) to project the metric

space of hierarchies equipped with the Gromov-Hausdorff distance into a subspace of dimension

2, as explained in section 4.3.3. We can then visualize the effect of the chaining of several type

of hierarchies on the same plot, in order to have an idea of the effect of each one. For illustration

purposes, we rely on the example image in figure 4.4, but results presented were consistent on

many examples.

(a) Image (b) Fine partition using water-
pixels

Figure 4.4 – The image and fine partition we build hierarchies upon as example.

4.5.1 Commutation

The first question that arises is to know whether some hierarchical clusterings commute.

In order to evaluate such a property, we generate the associated hierarchies for a given image,

compute the distances between them and use MDS to visualize the output. It appears that none

of the hierarchical schemes that we have implemented commute. We illustrate this on several

examples, that can be found in figure 4.5.

On figure 4.5, we can notice how the trivial hierarchy is distant from all others. It may be

due to the fact that it is the only hierarchy which ultrametric values are based only on local

cues, whereas others make use of a more regional information in their computation. Another

interesting aspect is the impact of the waterfall hierarchy in chainings: each chaining containing

a waterfall hierarchy step is very distant from others that do not. It may be due to the fact the

waterfall hierarchy inherently presents a nested structure with very few levels. So that once

the number of significant levels has been drastically decreased in an initial waterfall hierarchy,

the subsequent hierarchy cannot retrieve the fineness of structure which has been lost. On the
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4.5. Hierarchical chaining analysis

Figure 4.5 – Visualization using MDS of the distances between different combinations of hierar-
chies. We note that these hierarchies do not commute.

contrary, surface-based and volume-based hierarchies are close, probably due to the fact that

they are based on similar increasing attributes.

4.5.2 Convergence

We also want to know whether convergence properties are observable when chaining hier-

archical clusterings. Do some of them converge? If yes, do they all do? Does this convergence

follow a different trajectory depending on the type of hierarchy considered? Are the different

fixed points the same or not?

For example, starting from the image and fine segmentation presented in figure 4.4, we

compute the GH-distance between successive chainings of surface-based SWS hierarchies: we

observe that this distance is decreasing until reaching zero, as illustrated in figure 4.6. This

property has been observed for most hierarchies when they are being chained.

For better visualization, we can also generate a MDS visualization by projecting the Gromov-

Hausdorff distances between pairs of hierarchies in a space of dimension 2, as can be seen

in figure 4.8. Looking at such results confirm that almost all hierarchical chainings seem to

converge toward fixed points in the hierarchical space, i.e. to given hierarchical organizations of

all the regions of the fine partition. Furthermore, these fixed points differ depending on the type

of hierarchy that is being chained. Examples of visualizations of this phenomenon are provided

in figures 4.9 and 4.10. We also illustrate on an example the type of changes in the regions that

are being highlighted until convergence of the surface-based SWS hierarchy in figure 4.7 on the

same image.
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4. COMBINATIONS OF HIERARCHIES

Figure 4.6 – Convergence of chainings of surface-based SWS hierarchies.

A notable exception to this empirical verification of the convergence of hierarchies concerns

the chaining of binary-scale climbing hierarchies (see section 3.3.7), which erratic behavior is

illustrated in figure 4.11. An intuition to understand its behavior might be that this hierarchy

is built depending on a non-homogeneous sum of two terms: one that is increasing with the

number of regions (the “regularization” term, sum of contours lengths), and the other that is

decreasing with it (the “goodness-of-fit” term, sum of squared differences between the image

and the segmentation). On the contrary to others hierarchies considered, modifying the regions

proposals has in this case opposite effects on each term, which constitutes a nonrobustness and

instability factor.
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4.5. Hierarchical chaining analysis

(a) HSurf : 10 re-
gions

(b) HSurf : 30 re-
gions

(c) HSurf : 50 re-
gions

(d) |UCM(Htrivial) −
UCM(HSurf )|

(e) H2
Surf : 10 re-

gions
(f) H(2)

Surf : 30 re-
gions

(g) H(2)
Surf : 50 re-

gions
(h) |UCM(HSurf ) −
UCM(H(2)

Surf )|

(i) H(3)
Surf : 10 re-

gions
(j) H(3)

Surf : 30 re-
gions

(k) H(3)
Surf : 50 re-

gions
(l) |UCM(H(2)

Surf ) −
UCM(H(3)

Surf )|

(m) H(4)
Surf : 10 re-

gions
(n) H(4)

Surf : 30 re-
gions

(o) H(4)
Surf : 50 re-

gions
(p) |UCM(H(3)

Surf ) −
UCM(H(4)

Surf )|

Figure 4.7 – Visualization of the successive highlighted regions when chaining surface-based
SWS hierarchies. We also plot the absolute difference between successive saliency maps: they
reveal a progressive decreasing of the number of contours that are changing, as well as of the
magnitude of this change, from one hierarchy to the next one.
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Figure 4.8 – Visualization using MDS of the distances between the different chainings of hierar-
chical schemes. The reference hierarchy (number 0, in green) used for this MDS visualization is
the trivial one. Each dot corresponds to a hierarchy, its color indicate the type of hierarchy that
is chained and the associated number the number of iterations of this chaining operation.

(a) MDS for chaining of surface-based SWS. (b) Inter-
hierarchies
similarities matrix

(c) Null elements
of this matrix in
yellow

Figure 4.9 – Convergence in the sense of the Gromov-Hausdorff distance when chaining surface-
based SWS hierarchies. There is no difference between the cases with or without normalization
at each step, since the surface-based SWS does not take into account this information in its
computation. The similarities matrix D is presented with null values in yellow. The matrix value
in (i, j) corresponds to dij = dGH(H(i)

Surf−SWS ,H
(j)
Surf−SWS). We can see that at some point the

chaining do not modify the output and thus that there is a convergence when operating such a
chaining.
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(a) MDS for chaining of volume-based SWS with normalization
of saliences at each step.

(b) Inter-
hierarchies
similarities matrix

(c) Null elements
of this matrix in
yellow

Figure 4.10 – Convergence in the sense of the Gromov-Hausdorff distance when chaining volume-
based SWS hierarchies. On the contrary to the surface-based SWS chaining, here the results
differ whether we renormalize at each step the result or not. This stems from the fact that the
volume is a composite measure equal to the area multiplied by the contrast, and is thus sensitive
to the normalization of values. The similarities matrix D is presented with null values in yellow.
The matrix value in (i, j) corresponds to dij = dGH(H(i)

V ol−SWS ,H
(j)
V ol−SWS). We can see that at

some point the chaining do not modify the output and thus that there is a convergence when
operating such a chaining.

(a) (b)

Figure 4.11 – (a) Visualization using MDS of the GH distances between chainings of BSC
hierarchies. This is the only type of hierarchy (for those implemented), for which no convergence
is observed. (b) Corresponding distances matrix D, with lower values in blue. The matrix value
in (i, j) corresponds to dij = dGH(H(i)

BSC ,H
(j)
BSC).

Joint convergence

An interesting empirical result concerns the comparison of the SWS hierarchies and the

extinction hierarchies. When the number of drawn markers in the SWS model tends towards

infinity, we observe that:

— The surface-based SWS hierarchy and its iterations tend toward the surface-based extinction

hierarchy and its iterations.
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— The volume-based SWS hierarchy and its iterations tend toward the surface-based extinc-

tion hierarchy and its iterations.

These results are illustrated in figures 4.12 and 4.13.

(a)

(b)

Figure 4.12 – (a) When the number of markers increases, the surface-based SWS hierarchy
and its chainings tend towards the surface-based extinction hierarchy and its chainings. (b) A
similar effect is observable between the volume-based SWS hierarchy and its chainings, and the
volume-based extinction and chainings.

Figure 4.13 – Plot of the evolution of the GH-distance between chainings of the surface-based
SWS hierarchy and chainings of the surface-based extinction hierarchy, depending on the number
of markers drawn in the SWS model.
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Evolution of regions

To better grasp the reasons for this convergence phenomenon, we investigate the precise

evolution of regions when doing such chainings. In figure 4.14 we consider, for consecutive

hierarchical chainings of surface-based SWS hierarchies, the contour for which the saliency

changes the most, and highlight the adjacent regions (in rose and blue) on the corresponding

segmentations. A consistent result that we obtain is that the more advanced the chaining, the

higher the saliency of the contour for which the saliency change is the bigger. This seems

to suggest that the convergence of hierarchical chainings proceeds in a bottom-up way: the

modifications in the hierarchical organization of images regions from one step to the next one

concern higher and higher levels of the hierarchy, until a stable organization has been reached.

In our specific case, a convergence in the Gromov-Hausdorff sense means that the maximum

of the difference between two consecutive chainings saliency maps tends to 0. In order to better

understand what it implies, we represent in figure 4.14:

— On the left, the the image representing the difference of saliency maps between successive

chainings. The lighter the contour, the more important the difference. We notice that the

more chainings are made, the less contours are different.

— Furthermore, we can observe each time the precise contour for which this difference is

maximal (and which thus defines the GH-distance). We then can represent the hierarchical

levels corresponding to the appearance of this contour. We notice that these contours

concern low levels of the hierarchy in the beginning, and higher ones when the convergence

is almost reached. This results suggests that the progressive convergence of hierarchical

chainings operates in a bottom-up fashion: the progressive stabilization of the hierarchical

structure begins within its low levels, before extending to higher ones.

Evolution of the information support

The observation made in the previous section can certainly be linked with a study of the

evolution of the information support when chaining hierarchies. We call information support

(IS) of an image contour the part of the image that has been explored to value this contour.

More formally, let us consider a contour corresponding to an epq of the RAG, with weight λ in a

hierarchy H: this contour has two adjacent regions that are ultrametric balls B(p, λ) and B(q, λ)
(these adjacent regions do not correspond to the adjacent regions in the fine mosaic). Thus its

information support is equal to:

IS(epq,H) = B(p, λ) ∪B(q, λ) (4.8)

For the first hierarchy, the information support of each contour is limited to the adjacent regions

of this contour. But when we chain hierarchies, it progressively gets larger, since at each step
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(a) Image (b) Waterpixels image (c) Mosaic image

(d) |UCM(H(2)
Surf ) −

UCM(H(3)
Surf )|

(e)

(f) |UCM(H(5)
Surf ) −

UCM(H(6)
Surf )|

(g)

(h) |UCM(H(7)
Surf ) −

UCM(H(8)
Surf )|

(i)

(j) |UCM(H(8)
Surf ) −

UCM(H(9)
Surf )|

(k)

Figure 4.14 – Hierarchical chaining of surface-based SWS hierarchies.
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there is a reorganization of the hierarchy, and that by definition the IS is increasing:

IS(epq, (H, . . . ,H(n))) =
⋃

k∈{1,...,n}
IS(epq,H(k)) (4.9)

=
⋃

k∈{1,...,n}
(Bk(p, λk) ∪Bk(q, λk)) (4.10)

Indeed, at any point a hierarchy is the result of previous chainings, and studying the evolution

of this information support for a contour is a way to measure how much information of the

image has been explored to value a contour. In figure 4.15, we illustrate it on an example for a

given contour. The fact that the mean of the information support over all contours is large also

accounts for the robustness of the hierarchies to the chaining effect described in section 2.2.5.

(a) Image (b) Superpixels (c) Mosaic image

(d) HSurf → H(2)
Surf (e) H(2)

Surf → H
(3)
Surf (f) H(3)

Surf → H
(4)
Surf

Figure 4.15 – Hierarchical chaining of surface-based SWS hierarchies. We represent the evolution
of the information support for a given contour. It is increasing until the position of this contour
no longer changes in the hierarchy.

However, one must note that the information support is low for most contours when using su-

perpixels. This is due to the fact that a lot of superpixels delineate contours within homogeneous

region. As a consequence, such contours disappear quickly in any hierarchy, as they do not have

any justification in the image but are solely due to the superpixels construction process. This is

why their information support is consistently low when chaining hierarchies. On the other hand,

contours that present an interest regarding the attribute highlighted by the hierarchy see their

information support grow. This is illustrated in figure 4.16. Experimentally, a stabilization of

the IS of a given contour is usually obtained quite fast when chaining hierarchies, in less than 3

chainings.
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(a) IS(HSurf−SWS) (b) IS(H(2)
Surf−SWS) (c) IS(H(3)

Surf−SWS)

Figure 4.16 – Evolution of the information support (IS) for the different contours of the image
when chaining surface-based SWS hierarchies. While most of them have a very low IS, contours
that are specifically highlighted by the hierarchy see their IS grow.

A local optimum of a cost-function defined over the whole hierarchy?

Finally, an interesting property to highlight concerns a link between morphological hierarchi-

cal chainings and a cost-function defined over the entire hierarchy.

The Dasgputa cost function has been introduced in ([Dasgupta (2016)]). The author notices

that most of the hierarchical clusterings techniques are defined procedurally, which makes the

study of their effect complex, since the objective function they optimize is hard to figure out.

However, being provided with precise objective functions to optimize might help the development

of hierarchical clustering techniques, as it has helped other kinds of data analysis methods such

as the classification ones.

Thus, the author defines a cost-function that, given pairwise similarities between data points,

assigns a score to any possible hierarchy/dendrogram on those points. For a connected graph G,

any hierarchical clustering represented as a dendrogram ∆ is valued by:

costG(∆) =
∑
{i,j}∈E

ηij |leaves(∆[i ∨ j])| (4.11)

With, for any edge {i, j} ∈ E:

— ηij its weight, reflecting locality (with ηij = 0 if nodes i and j are not neighbors in the

graph),

— |leaves(∆[i ∨ j])| the number of leaves of the minimal subdendrogram of ∆ containing

both nodes i and j.

The idea is to find a hierarchical clustering in which similar edges connecting very similar nodes

are cut as far down the dendrogram as possible. It is illustrated in figure 4.17. Note that it can

easily be obtained with the data structures introduced in section 3.6.3, since finding for two

leaves the smallest subdendrogram containing both using them is easy.
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Figure 4.17 – Computation of the Dasgupta cost on an example. A: a RAG constructed for a fine
partition, and its MST in orange. B: for the associated dendrogram, the smaller subdendrogram
containing both nodes b and d has 3 leaves, and ηbd = 6. C: we can thus compute compute the
Dasgupta cost.

We observe that this cost function is systematically decreasing when chaining morphological

hierarchies we defined, once again to the notable exception of the BSCH hierarchy. This is

illustrated in figure 4.18. This opens a research path to study with more details this link between

such a global cost function and hierarchical chaining of incrementally defined hierarchies.

Figure 4.18 – Evolution of the Dasgupta score (see equation (4.11)) when chaining different
types of morphological hierarchies until convergence. It seems as if the chainings converge
towards local minima of this objective function. This plot was obtained for the cameraman
image, but we obtained similar results with many examples.
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4.6 Parallel combinations of hierarchies

4.6.1 Introduction

By construction, each hierarchy fuses adjacent regions to make emerge specific structures

and characteristics, such as regions with larger areas, contrast, close to some geometrical shapes,

etc. We call these hierarchies pure hierarchies, by analogy with the pure colors. Yet, most of the

images we study admit several of these characteristics as descriptive traits. This is why we would

like to describe such mixtures images by combining pure hierarchies.

In sections 4.4 and 4.5, we have presented sequential combinations of hierarchies, corre-

sponding to successive hierarchical constructions, for which each hierarchy was built starting

from the preceding one. In this section, we study parallel combinations of hierarchies that are

obtained by functional combinations of the ultrametrics describing different hierarchies.

4.6.2 General case

When considering two hierarchies (H1,λ1) and (H2,λ2), their ultrametrics induce a distance

between any two points p, q of the graph, respectively λ1(p, q) and λ2(p, q). We can then choose

any function ⊕ : R2 → R to obtain a new dissimilarity ⊕(λ1,λ2). We alternatively will also write

λ1⊕λ2 in the following. However, in the general case, this new dissimilarity will no longer be

an ultrametric. To obtain an ultrametric from ⊕(λ1,λ2), one can thus compute the subdominant

ultrametric ⊕(λ1,λ2) associated with this dissimilarity. The exploration of the hierarchical space

with such processes has notably been studied in [Santana Maia et al. (2017)].

For example, we can in particular consider the supremum or infimum of hierarchies. We

remind the reader that an order relation over the set of hierarchies has been introduced in

section 2.4.1: H1 < H2 can be read “H1 is finer than H2”, and means that H1 has more regions

than H2 at each level. We have also introduced in section 2.4.2 the supremum and infimum of

two hierarchies.

The infimum of two hierarchies H1 and H2 is written H1 ∧H2 or INF(H1,H2) and is defined

by its ultrametric being the supremum of the ultrametrics of both hierarchies λ = λ1 ∨ λ2 (cf

theorem 2.20). Indeed, if ⊕ = ∨, we have:

∀(p, q, r),

 λ1(p, q) ≤ λ1(p, r) ∨ λ1(r, q)
λ2(p, q) ≤ λ2(p, r) ∨ λ2(r, q)

(4.12)

Thus:

λ1 ∨ λ2(p, q) = λ1(p, q) ∨ λ2(p, q) (4.13)

≤ [λ1(p, r) ∨ λ1(r, q)] ∨ [λ2(p, r) ∨ λ2(r, q)] (4.14)

≤ [λ1(p, r) ∨ λ2(p, r)] ∨ [λ1(r, q) ∨ λ2(r, q)] (4.15)

Thus the commutativity and associativity of the ∨ operator make the computation of the associ-

ated ultrametric easy: we just have to assign to each edge the valuation λ1 ∨ λ2.
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4.6. Parallel combinations of hierarchies

However, in most cases for a function ⊕ :

 R2 → R
(λ1, λ2) 7→ ⊕(λ1, λ2)

, we have:

λ1⊕λ2(p, q) = λ1(p, q)⊕λ2(p, q) (4.16)

≤ [λ1(p, r) ∨ λ1(r, q)]⊕[λ2(p, r) ∨ λ2(r, q)], (4.17)

and as the function ⊕ is not necessarily distributive with respect to the function ∨, we cannot

obtain an ultrametric by simply computing λ1⊕λ2, and must instead compute the subdominant

ultrametric λ1⊕λ2. In particular and for example, the supremum of two hierarchies H1 and

H2 is written H1 ∨ H2 or SUP(H1,H2), and is the smallest hierarchy larger than H1 and H2.

Its ultrametric is λ = λ1 ∧ λ2 6= λ1 ∧ λ2 . Such a process has notably been described in

[Santana Maia et al. (2017); Cousty et al. (2017)] to compute infimum, supremum and linear

combinations of hierarchies.

4.6.3 Simpler parallel combinations between hierarchies built upon the same

MST

In our work, we are in a particular situation, as we often build different hierarchies upon the

same initial tree. Indeed, starting from aMST of the RAG G associated with a fine partition

of the image, we generate a new set of valuations on this tree. The resulting ultrametric is the

one induced by this MST, and for any pair p, q of nodes of the graphs, its value is equal to the

maximal weight of edges on the unique path linking p to q in the MST. In such circumstances,

one can easily combine two hierarchies (H1,λ1), (H2,λ2) for a combination function ⊕ verifying

a given property, as we shall see hereafter.

Theorem 4.1. Let us consider two edge-weighted graphs G1 = (V,E, η1) and G2 = (V,E, η2) defined

over the same set of nodes. Let us also suppose that their respective MSTMST 1 = (V,EMST , η1)
andMST 2 = (V,EMST , η2) have the same structure, i.e. the same nodes and edges but different

edge weights.

Let ⊕ be a function such that:

∀(x1, x2, y1, y2) ∈ R4
+, (x1 ≤ x2) and (y1 ≤ y2)⇒ ⊕(x1, y1) ≤ ⊕(x2, y2) (4.18)

Then the tree T1,2 = (V,EMST ,⊕(η1, η2)) is a MST of the graph G1,2 = (V,E,⊕(η1, η2)).

Proof. Let epq be any edge of G1/G2 (they share the same set of edges, but not the same edges

weights). By path optimality (cf. theorem 1.28):

∀epq ∈ πMST (p, q) : η1
st ≤ η1

pq and η2
st ≤ η2

pq.

Thus, if ⊕ verifies equation 4.18, we have:

∀epq ∈ πMST (p, q) : ⊕(η1
st, η

2
st) ≤ ⊕(η1

pq, η
2
pq)

Thus by path optimality, the tree T1,2 = (V,EMST ,⊕(η1, η2)) is a MST of the graph G1,2 =
(V,E,⊕(η1, η2)).
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4. COMBINATIONS OF HIERARCHIES

Table 4.1 – Supremum, infimum and mean of ultrametrics.

Type of combination Associated ultrametric
INF ((H1,λ1), (H2,λ2)) SUP(λ1,λ2)
SUP ((H1,λ1), (H2,λ2)) INF(λ1,λ2)
MEAN ((H1,λ1), (H2,λ2)) 1

2(λ1 + λ2)

Corrolary 4.2. Let us consider two hierarchies (H1,λ1), (H2,λ2) defined over the same graph

G = (V,E, η), and constructed upon two MST sharing the same structureMST 1 = (V,EMST , η1)
and MST 2 = (V,EMST , η2). Then theorem 4.1 ensures us that for any function ⊕ verifying

equation 4.18, the MST of G1,2 = (V,E,⊕(λ1,λ2)) is T1,2 = (V,EMST ,⊕(η1, η2)).

Thus, when combining hierarchies with a function ⊕ verifying equation 4.18, one can simply

apply this function to edge weights of both MST and directly infer the subdominant ultrametric

associated with this combination as in equation (2.3): ∀epq ∈ EMST ,⊕(λ1,λ2)(p, q) = ⊕(λ1,λ2)(p, q)
∀epq /∈ EMST ,⊕(λ1,λ2)(p, q) =

∨
{ηst, est ∈ πpq ⊂ T1,2 = (V,EMST ,⊕(η1, η2))}

(4.19)

This procedure is less computationally costly than the one consisting in computing the

function ⊕ over all edges of the two complete graphs and extracting the subdominant ultrametric

consequently, as in [Santana Maia et al. (2017)].

Note that the condition given by equation 4.18 is verified by many two-variables functions that

will show interesting: the supremum, infimum, any linear combination with positive coefficients,

as well as the logical operators AND and OR between probabilistic variables.

To sum up, our approach consists in choosing a MST from the initial graph and then work

with it structure to generate new hierarchies. Its potential weakness resides in the choice of a

unique MST to work with for all next steps. In the case where several MST exist, we can affine

the choice (lexicographical distance) or work with the union of MST (cf. section 3.3.5). But in

exchange, combining hierarchies is often straightforward, and we can easily obtain structurings

of the image translating complex yet understandable properties of it. We now present some of

these possible combinations.

4.6.4 Supremum, infimum and mean of two hierarchies

Computation

Since we are generating different hierarchies starting from the same MST, and since the SUP,

INF and MEAN functions verify equation (4.18) of theorem 4.1, we can simply compute these

functions on the MST and infer the subdominant ultrametrics from them. Note that the same

property applies to any linear combination (with positive coefficients) of hierarchies.
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4.6. Parallel combinations of hierarchies

Interpretations

(a) Image (b) Dynamics/Trivial

(c) Hsurf−V ertSE (d) Hsurf−HorizSE

(e) HINF = INF(Hsurf−V ertSE
,Hsurf−HorizSE)

(f) HSUP =
SUP(Hsurf−V ertSE ,
Hsurf−HorizSE)

(g) HMEAN =
MEAN(Hsurf−V ertSE
,Hsurf−HorizSE)

Figure 4.19 – Saliency maps for different hierarchies. One can notice how vertical (resp.
horizontal) objects are highlighted in figure (c) (resp. (d)), and that HAND ends up highlighting
objects both horizontal and vertical.

In practice, computing the supremum of two hierarchies does not lead to interesting results.

Indeed, the supremum of two partitions is a partition with contours that are shared by both

departure partitions: this is rarely the case, or for very specific frontiers, so it ends up featuring

rough frontiers. Taking their infimum or mean can on the other hand help to obtain a good

balance between both hierarchies. We illustrate the effects of these operators on a toy example in

figure 4.19. We generate, for an image containing different geometric shapes, two surface-based

SWS hierarchies with horizontal and vertical markers. These two hierarchies highlight either

horizontal or vertical shapes in the image. Whereas the supremum of these hierarchies ends up

featuring the drawbacks of both of them, taking their mean and especially their infimum ends

up highlighting objects both horizontal and vertical.

We also illustrate the effects of these combinations on a real-life example in figure 4.20.

Ideally, on this example, we would like to highlight both the car and the road structure to remain
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4. COMBINATIONS OF HIERARCHIES

until the last levels of the output hierarchy. The car is here a small contrasted object, whereas

the road is a bigger one with a large surface.

On one hand, one could of course think of using a volume-based hierarchy to obtain a tradeoff

between these two properties, which is a classical way of doing it. On the other hand, we test the

combination by infimum of: (i) a surface-based hierarchy built on the image using the gradient

over the green channel as initial dissimilarity, (ii) a trivial hierarchy built using a LAB gradient as

initial dissimilarity. We notice that the combination by infimum is useful in this case as it allows

for the car structure, the road and the grass to exist until late stages in the hierarchy whereas the

other hierarchies do not manage to do so.

(a) Image (b) LAB gradient (c) Gradient over green
channel

(d) HRGBvol : 10 regions (e) HRGBvol : 30 regions (f) HRGBvol : 50 regions

(g) Hsurf−RGB: 10 re-
gions

(h) Hsurf−RGB: 30 re-
gions

(i) Hsurf−RGB: 50 re-
gions

(j) HGtrivial: 10 regions (k) HGtrivial: 30 regions (l) HGtrivial: 50 regions

(m) HINF: 10 regions (n) HINF: 30 regions (o) HINF: 50 regions

Figure 4.20 – Comparison of 10, 30, 50 first regions for the following hierarchies: (i) HRGBvol :
volume-based hierarchy obtained using LAB gradient as initial dissimilarity, (ii) HRGBsurf : surface-
based hierarchy obtained using LAB gradient as initial dissimilarity, (iii) HGtrivial: trivial hierarchy
obtained using morphological gradient for the green channel as initial dissimilarity, (iv) HINF =
INF(HRGBsurf ,HGtrivial): infimum of (ii) and (iii).
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4.6. Parallel combinations of hierarchies

Table 4.2 – Probabilistic combinations of ultrametrics.

Type of combination Associated ultrametric
AND ((H1,λ1), (H2,λ2)) λ1 × λ2
OR ((H1,λ1), (H2,λ2)) λ1 + λ2 − (λ1 × λ2)
NOT ((H,λ)) 1− λ

4.6.5 Logical operators of probabilistic ultrametrics

As we have noted it in previous sections, hierarchies have a discriminative power that allows

us to discriminate contours in a controlled way. Among the possible hierarchies, the stochastic

watershed model presents a versatility that makes it extremely interesting for the characterization

of scenes or images: different construction types are possible, supplementary measures can be

made on the image to account for the existence of certain forms, the number, size and form of

the markers can be controlled, and the choice of the initial dissimilarity (for example depending

on the gradient of a given channel) conditions the output hierarchy. In addition, it provides to

each contour of the fine partition a probability value. This facilitates their combinations as well

as their interpretation.

In this specific case when ultrametric values correspond to probabilities, new possible

combinations can be considered through the effect of the boolean operators AND and OR
between two ultrametrics associated with two probabilistic events. The AND, OR of two

ultrametrics do not directly constitute an ultrametric. Their expressions for two input ultrametrics

are given in table 4.2, supposing that the two events are independent. It appears that the two-

variable functions that allow for their computation verify the equation (4.18) of theorem 4.1, and

we are thus provided with an efficient way to compute them when combining two hierarchies

that share the same MST. Note that the NOT operator does not verify this property, and we are

thus replaced in the general case of section 4.6.2 to compute the subdominant ultrametric for it.

Using and combining probabilistic hierarchies is interesting for several reasons. First, it is

indeed a way to regroup different types of experiments in an homogeneous set of representations

and homogeneous measures. Furthermore, starting from a large and homogeneous set of SWS

hierarchies, one can combine them in an understandable manner. For example, the AND and

OR of two hierarchies have straightforward effects. This is illustrated on a toy example in figure

4.21.

Furthermore, this opens an exploration path for potentially complex combinations using

binary logical expressions. We can indeed use all boolean operators and this way build hierarchies

combining diverse characteristics, in a way that is more understandable and refined than with

the SUP/INF combinations, and more interpretable than linear combinations such as the mean.

We illustrate it in figure 4.22, where we use logical operators between three hierarchies to

highlight in a controlled manner a desired type of contours. Let us consider the Irises painting

by Van Gogh, and let us suppose we want to highlight contours between red and non-red

regions, and belittle transitions between blue/non-blue regions. We consider, for the same image,
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4. COMBINATIONS OF HIERARCHIES

(a) Image (b) Dynamics/Trivial

(c) Hsurf−V ertSE (d) Hsurf−HorizSE

(e) HOR = OR(Hsurf−V ertSE ,
Hsurf−HorizSE)

(f) HAND = AND(Hsurf−V ertSE ,
Hsurf−HorizSE)

Figure 4.21 – Saliency maps for different hierarchies. One can notice how vertical (resp.
horizontal) objects are highlighted in figure (c) (resp. (d)), and that HAND ends up highlighting
objects both horizontal and vertical.

three hierarchies HRGBV ol−SWS , HRV ol−SWS and HBV ol−SWS generated using respectively the LAB

gradient and the gradients over the red and blue channels. Since these three hierarchies are

expressed in terms of probabilities, we can combine them using the logical operators mentioned

above. H1 = AND(HRGBV ol−SWS ,HRV ol−SWS) selects contours strong both in the red channel and

the (R,G,B) color space. H2 = NOT(HBV ol−SWS) belittle transitions between blue/non-blue

regions. Computing the hierarchy H3 = AND(H1,H2) highlights contours between red/non-

red zones and not blue/non-blue zones, but loses the global structures in the images. Finally,

the hierarchy Hcombi = OR(H3,HRGBV ol−SWS) retains the global structures of the image, with a

particular emphasis on red flowers, while for example HRV ol−SWS or HRGBV ol−SWS do not manage

to do it.
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4.6. Parallel combinations of hierarchies

(a) Image (b) Fine partition (c) Mosaic image

(d) H1: 25 regions (e) H1: 50 regions (f) H1: 100 regions

(g) H2: 25 regions (h) H2: 50 regions (i) H2: 100 regions

(j) H3: 25 regions (k) H3: 50 regions (l) H3: 100 regions

(m) Hcombi: 25 regions (n) Hcombi: 50 regions (o) Hcombi: 100 regions

Figure 4.22 – Illustration of a complex combination of probabalistic hierarchies using logi-
cal operators. (a) Image. (b) Fine partition. (c) Associated mosaic image. The remaining
images represent levels of different hierarchies for 25,50 and 100 regions. (d)(e)(f) H1 =
AND(HRGBV ol−SWS ,HRV ol−SWS). (g)(h)(i): H2 = NOT(HBV ol−SWS). (j)(k)(l) H3 = AND(H1,H2).
(m)(n)(o) Hcombi = OR(H3,HRGBV ol−SWS).
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4.7 Conclusion

In the previous chapters, we have notably presented certain procedures to build hierarchical

segmentations of images, the main one being the SWS model, which is very versatile and

configurable:

— Markers can be chosen to be punctual or not. In the second case, the choice of the markers

can allow the emergence of given shapes in the hierarchical segmentation.

— Different hierarchical schemes can be thought of, each one of them highlighting different

kind of contours.

— The distribution of markers in itself can be uniform or non-uniform.

Furthermore, we saw in this chapter that we can also combine all these hierarchical methods

in different ways. We have indeed presented several ways to combine hierarchies as long as a

methodology to study the properties of these combinations. Note that although these methods

have been illustrated on watershed hierarchies, similar approaches can be thought of for any

type of hierarchical clustering. The result of it is an extremely large number of possibilities to

interrogate the content of images. Several questions then arise.

First, one can wonder how to quantify the extent to which two hierarchical methods give

similar results? A first answer proposal has been brought previously, by using Gromov-Hausdorff

distances between hierarchies built on the same initial points. A directly related issue is the one

of selecting the more pertinent and informative hierarchical clustering methods to characterize

images for a given problem. One possibility to do so is, as seen previously, to compute the

distances between hierarchical clusterings using a Gromov-Hausdorff distance, and possibly to

visualize using multidimensional scaling their relative contributions.

Secondly, and more importantely for practical matters, one may wonder what is a proper way

to use these tools wisely. Of course, their use will depend on the class of considered problems.

However, a general idea is to use as much prior information we have on the task at hand as

possible in the process of building hierarchical segmentations. Our tools allow us to do so in an

informative, comprehensive and controlled fashion, as we have seen on several examples.

We note that there are thus two interesting directions in this exploration of possible hierar-

chies. One can use different construction types for the same input information to characterize it

in different ways: for example, a surface-based SWS hierarchy and a volume-based SWS hierar-

chy do not highlight the same types of contours. At the same time, using the same construction

types with complementary information, such as the blue and the red channel of a color image as

in the example previously mentioned, also allows to shed a different light on the image. The

combinations of these different possibilities, especially using the logical operators AND, OR and

NOT for probabilistic hierarchies, then provides us with the possibility to highlight interesting

objects with interpretable and coherent tools.
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4.7. Conclusion

In the next chapters, we propose to make use of this versatility and profusion of images

characterizations to better understand the content of images, whether it is for segmentation or

classification tasks.
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4.7. Conclusion

Introduction

In part I, we have introduced a variety of hierarchical segmentations methods, showed how

we can combine them, and studied their properties and relative contributions. The information

retrieved using them can be used in several ways:

1. First and foremost, the computation of a hierarchical segmentation is usually an interme-

diary step in a segmentation framework, where the goal is generally to derive a unique

segmentation of a scene. Hierarchies are then useful to structure the contours in the

image and help us, if not to extract directly the exact regions of interest, at least to get a

segmentation of the image that is closed to the desired output. This has been studied in

many works, such as for example [Gueguen et al. (2013)] in which the authors study how

to produce robust segmentations of high-dimensional data, or in [Kiran et al. (2014b)] to

find optimal partitions from a given functional.

Furthermore, obtaining a pertinent segmentation is often difficult for a human operator. It

is even harder to do so by automatic means. The automation of a segmentation process for

a given task is thus an interesting related issue.

2. Secondly, the contours saliencies we can compute for each image and each hierarchy

constitute interesting descriptors to characterize images, be it at a local level or at the

image level. This has been studied for example in [Ouzounis et al. (2012)], in which

morphological hierarchical segmentations have been studied as a robust way to extract

important features of the image, especially for remote sensing applications.

3. Finally, hierarchies are useful to get simplified yet informative representations of images,

whether it is for compression or artistic purposes, and allow us to keep only the necessary

level of details for a given image and task.

In this part of the thesis, we make use of these versatile tools for several applications, that

fall within the categories listed above:

— In chapter 5, we propose an automatic segmentation framework that makes use of SWS

hierarchies and their combinations. Our goal is to find the hierarchy and cut level providing

the best segmentation result according to a score to evaluate the quality of a segmentation.

— In chapter 6, we show how one can make use of a variety of comprehensive hierarchies

as features to characterize images. We prove their discriminative power for the image

classification task on several examples.

— In chapter 7, we refine the hierarchical segmentation construction method introduced in

part I. The hierarchical segmentation techniques described so far treat the image in an

homogeneous manner all over the domain. We show how a slight modification in the SWS

model leads to a hierarchical segmentation method that can take into account spatial prior

information of all kinds during its construction. We illustrate the goodness of this approach

on several examples.
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Chapter 5

Learning the Best Combination of
Hierarchies for a Domain-specific

Segmentation Task

Associated publication:

— [Fehri et al. (2016)] A. Fehri et al. [2016]. « Automatic Selection of Stochastic Watershed

Hierarchies ». In: 24th European Signal Processing Conference. IEEE, pp. 1877–1881

Résumé

Dans ce chapitre, nous proposons une méthode pour apprendre, pour un type d’images données

et un score pour évaluer la qualité d’une segmentation, la hiérarchie/combinaison de hiérarchies

et le niveau de coupe de cette hiérarchies les plus adaptés audit problème. Pour ce faire, on

profite de l’efficience de nos méthodes pour explorer de façon gloutonne l’espace des possibles

hiérarchies. On se restreint ici à des combinaisons de type chaînage de longueur deux au plus,

mais la méthode est généralisable à tous types de combinaisons, d’images et de scores.

Abstract

In this chapter, we propose a framework to learn, for given type of images and score to evaluate

the quality of a segmentation, the hierarchy/combination of hierarchies and the cut level that

are the better suited to the problem. To do this, we take advantage of the efficiency of our

methods to explore in a greedy way the space of possible hierarchies. We restrict ourselves here

to chainings of hierarchies of length at most two, but the method is generalizable to all types of

combinations, images and scores.
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5.1 Introduction

In chapters 3 and 4, we have presented many different morphological hierarchical clustering

methods, as long as ways to combine them. In order to simplify our work and avoid redundancies,

we have also studied properties of the space they constitute. These methods can be seen as

various ways to structure and interrogate in a controlled way the content of images. The

information we retrieve doing so can be used in several ways.

In this section, we propose a workflow to use it for segmentation tasks. The computation of

a hierarchical segmentation is usually an intermediary step in a segmentation framework, and

the goal is generally to get to a unique segmentation of a scene. Hierarchies are then useful to

structure the contours in the image and help us, if not to extract directly the exact regions of

interest, at least to get a segmentation of the image that is closed to the desired output. This

has been studied in many works, such as for example [Gueguen et al. (2013)] in which the

authors study how to produce robust segmentations of high-dimensional data, or in [Kiran et al.

(2014b)] to find optimal partitions from a given functional.

An interesting related issue, that we address hereby, is the one of designing a workflow that

does this automatically for a given task. Formally, image segmentation is the transformation often

described as the partitioning of the image domain into a set of meaningful regions according to

some pre-specified criteria. As was briefly mentioned above, it is generally difficult to directly

find pertinent contours of an image, and is thus useful to follow a two-steps strategy: first, we

produce a hierarchy, and then extract the meaningful contours out of it. In this regard, the

hierarchical segmentations techniques presented in chapters 3 and 4 are especially useful.

There are many ways to go from a hierarchical segmentation to a segmentation. Gener-

ally, methods in the literature start from a trivial hierarchy and explore it to extract a suited

segmentation. We hereby list some of these approaches:

— Horizontal cut by thresholding (see figure 5.1(a)), which can be interpreted as a minimiza-

tion of the diameter of partitions (the diameter of a partition being equal to the maximum

diameter of the ultrametric balls that compose it) constrained by the number of regions.

This is a classical approach in hierarchical clustering.

— Markers can also be imposed (see figure 5.1(c)), for example to perform interactive

segmentation [Meyer and Beucher (1990); Zanoguera et al. (1999)]. Such a markers-based

cut can be seen as the solution to a problem of minimization of the diameter of the partition

constrained by the fact that each region has a marker in it.

— More generally, one can obtain a segmentation from a hierarchy by extracting tiles from

different levels of this hierarchy. We call this process to this process an oblique cut of the

hierarchy.

For example, in [Drouyer et al. (2017)], the authors propose a new way to select regions

of a hierarchical segmentation. To address the problem of stereovision, they make use

of a hierarchical segmentation to propose regions to complete and enhance the disparity
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map output by any stereovision method. The approach is to go through the hierarchy in

a top-down way: based on robust regression models computed for each internal node of

the dendrogram associated with the hierarchy, the algorithm decides whether to pursue

exploration of the subdendrogram or simply retain this node and stop exploration.

Another similar approach consists in computing an energetic function for each node of the

hierarchy and decide based on its value to cut or not the associated edge, thus resulting in

a segmentation optimizing an energetic functional. This type of oblique cut has notably

been studied for the Mumford-Shah functional, as in [Guigues et al. (2006)]. In [Kiran

et al. (2014b)], the authors provide properties for energetic functionals to respect in order

to generate hierarchies in linear time.

(a) Horizontal cut (b) Oblique cut (c) Markers-based cut

Figure 5.1 – Different types of cuts to go from a hierarchy of segmentations to a segmentation.
The remaining MST edges are highlighted in bold for each example.

However, one may wonder whether the trivial hierarchy is always the best departure point

for these techniques aiming at extracting a partition. Amongst those multiple ways to go from

a hierarchy to a segmentation, we focus in this section on the simplest one, which consists in

doing horizontal cuts of the hierarchy, i.e. in chosing a particular partition of the hierarchy. This

can work only if the output hierarchy allows it, i.e. if it takes into account the characteristics

of the image. It is a first rough way to explore the potential of each hierarchy, and to measure

how favorable a hierarchy is for a given task, as some hierarchies lead us closer to the goal

segmentation than others. Of course, to obtain better results, one could use any of the other

techniques mentioned above.

It is indeed important to note that there is no such thing as a universal segmentation frame-

work. However, one can learn, for a series of homogeneous images, a suitable segmentation

framework. This is what we propose to do using the hierarchical segmentations techniques

presented in the previous chapters. The question then is to know if there is an adapted hierar-

chy/combination of hierarchies for a given task.

We saw in chapter 4 how composing hierarchies in various ways can lead to better or at least

complementary results in the sense of the extraction of the more significant part of the images.

We now make use of this property and present a workflow to automatically and simultaneously
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select the best hierarchy of segmentations and cut-level from a given training set for a given task.

This way we have, for a given segmentation task and homogeneous images set, a procedure

enabling us to obtain automatically a pertinent hierarchy and cut level in order to get an adequate

segmentation.

5.2 Finding a Well-suited Hierarchy and Cut Level from a Training

Set

Using the tools and methods presented in chapters 3 and 4, we have now many ways to

interrogate our images using different hierarchies or combinations of hierarchies. A segmentation

of the image is given by choosing a level of a hierarchy applied to this image. It is hard to

know, for a given set of images, which hierarchy and which level of this hierarchy would give

good results regarding the segmentation task. However, it is common that images to segment

share similar properties, due to their nature or to the tools allowing us to visualize them, as for

example cells images in microscopy, or bones and tissues images in radiography. To make easier

the obtainment of a satisfying segmentation, it is in our interest to find a hierarchy that takes

into account these shared properties amongst the images belonging to the same collection. In a

tailor approach, we thus propose a methodology to automatically select a pertinent hierarchy

and a good cut level of it for a given set of homogeneous images, so that a suitable segmentation

can be obtained for a new image of the same kind without effort.

Let us suppose we have at our disposal a score(I, (H, λ)) to judge the quality of a segmenta-

tion (H, λ) obtained for an image I. Note that (H, λ) is the partition obtained after setting the

value of the indexed hierarchy (H,λ) to λ (corresponding to a horizontal cut of the hierarchy).

Thus, we would like to find the best hierarchy and the best cut level λ according to the score

evaluated on a training set of images. We call score(I, (H,λ)) the value of the score for an

image I, a hierarchy H and a level λ of the hierarchy. We will expose in the next sections some

examples of possible scores to consider.

Formally, let us consider a training set T = {I1, . . . , I|T |} and a set of indexed hierarchies

H = {(H1,λ1), (H2,λ2), . . . , (H|H|,λ|H|)}.
For any image, there is a best hierarchy and cut level that minimizes the score on this image,

that we call oracle:

(Horacle, λoracle) := arg min
(H,λ∈λ)∈H

score(I, (H, λ)). (5.1)

Let us consider a set of homegeneous images, that we subdivide into training and testing

subsets, and a set of indexed hierarchies H (possibly composition of hierarchies as in chapter 4).

We take advantage of the low computational cost of our approach (only involving updates in

the MST) to find the optimal hierarchy in (5.2) by an exhaustive search on the training subset.

During the training phase, we are interested in finding the hierarchy H and cut level λ that
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minimize the score on average over the whole set, i.e.,

(H∗, λ∗) := arg min
(H,λ∈λ)∈H

|T |∑
i=1

score(Ii, (H, λ)). (5.2)

We call this learned hierarchy the model hierarchy.

To sum up, we follow a two-steps procedure, given a segmentation score and a set of

homogeneous images :

1. For each image, we extract a wide variety of structured contours information using mor-

phological hierarchies.

2. We select the best hierarchical segmentation and cut level among all possible ones using a

greedy feedforward search.

To test the pertinence of this learned model, we compare its result, on each image of the test

set, with the oracle model computed for this image.

One can say we have effectively found a good model hierarchy for the set of images if the

difference between the scores obtained for the model (equation 5.2) and the oracle (equation

5.1) is on average low on the test subset.

5.3 Experimental Results

In a first approach we consider here, as illustrated in figure 5.2, all chainings of hierarchies

(introduced in section 4.4) up to depth two of the following SWS hierarchies: watershed

hierarchy (or gradient based), surface-based, volume-based, surface-based after erosion and

volume-based after erosion. This corresponds to the work published in [Fehri et al. (2016)].

However, note that this that this approach is generic and can be adapted to any type of hierarchy.

Notably, we could test similar approaches with logical combinations of probabilistic hierarchies.

Figure 5.2 – Exhaustive search illustration. At each step, we keep in memory the hierarchy and
cut level that gives the best result. We stop the search if the score stops to get better.
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5.3.1 Type of Scores

The methodology proposed in section 5.2 is furthermore suitable for any score that we want

to minimize (or maximize) in order to get a good segmentation. To test this model, we use two

different scores.

Mumford-Shah

The first score used is a Mumford-Shah score [Mumford et al. (1989); Pock et al. (2009)],

so that the problem we want to solve is an energy minimization problem. This score contains

two terms, a data fidelity term and a regularization term: by climbing in the hierarchy towards

coarser levels, the value of the first term increases and the value of the second one decreases.

Both terms are linked by a scale parameter. It has this form:

MS(π = (I,H, λ)) =
∑

Ri∈π
var(Ri) + sC(π), (5.3)

where var(Ri) represents the total variance of the image in the region Ri of the partition

π = (I,H, λ), Cπ represents the length of the contours present in the partition π, and s is a scale

parameter that allows to have a trade-off between data fidelity and a simplification of the image.

Weighted Human Disagreement Rate (WHDR)

The second score that we used is a metric called “weighted human disagreement rate”(WHDR),

introduced in [Bell et al. (2014)] to evaluate intrinsic image decomposition results, aiming

at separating images into reflectance and shading layers. This metric is associated with the

large-scale public database, Intrinsic Images in the Wild (IIW), built in [Bell et al. (2014)], and

composed of 5230 manually annotated images of complex real indoor scenes.

A set of Poisson-disks-sampled points are chosen in each image and these points are connected

by edges. Between every pair of connected points, users were invited to evaluate which point

has a darker surface color or if they have the same level of brightness. Then the WHDR measures

the level of agreement between the judgements made by algorithms being evaluated and those

of humans. The cut of the hierarchy allows us to obtain a kind of reflectance image for each test

image, by giving to each region of the subsequent partition its mean value in the original image.

We can thus use this score to evaluate it. The WHDR varies between 0 and 1, being close to 0

when the reflectance image is consistent with human judgment, and close to 1 otherwise. The

goal is then to minimize it. Illustrations regarding WHDR can be found in figure 5.3.

5.3.2 Results

In a first approach, we tested our strategy with a set of cells images for the Mumford-Shah

score, and with homogeneous subsets of images from the IIW database, of bedrooms, bathrooms

and people. Some visual results can be found in figure.5.4 for the Mumford-Shah score, and in

figures 5.5, 5.6 and 5.7 for the WHDR score.
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(a) Ground truth creation.

(b) Visualization of WHDR score evolution with image simplification.

Figure 5.3 – Weighted human disagreement rate [Bell et al. (2014)]. (a) A ground truth is
created using online crowdsourcing tools, translating a human estimation of the continuity of
color perception. Users are asked, for random pairs of nearby points: do these points have the
same color? Transparrent and mirror surfaces are put aside, as they have particular reflectance
properties. (b) The WHDR score varies between 0 and 1, being close to 0 when the reflectance
image is consistent with human judgment, and close to 1 otherwise.
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For each set of images, we train our system on a subset to learn the best hierarchy among any

hierarchy or combination of two hierarchies presented before, which provides us with a model

hierarchy. Then, for each image of the test subset, we compute the optimal hierarchy for this

precise image, that is the oracle hierarchy, the score attached to it, as long as the score given by

the model hierarchy on this test image. A summary of the results for the WHDR score is given in

Table 5.1.

Database µ(WHDRoracle) µ(WHDRmodel) µ(error) σ(error)
Bathrooms 0.154 0.178 0.024 0.025
People 0.133 0.282 0.148 0.093
Bedrooms 0.125 0.237 0.112 0.107

Table 5.1 – Mean and standard deviation of the error between oracle and model, i.e. the
difference between WHDRmodel and WHDRoracle, and averages of the scores for the oracle and
model for the different test databases and the WHDR measure.

Furthermore, we can have insights about why a hierarchy has been chosen for a given set of

images, and some qualitative remarks can be done as the hierarchies used have understandable

effects. For the cells images, the model hierarchy found by the algorithm is a chaining of a

volume-based SWS followed by a surface-based SWS. We can interpret it as a first step eliminating

non-pertinent objects with a trade-off between area and gradient, and a second pass emphasizing

the cells based on their surface, since it is often of the same order. For the IIW images, the

hierarchy selected is a composition of volume-based SWS, with different sizes and orientations

for structuring elements depending of the dataset. One can interpret that the type of objects

usually present in the image differs regarding the scenes, and thus the adaptive hierarchies

depend on the shapes found in the images. surface-based SWS are not very pertinent here since

there is a wide variety of pertinent objects of different sizes in the images.

5.4 Conclusions

In this chapter we have presented a novel approach to use the composition of hierarchies of

segmentations in a segmentation workflow. The workflow has been evaluated for a difficult task:

the obtention of the best hierarchy and cut to perform image simplification given an evaluation

score. To go further, several enhancements of the system are conceivable.

First, one could use the analysis tools introduced in chapter 4 to select, for a specific type

of images, a set of complementary hierarchies, i.e. hierarchies that properly reflect the image

characteristics with being redundant.

Furthermore, one could use chainings of hierarchies longer than two, or conceive a similar

approach with other types of combinations, notably logical combinations of probabilistic hierar-

chies introduced in section 4.6.5. The first used scores here may also be replaced by other ones,

more adapted for a given task, for example a score to use for interactive segmentation in which

the score would express the difficulty for the user to get the desired result from the obtained

segmentation.
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Finally, one could use a more sophisticated algorithm to learn the best hierarchy and cut level

for a given type of images. For example, a reinforcement learning approach [Mnih et al. (2015)]

could be used for the system to explore more efficiently the space of all possible hierarchies

combinations given a score to optimize on a training set.
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(a) Some examples in the training set

(b) I (c) model (d) oracle

(e) I (f) model (g) oracle

(h) I (i) model (j) oracle

Figure 5.4 – Results on some examples of cells, for a Mumford-Shah score with a scale parameter
s = 1.168. (b),(e),(h) are images from the testing set, (c),(f),(i) the model segmentations and
(d),(g),(j) the oracle segmentations.
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(a) Some examples in the training set

(b) I (c) model (d) oracle

(e) I (f) model (g) oracle

(h) I (i) model (j) oracle

Figure 5.5 – Results on some examples of Intrinsic Images in the Wild, for a WHDR
score.(b),(e),(h) are images from the testing set, (c),(f),(i) the model segmentations and
(d),(g),(j) the oracle segmentations.
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(a) Some examples in the training set

(b) I (c) model (d) oracle

(e) I (f) model (g) oracle

(h) I (i) model (j) oracle

Figure 5.6 – Results on some examples of Intrinsic Images in the Wild, for a WHDR
score.(b),(e),(h) are images from the testing set, (c),(f),(i) the model segmentations and
(d),(g),(j) the oracle segmentations.
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(a) Some examples in the training set

(b) I (c) model (d) oracle

(e) I (f) model (g) oracle

(h) I (i) model (j) oracle

Figure 5.7 – Results on some examples of Intrinsic Images in the Wild, for a WHDR
score.(b),(e),(h) are images from the testing set, (c),(f),(i) the model segmentations and
(d),(g),(j) the oracle segmentations.
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Chapter 6

Using the Distances Between
Hierarchies As Features Characterizing

Images

Associated publication:

— [Fehri et al. (2018)] A. Fehri et al. [2018]. « Characterizing Images by the Gromov-

Hausdorff Distances Between Derived Hierarchies ». In: 2018 IEEE International Conference

on Image Processing (ICIP)

Résumé

Dans ce chapitre, nous proposons d’utiliser les matrices des distances inter-hiérarchies comme

descripteurs d’images pour des tâches de classification. Nous testons ces descripteurs pour

classifier des classes d’images générées suivant un modèle de feuilles mortes, ainsi que des

classes d’images de textures. Les résultats obtenus montrent la pertinence et l’efficacité de ces

descripteurs pour caractériser les propriétés géométriques des images.

Abstract

In this chapter, we propose to use the inter-hierarchies distances matrices as image descriptors

for classification tasks. We test these descriptors to classify images generated using dead-leaf

process with different parameters, as well as texture image classes. The results obtained show

the relevance and effectiveness of these descriptors for characterizing the geometric properties

of the images.
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Figure 6.1 – Overview of our approach A: We start from an image and a set of morphological
hierarchical segmentations techniques. B: Each of these techniques highlight different contours
of the image, and we can quantify their relative contribution using the Gromov-Hausdorff
distance. C: We propose to use the inter-hierarchies Gromov-Hausdorff distances matrix as
features leveraging the discriminative power of all these hierarchies.

6.1 Introduction

In the previous chapter, we sought to identify the hierarchy best able to bring us closer to a

good segmentation. We looked for these hierarchies among a collection chosen a priori. However,

the resulting hierarchical segmentation approach is application-dependent, and its efficiency

depends on the types of structures present in the images. In this chapter, we propose a new

approach to take advantage of such multi-scale analysis. The main idea is to quantify the distance

between different hierarchical representations to characterize images, and use them as features

to characterize the images. In the examples presented, we only use selected morphological

hierarchical segmentation methods such as SWS hierarchies. However, any hierarchical method

can fall within its scope.

We begin by showing how, starting from a set of hierarchies and a given image, the com-

putation of inter-hierarchies distances provides us with a rich analytical representation (i.e.

feature) of the image that can be used to characterize it. We then illustrate the discriminative

and explanatory power of such representations on generated shapes images. An overview of the

process can be found in figure 6.1.

6.2 Features on Hierarchies using the Gromov-Hausdorff Distance

6.2.1 A structured richness of representations

Hierarchical segmentation is a type of low-level image analysis often used to make easier

the obtention of a suitable segmentation. In this work, we limit ourselves to morphological

hierarchies that can efficiently be obtained within the graph-based framework described in
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chapter 3. In particular, the model of the stochastic watershed (SWS) hierarchies (section

3.3.6) is able to adapt to the specific objects properties to enhance (e.g. elongation, surfaces

equilibrium, contrast). By only choosing high-levels parameters such as the density governing the

distribution of markers or their shape and size, we can thus generate at will various multi-levels

representations of the images highlighting various types of regions. Thanks to this versatility,

specific hierarchies can be built: for example, we can favor certain shapes in the images by

considering a surface-based SWS hierarchy in which the measured areas are the ones of regions

eroded with anisotropic structuring elements.

An additional layer of supplementary complexity can be added via the possibility to combine

hierarchies to obtain new ones, as we have seen in chapter 4, whether this process is linear

(hierarchical chaining) or parallel (functional combination of ultrametrics). Each hierarchy

then expresses certain particular images characteristics. To use the analogy of colors, each

hierarchy is a black and white image resulting from the passage of a color image through a

colored filter. Multiplying these filters makes it possible to obtain many black and white images

that characterize the distribution of colors in the image.

Finally, each hierarchy provided with its ultrametric is a metric space. The Gromov-Hausdorff

distance measures the distance between such metric space. This is why, as we have seen in

section 4.2, the space of hierarchies provided with the Gromov-Hausdorff distance can itself be

structured as a metric space.

We argue that the wealth of controlled understandable options to generate hierarchies, as

long as the possibility to measure their relative specific descriptive power, can lead to powerful

image features.

6.2.2 A condensed and descriptive image feature

Indeed, once provided with a family of hierarchies, one may wonder if there are ways to use

the different information they provide to characterize images. The usual approach to do so it to

extract information at various levels of the hierarchies, which often requires a hard parameter-

tuning. Furthermore, it obliterates the interesting property that hierarchical segmentations are

more informative than flat segmentations as they capture simultaneously cluster structure at all

levels of granularity.

Instead, we propose to make use of the Gromov-Hausdorff distance between hierarchies

to build a features space that capture the their relative specific descriptive power of several

hierarchies applied on the same image. This distance is a distance between metric spaces that has

been introduced in section 2.4.3. Intuitively, it measures how close can we get to an isometric

(distance-preserving) embedding between two metric spaces. By reducing this distance to the

subclass of ultrametric spaces, we can in particular quantify the relative contributions of different

hierarchical clusterings. Furthermore, it is hard to compute in the general case, but can easily be

computed for two ultrametric spaces (i.e. hierarchies) built upon the same set of points (in our

case, starting from the same fine partition of the image).

167



6. USING THE DISTANCES BETWEEN HIERARCHIES AS FEATURES CHARACTERIZING IMAGES

Provided with such a distance, we can quantify the relative contributions of different hierar-

chies built upon the same image. This provides us with a condensed representation leveraging

the information provided by all the different levels of these different hierarchies. To do so, let

us consider an image I and a set of complementary hierarchies ((H1,λ1), . . . , (HN ,λN )) built

upon this image. As we have seen in section 2.4.3, it is then straightforward to compute the

GH-distance between these hierarchies, as they constitute ultrametric spaces upon the same set.

We take advantage of it by building the following symmetrical distances matrix:

M(I, (H1, . . . ,HN )) =
[
dGH(λi,λj)

]
(i,j)∈{1,...,N}2

(6.1)

Since this matrix is symmetrical, we retain for each image its upper triangular part only. This

constitutes a descriptor of the image for which we only had to specify the high-levels parameters

governing the hierarchies generation. Summarizing, an overview of the proposed process to

extract features from a family of hierarchies can be found in figure 6.1.

6.3 Experimental Results

In this section, we present some experimental results highlighting the properties of the

descriptors we have proposed in the previous section.

6.3.1 Dead leaves process classification

In a first experiment, we highlight the discriminative power of the unsupervised hierarchical

features we introduced, as long as their understandability. In the spirit of [Yan et al. (2017)], we

want to test if these features capture pertinent information leading to a quicker understanding of

the images. To do so, we consider a classification problem on a set of simulated images from

different dead leaves process [Jeulin (1997); Matheron (1975)].

In a dead leaves model, two dimensional textured surfaces (which are called “leaves” or

“primary grains”) are sampled from a shape and size distribution and then placed on the image

plane at random positions, occluding one another to produce an image. It is well-known that

such a model creates images which share many properties with natural images such as scale

invariance and other statistical properties [Zoran et al. (2012); Pitkow (2010)].

In our experiment, we have simulated five classes with 100 images each, by using dead

leaves model with different primary grains: circles, crosses, flowers, horizontal and vertical

lines. Examples of simulated images can be found in figure 6.2. Note that we have included

different sizes and orientations tweaks to increase the difficulty of the identification. For each

of these images, we compute the following hierarchies: trivial, surface-based SWS hierarchies

with structuring elements of various sizes and forms (cross, circle, diagonals, horizontal and

vertical lines), as long as logical combinations AND and OR of these SWS hierarchies. Then we

generate for each of these images the inter-hierarchical distances matrices of equation 6.1.

We can then use these matrices as features in a classical classification pipeline using a linear

support vector machines (SVM) to classify images of each class. During the training phase, we
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(a) (b) (c)

(d) (e)

Figure 6.2 – False-color representation of simulated images by dead leaves model with different
primary grains.

provide the SVM with inter-hierarchical distances matrices as images features, and ground truth

label for each training image. We thus train the SVM to discriminate between the diffferent

classes by maximizing the margins on the training set. We then test the efficiency of this trained

classifier on the testing set. We notice that the system can learn with very few examples how to

discriminate properly these five classes. In order to have a comparison point, we conduct the

same experiment using a Convolutional Neural Network (CNN) with a two-layers architecture 1

without image augmentation to make a fair comparison.

In figure 6.3 are represented for both experiments the evolutions of the average F-score with

respect to the percentage of images used in the training set. In the first experiment (using the

distances matrices as features), we notice that using only 5% of them (so 25 images out of 500)

already leads to a 85% F-score over the remaining images, and that this figure quickly goes up.

In the CNN experiment, the number of required training images to get to the same results is

significantly larger.

It is thus as if, on the contrary to CNN that have a black-box behavior, our approach

shows what is often referred to as an “aha moment”, i.e. a moment of sudden realization and

comprehension [Yan et al. (2017)]. This translates a form of understanding of the content of the

image, which is corroborated by the study of the importance of which specific inter-hierarchies

1. (12 Conv + 12 Conv + MaxPolling(3 × 3) + Dropout(0.3) ) + (24 filters + 24 filters + MaxPolling(3 × 3)+
Dropout(.5) ) + FullyCon64 + Dropout (.5) + SoftMax. Categorical cross-entropy as loss function and adaptive
gradient (Adagrad) as optimizer.
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(a) (b)

Figure 6.3 – Classification error vs the number of images in the training set (25 repetitions) : (a)
Linear SVM on proposed features, (b) CNN.

distances were the more useful to discriminate between two types of classes.

For example, discriminating between horizontal and vertical lines will mainly be due to

dGH(Hsurf−V ertSE ,Hsurf−HorizSE), while discriminating between crosses and circles will mainly

be due to dGH(Hsurf−CrossSE , Hsurf−HexSE). A visualization of the quality of the features space

thus generated can be found in figure 6.4(a), where we project the features in a space of

two dimensions using the t-SNE algorithm introduced in section 4.3.2 [Maaten et al. (2008)].

Furthermore, using the variable selection method L1-SVM [Zhu et al. (2004)], we can isolate

the more discriminative distances for two specific classes to separate. For example, the t-SNE

visualization in figure 6.4(a) shows us that discriminating between the classes “Flowers” and

“Horizontal Lines” is not straightforward. The more discriminative variable between these

two classes is the distance between Hsurf−V ertSE and HAND(surf−V ertSE,surf−HexSE): this is a

geometrical interpretation of the image content, as they respectively capture straight lines and

lines with a protuberance (i.e. flowers). Projecting the distances features onto the subspace of

the two more discriminative variables properly separates these two classes, as can be seen in

figure 6.4(b).

We are thus provided with a good way to control and understand features generation to be

further used in vision-based system, especially when we have prior information about the type

of objects we are looking for in images, and/or when we have very few training examples and

want to maximize their usefulness. Furthermore, this could be used in a method to obtain a

small descriptive collection of non-redundant hierarchies, to be further used in an automatic

segmentation workflow as described in chapter 5.

6.3.2 Mixture models

Furthermore, one may want to use such features to estimate the composition of mixtures

models. In a first approach, we generate different mixtures of horizontal and vertical lines and

want to evaluate how our approach can estimate their relative proportions. In figure 6.5 is
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(a) 2D scatterplot by t-SNE (b) 2D scatterplot by L1-SVM

(c) 2D scatterplot by L1-SVM

Figure 6.4 – (a) We notice that the classes “Flowers” and “Horizontal Lines” are not well separated
(b)These two distances between hierarchies provide a geometrical understanding of the images
content.Projecting along these features does indeed separate these classes efficiently. (c) The
same can be done for example for the classes “Flowers” and “Vertical Lines”

represented the different classification scores between the 50/50 class and several other mixtures

class. This plot confirms that these features capture internal hierarchical structures and can be

used to operate mixture classification.

6.3.3 Textures classification

In order to have an idea of the benefits and limits of the introduced features, we use them for

a classification problem of textures images. We select images from five classes of textures within

the Describable Textures Dataset (DTD), a collection of textural images in the wild, annotated with

a series of human-centric attributes, inspired by the perceptual properties of textures [Cimpoi

et al. (2014)]. The five classes are: banded, chequered, dotted, fibrous and interlaced. Examples

of images of these classes can be found in figure 6.6.

As in the previous experiment of section 6.3.1, we compute inter-hierarchies distances

matrices on each image, and then use them as features in a classical classification pipeline

using a linear support vector machines (SVM) to classify images of each class. The results

obtained on the test set are provided in figure 6.7 in the form of a confusion matrix. One can

notice that classes expressing strong geometrical features such as banded, chequered, and dotted
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Figure 6.5 – Classification between different mixtures and the 50/50 mixture class.

(a) Banded (b) Chequered

(c) Dotted (d) Fibrous

(e) Interlaced

Figure 6.6 – Examples images of textures classification problem.
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Figure 6.7 – Confusion matrix representing results obtained for the textures classification problem
when using inter-hierarchies distances matrices as features with a linear SVM on the testing set.

are usually well-classified, whereas classes that can only be understood based on periodicity

properties as fibrous or interlaced are poorly classified. This is consistent with the fact that the

hierarchies we compute are based solely on geometrical properties and do not aim at capturing

frequency properties for example. In this regard, they appear to be potentially complementary

with other multi-scales features computed in the frequency domain, that are better suited to

capture periodicities in images [Sifre et al. (2013)].

6.4 Conclusions and Perspectives

In this chapter, we have proven the efficiency of features created by estimating the differ-

ences between different hierarchical segmentations of the same images. The proof-of-concept

experiments we conducted show that these features can provide a geometrical interpretation of

the image content, and help to analyze images classes with very few examples. Furthermore,

this approach can be extended to any type of hierarchies to capture various types of information.

We see three ways to use such information.

First, if we know well the type of images we want to discriminate, we can generate at will

the hierarchies that will be the more discriminative. Secondly, if we build a sufficiently wide

range of complementary hierarchies for an unknown class of images, we can characterize these

images by looking at the way they react to these operators through the study of inter-hierarchies

distances. In line with classical morphological approaches, we can thus gain knowledge about

images by studying the way they react to given operators. Finally, many methods exist to extract

a segmentation out of a hierarchical segmentation, and our approach provides a way to identify

the hierarchies that will lead to the best results in such a process. This is then an unsupervised

technique that helps us to analyze the images content.
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Chapter 7

Prior-Based Hierarchical Segmentation

Associated publications:

— [Fehri et al. (2017a)] A. Fehri et al. [2017a]. « Prior-based Hierarchical Segmentation High-

lighting Structures of Interest ». In: International Symposium on Mathematical Morphology

and Its Applications to Signal and Image Processing. Springer, pp. 146–158

— [Fehri et al. (2017b)] A. Fehri et al. [2017b]. « Segmentation hiérarchique faiblement

supervisée ». In: Actes du 26e Colloque GRETSI, Juan-Les-Pins, France.

Résumé

Dans les chapitres précédents, nous avons vu comment utiliser des hiérarchies morphologiques

complémentaires pour extraire des régions pertinentes dans des images pour des tâches données.

L’idée était de structurer de façon contrôlée l’information présente dans l’image de diverses

manières, cependant cette analyse d’image était faite de manière spatialement homogène. D’un

autre côté, de nombreuses méthodes nous permettent d’avoir une information préalable sur la

position des objets d’intérêt dans les images. Dans ce chapitre, nous montrons comment une

légère modification du modèle des hiérarchies de Ligne de Partage des Eaux (LPE) stochastique

permet de prendre en compte toute information spatiale préalable pour obtenir une segmentation

hiérarchique qui privilégie les contours ou régions d’intérêt tout en préservant les structures

importantes de l’image. Plusieurs applications sont présentées qui illustrent la polyvalence et

l’efficacité de la méthode.

Abstract

In the previous chapters, we saw how to use complementary morphological hierarchies to extract

pertinent regions in images for given tasks. The idea was to structure the information present

in the image in various controlled ways, however this image analysis was done in a spatially

homogeneous way. On the other hand, many methods allow us to have prior information on the

position of structures of interest in the images. In this chapter, we show how a slight modification
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in the SWS hierarchies model allows to take into account any prior spatial information for

obtaining a hierarchical segmentation that emphasizes the contours or regions of interest while

preserving the important structures in the image. Several applications are presented that

illustrate the method versatility and efficiency.

7.1 Introduction

In the previous chapters, we saw how to use complementary morphological hierarchies to

extract pertinent regions in images for given tasks. The idea was to structure the information

present in the image in various controlled ways and use the resulting characterization for

segmentation or classification tasks. The information could be complex and was analyzed with

discriminative hierarchies regarding the image local content, but they were however spatially

homogeneous.

To go further, in this chapter we show how to treat images which content is not homoge-

neously distributed in the spatial domain, and how to take advantage of any prior information

over the regions of interests in the images. This way, we can make use of various exogenous spa-

tial information sources to direct the hierarchical segmentation construction. Such information

can take numerous forms, as illustrated in figure 7.1. Indeed, significant developments have been

made over the last decades in learning-based recognition methods for various tasks [Oquab et al.

(2015); Long et al. (2015); Redmon et al. (2016)]. A variety of sources and modalities have

emerged as well, with for example depth sensors [Fankhauser et al. (2015)] or multispectral and

hyperspectral cameras [Chang (2003)], and provide additional information that can be useful for

segmentation. Having a versatile hierarchical segmentation method that can take into account

such information during its construction process thus appears to be very interesting.

Building upon the stochastic watershed model introduced in section 3.3.6 and used in

previous chapters, we thus propose a method to take advantage of any prior spatial information

previously obtained on an image to get a hierarchical segmentation of this image that emphasizes

its regions of interest. This allows us to get more details in the designated regions of interest of

an image while still preserving its strong structural information.

Indeed, we note that such hierarchical clusterings are useful to understand scenes as they

enlarge the information support in a controlled way, and hence bring out significant salient

features. We already have seen that the SWS model is versatile as multiple construction types can

be thought of, the markers we use can be punctual or non-punctual and the number of markers

we draw can be changed. In this chapter, we go a step further by slightly modifying the SWS

model: using a probability density function governing the markers distribution that depends

on a spatial exogenous information is a simple yet powerful way to have a very task-ajdustable

hierarchical segmentation method.

Potential applications are numerous. When having a limited storage capacity (for very large

images for example), this would allow us to keep details in the regions of interest as a priority.

Similarly, in situations of transmission with limited bandwidth, one could first transmit the
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(a) RGBD image. The depth information can
help to direct the segmentation process.

(b) Many methods provide rough localizations
of classes of interests, for example here the class
“People”.

(c) Image and heatmap of the main class in
the image

(d) Image and output of a non-blur zones
detector

Figure 7.1 – A growing number of spatial exogenous information sources:
- localization methods adapted to each problem
- different channels
How can we use such exogenous information to pilot the hierarchical segmentation process?

important information of the image: the details of the face for a video-call, the pitch and the

players for a soccer game and so on. One could also use such a tool as a preprocessing one, for

example to focus on an individual from one camera view to the next one in video surveillance

tasks. Finally, from an artistic point of view, the result is interesting and similar to a combination

of focus and cartoon effects.

As we propose a hierarchical segmentation algorithm that focuses on certain predetermined

zones of the image, the hierarchical aspect also allows us, for tasks previously described, to very

simply tune the level of details wanted depending on the application.

Furthermore, our algorithm is very versatile, as the spatial prior information that it uses

can be obtained for example by any of the numerous learning-based approaches proposed

over the last decades to roughly localize objects [Oquab et al. (2015); Lampert et al. (2008);

Sermanet et al. (2013)]. In this regard, our work joins an important research point that consists

in designing approaches to incorporate prior knowledge in the segmentation, as shape prior

on level sets [Chan et al. (2005)], star-shape prior by graph-cut [Veksler (2008)], use of a

shape prior hierarchical characterization obtained with deep learning [Chen, Yu, et al. (2013)],

or related work making use of stochastic watershed to perform targeted image segmentation

[Malmberg et al. (2017)].
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7.2 Hierarchy with Regionalized Fineness (HRF)

The SWS model was introduced in details in section 3.3.6, and in this section we reuse the

notations previously introduced. The output of the SWS algorithm depends on the departure

MST (structure and edges valuations) and of the probabilistic law governing the markers

distribution. Furthermore, SWS hierarchies can be chained or combined, leading to a wide

exploratory space that can be used in a segmentation workflow (cf. chapter 5), or to design

discriminative image features for classification (cf. chapter 6).

Because of its versatility and good performance, SWS represents a good model into which

prior information may be injected. Indeed, when having a prior information about the image, is

it possible to use it in order to shed more light in some regions of the image than in others?

In the original SWS, a uniform distribution of markers is used (whatever size or form they

may have). In order to have stronger contours in a specific region of the image, we adapt the

model so that more markers are spread in this region.

Let E be an object or class of interest, for example E = “face of a person”, and I be the

studied image. We denote by θE the probability density function (PDF) associated with E

obtained separately, and defined on the domain D of I, and by PM(I, θE) the probabilistic map

associated, in which each pixel p(x, y) of I takes as value θE(x, y) its probability to be part of

E. Given such an information on the position of an object of interest in an image, we obtain a

hierarchical segmentation focused on this region by modulating the distribution of markers. We

refer to this hierarchy as to a Hierarchy with Regionalized Fineness (HRF).

If λ is a density defined on D to distribute markers (uniform or not), we set θEλ as a new

density, thus favoring the emergence of contours within the regions of interest.

Considering a region R of the image, the mean number of markers falling within R is then:

ΛE(R) =
∫

(x,y)∈R
θE(x, y)λ(x, y) dxdy (7.1)

Note that if we want N markers to fall in average within the domain D, we work with a

slightly modified density:

λ̂ = N

µ(D)λ (7.2)

Furthermore, this approach can be easily extended to the case where we want to take advan-

tage of information from multiple sources. Indeed, if θE1 and θE2 are the PDF associated with

two events E1 and E2, we can combine those two sources by using as a new density for example

AND(θE1 , θE2)λ = (θE1 × θE2)λ, OR(θE1 , θE2)λ = (θE1 + θE2 − θE1 × θE2)λ, SUP(θE1 , θE2)λ or

INF(θE1 , θE2)λ.

7.3 Methodology

We present here the steps to compute a HRF for an event E given a probabilistic map

PM(I, θE) providing spatial prior information on an image I:
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1. compute a fine partition π0 of the image, define a dissimilarity measure between adjacent

regions and compute the RAG G, and then theMST (G) to easily work with graphs,

(a) Image (b) Mosaic image

(c) RAG (d) MST

2. compute a probabilistic map πµ = πµ(π0,PM(I, θE)) with each region of the fine partition

π0 taking as a new value the mean value of PM(I, θE)) in this region,

(a) Image (b) Probabilistic Map
PM(I, θE)) associated
with “Bike" class

(c) πµ

3. compute new values of edges by a bottom-up approach as described in section 7.2, where

for each region Ri of π0, Λ(Ri) corresponds to the mean value taken by pixels of the region

Ri in πµ. Note that this approach allows a highly efficient implementation using dynamic

programming on graphs. The resulting hierarchy retains more details in the region of

interest, while still capturing the important structures of the image.

(a) 10 regions (b) 100 regions (c) 200 regions
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7. PRIOR-BASED HIERARCHICAL SEGMENTATION

Making use of multiple sources is also very simple and consists in fusing the probability maps

in a controlled way, depending on the objective. It is illustrated in figure 7.5.

Figure 7.5 – Dummy example of the combination of two probability maps to get a new one
that be put as input of the HRF. One probability map highlights the face of the person in the
image, while the other corresponds to the specific depth at which the character is, extracted
from a depth image. Starting from θE1 and θE2 , the new probability density function we use is
(θE1 × θE2)λ, corresponding to the probability density function of the event “both E1 and E2 are
present”.

7.4 Modulating the HRF depending on the couple of regions

considered

If we want to favor certain contours to the detriment of others, we can modulate the density

of markers in each region by taking into account the strength of the contour separating them but

also the relative position of both regions.

We use the same example and notations as in section 7.2, and thus want to modulate the

distribution of markers relatively to Rs, Rt and their frontier. For example, to stress the strength

of the gradient separating both regions we can locally spread markers following the distribution

χ(Rs,Rt)λ, with χ(Rs,Rt) = ωst. This corresponds to the classical volume-based SWS, which

allows to obtain a hierarchy that takes into account both surfaces of regions and contrast between

them.

To go further, one can use any prior information in a similar way. Indeed, while using prior

information to influence the output of the segmentation workflow, one might also want to choose

whether the relevant information to emphasize in resulting segmentations is the foreground, the

background or the transitions between them.

For example, having more details in the transition regions between background and fore-

ground allows us to have more precision where the limit between foreground and background is

180



7.5. Applications

actually unclear. As a matter of fact, the prior information often only provides rough positions

of the foreground object with blurry contours, and such a process would allow to get precise

contours of this object from the image.

Let us consider this case and define for each couple of regions (Rs,Rt) a suitable χ(Rs,Rt). We

then want χ(Rs,Rt) to be low if Rs and Rt are both in the background or both in the foreground,

and high if Rs is the background and Rt in the foreground (or the opposite). We use: λ̃ = χλ

χ(Rs,Rt) = max(m(Rs),m(Rt))(1−min(m(Rs),m(Rt)))
0.01+σ(Rs)σ(Rt) ,

(7.3)

m(R) (resp. σ(R)) being the normalized mean (resp. normalized standard deviation) of pixels

values in the region R of PM(I). Thus the number of markers spread will be higher when the

contrast between adjacent regions is high (numerator term) and when these regions are coherent

(denominator term).

Then for each edge, its new probability to be cut is :

P[(µ(Rp) ≥ 1) ∧ (µ(Rq) ≥ 1)] = 1− exp−χ(Rs,Rt)Λ(Rp)− exp−χ(Rs,Rt)Λ(Rq)

+ exp−χ(Rs,Rt)Λ(Rp∪Rq)
(7.4)

In the spirit of the work presented in [Chen, Dai, et al. (2016)], this mechanism provides

us with a way to “realign” the hierarchy with respect to the relevant prior information to get

more details where the information is blurry. Similar adaptations can be thought of to emphasize

details of background or foreground regions.

7.5 Applications

7.5.1 Scalable transmission favoring regions of interest

Let us consider a situation where one emitter wants to transmit an image through a channel

with a limited bandwidth, e.g. for a videoconference call. In such a case, the more important

informations to transmit are details on the face of the person on the image. Besides, we nowadays

have highly efficient face detectors, using for example Haar-wavelets as features in a learning-

based vision approach [Viola et al. (2001)]. Considering that for an image in entry, the face

can be easily detected, we can use this information to produce a hierarchical segmentation of

the image that accentuates the details around the face while giving a good sketch of the image

elsewhere. Depending on the bandwidth available, we can then choose the level of the hierarchy

to select and obtain the associated partition to transmit, ensuring us to convey the face with as

much details as possible. Some results are presented in Figure 7.6, with notably a comparison

between a classical volume-based SWS UCM and a volume-based HRF UCM.
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7. PRIOR-BASED HIERARCHICAL SEGMENTATION

(a) Image (b) Prior : Probabilistic
map obtained thanks to a
face detection algorithm

(c) Volume-based SWS Hi-
erarchy UCM

(d) Volume-based HRF
UCM with face position as
prior

(e) Segmentation obtained with
HRF - 10 regions

(f) Segmentation obtained with
HRF - 100 regions

(g) Segmentation obtained with
HRF - 1000 regions

Figure 7.6 – Hierarchical segmentation of faces.

7.5.2 Artistic aspect: focus and cartoon effect

The same method can also be used for artistic purposes. For example, when taking as prior

the result of a blur detector [Su et al. (2011)], we can accentuate the focus effect wanted by

the photograph and turn it into a cartoon effect as well - see Figure 7.7 for an illustration of the

results.

(a) Original image (b) Prior image obtained
with non-blur zones de-
tection algorithm.

(c) Volume-based SWS Hi-
erarchy UCM

(d) Volume-based HRF
UCM with non-blur zones
as prior

(e) Segmentation obtained with
HRF - 10 regions

(f) 200 regions. (g) 2000 regions.

Figure 7.7 – Hierarchical segmentation of non-blur objects.
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7.5.3 Combining hierarchies using different sources

We have exposed in chapter 4 various ways to combine hierarchies. One can as well combine

hierarchies obtained with prior information coming from multiple sources. Let us consider for

example a RGB-D image in which a person is present. A face detection algorithm can be used to

localize the face of the person in the image. Using this information, one can then extract the

particular depth at which the face of the person (and thus the person in most cases) is present in

the depth image.

One thus obtain two probability maps: one associated with the face of the person, that

we denote PMF , the other translating the depth at which the person is, that we denote PMD.

Combining these two probability maps by multiplying them (which corresponds to the AND
operator) then leads to a new probability map PMAND(F,D) that highlights the whole body of

the person with a particular emphasis on his face, as one can see in figure 7.8.

The HRF HAND(F,D) built using PMAND(F,D) better captures the pertinent information than

the two HRF HF and HD built using the two probability maps separately, as illustrated in figure

7.9.

(a) Image (b) Superpixels (c) Mosaic image

(d) Combination of probability maps

Figure 7.8 – Combining two probability maps associated with two information sources.
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(a) HF : 5 regions (b) HF : 25 regions (c) HF : 100 regions (d) HF : saliency
map.

(e) HD: 5 regions (f) HD: 25 regions (g) HD: 100 regions (h) HD: saliency
map.

(i) HAND(F,D): 5 re-
gions

(j) HAND(F,D): 25 re-
gions

(k) HAND(F,D): 100
regions

(l) HAND(F,D):
saliency map.

Figure 7.9 – Example of the effect of the combination of probability maps for HRF.

7.5.4 Weakly-supervised HRF

In the same spirit, various methods now exist to automatically roughly localize the principal

object in an image. We inspire ourselves from [Oquab et al. (2015)] to do so. Using the state-of-

the-art convolution neural network (CNN) classifier VGG19 [Simonyan et al. (2014)] trained on

the 1000 classes ImageNet database [Deng et al. (2009)], we first determine what is the main

class in the image. Note that this CNN takes as input only images of size 224× 224 pixels. Once it

is known, we can then, by rescaling the image by a factor s ∈ {0.5, 0.7, 1.0, 1.4, 2.0, 2.8}, compute

for sub-windows of size 224× 224 of the image the probability of appearance of the main class.

By simply superimposing the results for all sub-windows, we thus obtain a probabilistic map of

the main class for each rescaling factor. By max-pooling, we keep in memory the result of the

scale for which the probability is the highest. The heatmap thus generated takes as value in each

pixel the probability that this pixel belongs to the class of interest. This probability map can then

be used to feed our algorithm. This way, we have at our disposal an automatized way to focus

on the principal class in the scene with the desired level of detail.

All in all, the combination of this approach and the HRF is very interesting as it constitutes

an all-in-one method to classify the image (i.e. to find the main class in the image), to localize

the objects of this main class in it, and to get from it a hierarchy of segmentation in which those

elements are highlighted. An overview of this method can be found in figure 7.10 and some

results are presented in figure 7.11 and 7.12.
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Figure 7.10 – Weakly-supervised HRF algorithm.

(a) Original image (b) Heatmap issued by
the CNN-based localiza-
tion method

(c) Volume-based SWS
hierarchy UCM

(d) HRF UCM.

(e) Segmentation obtained with
HRF - 10 regions.

(f) 100 regions. (g) 200 regions.

Figure 7.11 – Hierarchical segmentation of the main class (class “bike”) in an image with heatmap
issued of a CNN-based method as input.

7.5.5 Hierarchical co-segmentation

Another potential application is to co-segment with the same fineness level an object appear-

ing in several different images. For example, when given a list of images of the same object taken

from different perspectives/for different conditions, we can follow the state-of-the-art matching

procedure [Lowe (2004)]:
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(a) Image (b) HRF UCM (c) Volume-based SWS
HRF

(d) Heatmap of the
main class

(e) 2 first regions of the
HRF.

(f) 2 first regions of the
volume-based SWS hier-
archy.

Figure 7.12 – Hierarchical segmentation of the main class (class “banana”) in an image with
heatmap issued of a CNN-based method as input.

1. compute all key-points in all images, using for example the FAST algorithm [Rosten et al.

(2006)]

2. compute local descriptors at these key-points, such as SIFT [Lowe (2004)]

3. match those key-points using a spatial coherency algorithm as RANSAC [Fischler et al.

(1987)]

Once it is done we retain these matched key-points between all images, and generate probability

maps of the appearance of the matched objects using a morphological distance function to the

matched key-points.

These probability maps can then feed our algorithm, resulting in a hierarchical co-segmentation

that emphasizes the matched zones of the image. Some results are presented in figure 7.13. This

example speaks for the interest of such an approach. While the contours in the helicopter are

not necessarily the more salient ones in each image taken separately, the matching of keypoints

throughout images results in a prior image emphasizing regions inside it. The comparison

of the volume-based SWS hierarchy and HRF saliency maps confirms that the details in the

helicopter are much more efficiently highlighted in the latter. The process thus helps us obtaining

representations of images emphasizing shared objects between them, and with the desired level

of detail. Note that such a method could highly be of benefit for approaches making use of

hierarchical segmentation for co-saliency detection such as [Liu et al. (2014)], by producing

hierarchical segmentations that already retain contours of shared objects between images, in a

robust manner (since the keypoints and descriptors used are robust to image transformation,

occlusions etc.).
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(a) I1 (b) I2 (c) I3 (d) I4 (e) I5

(f) All matched
key-points of I3
with other im-
ages key-points

(g) Prior for
I3: probability
map gener-
ated thanks
to morpholog-
ical distance
function

(h) Volume-based SWS
Hierarchy UCM for I3

(i) Volume-based HRF
UCM for I3 with matched
key-points as prior.

(j) Volume-based SWS Hi-
erarchy UCM for I4

(k) Volume-based HRF
UCM for I4 with matched
key-points as prior.

Figure 7.13 – Hierarchical co-segmentation of matched objects.

7.5.6 Effect of the HRF highlighting transitions between foreground and

background

We illustrate in this section the HRF highlighting transitions between foreground and back-

ground presented in section 7.4. We present its effect in the face detection example in figure

7.14, and its effect in the weakly-supervised HRF example in figure 7.15. One can notice that

insisting on the transition between background and foregroud helps to better delineate the

contours corresponding to these transitions in both examples. In figure 7.14(k), we thus observe

how the hands and face of the character emerge first. Similarly, in figure 7.15(e)(f), we see that
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(a) Original image (b) Case 1: UCM of HRF
depending on the couples
of regions (section 7.4).

(c) Case 2: UCM of HRF
depending on the regions
only (section 7.2).

(d) Case 3: Both com-
bined.

(e) Case 1: 4 regions. (f) Case 1: 10 regions. (g) Case 1: 25 regions.

(h) Case 2: 4 regions. (i) Case 2: 10 regions. (j) Case 2: 25 regions.

(k) Case 3: 4 regions. (l) Case 3: 10 regions. (m) Case 3: 25 regions.

Figure 7.14 – Hierarchical segmentation of faces highlighting transitions between background
and foreground.

the car structure emerges in early levels of the hierarchy, whereas we do not obtain such a result

otherwise.

7.6 Conclusion and Perspectives

We have proposed a novel and efficient hierarchical segmentation algorithm that emphasizes

the regions of interest in the image by using spatial exogenous information on it. The wide

variety of sources for this exogenous information makes our method extremely versatile and its

potential applications numerous, as shown by the examples developed in the last section.
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(a) Image (b) Heatmap of the class
“car”

(c) Case 1: UCM of the
HRF

(d) Case 2: UCM of the
volume-based SWS

(e) Case 1: 5 regions (f) Case 1: 10 regions (g) Case 2: 5 regions (h) Case 2: 10 regions

Figure 7.15 – Hierarchical segmentation of the main class in the image (class “car”) highlighting
transitions between background and foreground.

To go further, we could find a way to efficiently extend this work to videos. One could also

imagine a semantic segmentation method that would go back and forth between localization

algorithm and HRF to progressively refine the contours of the main objects in the image.
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Chapter 8

Combining Convolutional Neural
Networks With Morphological
Hierarchical Segmentations

Résumé

Au cours des dernières décennies, l’analyse et le traitement d’images ont été fortement impactées

par l’émergence de méthodes fondées sur l’apprentissage. En particulier, les techniques utilisant

les réseaux de neurones convolutionnels (en anglais Convolutional Neural Networks, ou CNN)

ont resurgi [Krizhevsky et al. (2012)], du fait de l’explosion du nombre de données annotées

disponibles et de la puissance de calcul nécessaire pour les traiter. Les CNN fournissent l’état

de l’art dans beaucoup de domaines de la vision par ordinateur. Dans ce chapitre, nous ou-

vrons quelques perspectives sur la manière dont les filtrages ou segmentations morphologiques

pourraient se combiner avec les CNN pour en améliorer les performances.

Abstract

Over the past decades, image analysis and image processing have been strongly impacted by

the emergence of learning-based methods. In particular, convolutional neural networks (CNN)

techniques have resurfaced [Krizhevsky et al. (2012)] because of the explosion of the number of

annotated data available and of the computing power necessary to handle them. CNNs nowadays

provide the state of the art in many areas of computer vision. In this chapter, we open some

perspectives on possible combinations of CNN with morphological filtering or segmentation in

order to improve their performances.
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SEGMENTATIONS

8.1 Introduction

In the last decades, image processing and image analysis have been highly impacted by the

emergence of learning-based methods for a large number of tasks. Historically, several machine

learning models, like SVM [Boser et al. (1992); Cortes et al. (1995)] or random forests [Breiman

(2001)], have been used in combination with handmade features [Mikolajczyk et al. (2005)] and

applied with success to a variety of problems, for example face detection [Viola et al. (2001)],

human detection [Dalal et al. (2005)], image classification [Csurka et al. (2004)] or object

tracking [Zhou et al. (2009)].

Recently, a paradigm shift has been operated, arguing that task-specific features should be

learned for better efficiency [Mairal et al. (2012)]. In this regard, the neural networks model

has arisen again, fueled by the explosion of the amount of annotated data available [Deng et al.

(2009); Lin et al. (2014)], the increase of computing power (namely GPUs) to handle them, as

well as theoretical advances that resolved some of their inefficiencies. When applied to images,

it makes use of convolutions to aggregate local information, and shares parameters, and we thus

refer to Convolutional Neural Networks (CNN). The high number of parameters to adjust in such

models also led to coin the expression Deep Learning to designate them. In CNNs, instead of using

handmade features to discriminate between classes of elements in in a high-dimensional space,

the model attempts to directly infer from the data the features that simplify this discrimination

for a specific given problem by progressively adjusting its parameters using back-propagation to

optimize a cost-function on the training set.

The intuition behind CNNs can be traced back to visual perception mechanism of animals

[Hubel et al. (1968)] and McCulloch-Pitts model [McCulloch et al. (1943)], proposed as neocog-

nition by Fukushima in 1980 [Fukushima (1980)]. It is the first computational model using

local connectivity between neurons in a hierarchical structure on images. Later, LeCun et al.

[LeCun, Denker, et al. (1990)] obtained state-of-the-art performances on handwritten character

recognition by means of a multilayer CNNs. Recently, researchers have developed more refined

methods to overcome main difficulties in training complex CNN architectures. Especially, AlexNet

[Krizhevsky et al. (2012)] is considered as a milestone in the design and training of CNNs due to

its excellent performance in large-scale image classification in the well-known ImageNet Chal-

lenge [Deng et al. (2009)]. It includes two novels components, ReLUs (Rectified Linear Units)

instead of tanh units, which makes the training processes several times faster; and Dropout of

coefficients, which is proved to be very effective in diminishing overfitting. In the last five years,

several variants including VGGNet [Simonyan et al. (2015)], GoogLeNet [Szegedy et al. (2015)]

and ResNet[He, Zhang, et al. (2016)], have been designed to further improve the performance

of CNNs on different visual recognition tasks.

Despite these impressive results, CNNs present certain limitations [Marcus (2018)]. We

expose some of these limitations and draw some perspectives on how morphological hierarchical

segmentations may complement CNNs.
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8.2 Making the CNN more robust to noise using levelings

Many state-of-the-art CNN architecture for image classification [Krizhevsky et al. (2012);

Simonyan et al. (2014); Szegedy et al. (2015)] have been trained and tested on noise-free

images such as the ones from the ImageNet database [Deng et al. (2009)]. However, it turns

out that such models are non-robust when noise is added to the input image. Indeed, it has

been shown that CNN can be fooled by carefully designed images that are unrecognizable for the

human eye, but falsely recognized despite a high confidence by the CNN [Nguyen et al. (2015)],

as illustrated in figure 8.1(a). Conversely, it has also been shown that adding a specific noise

to an image using an adversarial network, with as a goal to mislead the classifier, can lead to

classification results that are grossly incorrect for images that are easily recognized by the human

eye [Goodfellow et al. (2014)], as one can see in figure 8.1(b).

(a) (b)

Figure 8.1 – Illustration on adversarial attacks that fool CNN. (a) Carefully designed unrecogniz-
able images can be believed to be a familiar object by a CNN with a certainty superior to 99%
(excerpt from [Nguyen et al. (2015)]). (b) Conversely, adding noise designed by an adversarial
network can lead a CNN to be completely wrong with high confidence for an image that is easily
recognizable by the human eye (excerpt from [Goodfellow et al. (2014)]).

However, even simple noise such as a Gaussian one, can lead to results being very wrong. In

figure 8.3, we thus represent as an example the percentage of good classification of the MNIST

dataset [LeCun, Bottou, et al. (1998)] images by a CNN, with respect to the amount of Gaussian

noise added on the image to classify. One can see that the addition of noise can severely mislead

the CNN. One potential solution to this problem would be to add, during the CNN training,

images presenting such noise. This is the type of approach privileged by adversarial networks,

in which it is proposed to train the classifier to be robust to noisy images, while an adversarial

network attempts at designing a type of noise that can mislead the classifier [Goodfellow et al.

(2014)]. However, this appears to be a never-ending process, as we cannot know with certainty

that the classifier will be able to cope with a given type of noise. This is why we propose an other

research path to make the CNN more robust to adversarial attacks.
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(a) Image exam-
ple

(b) Image with
added Gaussian
noise

(c) Evolution of the classification accuracy with
the amount of added noise

Figure 8.2 – The more Gaussian noise is added to the test image to classify, the less accurate the
classifier that has been trained on the MNIST database.

The leveling is a classical mathematical morphology filtering technique, that has previously

been introduced in section 5. Its main interest resides in the fact that it does not create any

contour in the image while it simplifies and denoises it. On the contrary, levelings extend flat

or lambda-flat zones, and thus applying them, associated to a series of rougher and rougher

markers, has the effect of progressively simplifying the image while keeping its main contours

intact for the most time, as was exposed in section 5.

We hereby apply alternate sequential filtering (ASF) using levelings to noisy images before

classifying them with a CNN trained to classify images of the MNIST database. More precisely,

we generate a hierarchy of levelings HASF−lev with the alternate sequential model using as

markers erosions and dilations of increasing sizes (see section 5 of chapter 3 for more details).

We then compare the classification results over the whole MNIST database with and without this

filtering, for different levels of the hierarchy. The results are very encouraging for certain levels

of the hierarchy (linked with the width of the characters to recognize), as we can see a major

enhancement of the classification score when the noise is important. Levelings and hierarchies

of levelings, thus appear to be interesting tools to use to obtain more robust images to feed the

CNN architectures with.
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(a) Image with
added Gaussian
noise

(b) HASF−lev:
λ = 1

(c) HASF−lev:
λ = 3

(d) HASF−lev:
λ = 5

(e) Evolution of the classification accuracy on MNIST dataset for images with added Gaussian
noises, with respect to the amount of added noise, and for different levels of a hierarchy of flat
levelings obtained following an alternate sequential construction.

Figure 8.3 – The filtering of the noisy image using levelings increases classification accuracy.
However, for a level of ASF levelings hierarchies that simplifies the image too much, the
classification accuracy begins to decrease.

Several new research directions can be thought of based on this experiment:

— One can try to learn in a greedy feed-forward way, for a given CNN, the appropriate

hierarchy of levelings, and within this hierarchy the leveling that makes the CNN the more

robust to adversarial attacks, in a similar way that what has been proposed in chapter 5.

— To go further, one may want to incorporate leveling filters in the CNN, in order to be able

to directly infer from given data the best possible leveling to apply to make the system

more robust to adversarial attacks. Unfortunately, backpropagation requires differentiable

operators. This is not the case of morphological operators in general, and levelings

in particular. An interesting research direction thus consists in finding differentiable

approximate functions having similar effects than levelings, in order for them to be a direct

component of the CNN training process.
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8.3 Enriching the Feature Space: Application to Video Object

Segmentation

8.3.1 Concept

In this section, we explore the possibility to enrich the input features spaces on which the

objects of interest representation is learned using a CNN: instead of working on the gray-scale

or (R,G,B) feature space as input space, one can indeed incorporate more layers to make this

space richer.

In particular, we want to study the impact of enriching the CNN input features space

with given levels of morphological hierarchical segmentations. Instead of taking as input 3

layers (R,G,B), we propose to study the effect of enriching the CNN input by stacking upon

(R,G,B) several color images coming from different hierarchies and levels of these hierarchies.

These additional images are of the form (R(Hk,λl), G(Hk,λl), B(Hk,λl)), with k ∈ {1, . . . , n} and

l ∈ {1, . . . ,m}, given n normalized hierarchies {(H1,λ1), . . . , (Hn,λn)} and m levels of their

ultrametrics {λ1, . . . , λm}. We call this process input features space augmentation.

To properly test this possibility, we operate on the semi-supervised video object segmentation

problem, for which we can work with the Densely Annotated Video Segmentation (DAVIS) database

and its given evaluation metrics [Perazzi, Pont-Tuset, et al. (2016)].

In the next section, we begin by properly introducing the video object segmentation problem

and its difficulties. Then we detail the method we propose to address these difficulties. Finally,

we present qualitative and quantitative results, and evaluate the impact of the feature space

enrichment on obtained results.

8.3.2 Video Object Segmentation

Video object segmentation is a two classes labeling problem aiming at separating foreground

objects from the background region of a video. This bipartition of the video is a spatio-temporal

two-classes segmentation which is fundamental to several applications including action recogni-

tion, object tracking, video summarization, and cooperative multi-camera video processing.

Depending on the considered scene and the goal of the user, this “foreground” object may vary

and multiple valid solutions are conceivable. Indeed, the choice of the object to follow across the

video is highly dependent on the application. This is why we hereby present a semi-supervised

approach that uses sparse user-given cues to produce the video object segmentation. These

cues can be masks specified on one or a few key frames, in which case the problem is a mask

propagation one. More simply, they can consist in a sparse set of labels given by the user. In

our case, we align with evaluation criteria from the DAVIS database [Perazzi, Pont-Tuset, et al.

(2016)], and thus only use the mask of the object of interest given for the first frame of the video.

The difficulties associated with this problem are multiple, and are listed in figure 8.4, excerpt

from [Perazzi, Pont-Tuset, et al. (2016)].
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Figure 8.4 – Challenges encountered when doing video object segmentation (excerpt from
[Perazzi, Pont-Tuset, et al. (2016)]).

The method we propose takes advantage of the highly efficient and accurate representations

of objects obtainable thanks to CNNs which are currently the state-of-the-art image classifiers,

as long as a unified approach to learn a sequence of morphological filters from representations

produced by CNNs denoted by CNN+MM. Our main contributions are:

— A video object segmenter that includes both a texture detector from a CNN and shape

attributes from MM filters (section 8.3.5).

— An efficient morphological filters selection, which in practice complements and improves

the performance of CNN in (sect. 8.3.5).

We have furthermore conducted a comprehensive empirical validation on the DAVIS video dataset

(section 8.3.7) and report competitive results with state-of-the-art.

8.3.3 Related Work

Classical approaches

Graph-cuts Video Segmentation Images and videos can be represented by a graph structure

in which edges connect neighboring objects, be it pixels for images or voxels for video sequences.

The video segmentation problem can then be seen as an optimization one, aiming to assign
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coherent labels to nodes while complying with an object model or user constraints. Graph-cuts

techniques have been proposed to solve this problem for video segmentation.

Using this framework, one can lower the computation cost of graph-cuts techniques by

operating regionwise instead of pixelwise, thus reducing the number of nodes in the graph. This

can be done using clustering techniques such as spatio-temporal superpixels (supervoxels) [Xu

and Corso (2012)] [Chang et al. (2013)] that oversegment the video into spacetime homogeneous

and perceptually distinct regions, or per-frame watershed algorithm as in [Li et al. (2005)] and

[Price et al. (2009)].

Interactive video segmentation based on hierarchies of segmentations In a similar fashion,

some works have been conducted that make use of hierarchies of segmentations for video object

segmentation [Marcotegui et al. (1999); Zanoguera (2001)]. The specifics of these methods are:

1. Computation of a hierarchy of partitions on the first frame and interactive segmentation

with markers specified by the user.

2. Projection of a partition from one frame to the next one, based on change detection

followed by motion analysis: (i) camera motion estimation and compensation, (ii) scene-cut

detection: if a scene-cut is detected, all parameters of the segmentation algorithm are reset

to their initial values and the user is asked to provide markers for a new segmentation (cf.

step 1), (iii) estimation of change-detection mask, (iv) uncovered background elimination,

(v) contour adaptation to luminance edges.

Silhouettes/masks propagation Besides graph-based methods, several other solutions have

been proposed to the video object segmentation problem. For example, optical flow and nearest

neighbor fields can be used to propagate silhouettes or masks over multiple frames [Agarwala

et al. (2004)],[Bai et al. (2009)],[Chuang et al. (2002)],[Fan et al. (2015)], [Lang et al. (2012)].

Probability foreground methods Video SnapCut [Bai et al. (2009)] uses local classifiers that

predict the foreground probability, which are propagated and refined over time. A robust version

has been introduced in [Price et al. (2009)]. Final binary segmentation is inferred using a

conditional random field formulation.

Bilateral Space Bilateral filtering is a powerful tool used for edge-adhering image processing

operations [Tomasi et al. (1998)]. In [Marki et al. (2016)], the authors propose an efficient

graph-cut approach taking advantage of it. To do so, they use the bilateral grid introduced in

[Chen, Paris, et al. (2007)], a structure aiming at speeding the bilateral filtering by projecting

pixels into a higher-dimensional space based on position and color, but with a significantly lower

resolution, with improved results in terms of speed and performances.

198



8.3. Enriching the Feature Space: Application to Video Object Segmentation

CNN-based segmentation methods

In a way, the efficiency of the use of bilateral space in [Marki et al. (2016)] is due to the

fact that it constitutes a good representation space. Indeed, once the object pixels have been

projected into this space, they are easier to recognize in the subsequent frames. In the same

spirit, we propose to use CNNs to learn for each object that we want to follow in the video its

representation. This approach has been inspired by the numerous segmentation methods that

emerged in the last years. Other works have a similar approach.

One-Shot Video Object Segmentation [Caelles et al. (2017)] The specifics of this method

are:

1. Departure from a CNN trained on ImageNet, called base network.

2. The use of transfer learning using images+label from DAVIS leads to the parent network.

3. Use of a Fast Bilateral solver to snap the background prediction to the image edges.

4. Learn a CNN to detect contours, then superpixels, compute Ultrametric Contours Map and

eliminate low values.

5. Majority votes in superpixels from parent network.

Learning Video Object Segmentation from Static Images [Perazzi, Khoreva, et al. (2017)]

The specifics of this method are:

1. Learning operates from (R,G,B,MASK) to MASK.

2. Image augmentation on (R,G,B,MASK) (which is classical) and on MASK only by

elastic deformations, to simulate the movement of the object from one frame to the other.

3. Makes use of Optical Flow and box annotation.

4. Then to test the network for a new frame: given the mask estimate at time t− 1, a dilation

is applied and the resulting rough mask is used as input for object segmentation at time t.

Video Propagation Networks [Jampani et al. (2017)] The specifics of this method are:

— A bilateral filtering in temporal space is learned.

— A prediction model (of the regression type) is then used from previous mask and images to

predict the next mask.

8.3.4 Method overview

In this section, we present our method to do semi-supervised video object segmentation.

Given the segmentation ground truth on the first frame, we first learn an object representation of

the object using a CNN as well as an appropriate morphological filters workflow to get a proper

segmentation as an output of the CNN, as will be described in details in section 8.3.5. We can

then apply this learned model to the object to track along the successive frames. Furthermore,
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Figure 8.5 – An overview of our workflow. Top: A CNN is trained on the first frame. A forward
selection of of the best sequence of morphological transformations. Bottom: For a new frame
CNN+MM predicts the binarization

we also take advantage of the information redundancy between frames to ensure temporal

coherency through them and to simplify the segmentation task, using for this levelings and in

particular reconstruction openings. This will be detailed in section 8.3.6.

A sketch giving an overview of the global method can be found in figure 8.5, and an example

of the obtained results is provided in figure 8.6. The two next sections expose the details of the

method.

8.3.5 Learning phase

Representation Learning using Convolutional Neural Networks (CNN)

Given the first frame and the associated ground truth segmentation, we wish to train a

classifier which, for each pixel of the image, outputs its probability to be in the object. To do

that, we use a CNN.

In our case, the procedure is the following. For each pixel with a given ground truth value

(e.g. 1 if in the object, -1 if not), a convolution window is extracted and weights of the links

between CNN nodes are progressively refined using backpropagation. We have thus learned on

the first frame a representation of the object. At test time, when fed with a new video frame, the

CNN ouputs an image in which each pixel takes as value its probability to be in this object. This

is illustrated in figure 8.7. The next step is devoted to producing a binary segmentation out of

this gray-scale image.
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(a) Frame 1 (b) Frame 11 (c) Frame 41 (d) Frame 71

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8.6 – Qualitative video segmentation results on a sequence of DAVIS [Perazzi, Pont-Tuset,
et al. (2016)].

Figure 8.7 – A CNN is trained on the first frame. At test time, for a new frame, it outputs for
each pixel its probability to be in the object.
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Figure 8.8

Automatic selection of morphological filters

To this effect, we learn on the first frame of the video the best composition of morphological

filters to extract from the output of the CNN the best possible segmentation according to

some error measure. In the experimental section, we fix the maximal composition depth of

morphological filters to 5 and for the error measure we choose the Jaccard index J between

segmentation result and ground truth. An overview of this process is depicted in figure 8.8.

Morphological filters are added to the detection workflow in a forward stepwise fashion,

i.e. at each step we consider the best filter Φ of the image I to be included if and only if

there is a considerable improvement according to the error measure J, given the ground truth

segmentation Y. If there is not a filter that reduces the error, we terminate the process.

max
λ

J(Y,Φ(I) ≥ λ) (8.1)

Notice that since the morphological operators we use operate on gray-scale images, at each step

we select the best filter Φ and threshold λ according to the error measure J, but only keep in

memory the best filter and let the threshold change as the composition of filters gets deeper.

The considered morphological filters are the following, with structuring elements of sizes 1

to 5:
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Figure 8.9 – Workflow of this temporal coherence enforcement.

— Erosion and dilation

— Opening and closing

— Alternate Sequential Levelings

— Fill holes functions

We are thus provided with an adaptive way to filter CNN output images and get binary

segmentations out of them. But each time the CNN is tested on a new video frame, false positives

can appear due to the appearance of a new object or a change in the background, as well as

false negatives due to object deformations or occlusions. To handle these issues, we need to take

advantage of the information redundancy between frames.

8.3.6 Temporal Coherence via Leveling and Morphological Reconstruction

This is why we extend the single frame method to video volumes by adding an additional

step of morphological filtering. The workflow of this temporal coherence enforcement can be

found in figure 8.9.

First we use a leveling to filter the results of the CNN output in the temporal dimension.

Levelings simplify image in suppressing details without displacing or blurring the contours of

the remaining structures. Spatio-temporal filtering should follow the motion of points between

frames.
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Let us thus consider two consecutive frames of the image I(t) and I(t+ 1), and assume we

have a segmentation S(t) of I(t) and wish to use this information to get a segmentation S(t+ 1)
of I(t + 1). Then we simply begin by filtering the CNN output P (t + 1) = CNN(I(t + 1)) by

applying a leveling to it, using S(t) as marker function, and obtain P̂ (t+ 1). We then apply the

learned MM filters on P̂ (t+ 1) as described in section 8.3.5, giving us S(t+ 1). This prevents

incorrectly averaging information across object boundaries and eliminate false detection on

single frames.

Furthermore, to tackle the false negatives due to object deformations, we use a morphological

reconstruction ρ to reconstruct the object in S(t + 1) using S(t) as a marker, that we denote

ρS(t+1)(S(t)) [Vincent (1993)]. Since it can lead to a disappearance of the object in case of

object occlusion, we however introduce a safeguard condition at this step:

— Ŝ(t+ 1) = ρS(t+1)(S(t))

— s = area(Ŝ(t+1)∩S(t))
area(S(t))+1 , with area the function returning the number on non-zero pixels in an

image

— Then:  S(t+ 1)← Ŝ(t+ 1) if s > 0.5
S(t+ 1) remains unchanged otherwise

8.3.7 Results and conclusions

In order to evaluate the method, we conducted extensive experiments on the DAVIS dataset.

The scores that are evaluated are the ones from [Perazzi, Pont-Tuset, et al. (2016)], namely the

Jaccard index J , the F-score F and a temporal stability score T .

In the table above, the methods that we implemented, calledOUR1 andOUR2, both followed

the process described in sections 8.3.5 and 8.3.6, only differing by the input feature space:

— OUR1 only uses the (R,G,B) channels at training and test time.

— OUR2 uses as input features of the CNN, both a training and test time, a stacking of

(R,G,B) and (R(HASF−lev ,λl), G(HASF−lev ,λl), B(HASF−lev ,λl)) for l ∈ {1, . . . ,m} levels of a

hierarchy of alternate sequential flat levelings HASF−lev.

Several remarks can be made about these results. Tests of input features space augmentation

using watershed hierarchies did not lead to an improvement of results, and this is why they are

not presented in the table. This is probably due to the fact that such hierarchies are computed

separately on each frame of the video, which leads to results potentially highly varying from

one frame to the next one. In order to apply this approach with these hierarchies, one should

first ensure a better coherence between the hierarchies of segmentation produced in each frame.

However, even then, the watershed transform can present some natural instabilities, as slight

modifications of the catchment basins can lead to changes in the regions order of fusions.

Features augmentation using ASF levelings, on the other hand, led to slight improvements of

the results, as one can see in table 8.1 and provided competitive results with the state-of-the-art

of late 2016.
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Method J Mean ↑ F Mean ↑ T ↓
BVS [Marki et al. (2016)] 0.665 0.656 0.316

FCP[Perazzi, Wang, et al. (2015)] 0.631 0.546 0.285
JMP[Fan et al. (2015)] 0.607 0.586 0.131

HVS[Grundmann et al. (2010)] 0.596 0.576 0.296
SEA [Ramakanth et al. (2014)] 0.556 0.533 0.137

TSP [Chang et al. (2013)] 0.358 0.346 0.329
OUR1 0.711 0.735 0.566
OUR2 0.717 0.736 0.561

OSV [Caelles et al. (2017)] 0.798 0.806 0.376
OSV -BS[Caelles et al. (2017)] 0.774 0.781 0.335

OSV -PN-BS[Caelles et al. (2017)] 0.646 0.667 0.609
OSV -OS-BS[Caelles et al. (2017)] 0.525 0.477 0.538

OSV -PN-OS-BS[Caelles et al. (2017)] 0.176 0.203 0.460
MaskTrack [Perazzi, Khoreva, et al. (2017)] 0.748 XXX XXX

MaskTrack +Flow [Perazzi, Khoreva, et al. (2017)] 0.784 XXX XXX
MaskTrack +Flow+CRF [Perazzi, Khoreva, et al. (2017)] 0.803 XXX XXX

VPN-DeepLab [Jampani et al. (2017)] 0.750 0.724 0.295
VPN-Stage2 [Jampani et al. (2017)] 0.713 0.689 0.302

Table 8.1 – Quantitative comparison against state-of-the-art method

However, doing such a features augmentation has the effect of slowing down the training and

testing phases. It is thus probably not useful when transfer learning can be operated [Yosinski

et al. (2014)], which consists in reusing CNN weights learned on a big dataset for a specific

classification problem, and finetuning them for a new problem. Indeed, usually CNNs that have

been trained on million of examples take (R,G,B) images as input, and modifying the input

data shape is not straightforward. But using levels of morphological hierarchies could be useful

to do data augmentation, to artificially increase the size of a dataset for more efficient learning.

More generally, our approach to do video segmentation is highly perfectible, and could

take inspiration in methods presented in section 8.3.3, notably by doing transfer learning, by

operating elastic deformations on the mask image to simulate objects movements or by doing

data augmentation with specific changes of the background to make the CNN more robust to the

appearance of new objects. However, the exploration of these research paths, while interesting,

is beyond the scope of this thesis subject, and could by themselves be the subject of an important

research work.

8.4 Image characterization by global and local hierarchical

features

8.4.1 Global image features: distances between hierarchies

Throughout this thesis, we have explored several ways to compute and combine morphologi-

cal hierarchies. In particular, we have seen that we may generate multiple hierarchies upon the
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same fine partition of an image. In chapter 6, we have seen how using distances between such

hierarchies as images features led to interesting and promising results on image classification

problems, both in terms of learning efficiency and interpretability of the results.

We have exposed some examples for supervised image classification, but we would like to

put the emphasis here on the fact that such an approach would be interesting to analyze an

image in an unsupervised way. For a pool of pure hierarchies that have understandable effects

and characterize the images in a controlled way, the analysis of the interhierarchies distances

can provide insights about unknown types of images, and possibly help us discriminate between

classes of images in an unsupervised way. Furthermore, it could be used for example for anomaly

detection, as outliers in a dataset would react differently that other images to the application of

the same hierarchies. In this regard, this approach is in line with scale-space and granulometrics

analysis, since objects are characterized by various hierarchies that reflect specific properties,

similar to series of sieves filtering differently the contents of a mixture.

8.4.2 Local images features: contours signatures

In this section, we expose how one could, using the same principles, obtain a local image

feature for each contour of an image. When computing several hierarchies for the same fine

partition of an image, for each contour, each hierarchy provide us with several saliency values

(that we can normalize in order for them to be comparable). For each contour, we can this way

obtain a local descriptor in the form of a vector of saliency values, that we call signature of the

contour.

To illustrate the discriminative power of such contours descriptors, we conduct the fol-

lowing experiment. For several images of the same object in different frames of a video, we

generate contours signatures for all contours of the computed fine partitions of those images,

with considered hierarchies being (Htrivial,Hsurf−SWS ,Hvol−SWS ,Hwaterfall,HBSC ,Hsurf−SWS ◦
Hvol−SWS ,Hvol−SWS ◦ Hsurf−SWS). On the first image, we train a K-means to learn in an unsu-

pervised way a clustering of the contours based on these signatures representations, with K = 8.

We then apply this learned model to the next images, and display for all images the contours

associated with each class with different colors. A visual inquiry of the results reveals a strong

correspondence between the type of retrieved contours for each class, which likely confirms the

potential usefulness of contours signatures to characterize contours. This is illustrated in figure

8.10.

We do the same experiment with stereo images excerpt from the Middlebury dataset

[Scharstein et al. (2014)]. The results are very promising and suggest a possible use of these

contours signatures to find proper contours to be a basis for the completion of a disparity map,

as illustrated in figure 8.11.

A second attempted experiment consisted in learning the contours of interest on an image,

by integrating the contours ground-truth over each contour. This way, for each contour of the

ground-truth, we have a value between 0 and 1 which reflects its pertinence. We can then
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attempt to learn the type of contours signatures that best capture such contours of interest in

subsequent images. Obtained results are mixed, as it turns out this problem is a very unbalanced

machine learning problem, with much more negative than positive examples.

207



8. COMBINING CONVOLUTIONAL NEURAL NETWORKS WITH MORPHOLOGICAL HIERARCHICAL

SEGMENTATIONS

(a) Frame 1 (b) Clustered contours signatures

(c) Frame 15 (d) Clustered contours signatures

(e) Frame 30 (f) Clustered contours signatures

(g) Frame 45 (h) Clustered contours signatures

(i) Frame 65 (j) Clustered contours signatures

Figure 8.10 – Qualitative visualization of the pertinence of images signatures for several frames
of a video sequence. We train a K-means with K = 8 on the contours of the first frame and apply
it to the subsequent ones. The contours colors represent the class they have been attributed by
the K-means.
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(a) Teddy-1 (b) Clustered contours signatures

(c) Teddy-2 (d) Clustered contours signatures

(e) Cones-1 (f) Clustered contours signatures

(g) Cones-2 (h) Clustered contours signatures

Figure 8.11 – Qualitative visualization of the pertinence of images signatures for stereo images.
The two examples Teddy and Cones are excerpt from the Middlebury dataset [Scharstein et al.
(2014)]. We train a K-means on the contours of the first image with K = 8 and apply it to the
next one. The contours colors represent the class they have been attributed by the K-means.
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8.5 Exploration of Hierarchies for Finer Contours Retrievals

An intrinsic complementarity seems to exist between mathematical morphology, which studies

shapes in images, and CNN-based methods which seem mostly learn textures and local patterns.

In particular, numerous CNN-based methods provide state-of-the-art for semantic segmentation,

object detection, etc. The results are very good to retrieve the proper pixel class for most classes,

but these methods generally have difficulties to obtain precise contours of the objects. Several

methods have been proposed to complement them and solve this problem, such as Conditional

Random Fields [Zheng et al. (2015)] or Fast Bilateral Solver [Barron et al. (2016)].

We briefly explored an other possibility that would require further inquiry. The main

idea is to build a hierarchy that takes into account a prior spatial information coming from a

localization/semantic segmentation method. In the spirit of [Drouyer et al. (2017)], one can

then explore this hierarchy in a top-down fashion, with a given stop condition to assess that

the proper level of fineness has been attained. Notably, one can build a hierarchy that put the

emphasis on the transitions between the foreground (the object of interest) and the background,

which precisely correspond to the contours who are uncertain and that we would like to precisely

retrieve. Then, we can explore this hierarchy in a bottom-up fashion, with stopping conditions,

to retrieve new zones of interest that are more precise. This way, we have an exploration space

of contours that is adapted to the areas of uncertainty. Preliminary experiments have been

conducted a first result is presented in figure 8.12.

(a) Image (b) Rough probability map asso-
ciated with the class face

(c) Refined probability map
with contours extracted from a
HRF

Figure 8.12 – Example of the interest of traversing a HRF taking into account a prior spatial
information to refine its contours.
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Summary of our main contributions

A brief overview of our contributions is provided below.

— We introduce several ways to combine hierarchies, in a sequential way (by hierarchical

chainings) or parallel by functional combinations of ultrametrics. In particular, combina-

tions of SWS hierarchies are interesting as they operate in a homogeneous framework, the

strength of the contours being expressed by probabilities, and can provide understandable

and coherent contours valuations. Furthermore, we have shown that hierarchies sharing

the same MST may be combined by restricting the computation of the new ultrametric

distance to this MST. The family of operators applicable with this method is extremely

large.

— We introduce a methodology to study the space of hierarchies. It is based on the use of

the Gromov-Hausdorff distance between hierarchies, that we show to be extremely simple

to compute for hierarchies generated upon the same fine partition. This way, we can

quantify the distances between hierarchies, and estimate the degree to which they differ.

Using this distance in conjunction with dimensionality reduction techniques provides a

comprehensive framework to study the relations between different hierarchies built on the

same image.

— We propose a segmentation framework to automatically learn the best hierarchy and

cut-level, given a set of images and a score to quantify the quality of segmentations.

— We show that inter-hierarchies distances matrices can constitute powerful geometric

features of images. Using them in a classical classification pipeline leads to promising

results, as the results exhibit a “aha-moment” during the learning phase that is more linked

with the human way of learning as compared with Convolutional Neural Networks, which

require a lot of examples to reach convergence.

— Using regionalized random germs for constructing SWS permits to incorporate any spa-

tial prior information during the hierarchical segmentation process. The versatility and

usefulness of such a method is illustrated on several examples.
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— One can also incorporate in their construction information about shapes, preferential

directions, or sizes distribution.

— The thesis introduces the Binary-Scale Climbing (BSC) hierarchy. It is created by minimizing

a Mumford-Shah functional subordinated to a given input hierarchical segmentation. The

resulting hierarchy has been regularized as a trade-off between boundary length and image

adherence. It permits to explore the evolution of the partitions derived from a given

hierarchy if one displaces the cursor between fidelity to the data and length of the contours.

Applied to distinct hierarchies obtained for the same image, it acts as another kind of

normalization in order to compare them.

— In order to implement all these methods, a module for hierarchical segmentation has been

implemented within the open-source library Smil. This implementation has been coded

using dynamic programming and graphs in C++, and can be called in Python in order to

be used with the numerous libraries and frameworks (such as numpy, OpenCV, pandas,

scikit-learn, etc.) that exist in this language to work with images and data. It has been

made public and can now be used, modified and enhanced by the research and industrial

communities. This part of the work is hidden behind the results outlined in this thesis but

has represented a significant programming effort.

Perspectives

Several promising perspectives can be thought of, both in terms of methodology and applica-

tions.

— We remind the reader that the chapter 8 has presented several perspectives on how

morphological hierarchical segmentations may be combined with CNN-based methods.

— Most of the hierarchical segmentation methods introduced in this thesis make a heavy use

of the MST structure. We have seen that the MST is generally not unique (sections 1.3.3

and 3.3.5) and have outlined possible solutions in section 3.3.5 to avoid an arbitrary choice

of one of them, namely to consider all possible MST at once before pruning the output, or

to select one MST based on the lexicographic distance rather than ultrametric distance.

Tests should be conducted to validate and complete these proposals.

— In chapter 4, we propose a methodology using Gromov-Hausdorff distance between hi-

erarchies as long as dimensionality reduction techniques to structure and visualize the

combinatorial space of hierarchies. More specifically, we make use of metric multidimen-

sional scaling (MDS) to project the space of inter-hierarchies distances into a space of

dimension 2 and visualize hierarchies relatively to one another. Another variant of MDS,

called non-metric MDS, is useful in cases where dissimilarities are known only by their rank

order, and where the spacing between successively ranked dissimilarities is of no interest.

The use of non-metric MDS could be tested, with hope to achieve a better robustness.
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— In chapter 4, sequential combinations (or chainings) of hierarchies are introduced. We show

that when iterated, such chainings converge, and a link is made between this evolution

and the local minima of the Dasgupta cost-function (see section 4.5.2). An interesting

perspective consists in drawing more bridges between the different hierarchies introduced

in this work and possible costs functions they maybe optimize. For now, the hierarchies we

have introduced are defined procedurally, which makes the study of their effect complex,

since the objective function they optimize is hard to figure out. Having such cost-functions

to optimize would open the way to the application of more direct machine learning methods

to learn the best hierarchy for given type of images and cost-function. However, this would

require a fine-tuning of parameters, and would not necessarily present understandable

effects. In a way, our approach is more controlled, as we can build combinations of

hierarchies that capture distinctive features of images.

— In the designing of a learning-based workflow to do segmentation using hierarchies (as

in chapter 5), the choice of the initial pool of hierarchies is adamant. Furthermore,

whereas we only used hierarchical chainings in chapter 5, one could also use functional

combinations of hierarchies, especially using the AND, OR and NOT operators between

SWS hierarchies, which would provide more interpretable results. Instead of doing this

choice by-hand, one could study the complementarity of different hierarchies for the

considered set of images by using Gromov-Hausdorff distance and data analysis tools

introduced in chapter 4. Finally, the exploration of the hierarchical space could be done

in a cleverer way than with a greedy approach, which would allow to go deeper. For

example, a reinforcement learning algorithm could be applied to select the combination of

hierarchies that optimize a segmentation score.

— In chapter 6, distances between hierarchies were used to characterize images. We saw

that the hierarchies that have been tested essentially conveyed geometrical information

about images, and were thus not adapted to the study of images possessing periodicities

properties. One could conceive to design hierarchies that capture such information to

enrich the pool of hierarchies. For example, one could think of replacing a random marker

by a couples of random markers and repeat the construction processes with various spacings

between the markers.

— In chapter 6, distances between hierarchies were used as features for supervised classifica-

tion tasks. One could also think of using them in an unsupervised fashion to do anomaly

detection, which aims at identifying items, events or observations which do not conform to

an expected pattern in a dataset. Given a set of images, for example images of items in an

assembly line, one could compute these features for each image, and compare them using

classical anomaly detection algorithms such as one-class SVM [Manevitz et al. (2001);

Heller et al. (2003)] to detect outliers that present defaults.

— In chapter 6, we saw how to extract images features from a set of hierarchies. One could

also use hierarchies to extract local features. For example, given a set of hierarchies applied
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to the same image, one could constitute, for each contour, a vector of the different saliences

of this contour in all hierarchies. Similar characterization vectors could be thought of

for triple points of the image, or regions. This approach is similar to the classical SIFT

approach, in the sense that such local descriptors are constructed by multiplying the points

of view within a local domain around each contour/region/triple point in a controlled

way. This interesting perspective has been explored in a an early phase of our work to

follow the contours of an object of interest in a video. However, a major difficulty to face is

the underrepresentation of the object of interest contours, compared with other contours:

indeed, there are usually much more contours within a fine partition of an image than

there are contours of interest within this fine partition. This makes this problem a very

unbalanced one, a situation for which solutions exist and that would require further inquiry

[He and Garcia (2009); He and Ma (2013)]. However, in a more controlled environment,

and for very similar images as it is the case in stereovision, the matching of contours using

these descriptors should be much more simple and provide interesting results. This has

been presented in section 8.4.2 of chapter 8.

— In this thesis, we have worked with images modeled as graphs. This high-level of abstraction

has proved useful to generate new algorithms and give us ideas about potential applications.

However, it could potentially be applied to any type of data on which a neighborhood

relation has been defined, as well as valuations between neighbors, generating a weighted

graph. Methods introduced throughout the thesis could then be applied to others domains

than images. A promising application would be the use of interhierarchies Gromov-

Hausdorff distances applied on the same set of points to characterize it. This could be used

as a non-supervised way to characterize and discriminate between different graphs.

— In chapter 7, we have seen how to introduce prior information during the construction

of a hierarchical segmentation, which has proved to be useful for several applications.

Furthermore, we observe the emergence of powerful semantic segmentations algorithms

based on CNN in the literature [Long et al. (2015)], that provide impressive results for

localization but can still be improved when it comes to precisely extract the contours of

objects. Such prior-based hierarchies that would take as input the outcome of semantic

segmentations algorithms, combined with a smart exploration of the hierarchy as in

[Drouyer et al. (2017)], could help to refine their contours as other existing methods

[Zheng et al. (2015)].

— We have presented the hierarchies of quasi-flat zones associated to levelings. Rather than

choosing once for all a method to create a fine partition from which a hierarchy will be

constructed, one may start with the image, construct a first hierarchy of quasi-flat zones

and build upon it a second coarser hierarchy, for instance a SWS one. To go further,

we could explore the complementarity of approaches that can be built on the same fine

partition, encoded as a mosaic image. Levelings study the distribution and entanglement

of peaks and valleys in the image, while watershed hierarchies provide a hierarchies of
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contours in relation with the characteristics of their neighborhood.

— For analyzing stereo images, one may construct joint hierarchies based on the pair of

images. One could construct SWS hierarchies where the random markers would be used in

pairs, one for each image of the stereo pair.

In this thesis, we have proposed constructive and analytical approaches of a geometrical

nature to study and characterize images. We believe that these approaches can complement other

types of image analysis methods, particularly those based on convolutional neural networks.

Their obtaining is made efficient and fast by dynamic programming on graphs and the important

use of the minimum spanning tree structure.

I would be happy if this work aroused an interest in the community to resume and amplify it.

I am thus available to exchange and work with those who will want to tackle it and go further in

similar research directions.
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February 27, 2018

This document presents an example of the framework implemented and used during this thesis to work
with hierarchical segmentations.

As a reminder, here are the main steps to get a hierarchy of segmentations in the graphs-based hierarchical
segmentation framework we use:

1. get a fine partition FP (I) out of the image I

2. get a Region Adjacency Graph (RAG) G out of FP (I), considering a given dissimilarity between regions
of the fine partition

3. compute the Minimum Spanning Tree MST (G) from G
4. find the inconsistent edges on the MST (G) according to some criteria and cut them, resulting in

a partition of the image. Cutting edges in a MST produces forests. The more edges are cuts, the
smallest the resulting forests. To a series of cuts corresponds a decreasing sequence of forests, and at
each step, the trees of one forest underly a partition. Thus we obtain a series of nested partitions,
i.e. a hierarchy. In particular, a simple way of proceeding to get such a hierarchy is to cut edges by
decreasing valuations. When cutting edges by decreasing order of consistency, one get a hierarchy of
segmentations.

In [1]: #!/usr/bin/env python

# -*- coding: utf-8 -*-

#

# Morphological hierarchies using dendrograms - Hands on

#

# Amin Fehri - amin.fehri@mines-paristech.fr

import sys

sys.path.append(’/home/fehri/Dev/Smil/LibDendro/’)

import smilPython as sm

from MorphOperators.levelings import *

from Visualization.funcViz import *

from Segmentations.finePartition import *

from Segmentations.Waterpixels import *

from Dendrograms.graphFunct import *

from Dendrograms.dendroDist import *

from Dendrograms.salience import *

import cv2

from matplotlib import pyplot as plt

import matplotlib.cm as cm

from IPython.display import Image as ImagePy

import scipy

from scipy import misc

%matplotlib inline

1
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1 Getting a fine partition (labels image) of the image using wa-
terpixels

We chose to use the waterpixels approach to compute the fine partition, as we found it to provide guarantees
for not missing important contours while still being fast enough to keep the entire chain not prohibitively
long for the user.

1.1 Open and print image

We open and print the classical cameraman image.

In [2]: imIn = sm.Image("cameraman.png")

smilToNumpyPlot(imIn)

1.2 Generate a fine segmentation

We can now compute the fine segmentation using waterpixels.

In [3]: gradientLambs=[]

paramsWP = [15,0.1,True,gradientLambs]

imLabelsWP, imGrad, imMinimaVal = m_waterpixels(imIn,

step=paramsWP[0],

d_weight=paramsWP[1],

filter_ori=paramsWP[2],

lambs = paramsWP[3])

imFP = sm.Image(imIn)

segToMosaic(imIn,imLabelsWP,imFP)

imGradInv = sm.Image(imGrad)

sm.inv(imGrad,imGradInv)

2
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print "From left to right : gradient image, waterpixels, and corresponding mosaic image."

smilToNumpyPlot3(imGradInv,imLabelsWP,imFP,[False,True,False])

print "Nb of regions = " + str(sm.maxVal(imLabelsWP))

From left to right : gradient image, waterpixels, and corresponding mosaic image.

Nb of regions = 289

2 Get a Region Adjacency Graph (RAG) from the fine partition

In [4]: imLabels = sm.Image(imIn,"UINT32")

imNodeValues = sm.Image(imIn,"UINT32")

imEdgeValues = sm.Image(imIn,"UINT32")

sm.copy(imLabelsWP,imLabels)

sm.sub(imLabels,1,imLabels) # For labels to begin at 0

sm.labelWithArea(imLabels,imNodeValues)

imGrad = sm.Image(imIn,"UINT8")

if imIn.getTypeAsString() == "RGB":

sm.gradient_LAB(imIn,imGrad)

else:

sm.gradient(imIn,imGrad)

sm.copy(imGrad,imEdgeValues)

mosaicToGraphMedian = medianMosaicToGraphFunct()

g=mosaicToGraphMedian(imLabels,imEdgeValues,imNodeValues)

3 Get a Minimum Spanning Tree (MST) from the RAG

In [5]: mst = g.computeMST()

4 Get an dendrogram structure from this MST

In [6]: imIn32 = sm.Image(imIn,"UINT32")

sm.copy(imIn,imIn32)

dendroFromG = sm.DendrogramEnergy_UINT32_UINT32_UINT32(mst,imLabels,imIn32)

3
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5 A simple way to obtain and compare different hierarchical clus-
terings

5.1 Compute hierarchical clusterings

In [7]: nMarkers = 50

dendroTmp1 = sm.DendrogramEnergy_UINT32_UINT32_UINT32(dendroFromG)

dendroTmp2 = sm.DendrogramEnergy_UINT32_UINT32_UINT32(dendroFromG)

dendroTmp1.HierarchicalConstruction("stochasticSurfacic",nMarkers)

dendroTmp2.HierarchicalConstruction("stochasticVolumic",nMarkers)

5.2 Print saliency images for these different hierarchies

In [8]: imS,imMask = getSalienceImage(imLabels,dendroTmp1,g)

imVisu = (imS*imMask).T

scipy.misc.imsave("imS1.png",imVisu)

imSaliences1 = sm.Image("imS1.png")

sm.inv(imSaliences1,imSaliences1)

sm.erode(imSaliences1,imSaliences1,sm.HexSE())

imS,imMask = getSalienceImage(imLabels,dendroTmp2,g)

imVisu = (imS*imMask).T

scipy.misc.imsave("imS2.png",imVisu)

imSaliences2 = sm.Image("imS2.png")

sm.inv(imSaliences2,imSaliences2)

sm.erode(imSaliences2,imSaliences2,sm.HexSE())

print "From left to right : image, gradient image, fine partition of the image."

smilToNumpyPlot3(imIn,imGradInv,imLabels,[False,False,True])

print "Saliency images of hierarchical clusterings : surface-based and" + \

" volume-based stochastic watersheds."

smilToNumpyPlot2(imSaliences1,imSaliences2)

From left to right : image, gradient image, fine partition of the image.

Saliency images of hierarchical clusterings : surface-based and volume-based stochastic watersheds.

4
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Résumé

Cette thèse porte sur l’extraction de des-
cripteurs hiérarchiques et multi-échelles
d’images, en vue de leur interprétation,
caractérisation et segmentation. Elle se
décompose en deux parties.

La première partie expose des élé-
ments théoriques et méthodologiques sur
l’obtention de classifications hiérarchiques
des nœuds d’un graphe valué aux arêtes.
Ces méthodes sont ensuite appliquées
à des graphes représentant des images
pour obtenir différentes méthodes de
segmentation hiérarchique d’images.
De plus, nous introduisons différentes
façons de combiner des segmentations
hiérarchiques. Nous proposons enfin une
méthodologie pour structurer et étudier
l’espace des hiérarchies que nous avons
construites en utilisant la distance de
Gromov-Hausdorff entre elles.

La seconde partie explore plusieurs
applications de ces descriptions hiérar-
chiques d’images. Nous exposons une
méthode pour apprendre à extraire de
ces hiérarchies une bonne segmentation
de façon automatique, étant donnés un
type d’images et un score de bonne seg-
mentation. Nous proposons également
des descripteurs d’images obtenus par
mesure des distances inter-hiérarchies, et
exposons leur efficacité sur des données
réelles et simulées. Enfin, nous étendons
les potentielles applications de ces hié-
rarchies en introduisant une technique
permettant de prendre en compte toute
information spatiale a priori durant leur
construction.

Mots Clés
Traitement d’images, Morphologie ma-
thématique, Segmentation, Segmentation
hiérarchique, Classification hiérarchique,
Apprentissage statistique, Théorie des
graphes.

Abstract

This thesis deals with the extraction of
hierarchical and multiscale descriptors on
images, in order to interpret, characterize
and segment them. It breaks down into
two parts.

The first part outlines a theoretical
and methodological approach for obtain-
ing hierarchical clusterings of the nodes of
an edge-weighted graph. These methods
are then applied to graphs representing
images and derive different hierarchical
segmentation techniques. In addition, we
introduce different approaches to combine
hierarchical segmentations. Finally, we
propose a methodology for structuring
and studying the space of hierarchies by
using the Gromov-Hausdorff distance as
a metric.

The second part explores several appli-
cations of these hierarchical descriptions
for images. We expose a method to learn
how to automatically extract a segmenta-
tion of an image, given a type of images
and a score of evaluation for a segmenta-
tion. We also propose image descriptors
obtained by measuring inter-hierarchical
distances, and expose their efficiency
on real and simulated data. Finally, we
extend the potential applications of these
hierarchies by introducing a technique
to take into account any spatial prior
information during their construction.

Keywords
Image Processing, Mathematical Morphol-
ogy, Segmentation, Hierarchical Segmen-
tation, Hierarchical Clustering, Machine
Learning, Graph Theory.
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